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Abstract

Aims
The aim of this guide is to provide practical help for ecologists who 
analyze data from biodiversity–ecosystem functioning experiments. 
Our approach differs from others in the use of least squares-based 
linear models (LMs) together with restricted maximum likelihood-
based mixed models (MMs) for the analysis of hierarchical data. 
An original data set containing diameter and height of young trees 
grown in monocultures, 2- or 4-species mixtures under ambient 
light or shade is used as an example.

Methods
Starting with a simple LM, basic features of model fitting and the 
subsequent analysis of variance (ANOVA) for significance tests are 
summarized. From this, more complex models are developed. We 
use the statistical software R for model fitting and to demonstrate 
similarities and complementarities between LMs and MMs. The for-
mation of contrasts and the use of error (LMs) or random-effects 
(MMs) terms to account for hierarchical data structure in ANOVAs 
are explained.

Important Findings
Data from biodiversity experiments can be analyzed at the level of entire 
plant communities (plots) and plant individuals. The basic explanatory 
term is species composition, which can be divided into contrasts in 
many ways depending on specific biological hypotheses. Typically, 
these contrasts code for aspects of species richness or the presence 
of particular species. For significance tests in ANOVAs, contrast terms 
generally are compared with remaining variation of the explanatory 
terms from which they have been ‘carved out’. Once a final model has 
been selected, parameters (e.g. means or slopes for fixed-effects terms 
and variance components for error or random-effects terms) can be 
estimated to indicate the direction and size of effects.

Keywords: analysis of variance, BEF-China, contrasts, linear 
models, mixed models, non-orthogonality, repeated measures, 
variance components
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INTRODUCTION
In this article, we provide a guide for ecologists to analyze data 
from biodiversity–ecosystem functioning (BEF) experiments. 
We found that general textbooks or manuals are often too 
theoretical or technical to be of practical help. Furthermore, 
some of these guides suggest approaches such as maximum 
likelihood-based mixed models (MMs) or Bayesian analysis for 
BEF experiments without taking full account of the complex-
ity of hierarchical data structures. Many pitfalls can be avoided 
if such data are first inspected with least squares (LS)-based 
linear models (LMs) where user-specified tests of biologically 
relevant hypotheses have to be constructed explicitly by com-
paring model terms in summary analysis of variance (ANOVA) 

tables. We focus on ANOVA in both LMs and MMs because 
of its flexibility to test such hypotheses with contrast terms 
(Rosenthal and Rosnow 1985). We use an original data set as 
practical example illustrating the different steps that we dis-
cuss and that interested readers may want to develop further 
on their own. These data were obtained in a pilot experiment 
of the BEF-China project (Bruelheide et al. 2011, 2014). In this 
experiment, we combined biodiversity with light treatments 
and measured tree growth over time, as described below.

After an introduction to typical BEF experiments and to 
the example data set, a subset of plot-level data of a single 
time point will be used to introduce LMs and ANOVAs with 
a single error term, which can be used for nonhierarchical 
data sets. From this, more complex LMs and ANOVAs with 
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multiple error terms, applicable for hierarchical data sets, will 
be developed. We then show how such data sets can be ana-
lyzed by MMs, where the hierarchical structure is reflected 
by random-effects terms instead of multiple error terms. 
Under ‘Further model development’, we will focus on the use 
of contrasts in ANOVA, perhaps our most important recom-
mendation for the analysis of BEF experiments. Moving to 
the analysis of individual-level data, we will discuss repeated-
measures analyses and non-orthogonality. Finally, we list rec-
ommendations in the ‘Discussion’ and in a final table.

Several aspects of the analysis of BEF experiments could not 
be included in this article because of space constraints. These 
included simulations to study data-generating mechanisms, 
data transformations and the use of covariates in ANOVA. We 
recommend Zuur et al. (2010) and Zuur and Ieno (2016) as 
useful guides to some of these and other aspects of the statis-
tical analysis of ecological data. All analyses presented in this 
article can be repeated with the statistical software R (http://
www.r-project.org, 10 October 2016, date last accessed). The 
corresponding code together with the data themselves can be 
found at https://github.com/pascal-niklaus/jpe, 10 October 
2016, date last accessed, and in the Supplementary Data.

BEF EXPERIMENTS
General design of BEF experiments

Loss of biodiversity, in particular loss of species richness due 
to extinctions, is considered one of the major threats of global 
change affecting ecosystems (Rockström et al. 2009). To ana-
lyze this threat, it is necessary to use experiments, first because 
we want to find out how ecosystems may respond to contin-
ued future loss at a severity that has not yet occurred in the 
real world and second because naturally occurring variation 
in biodiversity among ecosystems is also present for reasons 
other than extinction. Thus, only if species richness is delib-
erately manipulated it can be treated as independent variable 
that causally explains variation in dependent variables such as 
biomass production (Schmid and Hector 2004). Such experi-
ments are commonly called biodiversity–ecosystem function-
ing or in short BEF experiments.

The characteristic feature of all BEF experiments is that dif-
ferent species (or varieties, genotypes etc.) are combined in 
varying densities in experimental communities. These com-
munities can be constructed synthetically, e.g. by sowing or 
planting individuals, or by removing individuals from exist-
ing communities. The design space of all BEF experiments 
can thus be drawn with a density axis for each species (vari-
ety, genotype etc.). The ecosystem function of interest, e.g. 
community productivity, can then be regarded as a function 
of the densities of all species and corresponding interaction 
terms between these densities. Obviously, filling this overall 
design space would result in a very large number of treat-
ments, already with only two species (e.g. see van Kleunen 
et al. 2006). Therefore, convenient subsections of the entire 
design space are used in typical BEF experiments.

In the case of the most commonly used substitutive designs, 
subsections of the design space are constrained in such a way 
that all treatments have the same total density of individu-
als at the start of the experiment. As a consequence, only the 
mixing ratio among species varies. This is desirable, because 
mixing ratios reflect variation in species evenness and in spe-
cies composition (if the density of some species is zero). While 
some substitutive designs such as the ‘simplex design’ (Kirwan 
et al. 2009) focus on varying evenness but not species composi-
tion, most designs used in larger BEF experiments only vary on 
in species composition (Balvanera et al. 2006). Only few BEF 
experiments use additive designs, where species composition 
is varied and total community density is proportional to the 
number of species, whose density is the same in monoculture 
and mixture. Not surprisingly, additive BEF experiments in the 
short term show significantly stronger species richness effects 
than substitutive BEF experiments, but at the expense that 
these might in part be caused by density (Balvanera et al. 2006).

The reason that most large BEF experiments focus on sub-
stitutive design and only manipulate species composition is 
that it is much easier to control species presence and absence 
than species density during the course of an experiment. In 
fact, although experimental communities are usually set up 
with initially equal numbers of individuals per species in mix-
ture, i.e. maximum evenness, skewed rank–abundance dis-
tributions often result with time due to differential survival 
and vegetative or sexual reproduction of species (Hector et al. 
2002). As a consequence, varying total density and species 
evenness, in addition to species composition, seems to have 
mainly short-term effects, as has been shown in a correspond-
ing 2-year grassland experiment by Schmitz et al. (2013).

Within the subsection of the design space of substitutive and 
additive experiments with initially equal mixing ratio (spe-
cies either present at a given initial density or absent), there 
are again a large number of further subsections that can be 
made according to the selection of species compositions, some 
of which are shown in supplementary Table S1. In principle, 
species compositions in all BEF experiments with different 
levels of species richness can be described by the combination 
of the presence/absence of the species in the pool from which 
the communities in the experiment are constructed. Designs 
differ in the way in which the set of all possible species combi-
nations is reduced to address specific questions and to achieve 
an economic way to implement the experiment.

Initial BEF experiments applied a single extinction scenario 
to a complete ecosystem; i.e. each level of species richness was 
represented by a single, but replicated, species composition 
(Naeem et  al. 1994; Niklaus et  al. 2001). In subsequent BEF 
experiments in grassland, several different, randomly selected 
species compositions were sown at each species richness level, 
concomitantly varying the number of plant functional groups 
(e.g. Hector et  al. 1999; Tilman et  al. 1996). Number of spe-
cies and functional group compositions were for the first time 
independently varied in the so-called Jena Experiment (Le 
Roux et al. 2013; Roscher et al. 2004). At the same site a further 
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experiment was added later that chose species compositions 
reflecting different levels of trait variation (Ebeling et al. 2014).  
With these experiments, BEF relationships could be generalized 
beyond the particular species pool investigated. More recently, 
BEF experiments have been set up with more systematically 
selected permutations of species compositions, e.g. ensuring that 
all species occur in communities at all richness levels or that all 
species compositions at lower richness levels also occur as sub-
sets of species compositions at gradually higher richness levels 
(Bruelheide et al. 2014). All these designs use either complete or 
random subsets of species compositions within the given con-
straints. However, there are also BEF experiments where species 
compositions are deliberately selected along non-random extinc-
tion scenarios (Bruelheide et al. 2014), attempting to mimic more 
realistic extinction drivers such as eutrophication (Schläpfer et al. 
2005). Typical features of BEF experiments are described in more 
detail in Schmid et al. (2002) and Bruelheide et al. (2014).

