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NaPi-IIb (Slc34a2) is a Na+-dependent phosphate transporter that accounts for the majority of 

active phosphate transport into intestinal epithelial cells. Its abundance is regulated by dietary 

phosphate, being high during dietary phosphate restriction. Intestinal ablation of NaPi-IIb in 

mice leads to increased fecal excretion of phosphate, which is compensated by enhanced renal 

reabsorption. Here we compared the adaptation to dietary phosphate of wild type (WT) and 

NaPi-IIb-/- mice. High phosphate diet (HPD) increased fecal and urinary excretion of 

phosphate in both groups, though NaPi-IIb-/- mice still showed higher fecal excretion and 

lower urinary excretion than WT. In both genotypes low dietary phosphate (LDP) resulted in 

reduced fecal excretion and almost undetectable urinary excretion of phosphate. Consistently, 

the expression of renal cotransporters after prolonged LDP was similar in both groups. Plasma 

phosphate levels declined more rapidly in NaPi-IIb-/- mice upon LDP, though both genotypes 

had comparable levels of 1,25(OH)2vitamin D3, parathyroid hormone and fibroblast growth 

factor 23. Instead, NaPi-IIb-/- mice fed LDP had exacerbated hypercalciuria, higher urinary 

excretion of corticosterone and deoxypyridinoline, together with lower bone mineral density 

and higher number of osteoclast. These data suggest that during dietary phosphate restriction 

NaPi-IIb-mediated intestinal phosphate absorption prevents excessive demineralization of 

bone as an alternative source of phosphate.    
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Introduction 

Phosphate (Pi) is vital for many biological functions including energy metabolism, 

intracellular signaling, structural composition of cellular membranes, and bone 

mineralization. Pi homeostasis is regulated by the coordinated interplay of different organs 

and endocrine networks. The intestine absorbs Pi from the diet and kidneys reabsorb Pi from 

the primary urine filtrate. Additionally, the bones serve as a reservoir for Pi, where it can be 

deposited as hydroxyapatite or released in case Pi supply is low1,2. Under normal conditions, 

osteoblastic bone formation is in balance with osteoclastic bone resorption. Several hormones 

such as parathyroid hormone (PTH) or glucocorticoids can stimulate osteoclast activity and 

thereby increase bone mineral release and promote demineralization3,4. 

The Slc34 family of Na+-dependent Pi transporters plays an essential role in Pi homeostasis. 

In the murine intestine, transcellular transport of Pi occurs mainly in the ileum, where NaPi-

IIb (Slc34a2) is localized5,6. NaPi-IIb seems to be the major murine intestinal Pi transporter, 

as its depletion results in abrogation of Na+-dependent transport of Pi and increased fecal loss 

of Pi7,8. Although mutations in NaPi-IIb have been described as a main cause of pulmonary 

alveolar microlithiasis in humans9, Pi metabolism in most of these patients has not been 

investigated. NaPi-IIa (Slc34a1) and NaPi-IIc (Slc34a3) are responsible for the renal 

reabsorption of Pi. Both transporters are localized in the brush border membrane (BBM) of 

the renal proximal tubular cells10,11. NaPi-IIa accounts for the majority of Pi reabsorption, 

since its ablation in mice leads to severe renal Pi wasting and hypophosphatemia, resulting in 

underdeveloped bone trabeculae, impaired bone formation and nephrocalcinosis in young 

mice12,13. Hypophosphatemia and nephrocalcinosis have been also reported in patients with 

mutations in NaPi-IIa14,15, and gene wide association studies indicate a strong correlation 

between NaPi-IIa and plasma levels of Pi16. In contrast, deletion of NaPi-IIc does not impair 

Pi homeostasis in mice17,18; however, many studies have reported mutations in NaPi-IIc in 
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patients with hereditary hypophosphatemic rickets with hypercalciuria (for review see19,20). 

The Slc20 family of Na+-dependent Pi transporters consists of Pit1 and Pit2, both showing 

broad tissue distribution including the epithelia of intestine and the renal proximal tubule21. 

Their contribution to intestinal and renal transport of Pi remains to be tested, though the renal 

expression of Pit2 is regulated by factors controlling Pi homeostasis22. 

The abundance of Slc34 transporters is regulated by a hormonal network consisting of PTH, 

fibroblast growth factor 23 (FGF23) and vitamin D3 (for review see23,24). PTH and FGF23 

target the kidney to promote phosphaturia by removing NaPi-IIa and NaPi-IIc from the BBM 

of proximal cells (for review see 25), whereas vitamin D3 acts on the intestine to stimulate 

absorption of Pi by increasing the expression of NaPi-IIb 26. In addition, each of these 

hormones controls the levels of the other two (for review see 23,24).  

The dietary Pi content influences the levels of Pi-regulating hormones and Pi-transporters. 

Thus, low dietary Pi as well as hypophosphatemia increase the abundance of NaPi-IIa, NaPi-

IIc and NaPi-IIb22,27-30 and thereby promote intestinal absorption and renal reabsorption. 

These changes are at least in part secondary to higher plasma levels of vitamin D3 and 

reduced concentrations of FGF23 and PTH28. However, studies in VDR deficient mice 

indicate that stimulation of NaPi-IIb also occurs in a vitamin D3 independent fashion29,30. The 

reduced levels of FGF23 and PTH triggered by hypophosphatemia remove the suppression of 

renal NaPi-IIa and NaPi-IIc and thereby enhance renal Pi reabsorption. In contrast, high 

dietary Pi as well as hyperphosphatemia  stimulate PTH and FGF23 and reduce vitamin 

D3
28,31,32. In addition to its phosphaturic effect, high FGF23 also reduces the production of 

vitamin D3 and increases its degradation33, blunting the stimulatory effect on intestinal Pi 

absorption. Besides their effects on Pi handling, vitamin D3 and PTH also control the levels of 

plasma Ca2+ by stimulating the expression of intestinal (TRPV6, calbindin D9K and Ca2+-

ATPase) and renal (TRPV5, calbindin D28K and NCX1) proteins involved in epithelial Ca2+ 
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transport (for review see34,35) as well as by stimulation of osteoclasts and thereby bone 

resorption36.  

