
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2018

Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers’
children against airway inflammation and colitis

Frei, Remo; Ferstl, Ruth; Roduit, Caroline; Ziegler, Mario; Schiavi, Elisa; Barcik, Weronika;
Rodriguez-Perez, Noelia; Wirz, Oliver F; Pugin, Benoit; Nehrbass, Dirk; Konieczna, Patrycja; Bieli,
Christian; Loeliger, Susanne; Waser, Marco; Depner, Martin; Schaub, Bianca; Genuneit, Jon; Renz,

Harald; Akdis, Mübeccel; Braun-Fahrländer, Charlotte; Akdis, Cezmi A; et al

Abstract: BACKGROUND Childhood exposure to a farm environment has been shown to protect against
the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease.
OBJECTIVE We sought to investigate whether both exposure to microbes and exposure to structures of
nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant
role. METHODS Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera
of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children
Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection
Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n
= 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze.
The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role
of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell
activation in mice. RESULTS In children anti-Neu5Gc IgG levels correlated positively with living on
a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with
wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway
hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration
to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced
IL-17+ T-cell numbers and supported differentiation of regulatory T cells. CONCLUSIONS In addition
to microbial exposure, increased exposure to non-microbial-derived Neu5Gc might contribute to the
protective effects associated with the farm environment.
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Background: Childhood exposure to a farm environment has
been shown to protect against the development of inflammatory
diseases, such as allergy, asthma, and inflammatory bowel
disease.
Objective: We sought to investigate whether both exposure to
microbes and exposure to structures of nonmicrobial origin,
such as the sialic acid N-glycolylneuraminic acid (Neu5Gc),
might play a significant role.
Methods: Exposure to Neu5Gc was evaluated by quantifying
anti-Neu5Gc antibody levels in sera of children enrolled in 2
farm studies: the Prevention of Allergy Risk factors for
Sensitization in Children Related to Farming and
Anthroposophic Lifestyle (PARSIFAL) study (n 5 299) and the
Protection Against Allergy Study in Rural Environments
(PASTURE) birth cohort (cord blood [n 5 836], 1 year
[n 5 734], 4.5 years [n 5 700], and 6 years [n 5 728]), and we
associated them with asthma and wheeze. The effect of Neu5Gc
was examined in murine airway inflammation and colitis
models, and the role of Neu5Gc in regulating immune activation
was assessed based on helper T-cell and regulatory T-cell
activation in mice.
Results: In children anti-Neu5Gc IgG levels correlated
positively with living on a farm and increased peripheral blood
forkhead box protein 3 expression and correlated inversely with
wheezing and asthma in nonatopic subjects. Exposure to
Neu5Gc in mice resulted in reduced airway hyperresponsiveness
and inflammatory cell recruitment to the lung. Furthermore,
Neu5Gc administration to mice reduced the severity of a colitis
model. Mechanistically, we found that Neu5Gc exposure
reduced IL-171 T-cell numbers and supported differentiation of
regulatory T cells.
Conclusions: In addition to microbial exposure, increased
exposure to non–microbial-derived Neu5Gc might contribute to
the protective effects associated with the farm environment. (J
Allergy Clin Immunol 2018;141:382-90.)

Key words: Farmers’ children, nonmicrobial, N-glycolylneuraminic
acid, airway inflammation, colitis, anti-inflammatory

The hygiene hypothesis suggests that children growing up in an
environment rich in microbes or microbial components have less
allergy, autoimmune disease, and colitis.1-4 Asthma, hay fever,
and colitis are less prevalent in farmers’ children.5-7 The microbi-
al load in the child’s environment has been proposed to be the crit-
ical factor influencing the child’s developing immune system and
to confer protection against atopic diseases.8-11 However, a
farming lifestyle not only implicates increased exposure to mi-
crobes but also to nonmicrobial molecules potentially influencing
the developing immune system.12,13

N-glycolylneuraminic acid (Neu5Gc) is a sialic acid specif-
ically expressed on nonhuman mammalian cells and glycopro-
teins and not present in bacteria.14 In contrast to many other
mammals, including primates, human subjects lack the enzyme
CMP-Neu5Ac hydroxylase (CMAH) because of a genetic muta-
tion and are therefore not able to synthesize Neu5Gc from the
precursor N-acetylneuraminic acid (Neu5Ac).15,16 As a conse-
quence, human subjects mount a humoral immune response by
producing anti-Neu5Gc antibodies, which can be used as a surro-
gate marker for exposure to Neu5Gc.14,17,18

In the present study we investigated the role of exposure to
Neu5Gc in the development of airway inflammation and colitis.

We determined the levels of anti-Neu5Gc antibodies in children’s
serum samples and correlated them with farm exposure. More-
over, we associated anti-Neu5Gc levels with the incidence of
asthma and wheezing. Furthermore, we investigated the effect of
Neu5Gc on the development of airway inflammation in a CMAH
(Neu5Gc)–deficient murine model mimicking the human situa-
tion and examined the immune mechanisms in primary dendritic
cells and T helper cells.

