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Early frameshift alleles of zebrafish tbx5a that
fail to develop the heartstrings phenotype
Elena Chiavacci, Lucia Kirchgeorg, Anastasia Felker, Alexa Burger, ChristianMosimann
Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.

Abstract
Tbx5 is a key transcription factor for vertebrate heart and forelimb development that
causes Holt-Oram syndrome when mutated in humans. The classic zebrafish mutant
for tbx5a named heartstrings (hst) features recessive absence of pectoral fins and a spec-
trum of heart defects, most-prominently featuring the name-giving stretched heart tube.
The mutation of the hst allele is a stop codon that is predicted to result in a truncated
Tbx5a protein that might feature residual activity. Here, using CRISPR-Cas9 mutagene-
sis, we generated zebrafish strains for two new tbx5a frameshift alleles in the first coding
exon: tbx5a c.21_25del and tbx5a c.22_31del, abbreviated as tbx5aΔ5 and tbx5aΔ10. Ho-
mozygous and trans-heterozygous combinations of these new tbx5a alleles cause fully
penetrant loss of pectoral fins and heart defects including changes in cardiac marker
expression akin to hst mutants. Nonetheless, distinct from hst mutants, homozygous
and trans-heterozygous combinations of these tbx5a frameshift mutants do not readily
manifest the stretched hst heart phenotype. Our observation points out the importance
and value of comparing phenotypes from different classes of mutant alleles per gene.

Objective
Generation of new frameshift alleles for tbx5a in zebrafish with defined molecu-
lar lesions. Subsequent phenotypic analysis and comparison to previously reported
tbx5a-mutant phenotypes in zebrafish.

