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Abstract 

Addiction is supposed to be characterized by a shift from goal-directed to habitual decision-

making, thus facilitating automatic drug intake. The two-step task allows distinguishing 

between these mechanisms by computationally modelling goal-directed and habitual behavior 

as model-based and model-free control. In addicted patients, decision-making may also 

strongly depend upon drug-associated expectations. Therefore, we investigated model-based 

vs. model-free decision-making and its neural correlates as well as alcohol expectancies in 

alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. 

Ninety detoxified, medication-free alcohol-dependent patients and 96 age- and gender- 

matched controls participants underwent functional magnetic resonance imaging during the 

two-step task. Alcohol expectancies were measured with the Alcohol Expectancy 

Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent whereas 

53 patients relapsed as indicated by the Timeline Follow-back method. 

Patients who relapsed displayed reduced medial prefrontal cortex (mPFC) activation during 

model-based decision-making. Furthermore, high alcohol expectancies were associated with 

low model-based control in relapsers, while the opposite was observed in abstainers and 

healthy controls. However, reduced model-based control per se was not associated with 

subsequent relapse. 

These findings suggest that poor treatment outcome in alcohol dependence does not simply 

result from a shift from model-based to model-free control but is rather dependent on the 

interaction between high drug expectancies and low model-based decision-making. Reduced 

model-based mPFC signatures in relapsers point to a neural correlate of relapse risk. These 

observations suggest that therapeutic interventions should target subjective alcohol 

expectancies. 
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Introduction 

A prominent theory in addiction research suggests that drug consumption is initially goal-

directed, aiming at drug-associated positive effects, then becomes habitual and eventually 

compulsive (1, 2). This shift from goal-directed to habitual control has been suggested to be 

caused by long-lasting drug-associated changes in the medial prefrontal cortex and the ventral 

striatum, which are involved in reward processing and reinforcement learning (3-5). 

Behaviorally, there is good evidence for reduced goal-directed decision-making facilitating 

habitual behavior in humans suffering from substance use disorders (6) including 

methamphetamine (7), cocaine (8), and alcohol dependence (AD; 9, 10 but see 7). 

Overreliance on habits at the expense of goals in AD may be particularly pivotal during early 

abstinence, where patients are required to inhibit automatic patterns of alcohol intake and to 

develop alternative coping strategies (11, 12). Neuroimaging studies implicate a crucial role 

for the medial prefrontal cortex (mPFC) and the ventral striatum for the balance between 

goal-directed and habitual control (13-17), craving (18) and relapse in AD (19-21). Moreover, 

in animals, there is evidence that habits (e.g. automatic action tendencies) precede relapse-like 

behavior (22-24).  

However, habit formation is not only a deficit: it is a fundamental and adaptive ability and 

utilizing habits facilitates decision-making whenever cognitive resources are limited (25) or 

action sequences are too complex to mentally compute them (26). In AD, specific habits may 

be altered and induce alcohol craving, seeking and intake. Besides habit formation, positive 

alcohol expectancies as assessed by the Alcohol Expectancy Questionnaire (27) have been 

associated with current (28) and future alcohol consumption (29, 30). Explicit, self-report 

measures of alcohol expectancies reflect the specific expectations of the reinforcing effects of 

alcohol and are associated with prefrontal cortex activity and structure (31-35). One study in 
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humans has demonstrated that acute expectation of alcohol induced by presenting alcohol 

beverages impairs goal-directed regulation of drug-seeking behavior in social drinkers (36), 

which parallels animal findings (37). Such acute expectation of alcohol may be particularly 

strong in subjects who have generally positive expectancies regarding the effects of alcohol 

consumption. Indeed, subjects who report greater positive, arousing and social alcohol 

expectancies show increased appetitive responses towards alcohol cues (38). However, it is 

yet unclear how this association relates to real-life drinking behavior and treatment outcome 

in AD. 

Here we recruited recently detoxified AD patients who expressed a desire to remain abstinent. 

We asked whether a tendency for positive alcohol expectancies interacts with model-based 

control and its neurobiological correlates in predicting treatment outcome. 
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Methods and Materials 

Participants 

All data presented here were collected as part of the LeAD study (Learning and Alcohol 

Dependence), a bicentric German study hosted at Universitätsklinikum Dresden/ Technische 

Universität Dresden and Charité – Universitätsmedizin Berlin. In total, 202 subjects (106 AD 

patients, 96 healthy controls = HCs) completed the two-step task (39) to disentangle habitual 

from goal-directed decision making and the brief, german version of the Alcohol Expectancy 

Questionnaire (AEQ-G (27)). All patients fulfilled diagnostic criteria for AD according to 

ICD-10 and DSM-IV-TR (40) for a minimum of three years. HCs were carefully matched for 

age, gender, education and smoking. Exclusion criteria for all subjects were left-handedness 

(EHI (41) < 50), a history of current or past substance use disorder (except nicotine 

dependence in HCs and alcohol and nicotine dependence in patients), other major psychiatric 

disorder (as assessed with the computer-based Composite International Diagnostic Interview, 

CIDI (42, 43)) or neurological disease. All subjects were free of psychotropic medication 

known to interact with the central nervous system for at least four half-lives (including illegal 

drugs and detoxification treatment tested by a drug urine test). Study participation of the 

patients took place shortly after detoxification (Table 1). Participants gave written informed 

consent. Ethical approval for the study was obtained from both sites (Ethic numbers: EK 

227062011, EA 1/175/11), procedures were in accordance with the declaration of Helsinki. 

Procedure 

Participants were seen twice for investigation. In a first assessment, participants completed 

the CIDI, a neuropsychological test battery and further questionnaires (Table 1). At this time, 

subjects also completed the AEQ-G (27). On the second appointment, which took place 
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shortly after the first appointment (mean = 7.0 days, sd = 12.2), subjects performed the two-

step task (39) along with another learning task (44). The two-step task was programmed using 

Matlab 2010 (version 7.12.0; (45)) with the Psychophysics Toolbox Version 3 (PTB-3; (46)) 

and was performed while undergoing fMRI scanning. All participants had negative alcohol 

breath tests and patients were free of significant withdrawal symptoms (CIWA-Ar score ≤ 3, 

(47)). Participants received a compensation of 10€/hour plus a financial bonus contingent on 

their performance. Blood samples for analysis of alanine transaminase (ALT), aspartate 

transaminase (AST), gamma-glutamyl transferase (γ-GT), and phosphatidylethanol (PEth) 

were collected.  