As indicated above, intestinal ablation of NaPi-IIb in mice abolishes Na+-dependent Pi uptake 

into ileal BBM7,8. However, under standard dietary conditions these mice only show slightly 

increased fecal Pi loss, which is compensated by reduced urinary excretion, thus preserving 

normophosphatemia. Since the expression of NaPi-IIb is upregulated by low dietary Pi37, the 

role of NaPi-IIb may become more important once dietary Pi is restricted. In this study we 

compare the effect of the dietary Pi content, particularly Pi-restriction, in wild type (WT) and 

intestinal-specific NaPi-IIb deficient mice (NaPi-IIb-/-) and show that upon Pi-restriction 

NaPi-IIb-/- mice demineralize bone which may help to prevent more severe 

hypophosphatemia. 
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Results 

Intestinal ablation of NaPi-IIb and Pi deprivation causes transient hypophosphatemia 

and exacerbates urinary calcium excretion Urinary and stool samples from WT and NaPi-

IIb-/- mice were collected in metabolic cages under standard conditions as well as after 

adaptation to either high dietary Pi (HPD) for 3 days, or to low dietary Pi (LPD) for 3 or 14 

days (Figure 1). For both genotypes, the fecal excretion of Pi reflected the dietary Pi content: 

it was higher in animals fed high Pi and progressively lower in those fed low Pi as compared 

with mice kept on normal chow (Figure 1A). Except for the HPD, there was a tendency for 

increased fecal Pi excretion in NaPi-IIb-/- compared with WT mice, which was only 

significant during normal dietary conditions when absolute values were compared. However, 

the relative differences in fecal Pi excretion between both genotypes actually increased with 

decreasing levels of Pi in the diet: NaPi-IIb-/- showed around 13% higher excretion than WT 

mice when fed normal diet whereas the increase was 41% and 45% in the groups fed low Pi 

for 3 and 14 days, respectively (supplementary Figure 1).  

In both genotypes, the urinary excretion of Pi also adapted to the dietary Pi content, being 

higher in mice fed HPD diet and lower in the groups fed LPD as compared with mice 

receiving standard food (Figure 1B). NaPi-IIb-/- mice excreted significantly less Pi in urine 

than the WT littermates after 3 days of HPD adaptation. Pi excretion was almost undetectable 

after 3 or 14 days of LPD, and no differences between genotypes were observed.  

The different dietary conditions did not result in significant changes in plasma Pi values 

neither in WT nor in NaPi-IIb-/- mice (Figure 1C). However, due to a transient trend for 

hypophosphatemia in NaPi-IIb-/- fed LPD, plasma Pi was lower in mutant mice than in WT 

upon 3 days LPD. No differences between both genotypes were detected in the other dietary 

conditions.   
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The fecal excretion of Ca2+ was similar in both genotypes regardless of the feeding protocol, 

though there was a tendency for reduced excretion in animals fed on both experimental diets 

(Figure 1D). 

In both genotypes urinary Ca2+ excretion was comparable in mice fed a normal diet or HPD 

for 3 days, whereas a drastic increase was observed in animals fed a LPD for either 3 or 14 

days (Figure 1E). This increase was even stronger (more than 70%) in NaPi-IIb-/- compared to 

WT mice.  

Additionally a lower amount of creatinine was excreted in NaPi-IIb-/- mice after long term 

dietary Pi restriction (Table 1), but the creatinine clearance as an indicator for glomerular 

filtration rate (GFR) was not significantly altered, and excretion of other measured ions was 

comparable to WT littermates (Table 2). 

Plasma levels of Ca2+ progressively increased in the groups fed LPD compared with HPD 

(Figure 1F). However, there were no differences between WT and NaPi-IIb-/- mice under any 

dietary condition. 

Hormonal adaptation to dietary Pi is similar in both genotypes WT and NaPi-IIb-/- mice 

fed a LPD for 3 days showed higher levels of plasma 1,25-(OH)2 vitamin D3 compared to 

animals fed a HPD (Figure 2A). However, this difference was not observed in the groups fed 

LPD for 14 days. 1,25-(OH)2 vitamin D3 levels were similar in WT and NaPi-IIb-/- mice under 

all conditions. Renal mRNA expression of the vitamin D3 activating enzyme Cyp27b1 and 

protein abundance of the vitamin D3 catabolizing enzyme Cyp24a1 was analyzed in animals 

fed LPD for 14 days. There were no differences between WT and NaPi-IIb-/- mice neither on 

Cyp27b1 (Figure 2B), nor on Cyp24a1 (Figure 2C).   

The concentration of plasma PTH was significantly lower in animals fed a LPD for 3 days 

than in animals adapted to HPD (Figure 2D). Long term dietary Pi restriction led to a further 
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decrease in plasma PTH. However, WT and NaPi-IIb-/- mice showed similar PTH levels after 

adapting to the different dietary conditions. For intact FGF23 levels, a similar pattern to PTH 

was observed (Figure 2E), i.e. LPD resulted in a progressive reduction of plasma FGF23. No 

differences between genotypes were observed under the same conditions.  

Upon Pi restriction, Pi transport into renal BBMVs and expression of NaPi-IIa and 

NaPi-IIc is similar in both genotypes Transport studies were performed in renal BBMVs 

from mice fed LPD diet for 14 days. Uptakes were done in presence and absence of sodium, 

to determine sodium dependent and independent components of Pi, leucine and glucose 

transport. Uptakes of leucine and glucose were included as negative controls. Both WT and 

NaPi-IIb-/- mice showed at least a 97% decrease of Pi uptake into renal BBMVs in the absence 

of sodium, but the sodium dependent and independent transport rates were similar in both 

genotypes (Figure 3A). Transport rates of leucine (Figure 3B) and glucose (Figure 3C) also 

showed a strong dependency on sodium (more than 80%), and were similar in both groups of 

mice.  

The protein abundance of NaPi-IIa and NaPi-IIc was assessed in the same renal BBMV 

preparations that were used for the uptake experiments (long term dietary Pi restriction). In 

agreement with the urinary Pi and renal Pi-transport data, upon prolonged dietary Pi 

restriction, the expression of NaPi-IIa (Figure 3D) and NaPi-IIc (Figure 3E) were similar in 

WT and NaPi-IIb-/- mice.  