Introduction
The T-box transcription factor Tbx5 is expressed in the anterior lateral plate mesoderm
(ALPM) and contributes to cardiac and forelimb formation [1] [2] [3]. Mutations in the
human TBX5 gene cause Holt-Oram Syndrome (HOS) with concomitant heart and arm
malformations [4] [5] that Tbx5-mutant mice recapitulate [2] [3].
Zebrafish homozygous for the tbx5a allele heartstrings (hstm21, or short hst) and
morpholino-mediated tbx5a knockdown mimic HOS phenotypes with defects in heart
and pectoral fin formation [6] [7]. Most-prominently, hst embryos form a stretched
heart tube that inspired the mutant’s name. Nonetheless, while the molecular heart and
fin phenotypes are robust, the heartstrings phenotype is variable with penetrance and
expressivity linked to the genetic background [7].
The molecular lesion in hst is an ENU-induced stop codon in the second-last coding
exon; theoretically, hst mRNA can translate into a C-terminally truncated Tbx5a pro-
tein with residual or dominant-negative activity [5] [7] [8] [9]. Similarly, tbx5a mor-
pholino knockdown causes the heartstrings phenotype with variable penetrance [6] [7]
[10]. Here, using CRISPR-Cas9 we generated new mutant tbx5a alleles with frameshifts
in the first coding exon. Our alleles cause recessive phenotypes that recapitulate key
defects of hst mutants, but do not develop the classic heartstrings phenotype. Our obser-
vation underlines the importance of allele comparisons in the design and interpretation
of genome editing experiments.
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Figure Legend
New frameshift alleles in the first coding exon of zebrafish tbx5a recapitulate
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reported mutant phenotypes but fail to develop the heartstrings phenotype.
A) CRISPR-Cas9-mediated mutagenesis by NHEJ of the first coding exon in tbx5a. Gene
locus as per genome annotation Zv10 with two major isoforms that share the first cod-
ing exon, with red arrowhead showing location of sgRNA used for mutagenesis; or-
ange boxes mark coding exons (CDS), green boxes mark transcribed exons (mRNA).
B) CrispRVariants panel plot depiction of the isolated germline alleles. Top shows ge-
nomic reference, allele tbxΔ10 and tbxΔ5 shown below, resulting in out-of-frame deletions
that introduce frameshifts in the coding region. Black boxes over reference sequence
indicate sgRNA, smaller box the 5’-NGG-3’ PAM sequence, red line indicates the pre-
dicted Cas9-induced double-strand break position. Sequence shown inverse in accor-
dance with figure panel A. C-T) Comparison of heart and pectoral fin phenotypes from
tbx5amorpholino knockdown versus homozygous and trans-heterozygous allele combi-
nations of tbx5a frameshift alleles. Images show regions from 72 hpf zebrafish embryos
in the triple-transgenic reporter background RGB (lmo2:dsRED;drl:EGFP,myl7:AmCyan),
anterior to the left, scale bars mark 100 µm. C,D) Translation-blocking morpholino
(MO) injection against tbx5a causes the heartstrings phenotype with variable pene-
trance. Compared to wildtype controls (C) that form well-looped hearts and pectoral
fins (white arrowhead), morpholino-injected embryos (D) and miss pectoral fins (open
arrowhead) and 28% develop cardiac edema a stretched heart tube (asterisk). E-H) Lack
of heartstrings phenotypes resulting from recessive tbx5a frameshift alleles. Lateral
brightfield and fluorescence composite images, white asterisks depict pooling of ery-
throcytes due to inefficient circulation. Note how all allele combinations (F-G) result in
hearts with recognizable looping compared to morpholino injected embryos (D). I-L)
Dorsal view, revealing complete lack of pectoral fins in all allele combinations. M-P)
Ventral view with optical sections taken at the same Z-position from SPIM imaging
show in tbx5a frameshift mutants the inflated pericardial space surrounding the heart
and thinner myocardium, floating ventricles, and looping defects (N-P) compared to
wildtype (M). Q-T) Corresponding lateral view of maximum intensity projections from
panels (M-P) shown for blue channel (myl7:AmCyan, marking cardiomyocytes). U) Sta-
tistical representation of observed phenotypes shows Mendelian distribution, with no
unspecific phenotypes resulting from the mutagenesis or the genetic background. V,W)
mRNA in situ hybridization (ISH) for the cardiac marker versican a (vcana), numbers
indicate embryos in clutch without prior sorting for phenotypes; tbx5aΔ5 homozygotes
show expansion of vcana as reported for hstm21 mutants. X,Y) mRNA in situ hybridiza-
tion (ISH) for tbx5a shows the presence of tbx5a mRNA in wildtype (X) and in homozy-
gous tbx5aΔ5 embryos (Y).

Results & Discussion
To generate putative tbx5a null alleles in zebrafish, we employed Cas9 ribonucleopro-
tein complex (RNP)-mediated mutagenesis using our established sgRNA[tbx5ccA] that
targets the first coding exon (Fig. 1A) [11]. This sgRNA targets the coding sequence
in the first coding exon downstream of the conserved translation initiation codon [12].
We targeted the first exon to introduce frameshift and subsequent stop codons early
in the open reading frame to avoid potential translation of N-terminal Tbx5a protein
remnants that could retain function. Further indicating that targeting this region could
result in loss-of-function alleles, the corresponding amino acid sequence is highly con-
served between zebrafish and humans (indicating functional conservation) and human
HOS patients have been identified with frameshift-introducing nucleotide insertions at
similar positions within TBX5 [13].
Maximized mutagenesis using Cas9 RNPs with sgRNA[tbx5ccA] cause recogniz-
able tbx5a loss-of-function phenotypes in F0 crispants [11]. We injected the
sgRNA complexed with Cas9 protein as solubilized RNPs [11] at sub-optimal con-
centration to achieve viable mosaicism (see Methods for details) in the multicolor
Tg(lmo2:dsRED2;drl:EGFP;myl7:mCyan) reporter background, subsequently abbreviated
as RGB. In RGB embryos, dsRED2 labels endothelial, hematopoietic, and endocardial
progenitors (lmo2) in red [14], EGFP marks all lateral plate mesoderm lineages (drl)
including pectoral fins in green [15], and AmCyan reveals the differentiated cardiomy-
ocytes (myl7 ) in blue [16]; consequently, RGB enables in vivo imaging of all cardiovas-
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cular and additional LPM lineages over the first 3 days of development.
From F0 outcrosses that transmitted mutant tbx5a alleles, we genotyped adult F1
zebrafish for the presence of mutated tbx5a alleles by tail clipping, PCR, sequencing,
and CrispRVariants analysis [17]. From the recovered germline alleles, we kept het-
erozygous strains for the lesions c.21_25del and c.22_31del (hence forward abbreviated
as tbx5aΔ5 and tbx5aΔ10) (Fig. 1A, B). These alleles generate out-of-frame mutations
starting from base +21 or base +22, respectively, and result in premature stop codons
shortly after the conserved initiation codon.