Alcohol Expectancy Questionnaire 

The brief version of the AEQ-G comprises 19 items. Each item describes anticipated 

reinforcing effects of alcohol. Items include statements such as: Alcohol generally has 

powerful positive effects on people (e.g. makes a person feel good or happy) or Alcohol helps 

a person relax (e.g. feel less tense, can keep a person’s mind off of mistakes at work). 

Subjects are asked to agree or disagree with each item. Disagreement and Agreement of each 

item are coded as 1 and 2 respectively, resulting in a potential sum score between 19 and 38, 

for low and high expected reinforcement, respectively. 

Task 

Each participant performed 201 trials of the two-step task, (Figure 1A for detailed task 

description). This task enables to analyze model-based (cf. goal-directed) and model-free (cf. 

habitual) decisions on a trial-by-trial level, as both decision strategies make distinct 

predictions on how reward and transition should influence first-stage behavior (Figure 1B). 

 

----------------------------------INSERT FIGURE 1 HERE --------------------------------------------  



Sebold et al 

7 

 

Magnetic Resonance Imaging 

Functional Imaging was performed using a 3-Tesla Siemens Trio scanner with a 12-channel 

head coil. For fMRI we used a T2*-weighted echo-planar imaging (EPI) sequence and applied 

the following parameters: TR = 2410ms; TE = 25ms; flip angle: 80°; voxel size: 3x3x2mm
3
; 

FOV: 192x192mm
2
. One volume comprised 42 transversal slices in descending order, 

oriented 25° to the anterior-posterior commissure line. We additionally acquired a structural 

T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) image (TR=1900ms, 

TE=2.26ms, flip angle: 9°, voxel size:1x1x1mm
3
, FOV:256x256mm

2
).  

Follow-up Procedure 

After study participation AD patients were regularly contacted for personal (after 4, 8, 12, 24 

and 48 weeks) and telephone (after 6, 10, 18, 36 weeks) assessments over a period of one 

year. At each contact, we assessed daily alcohol intake amount using the Alcohol Timeline 

Follow-back method (48), with relapse defined as consumption of 60/40 (male/female) gram 

of alcohol on any occasion. Personal assessment included alcohol breath tests to validate self-

reports. During the follow-up period, we lost 16 patients (15%). In two cases, we only had 

relapse reports from close relatives, which we accepted for classification. Altogether, 53 

patients (59%) relapsed during the follow-up period, whereas 37 (41%) remained abstinent 

according to self-reports. Demographic and clinical characteristics of this final sample are 

shown in Table 1. 

Data Analysis 

We investigated two questions (1) whether the balance between model-free and model-based 

control was different between HCs and recently detoxified AD patients who remained 

abstinent (abstainers) and who subsequently relapsed (relapsers), and (2) whether the balance 

between model-free and model-based control moderated the effect of alcohol expectancies on 
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drinking behavior. As previous studies have overwhelmingly suggested that the two-step task 

has power to detect variations in the goal-directed but not the habitual system (7, 9, 49, 50), 

we focused on individual differences in model-based control in all analyses. We tested 

assumptions for all statistical analyses and computed non parametric tests when necessary.  

Task-related Group Differences 

In order to derive individual measurements of model-based control from behavior of the two-

step task, we focused on first stage choices as the theoretical assumption that model-free vs. 

model-based decision-making is differentially affected by reward and transition from the 

previous trial ((39) and Figure 1B). We calculated individual model-based scores, as done 

previously (9), which reflect the interaction between transition frequency and reward of the 

previous trial (% Reward Common + % Unrewarded Rare - % Rewarded Rare - % 

Unrewarded Common). Model 1a involved a multinomial logistic regression analysis 

(multinom function from the nnet package in R, version 7.3-8) to test whether group (dummy 

coded with three levels: HCs, abstainers, relapsers) was predicted from individual model-

based scores.  

The raw data analysis provides a direct measurement of individual model-free and model-

based behavior. However, this method only considers trial-by-trial repetition effects. 

Computational models allow more comprehensive assessments, examining longer behavioral 

trends. Therefore, we fitted a hybrid model as previously described (39, 51, 52) to the 

behavior and estimated parameters for each subject. We used an expectation maximization 

(EM) algorithm to find maximum a posteriori estimates. During the fitting procedure all 

subjects (HCs, abstainers, relapsers) were treated as one group.  

The hybrid model contains seven parameters, of which the parameter ω is of major interest, as 

it determines the balance between model-free (ω = 0) and model-based (ω = 1) control.  



Sebold et al 

9 

 

Crucially, this seven-parameter hybrid model was the best-fitting model for all groups 

(Supplementary Information 1 and 2, Supplementary Figure 1). The estimation of the 

parameter ω relies on the fact that subjects indeed concurrently use model-free as well as 

model-based strategies. We excluded subjects who did not use this hybrid model as indicated 

by the individual log-likelihoods that did not fit better than chance (Supplementary 

Information 1 and 5, n in analyses = 143). Model 1b then mirrored the analysis of the first-

step repetition probabilities: we performed a multinomial logistic regression analysis to test 

whether ω was predictive of group membership (HCs, abstainers, relapsers).  

In line with (7), we also compared all other model parameters between groups 

(Supplementary Information 3 and Supplementary Table 1).  

The Interaction between Alcohol Expectancies and Model-based Control  

Our second hypothesis was that model-based scores would moderate the effect of alcohol 

expectancies on group. Model 2a tested this using multinomial logistic regression where we 

additionally allowed for interaction between AEQ-scores and model-based control to predict 

group.  

To elucidate the direction of our effects, we computed post-hoc Spearman correlations  

between AEQ scores and model-based control within all three groups. For illustrative 

purposes and further analyses we also assigned participants to high vs. low alcohol 

expectancy groups using median splits of AEQ (controls median = 25; patients median = 35).  

We compared model 1a and model 2a with respect to model fit. To assess the predictive 

capacity of the winning model, we additionally performed a cross-validation approach 

(stratified 10-fold cross-validation with class balancing during training). 

