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REVIEW ARTICLE OPEN

Translational cardiac stem cell therapy: advancing from first-
generation to next-generation cell types
Elena Cambria1,2, Francesco S. Pasqualini 1, Petra Wolint1,2, Julia Günter1,2, Julia Steiger1,2, Annina Bopp1,2,
Simon P. Hoerstrup1,2,3,4 and Maximilian Y. Emmert1,2,3,4

Acute myocardial infarction and chronic heart failure rank among the major causes of morbidity and mortality worldwide. Except
for heart transplantation, current therapy options only treat the symptoms but do not cure the disease. Stem cell-based therapies
represent a possible paradigm shift for cardiac repair. However, most of the first-generation approaches displayed heterogeneous
clinical outcomes regarding efficacy. Stemming from the desire to closely match the target organ, second-generation cell types
were introduced and rapidly moved from bench to bedside. Unfortunately, debates remain around the benefit of stem cell therapy,
optimal trial design parameters, and the ideal cell type. Aiming at highlighting controversies, this article provides a critical overview
of the translation of first-generation and second-generation cell types. It further emphasizes the importance of understanding the
mechanisms of cardiac repair and the lessons learned from first-generation trials, in order to improve cell-based therapies and to
potentially finally implement cell-free therapies.

npj Regenerative Medicine  (2017) 2:17 ; doi:10.1038/s41536-017-0024-1

INTRODUCTION
Myocardial infarction (MI) mortality decrease1 has contributed
with an aging population to the rise of heart failure (HF)
incidence.1 After MI, cardiomyocyte death triggers wall thinning,
ventricular dilatation, and fibrosis that can cause left ventricular
(LV) dysfunction and HF.2 HF counts 30 million patients1 and a
~50% death rate within 5 years post diagnosis.3 Pharmacological
therapies and revascularization techniques (e.g., percutaneous
coronary intervention (PCI) and coronary artery bypass grafting
(CABG)) have improved patient survival and quality of life, but
cannot stop or reverse HF. The heart can ultimately be supported
by left ventricular assist devices or replaced by transplantation,
but organ shortage, high costs, and complex postoperative
management limit these strategies. Hence, novel curative treat-
ments are needed.
Stem cell therapy has been proposed for heart repair and

regeneration. The exact mechanisms of cardiac repair by
transplanted cells are merely unknown. Two main hypotheses
exist: (1) direct cardiomyogenic/vasculogenic differentiation, and
(2) indirect stimulation of the reparative response through
paracrine effects.4

Different cell types are under evaluation regarding their
regenerative potential. First-generation cell types including
skeletal myoblasts (SMs), bone marrow mononuclear cells
(BMMNCs), hematopoietic stem cells (HSCs), endothelial progeni-
tor cells (EPCs), and mesenchymal stem cells (MSCs) were initially
introduced. Despite promising preclinical studies, first-generation
approaches displayed heterogeneous clinical outcomes.4, 5 Varia-
tions between trials may be attributed to differences in design
(cell preparation, delivery route, timing, dose, endpoints, and
follow-up (FU) methods). Well-conducted recent meta-analyses

reviewed the efficacy of (mostly first-generation) cell-based
approaches and came to divergent conclusions.6–8

Nevertheless, the field partially switched to second-generation
cell types including lineage-guided cardiopoietic cells, cardiac
stem/progenitor cells (CSCs/CPCs), and pluripotent stem cells
(Fig. 1).
This article provides a critical overview of the translation of first-

generation and second-generation cell types with a particular
focus on controversies and debates. It also sheds light on the
importance of understanding the mechanisms of cardiac repair
and the lessons learned from first-generation trials, in order to
improve cell-based therapies and to potentially finally implement
cell-free therapies.

FIRST-GENERATION CELL TYPES
Skeletal myoblasts
With the goal of remuscularizing the injured heart and based on
the inference that force-generating cells would function in the
cardiac milieu and increase cardiac contractility, SMs figured
among the first cell types to be tested. They can be obtained in
high number from autologous skeletal muscle satellite cells by
expansion in vitro, can be activated in response to muscle damage
in vivo, and are resistant to ischemia.9

SMs in preclinical trials. Initial studies in small and large animals
were encouraging, with SMs participating at heart muscle
formation.10, 11 However, SMs were shown to not electrophysio-
logical couple to native cardiomyocytes in rodents.12, 13 Indeed,
N-cadherin and connexin-43 expression was downregulated after
transplantation.12 SMs did not differentiate into cardiomyocytes in
rodents,14 but could surprisingly differentiate into myotubes in
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sheep,15 although these findings could not be replicated. Small
and large animal trials were nonetheless further conducted and
displayed an improvement of LV function.15–17 The involved
mechanisms were, however, not understood.