METHODS

Study design and population
The European cross-sectional Prevention of Allergy Risk factors for

Sensitization in Children Related to Farming and Anthroposophic Lifestyle

(PARSIFAL) study aimed to study the determinants of childhood asthma and

allergies in farming and anthroposophic populations in 5 European countries, as

described previously.19 Parents of participating children were invited to fill out a

questionnaire about farming lifestyle, farm exposures, child’s diet, and allergic

diseases.20-22 Written informed consent was obtained from the children’s par-

ents for questionnaires, blood sampling, and environmental exposure assess-

ment, and the research ethics committee of canton Basel approved the study.

In the present study data of a sample of Swiss children (5-14 years old) with

available blood samples were used (n 5 299). Questions on health outcomes

and farm exposure were derived from the internationally validated International

Study of Asthma and Allergies in Childhood II23 questionnaire and the Allergy

and Endotoxin Study (ALEX).7 Children with reported doctor-diagnosed

asthma once or obstructive bronchitis more than once in their lifetime were re-

garded as having asthma. Obstructive bronchitis is commonly used to define the

first occurrence of asthmatic symptoms. Reported wheezing during the past

12months was consideredwheeze. A child who lived on a farm andwhose fam-

ily ran the farm was coded as being a farmer’s child.24

The Protection Against Allergy Study in Rural Environments (PASTURE)

birth cohort is a prospective birth cohort involving children from rural areas in

5 European countries (Austria, Finland, France, Germany, and Switzerland)

designed to evaluate risk factors and preventive factors for asthma and atopic

diseases.25 Pregnant women were recruited during the third trimester of preg-

nancy between August 2002 and March 2005 and divided into 2 groups.

Women who lived on family-run farms where any kind of livestock was

kept were assigned to the farm group. Women from the same rural areas but

not living on a farm were in the reference group. In total, 1133 children

were included in this birth cohort. All available serum samples of cord blood

(n 5 836) and samples at 1 year (n 5 734), 4.5 years (n 5 700), and 6 years

(n 5 728) were included in the study.

The research ethics committee of canton St Gallen approved the study, and

written informed consent was obtained from all parents. Questionnaires were

administered in interviews or self-administered to the mothers within the third

trimester of pregnancy and when the children were 2, 12, 18, and 24months of

age and then yearly up to age 6 years. Information on parental atopic status,

sex, and the duration of breast-feeding was recorded in questionnaires during

Abbreviations used
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pregnancy, 2 months after birth, and at 1 year of age. Positive parental history

of allergies was defined as ever having asthma, allergic rhinitis, or atopic

dermatitis by one of the parents. Childrenwere defined as having asthmawhen

the parents reported in the 6-year questionnaire that the child had either a

doctor-diagnosed asthma or at least 2 doctor-diagnosed episodes of obstruc-

tive bronchitis. In this birth cohort 5 phenotypes of wheeze could have been

determined by using latent class analysis, similar to previous epidemiologic

studies.26 We used the phenotypes ‘‘intermediate,’’ ‘‘late-onset,’’ or ‘‘persis-

tent’’ to define wheeze, and the phenotypes ‘‘no/infrequent’’ or ‘‘transient’’

wheeze were used as the reference group. Gene expression of forkhead box

protein 3 (Foxp3) and IL10weremeasuredwith quantitative PCR in peripheral

blood leukocytes.

Anti-Neu5Gc antibody quantification
Serum levels of anti-Neu5Gc antibodies were determined by means of

ELISA, as previously described.27 Five hundred nanograms per well of

Neu5Ac-polyacrylamide or Neu5Gc-polyacrylamide (GlycoTech, Gaithers-

burg, Md) were coated on a 96-well microtiter plate. After washing and block-

ing of the plate, 100mLof a 1:10 dilution of serawas incubated in duplicates on

the plate. Bound antibodies were detected by using a horseradish peroxidase–

conjugated mouse anti-human IgG (Sigma-Aldrich, Buchs, Switzerland).

Measured values were normalized to a standard curve of normal human serum

(Sigma-Aldrich) measured on the same plate. For background correction of

anti-Neu5Gc IgG levels, anti-Neu5Ac IgG levels were subtracted.27

Animals
CMAH knockout mice28 were a kind gift from Ajit Varki (University of

California, SanDiego, Calif) andwere bred at AOResearch Institute in Davos,

Switzerland. Female C57BL/6 mice, C.B17 severe combined immunodefi-

ciency (SCID) mice, and BALB/c mice aged 6 to 8 weeks were obtained

from Charles River (Sulzfeld, Germany) and housed at the AO Research Insti-

tute Davos. Mice were housed at 4 to 6 animals per cage in individually venti-

lated cages in a 12-hour/12-hour light/dark cycle, with vegetarian food and

water available ad libitum. Mice of different genotypes were cohoused for

at least 2 weeks before the start of the experiments. All experimental proced-

ures were carried out in accordance with Swiss law and approved by the ani-

mal experiment commission of the canton Grisons, Switzerland.