Finally model 2b replicated the above analysis using the computational parameter ω. We 

compensated for the reduced power due to removal of poorly fit subjects (Supplementary 
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Information 2 and 5) by using categorical AEQ information. Again, we compared model 1b 

and model 2b with respect to model fit. Post-hoc analyses were performed, comparing ω 

between high and low AEQ-G individuals within each group using Kruskall-Wallis test.  

In order to evaluate whether AEQ scores were related to a motivational aspect of alcohol 

intake, we correlated AEQ-scores with sum scores of the Drinking Motives Questionnaire 

(DMQ-R (53)), which measures self-related motives of alcohol intake (54).  

fMRI Analysis 

For preprocessing details of the fMRI data see Supplementary Information 4. All first level 

analyses were based on 116 subjects (60 HCs, 21 abstainers and 35 relapsers, Supplementary 

Information 5 and Supplementary Figure 2 for details of drop-out). In line with the original 

hypothesis that relapse in AD is characterized by a shift away from model-based control, the 

aim of the statistical analysis of the fMRI data was to elucidate whether relapsers would show 

decreased model-based neural signatures in brain areas previously associated with the 

computation of these learning signals (39, 51, 52). 

First level analyses were conducted as previously described (39, 51, 52 and Supplementary 

Information 6). Briefly, we derived individual model-free (RPEMF) and model-based reward-

prediction error (RPEMB) trajectories from the computational model under the assumption of 

pure model-free (ω=0) vs. full model-based (ω=1), respectively. In line with Daw et al. (39), 

we used the mean across all groups for all parameters to compute prediction errors.  

Next, we used RPEMF as a parametric regressor in the first level analyses and added a second 

regressor, RPEΔMB, the difference between RPEMF and RPEMB in order to explain variance in 

the BOLD signal uniquely related to model-based prediction errors. 

At the second level, contrast images for RPEMF and RPEΔMB were taken to a random effects 

analysis. Site (Berlin vs. Dresden) was added as a covariate of no interest. For correction of 
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multiple comparisons, family-wise error (FWE) correction with p = .05 at the peak level was 

applied for whole brain analyses. Group comparisons in mPFC and ventral striatum - both 

areas with a pivotal role in coding RPEMF and RPEΔMB signals (39, 51, 52, 55, 56) - were 

performed using small volume correction with a mask containing all voxels showing a 

significant effect for RPEMF and RPEΔMB (conjunction at p < .001 uncorrected) combining all 

three groups (Figure 3 and Supplementary Table 3).  

There is evidence for pronounced structural alterations in relapsers compared to abstainers in 

the mPFC, a region of interest (20, 21, 57). Therefore, we conducted Voxel Based 

Morphometry (VBM (58)) in order to control for these morphometric alterations in the 

functional imaging analyses. We extracted averaged individual gray matter density of the 

mPFC and added this as nuisance variables in our fMRI analysis (Supplementary Information 

7 and Supplementary Table 2).  

To mirror the behavioral analyses, we additionally tested whether model-based neural 

signatures would differently correlate with AEQ-scores between groups. As we had assumed 

that the interaction between model-based neural correlates and alcohol expectancies plays a 

role in the predefined regions (right/left ventral striatum and mPFC), we extracted average 

model-based cluster activity of these regions. Mirroring our behavioral analyses, we then 

performed three subsequent multinomial regressions with group as dependent variable and 

tested for the interaction between AEQ scores and the respective cluster values. 
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Results 

Sample Characteristics 

Compared to HCs, abstainers and relapsers reported significantly higher symptoms in almost 

all clinical characteristics, increased deficits in neuropsychological testing and increased 

blood parameters related to alcohol consumption (Table 1).  

Matching of HCs and AD patients was successful in all variables of interest (gender, school 

education, smoking status, age). At baseline, there were no significant differences between 

abstainers and relapsers, except that the patients in the relapse group reported a larger number 

of prior detoxifications. 

 

--------------------------------INSERT TABLE 1 HERE ----------------------------------------------  

 

Task-related Group Differences 

Model-based control per se did not predict group membership of HCs, abstainers or relapsers 

(Model 1a; R2
McF = .003, p = .55): Model-based control was neither different between HCs 

and abstainers (ß = -0.9, p = .41) nor between HCs and relapsers (ß = -1.0, p = .32). The 

computational analysis confirmed these results. The parameter ω, which describes the balance 

between model-free and model-based control was not associated with group (Model 1b; R2
McF 

= .003, p = .60): ω was neither different between HCs and abstainers (ß = 1.13, p = .30) nor 

between HCs and relapsers (ß = 0.72, p = .40, Supplementary Table 1).  

The Interaction between Alcohol Expectancies and Model-based Control  
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However, model-based control and alcohol expectancies interacted in predicting group 

membership (Model 2a; R2
McF = .23, p = .01). This interaction was significantly different 

between relapsers and HCs (p < .01) and trendwise different between relapsers and abstainers 

(p = .06). Post-hoc analyses using Spearman correlation to associate AEQ scores with model-

based control indicated a positive association between these variables in HCs (ρ = 0.2 , p = 

.04) which was absent in abstainers (p = .36, Figure 2A) and negative in relapsers (ρ = -0.3, p 

= .03). Model comparisons between model 1a and model 2a indicated that model 2a, which 

included the interaction between the model-based term and AEQ scores to predict group 

membership, outperformed model 1a, which included only the model-based term (χ = 87.1, p 

< .001). To ensure the robustness of our analysis in a predictive classification scheme, we ran 

the logistic regression model in a cross-validated procedure. The regression model correctly 

predicted group membership with an AUC of 0.77 (chance level: 0.5; p < 10
−4

 based on a 

permutation test with 10000 label permutations), corroborating the significant predictive 

capacity of model 2a. 

Similar to our raw data analysis, model 2b indicated a significant interaction between ω and 

AEQ-scores (R2
McF = .12, p = .01), which was significantly different between relapsers and 

HCs (ß = 1.48, p < .01) and did not reach significance between relapsers and abstainers (ß = 

1.8, p = .1). Again, model 2b outperformed model 1b, which only included the parameter ω (χ 

= 10.2, p = .03).  

Post-hoc analyses, comparing high and low AEQ individuals revealed a positive association 

between AEQ scores and ω in HCs (p < .01), but no significant association between AEQ and 

ω in abstainers (p = .51) and a trend towards negative association between AEQ and ω in 

relapsers (p = .05, Figure 2B). Adding site as a potential covariate did not change any of these 
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results. Repeating our analyses with time to relapse as dependent variable did not reveal any 

significant effects (Supplementary Information 10). 