BEF experiments with initially equal mixing ratio have the 
advantage that at the analysis stage the focus can be on mod-
eling the influence of species presence and absence on ecosys-
tem functions, which is the focus of the present article. The 
more general approach of using species densities, mentioned at 
the beginning of this section, is practically never used and may 
be inappropriate if density effects are not linear. For example, 
Le Roux et al. (2013) found that the contribution of legumes 
to the studied soil functions could be best modeled by a term 
for legume presence and an additional term for sowing density 
of legumes, modulating the effect of their presence. Another 
possibility is to use the so-called realized densities and realized 
richness or diversity measures to analyze BEF experiments. We 
will not discuss this in the present article, because we focus on 
design variables and do this for the following reason. While it 
can be useful to add measured variables as explanatory covari-
ates to search for potential mechanisms underpinning effects of 
design variables, it also means that the advantages of a manipu-
lative experiment are given up in favor of a correlative observa-
tional study. This can be illustrated with the following thought 
experiment: two experimental communities with 16 and 4 spe-
cies are set up with replication. At the end of the experiment, all 
communities have 4 species due to extinctions in the 16-species 
communities. However, the effect of the initial species richness 
is still highly significant, because the surviving species in the 
16-species treatment make better 4-species realized communi-
ties than those of the 4-species treatment without extinctions. 
Obviously, this effect would be hidden if the realized species 
richness of four would be used as explanatory variable instead. 
This thought experiment also explains why design variables 
such as species richness are used in the analysis of ecosystem 
functions such as harvest yield, even if not all species of experi-
mental communities are included in the harvest sample.

A pilot experiment of BEF-China as working 
example

The pilot experiment of the BEF-China project was set up to 
compare the early growth of subtropical forest tree species 

under different environmental conditions, in particular dif-
ferent settings of intra- and interspecific competition. The 
broader objective of this study was to develop an understand-
ing of competitive interactions between species to later inter-
pret the effects occurring during the early establishment of 
subtropical forest communities in a larger long-term biodiver-
sity experiment of the BEF-China project (the ‘main experi-
ment’, described in Bruelheide et  al. 2014; Bu et  al. 2017; 
Hahn et  al. 2017; Li et  al. 2017; Peng et  al. 2017; Sun et al. 
2017). Special features of the presented pilot experiment are 
the use of three instead of only one species pool and the use 
of two environments (light and shade). The experiment could 
thus be considered as consisting of six BEF sub-experiments, 
each carried out with a different species pool or under differ-
ent environmental conditions.

Plots 1 × 1 m in size were planted with experimental com-
munities comprising 16 young trees arranged in a 4 × 4 grid. 
These communities were assembled using 12 common tree 
species of natural forests of the area, belonging to 3 functional 
groups, i.e. evergreen conifers, evergreen angiosperms and 
deciduous angiosperms. These 12 species were first grouped 
into three pools (X, Y and Z), each containing evergreen and 
deciduous functional groups (supplementary Table S2 in 
Supplementary Data). For each pool, we set up all monocul-
tures and 2-species mixtures and the 4-species mixture, yield-
ing 11 community compositions. Because the 3 pools did not 
overlap with respect to species, there were 33 distinct species 
compositions altogether. All species compositions were grown 
under full light and under shade (5% of full light), result-
ing in 66 treatment combinations. These were replicated in 4 
blocks, resulting in a total of 264 plots or 88 per species pool 
(Fig. 1). Seven plots were not correctly established. As a con-
sequence, pool Y had only 85 and pool Z only 84 plots.

Tree growth was monitored from April 2009 to September 
2010. Our hypothesis was that, on average, trees would grow 
better in plots with 4 than with 2 species and better in 2-species 
plots than in monoculture. We further expected slower growth 
and smaller biodiversity effects under shade than in full light. 
Growth was followed nondestructively through time by meas-
uring tree height and basal stem diameter (5 cm above ground). 
To obtain plot-level measures of ecosystem functioning, related 
to productivity, we summed the individual-level measures; 
dead individuals were included with zero value in these sums.

ANOVA FOR LM AND MM
Analysis of plot-level data using LMs and ANOVAs 
with single error terms

It is often convenient to start the analysis of BEF experi-
ments with a subset of data and a visual inspection of data 
plotted as a function of biodiversity, typically species richness. 
Figure  2 displays the plot-level data (n  =  88) of total basal 
area, 14 months after planting, of all communities assembled 
from species pool X. Visual inspection of the figure suggests 
that the total basal area per plot (ba, Courier font here and 
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in the subsequent occurrences indicates the use of a name in 
the statistics script) is larger in light than in shade (treatment 
light). Furthermore, there is little indication of species rich-
ness effects (fdiv, the f indicating that fdiv represents a 
factor with levels rather than a continuous variable), except 
that plots with the dominant species Eleocarpus decipiens tend 
to have a lower basal area the more other species they contain 
(filled symbols in Fig. 2). Furthermore, there is a large scat-
ter of values in particular among monocultures and 2-species 
mixtures; this may be due to differences among species com-
positions (com) and plots (plot) within species compositions. 
Because there is only one species composition at the highest 
diversity level, the scatter of values at this level should only be 
due to environmental differences among plots.

To test whether there is indeed systematic variation in the 
visualized plot-level data, a sequence of LMs, which account 
for this systematic variation, can be fitted using an LS approach, 
which minimizes nonsystematic variation. This nonsystem-
atic variation can be considered as random variation or noise, 
caused by various influences that cannot be controlled by the 
experimenter. The goal of the analysis is to find an LM that can 
assign a large part of the total variation in the data to system-
atic variation, leaving a small amount of unexplained random 
variation. The statistical model is formulated in such a way 
that a data value is a linear function of systematic effects and a 
residual, or error, pertaining to the particular value. Thus, the 

Figure 2:  total basal stem area per plot of surviving trees 14 months 
after planting in plots of species pool X. Left panel represents plots 
in light, right panel plots in shade. The four species Schima superba, 
Elaeocarpus decipiens, Castanea henryi and Quercus serrata were grown 
in four monocultures, all six possible 2-species combinations and 
the single 4-species combination. Plots containing Elaeocarpus decip-
iens have filled symbols; these have particularly large total basal 
stem area.

Figure 1:  layout of BEF experiment in Xingangshan, Jiangxi, China. a) Four blocks were marked in the field. Each block contained 66 plots of 
the experiment presented in this article (4 are enlarged to explain distances) and within each plot there were 16 planting positions for tree seed-
lings. Note that in addition to the experiment presented in this article, there were similar plots from other experiments randomly interspersed 
with the ones of this experiment. b) Principle of experiment showing the four monocultures, six 2-species mixtures and, below the bottom left 
corner, the 4-species mixture for a single species pool with species A, B, C and D. Note that the scheme does not show the random arrangement 
of plots and plant species within plots as used in the concrete planting of the experiment. 
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simplest model would assume that the dependent variable ba is 
only measurement error and does not exist at all, i.e. has zero 
mean value. However, more commonly the modeling process 
starts with the fitting of an overall mean, such that the errors 
are the differences between a data point and the overall mean. 
In this model, the unexplained random variation is the variance 
of the dependent variable, which is then referred to as the total 
variation, to be partitioned into systematic and (residual) ran-
dom variation by adding terms to the statistical model.

In a first analysis, the total variation in ba is partitioned 
into systematic variation due to light and diversity treatments 
and residual random variation, unexplained by these explan-
atory factors. The statistical model could be formulated as LM 
in the following way:

ba i jijk ijkm a b e= + + +

where m represents the overall mean, ai the effect of the i-th 
light treatment, bj the effect of the j-th diversity treatment and 
eijk the error or deviation of baijk from the value predicted by 
the previously fitted effects, i.e.:

e m a bijk ijk i j= + +( )ba –

There are alternative formulations for this LM where the over-
all mean is replaced, e.g. by the mean of the first group (i = 1 
and j = 1), but instead of writing out the LM with parameters 
as above, it is more convenient to only specify the terms con-
tributing to systematic variation. In the statistical software R 
(http://www.r-project.org), which will be used for all analysis 
presented in this article, this is done in the following way:

	 ba ~light+fdiv � (LM1)

If this LM1 is fitted with the LS approach (R-functions aov or 
lm), parameters for the effects of the terms light and fdiv 

will be estimated in such a way that the residual variation 
(residuals) will be minimized. The systematic variation 
explained by the two so-called ‘fixed-effects’ terms light 
and fdiv can be listed together with the residuals in an 
ANOVA table (Table 1a). The residuals represent the so-
called ‘random-effects’ term. If there are no other random-
effects terms present, all fixed-effects terms can be compared 
with the residuals using variance ratios as explained below. 
LMs or ANOVAs where all random variation is contained in 
the residuals are called nonhierarchical, in contrast to 
hierarchical LMs, MMs and ANOVAs, which are characterized 
by more than one random-effects term and will be discussed 
further below.

The first column in Table 1a lists the explanatory terms or 
‘sources of variation’ in the dependent variable ba. We have 
added an additional row for the total variation in ba. The 
second column (Df) lists the degrees of freedom. Degrees of 
freedom indicate the number of ‘independent pieces of infor-
mation’ contained in a data set or accounted for by a model 
term. The Dfs in Table 1a are one less than the number of 
different levels, or groups, specified by the explanatory terms 
(2–1 for light and 3–1 for fdiv). Although Dfs are typically 
one less than the number of levels of an explanatory term, they 
can be further reduced for terms where some of the effects for 
which they encode have already been ‘eliminated’ by other 
terms (e.g. if a contrast between groups of levels, say mono-
cultures vs. mixtures in the case of fdiv, is fitted first—see 
below). The Df of the residuals in Table 1a is what remains 
after fitting the overall mean and the explanatory terms, i.e. 
88–1–1–2 = 84. Here, the overall mean is fitted implicitly but 
omitted from the ANOVA output unless this is specifically 
requested (summary.aov(m, intercept=TRUE)). Note 
that in the output from R, the term for the overall mean in 
the ANOVA will be called ‘intercept’.