As expected and previously published37, NaPi-IIb protein abundance in ileum of WT mice 

was increased after 3 and 14 days of LPD compared to HPD, whereas the cotransporter was 

not detected in NaPi-IIb-/- animals (Figure 3F) 

Upon Pi restriction, the expression of proteins involved in renal calcium handling is 

comparable in both genotypes The abundance of proteins involved in renal Ca2+ handling 
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was assessed in WT and NaPi-IIb-/- animals after 14 days dietary Pi restriction. The 

expression of the Ca2+ channel TRPV5 was analyzed in apical membranes (Figure 4A), 

whereas the abundance of the Ca2+ sensing receptor (CaSR, Figure 4B) and calbindin-D28k 

(Figure 4C) was quantified in renal homogenates. Similar levels of all three proteins were 

observed in WT and NaPi-IIb-/- animals. 

Urinary excretion of deoxypyridinoline and corticosterone, bone mineral density and 

osteoclast number are altered in Pi-restricted NaPi-IIb-/- mice  Urinary excretion of 

deoxypyridinoline (DPD) was quantified as a marker for bone resorption (Figure 5A). The 

dietary content of Pi did not influence the urinary concentration of DPD in WT animals; 

however, LPD triggered a progressive increase in the amount of DPD excreted into urine by 

intestinal NaPi-IIb-/- mice. No difference was observed between WT and NaPi-IIb-/- fed a 

HPD or LPD for three days, whereas  after long term Pi restriction the levels of DPD in the 

urine of NaPi-IIb-/- animals were significantly higher (about 85%) than in the corresponding 

WT animals.  

Urinary corticosterone levels were similar in both genotypes under normal dietary conditions 

but were elevated in NaPi-IIb-/- mice compared to WT litter mates after 14 days of dietary Pi 

restriction (Figure 5B). The corticosterone metabolites 11-dehydrocorticosterone and 5α-

dihydrocorticosterone were also increased in NaPi-IIb-/- animals (113.2±19.9 and 176.2±14.8, 

respectively) compared to WT (52.0±10.4 and 109.0±15.5, respectively) after 14 days LPD. 

Bone mineral density (BMD) was measured in femurs of WT and NaPi-IIb-/- mice under 

normal dietary conditions as well as after 14 days LPD. Cortical BMD was elevated in NaPi-

IIb-/- compared to WT under standard diet conditions, whereas trabecular BMD was similar in 

both groups (Figures 5C and D). Cortical BMD was significantly reduced in NaPi-IIb-/- mice 

after dietary Pi restriction, whereas it remained unchanged in WT animals. Trabecular BMD 

was reduced in NaPi-IIb-/- mice when challenged with long term dietary Pi restriction, 
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compared with the WT littermates (Figures 5C and D). The number of osteoclasts lining the 

bony trabeculae in the distal femoral metaphysis of WT and NaPi-IIb-/- mice under normal 

dietary conditions, as well as after 14 days LPD, was assessed using immunohistochemistry 

for cathepsin K. While the number of osteoclasts expressing cathepsin K was comparable 

between WT and NaPi-IIb-/- mice under standard diet conditions (Figure 5E), the latter 

exhibited higher osteoclast counts after Pi dietary restriction compared to 14 day-Pi-restricted 

WT littermates (Figures 5E and 5F). 
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Discussion 

NaPi-IIb is considered to be the major apical Pi transporter in the small intestine since its 

intestinal ablation in mice abolishes Na+-dependent uptake of Pi into intestinal sacks and 

BBMV from ileum7,8, indicating the loss of active transcellular transport of Pi in the small 

intestine. However, under standard feeding conditions the absence of NaPi-IIb only leads to a 

moderate fecal wasting of Pi, which is compensated by increased renal reabsorption, thus 

resulting in normal plasma Pi. This mild phenotype suggests an alternative transport pathway 

across the intestinal epithelium able to supply enough Pi, at least under normal dietary Pi. 

Passive absorption through the paracellular pathway may contribute to this process when a 

sufficient gradient of Pi is established across the epithelium. However, in response to low 

dietary Pi the expression of NaPi-IIb increases27,28, indicating that the active component may 

be required to adapt to a reduced oral supply of Pi. Therefore, here we investigated whether 

the contribution of NaPi-IIb becomes higher once dietary Pi is limited.  

As observed in WT animals, the fecal excretion of Pi in NaPi-IIb-/- also increased with HPD 

and decreased under LPD. However, under all dietary conditions, the fecal Pi output was 

higher in NaPi-IIb-/- than WT, though the difference between genotypes was significant only 

in HPD when ANOVA was applied to the absolute values. The large differences in the fecal 

Pi content between the HPD and LPD groups may have masked the relatively smaller 

differences between genotypes in the normal and LPD; indeed, significant differences were 

observed in all feeding protocols when the excretion of NaPi-IIb-/- mice was normalized to the 

excretion of the dietary-matched WT. Moreover, normalization also indicated that the absence 

of NaPi-IIb had a larger impact in the Pi-restricted groups than in animals fed high Pi. This 

may indicate that the contribution of the active transport component (mediated mostly by 

NaPi-IIb) becomes bigger when dietary Pi is low: dietary restriction could theoretically result 

in lower Pi levels in the intestinal lumen, thus providing a lower gradient for passive transport 
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of Pi across the epithelium. As expected, 1,25-(OH)2 vitamin D3, a major stimulus for 

intestinal Pi absorption26, was increased in animals fed the LPD compared to HPD. However, 

no differences were detected between NaPi-IIb-/- and WT mice. This observation was further 

supported by the finding that the expression of Cyp27b1 and Cyp24a1 (mRNA and protein, 

respectively) was similar in both groups of mice. These renal enzymes are crucial in 

controlling the systemic levels of 1,25-(OH)2 vitamin D3, since Cyp27b1 converts 25(OH)D3 

into the active 1,25(OH)2D3, whereas Cyp24a1 catabolizes 1,25-(OH)2 vitamin D3
38. The 

higher NaPi-IIb abundance triggered by low dietary Pi/high 1,25-(OH)2 vitamin D3 might 

further increase the relative difference in Pi transport between WT and NaPi-IIb-/- animals, 

which is in agreement with the observed trend of higher relative differences in Pi excretion as 

dietary Pi is restricted.  