 

-----------------------------------INSERT FIGURE 2 HERE --------------------------------------------  

 

Amongst all subjects, AEQ-scores were positively correlated with a variety of drinking 

motives as measured DMQ-R (53) (Supplementary Information 8 and Supplementary Figures 

3 and 4). 

fMRI Results 

Across all groups and in line with previous work (39, 51, 52), the conjunction between  

RPEMF and RPEΔMB reached significance in the bilateral striatum (t = 6.38, x = 12, y = 12, z = 

-8 and t = 6.27, pFWE < .001, x = -16, y = 8, -10, pFWE < .001) and the medial PFC (t = 4.85, x 

=-8, y = 32, z = -8, pFWE < .05; Figure 3 and Supplementary Table 3). Within these regions, 

we found a significant correlation between neural model-based signatures (average cluster 

activation) and model-based behavioral measures based on raw data analysis (right ventral 

striatum: ρ = .29, p = .02, mPFC: ρ = .27, p =.03) in HCs (Figure 3B).  

With regards to group comparisons, HCs did not differ from AD patients. However, with 

regards to treatment outcome, we observed significantly lower model-based prediction error 

signals (RPEΔMB) in the mPFC for relapsers compared to abstainers and HCs (t = 3.9 ; x = -

16, y = 42, z = -8, pFWE_SVC = .026, Figure 3C). Post-hoc analyses, for which we extracted 

estimates from the peak voxel in the mPFC and compared activation between groups, 

indicated significantly higher activation in HCs compared to relapsers (t = 3.47, p < .001) and 

trendwise higher activation in HCs compared to abstainers (t = 1.74, p = .08). There was no 

difference between abstainers and relapsers (p = .10). Crucially, adding individual gray matter 
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densities of the mPFC did not change these results (pFWE_SVC = .024), suggesting that reduced 

neural signatures of model-based RPEs in the relapsers were not due to grey matter atrophy 

(Supplementary Information 7 and Supplementary Table 2). 

Model-free neural signatures did not differ between groups (Supplementary Information 9 and 

Supplementary Figure 5). 

 

-----------------------------------INSERT FIGURE 3 HERE --------------------------------------------  

 

Mirroring our behavioral analyses, we also examined whether AEQ-scores interacted with 

neural correlates of model-based control in predicting group. However, the interaction 

between neural correlates of model-based control and AEQ scores was not significantly 

different between groups, neither in the left (relapsers vs. abstainers, p = .06, relapsers vs. 

HCs p = .32) or right ventral striatum (relapsers vs. abstainers, p = .10, relapsers vs. HCs p = 

.54) nor in the mPFC (relapsers vs. abstainers, p = .60, relapsers vs. HCs p = .21). 
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Discussion 

The main findings of our study are 1.) a reduction in mPFC activation during model-based 

behavior in relapsers and 2.) that an interaction between alcohol expectancies and goal-

directed control distinguishes relapsers from abstainers and healthy controls. Reductions in 

goal-directed behavior per se were not significantly associated with AD or relapse. Instead 

relapsers had high alcohol expectancies in association with low goal-directed behavior and 

vice versa, suggesting that the interaction between alcohol expectancies and habitual drug 

intake characterizes subjects with low treatment outcome.  

Replicating previous studies (32, 59) alcohol expectancies were correlated with drinking 

motives, suggesting, that high alcohol expectancies reflect a motivation to consume alcohol. 

In abstainers and healthy controls, high alcohol expectancies were associated with stronger 

model-based control, which might help these subjects to use alcohol within a framework of 

self-determined values and goals. Conversely, relapsers with relatively high model-based 

behavioral control had low alcohol expectancies and may accordingly underestimate the effect 

of even low doses of alcohol required to achieve a certain desired state of intoxication, 

whereas reductions in model-based control might facilitate excessive alcohol intake when 

general alcohol expectancies are high. Indeed, one study by Hogarth and colleagues observed 

that acute expectation of alcohol can temporarily interfere with goal-directed control (36). Our 

data add to this line of arguments and suggest that beyond momentary effects of alcohol 

expectations, a tendency to expect positive and reinforcing alcohol effects is particularly 

dangerous when combined with habitual or even compulsive patterns of alcohol intake (1, 2). 

Our findings differed to some degree from a study in cocaine and polysubstance abusers, 

where decreases in goal-directed control were found (6, 8). Likewise, Voon et al. (2015) 

observed such reduction in methamphetamine abusers but not AD patients, whereas a recent 
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study from our own laboratory in an independent sample suggested that AD was related to 

reductions in goal-directed control (9). Consumption of legal drugs such as alcohol is 

sensitive to social traditions, including the expected alcohol effects on personal well-being 

and social interactions. Such influences may be particularly important for subjects with AD. 

We also observed that functional correlates of model-based behavior in the mPFC were 

reduced in relapsers compared to abstainers and healthy controls, while at the behavioral level 

model-based decision-making differed only between these groups when alcohol expectancies 

were taken into consideration. This suggests that neural activation patterns during cognitive 

tasks provide a valuable tool for predicting treatment outcomes in patients suffering from 

substance use disorder (60) independent of alcohol expectancies. 

Two other studies have associated blunted mPFC activation with reduced goal-directed 

control and flexible decision-making in AD (10, 61). The mPFC plays a key role in alcohol-

associated behavior including cue-induced craving in animals (62, 63) and humans (64, 65). 

Further evidence for a role of the mPFC in relapse comes from animal studies, where drug-

associated mPFC activity has been shown to provoke relapse to diamorphine (66). In humans, 

relapse in AD has been associated with enhanced cue-related activity in the mPFC (19, 20). 

These findings suggest that impaired mPFC function and a potential bias towards cue-induced 

functional activation in association with drug craving characterizes relapse in substance use 

disorders.  

There are several limitations that need to be addressed. First, our sample size, although 

comparatively large, includes only a limited number of abstainers (n=21) available for 

imaging, and effect sizes for the behavioral data were only moderate. Second, rodent studies 

have demonstrated a bias towards habitual control after chronic alcohol reward (46-48). The 

task here, however, only used monetary, non-drug rewards (7-10) and no alcohol cues. To 
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what extent habitization of monetary outcomes captures the processes induced by alcohol is 

unclear, but ethical concerns obviously limit the use of alcohol in detoxified subjects with 

AD.  