Table 1:  ANOVA table (a) and variance components (b) for LM1 in the text, modeling plot-level basal area (ba) as a function of the 
fixed-effects terms light (control vs. shade) and fdiv (monocultures, 2-species mixtures, 4-species mixture)

a)

Source Df SS %SS MS EMS F P

  light 1 2824 29.0 2824 44 σ2
light+σ2

res. 34.44 < 0.001

  fdiv 2 39 0.4 20 16.94 σ2
fdiv+σ2

res. 0.24  0.790

  residuals 84 6888 70.6 82 σ2
res.

  total 87 9751 100.0 11

b)

  VClight (estimate of σ2
light) = (MSlight − MSres.)/44 = 62.32

  VCfdiv (estimate of σ2
fdiv) = (MSfdiv − MSres.)/16.94 = –3.66

  VCres. (estimate of σ2
res.) = MSres. = 82.00

Abbreviations: Df = degrees of freedom, SS =  sum of squares, %SS = SS in percent of total (corresponding to increments in multiple R2), 
MS = mean squares (SS/Df), EMS = expected mean squares (linear combination of variance components), F = variance ratio (MS of term/MS of 
residuals), P = probability of type-I error, VC = variance component (estimated from the MS using the equations given in the EMS column). 
LM1 was fitted with the function aov. In this nonhierarchical analysis there is only one error term, i.e. the residuals. Note that the row 
‘total’ and the columns %SS and EMS in a) and all items shown in b) are not part of the standard output obtained after the aov function in R.

http://www.r-project.org
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The third column in Table 1a contains the sum of squares 
(SSs) contributed by a term to the total sum of squared devia-
tions of observations from the overall mean. That is, in an 
initial model in which only the overall mean is fitted, the total 
SS is the same as the SS of the residuals. With each row 
added to the ANOVA, the latter decreases by the amount listed 
as SS for the added term. In simple cases, the SS of a term 
can also be viewed as the sum of squared deviations of the 
group means of the term from the overall mean, but in cases 
with the so-called non-orthogonal terms (see below) this no 
longer holds. Often it is useful to add a column in which SSs 
are expressed as percentage of the total (fourth column in 
Table 1a; not part of the standard output of R), because these 
values can be used as measures of effect sizes (Cohen 2002; 
Rosenthal and Rosnow 1985). Furthermore, because terms 
are sequentially fitted, starting with the first row and mov-
ing down the ANOVA table, %SS values represent increments 
in multiple R2·100%. For LM1, the multiple R2 is 0.294 (= 
(29.0 + 0.4)/100); in other words, the systematic variation 
explained by LM1 is 29.4% of the total variation in ba.

Although SSs are additive and can be used to calculate 
effects sizes and ‘explained’ variation, they are not corrected 
for their Dfs (which are also additive). To obtain variances, 
the SSs are divided by their Dfs. These mean squares (MSs), 
which are no longer additive (i.e. they do not add up to the 
MS of the total), are listed in the fifth column in Table 1a. 
The MSs are used to derive variance ratios for significance 
tests (F values in the seventh column of Table 1a). The MS 
for a certain term will exceed the MS of the denominator 
term if the first term explains more variance than one would 
expect by chance. That is, an F value >> 1 indicates a statisti-
cally significant effect of the term, which leads to a difference 
between the two variances that are used in the calculation of 
the F value. The last column in Table 1a provides the P values 
for the significance tests, which are based on the F values and 
the Dfs from the nominator and denominator MSs used to 
calculate the F values. With P < 0.001, the corresponding F 
value would only be expected in < 1 out of 1000 replications 
of an experiment if there was no ‘true’ effect. Therefore, the 
null hypothesis of no effect can be rejected. In the exam-
ple of Table 1a, the significant effect of light indicates that 
ba was larger in light than in shade, whereas the nonsig-
nificant effect of fdiv confirms the suspicion from the visual 
inspection that different levels of fdiv had similar ba. In 
fact, F < 1 for fdiv even suggests that on average two com-
munities randomly selected from different levels would be 
more similar than two communities randomly selected from 
the same level.

In nonhierarchical ANOVA, with residuals as the only 
random-effects term, the denominator of the F values is 
always the MS of the residuals. However, with the so-
called hierarchical data the MS of the residuals does not 
provide the correct denominator for all terms to be tested. 
To construct appropriate F values, it is necessary to know 
which variance components (VCs) are contained in an MS, and 

therefore, we introduce the important concept of expected 
mean squares (EMSs) here and add them in a separate col-
umn between MSs and F values to Table  1a. It has been 
shown that EMSs can be considered as linear combinations 
of VCs (e.g. see Green and Tukey 1960) and rules to calculate 
coefficients of VCs are, e.g., given in Snedecor and Cochran 
(1989). However, to find out which VCs are contained in 
an EMS requires both statistical and biological understand-
ing of the data and can vary with the questions being asked 
(Hector et al. 2011; Nelder 1994; Nelder and Lane 1995; Searle 
1971). The EMS of the residuals contains one VC only, 
σ2

res., which measures the residual random variance in the 
data that cannot be explained by the model. The EMS of each 
other term equals σ2

res plus a VC that accounts for the differ-
ences between groups, here between light treatments (σ2

light) 
or between diversity treatments (σ2

fdiv). These variance com-
ponents are multiplied with coefficients reflecting the number 
of replicates in each treatment group. In the case of unequal 
group sizes, a good approximation is their harmonic mean 
(Snedecor and Cochran 1989). For fdiv, this is 16.94 = 3/(1/
(4 × 8)+1/(6 × 8) + 1/8), where the different components in 
the dominator indicate the number of replicates for monocul-
tures (4 × 8 = 4 species × 2 light levels × 4 blocks), 2-species 
mixtures (6 × 8 = 6 2-species compositions × 2 light levels × 4 
blocks) and the 4-species mixture (8 = 1 species composition 
× 2 light levels × 4 blocks).

Given the EMS equations in Table 1a, it becomes clear that 
F values are always calculated in such a way that the two 
variances to be compared only differ in one VC. Therefore, F 
> 1 indicates that the additional VC in the EMS of the nomi-
nator is >0. That F  < 1 for fdiv in the example shows an 
important specific case where the corresponding estimate for 
σ2

fdiv is negative (Table 1b). Values of F < 1 always indicate 
negative VCs. Although variances are never negative, VCs as 
components of variances need not be constrained to positive 
values (Nelder 1977). Nevertheless, in MMs using maximum 
likelihood (ML) or restricted/residual maximum likelihood 
(REML) methods, negative VCs are often not allowed and 
therefore restricted to zero or very small positive values in the 
fitting process. This can be dangerous because negative VCs 
can indicate that the EMS in the denominator contains more 
VCs than specified in the EMS, i.e. that the residual ‘noise’ is 
not just random but contains systematic components or cor-
related data. Negative VCs are often found when explanatory 
terms that are not included in the model contribute to the 
MS of the residuals but not to that of the tested term. (For 
example, this commonly occurs with plot residuals in ANOVAs 
for hierarchical data from split-plot experiments, when the 
split-plot treatment is omitted from an LM or MM.) As long 
as a final model has not been found, we recommend to allow 
values of F < 1 and VCs < 0. Not doing so, which is particularly 
tempting in MMs, can lead to F tests that are too liberal (see 
below: section ‘Individual-level data and repeated-measures 
analyses’). Beyond guiding the appropriate construction of F 
values for significance tests in ANOVA, VCs can also be used 
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as an alternative to %SSs for measuring the size of effects 
of explanatory terms (Hector et al. 2011). This measure gives 
more importance to terms with fewer Dfs than is the case for 
%SSs; thus the effect of light is almost as large as that of the 
residuals when measured in terms of VCs, but less than 
half of that of the residuals when measured in terms of 
SSs (Table 1).

The ANOVA table of LM1 contains information about SSs, 
MSs, F values, P values and VCs. Another goal of fitting LMs 
is to obtain parameter estimates, in the present case, group 
means and their standard errors or differences between 
groups and standard errors of these differences. Because these 
estimates reflect the fitted model and the significance tests 
derived from it, these estimates are generally preferred over 
means and standard errors calculated form the raw data. In 
the case of a model with orthogonal treatments, the LS means 
are equal to the raw means. However, the standard errors cal-
culated during the model fit are normally different from those 
calculated directly from the data because the model assumes 
that the true variation is the same for all measures and thus 
standard errors of estimates can be calculated from the stand-
ard deviation of the residuals, which is the square root 
of the MS of the residuals or s. The standard error of a 
group mean equals s/√n, where n is the number of data points 
in the group. If two groups have the same size, the standard 
error of the difference between them is simply the standard 
error of the group means multiplied by √2. Parameter esti-
mates can be obtained with the R-function summary.lm. 
How estimated parameters are combined to describe the mod-
eled data depends on how the model matrix relating these 
to the data is constructed. By default aov uses the so-called 
‘treatment contrasts’ in which the first group (in alphabetical 
order) is given as Intercept; the additional parameters esti-
mate the other group means as difference to the first group 
(which type of contrast coding is used can be changed using 
options(contrasts=…)).

Analysis of plot-level data using LMs and 
ANOVAs with multiple error terms (hierarchical 
models)

The above LM1 did not contain a term for the different spe-
cies compositions (com), and the associated variance was 
thus included in the residuals. Including com leads to a 
hierarchical statistical model with multiple random-effects or 
error terms. If such models are analyzed as LMs, it is useful 
to assemble the error terms in a so-called error model (Payne 
et al. 1993):

ba ~com +light×com +plot

This model is comprehensive, because it fits a mean for each 
of the 11 levels of com, for each of the 22 combinations of 
light × com (the interaction modeling the combination of 
the 2 light treatments with the 11 species compositions) and 
for each of the 88 plots. Fitting this model leaves no residu-
als because these are fully captured by the term plot. To 

obtain significance tests (F- and P values), plot thus has to 
be omitted:

	 ba ~com +light×com � (LM2)

Note that residuals now only has Df  =  66 (Table  2a), 
because Df = 10 have already been consumed by com and 
Df = 11 by light × com (if com would have been omitted, 
light × com would have Df = 21). In the ANOVA (Table 2a), 
these two explanatory terms are treated as fixed-effects terms 
and tested ‘against’ residuals. For com, this is not appro-
priate because its EMS has two VCs more than residuals. It 
thus remains unclear whether the significance of com implies 
that VCcom or VClight × com or both are >0. A corrected F value 
for com could be obtained by dividing MScom by MSlight × com.