We in-crossed adult F1 heterozygotes for tbx5aΔ5 and tbx5aΔ10 and inter-crossed par-
ents for each allele to assess F2 homozygous and trans-heterozygous embryos for de-
velopmental phenotypes at 3 dpf. We found that all combinations of the alleles resulted
in Mendelian ratios of heart defects (Fig. 1E-H,U) and concomitant, completely pen-
etrant loss of pectoral fins (Fig. 1I-L, U). The cardiac defects for the allele combina-
tions included: cardiac edema with blood accumulation at the inflow tract region (Fig.
1F,H, white asterisks), heart mis-looping (Fig. 1G), and misshapen atrial and ventric-
ular chambers (Fig. 1F-H, N-P, R-T), with n=49/306 for tbx5aΔ5, n=55/231 for tbx5aΔ10,
n=108/417 for tbx5aΔ5/Δ10 (Fig. 1U). Clutch values including mortality (from now on ab-
breviated as death rate D.R.) were: for tbx5aΔ5 clutch 1, n=29 D.R.=20.7%; clutch 2, n=144
D.R.=11.1%; clutch 3, n=133, D.R.=24.1%. For tbx5aΔ10 clutch 1, n=78 D.R.=7.7%; clutch 2,
n= 65, D.R.=12.3%; clutch 3, n=88, D.R.=0%. For tbx5aΔ5/Δ10 clutch 1, n=58, D.R.=22.4%;
clutch 2, n=170, D.R.=3.5%, clutch 3, n=147, D.R.=7.5%.
While cardiac defects were fully penetrant in homozygous and trans-heterozygous mu-
tants, the expressivity of the cardiac phenotype was highly variable, ranging from in-
flow tract defects (Fig. 1F) to mis-looped chambers (Fig. 1G). Live imaging using selec-
tive plane illumination microscopy (SPIM) allowed optical sectioning (Fig. 1M-P) and
imaging of the whole heart (Fig. 1Q-T, side view), revealing additional details of the
chamber defects. We detected atrium mis-positioning (Fig. 1N,O), freely floating and
rounded-up ventricles within the pericardial cavity (Fig. 1N-P, R-T), and thinner cardiac
walls (Fig. 1P) compared to wildtype or heterozygous siblings that develop a regularly
formed ventricle anchoredwithin the pericardium (Fig. 1M,Q). mRNA expression of ver-
sican a (vcana) in homozygous tbx5aΔ5 mutants was expanded in tbx5a-mutant hearts
(Fig. 1V,W). All these phenotypes are well-documented for both tbx5a morphants in
which tbx5a mRNA is downregulated via morpholino injection [7] [9] [10] [18] and in
embryos homozygous for the classic tbx5a allele hst [6] [7] [8].
Nonetheless, in contrast to the reported morpholino and hst mutant phenotypes, we
never detected the most-severe form of the hst phenotype consisting of a string-shaped
heart tube and a deformed head [7]. We readily observed this phenotype using
translation-blocking tbx5a morpholino injections (n=30/106) (Fig. 1D), in line with pre-
vious reports of variable expressivity [7] [19] [11]. The presence of the hst phenotype
itself has previously also been linked to the genetic background [7], suggesting that the
hst phenotype is a variation of the tbx5a loss-of-function phenotype. Taken together,
homozygous and trans-heterozygous combinations of our new tbx5a frameshift alleles
recapitulate morphological and molecular phenotypes of tbx5a morphants and the
classic hst mutant with exception of the heartstrings phenotype. This observation
suggests that either our frameshift alleles are not null and possibly hypomorphs, or
alternatively that the existing hst allele and morpholino injections result in hypomor-
phic or dominant-negative conditions arising from truncated residual protein or lower
protein concentration.