SMs in clinical trials. Despite the mixed outcomes in preclinical
trials, SMs were rapidly translated into the clinics with phase-I trials
in both MI and HF.18–23 Although the transplantation of
autologous SMs displayed an arrhythmogenic potential in a
phase-I trial of severe ischemic cardiomyopathy (ICM),24 SMs were
further implanted in the randomized phase-II MAGIC study (97
patients with severe LV dysfunction).25 However, an increased risk
of ventricular arrhythmias potentially due to missing junctional
proteins26 stopped SMs investigation. The risk of ventricular
arrhythmias is relevant now that pluripotent cell-derived cardio-
myocytes aim at re-attempting heart remuscularization.

Bone marrow (BM)-derived cells
Moving away from remuscularization, strategies using stem cells
aimed at direct/indirect regeneration. The main stem cell source
for these early studies was the BM. Investigated cell types were
mostly BMMNCs and their subpopulations including HSCs. Blood-
circulating EPCs, probably originating from the BM, were also
adopted. BMMNCs have constituted a most often used cell source
due to their safety, high availability,27 and facile isolation. HSCs
can be isolated via surface markers such as CD34 and CD133. EPCs
can simply be harvested from a blood sample.

BM-derived cells in preclinical trials. BMMNCs were among the
first cells to be tested in large animals despite inconsistent reports
on their mechanism of action. Differentiation into cardiomyocytes
was first observed in rodents,28, 29 but was criticized later.30 Large
animal preclinical studies yielded promising results with, however,

mixed outcomes.31–34 Regarding HSCs, one of the few existing
large animal studies found no evidence of myocardial differentia-
tion of CD34+ HSCs, but showed increased angiogenesis/
vasculogenesis, potentially due to paracrine effects on the host
vasculature.35 Few large animal and clinical studies were
conducted with EPCs and their results were mixed.36–38

BM-derived cells in clinical trials. Although BM-derived cells
showed encouraging preliminary results, efficacy outcomes were
heterogeneous in clinics.4 While some clinical trials showed modest
but significant improvement of cardiac function,39–41 others did not
find significant beneficial effects of cell therapy.42–45

In acute MI, first-generation cell-based clinical trials were all
performed using intracoronary delivery of autologous BMMNCs.46–50

HEBE43, 51 and TOPCARE-AMI52 also investigated other progenitor
cells. While certain trials (TOPCARE-AMI,52 REPAIR-AMI,53–55

BOOST,56, 57 and FINCELL)41 have shown improvement in LV
ejection fraction (LVEF) in cell-treated groups compared to controls,
others did not display any significant change (ASTAMI,58 BONAMI,59

Leuven-AMI,60 and HEBE)43, 51 at early FU. At a long-term 5-year FU,
the beneficial effect of cell therapy persisted in TOPCARE-AMI61 but
not in BOOST,62 which was the first published clinical trial to assess
BMMNC injection compared to controls in 60 patients. The REPAIR-
AMI trial (NCT00279175) was the largest European cell therapy
study of autologous BM-derived progenitor cells with 204 patients.
Patients underwent BM aspiration 3–6 days after successful PCI
following MI. Either BMMNCs or placebo were infused via
intracoronary delivery the following day. Quantitative LV angiogra-
phy was performed to measure the change in global LVEF between
baseline and 4-month FU. At 4 months, the cell-treated group
displayed a significantly higher increase in LVEF compared to
placebo.53 This improvement in LVEF was sustained at 2-year FU,55

thus contradicting the results of BOOST, where this effect was lost
after 18 months.57 The HEBE trial is another large European trial
where 200 patients were randomized to treatment with BMMNCs,
peripheral blood mononuclear cells (PBMCs) or placebo. No
difference between cell-treated groups and control group was
shown at 4 months by cardiac MRI (cMRI).43 The 5-year FU after AMI
displayed a significantly higher frequency of major clinical cardio-
vascular adverse events in the PBMC group compared to placebo.51