Dietary loading with Pi triggers a phosphaturic response whereas urinary Pi is low upon 

dietary Pi restriction. These changes inversely correlate with the abundance of the renal 

transporters NaPi-IIa and NaPi-IIc, which in turn are controlled by the plasma levels of PTH, 

FGF23, and 1,25(OH)2 vitamin D3. Thus, dietary supply of Pi increases the abundance of both 

hormones whereas Pi deficiency reduces their levels28,32. Similarly to the fecal output, also the 

urinary excretion of Pi adapted in a similar fashion in NaPi-IIb-/- and WT mice, increasing in 

response to HDP and decreasing upon dietary Pi restriction. Although the increase in renal Pi 

excretion triggered by the HPD was lower in NaPi-IIb-/- compared to the WT mice, the 

massive phosphaturia also observed in NaPi-IIb-/- mice indicates that the component 

responsible for the passive intestinal transport of Pi is able to absorb a considerable amount of 

Pi which must be later excreted by the kidney. Instead, both genotypes excreted similarly low 

amounts of Pi after adaptation to LPD. Since WT animals fed low Pi already increased renal 

Pi reabsorption to a point where almost no Pi is excreted with urine (especially after 14 days 

LPD), it is not surprising that the kidneys of NaPi-IIb-/- mice cannot further compensate for 
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the impaired intestinal absorption.  In agreement with this maximal and similar reduction of 

urinary Pi excretion the levels of PTH and FGF23, both phosphaturic hormones, were 

strongly and similarly reduced in WT and NaPi-IIb-/- mice fed LPD. Furthermore, transport of 

Pi into renal BBMV and protein expression of NaPi-IIa and NaPi-IIc was also similar in WT 

and NaPi-IIb-/- mice fed LPD during 14 days. The combination of increased fecal loss but 

similar (low) urinary excretion of Pi detected in NaPi-IIb-/- on LPD likely caused the more 

pronounced reduction in plasma Pi levels in NaPi-IIb-/- animals after 3 days of LPD. In 

contrast, WT mice were able to maintain normal Pi values though a tendency for reduced 

plasma Pi was detected after 14 days of LPD. The pronounced and earlier fall in plasma Pi 

may indicate that NaPi-IIb-/- animals need an extra-renal compensatory mechanism when 

facing longer Pi restriction and that this mechanism is activated within a few days after the 

onset of Pi depletion. 

Chronic hypophosphatemia may lead to osteomalacia and hypophosphatemic rickets39, due to 

the mobilization of Pi from bone and/or decreased mineralization of newly formed bone. The 

stronger increase in urinary Ca2+ excretion in the NaPi-IIb-/- mice during LPD suggested bones 

as source for Pi: although a drastic increase of urinary Ca2+ was observed in both genotypes 

when fed a LPD (both 3 and 14 days), urinary Ca2+ levels were more than 70% higher in 

NaPi-IIb-/- mice than in their WT littermates. High 1,25(OH)2 vitamin D3 stimulates not only 

Pi but also Ca2+ absorption in the intestine40, and therefore it may contribute to the increase in 

plasma and urinary Ca2+ observed in both animal groups with prolonged Pi deprivation. 

Moreover, intestinal Ca2+ absorption may be enhanced by the absence of Pi reacting with free 

Ca2+ in the intestinal lumen. In addition, low PTH may lead to urinary wasting of Ca2+, as a 

main function of this hormone is to promote Ca2+ reabsorption in the kidney41,42. However, 

none of these factors can explain the difference in urinary Ca2+ between WT and NaPi-IIb-/- 

mice, since they were equally affected in both genotypes. Moreover, the renal expression of 
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several proteins involved in Ca2+ transport, including TRPV5, calbindin-28K and the CaSR, 

was also similar in WT and NaPi-IIb-/- mice. Thus, in response to hypophosphatemia, bone 

resorption may be enhanced in NaPi-IIb-/- mice releasing Pi, together with Ca2+, at the cost of 

bone mass loss. In turn, renal excretion of Ca2+ will be higher to remove excessive Ca2+. This 

interpretation is further supported by the changes in urinary excretion of DPD, a marker for 

bone resorption43. DPD excretion was massively elevated in NaPi-IIb-/- mice upon prolonged 

Pi restriction, whereas no indication for enhanced bone resorption was detected in dietary-

matched WT. In agreement with the DPD data, BMD was decreased in Pi-restricted NaPi-IIb-

/- mice.  

NaPi-IIb-/- mice fed low Pi also showed higher urinary corticosterone, which is accepted to 

reflect its circulating levels. Glucocorticoids reduce bone formation rates44 and increase 

osteoclast number, promoting bone resorption45. The increase in glucocorticoids might 

partially explain the reduced bone mineralization as well as the increased osteoclast number 

observed in NaPi-IIb-/- deficient animals. Together, these observations strongly suggest that 

the compensation for the loss of active intestinal absorption of Pi requires the mobilization of 

Pi from bones when the dietary supply is low.   

In summary, we found that in response to dietary Pi restriction, renal compensation is not 

sufficient to maintain plasma Pi levels in mice lacking intestinal NaPi-IIb. Instead, and unlike 

to WT mice, NaPi-IIb-/- develop a transient hypophosphatemia followed by a compensatory 

mechanism that involves release of Pi from bone and may be mediated by glucocorticoids. 

Thus, active intestinal Pi absorption mediated by NaPi-IIb is critical to protect bone during 

periods of low dietary Pi availability.  
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Methods 

Animal handling Experiments were performed in two months old floxed-Slc34a2 male mice 

expressing villin-driven Cre recombinase (NaPi-IIb-/-) and their wild type litter mates (WT), 

generated as already described in detail8. Until reaching the indicated age, all mice were 

housed in single ventilated cages in an optimal hygienic husbandry facility. At the beginning 

of the experiment, mice were transferred to individual metabolic cages (Tecniplast, 

Buguggiate, Italy) and fed standard diets (0.8 % Pi, 1 % calcium), to collect basal urinary 

(under mineral oil) and stool samples. Then, animals were randomized in three groups: two of 

them received either a low (LPD; 0.1 % Pi, 1 % calcium) or high (HPD; 1.2 % Pi, 1 % 

calcium) Pi diet (Kliba Promivi AG, Switzerland) for 3 days, whereas the third group was fed 

the LPD for 14 days. Each of the 6 final experimental groups consisted of 10 animals. During 

the whole procedure mice were fed ad libitum with free access to water. Three days before 

harvesting samples, animals were placed again in metabolic cages to collect urine and stool. 