Allergic airway inflammation mouse model
Ovalbumin model. Micewere sensitized bymeans of intraperitoneal

injection of 20 mg of grade VI ovalbumin (Sigma-Aldrich) emulsified in 500 mg

ofAlum(Pierce,Rockford, Ill) in200mLof sterile 0.9% isotonic sodiumchloride

(NaCl) on days 0, 7, and 21, followed by 20 minutes of 1% grade Vovalbumin

(Sigma-Aldrich) aerosol treatments on days 26, 27, and 28. In addition, mice

received 50 mg/kg/d LPS-free Neu5Gc (Inalco Pharmaceuticals, San Luis

Obispo, Calif) by means of gavage starting 5 days before the first ovalbumin

injection. Analysis of mice occurred 24 hours after the last aerosol challenge.

House dust mite model. Micewere treated at day 0with 1mg and

on days 7 to 11 with 10 mg of house dust mite extract (GREER Laboratories,

Lenoir, NC) administered intranasally. Mice were analyzed on day 12. The

mice received 50 mg/kg/d Neu5Gc by means of gavage starting 3 or 14 days

before the first house dust mite application. Bronchoalveolar lavage (BAL)

was performed with 1 mL of PBS containing 13 protease inhibitor cocktail

(Roche, Mannheim, Germany). The total number of leukocytes was counted

with a Neubauer counting chamber. For differential cell counts, cytospin

preparations were fixed and stained with Diff-Quick (Merz & Dade AG,

Dudingen, Switzerland). Macrophages, lymphocytes, eosinophils, and neu-

trophils were identified by using standard morphologic criteria, and 100 to

200 cells were counted per cytospin preparation.

SCID colitis
More information on SCID colitis can be found in Kjellev et al.29 To induce

colitis, CD41CD252CD45RB1 cells were applied to SCID mice. These cells

were isolated from total spleen cells of BALB/cmice by using 2 rounds of Au-

toMACS separation with reagents from Miltenyi Biotec (Bergisch Gladbach,

Germany). Three hundred eighty thousand cells were injected intraperitone-

ally into C.B17 SCID mice. Control animals were injected with sodium chlo-

ride. The severity of the disease was assessed by loss of body weight and a

symptom score comprising the injection site, breathing, activity, fur condition,

movement, body weight, and condition of the feces.

Lung tissue and lymph node cell isolation and flow

cytometric analysis
Dissociation kits for mice and gentleMACS (Miltenyi Biotec) were used

according to the manufacturer’s protocol to prepare single-cell suspensions

from lung tissue or lymph nodes. All flow cytometric analyses were performed

on the Gallios Flow Cytometer (Beckman Coulter, Brea, Calif). Anti-CD3

(145-2C11), anti-Helios (22F6), anti–IL-5 (TRFK5), and anti-CD4 (RM4-5)

antibodies were obtained from BioLegend (San Diego, Calif). Anti-CD25

(PC61.5), anti-Foxp3 (FJK-16s), anti–IL-10 (JES5-16E3), anti–IL-17A

(eBio17B7), anti–IFN-g (XMG1.2), anti–IL-13 (eBio13A), anti-CD127

(A7R34), and anti–IL-4 (11B11) antibodies were obtained from eBioscience

(Vienna, Austria). Cells were stained with the fixable viability dye eFlour780

(eBioscience). For intracellular cytokine staining, cells were stimulated with

phorbol 12-myristate 13-acetate/ionomycin (50 and 500 ng/mL) for 4 hours at

378C in a 5% CO2 atmosphere in the presence of Brefeldin solution (eBio-

science) to inhibit cytokine secretion. Cells were permeabilized with reagents

from eBioscience.

Immunoglobulins
Total IgE levels were assessed with a Milliplex kit (Merck Millipore,

Billerica, Mass). Ovalbumin/house dust mite–specific IgE/IgG1 levels in sera

were measured by means of ELISA coated with ovalbumin/house dust mite

and detected with anti-IgE/IgG1 (BD Biosciences, Franklin Lakes, NJ).

Lung function measurements
Micewere intubated after achievement of anesthesia, and airway resistance

was assessed with the flexiVent system (SCIREQ, Montreal, Quebec,

Canada). Airway resistance was measured in response to increasing concen-

trations of methacholine (Sigma-Aldrich).