Similar results to the early FU of HEBE are shown by the SWISS-
AMI trial (NCT00355186), where 192 MI patients were assigned to
one control and two BMMNC treatment groups. BMMNC groups
received intracoronary administration of autologous BMMNC at
5–7 days or 3–4 weeks after MI.63 Cell infusion at either early or late
time points did not significantly improve LV function at 4 months as
measured by cMRI.64 At 12 months, BMMNC treatment did not
improve LV function compared to control. An important drop-out
rate limited the results.65

To put an end to the ongoing controversies and to further
elucidate the clinical value of intracoronary-delivered autologous
BMMNCs, the ongoing BAMI trial (NCT01569178) aims to examine
the time from randomization to death for an average time frame of
3 years. This multicenter, randomized, controlled, phase-III study is
investigating safety and reduction of all-cause mortality in patients
with reduced LV function (LVEF≤ 45%) after successful PCI
following MI. About 3000 patients will be enrolled. While BAMI is
expected to either definitely confirm BM cell therapy efficacy or
disprove it, the trial is criticized because it may not teach anything
new about the mechanism of either outcome.
To tackle the problem of the optimal timing for cell administra-

tion, two phase-II trials were performed in MI patients. In TIME
(NCT00684021) and LateTIME (NCT00684060), 150 × 106 cells were
delivered at 3/7 days66 and 2–3 weeks67 post PCI, respectively.
These randomized, double-blind, placebo-controlled trials involved
12066 and 8767 patients, respectively. At 6 months, no significant
increase in LVEF was observed in the BMMNC group compared to
placebo in both trials.68, 69 Overall, TIME and LateTIME did not find

Fig. 1 Evolution of translational cardiac regenerative therapies.
First-generation cell types such as SMs, BMMNCs, HSCs, EPCs, and
MSCs demonstrated feasibility and safety with, however, hetero-
geneous outcomes and limited efficacy in the clinical setting. In
order to better match the target organ, second-generation cell
therapies propose the use of cpMSCs, CSCs/CPCs, and CDCs, and
pluripotent stem cells such as ESCs and iPSCs. Next-generation
therapies for cardiac repair are directed toward cell enhancement
(e.g., biomaterials, 3D cell constructs, cytokines, miRNAs) and cell-
free concepts (e.g., growth factors, non-coding RNAs, extracellular
vesicles, and direct reprograming)
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significant benefit of early vs. late BMMNC treatment.68, 69

BM-derived cells have also been investigated in HF,70–77 yielding
mixed outcomes as in MI. The phase-II FOCUS-CCTRN trial
(NCT00824005) studied the effect of transendocardial NOGA®
delivery of 100 × 106 autologous BMMNCs or placebo to 92
patients. BMMNCs did not significantly improve maximal oxygen
consumption, LV end-systolic volume (ESV), or reversibility on
single-photon emission computed tomography compared to
placebo after 6 months.44 These results contradict the positive
outcomes previously obtained by the TOPCARE-CHD trial, where
intracoronary BMMNC-treated HF patients showed a 2.9% increase
in LVEF at 3 months compared to baseline.40, 78 All together, the
outcomes of therapy using BM-derived and progenitor cells were
heterogeneous and rather disappointing whether it was in MI or HF.
Possible reasons may be low cell engraftment and limited
differentiation potential,5 suggesting that the modest improve-
ments yielded by cell therapy may be due to paracrine mechanisms
rather than direct regeneration.

Mesenchymal stem cells
MSCs are multipotent, plastic-adherent stromal cells that can
differentiate into different cell types including adipocytes,
chondrocytes, and osteocytes.79 Although controversially dis-
cussed, differentiation into cardiomyocytes was shown in experi-
mental studies.80 MSCs may be found in all postnatal organs and
the presence of MSCs was shown in mouse hearts.81, 82 Cells
positive for W8B2 antigen highly expressing mesenchymal
markers have recently been discovered in the human heart.83

Human MSCs have most often been isolated from the BM (BM-
MSCs) but can also be obtained from adipose tissue, synovial
tissue, umbilical cord, and peripheral blood.80 Besides autologous
usages, MSCs were also considered in allogeneic therapies due to
their high expansion rate and immunomodulatory properties.
Interestingly, MSCs were originally considered immuno-privileged,
due to their cytokine secretion and surface antigen expression,80

but conflicting reports from preclinical studies have questioned
this property.84 Allogeneic MSCs may lose their immune privilege
upon differentiation,85 thus leading to earlier clearance compared
to autologous MSCs.86