Third, alcohol expectancies, although reflecting a trait rather than a state marker of motivation 

(67, 68) are directed at consuming alcohol and are thus outcome-oriented. In our study, this 

motivational trait was associated with low model-based control in relapsers. We do not know 

whether individual relapses were triggered by acute expectation of alcohol, e.g. elicited by 

alcohol cues. However, acute expectation of alcohol could not be tested as all subjects were 

motivated to remain abstinent. Further studies in individuals with low substance use (e.g. 

heavy drinkers without dependence) may help to identify the effects of acute alcohol 

expectations on decision-making.  

Fourth, relapsers had gone through significantly more previous detoxifications compared to 

abstainers, which may contribute to neurobiological alterations associated with further and 

even more excessive alcohol intake, as indicated by animal experiments (69-71). However, 

model-based neural correlates in the mPFC were not associated with previous detoxifications 

in the patient group (Supplementary Information 11). Finally, our study cannot disentangle 

preexisting conditions from alcohol-induced changes e.g. on dopaminergic neurotransmission 

and its effect on goal-directed correlates (51), therefore, further studies employing 

longitudinal designs are required. 

In conclusion, decreased model-based control may predict relapse only in patients with high 

alcohol expectancies. This study provides further evidence to the role of habits and goals in 

AD and treatment outcome. It specifies this theory with respect to AD and suggests a pivotal 

role of alcohol expectancies, which can easily be assessed in clinical settings. Our study 

showed how the computational mechanism underlying goal-directed control and its 
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neurobiological correlate (reduced mPFC activation) are associated with poor treatment 

outcome. The interaction between alcohol expectancies and drug taking habits points to 

potential therapeutic interventions that aim to increase goal-directed control (such as 

motivational interviewing) and alter the anticipated outcomes of alcohol use. 
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Tables 

Table 1 | Sample characteristics of the final sample bold: significant difference. a) p-value of linear model (LM) with group as predictor, or p-value of respective contrast. b) p-value of Chi-Square 

Test. 
c)

 p-value of Kruskal-Wallis Rank Sum Test with group as predictor or Wilcoxon Rank Sum Test for respective contrast. M: mean. SD: standard deviation. Clinical characteristics: Alcohol dependence severity: 
Alcohol Dependence Scale (ADS,(72)). Positive alcohol expectancies: AEQ-G (73). Depressive symptoms: Hospital Anxiety and Depression Scale, Subscale Depressive Symptoms, HADS-D (74)). Craving: Obsessive-
Compulsive Drinking Scale (OCDS,(75)). Impulsivity: Barratt Impulsiveness Scale (BIS-15,(76)). Drinking motives were assessed using the Drinking Motives Questionnaire, revised version (DMQ-R,(53)). 
Neuropsychological testing: Verbal IQ: Mehrfach Wortschatz Test (MWT-B,). Fluid IQ: Digit Symbol Substitution Test (DSST,(77)). Working memory: digit span backwards test from the Wechsler Adult Intelligence 
Scale (WAIS-IV , (78)). Blood markers: ALT: alanine transaminase. AST: aspartate transaminase. γ-GT: gamma-glutamyl transferase. PEth: phosphatidylethanol. 

Variable Group p-values for test statistic   

 
HC (n=96) Abstainers (n=37) Relapsers (n=53) 

Main 
effect 
group 

HC  
<>  
Abstainers 

Abstainers 
<> 
Relapsers 

HC 
<> 
Relapsers 

 

Gender 
Female:16 
Male: 80 

Female: 7 
Male: 30 

Female: 6 
Male: 47 

.56
b
 .8

b
 .37

 b
 .47

 b
  

Site 
Berlin: 56 
Dresden: 40 

Berlin: 24 
Dresden: 13 

Berlin: 28 
Dresden: 25 

.52
b
 .56

b
 .28

b
 .61

b
  

 M SD NA M SD NA M SD NA F T T T 

Demographical variables 

Years of education  11.9 1.5 2 10.8 1.5 2 10.6 3.5 2 <.05
c
 .2

c
 .61

 c
 <.05

 c
 

Age 43.6 10.9 0 45.7 12.0 0 45.2 9.9 0 .52
a
 .36

a
 .82

a
 .38

a
 

Income in € 1201 686 22 1150 741 0 1013 621 5 .22
c
 .61

c
 .38

c
 .08

c
 

Number of smokers 65% - 0 75% -- 0 75% - 0 .33
b
 .45

b
 1.0

b
 .45

b
 

Duration of abstinence at fMRI 66.5 280.9 0 21.4 11.6 0 22.3 12.4 0 <.0001
c
 <.0001

c
 .80

c
 <.0001

c
 

Clinical characteristic 

Number of detoxifications - - - 2.13 2.06 0 4.75 5.03 0 <..05
c
 

-
 <.05 -  

Positive Alcohol Expectancies  25.7 4.6 0 31.7 4.4 0 32.8 3.9 0 <.0001
c
 <.0001

c
 .20

c
 <.0001

c
 

Depressive Symptoms  1.9 2.3 1 3.9 3.9 0 4.2 3.7 0 <.0001
c
 <.001

c
 .67

c
 <.0001

c
 

Craving  2.7 2.8 1 10.3 8.2 1 12.9 8.4 3 <.0001
c
 <.0001

c
 .10

c
 <.0001

c
 

Drinking Motives 29 7 3 44 11 1 48 14 1 <.0001
c
 <.0001

c
 .36

c
 <.0001

c
 

Time to relapse in days  - - - - - - 87.1 80.0 4  -  -   -   -  

Neuropsychological testing 

Verbal IQ 28.3 4.6 3 28.6 4.3 0 28.2 4.8 1 .90
c
 .87

c
 .73

c
 .96

c
 

Fluid IQ 10.7 3.12 0 9.9 2.6 1 9.1 2.9 0 <.01
a
 .11

a
 .26

a
 <.01

a
 

Working memory 7.5 2.04 0 6.62 1.91 0 6.54 1.89 0 <.01
a
 <.05

a
 .86

a
 <.01

a
 

Blood markers 

AST (µKat/l)
 
 0.45 0.17 28 0.69 0.53 5 0.71 0.52 11 <.001

c
 <.05

c
 .68

c
 <.001

c
 

ALT (µKat/l)
 