Primary cell isolation
CD141 monocytes were isolated from healthy human PBMCs by using

AutoMACS and reagents from Miltenyi Biotec. CD141 monocytes were

differentiated into monocyte-derived dendritic cells in vitro with IL-4 and

GM-CSF for 5 days. Cells were stimulated with 3 mmol/L Neu5Gc (Inalco

Pharmaceuticals). Murine dendritic cells and T helper cells were isolated

from spleens of nontreated mice by using AutoMACS and reagents from

Miltenyi Biotec. Cells were cocultured for 5 days in a 1:30 ratio. For

intracellular cytokine staining, cells were stimulated with phorbol

12-myristate 13-acetate/ionomycin (50 and 500 ng/mL) for 24 hours at

378C in a 5% CO2 atmosphere in the presence of Brefeldin solution

(eBioscience). T helper cell differentiation was assessed by means of flow

cytometry.

Statistical analysis
Anti-Neu5Gc IgG levels showed a skewed distribution and were therefore

log-transformed, resulting in an approximately normal distribution. The

proportions of nondetectable values in the PARSIFAL study were 14.7%

less than the lower detection limit and 7.5% greater than the upper detection

limit. In the PASTURE birth cohort sera were frequently less than the lower

detection limit (cord blood, 45.5%; 1 year, 63.8%; 4.5 years, 45.4%; and

6 years, 42.0%; corresponding to the lowest tertile in the analyses) and less

frequent above the upper detection limit (cord blood, 1.4%; 1 year, 0.8%;

4.5 years, 2.1%; and 6 years, 2.8%). To take these relevant proportions of
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nondetectable values into account, Tobit regression was used with anti-

Neu5Gc IgG levels as the dependent variable.30 Geometric mean ratios along

with 95% CIs were computed to describe the association between anti-

Neu5Gc IgG levels and exposures. Logistic regression was used to explore

the association between binomial health outcomes and anti-Neu5Gc IgG

levels, and effects were expressed as odds ratios along with 95% CIs. In these

models anti-Neu5Gc IgG levels were introduced as a categorical variable (ter-

tiles) to avoid data loss because of nondetection.

To assess potential confounding for the association between anti-Neu5Gc

IgG levels and asthma predefined variables (being a farm child, sex, age, body

mass index, number of older siblings, parental history of allergies, parental

education, and maternal smoking during pregnancy) were introduced into the

regression models one by one. Variables that changed the odds ratios for anti-

Neu5Gc IgG levels on asthma bymore than 10%were used in the finalmodels.

Two-sided P values of less than .05 were considered significant. In the

PASTURE birth cohort all analyses were adjusted for farming status and cen-

ter. Statistical analysis was performedwith Stata/SE 10.1 software (StataCorp,

College Station, Tex) and SAS 9.2 software (SAS Institute, Cary, NC).

Mouse and in vitro experiments were graphed and analyzed statistically

with Prism 5 software (GraphPad Software, San Diego, Calif). Data were ex-

pressed as means 6 SEMs and analyzed for significance by using the Mann-

Whitney test. Samples or animals were only excluded because of technical

problems.

RESULTS

Anti-Neu5Gc IgG levels are increased in farmers’

children and inversely associated with nonatopic

wheeze and asthma
To assess whether farmers’ children are exposed to Neu5Gc,

we measured anti-Neu5Gc antibody levels in the context of the
PARSIFAL study and the PASTURE birth cohort (see Table E1 in
this article’s Online Repository at www.jacionline.org). At all
time points, farmers’ children had higher levels of anti-Neu5Gc
IgG compared with nonfarmers’ children (Table I). To assess
whether exposure to Neu5Gc might affect the children’s
development of asthma and wheezing, we associated
anti-Neu5Gc antibody levels with asthma and wheeze. Higher
anti-Neu5Gc IgG levels were inversely associated with asthma
and wheezing in a dose-dependent manner in the PARSIFAL
study population (Fig 1, A).

In the longitudinal PASTURE birth cohort the sample size
allowed us to divide the children into thosewith andwithout atopy
(defined as allergic sensitization to any allergens at 6 years of
age). We found a significant inverse association between anti-
Neu5Gc IgG levels andwheezing among nonatopic children and a
trend for an inverse association between anti-Neu5Gc IgG levels
and asthma (Fig 1, B).
Next, we investigated potential associations between anti-

Neu5Gc IgG levels and gene expression of regulatory T (Treg)
cell marker in children’s peripheral blood leukocytes. Increasing
anti-Neu5Gc IgG levels were associated with increased gene
expression of Foxp3, and a positive nonstatistically significant
trend was shownwith IL10 gene expression in 6-year-old children
of the longitudinal study (Table II). No other significant associa-
tions were found between anti-Neu5Gc IgG and gene expression
of immunologic markers (see Table E2 in this article’s Online Re-
pository at www.jacionline.org).
In summary, farmers’ children had increased anti-Neu5Gc

IgG levels, which correlated with less wheezing and asthma
in nonatopic children and increased expression of Treg cell
markers.