MSCs in preclinical trials. MSCs have extensively been investi-
gated in vivo.87–91 Preclinical trials have shown that adipose
tissue-derived MSCs represent an auspicious cell source with
therapeutic potential for cardiac repair.92, 93 BM-derived MSCs
were promising in numerous preclinical trials. Regarding efficacy,
MSCs were administered to pigs with encouraging outcomes.94–97

MSCs in clinical trials. Approaches using MSCs are studied with
promising results,74, 98–102 but their efficacy needs to be further
validated. Preliminary studies on ICM were performed in the
POSEIDON trial (NCT01087996). This phase-I/II randomized non-
controlled pilot study compared the safety and efficacy of
transendocardial delivery of autologous vs. allogeneic BM-MSCs
in 30 patients. Three different cell doses (20, 100, and 200 million
cells) were tested in both treatment groups. Surprisingly, the
lowest dose yielded the best outcomes in terms of LV volumes
and LVEF. Moreover, despite its small size, POSEIDON has given
preliminary evidence of comparable safety and efficacy between
autologous and allogeneic MSCs.103, 104 Larger controlled trials are
needed to further investigate MSC efficacy.

Meta-analyses of cell therapy in MI and HF
Meta-analyses of preclinical trials. A compelling meta-analysis of
large animal models of ischemic heart disease (IHD) analyzed
52 studies and 888 animals. In addition to confirming the safety of
cell therapy, a difference of 7.5% in LVEF at FU compared to
controls was found.105 Although BMMNCs and MSCs were the

most used cell types, trends suggested that BMMNCs were less
effective than other cell types.
A new meta-analysis of large animal studies (82 studies with

1415 animals) in the context of autologous and allogeneic cell
therapy for IHD106 showed a significant difference of 8.3% in LVEF
and a significant decrease in end-diastolic volume (EDV) between
treated and control animals. Similar differences in LVEF were
observed for both autologous and allogeneic therapies.

Controversies in meta-analyses of clinical trials. Several meta-
analyses have assessed cell therapy in clinical trials. In order to
improve the analysis of the safety and efficacy of cell therapy in
MI, the first multinational database of individual patient data (IPD)
(ACCRUE, NCT01098591) was established.6 ACCRUE contains
unbiased data with uniform clinical definitions and parameters.
This allows the examination of specific patient subgroups and the
identification of predictive factors for the improvement of cell
therapy. One thousand two hundred fifty-two IPD from 12
randomized trials of intracoronary cell therapy after MI were
analyzed. Although the results showed cell therapy safety, they
did not display any efficacy compared to controls and no
predictive factors could be identified. Timing/dose of cell therapy
and baseline EF did not influence the results. Although the study
investigated mainly first-generation cell types, the main limitation
was the variety in cell types. The database is still growing but
cannot replace large randomized trials, such as the current BAMI
trial.6

Interestingly, while several publication-based meta-analyses
report an effect of BM-derived cell therapy,107, 108 another recent
meta-analysis of cell therapy in MI has further showed no
difference between cell-treated and control-groups when the LV
parameters were assessed by cMRI.8, 109 Indeed, the endpoints
and the FU method can also influence the outcomes. The
DAMASCENE study has evidenced that the change in EF might
be a problematic endpoint, as a higher number of discrepancies in
trial reporting is associated with a better change in EF. It was
indeed found that factual discrepancies are present in autologous
BM cells trials and that trials having >30 discrepancies showed a
mean EF effect size of 7.7%, while trials having no discrepancies
(only 5 trials over 49 examined trials) showed a mean EF effect size
of −0.4%.110 However, the DAMASCENE study has also been
challenged as misleading111 and a meta-analysis has shown
significant cell therapy efficacy when the discrepant trials were
excluded.112

In HF, a meta-analysis including 31 randomized controlled trials
(RCTs) with 1521 patients assessed the safety and efficacy of
autologous cell therapy.7 A comparison was performed between
cell treatment and placebo/controls. Cell therapy was associated
with a significant decrease in mortality and rehospitalization
during long-term FU. Furthermore, cell treatment improved LVEF
significantly but modestly. HF symptoms, exercise capacity, and
quality of life ameliorated significantly. Nevertheless, only half of
the examined trials reported blinding and half did not report
methods of allocation concealment, thus considerably increasing
the performance/selection bias.7 The difference between cell
treatment and control groups was indeed eliminated when only
double-blind trials were included.7 Therefore, further larger RCTs
are necessary to confirm clinical long-term efficacy in HF.