The error model LM2 includes the systematic variation previ-
ously explained by LM1, which is also called treatment model 
(Payne et al. 1993). This is because fdiv is included in com and 
light is included in light × com (as is light × com, but we 
do not consider this yet). Here, the terms of the treatment model 
represent fixed-effects contrasts that can be ‘carved out’ from 
the corresponding terms of the error model. Note that these 
error terms correspond to random-effects terms in the MMs dis-
cussed further below. Using LMs for the analysis of hierarchical 
data requires combining treatment and error models, i.e. LM1 
and LM2, respectively, in a new LM3, where all terms are fitted 
sequentially, making sure that contrasts are always fitted before 
the terms from which they have been carved out:

	 ba ~light+fdiv+com +light×com � (LM3)

From the EMS inserted in the ANOVA (Table 2c), VCs can be 
calculated for explanatory terms (Table 2d). Comparing the VCs 
in Table 2b and d shows that VClight × com has decreased in LM3 
because it no longer contains the very large fixed effects of light. 
In contrast, VCcom has increased because MSlight × com, which is 
used in the calculation of VCcom, has decreased from 297 to 45 
(Tables 2a and c, respectively). VCfdiv is still negative although 
MSfdiv is now slightly larger than MSres. (Table 2c). However, to 
construct appropriate significance tests, F- and P values must be 
calculated with those error terms in the denominator that differ 
by only one VC from the tested terms. These corrected F values 
test whether the respective VCs are >0 (Table 2c): Flight = MSlight/
MSlight × com, Ffdiv = MSfdiv/MScom and Fcom = MScom/MSlight × com. 
The new ANOVA in Table 2c confirms that ba is significantly 
larger in plots with full light than under shade (light) and 
that the differences between the three diversity levels are not 
statistically significant (fdiv). However, there are significant 
differences among particular species compositions within diver-
sity levels (significant effects of com)—against which the differ-
ences between diversity levels are tested—and among particular 
species compositions in their response to shading (interaction 
light × com). This significant interaction, like all 2-way inter-
actions, can also be biologically interpreted in a second way, 
namely that differences between species compositions are not 
the same in full light and under shade.
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The point that the fixed-effects term fdiv should be tested 
against the remaining variation among species compositions 
within diversity levels (com appearing after fdiv in the model 
formula) is a specialty in the analysis of BEF experiments 
(Schmid et al. 2002). Biologically it can be justified because spe-
cies richness is a property emerging from the specific composi-
tion of a community, i.e. community composition is the unit of 
replication for species richness, thus representing an additional 
hierarchical level in the ANOVA. Variation between plots of the 
same composition thus reflects variation unrelated to factors 
that ‘generate’ species richness. A true species richness effect 
will be indicated by a difference between two randomly chosen 
species compositions of different levels of species richness that 
on average is larger than a difference between two randomly 
chosen species compositions of a single level. Statistically it can 
be justified if we consider fdiv a fixed-effects and com an 
error or, in MM terminology, a random-effects term. In this 
case, the rule according to Snedecor and Cochran (1989) is 
that the fixed-effects term includes VCs of all random-effects 
terms nested within it, i.e. the EMS of fdiv includes σ2

com 

(Table 2c). The term com is nested within fdiv, which in R can 
be expressed in short using the nesting operator ‘/’:

fdiv/com fdiv+fdiv:com⇔

However, because com is coded with different values through-
out the levels of fdiv, the following formulae are equivalent 
(Wilkinson and Rogers 1973):

fdiv/com fdiv+fdiv:com fdiv+com⇔ ⇔

If com would be considered a fixed-effects term, then the EMS 
of fdiv would not include a VCcom and as a consequence 
MSfdiv should not be compared with MScom in the F-test. We 
further elaborate this point in the following section.

Which terms belong to the treatment and which 
to the error model?

There are no strict rules as to whether a term should be 
assigned to the treatment or the error model or, in the ter-
minology of MMs, whether a term should be considered as 

Table 2:  ANOVA tables (a, c) and variance components (b, d) for LM2 and LM3 in the text, modeling plot-level basal area (ba)

Df SS MS EMS F P

a)

  com 10 5242 524 8 σ2
com + 4 σ2

light × com + σ2
res. 27.9 < 0.001

  light × com 11 3270 297 4 σ2
light × com + σ2

res. 15.8 < 0.001

  residuals 66 1239 19 σ2
res.

b)

  VCcom = (MScom − MSlight × com)/8 = 28.38

  VClight × com = (MSlight × com − MSres.)/4 = 69.50

  VCres. = (VCplot =) MSres. = (MSplot =) 19.00

c)

Df SS MS EMS F P

  light 1 2824 2824 44 σ2
light + 4 σ2

light × com + σ2
res. 62.756 <0.001

  fdiv 2 39 20 16.94 σ2
fdiv + 8 σ2

com + 4 σ2
light × com +σ2

res. 0.031 0.970

  com 8 5202 650 8 σ2
com + 4 σ2

light × com +σ2
res. 14.444 < 0.001

  light × com 10 447 45 4 σ2
light × com + σ2

res. 2.368  0.018

  residuals 66 1239 19 σ2
res.

d)

  VClight = (MSlight − MSlight × com)/44 = 63.2

  VCfdiv = (MSfdiv − MScom)/16.94 = −37.2

  VCcom = (MScom − MSlight × com)/8 = 75.6

  VClight × com = (MSlight × com − MSres.)/4 = 6.5

  VCres. = (σ2
plot =) MSres. = (MSplot =) 19.0

These LMs were fitted with the function aov. In contrast to Table 1 these are hierarchical analyses with multiple error terms, i.e. com (species 
composition, 11 groups), light × com (interaction term, 22 groups) and residuals. F- and P-values in c) are recalculated using appropriate 
error terms, i.e. com for fdiv, and light × com for light and com. The corrected F values form ratios of MS in such a way that the EMS differ 
in a single VC. See text and legend to Table 1 for further explanations.
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fixed- or random-effects term. Sometimes both could reason-
ably be justified. For example, if inferences about diversity 
effects are to be made about a larger statistical population 
such as all possible species compositions that could be assem-
bled from a regional species pool, then the corresponding 
term com, whose levels represent a random sample of these, 
needs to be treated as error or random-effects term in LMs 
or MMs, respectively, and com used as unit of replication for 
fdiv. If, on the other hand, inferences about diversity effects 
are restricted to the particular species compositions investi-
gated, then com can be treated as a fixed-effects term and 
residuals (= plot) be used as unit of replication for fdiv. 
However, in this second case, inferences cannot be general-
ized beyond the investigated set of species compositions. For 
fixed-effects terms, we are interested in the individual group 
means (e.g. for monocultures, 2-species mixtures and 4-spe-
cies mixtures) or their differences (e.g. between light vs. 
shade means). For an error or random-effects term, how-
ever, we are interested in the VC, because we consider the 
different levels or groups as a random sample out of many 
more groups that could have been selected and focus on their 
degree of variation rather than on specific levels. Green and 
Tukey (1960) provide a simple rule of thumb: the levels of a 
fixed-effects term represent ‘all out of few’ and the levels of 
an error or random-effects term represent ‘few out of many’, 
where the second ‘few’ is larger than the first.

For the ANOVA of a model with multiple error terms, 
the basic aov (and lm) function has its limits because by 
default all explanatory fixed-effects terms are tested against 
the residuals, which is the only random-effects term. As 
shown above, it is nevertheless possible to calculate VCs, an 
item typically assigned to random-effects terms, and to ‘man-
ually’ calculate appropriate F values at multiple error strata.

Often, F values for error or random-effects terms are not 
shown in ANOVA tables, because the significance of VC > 0 
for these terms is of little interest (but note their use as meas-
ures of effect sizes by Hector et al. (2011) mentioned earlier). 
Nevertheless, our suggestion is to list random-effects terms in 
the same way as fixed-effects terms or to present their VCs in 
a second part of a table as shown in Tables 1 and 2. First, this 
allows others to check which error or random-effects terms 
have been included in a model and how much they contrib-
uted to hierarchical structure. Second, these terms can have 
biological meaning such as in the case of com, where a sig-
nificantly positive VC can be interpreted as significant varia-
tion among species compositions. It may then be reasonable 
to look for further fixed-effects contrasts that could possibly 
be carved out from com, e.g. contrasts for the presence vs. 
absence of particular species in an experimental community 
(see below).

Multiple error terms can be accommodated with an exten-
sion of the model formula syntax available in aov, which 
allows to add error strata in Error(…):

aov(ba ~light+fdiv+Error(com+light:com))

We could also write +Error(com/light), which would 
expand to Error(com + light:com). The function sum-
mary yields separate ANOVA tables for each error stratum; 
this is a very powerful aspect of the LM approach to derive 
ANOVA tables (Gelman 2005). A  specialty of this approach 
is that fixed-effects terms will be tested in more than one 
error stratum, if they are not orthogonal to these (e.g. due 
to missing values, see below). These multiple tests will con-
sume extra Dfs, which will lead to failure if not enough Dfs 
are available in the corresponding stratum.