Airway inflammation severity in CMAH-deficient

and wild-type mice is reduced by oral

administration of Neu5Gc
To further investigate the functional role of Neu5Gc in the

development of inflammatory airway diseases, we used a murine
model with Neu5Gc deficiency.28 CMAH-deficient mice lack
Neu5Gc because of a mutation in the synthesis pathway resem-
bling the human situation. Because murine inflammatory airway
disease models do not cover all immunologic aspects compared
with human disease, we applied 2 different models with
CMAH-deficient mice, one with ovalbumin as the allergen and
aluminum hydroxide as an adjuvant and one with house dust
mite extract as the allergen. We assessed whether the severity
of airway inflammation in CMAH-deficient mice could be
reduced by long-term exposure (beginning 14 days before sensi-
tization) to a dose of Neu5Gc that was comparable with the calcu-
lated exposure of a child living on a farm.31 We found that airway
resistance in response to methacholine and total cell, eosinophil,
and neutrophil numbers in BAL fluid were reduced by Neu5Gc
administration in both models (Fig 2, A and B). Furthermore, in-
flammatory cell infiltration and mucus production in tissue sec-
tions from the lungs of mice administered Neu5Gc were
reduced (Fig 2, C and D). Shorter-term exposure (beginning
3 days before sensitization) to Neu5Gc did not significantly
reduce total cell, eosinophil, and neutrophil numbers in BAL
fluid, suggesting that a longer exposure time is required to
achieve protection (see Fig E1 in this article’s Online Repository
at www.jacionline.org).
To investigate further the underpinning mechanisms induced

by Neu5Gc administration, we analyzed levels of cytokine
production by lung T helper and lung Treg cells and immuno-
globulin levels in sera. Flow cytometric analyses of lung
CD31CD41 cells revealed that Neu5Gc application reduced the
percentage of IL-17–producing T helper cells in both murine
models (Fig 2, E). The percentage of IL-4–, IFN-g–, IL-10–,
IL-13–, and IL-5–producing T helper cells was not altered (see
Figs E2, A, and E3, A, in this article’s Online Repository at
www.jacionline.org). Although the percentage of CD251Foxp31

Treg cells was not significantly increased in lung tissues through
exposure toNeu5Gc in the ovalbuminmodel, these cells produced
more IL-10 (Fig 2, F). In the house dust mite model we observed
more CD251Foxp31 and CD251Foxp31CD1272 Treg cells af-
ter Neu5Gc application (Fig 2, F, and see Fig E3, B). Neu5Gc
administration did not have an effect on immunoglobulin levels
in sera (see Figs E2, B, and E3, C).

TABLE I. Anti-Neu5Gc IgG levels in farmers’ children related to

nonfarmers’ children

GMR (95% CI)

PASTURE birth cohort*

Cord blood 3.98 (1.82-8.72)§

1 y 2.00 (0.62-6.49)

4.5 y 6.73 (2.68-16.92)§

6 y 19.45 (8.16-46.4)§

PARSIFAL study�
School age 3.36 (2.23-5.05)�

GMR, Geometric mean ratio. Values in boldface are statistically significant.

*GMR adjusted for center, parental atopy, sex, and duration of breast-feeding.

�Unadjusted GMR.

�P < .01.

§P < .001.
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To investigate whether exogenously added Neu5Gc had an
effect only in the absence of endogenously produced Neu5Gc, we
applied Neu5Gc to wild-type mice and investigated whether it
was able to reduce the severity of house dust mite extract–induced
airway inflammation. Similar to the findings of CMAH-deficient
mice, we found in wild-type mice reduced airway resistance in
response to methacholine; reduced total cell, eosinophil, and
neutrophil numbers in BAL fluid; less IL-17, IL-4, and IL-13
production by lung T helper cells; and more lung CD251Foxp31

Treg cells producing IL-10 (see Fig E4 in this article’s Online Re-
pository at www.jacionline.org).
In summary, administration of Neu5Gc to both CMAH-

deficient or wild-type mice ameliorated the symptoms of airway
inflammation, enhanced Treg cells, and reduced IL-17 production
by T helper cells in lungs.

Colitis severity is reduced by oral administration of

Neu5Gc
Next, we assessed whether the severity of another inflamma-

tory disease was ameliorated by exposure to Neu5Gc. Therefore

we applied daily Neu5Gc orally to SCID mice that received
CD41CD252CD45RB1 cells to induce colitis and assessed the
severity of the disease by scoring symptoms, assessing body
weight, and measuring the ratio between weight and length of
the colon. We found that an increase in symptom score and
body weight loss was prevented by Neu5Gc administration
compared with that seen in nontreated mice (Fig 3, A and B).
Furthermore, the weight/length ratio of the colon was
significantly improved (Fig 3, C). Additionally, we found that
mesenteric lymph node T helper cells produced less IL-17 and
that the percentage of CD251Foxp31 Treg cells was enhanced
in response to Neu5Gc administration (Fig 3, D and E).
However, the percentage of IL-4–, IFN-g–, IL-10–, IL-13–, and
IL-5–producing T helper cells was not influenced by Neu5Gc
administration, whereas assessment of total inflammatory cell
infiltration in the gut by means of hematoxylin and eosin staining
was also not significantly changed by Neu5Gc (see Fig E5 in this
article’s Online Repository at www.jacionline.org).