SECOND-GENERATION CELL TYPES
Motivated by the inconsistencies of first-generation cell types, the
field has shifted toward the use of other cell types. Second-
generation therapies aim at orienting non-resident stem cells,
such as MSCs and pluripotent stem cells, toward cardiac
differentiation. CSCs/CPCs may further better match the target
organ, as they are derived directly from the heart.
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Only few experimental studies compared first-generation and
second-generation cell types. They found that cardiac-committed
cells displayed an improved therapeutic effect as assessed by
improved engraftment, cardiac function, angiogenesis, and scar
size.113–117

Cardiopoietic MSCs (cpMSCs)
Guided cardiopoiesis using cardiogenic growth factors priming
has been introduced and advanced into the clinics. One of the cell
sources used for guided cardiopoiesis is autologous BM-MSCs.
Cytosolic expression of cardiac transcription factors is induced by
simultaneous activation with TGF-β, BMP-4, and Activin-A along
with retinoic acid, while their nuclear translocation is prompted by
IGF-1 and IL-6.1 FGF-2 and thrombin are further used to maintain
cell cycle activity.1

cpMSCs in preclinical trials. The use of cpMSCs in a murine model
of chronic ICM has shown therapeutic benefit.118 Large animal
trials were missing so far. A first report of safety and efficacy of
intramyocardial delivery of human cpMSCs into immunosup-
pressed pigs with post-infarction LV dysfunction has recently
shown promising results,119 including higher EF and reduced
infarct size compared to controls. The low cell retention suggested
the involvement of paracrine mechanisms in neo-angiogenesis
and recruitment of endogenous progenitors. These findings need
to be validated in long-term studies.

cpMSCs in clinical trials. Despite the absence of large animal
studies, cpMSCs were rapidly introduced into the clinics. The
multicenter randomized phase-II C-CURE trial (NCT00810238)
investigated the transendocardial injection of cardiopoietic BM-
MSCs. A non-significant increase in LVEF compared to baseline
was shown in the cell treatment group but not in the control
group. Besides indicating clinical feasibility/safety at 2-year FU, the
trial claims to display signs of efficacy.120 Of note, two phases were
included in the initial design of C-CURE: a safety/feasibility phase
and a potential later efficacy phase. However, the trial was limited
to the first phase based on advice from regulatory authorities.121

Based on C-CURE data, a progressive translation into the two
phase-III CHART trials was initiated. CHART-1 (NCT01768702) is an
ongoing controlled multicenter, randomized clinical trial, evaluat-
ing cpMSCs in ischemic HF. The trial randomized 315 patients and
271 patients were analyzed for efficacy (120 received cpMSCs and
151 sham control). However, the CHART-1 trial failed to meet its
primary efficacy endpoint at 39 weeks.122 The authors identified
post hoc a responsive patient subgroup based on baseline HF
severity (LV EDV of 200–370ml). The CHART-2 trial (NCT02317458)
will target these type of patients. This further poses the question
of which cell type to use depending on patient/pathology.

Cardiac stem/progenitor cells
CSCs/CPCs are derived directly from biopsies of the target organ,
and therefore supposedly ensure a perfect match.4 CSCs/CPCs are
multipotent, clonogenic, and express stem cell markers such as
Sca1123, 124 and c-kit.124, 125 Sca1+ CPC exosomes can inhibit
cardiomyocytes apoptosis.126 Of note, there is a lack of an agreed
Sca1 equivalent in humans. Several studies have associated c-kit
with cardiomyocyte biology.127–131 Although it was shown in
rodents that c-kit+ CSCs/CPCs could differentiate into cardiomyo-
cytes,125, 132, 133 this was challenged by lineage-tracing analysis
studies that suggested that this phenomenon occurs at a
purported functionally insignificant rate.134–137

Cells derived from cardiac explants can form cardiospheres,
which can be dissociated to yield cardiosphere-derived cells
(CDCs). All these cell types are thought to possess enhanced
regeneration capacity through the stimulation of endogenous
cardiac cells and/or paracrine mechanisms. Of interest is also the

combination of CSCs/CPCs with MSCs to achieve a synergistic
effect.138, 139

CSCs/CPCs in preclinical trials. CSCs/CPCs are studied in the
preclinical setting.140–142 Interestingly, a recent report showed that
overexpression of Pim1 kinase enhanced the cardiac repair
potential of human c-kit+ CSCs transplanted into an MI swine
model.143 CDCs were administered to pigs with encouraging
efficacy outcomes.144, 145 Allogeneic CDCs were transplanted via
intracoronary delivery at escalating doses between 5 and 10
million cells in an MI pig model.146 This study showed safety/
feasibility and significant cardioprotection with reduced infarct
size, microvascular obstruction, and adverse remodeling com-
pared to controls.
Recently, a compelling meta-analysis of CSC therapy in

preclinical MI studies has showed an LVEF improvement of
10.7% in cell-treated animals compared to controls.147

Interestingly, MSCs/CSCs combination has yielded encouraging
results.138, 139 Transendocardially delivered MSCs and c-kit+ CSCs
have showed positive synergistic effects in a swine model after
ischemia/reperfusion injury.139 However, these results await
further confirmation from additional studies.