 0.43 0.19 28 0.88 0.73 5 1.08 2.16 11 <.001

c
 <.01

c
 .94

c
 <.001

c
 

γ-GT (µKat/l)
 
 0.54 0.67 28 3.33 6.71 5 1.51 1.38 11 <.0001

c
 <.0001

c
 .91

c
 <.0001

c
 

PEth (ng/ml)  203.24 359.68 16 447.85 349.13 16 806.15 736.83 31 <.0001
c
 <.0001

c
 .14

c
 <.0001

c
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Figure Captions 

Figure 1| A: An exemplary trial sequence of the two-step task: Each trial consists of two 
consecutive stages: Participants first had to choose one out of two stimuli on a gray background. This 
selection then led to one of two colored second-stage options (either green or yellow). Again, 
subjects had to choose one stimulus over the other. The transition from first-stage selections to the 
specific second stage was probabilistic: whereas one first stage option led frequently to the green 
second-stage options (70%) but rarely to the yellow second-stage options (30%), the other first-stage 
choice was associated with frequent yellow second-stage but rare green second-stage visits. 
Transition frequencies were explicitly taught during the training session with a different stimulus set. 
After second stage selection, participants were probabilistically rewarded with 20 cents or did not 
receive any monetary reward (20 cent superimposed by red cross). These second-stage reward 
probabilities changed slowly according to Gaussian random walks with reflecting boundaries at 0.25 
and 0.75 (39). In each stage, participants had 2 sec to perform their response. Before starting the 
task, participants completed a training session with a different stimulus set. B: Expected model-free 
and model-based response pattern: In pure model-free decisions, first stage choices are repeated 
whenever their previous choice led to a rewarded outcome, whereas they are not repeated 
whenever their previous selection did not result in reward. Thus model-free first stage decisions are 
a mere function of reward from the previous trial. Contrary to this, model-based decisions take 
transition frequencies from first to second stage into account. For instance, in a rare trial, when a 
first stage selection unexpectedly leads to a certain second stage option and this second stage choice 
then leads to reward, the best (model-based) solution to get to this rewarded second stage choice 
again is to switch to the opposing first stage choice in the next trial. C: Real response pattern as a 
function of group: All three groups showed a mixture of model-free and model-based decision-
making. Groups did not differ significantly regarding their model-free or model-based choice pattern. 

 

Figure 2| A and B: Model-based strategy usage as a function of alcohol expectancies: 
Subsequent relapsers showed a negative relationship between alcohol expectancies and model-
based control. This negative association was not apparent in the abstaining patients and positive in 
the HC control subjects. C: The relationship between ω, which indicates the balance between 
model-based and model-free decision-making, and positive alcohol expectancies. Again, whereas 
healthy controls showed a positive association between Omega and alcohol expectancies, this 
association was negative in relapsers and absent in abstaining patients. 

 

Figure 3 | A: Conjunction Across all three groups, we found a significant coding of model-free 
prediction-errors and additional model-based prediction-errors in the ventral striatum and the 
medial PFC (conjunction displayed at p<.0001 uncorrected). These regions were also the only ones 
that reached significance at a more conservative threshold (PFWE<.05). B: Association between neural 
and behavioral model-based effects. C: Group effects: A region of the mPFC showed reduced model-
based signatures for relapsers compared to abstainers and HCs. This effect survived small volume 
correction for the main effects of the above reported conjunction (pFWE < .026, Fig 3A). Model-free 
signatures were not statistically different between groups.  



Figure_1
Click here to download high resolution image

http://ees.elsevier.com/bps/download.aspx?id=913547&guid=0e6e4097-c809-4801-bb0a-985b14f4ebbd&scheme=1


Figure_2
Click here to download high resolution image

http://ees.elsevier.com/bps/download.aspx?id=913548&guid=eed9d303-681c-418d-9de9-28e268481224&scheme=1


Figure_3
Click here to download high resolution image

http://ees.elsevier.com/bps/download.aspx?id=913549&guid=35b11e2f-d2d9-4cc9-9f30-a5882726fe8e&scheme=1


Supplementary Information - Sebold et al. 
 

Supplementary Information 

Supplementary Information 1 Computational fits 

Besides the above mentioned hybrid model, we fitted two alternative model types to our choice data: 1.) a 

model-free algorithm SARSA(λ), which only captures a main effect of reward on first stage choices and 2.) a 

pure model-based algorithm, which considers the interaction between reward and transition frequencies 

but does not capture a main effect of reward on first stage choices. The overarching aim of these alternative 

model fittings was the subsequent model comparison, where we aimed to identify the best fitting algorithm 

for both groups. Therefore, we subjected individual model evidences (integrated likelihoods) for all three 

models to a Bayesian model selection procedure. In line with previous studies (1, 2) the hybrid model was 

the best fitting model for all three groups (see Supplementary Figure 1A and B). Beyond this, we also fitted 

several other reduced computational models to our data. In our data, the best model fit was always 

achieved with the original seven parameter model. Simplifications by reducing/ removing particular 

parameters did not yield more parsimonious fits (Supplementary Figure 1C). Moreover, surrogated data 

generated from the fitted full seven parameter hybrid model captured both the Reward (R) and the Reward 

x Transition (R x T) effects from the raw behavioral data analyses (Supplementary Figure 1D). 
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Supplementary Figure 1| A: Results from Bayesian model comparison: The final hybrid model was the most likely 
model for HCs, abstainers and relapsers. B: Individual Log-Likelihoods for all three groups. Blue color/triangles 
indicate individual model fits worse than chance. For further imaging analyses and analyses concerning model 
parameters, we excluded these subjects. Black solid lines indicate mean log-likelihoods for individuals, who fit better 
than chance. There were no significant differences between groups in terms of number of subjects who fitted worse 
than chance. C: Comparisons of model fits for different computational models. The winning model is entitled as 
mf/mb which is the original seven parameter hybrid model. D: Association between surrogated data from the seven 
parameter hybrid model and the model-free and model-based effects from the raw behavioral data analysis. 
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Supplementary Information 2 Computational fits: between group comparisons and 

association with other variables 

This hybrid model fitted better than chance in 85% of all subjects (143/186). Other studies using young 

college students did not evidence this large amount of “non-fitting” individuals (1 , 2) and we have 