In summary, administration of Neu5Gc during induction of
colitis in mice ameliorated symptoms, enhanced Treg cells, and
reduced IL-17 production by T helper cells in mesenteric lymph
nodes.

Neu5Gc induces a regulatory phenotype in

dendritic cells, and coculture of Neu5Gc-expressing

T helper cells with dendritic cells leads to less IL-17–

producing T helper cells and induction of Treg cells
Because themurine studies suggested a direct effect of Neu5Gc

on immune cells, leading to less IL-17 production of T helper
cells and enhanced Treg cells, we examined the effects of Neu5Gc
on primary human and murine immune cells. We measured
expression of regulatory molecules in human monocyte-derived
dendritic cells that were stimulated with Neu5Gc. Indoleamine
2,3-dioxygenase and retinaldehyde dehydrogenase 2 gene
expression, as well as IL-10 secretion, were increased. All of
these molecules are known to be involved in Treg cell differen-
tiation (Fig 4, A).32

Next, murine dendritic cells and naive T helper cells were
isolated from either wild-type or CMAH-deficient spleens and
cocultured. Cocultures of wild-type cells led to lower levels of IL-
17–producing T helper cells and higher levels of CD251Foxp31

Treg cells compared with cultures of cells isolated from
CMAH-deficient mice (Fig 4, B and C). Cocultures of
wild-type T helper cells or dendritic cells with CMAH-deficient
dendritic cells or T helper cells showed intermediate IL-17 pro-
duction by T helper cells and medium-level CD251Foxp31

Treg cell polarization (Fig 4, B and C).

DISCUSSION
Our data show that environmental exposure to Neu5Gc is

associated with less nonatopic asthma and wheezing in children
and has anti-inflammatory effects in murine models of airway and
gut inflammation, regardless of whether Neu5Gc is endogenously
present. Human subjects are able to take up Neu5Gc through fluid
pinocytosis and specific lysosomal transporters and incorporate it
in newly synthesized glycoproteins.27,28,33 Therefore Neu5Gc
administration in human subjects might be protective, indepen-
dent of whether diet-derived Neu5Gc is already present on cells.
This suggests that not only microbial but also nonmicrobial

FIG 1. Association between anti-Neu5Gc IgG levels in tertiles and wheeze

or asthma. A, Cross-sectional PARSIFAL study (school-aged children):

adjusted odds ratio for the incidence of asthma or wheezing of tertiles of

anti-Neu5Gc IgG levels related to the lowest tertile as reference. B, Longitu-

dinal PASTURE birth cohort (at age of 6 years): adjusted odds ratio for the

incidence of nonatopic asthma or wheezing of tertiles of anti-Neu5Gc IgG

levels related to the lowest tertile as reference. Odds ratios are adjusted

for farming status, center, atopic parents, and sex.

TABLE II. Association of anti-Neu5Gc IgG levels with

expression of Foxp3 and IL10 at 6 years of age

GMR (95% CI)

PASTURE birth cohort

Foxp3 1.24 (1.05-1.47)*

IL10 1.16 (0.99-1.32)

GMR, Geometric mean ratio. Values in boldface are statistically significant.

*P < .05.
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components in the environment have anti-inflammatory effects,
adding a new aspect to the hygiene hypothesis.
Various environmental exposures have been shown to reduce

the child’s risk of atopic disease and asthma.2 The microbial di-
versity and load in a child’s environment has been suggested to
be the principal factor in drivingmaturation of the child’s immune
system toward a nonatopic phenotype.8-10 The relevance of such
exposures is supported by the observation that farmers’ children
express higher levels of CD14 and TLR (ie, innate immune recep-
tors recognizing pathogen-associated molecular patterns
signaling danger to the immune system).8,24,34,35

Neu5Gc can be regarded as an example of a non–microbial-
associated molecular pattern. The beneficial effect of Neu5Gc
seems to be anti-inflammatory and anti-TH17. Treg cell numbers

were increased and IL-17 secretion of T helper cells was
decreased after Neu5Gc administration. Moreover, epidemio-
logic data showed positive associations between anti-Neu5Gc
IgG levels and expression of the Treg cell markers Foxp3 or IL-
10 in children’s white blood cells. TH17 and Treg cell subsets
have a dichotomous character influenced by several cytokines.
TH17 cells are critical for the immune response against bacterial
and fungal infections, and increased levels in peripheral blood and
lesions are associated with pathology in patients with multiple
sclerosis, rheumatoid arthritis, psoriasis, Crohn disease, and ul-
cerative colitis.36 Treg cells are known to control several inflam-
matory diseases without influencing the immune response against
pathogens.37,38 Finally, Neu5Gc treatment of dendritic cells
induced a regulatory phenotype. Regulatory dendritic cells have