Analysis of plot-level data using MMs and 
ANOVAs (hierarchical models)

Whereas in LMs all VCs are calculated via the estimation 
of parameters for every level of their explanatory terms, in 
MMs, the VCs for random-effects terms are directly estimated 
from the data using ML-based methods. This is computation-
ally much faster because only one instead of many param-
eters needs to be estimated per term. Of course, subsequent 
significance testing using ANOVA still has to respect the fact 
that there are many levels for random-effects terms and 
therefore Dfs are adjusted accordingly, which is referred to as 
the REML method (Butler et al. 2009). Because MMs estimate 
the influence of different explanatory terms differently, i.e. 
via the estimation of multiple parameters (one for each level) 
for fixed-effects terms and single variance parameters for ran-
dom-effects terms, they are called thus, i.e. MMs. They have 
the disadvantage that no contributions to the total SS can be 
calculated for random-effects terms and thus these cannot be 
listed in the same way as fixed-effects terms in a comprehen-
sive ANOVA table. However, an advantage of MMs is that the 
direct estimation of variances for random-effects terms natu-
rally accounts for unequal sample sizes of different groups. In 
addition, in MMs, the treatment model with the fixed-effects 
terms can be written separately from the error model with the 
random-effects terms and thus the sequence of fitting only 
matters for the fixed-effects terms.

In R, MMs can be fitted using the functions lme (library 
nlme) or lmer (library lme4): 

	

lme ba ~light+fdiv,random = ~1|com/light

lmer(ba ~light+fdiv+

( )
11|com/light( ) �(MM3)

ANOVA tables can be obtained by applying the function 
anova, but in the case of lmer, P values are only produced 
if the R-library lmerTest has been loaded first (Table 3a). 
VCs (in lme the corresponding standard deviations, i.e. √VC) 
are obtained by applying the function summary. The above 
MMs fit the same statistical model as LM3, but the results 
are not exactly the same (compare Tables 2c and d with 
Table 3a) because of the different ways of parameter estima-
tion. Furthermore, lme and lmer do not allow VCs < 0, so 
that their estimates become zero or near-zero. Fortunately, 
this is not the case in MM3, because no VCs are calculated 



100� Journal of Plant Ecology

for fixed-effects terms. Nevertheless, this problem requires 
particular attention, because VCs ‘bound’ to zero indicate 
that the variance structure implied by the model does not fit 
the data, which may lead to too liberal or too conservative 
significance tests, depending on the hierarchical level consid-
ered. Whether the tests are too liberal or too conservative can 
only be detected if a better model is found, in which none of 
the VCs is bound yet all fixed-effects terms have correspond-
ing random-effects terms. For example, in the case of LM3, 
now replaced by MM3, the random-effects term com must 
be included to obtain a correct test for the fixed-effects term 
fdiv, because fdiv is a contrast of com. Thus, if com would 
be bound, the modeling process would have to be continued 
until this ‘bounding’ can be removed. If this is not possible, 
one could use special functions such as asreml (provided 
by the commercially available ASReml; Gilmour et al. 2009), 
which does not constrain variance components to positive 
values (see example below and shown in Table 5b). An alter-
native solution is to use the LM instead of the MM approach.

In contrast, advantages of the MM approach are not only 
the better handling of unequal group sizes but also that stand-
ard errors of parameter estimates for fixed effects (Table 3b) 
are corrected for the hierarchical structure of the data, speci-
fied by the random-effects terms. Furthermore, MMs are 
generally easier to specify than LMs, but this can sometimes 
also be a disadvantage because it is also easier to specify an 
inappropriate MM than an inappropriate LM. Finally, LMs are 
usually easier to be fitted in R, because they use LS rather 
than ML/REML methods. As a consequence, we recommend 
to beginning the analysis of hierarchical data from BEF exper-
iments with LMs and moving to MMs when the relevant 

explanatory terms contributing to variation in the dependent 
variable have been identified.

In addition to LS and ML/REML methods, hierarchical mod-
els can also be fitted with Bayesian methods (Hector et al. 2011; 
Ogle and Barber 2008; Qian and Shen 2007; Zuur and Ieno 
2016). We demonstrate this in the supplementary Appendix 
S3. Bayesian methods directly estimate the parameters of the 
fixed-effects terms and the VCs of the random-effects terms 
together with credibility intervals (CrI) that respect the hier-
archical structure of the data, if this is properly specified. The 
CrIs can be used instead of P values to check whether param-
eter estimates or VCs deviate from zero. In Bayesian analy-
sis, the model is often specified with directed acyclic graphs 
(Fig. 3a; Clark and Gelfand 2006). Similar graphs can also be 
applied to develop LMs and MMs (Fig. 3b); and we will pro-
vide further examples of this in Fig. 4. Graphical representa-
tions help to better understand complex models because they 
visualize the hierarchical structure of contrasts that can be 
developed by starting with a complete model that specifies a 
mean for each individual data point (see below).

FURTHER MODEL DEVELOPMENT
Splitting up variances by making contrasts

The basic concept of ANOVA is the splitting of variances or 
more exactly SSs. In the example above with the plot-level 
data of species pool X, the total SS of Df = 87 can be split into 
an SS of Df = 21 for the 22 combinations of light × com 
and an SS of Df  =  66 for the residuals. The former can 
further be split into contrasts in many possible ways, in the 
most extreme case into 21 contrasts of Df = 1. Well-chosen 

Table 3:  ANOVA table and variance components (a) and corresponding parameter estimates with standard errors (SE; b) for MM3 in the 
text, modeling plot-level basal area (ba)

a)

  Source SS MS Df denDf F P

    light 1186.5 1186.5 1 10 63.22 <0.001

    fdiv 1.1 0.6 2 8 0.03 0.970

  Variance components

    VCcom 75.71

    VClight × com 6.47

    VCres. 18.77

b)

  Parameters Estimate SE

  Intercept (light, monocultures) 19.19 4.56

  Shade (shade–light) −11.33 1.42

  Diversity 2 (2-sp. mixtures–monocultures) 1.43 5.82

  Diversity 4 (4-sp. mixtures–monocultures) 0.72 10.08

MM3 was fitted with the function lmer and parameter estimates were obtained with the function summary. The column ‘denDf’ in a) lists the 
denominator Df for the F value; this can be compared with the Df of the term used as error for the calculation of the corresponding F value in 
ANOVAs using LMs (here Table 2c). See legend to Table 1 for further explanations.
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Figure 3:  a) Directed acyclic graph for the Bayesian approach to analyze the example data of Fig. 2. The horizontal and vertical arrows indicate 
how different terms (rectangles) and difference (d), mean (m) or precision (τ) parameters (circles) affect each other and the dependent variable 
ba. The 88 values of the dependent variable are predicted from the means (mLxC) of the 2 light treatments ∙ 11 species composition combinations. 
The mLxC are predicted form the means (mC) of the 11 species compositions and the effects of the light treatments. The mC are predicted from the 
intercept (m, to indicate that this is comparable to the overall mean) and the effects of the diversity treatments. ba, mLxC and mC have associated 
error variation which is taken from normal distributions with mean zero and the square root of the corresponding VCs, indicated by the sub-
scripted σ values in the equations next to the circles with equally subscripted τ values. These τ values are called precision parameters and are the 
reciprocals of the VCs. b) Simplified graph which shows the same model structure as a). This type of graph is particularly well suited to understand 
model development with LM approaches such as implemented in the R-functions aov and lm. Starting with a single explanatory term with a dif-
ferent level for each light treatment-by-species composition combination (light × com) one could form contrasts for the light and com terms 
and then furthermore a fdiv-contrast for the com term, in R-syntax, after forming LxC <– factor(paste(light,com)): ba ~ LxC ⇔ ba 
~ light + com + LxC ⇔ ba ~ light + fdiv + com + LxC ⇔ LM3 in the text. In these models, the term fdiv can not be put after 
com and the terms light and com can not be put after LxC (contrast terms always precede the terms from which they have been carved out).

Figure 4:  continuing the model development for the example data of Fig. 2 with the approach introduced in Fig. 3b. a)–c) are models with the 
same residual variance but show different ways of forming contrasts from the two random terms (in italics). Terms pointing at another term 
are contrasts of that term and must precede the latter in the model formulae listed below the graphs. Otherwise, terms can appear in different 
order but if they are correlated, i.e. non-orthogonal, the first term explains both, variation due purely to itself and due to the correlated action 
of the two terms (i.e. ‘ignoring’ the second term), whereas the second term only explains variation due purely to itself (i.e. after ‘eliminating’ 
the variation due to the first term). See text for further explanations.
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contrasts of Df = 1 are particularly useful, because they make 
focused comparisons and test the most parsimonious hypoth-
eses (Rosenthal and Rosnow 1985).

Once a list of contrasts has been set up and conveniently 
coded, those that still have a large Df and are considered as 
random-effects terms can be moved to the error model. The 
model-building process can thus be highly flexible and include 
combining SSs again after a splitting process that has gone too 
far and led to too many terms that explain only little varia-
tion (%SS). Typical for BEF experiments is that, in the process 
of splitting, fixed-effects terms can be carved out as contrasts 
from random-effects terms, i.e. ‘SS-material’ can be moved 
from the error to the treatment model or, in other words, ran-
dom variation can be moved to systematic variation, which 
is the main goal of all statistical modeling. Nevertheless, the 
opposite is also possible, i.e. that in the process of combin-
ing SSs, fixed-effects terms are omitted and thus lumped with 
random-effects terms (including residuals) and moved from 
the treatment to the error model or, in other words, system-
atic variation is moved back to random variation.