previously suggested that our comparably low evidence of computational fits might be specific for the here 

studied age cohort (3) and patient group. Crucially, the proportion of subjects for whom the computational 

model fitted better than chance was not different between healthy controls, abstaining patients and 

relapsing patients (χ=.89, p = .63, see Supplementary Figure 1B). We aimed to further elucidate which 

variables interfered with computational model fits and focused on demographical and cognitive domains 

known to interact with model-based or model-free control, namely 1.) working memory (4-6), 2.) cognitive 

speed (4), and 3.) age (7). We compared these variables between subjects, whos behavior was fitted better 

than chance by the computational model and those who were not, by using Wilcoxon rank sum test. We 

found that working memory capacity was significantly lower in the poor fit individuals (Digit Symbol 

backwards: W = 3832, p = .01, r = -0.18). This might indicate that sufficient working memory capacity is an 

essential prerequisite to adaquately execute the two-step task. In line with this finding, two other studies 

have shown, that patients suffering from schizophrenia, who tend to show deficits in working memory 

capacity (8) also show worse model fits for a computational model-based reinforcment learning model (9, 

10). None of the other two variables (age: W = 3259, p = .57, r = -0.04 and cognitive speed measured by the 

Digit Symbol Substitution Test: W = 3487, p = .16, r = -0.1) was significantly different between these two 

groups.  
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Supplementary Information 3 Between group comparisons of model-parameters 

from computational model 

For exploratory analyses, we also compared all other parameters between groups. Except from a small effect 

of group on the repetition parameter (ρ, p = .03), which describes general first stage perseveration behavior, 

we did not see any significant between-group differences in the parameters. Post-hoc analyses 

demonstrated that abstainers showed stronger perseveration behavior compared to relapsers (p < .008) and 

trendwise stronger perseveration behavior compared to HCs (p = .05). However, there was no difference 

between HCs and relapsers (p = .2). Crucially, the effect of group on the repetition parameter (ρ) did not 

survive correction for multiple comparisons (pBonferroni <. 007).  

 

Supplementary Table 1: Mean parameters from the computational model 

 Inferred parameters from computational model: mean (sd) 

Group α1 α2 β 1 Β 2 λ ω ρ 

HCs 0.45 (0.30) 0.50 (0.29) 7.45 (4.34) 3.57 (2.02) 0.58 (0.22) 0.42 (0.19) 0.18 (0.10) 

Abstainers 0.51 (0.30) 0.58 (0.27) 6.68 (3.47) 3.25 (1.94) 0.67 (0.19) 0.44 (0.20) 0.23 (0.09) 

Relapsers 0.43 (0.37) 0.50 (0.32) 7.86 (4.42) 3.55 (3.17) 0.63 (0.21) 0.39 (0.24) 0.16 (0.12) 

F 0.66 0.90 0.66 0.19 1.80 0.51 3.56 

p 0.51 0.41 0.51 0.83 0.17 0.60 0.03 
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Supplementary Information 4 Preprocessing of the functional imaging data. 

FMRI preprocessing was conducted using Statistical Parametric Mapping software (SPM8; London, UK: 

Wellcome Department for Imaging Neuroscience) and Matlab R2014a (2014. Natick, MA: The MathWorks 

Inc.) and was implemented in Nipype (Gorgolewski et al. 2011). Preprocessing included the following steps: 

1.) correction for differences in slice acquisition times with reference to the middle slice, 2.) realignment of 

all slices to the first to correct for motion, 3.) correction for field inhomogeneities with a voxel displacement 

map from acquired field maps, 4.) coregistration of the mean EPI image to the individual structural MPRAGE 

image, 5.) segmentation and normalization of the individual MPRAGE image to Montreal Neurological 

Institute (MNI) space and applying normalization parameters to the distortion-corrected EPI images and 

resampling EPI images to 2x2x2 mm, and 6) spatial smoothing of the EPI images with a Gaussian kernel of 

6mm full-width at half-maximum. Prior to statistical analysis, data were high-pass filtered with a cut-off of 

128 seconds. 

Supplementary Information 5 Exclusion criteria for different analyses  

In the imaging analyses we excluded subjects, who did not fit the computational model better than chance 

(Supplementary Information 1). From the remaining 143 subjects, we excluded 6 subjects due to incidental 

anatomical findings diagnosed by a neuroradiologist. From the remaining 137 subjects excessive head 

motion (> 3mm translation and 3° rotation) led to exclusion of 14 additional subjects In 3 subjects 

coregistration or normalization had failed and in 4 additional subjects significant parts of the ventral striatum 

(which is a core region involved in this task) were missing due to artefacts.  
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Supplementary Figure 2| description of sample sizes and drop outs at each stage of the analysis procedure. HC = 
Healthy controls, ABS = Abstainer, REL = Relapser. 
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Supplementary Information 6 First level analysis of the functional imaging analysis 

We computed RPEMF and RPEΔMB for all subjects. These reward-prediction errors are non-zero at two time 

points: (1) second-stage onsets and (2) outcome presentation. Prediction-errors at second-stage onset 

compare values of first- and second-stage stimuli and therefore depend on the weighting parameter (ω), 

which indicates the balance between model-based and model-free decision making. As mentioned in the 

main text, the two regressors of interest were RPEMF and RPEΔMB. Just like Daw et al (1), the time point of 

reward delivery was additionally included as a separate regressor and the design-matrix also included first-

stage onsets with two parametric modulators, the softmax probability for choosing one of the two first-stage 

probabilities as well as its partial derivative with respect to ω. The six movement parameters from the 

realignment were included in the model as nuisance regressors.  
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Supplementary Information 7 Voxel-based morphometry 

Each individual’s anatomical T1-weighted image was segmented into three different tissue classes by using 

the unified segmentation approach, as implemented in SPM 8. Grey matter images were then smoothed by 

using an isotropic Gaussian kernel (8 mm full-width at half-maximum). Smoothed images were then 

subjected to a random-effects model containing site and intracranial volume as covariates. We conducted a 

one-way analysis of variance on smoothed structural images with group as factor (HC, abstainer, relapser) 

and site and total intracranial volume as covariates. Mirroring our functional analyses, we performed this 

analysis by using small volume correction with a mask containing all voxels showing a significant effect for 

RPEMF and RPEΔMB combining all three groups (Figure 3 and Supplementary Table 2). This analysis indicated a 

main effect of group on the medial prefrontal cortex (x = 3, y = 48, z = -9, kE = 374, z = 4.42, pFWE_SVC = .002). 