FIG 2. Oral application of Neu5Gc to CMAH-deficient mice reduced the severity of airway inflammation. A,

Airway resistance in response to increasing doses of methacholine. B, Total and differential cell counts in

BAL fluid. C, Representative hematoxylin and eosin (H&E)–stained lung tissue. D, Representative periodic

acid–Schiff (PAS)–stained lung tissue. E, Quantification of IL-17 secretion by lung CD31/CD41 T helper cells.

F,Quantification of lung CD251Foxp31 Treg cells and their IL-10 secretion. Each dot represents an individual

animal. Data were assessed in 4 (ovalbumin model) and 4 (house dust mite model) independent experi-

ments (means and SEMs). Eos, Eosinophils; Lymph, lymphocytes; Mac, macrophages; Neut, neutrophils.
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FIG 3. Oral application of Neu5Gc reduced the severity of colitis in SCID mice. A, Symptom score. B, Body

weight. C, Weight/length ratio of the colon. D, Quantification of IL-17 secretion by mesenteric lymph node

CD31/CD41 T helper cells. E,Quantification of mesenteric lymph node CD251Foxp31 Treg cells and their IL-

10 secretion. Each dot represents an individual animal. Data were assessed in 2 independent experiments

(means and SEMs).

FIG 4. Neu5Gc induces a regulatory phenotype in dendritic cells and leads to less IL-17–producing T helper

cells and induction of Treg cells in T helper cell–dendritic cell cocultures. A, Expression of indoleamine

2,3-dioxygenase (IDO) and retinaldehyde dehydrogenase 2 (RALDH2) genes and secretion of IL-10 by

human monocyte-derived dendritic cells stimulated with Neu5Gc. B, IL-17 production of T helper cells. C,

Quantification of CD251Foxp31 Treg cells and their IL-10 secretion. Each dot represents an individual

donor/animal. Data were assessed in 2 independent experiments (means and SEMs).
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been described to play a role in resolution of chronic inflamma-
tion.32 The anti-inflammatory effects of Neu5Gc resemble the ef-
fects previously described for short-chain fatty acids, anti-
inflammatory polyunsaturated fatty acids, or certain biogenic
amines.39-42 Whether the effects of Neu5Gc are also mediated
by G protein–coupled receptor signaling or epigenetic mecha-
nisms needs to be investigated in future experiments.
Several studies have previously shown that dietary exposure to

Neu5Gc in combination with anti-Neu5Gc antibodies was
associated with inflammation and cancer.31,43-45 In contrast, the
results of our murine models show a significant protective effect
on airway and gut inflammatory responses. The contrasting find-
ings could be related to the fact that we applied Neu5Gc in a high-
ly purified form, which did not induce an antibody response in
CMAH-deficient mice, which was also previously shown by
others.14 Because of the lack of an antibody response in mice
and the absence of antibodies in the in vitro dendritic cell and
lymphocyte models, we propose that it is the Neu5Gc molecule
itself and not the antibody response to the sialic acid that is
anti-inflammatory. Indeed, the influence of anti-Neu5Gc anti-
bodies on tumor progression is dose dependent, with low levels
promoting and high levels inhibiting tumor growth.46 To our
knowledge, there is no study showing that farmers’ children
have an increased risk of cancer.47

Our data suggest that not only immunologic danger signals
derived from microbes but also non–microbial-associated mo-
lecular patterns can be protective environmental exposures.

Key messages

d Anti-Neu5Gc antibody levels correlate with living on a
farm and increased peripheral blood Foxp3 expression
and are inversely associated with nonatopic asthma and
wheezing in children.

d Exposure to Neu5Gc reduces the severity of airway and
intestinal inflammation in mice.

d Exposure to Neu5Gc induced Treg cells and reduced IL-
171 T helper cells in the lungs of mice.
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FIG E1. Short-term oral application of Neu5Gc to CMAH-deficient mice did not reduce the severity of airway

inflammation. Total and differential cell counts in BAL fluid. Each dot represents an individual animal. Data

were assessed in 1 experiment (mean and SEMs). Eos, Eosinophils; Lymph, lymphocytes; Mac, macro-

phages; Neut, neutrophils.
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FIG E2. Oral application of Neu5Gc to CMAH-deficient mice reduced the severity of airway inflammation in

amodel using ovalbumin as an allergen.A,Quantification of cytokine secretion by lung CD31/CD41 T helper

cells. B,Quantification of total and ovalbumin-specific IgE in sera. Each dot represents an individual animal.