Mice were then anesthetized using ketamine and xylazine. Upon opening the abdominal 

cavity, blood was collected from the vena cava and centrifuged at 4°C in heparinized tubes for 

7 minutes at 7000 rpm. Plasma, organs and scrapings from mucosa of ileum were snap frozen 

in liquid nitrogen and stored at -80°C for further analysis. Urine was centrifuged at 10000 rpm 

for 10 minutes and stored at -20°C. Experiments were approved by the local veterinary 

authority (Veterinäramt Zürich) and performed according to Swiss Animal Welfare laws. 

Plasma, urine and stool parameters The levels of Pi in stool, urine and plasma were 

colorimetrically determined according to the Fiske Subbarow method46. For determination of 

fecal Pi content, dried stool was first dissolved in 0.6 M HCl for three days, homogenized and 

centrifuged as reported7. The Jaffe method was used to measure urinary creatinine47. Urinary 

calcium, sodium, potassium, magnesium and chloride as well as plasma calcium and 

creatinine were measured on a UniCel DxC 800 Synchron Clinical System (Beckman 
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Coulter), a service provided by the Zürich Integrative Rodent Physiology (ZIRP) facility. 

Calcium in stool was quantified using the QuantiChrom Calcium assay kit (Bio-Assay 

Systems). 

FGF23, PTH, vitamin D and deoxypyridinoline measurement The levels of intact FGF23 

and PTH in plasma were analyzed by ELISA (Immunotopics International, San Clemente, 

CA, USA), whereas plasma 1,25 (OH)2-Vitamin D3 was quantified by radioimmunoassay 

(Immunodiagnostic System, Frankfurt am Main, Germany). Urinary deoxypyridinoline (DPD) 

was assessed with an enzymatic immunoassay kit (MicroVue DPD EIA, Quidel Corporation, 

Athens, USA). All assays were performed according to the manufacturers’ protocol. 

Renal brush border membrane vesicle and homogenate preparation Brush border 

membrane vesicles (BBMV) were prepared from frozen kidneys as described before48. A 

polytron (PT 10-35, Kinematica GmbH, Lucerne) was used to homogenize kidneys in a buffer 

containing (in mM) 300 mannitol, 5 EGTA, 12 Tris-HCl (pH 7.1) and complete mini protease 

inhibitor cocktail (Roche, Switzerland). An aliquot of the homogenate was frozen and stored 

at -80°C for western blot analysis. Upon addition of MgCl2 (12 mM final concentration), the 

remaining homogenate was kept on ice for 15 minutes followed by centrifugation at 4500 rpm 

for 15 minutes at 4°C. The resulting supernatant was further centrifuged at 17500 rpm for 30 

minutes at 4°C to collect BBMV. The pellet, containing BBMV was resuspended in a buffer 

consisting of (in mM) 300 mannitol and 20 HEPES-Tris, pH 7.4.  

Uptake of 32P-phosphate, 3H-D-glucose and 14C-isoleucine into renal BBMV Uptakes 

were done according to the reported filtration technique49. Freshly prepared BBMV were 

incubated in solutions containing either 100 mM NaCl or 100 mM KCl, both solutions 

supplemented with 0.1 mM Pi and 32P as tracer.  3H-D-glucose and 14C-leucine uptakes were 

measured following the same protocol using solutions containing 0.1 mM D-glucose and 0.1 

mM isoleucine together with the indicated radiolabeled tracers. Uptakes were left to proceed 
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for either 30 seconds (3H-Glucose and 14C-leucine) or 1 minute (32P). The incorporation of 

tracers into the BBMV was measured with a β-counter (Packard BioScience). Remaining 

BBMVs were snap-frozen and stored at -80°C for western blot analysis. 

Total membrane fractions from ileum Scrapings from mucosa of ileum were homogenized 

in a buffer containing (in mM) 200 mannitol, 80 HEPES, 41 KOH and protease inhibitors, pH 

7.5. Homogenization was performed with MagNa Lyser Green Beads (Roche), in a Precellys 

24 Homogenizer. Upon centrifugation at 800 rpm for 20 minutes at 4°C, supernatants were 

further centrifuged at 41,000 rpm for 30 minutes at 4°C, and pellets containing total 

membrane proteins were resuspended in the same buffer used for homogenization. 

Western blot A Bio Rad DC protein assay kit (BioRad, Cressier, Switzerland) was first used 

to measure the protein concentration of renal homogenates and BBMV as well as of total 

membrane fractions from ileum. Then, 20 µg of proteins were mixed with Laemmli sample 

buffer, loaded on 9% or 12% acrylamide SDS-PAGE, and transferred onto polyvinylidene 

difluoride (PVDF) membranes (Immobilon-P, Millipore, Schaffhausen, Switzerland). Tris 

buffered saline (TBS) containing 5% fat free powder milk was used to block membranes for 

30 minutes at room temperature prior incubation overnight at 4°C with primary antibodies 

against NaPi-IIa10, NaPi-IIb6, NaPi-IIc50, TRPV551, CaSR (Thermofisher Scientific), 

Calbindin D28k (SWANT, Marly, Switzerland), Cyp24a1 (Protein Tech, Manchester, United 

Kingdom), and β-actin (Sigma-Aldrich, Buchs, Switzerland). Upon 3 washes with TBS, 

membranes were again blocked and incubated for 2 hours at room temperature with the 

appropriate (anti-mouse or anti-rabbit) secondary antibody linked to horseradish peroxidase 

(HRP) (Promega AG, Dübendorf, Switzerland). After 3 washes with TBS, membranes were 

exposed to HRP substrate (Western Chemiluminescence HRP Substrate, Millipore, 

Schaffhausen, Switzerland) for 5 minutes. Chemiluminiscence was detected with a LAS-4000 
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camera system (Fujifilm). Densitometric analysis was performed using ImageJ and the 

density of the proteins of interest was normalized to β-actin. 