Further post-hoc t-tests indicated that group effects in the mPFC were driven by higher grey matter density 

in HCs compared to relapsers (pFWE_SVC =.002), whereas there was no significant difference between HCs and 

abstainers or abstainers and relapsers. Performing an additional one-way ANOVA on extracted grey matter 

densities of the region where we had observed the functional model-based between group differences in 

the medial prefrontal cortex (peak voxel, x = -16, y = 42, z = -8) again revealed a main effect of group (p = 

.009). Post-hoc tests indicated larger grey matter densities in HCs compared to abstainers (p = .03) and 

relapsers (p = .003) whereas there were no differences between abstainers and relapsers (p = .53). Adding 

these extracted grey matter densities to our functional analyses did not change our observed effects. 
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Supplementary Table 2: Whole brain effects of group on grey matter density at the statistical threshold p < .001, 
uncorrected that survive FWE correction at the cluster level  

Anatomical Region x y z Peak 
Z-value 

Cluster 
(FWE-corr) 

Cluster 
Size 

Right medial frontal cortex 3 48 -9 4.42 <.0001 2099 

Right middle frontal gyrus 5 54 -2 4.29 .022 882 

Right middle cingulate gyrus 5 -15 46 4.09 .009 1104 

 

Supplementary Information 8 Drinking Motives Questionnaire 

For exploratory purposes, we correlated individual alcohol expectancies with drinking motives, as assessed 

with the Drinking Motives Questionnaire (11), which assesses individual alcohol consumption motives on 

four scales (Social, Coping, Enhancement, Social pressure/conformity). Across all subjects, each subscale was 

significantly correlated with the sum score of alcohol expectancies (Social (δ = .5, p < .0001), Coping (δ=.7, p 

< .0001), Enhancement (δ = .6, p < .0001), Social pressure/conformity (δ = .3, p < .001), suggesting that each 

drinking motive was positively associated with alcohol expectancies.  

 

Supplementary Figure 3: Association between all four subscales of the Drinking Motives Questionnaire and the 
sum score of the AEQ.  
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Similar to the AEQ Score, we found an interaction between group, model-based control and the sum score of 

drinking motives (p < .0001). This time, the association between model-based control and DMQ-scores was 

absent in HCs (p = .33), marginally positive in abstainers (δ = .31, p = .07) and again negative in relapsers (δ = 

-.3, p = .03). 

 

Supplementary Figure 4: A model-based strategy usage as a function of drinking motives: Subsequent relapsers 
showed a negative relationship between Drinking Motives and model-based control. This negative association was not 
apparent in HCs and marginally positive in abstainers. 

Supplementary Table 3: Regions that survived the statistical threshold (p < .0001, uncorrected) of the 
conjunction analysis.  

Anatomical Region x y z Peak 
T-value 

Peak 
(FWE-corr) 

Cluster 
Size 

Right ventral striatum 12 12 -8 6.38 <.0001 323 

Left ventral striatum -16 8 -10 6.27 <.0001 309 

Left medial prefrontal cortex -8 32 -8 4.85 .017 172 

Right inferior occipital gyrus 36 -86 4 4.24 .164 28 

Right hippocampus 30 -26 -10 4.03 .312 12 

Right anterior cingulate gyrus 2 30 -12 4.03 .314 12 
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Supplementary Information 9 Model-free comparisons 

We additionally asked whether relapsers would show increased correlates of model-free signatures in the 

mPFC (-16,42,-8), where we found decreased model-based signatures. However, there were no between 

group effects neither in whole brain analysis nor by applying a priori region of interest, indicating that group 

differences were specifically present with respect to model-based decision-making. 

 

Supplementary Figure 5| Model-free estimates from the mPFC (-16, 42, -8) across all three groups. There were 
no significant between group differences.  

Supplementary Information 10 Association with time to Relapse 

For exploratory purposes, we also assessed whether time to relapse could be predicted from our behavioral 

data, namely from the interaction between alcohol expectancies and model-based control. More precisely, 

we assumed that the interaction between AEQ and model-based control in relapsers would show differences 

with regard to time to relapse. Most patients relapsed within the first three months (median = 63 days). 

Because of non-normal distribution of the time to relapse variable, we assigned subjects to an early vs. late 

relapse group (early: within three months (n=30), late: beyond three months (n=19)). Logistic regression, 

where relapse (early vs. late) was predicted from the interaction between alcohol expectancies and model-

based control (analogue to what we conducted with model 2a and 2b), revealed no significant relationship 
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between AEQ and model-based scores (p = .24) for subjects grouped according to early vs. late relapse 

within the group of relapsers.  

Supplementary Information 11 Number of detoxifications and model-based control: 

Behavioral and neuroimaging analyses. 

As relapsers had reported significantly more number of previous detoxifications treatments compared to 

abstainers, we aimed to investigate the association between model-based control and its neural correlates 

and number of detoxifications in the patient group. Correlational analyses revealed a negative correlation 

between model-based control and number of detoxifications in the patient group, which closely failed to 

reach significance (ρ = -.19, p = .07). There was no significant age difference between relapsers and 

abstainers (abstainers: mean 45.7, sd = 12.0, relapsers: mean = 45.2, sd = 9.9, p = .82, see Table 1). However, 

number of detoxifications can be confounded by age. Indeed, in our sample, number of detoxifications was 

correlated with age (ρ = .29, p < .01). Thus, younger patients had comparably fewer previous detoxification 

treatments compared to older patients. When we corrected the number of detoxifications for this 

confounding factor, the previously observed negative correlation with model-based control was far from 

significant (ρ = -.13, p = .22). On a neural level, we also explored the association between number of 

detoxifications in the patient group and model-based neural correlates in the mPFC (see Figure 3C). We 

extracted contrast estimates at the peak level (-16 42 -8, see Figure 3C), where we had observed between 

group differences in model-based functional activation and correlated these values with number of 

detoxifications in the patient group. This analysis revealed no significant association between model-based 

mPFC activity and number of detoxifications (ρ = -.05, p = .73). Correcting number of detoxifications for age 

effects did not change this (ρ = .04, p = .74). 
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