Typical contrasts of species compositions can address 
important biological questions in BEF experiments (Fig.  4). 
Often, blocking terms are also included in these experiments; 
they generally are unrelated, i.e. fully orthogonal, to the 
treatment-related explanatory terms and serve only the pur-
pose to reduce the residual variance. In the examples shown 
in Fig.  4, block is fitted first in the models to remove its 
potential contributions to the variation explained by other 
terms; a situation that can arise if orthogonality is lost, e.g. 
due to missing values. The problem of non-orthogonality 
will be discussed in detail further below. In brief, whenever 
two fixed-effects terms A  and B are fitted in sequence and 
correlated (non-orthogonal), SSA will contain contributions 
from B, whereas SSB will not contain any contributions from 
A because these have already been explained. A is thus fitted 
‘ignoring’ B, whereas B is fitted ‘eliminating’ A (Hector et al. 
2010; McCullagh and Nelder 1989). Because one is gener-
ally not interested in variation among blocks, it is not critical 
to ignore that block may contain variation contributed by 
terms succeeding it in the fitting process. However, it is crucial 
that these later terms do not contain contributions of the vari-
ation among blocks, therefore this variation is eliminated by 
fitting block first. In MMs, terms related to blocking can be 
fitted either as fixed- or as random-effects term. We generally 
prefer to fit them as fixed effects because (i) their number is 
usually too low to reliably estimate a variance component and 
(ii) blocks typically do not fulfill the requirement of a random 
sample with normally distributed effects because they often 
are systematically arranged in a linear sequence. Indeed, it 
can even be useful to make contrasts for blocking terms such 
as linear or quadratic spatial gradients (e.g. see Le Roux et al. 
2013), especially if these explain a large amount of the varia-
tion contained in the blocking terms.

With contrasts, it is critical to consider the order in which 
terms are being fitted. If the model of Fig. 4c is fitted as LM4 

(Table 4a) or MM4 (Table 4b), the linear contrast (div) of the 
diversity term fdiv becomes significant after the presence of 
the species with largest basal area, Elaeocarpus decipiens (ed), 
is eliminated. The common slope of the linear diversity effect, 
now fitted with separate intercepts for plots with and plots 
without E. decipiens, is negative, indicating that a reduction in 
the density of this species with increasing diversity leads to a 
reduction in ba (Fig. 2). The interactions of the fixed-effects 
contrasts ed and div, carved out from com, with the treat-
ment light are also significant, supporting the expectation 
that biodiversity effects, including species presence effects, 
are stronger in light than under shade (see Fig. 2).

Individual-level data and repeated-measures 
analyses

The typical statistical analysis for BEF experiments uses plot-
level data because both biodiversity (B) and ecosystem func-
tioning (EF) are manipulated and measured, respectively, 
at plot level. Nevertheless, it can be interesting to also ana-
lyze measurements obtained for species or even individuals. 
Individual-level data analysis follows the same principles as 
plot-level data analysis, but the data structure is more compli-
cated because of the additional hierarchical level. In particu-
lar, explanatory terms may now not only vary between but 
also within plots.

The statistical model for a comprehensive analysis can be 
written as an error model with error (LM) or random-effects 
(MM) terms only:

y ~ uind*ftime

The term uind refers to the 257 plots × 16 trees = 4112 dis-
tinct individual trees and ftime refers to the 17 time points 
(month since planting) at which the height (y) of all tree 
individuals was measured. Because several trees died during 
the course of the experiment and trees in block 4 were har-
vested after 14 months, approximately one-third of the total 
of 4112 trees × 17 dates (n = 69 904 for the complete design) 
were missing, a problem to be discussed below (see section 
‘Individual-level data and non-orthogonality’). Note that the 
above model treats the 17 levels of the factor ftime as a ran-
dom selection of many possible time points, even though they 
are in fact ordered and equally spaced. In the following, we 
first analyze tree height of all individuals over time (shown in 
Fig. 5) to introduce approaches for repeated-measures analy-
sis, which has to deal with the problem of potential autocor-
relation among measures taken at adjacent time points for the 
same individual. One solution to this problem is to analyze 
data at a single point in time; this will be done further below 
to discuss the earlier mentioned problem of non-orthogonal-
ity in more detail.

The above error model fits a separate value for every indi-
vidual observation, leaving no variation to be estimated as 
residuals. Using the principles explained in the previous 
section, the term uind can be partitioned into several terms 
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Table 4:  ANOVA tables for the model shown in Fig. 4c and referred to as LM4 (a) and MM4 (b) in the text, modeling plot-level basal 
area (ba)

a)

Source Df SS MS F P Error term

  block 3 209.66 69.89 4.3 0.008 plot

  light 1 2823.64 2823.64 193.1 <0.001 light × com

  Elaeocarpus decipiens (= ed) 1 4137.35 4137.35 78.3 <0.001 com

  div 1 681.37 681.37 12.9 0.007 com

  com 8 422.95 52.87 3.6 0.044 light × com

  light × ed 1 189.40 189.40 12.9 0.007 light × com

  light × div 1 140.28 140.28 9.6 0.015 light × com

  light × com 8 116.97 14.62 0.9 0.526 plot

  residuals (= plot) 63 1029.11 16.34

b)

Source Df dendF F P

  Intercept (overall mean) 1 63 343.77 < 0.001

  block 3 63 4.33 0.008

  light 1 8 174.93 < 0.001

  Elaeocarpus decipiens (= ed) 1 8 78.26 < 0.001

  div 1 8 12.89 0.007

  light × ed 1 8 11.73 0.009

  light × div 1 8 8.69 0.018

LM4 was fitted with the function aov and MM4 with the function lme. For the ANOVA of LM4 appropriate F- and P-values were calculated 
using the error terms listed in the last column (cf. Table 2c). See legends to Tables 1 and 3 for further explanations.

Figure 5:  stem height in centimeter for 4089 individuals over the 17 months duration of the experiment. In each pool, there were four spe-
cies. Several trees died during the experiment, and all trees in block 4 were harvested after month 14. Time 1 is May 2009, and time 17 is 
September 2010.
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to reflect the hierarchical structure of the data set. In con-
densed form this can be written as:

y ~(com +light:com +plot+uind)*ftime

which equals:

y ~com +light:com +plot+uind+ftime+com:ftime
+light:com:ftime+pplot:ftime+uind:ftime

Note that in the comprehensive formulation (y ~ uind * 
ftime), uind is fitted as the aggregated term, but in the 
formulations above, uind is fitted after the three preceding 
terms (com + light:com + plot) have been carved out 
from it. Here, uind thus only explains the rest of the varia-
tion among individuals, when variation due to the preceding 
terms has already been eliminated.

Excluding the term uind:ftime (which corresponds to 
residuals), model MM5 can be fitted with lmer:

lmer(y ~(1|com)+(1|light:com)+(1|plot)+(1|uind)

+ 1|ftime +(( ) 11|com:ftime)

+(1|light:com:ftime)+(1|plot:ftime)) (MM5)

Fitting MM5 may take several minutes and applying the 
methods summary or anova again may take several minutes. 
However, fitting this model as LM5 with aov is not possi-
ble on most currently available desktop or laptop computers, 
because the more than 4000 levels of uind and the over 4000 
levels for plot:ftime result in a very large model matrix. 
This example thus illustrates one of the major advantages of 
MMs over LMs when analyzing hierarchical data.

To develop a treatment model, fixed-effects contrasts can now 
be carved out in specific ways from MM5 to test hypotheses that 
are of biological interest. This process, introduced in the previous 
section, is perhaps the most difficult but also most creative step 
in the analysis of BEF experiments. Furthermore, there are no 
easy ways to speed up the process nor is it advisable to use auto-
matic model selection procedures based on purely statistical con-
siderations. Here, we present just one biologically meaningful 
model (and we encourage the reader to try out further models):

lmer(y ~ block+light+div+sp+
light:div+light:sp+
div:sp+time+liight:time+div:time+sp:time+
1|plot +(1|light:com:sp)+
(tim
( )

ee|com)+(time|light:com)+(time|com:sp)) 	
(MM6)

In the ANOVA for MM6 (Table 5a), time is a linear contrast of 
the factor ftime and can be used to test whether the height 
growth of plants over the 17 months of the experiment had 
a significant linear slope, which seems to be approximately 
the case according to Fig. 5. The term sp refers to the 12 spe-
cies of tree individuals and is a fixed contrast carved out from 
uind. However, there is a slight complication, because, for 
monoculture plots, all plants belong to the same species, and 

in this case, sp could also be considered as a fixed-effects 
contrast carved out from com. This problem could be solved 
making two separate contrasts for species, one called monosp 
(referring to species in monocultures) and one called mixsp 
(referring to species in mixtures). However, then the interac-
tion div × mixsp only refers to differences between 2- and 
4-species communities, because monosp fully explains com-
positional differences among monocultures. Nevertheless, 
MM6 is not perfect because species effects very likely contain 
‘contaminations’ of σ2

com and σ2
plot. Therefore, tests for the 

species term and its interactions will tend to be too liberal and 
therefore should be interpreted with caution.

Unfortunately, MM6 is difficult to fit with lmer (Table 5a). 
Not only does it take very long to run but lmer also does not 
provide the possibility to keep the order of fixed-effect terms 
as specified but moves interactions after main effects, even 
if these are unrelated. Furthermore, lmer constrains two 
variance components in MM6 to zero, which as mentioned 
earlier can be problematic. We therefore present in Table 5b 
the ANOVA obtained for MM6 using the function asreml.
nvc (using the commercially available software ASReml for 
R; Gilmour et  al. 2009), which allows to keep the order of 
terms as specified and variance components to be negative. 
With this analysis, the tests for the fixed-effects terms light 
and div are now significant, because they can be compared 
with the appropriate random-effects terms light × com and 
com, respectively. This reflects an important consideration that 
must be made in all MMs: for every fixed-effects term (first 
three rows of the formula above) appropriate random-effects 
terms (last two rows of the formula above) must be specified 
and estimable to define the correct error strata. This match-
ing between fixed- and random-effects terms is indicated in 
Table 5b (see also Table 4a). It should be noted, however, that 
sometimes a fixed-effects term can be considered as a contrast 
carved out from several random-effects terms, i.e. a linear com-
bination of these, as, e.g. explained in the previous paragraph 
in the case of sp. Furthermore, note that in the model for-
mula above,(time|com) represents the terms com and com 
× time, (time|light:com) represents the terms light × 
com and light × com × time and (time|com:sp) repre-
sents the terms com × sp and com × sp × time in Table 5b.