CSCs/CPCs in clinical trials. New controversies have also emerged
with the second-generation era. Two major phase-I trials assessed
cardiac-derived cells for the first time in the clinics. The
randomized SCIPIO trial investigated the safety and efficacy of
intracoronary c-kit+ CSC therapy in 33 ICM patients (20 treated and
13 controls). About 113 days after CABG, 1 × 106 autologous cells
were injected.148 The cell-treated group displayed a significant
increase in LVEF at 4 and 12 months.149 After CSC injection,
decreases in infarct size of 22.7 and 30.2% were measured at 4 and
12 months, respectively.148, 149 Nevertheless, this trial is subject to
an expression of concern by The Lancet.150

The CADUCEUS trial (NCT00893360) is a randomized study of
the safety and preliminary efficacy of intracoronary delivery of
autologous CDCs in patients with LV dysfunction after MI. CDCs
were applied in 17 patients 1.5–3 months after MI with a varying
dose of 12.5–25 × 106 cells. Eight patients were assessed as
standard care patients.151, 152 No tumor formation, major adverse
cardiac events, or deaths were observed after 6 months. While
CDC treatment resulted in favorable structural changes (scar mass,
viable heart mass, regional contractility, and systolic wall
thickening) compared to controls, no changes in EDV, ESV, and
LVEF were observed at 6 months.151 At 1-year FU, signs of efficacy
were displayed, as measured by reduced scar size and improve-
ment in regional function compared to controls.152 Although
CADUCEUS is a well-performed study, its small size prevents
judging efficacy.
Further ongoing studies are evaluating the safety and efficacy

of CSCs/CPCs. The first study to address the safety and efficacy of
allogeneic CDC therapy in phase-II is the ALLSTAR trial
(NCT01458405). Enrollment is completed according to the
sponsor. Allogeneic CSCs are also currently tested in the CAREMI
trial (NCT02439398).
Another interesting hybrid approach is presented by the

preliminary phase-I ALCADIA trial (NCT00981006) with autologous
CDCs and controlled release of basic fibroblast growth factor
to treat ICM. Results have shown increased LVEF and decreased
scar size 6 months after treatment.153, 154 However, ALCADIA is a
small study (n = 6) without control group and further trials are
needed.
To further advance the preclinical CSCs/MSCs combinatorial

approach, the phase-II, randomized, placebo-controlled CONCERT-
HF trial (NCT02501811) is recruiting participants to investigate the
feasibility/safety and effect of autologous BM-MSCs and c-kit+

CSCs delivered by transendocardial injection in ICM subjects.
Although initial clinical results from studies investigating CSCs/
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CPCs are promising, demonstrating feasibility/safety and signs of
efficacy, these cell types must be further assessed in larger cohorts
and their mechanisms of cardiac repair must be fully elucidated.

Pluripotent stem cells
Pluripotent stem cells, including embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs), constitute another source
for guided cardiac differentiation. ESCs can differentiate into any
cell type found in the adult organism. Human ESC-derived
cardiomyocytes express cardiac transcription factors and display
adult cardiomyocyte phenotype and beating activity in vitro.155

However, common concerns include ethical issues and safety,
since residual undifferentiated cells could induce teratoma
formation.
iPSCs constitute a potential alternative to ESCs as they display

similar characteristics while avoiding the ethical debate. iPSCs are
obtained from adult somatic cells by forcing the re-expression of
key reprogramming genes. However, many questions and safety
issues such as tumor formation remain to be clarified.