Semi-quantitative real time RT-PCR Half a kidney was homogenized in RLT buffer 

supplemented with β-mercaptoethanol. RNA from homogenates was isolated using the 

Qiagen RNeasy Mini kit (Qiagen, Hombrechtikon, Switzerland) following the protocol 

provided by the supplier. TaqMan Reverse Transcription Kit (Applied Biosystems, Zug, 

Switzerland) was then used for reverse transcription of the isolated RNA according to the 

manufacturers’ protocol. To quantify relative gene expression, specific sets of primers and 

FAM/TAMRA-labelled probes for Cyp27b1 (Mm01165918_g1,) and Slc34a2 (Microsynth, 

Switzerland) were used, and their abundance was normalized to the expression of 

hypoxanthine-guanine phosphoribosyltransferase (HPRT, Microsynth, Switzerland). KAPA 

PROBE FAST qPCR Kit Master Mix (KAPA BIOSYSTEMS, Boston USA) containing 

primers (5 µM) and probe (25 µM) was used to amplify cDNA in a 7500 Fast Real Time PCR 

System (Applied Biosystems, Zug, Switzerland).  The cycle number at a given threshold (Ct) 

was measured and gene expression relative to the expression of HPRT was calculated 

according to the formula R=2^(CtHPRT-Ctgene of interest). 

Glucocorticoids Urinary glucocorticoids were quantified as described in the supplemental 

information. Full description of the method validation will be published elsewhere. Briefly, to 

each urine sample (500 μL) internal standards (corticosterone-D8 and creatinine-D3,100 

µg/mL) were added and samples were diluted to a final volume of 1.9 mL with sodium 

acetate buffer (100 mM, pH 4.3).  For de-conjugation ß-Glucuronidase (10000 units/mL) was 

added and samples were incubated in a thermoshaker thorough shaking (2 hours, 900 rpm, 55 

°C).  Samples were centrifuged (10 min, 16,000 × rcf, 4 °C) and supernatants (1800 µL) were 

used for solid phase extraction (SPE) on Oasis HBL SPE columns. Samples were eluted with 

methanol (3x 500 µL), followed by evaporation to dryness and reconstitution in methanol (25 
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µL, 10 min, 1300 rpm, 4 °C, thermoshaker). The urinary steroids were separated and 

quantified by ultra-pressure LC-MS/MS (UPLC-MS/MS) using an Agilent 1290 UPLC 

coupled to an Agilent 6490 triple quadrupole mass spectrometer equipped with a jet-stream 

electrospray ionization interface (Agilent Technologies, Santa Clara, CA, USA). Analyte 

separation was achieved using a reverse-phase column (1.7 μm, 2.1 × 150 mm; Acquity 

UPLC BEH C18; Waters). Masshunter software (Agilent Technologies) was used for data 

acquisition and analysis. 

Micro Computer Tomography Freshly isolated femurs were scanned in a Quantum GX 

microCT Imaging System (PerkinElmer) provided by the ZIRP facility. Distal epiphysis and 

subsequent diaphysis were imaged for 3 minutes using a 5 mm field of view at a tube current 

of 100 µA and 90 kV tube voltage. Analyze 12.0 program (AnalyzeDirect, Inc., Overland 

Park, USA) was used to asses bone mineral density (BMD) and bone volume data. Bones 

were analyzed from the end of the patellar surface of the distal epiphysis and 100 sections into 

the diaphysis were averaged. Grey scales of the scans were translated into BMD using a 

calibration curve obtained by scans of a 1200 mg/cm3 hydroxyapatite phantom (Micro-CT 

HA Phantom, QRM GmbH, Moehrendorf, Germany). 

Histomorphometric analysis Femoral bones stored in 98 % ethanol were washed and 

decalcified in 10% ethylenediamine tetraacetic acid over a period of 28 days. The bones were 

trimmed longitudinally, dehydrated through graded alcohols and routinely paraffin wax 

embedded. Sections (3-5 µm) were cut from the centers of the femurs, mounted on glass 

slides, deparaffinised in xylene, rehydrated through graded alcohols and stained with 

hematoxylin and eosin (HE) or subjected to cathepsin K immunohistochemistry (IHC), using 

standard protocols. IHC was performed using a rabbit anti-cathepsin K antibody (Abcam, 

United Kingdom). Briefly, sections were deparaffinised in xylene (2 × 5 min) and rehydrated 

in decreasing concentrations of ethanol (2 × 3 min washes in 100% ethanol, followed by 1 × 3 
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min wash in 96% ethanol). Sections underwent antigen retrieval by incubation with 10 mM 

citrate buffer at pH 6.0. Slides were then incubated for 1 h at 37°C with the primary antisera 

(1:200, diluted in Dako antibody diluent, Dako-Agilent Technologies, Denmark), followed by 

incubation for 30 min with a horse radish peroxidase (HRP)-labeled polymer, conjugated to a 

secondary anti-rabbit antibody (Dako EnvisionTM System, Dako-Agilent Technologies). The 

reaction was visualized using 3-amino-9-ethylcarbazole (AEC) as chromogen for 10 min, 

followed by light counterstain with hematoxylin, rinsing for 5 min in tap water and 

dehydration in ascending alcohols, clearing in xylene, coverslipping and mounting. All 

immunohistological stains were performed using an Autostainer (Dako Autostainer Universal 

Staining System Model LV-1, Dako-Agilent Technologies). 

All slides were scanned using a digital slide scanner (NanoZoomer-XR C12000; Hamamatsu, 

Japan), and the number of cathepsin K-labelled trabecular osteoclasts was calculated in the 

digital slides using the Visiopharm Integrator System (VIS, version 4.5.1.324, Visiopharm, 

Hørsholm, Denmark). Briefly, five circular regions of interest (ROI) with a radius of 100 μm 

were randomly selected in each bone in a blinded fashion. The regions of interest were placed 

in the primary spongiosa beneath the growth plate, excluding the cortical bone (modified 

from52). A threshold classification allowed recognition of positive (red-brown) multinucleated 

cells in each ROI, and the results were expressed as number of positive cells per 100 μm.  