Data were assessed in 2 independent experiments (means and SEMs).
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FIG E3. Oral application of Neu5Gc to CMAH-deficient mice reduced the severity of airway inflammation in

a model using house dust mite as an allergen. A, Quantification of cytokine secretion by lung CD31/CD41 T

helper cells. B, Quantification of lung CD251Foxp31 Treg cell subsets and their IL-10 secretion. C, Quantifi-

cation of total IgE and house dust mite–specific IgG1 in sera. Each dot represents an individual animal. Data

were assessed in 2 independent experiments (means and SEMs).
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FIG E4. Oral application of Neu5Gc to wild-type mice reduced the severity of airway inflammation in a

model using house dust mite as an allergen. A, Airway resistance in response to increasing doses of meth-

acholine. Eos, Eosinophils; Lymph, lymphocytes;Mac, macrophages; Neut, neutrophils. B, Total and differ-

ential cell counts in BAL fluid. C, Quantification of cytokine secretion by lung CD31/CD41 T helper cells. D,

Quantification of lung CD251Foxp31 Treg cells and their IL-10 secretion. Each dot represents an individual

animal. Data were assessed in 2 independent experiments (means and SEMs).
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FIG E5. Oral application of Neu5Gc prevented the onset of colitis in SCID mice. A,Quantification of cytokine

secretion by mesenteric lymph node CD31CD41 T helper cells. B, Representative hematoxylin and eosin

(H&E)–stained gut tissue. Each dot represents an individual animal. Data were assessed in 2 independent

experiments (means and SEMs).
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TABLE E1. Characteristics of the PASTURE birth cohort and the PARSIFAL study

PASTURE birth cohort PARSIFAL study

With blood samples

at birth (n 5 836)

With blood samples

at 1 y (n 5 734)

With blood samples

at 4.5 y (n 5 700)

With blood samples

at 6 y (n 5 728) School age (n 5 299)

No. Percent No. Percent No. Percent No. Percent No. Percent

Center

Austria 172 20.6 139 18.9 90 12.9 107 14.7

Switzerland 177 21.2 140 19.1 145 20.7 167 22.9 299 100

France 140 16.8 122 16.6 151 21.6 153 21

Germany 157 18.8 154 21 164 23.4 150 20.6

Finland 190 22.7 179 24.4 150 21.4 151 20.7

Farmer 382 45.7 367 50 346 49.4 350 48.1 170 56.9

Sex

Female 412 49.8 361 49.2 331 47.4 348 47.9 149 49.8

Age (y)

5-6 35 11.7

7-8 81 27.1

9-10 77 25.8

11-12 89 29.8

13-14 17 5.7

Atopic parents

No 382 46.4 333 45.8 310 44.5 315 43.6 200 67.1

Yes 441 53.6 394 54.2 387 55.5 408 56.4 98 32.9

Atopic sensitization (specific IgE result >_0.35 kU/L against common inhalant and/or food allergens)

Yes 92 11.2 211 28.8 399 57.1 389 53.5 81 27.2

No 731 88.8 522 71.2 300 42.9 338 46.5 217 72.8

Asthma

Yes 86 13.1 21 7.1

No 568 86.9 276 92.9
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TABLE E2. Association between gene expression of immu-

nologic markers and anti-Neu5Gc IgG levels in the cross-

sectional PARSIFAL study

Immunologic marker aGMR/aOR* (95% CI)

PARSIFAL study

IFN-g 0.92 (0.41-2.07)

IL-13� 0.75 (0.30-1.83)

IL-4� 0.79 (0.47-1.35)

IL-10 1.47 (0.77-2.83)

TLR1 1.13 (0.90-1.43)

TLR2 0.92 (0.74-1.14)

TLR4_1 1.03 (0.82-1.28)

TLR4_2 1.07 (0.84-1.36)

TLR5 0.89 (0.67-1.20)

TLR6 1.01 (0.81-1.25)

TLR7 1.15 (0.91-1.47)

TLR8_1 1.12 (0.86-1.46)

TLR8_2 1.13 (0.86-1.50)

TLR9_1 1.04 (0.77-1.41)

TLR9_2 0.99 (0.76-1.29)

TLR10 0.80 (0.49-1.30)

Linear and logistic (*) regression for the association between immunologic markers

(target variable) and exposure variables is shown. Average odds ratios across tertiles of

anti-Neu5Gc levels are shown.

_1 and _2, Isoforms of the respective gene; aGMR, adjusted geometric mean ratio;

aOR, adjusted odds ratio.

*Geometric means ratios/odds ratios adjusted for being a farmers’ child, sex, and age.

CIs adjusted for multiple testing by using the Bonferroni method.

�IL-13 and IL-4 were dichotomized because of the high proportion of nondetectable

values.
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