Pluripotent stem cells in preclinical trials. Preclinical studies with
pluripotent stem cells yielded mixed results depending on the
animal model. Differences between rodents and large animals
were repeatedly noted. Cardiac-committed mouse ESCs were
successfully implanted into sheep, resulting in improved LV
function.156 Similar results have also been observed in rodents,
but with teratoma formation.155 Human ESC-derived cardiomyo-
cytes were implanted in macaques.157 The infarcted heart was
“remuscularized” and cardiomyocytes underwent progressive but
incomplete maturation over 3 months. The grafts were vascular-
ized and electrically coupled. Although the electrical coupling was
enhanced compared to studies of the same group in rodents, non-
fatal ventricular arrhythmias not observed in rodents could be
detected in monkeys.157 It should be noted that the findings of
this study have been challenged in the literature.158

In several preclinical trials, human ESC-derived CPCs have also
been transplanted into small and large animal models of MI,
showing improved cardiac function. Cell embedding into a fibrin
patch has further improved cell engraftment and efficacy, thus
leading to clinical trials.159

Cell sheets made of human iPSC-derived cardiomyocytes were
delivered into a swine ICM model.160 Despite low long-term cell
survival, no teratoma was observed and cardiac function was
improved. Recently, human iPSCs have been differentiated into
the three cardiac lineages. Their transplantation in a pig MI model
showed cell engraftment and improved cardiac function without
ventricular arrhythmias.161 Issues such as rejection and teratoma
formation need to be further addressed before advancement into
clinics.

Pluripotent stem cells in clinical trials. Witnessed with both
apprehension and curiosity by the scientific community, human
ESC-based therapy has also recently advanced into the clinics. The
proof-of-concept ESCORT trial (NCT02057900) is testing ESC-
derived CPCs (CD15+ Isl-1+ progenitors) embedded into a fibrin
scaffold. The patch was delivered for the first time into a patient
with advanced ischemic HF.162 While preliminary outcomes are
promising and show the feasibility of producing clinical-grade
ESC-derived CPCs, the forthcoming results of the study are
necessary to draw a conclusion.162

CELL ENHANCEMENT AND CELL-FREE APPROACHES: THE NEXT
GENERATION?
Cell enhancement approaches
Several strategies are investigated to ameliorate the poor
performance of transplanted cells. They mainly consist in

improving cell retention, survival, coupling, and differentiation.
To improve cell retention, scaffold-based and scaffold-free
approaches can be used. Scaffolds for cardiac cell therapy include
decellularized matrices, injectable biomaterials, and cardiac
patches made of synthetic or natural hydrogels.163, 164 Scaffold-
free tissue-based constructs such as cell sheets and microtissues
also exist.165–167 Bispecific antibodies can also be used to link cells
to the injured heart.168 The CELLWAVE trial (NCT00326989) used
shock-wave therapy to promote homing of BMMNCs in HF
patients.169 Survival and angiogenesis can be improved by using
pro-survival and angiogenic cytokines or by modification of
specific genes.170, 171 Overexpression of N-cadherin and connexin-
43 could improve coupling. Cells can also be pre-conditioned in
hypoxic conditions172 and differentiation can be enhanced with
microRNAs (miRNAs).173, 174

Cell-free approaches
Based on the hypothesis that cell therapy mainly functions
through paracrine mechanisms, new strategies propose to skip
the cells and only use the supposedly paracrine factors. These
approaches mainly include the administration/regulation of
growth factors and non-coding RNAs. Following the rationale of
in situ modification, direct reprogramming aims to convert scar
fibroblasts into cardiomyocyte-like cells.

Administration/regulation of growth factors. Examples of investi-
gated growth factors are the vascular endothelial growth
factor (VEGF), the granulocyte-colony stimulating factor (G-CSF),
and erythropoietin (Epo). VEGF gene therapy failed to improve
perfusion of ischemic myocardium in the NORTHERN clinical
trial.175 G-CSF did not display significant improvement in
myocardial function compared to placebo in the clinics.176–178

While administration of Epo displayed encouraging results with
preservation of cardiac function in infarcted mice,179 the phase-III
REVIVAL-3 trial (NCT00390832) showed no improvement in LVEF
or infarct size compared to placebo at 6 month FU.180 A lack of
reduction in infarct size was also documented by other clinical
studies with shorter FU times.181, 182 The poor outcomes of growth
factor-based approaches may be due to inappropriate dosages
and/or the lack of organ selectivity, among others.