From the ANOVA in Table 5b, we can conclude that individ-
ual plant height within plots in the example was significantly 
affected by the plot-level explanatory terms light and linear 
species richness (div) and by the individual-level explanatory 
terms species (sp) and its interactions with light (light × 
sp) and div (div × sp). Because all these between-individual 
differences can be compared with random-effects terms that 
do not involve time (see Table 5b), the corresponding tests are 
not affected by potential autocorrelations within individuals 
over time. Furthermore, carving out the linear contrast time 
from ftime allows comparing linear slopes of height growth 
with appropriate random-effects terms that do not contain 
ftime and are thus still unaffected by potential autocorrela-
tions (Table 5b). The biological interpretations here are that 
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Table 5:  ANOVA tables for MM6 in the text, modeling individual-level height over time

a) lmer

  Source SS MS Df denDf F P

    block 19 017 6339 3 228.7 14.4 <0.001

    light 1060 1060 1 79.9 2.4 0.125

    div 443 443 1 78.6 1.0 0.320

    sp 12 85 714 116 883 11 56.5 264.8 <0.001

    time 732 090 73 2090 1 72.0 1658.6 <0.001

    light × div 379 379 1 246.2 0.9 0.355

    light × sp 93 917 8538 11 70.7 19.3 <0.001

    div × sp 9931 903 11 102.7 2.0 0.031

    light × time 13 739 13 739 1 50.7 31.1 <0.001

    div × time 0 0 1 73.2 0.0 0.991

    sp × time 476 704 43 337 11 47.8 98.2 <0.001

  Variance components

    VCcom 0.00

    VClight × com 4.52

    VCplot 55.60

    VCcom × sp 0.57

    VClight × com × sp 9.49

    VCcom × time 0.00

    VClight × com × time 0.32

    VCcom × sp × time 0.17

    VCres. 441.00

b) asreml.nvc

  Source Df denDf F P Corresponding random effects

    block 3 192.6 2.1 0.108 plot

    light 1 15.7 33.9 <0.001 light × com

    div 1 9.4 100.1 <0.001 com

    sp 11 30.6 330.3 <0.001 com; com × sp

    light × div 1 6.9 0.6 0.463 light × com

    light × sp 11 40.3 9.3 <0.001 light × com; light×com×sp

    div × sp 11 32.8 4.1 <0.001 com × sp

    time 1 18 4761 <0.001 com × time

    light × time 1 32.4 23.6 <0.001 light ×com×time

    div × time 1 7.4 1.1 0.325 com × time

    sp × time 11 44.0 123.7 <0.001 com × time; com×sp×time

  Variance components

    VCcom 1.39

    VClight × com −17.35

    VCplot 61.17

    VCcom × sp −8.16

    VClight × com × sp 21.75

    VCcom × time −0.23

    VClight × com × time 0.40

    VCcom × sp × time 0.20

    VCres. 441.42

MM6 was fitted with the function lmer (a) or the function asreml.nvc (R-script, Supplementary Data). Note that in a) VCs are constrained 
to zero, whereas they are allowed to be negative in b). The last column in b) indicates from which random-effects terms the fixed-effects terms 
have been carved out. See legends to Tables 1 and 3 for further explanations.
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individuals show significant linear height growth (time) but 
in addition that linear height growth of individuals is signifi-
cantly affected by light (light × time) and differs among 
species (spec × time).

Using linear or polynomial contrasts of time is a powerful 
approach to the problem of repeated measures with poten-
tial autocorrelations over time. An alternative would be 
a two-stage approach where in a first step a linear slope of 
the regression of height against time would be calculated for 
each individual. In a second step, the individual slopes could 
then be analyzed as metadata using LMs and MMs, no longer 
involving time. Also, nonlinear growth functions could be 
used (e.g. logistic growth), which is difficult otherwise. We 
show such an analysis in supplementary Appendix S4. To 
get a closer insight into patterns of systematic variation in 
repeated-measures data, however, it is often necessary to ana-
lyze the data of the different measurement times separately, 
which is demonstrated in the next section.

Individual-level data and non-orthogonality

Focusing on a single time point, in the present case, individ-
ual-level plant height 14 months after planting, the previous 
model MM6 can be more easily expanded to ask additional 
biological questions, in particular whether contrasts for the 
plot-level presence of the dominant species Eleocarpus decipi-
ens (ed), Dalbergia hupeana (dh) and Sapindus mukorossi (sm) 
could explain part of the large variation in individual-level 
height found among species compositions (com) and whether 
light-induced differences in linear species richness effects vary 
among species (three-way interaction light × div × sp). 
As recommended earlier, we here use LMs to obtain ANOVAs, 
because it allows more flexible model fitting than would be 
possible with the use of MMs, with preservation of fitting 
sequences of fixed-effects terms (option keep.order=TRUE 
of the function terms) and with comparison of these with 
error terms (random-effects terms in MMs) at the same ‘cur-
rency’, i.e. SSs. Using different fitting sequences shows the 
effects of non-orthogonality in data from BEF experiments 
and how this relates to tests of relevant biological hypotheses. 
The following models

aov(terms(y ~ block+light+ed+dh+sm +div+sp+
light:ed+light:dh+llight:sm +light:div+
light:sp+div:sp+light:div:sp+
com +light::com +plot+com:sp+light:com:sp, 
keep.order = TRUE)) 	

(LM7)

and

aov(terms y ~ block+light+div+ed+dh+sm +sp+
light:div+light:e

(
dd+light:dh+light:sm +

light:sp+div:sp+light:div:sp+
com +lightt:com +plot+com:sp+light:com:sp,
keep.order = TRUE)) 	

(LM8)

have the same residuals but the Dfs and SSs of other terms 
vary with their position in the model and ANOVA table (sup-
plementary Table S5a and b). The presence of any of the three 
dominant species in a plot has a very strong effect on individ-
ual-level tree height, which is not surprising, because these 
dominant species are included among those trees and other 
species may also grow taller in competition with them to reach 
the light. However, the three-way interaction light × div 
× sp is not significant, i.e. light-induced differences in linear 
species richness effects do not seem to vary among species.

The different fitting sequences in LM7 and LM8 lead to dif-
ferent results because the terms involved are not orthogonal, 
i.e. not independent. In the present case, the non-orthogonal-
ity is inherent to the design, because it is not possible, e.g. to 
have plots with four species of pool X but to exclude E. decipi-
ens. Additionally, non-orthogonality occurs because of miss-
ing data, which are not distributed proportionally across the 
treatment combinations. In general, covariates also lead to 
non-orthogonality because these are almost never orthogonal 
to the other explanatory terms in a model.

Although the ANOVA tables derived from LM7 and LM8 
use F- and P values based on error terms calculated with the 
LS approach and may therefore not be as perfect as those 
derived from MMs using the REML approaches, they give a 
good indication for the importance of the different explana-
tory terms, as sequentially fitted, because effect sizes of all 
terms can be inspected from the %SSs. These measure by how 
much the overall model fit, i.e. the multiple R2, is improved 
when a term is added.

Effect sizes can also be shown by predicting data based on 
a model fit. Many R classes provide a predict method that 
can be used for this purpose. However, to interpret the effect 
size of a term according to its position in the model, it is safest 
to fit a simplified model that includes all terms up to the one 
of interest and then looking at the parameter estimate of this 
term (Payne et al. 1993). Thus, for the term div:

summary.lm aov y ~ block+light+ed+dh+sm +div( )( )

yields an estimate of −11.8 cm height change per additional 
species in a plot. This is because, for plots with the dominant 
species, increasing species richness means fewer individuals of 
the dominant species per plot. If the term div is fitted before 
the dominant species, its effect is much smaller (supplemen-
tary Table S5b), but

summary.lm aov y ~ block+light+div( )( )

yields an estimate of 1.64 cm height increase per additional 
species in a plot. This indicates that ignoring the presence of 
dominant species in a plot results in a slightly positive effect of 
diversity. Technically, these estimates for div are equivalent 
to the corresponding hypotheses tests in the so-called type-
I (sequential) ANOVA, the type of ANOVA used throughout 
this article (Venables 2000).
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The above is not true if parameters are estimated after all 
terms have been added to a model, including ones that appear 
after a term of interest in the ANOVA. Then this term of inter-
est is also adjusted for the terms following it in the fitting 
sequence. In other words, all terms are adjusted for all others 
in the model and all information about the sequence of fit-
ting is lost. Such parameter estimates do no longer correspond 
to the biological hypotheses tested by F- and P values in the 
ANOVA table and can thus be very misleading. It may even 
be that the direction of an effect is changed, as would occur 
for div if, in the second model above, the contrasts for the 
three dominant species would be added after div. Parameter 
estimates that are obtained after all terms have been added to 
a model correspond to hypotheses tests in the so-called type-
III (nonsequential) ANOVAs. Type-III ANOVAs are assembled 
from as many analyses as necessary to allow every term to 
appear last in sequence once and then extracting the cor-
responding SS (Driscoll and Borror 2000). This can lead to 
awkward hypotheses that have little biological meaning 
(Langsrud 2003; Venables 2000). This is especially the case if 
non-orthogonality is strong; for orthogonal data, type-I and 
type-III ANOVAs are the same.