Statistical Analysis Unpaired student’s t-test or ANOVA with Bonferroni correction for 

multiple comparisons were used to analyze comparisons. P-values < 0.05 were considered as 

significant. Data is presented as Mean + SEM. 
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Figure 1:  Intestinal ablation of NaPi-IIb and Pi deprivation causes transient 

hypophosphatemia and stimulates urinary calcium excretion. Fecal (A), urinary (B) and 

plasma (C) concentrations of Pi as well as fecal (D), urinary (E) and plasma (F) levels of Ca2+ 

were measured in samples collected from wild type (WT) and NaPi-IIb-/- mice (KO). Mice 

were fed diets containing normal (N), high (H) or low (L) amounts of Pi. The high Pi diet was 

provided for 3 days (3d) whereas the low Pi diet was provided for 3 (3d) and 14 days (14d), 

respectively.  Data is presented as mean + SEM (n=10) and was analyzed by ANOVA-

Bonferroni. Significant differences are indicated as: a/* p<0.05, b/** p<0.01 and 

c/***p<0.001, where letters indicate significant changes versus normal diets (or versus the 

high Pi diet, if normal diet is not available), and asterisks mark differences between genotypes 

under the same dietary condition. 

Figure 2: Hormonal adaptation to dietary Pi is similar in both genotypes. Circulating 

levels of 1,25-(OH)2 vitamin D3 (A), PTH (D) and intact FGF23 (E) were measured in plasma 

collected from wild type (WT) and NaPi-IIb-/- mice (KO) fed diets containing high (H) or low 

(L) amounts of Pi. The high Pi diet was provided for 3 days (3d) whereas the low Pi diet was 

provided for 3 (3d) and 14 days (14d). Renal mRNA levels of Cyp27b1 (B) and renal protein 

abundance of Cyp24a1 (C) were measured after 14 days of Pi restriction. Data is presented as 

mean + SEM (n=10), and was analyzed by ANOVA-Bonferroni. Significant differences are 

indicated as: a p<0.05, b p<0.01 and c p<0.001, were significances refer to high dietary Pi 

groups (no differences between genotypes were observed). 

Figure 3: Upon Pi restriction, Pi transport into renal BBMVs and expression of NaPi-IIa 

and NaPi-IIc is similar in both genotypes. Uptakes of Pi (A), leucine (B) and glucose (C) 

were performed with renal BBMVs isolated from wild type (WT) and NaPi-IIb-/- mice (KO) 

after 14 days of dietary Pi restriction (n=10). Experiments were carried out in the presence 

(Na) and absence (K) of Na+. The renal expression of NaPi-IIa (D) and NaPi-IIc (E) was 
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quantified by Western blot of the same BBMV used for the uptake experiments; the bar 

graphs show the corresponding densitometric analysis normalized for the expression of β-

actin (n=10). The abundance of NaPi-IIb in ileum (F) was quantified by Western blot in 

samples from wild type mice (WT) fed 3 days high (H) or low Pi (L) diets as well as 14 days 

low Pi (n=7); one sample of a corresponding dietary-matched NaPi-IIb-/- mice (KO) was also 

included; the bar graph show the densitometric analysis normalized for the expression of β-

actin. Uptakes and densitometry values are shown as mean + SEM. Differences between 

genotypes were analyzed by unpaired t-test (A-E), whereas differences versus the high dietary 

group were analyzed by ANOVA-Bonferroni (F). Significant differences are indicated as * 

p<0.05 and ** p<0.01. 

Figure 4: Upon Pi restriction, the expression of proteins involved in renal calcium 

handling is similar in both genotypes. Renal protein abundance of Cabindin 28K (A), 

TRPV5 (B) and calcium sensing receptor (C) was assessed by Western blot in homogenates 

(A, C) or BBM (B) from kidneys of wild type (WT) and NaPi-IIb-/- animals (KO) after 14 

days of Pi restriction. Corresponding densitometric analysis was normalized by the expression 

level of β-actin and data is shown as mean + SEM (n=10). Differences between genotypes 

were analyzed by unpaired t-test. 

Figure 5: Urinary excretion of deoxypyridinoline (DPD) and corticosterone as well as 

bone mineral density (BMD) and osteoclast number per tissue area are altered in Pi-

restricted NaPi-IIb-/- mice. Urinary DPD (A) levels were measured in samples from wild 

type (WT) and NaPi-IIb-/- mice (KO) mice fed 3 days high (H) or low (L) Pi diets as well as 

14 days low Pi. Corticosterone levels in urine (B) were determined in samples from mice fed 

normal diet (N) as well as after 14 days of Pi restriction (L). Cortical (C) and trabecular (D) 

BMD were measured in femurs of mice fed normal diet (N) as well as after 14 days Pi 

restriction. Numbers of osteoclasts expressing cathepsin K were assessed in the primary 
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spongiosa of wild type (WT) and NaPi-IIb-/- mice (KO) under normal dietary conditions (N) 

as well as after 14 day low Pi intake and expressed as average number of cells per 100 μm2 

(E). Representative pictures of cathepsin K-decorated osteoclasts (red-brown reaction, 

arrowheads) in the metaphysis of wild type and NaPi-IIb-/- mice after 14 days of Pi restriction 

are shown in panel F. Data is presented as mean + SEM (n≥7) significance was analyzed by 

ANOVA-Bonferroni. Significant differences are indicated as: a/* p<0.05, b/** p<0.01 and 

c/*** p<0.001, where letters represent the difference versus the corresponding high dietary 

group, whereas asterisks mark differences between genotypes under the same dietary 

conditions. 

Table 1: Metabolic data. Additional parameters measured in wild type (WT) and NaPi-IIb-/- 

mice (KO) fed diets containing normal (N), high (H) and low (L) amounts of Pi. The high Pi 

diet was provided for 3 days (3d) whereas the low Pi diet was provided for 3 (3d) and 14 days 

(14d).  Data is presented as mean + SEM (n≥10) and was analyzed by ANOVA-Bonferroni. 

Significant differences are indicated as: a/* p<0.05, b/** p<0.01 and c/***p<0.001, where 

letters indicate significant changes versus normal diets (or versus the high Pi diet, if normal 

diet is not available), and asterisks mark differences between genotypes under the same 

dietary condition.  