The introduction of CRISPR-Cas9 for genome editing has provided the zebrafish field
with an easily accessible tool for generating mutant alleles for any gene of choice.
Targeted mutagenesis using CRISPR-Cas9 requires careful assessment of targeted
candidate gene loci to generate loss-of-function alleles. In contrast to classic forward
genetic screens that by definition start from a mutant phenotype linked to a molecular
lesion [20], non-homologous end joining (NHEJ)-based mutagenesis of a candidate
locus can result in non-phenotypic lesions. Potential causes of the lack of phenotypes
in de novo generated mutants include i) translation from downstream start codons,
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leading to truncated protein products with retained functions that are difficult to assess
beforehand; ii) the unpredictable efficiency of nonsense-mediated mRNA decay (NMD)
activated in case of premature stop codons; iii) use of alternative, cryptic splice sites to
generate functional, translatable mRNA; iv) gene compensation caused by activation of
alternative pathways mitigating the phenotype severity. Compensatory mechanisms in
mutants have recently been reported in zebrafish for the egfl7 gene [21], and the role
of compensation in mutant phenotype expressivity and variability in a broader context
remains to be assessed.

Of note, the classic hst mutant still features detectable tbx5a mRNA [7], and we
also detect tbx5a transcript by mRNA ISH in tbx5aΔ5- and tbx5aΔ10-mutant embryos
(Fig. 1X,Y, and data not shown).The tbx5aΔ5 and tbx5aΔ10 lesions are situated in close
proximity to the tbx5a translation initiation codon; while several possibly initiating
ATGs are situated downstream and before the T-box, the amino acid sequence at
the N-terminus where our alleles are introduced show conservation from teleosts to
mammals (E.C., C.M., data not shown). In addition, frameshift mutations in similar
positions within human TBX5 have been recovered from HOS patients [22]. The full
penetrance of concomitant pectoral fin loss and cardiac defects further suggest that no
efficient alternative starting codon downstream of the two mutations provides a fully
compensating protein product, nor that tbx5b would functionally compensate for the
function of tbx5a. We do acknowledge the possibility that tbx5b could act redundant
or could compensate for the heartstrings phenotype, clarification of which will require
double mutants for both Tbx5-encoding genes in zebrafish.

We have generated two new frameshift alleles for tbx5a that recapitulate key phenotypes
of the published hst allele and of morpholino knockdown, with exception of the heart-
strings phenotype. While the frameshifts are predicted to form only short out-of-frame
proteins, the alleles cannot be conclusively verified as true null alleles. Altogether, our
observation underlines the value of analyzing several individual alleles of a candidate
gene to assess gene function.
Due to the unavailability of a Tbx5a-specific antibody or a genetic deletion of the
entire tbx5a locus, we cannot verify the absence of Tbx5a protein in our mutants
or if the tbx5aΔ5 and tbx5aΔ10 lesions are bona fide null alleles. Moreover, we did
not assess the possible redundant function of the tbx5a paralog tbx5b, which is sug-
gested to have a function in pectoral fin specification and heart development [8] [18] [9].

Generation of tbx5b mutants in the tbx5aΔ5 and tbx5aΔ10 background to discriminate the
possible contribution of tbx5b to the tbx5a null mutant phenotype. Further, complemen-
tation analysis with tbx5a alleles that feature bigger deletions are required to evaluate
if tbx5aΔ5 and tbx5aΔ10 are null alleles or hypomorphs.

Additional Information

Methods and Supplementary Material
Please see https://sciencematters.io/articles/201703000011.
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