We conclude our analyses here, emphasizing that with data 
from BEF experiments, such as the one presented here, there 
are a very large number of further modeling possibilities and 
ramifications, which should be broadly explored before draw-
ing conclusions about relevant biological hypotheses. A  key 
tool hereby is the decomposition of explanatory terms into 
contrasts. In the most extreme case, for an explanatory term 
with k levels, k – 1 single-Df contrasts can be formed in many 
different ways, like k twigs on a tree can be connected by k – 1 
single branching events in many different ways. The goal of the 
analysis is to find contrasts that address interesting biological 
questions. These might be linear contrasts for diversity or time, 
contrasts between communities with or without particular spe-
cies or contrasts between species belonging to particular func-
tional groups or sharing specific phylogenetic relationships. 
Due to these many potential ways of analysis, the ANOVA 
for complex experimental designs is as much an exploratory 
tool as a confirmatory one. Nevertheless, compared with data 
from observational studies, data from BEF experiments have 
the advantage that they can be analyzed with a priori hypoth-
eses about cause–effect relationships, because the explanatory 
terms have been manipulated by the experimenter and can 
be treated as fixed-effects terms. This also means that model 
comparisons can be based on biological judgment and do not 
require tools such as AIC-type information criteria (Burnham 
and Anderson 2002). We conclude this section with ‘Question 
and Answers’ presented in Table 6.

DISCUSSION
General recommendations

The aim of our presentation above is to demonstrate an ecolo-
gists’ approach to analyze a BEF experiment with a typically 

complex hierarchical data structure. BEF experiments search 
for general effects of biodiversity on ecosystem functioning, 
but at the same time, they acknowledge that these general 
effects can only occur because different species (or functional 
groups, genotypes etc.) have more or less similar main and 
interactive effects on dependent variables. Thus, BEF experi-
ments must include k >> 1 different species compositions 
(genotype compositions etc.) as treatments, which automati-
cally leads to the possibility to test k – 1 orthogonal hypoth-
eses in a single analysis and many more in different analyses. 
If in addition, modifying influences—in the example different 
levels of light availability or different time points—need to 
be tested, then the number of possible hypotheses increases 
even further.

Conceptually, the complexity of BEF experiments can be 
approached from two sides, either starting with tests for the 
most important fixed-effects terms and ignoring everything 
else (approach 1, exemplified by LM1) or starting with the 
most inclusive random-effects terms that give a predicted 
value for every observation (approach 2, exemplified by the 
equation y ~ uind * ftime used before fitting MM5). 
Also, different subsets of the full data set could be explored 
separately, but at a later stage these would have to be com-
bined again. Otherwise, not all hypotheses of interest can be 
tested, and tests obtained with the different subsets may be 
interdependent, e.g. if separate analyses are done for different 
time points. We recommend that all these approaches should 
be followed to develop a good understanding of systematic 
and hierarchical random variation in the data. In addition, 
it is always helpful to tabulate and plot data according to the 
different groupings given by the levels of explanatory terms, 
together with the fitting of statistical models and production 
of ANOVA tables.

For both, approaches 1 and 2, it is convenient to use 
graphs of the type shown in Figs 3 and 4 to move between 
models. With approach 1, new boxes are added to a graph, 
which are ignored (i.e. included in the residual random 
variation) in previous versions of the graph. With approach 
2, terms in new boxes are contrasts of terms in old boxes 
of previous versions of the graph. Making contrasts is per-
haps the most powerful aspect of ANOVA, because it allows 
the testing of focused biological hypotheses (Rosenthal and 
Rosnow 1985). Typical contrasts in BEF experiments are 
those between monocultures and mixtures, linear or log-
linear species richness or the presence of particular species 
or species combinations.

Presenting results

Once a good model has been found, test results should always 
be shown together with effect sizes and the direction of effects 
in case of single-Df tests. One possible measure of effect size 
are %SSs, which can be easily added to ANOVA tables. One 
must, however, keep in mind that the amount of variance 
a term explains also contains a fraction that is explained by 
chance (VC(s) not related to the term, see EMS in Table 1). To 
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find out the direction of an effect, it is necessary that the corre-
sponding parameter estimate is obtained, which as explained 
in the section on non-orthogonality can best be done by fitting 
a model with all terms up to the one of interest as the last one 
and then look at its estimate. With this approach, the biologi-
cal explanation is that an effect has been adjusted for all the 
terms preceding it in the analysis but not the ones that follow.

Because effect sizes and their significances in complex 
analyses depend on the particular model, it is also impor-
tant to use appropriate graphical representations of data. It 
is often useful to show individual raw data in scatter plots 
because these do not depend on the statistical model used for 
analysis. Furthermore, different subsets of the raw data can 

be shown in separate panels or symbols can be used for indi-
vidual raw data belonging to different levels of explanatory 
factors (e.g. see Figs 2 and 5), still avoiding any dependence 
from statistical models. However, beyond this, dependency 
cannot be avoided. Therefore, every figure showing means, 
regression lines, standard errors etc. should specify clearly 
from which model these parameter estimates are taken. 
Particular care is required with parameter estimates after a 
hierarchical data analysis has been carried out. In this case, 
the estimates of fixed effects must be adjusted for the ran-
dom effects and thus can be different from the estimates 
obtained with nonhierarchical data analysis or using origi-
nal data.

Table 6:  Frequently asked questions by ecologists analyzing BEF experiments and suggested answers

What are the advantages of LM- and MM-based ANOVA, respectively, to analyze complex hierarchical data from BEF experiments?
LM-based ANOVAs are flexible and compare the contributions of fixed-effects terms to systematic variation and the contributions of error terms to 
random variation in the dependent variable at the same scale, using SSs. Negative VCs are not constrained to zero. Unless error terms have very large 
numbers of levels, LMs can be fitted very efficiently. MM-based mixed models estimate variance components more efficiently and provide direct—
and in the case of unbalanced data sets with non-orthogonal terms more accurate—tests for fixed-effects terms. However, MMs sometimes may not 
converge and if VCs are constrained to zero, test accuracy is reduced.

How can contrasts be used to test focused biological hypotheses?
For a factor F with ordered levels, linear, log-linear or polynomial contrasts can be specified by using a continuous variable x, log(x), x + x2 + …
To compare particular treatment levels with others, e.g. monocultures with mixtures, contrasts can be specified giving each group of treatments a 
different label. Sub-contrasts must be fitted after contrasts, e.g. x (species richness) after monocultures vs. mixtures will test for a linear effect of species 
richness within mixtures only.

Which random-effects terms must be included in an MM to obtain correct tests for fixed-effects terms?
All terms that define error strata and thus replication levels of treatments must be specified as random-effects terms in MM. This is particularly relevant 
when interactions of fixed-effects terms are being tested. For example, whenever a fixed-effects term F1 (e.g. div) requires a random-effects term R1 
(e.g. com) then a fixed-effects interaction F1 × F2 (e.g. div:light) requires the interaction R1 × F2 (e.g. com:light) as random-effects term.

Does the sequence of terms matter in ANOVA?
Yes, for fixed-effects terms; during construction of the ANOVA table, terms are added in sequence and tests are constructed by comparing nested 
models. In that sense, terms fitted earlier in the model eliminate variation that could be explained by later terms. For random-effects terms in MMs 
the sequence does not matter, but in LMs, error terms must follow fixed-effects terms that have been carved out from them and the sequence of error 
terms must respect the hierarchical data structure (from higher to lower error strata).

What can be done if F values are <1 and variance components <0?
Check the statistical model for omitted terms that may affect the denominator but not the nominator term of the F value. Often this occurs with 
main-plot terms when split-plot terms are omitted. In other cases, it occurs when an error terms is affected by negative autocorrelation (e.g. due to 
competition). In such cases, negative variance components should be allowed to provide appropriate error terms. Alternatively, autocorrelations and 
other variance structures can be specified in a statistical model (not discussed in this article).

Should the statistical model follow the design or be selected according to model-selection criteria such as AIC or BIC?
In experimental studies a statistical model should include terms for all a priori hypotheses for which an experimental manipulation was made (e.g. 
light, div, com). Terms with small F values can be pooled or included in error (LMs) or random-effects (MMs) term from which they have been 
carved out. It is better to work with F values of individual terms (see e.g. Murtaugh 2014) then with criteria assessing the whole model (R2, AIC, BIC). 
The latter are more suitable for observational studies (Burnham and Anderson 2002).

Can parameter estimates and their standard errors be used to test the significance of explanatory terms in ANOVA?
With balanced data and orthogonal terms this can be done for single-Df terms (then the t-value derived from the standard error of the estimate is 
the square root of the F value of the term). In other cases, it is not recommended. Parameter estimates are always calculated for the full model (i.e. 
eliminating all other terms) and thus may not reflect the sequential fitting sequence of terms used to address specific biological hypotheses in an ANOVA.

When and how should covariates be included in a model and what are their effects?
In experimental studies, statistical analysis should begin without covariates. Usually, covariates destroy balance and orthogonality of experimental 
designs. They also change the interpretation of effects, which will be adjusted for the covariates. If covariates are introduced later in analysis, they may 
explain effects, e.g. by changing a significant effect into an insignificant one.

Can subsets of data be analyzed separately and what are the consequences?
It is often convenient to analyze only particular sections of a data set, e.g. data from a single time point or for a particular species set. However, 
with multiple separate analyses, the problem of multiple testing arises. Therefore, a comprehensive analysis should always be carried out as well. 
Furthermore, if a term is significant in one but not in another analysis for two subsets of the same data, this does not mean that the effects of the term 
differ significantly between the two subsets. This can only be tested fitting a corresponding interaction between this term and the term defining the 
subsets in the comprehensive analysis.

LM-based ANOVA refers to approaches used in the R functions aov and lm, i.e. linear models. MM-based ANOVA refers to approaches used in 
the R functions lme, lmer and asreml, i.e. mixed models.
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