Administration/regulation of non-coding RNAs. Non-coding RNAs
include miRNAs and long non-coding RNAs. They may represent
possible therapeutic targets due to their abundance in the
cardiovascular system and their potential function in heart
physiology and disease.183 miRNAs have been mainly investigated
in mice but also in large animals. In a porcine MI model, local and
selective inhibition of miR-92a resulted in enhanced angiogenesis
and prevention of adverse remodeling.184 miRNAs are found at the
intracellular level but also in extracellular vesicles, such as
exosomes. Exosomes also contain mRNAs, proteins and lipids, and
are thought to play a role in cell–cell communication and in
cardiovascular physiology.185 They are currently investigated as
diagnostic markers and their roles may also encompass cardiopro-
tection.186 Human CPC-derived extracellular vesicles have displayed
a decrease in cardiomyocyte apoptosis and an increase in
angiogenesis and LVEF in acute MI rats.187 Following positive
results in vitro and in rodents,188, 189 CDC-derived exosomes were
shown to decrease infarct size and preserve LVEF in a recent
preclinical study in acute and chronic porcine MI.190 Interestingly,
this effect was observed in acute MI with intramyocardial but not
with intracoronary injection. Mouse ESC-derived exosomes dis-
played enhanced cardiac function and repair in infarcted mice.191

Nevertheless, it is challenging to separate the relative contributions
of regeneration vs. salvage of existing myocardial tissue.
Extracellular vesicles have raised a great interest. However,

several open issues remain to be addressed before they can
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fully supplant cell-based therapies. For instance, the type of
donor cells, the type and size of vesicles, their content and
their potential immunogenicity need to be investigated in further
detail.

Direct reprogramming. To achieve direct reprogramming, a
specific cocktail of transcription factors192–194 or miRNAs195 can
be used. A recent report has shown the feasibility of direct
reprogramming of human fibroblasts into cardiomyocyte-like cells
using only small molecules.196 Direct reprogramming of murine
fibroblasts into cardiomyocyte-like cells was shown in vitro and
in vivo192–194 and has opened the way to large animal studies. The
field of direct reprogramming is still at its infancy and has to cope
with several issues before it can reach clinical translation. Vectors
need to safely and efficiently transfect the heart cells without
triggering the immune response, which could clear the vectors
and the transfected cells. Only fibroblasts and no other neighbor-
ing cells should be targeted. Moreover, direct reprogramming
approaches need to be tested with human cells and large animal
models before they can reach the clinics.

CONCLUSION
Cell therapy holds potential to tackle MI and HF. Issues such as the
cell type, cell number, delivery route, timing, FU periods, and
endpoints remain unsolved. The field has rapidly evolved to
address in particular the ideal cell type. The first attempts of heart
remuscularization with SMs were abandoned due to ventricular
arrhythmias. Then, the rationale of direct/indirect regeneration by
stem cells was adopted. While first-generation cells such as BM-
derived cells and MSCs gave overall promising results in preclinical
studies, they yielded heterogeneous efficacy outcomes in the
clinics. The reasons include differences in trial design and a too
rapid translation despite a lack of understanding of the biological
mechanisms. Prominent meta-analyses have reached contra-
dictory results about cell therapy efficacy. Large clinical trials such
as BAMI will hopefully settle the discussion. Motivated by the
desire to match the target organ, second-generation approaches
currently investigate cpMSCs, CSCs/CPCs, and pluripotent stem
cells. While encouraging results were displayed in both the
preclinical and clinical settings, controversies exist. Notably,
cpMSCs entered the clinics without previous large animal trials
and CHART-1, which did not meet its primary efficacy endpoint,
was initiated without a clear evidence of efficacy in a phase-II trial.
CSCs/CPCs are promising but their mode of action should be
further investigated. Pluripotent stem cells have made their
entrance into the clinics despite a lack of uniformity between
small and large animal studies. Their advancement is now
followed with both interest and apprehension. And yet, it is
crucial to learn from first-generation trials and to gain a better
understanding of the mode of action of transplanted cells. Future
preclinical trials should not only test safety and efficacy endpoints,
but rather specific hypotheses on mechanisms of efficacy.5 The
cell type should be carefully selected and fully characterized in
terms of viability, function, optimal dose, and timing of admin-
istration.5 This knowledge could then also be applied in cell-
enhancement strategies. A systematic analysis of the cell
secretome could further profit to the translation of cell-free
approaches. Besides cell-free techniques, the next-generation
approaches in the cell therapy evolution might include the
combinatorial cell delivery concept,138 the repeated sequential
administration of cells,197 and the use of modified cells for
enhanced repair.143 Regardless of the cell type, the main
challenges of cell therapy are still the overall poor cell retention
and high degree of cell death after transplantation. Until these
problems are overcome, the full potential of cell therapy will likely
never be realized.
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