Table 2: Additional urinary parameters measured in samples collected from wild type 

(WT) and NaPi-IIb-/- mice (KO) after 14 days Pi restriction. Data is presented as mean + 

SEM (n≥10) and was analyzed by unpaired t-test. 
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Figure 2
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Figure 4
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SUPPLEMENTS 

The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone 
during dietary phosphate restriction 

Thomas Knöpfel1,3, Eva M. Pastor1,3, Udo Schnitzbauer1,3, Denise V. Kratschmar2,3, Alex Odermatt2,3, 
Nati Hernando1,3*, Carsten A. Wagner1,3* 

1Institute of Physiology, University of Zurich, Switzerland, 2Division of Molecular and Systems Toxicology, 
Department of Pharmaceutical Sciences, University of Basel, Switzerland, 3National Center for 

Competence in Research NCCR Kidney.CH 

 

Quantification of steroids and creatinine in mouse 24 hours urinary samples 

1.1. Chemicals and reagents 

Acetonitrile and formic acid at UHPLC-grade were purchased from Biosolve (Dieuze, France) or 

Sigma-Aldrich (St. Louis, MO). Distilled water was obtained using a MilliQ water purification 

system (Millipore, USA). Corticosterone-D8 (98% isotopic purity) was purchased from C/D/N 

Isotopes Inc (Pointe-Claire, Canada). Creatinine, corticosterone, 11-dehydrocorticosterone, 5α -

dihydrocorticosterone (5α-DHB), creatinine-D3 (99.9% isotopic purity) and all other chemicals 

were obtained from Sigma-Aldrich (St. Louis, MO) of the highest grade available. 

1.2. Instrumentation and analytical conditions 

Solid phase extraction: Extraction was performed by use of a vacuum manifold (Agilent 

Technologies, California, USA) equipped with Oasis HBL SPE cartridges (60 mg, Waters, 

Massachusetts; USA). Samples were evaporated to dryness using a Genevac EZ-2 plus 

centrifugal vacuum evaporator (Genevac, Suffolk, UK). 

Analytical instruments: Ultra-High performance liquid chromatography-tandem mass 

spectrometry (UHPLC-MS/MS) using an Agilent 1290 UHPLC instrument equipped with a binary 

solvent delivery system, an auto sampler (at 4 °C), and a column oven, coupled to an Agilent 

6490 triple quadrupole mass spectrometer equipped with a jet stream electrospray ionization 

interface (AJS-ESI) (Agilent Technologies, Basel, Switzerland) was used for steroids and 

creatinine quantification.  
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Liquid chromatography: The chromatographic separation was performed on a Waters Acquity 

UPLC BEH C18, 1.7 µm, 2.1×150 mm, column (Waters, Wexford, Ireland) at column 

temperature of 50 ± 0.8 ºC for creatinine and 54 ± 0.8 ºC for steroids. The mobile phase was 

water-acetonitrile-formic acid (80/20/0.1; v/v/v) with a constant flow rate of 0.6 mL/min for 

creatinine and water-acetonitrile-formic acid (70/30/0.1; v/v/v) with flow rate of 0.5 mL/min for 

steroids respectively. Creatinine was separated within 2 min, followed by 1 min column wash at 

100 % acetonitrile and subsequent column re-equilibration for 1 min. Steroids were separated 

with 30 % of mobile phase B at a ramping flow rate from 0.5 ml/min to 0.2 ml/min within 0 - 4.8 

min, followed by separation at constant flow rate of 0.2 mL/min using a gradient of B (30 – 10%) 

during 4.8-7 min and 7.5-13 min at 30 % of mobile phase B. Separation was followed by column 

wash (100% of mobile phase B, 0.5 mL/min) at 15 min onwards and the run was stopped after 

18 min, followed by re-equilibration of the column for 3 min. A methanol in water (75/25 v/v) 

mixture was used as needle and needle-seat flushing solvent for 10 s after sample injection. 

Samples were stored until analysis in the auto sampler (maintained at 4 °C). The injection 

volume was 1 µL per creatinine sample and 5 µL for steroids respectively.  

 

Mass spectrometry: Characteristic precursor ions and their corresponding product ions for 

multiple reaction monitoring (MRM) were defined by use of the compound optimizer software 

module included within the Mass Hunter Workstation software (Agilent Technologies, California, 

USA). Analytes were quantified using the corresponding mass transitions: Creatinine: m/z 

114.07→44.1 (29 V, Dwell 100 ms) and m/z 114.0742.1 (40 V, Dwell 200 ms); creatinine-D3 

117.07→47.1 (29 V, Dwell 100 ms) and m/z 117.0745.1 (29 V, Dwell 200 ms); corticosterone 

m/z 347.2→329.2 (9 V, Dwell 150 ms) and m/z 347.2→121.1 (21 V, Dwell 200 ms); 

corticosterone-D8 m/z 355.2→125.1 (25 V, Dwell 100 ms); 11-dehydrocorticosterone m/z 

345.2→121.1 (21 V, Dwell 300 ms) and m/z 345.2→90.9 (60 V, Dwell 200 ms) and 5α-DHB m/z 

349.2→313 (13 V, Dwell 150 ms) and m/z 349.2→104.9 (41 V, Dwell 200 ms). The AJS-ESI 

source conditions were optimized using the integrated source optimizer tool and set in the 

positive ion mode as following: Nitrogen gas temperature (290 °C), gas flow (14 l/min), nebulizer 

(20 psi), sheath gas temperature (350 °C), sheath gas flow (11 l/min), capillary voltage (4000 V), 

and nozzle voltage (1500 V). (Agilent Technologies, California, USA, B.08.00/Build 8.0.8023.0).  

Data analysis: The MassHunter Workstation Acquisition software Version B.08.00/Build 

8.0.8023.0 and MassHunter Workstation Software Quantitative Analysis Version B.07.01 /Build 
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7.1.524.0, respectively (Agilent Technologies, California, USA) was used for data acquisition 

and subsequent data analysis. 

Sample preparation: Mouse urine samples were centrifuged at 16.1 x g for 30 min at 4°C. To 

500 μl of urinary supernatant or calibrator an internal standard solution containing 

corticosterone-D8 and creatinine-D3 (100 µg/ml) was added and samples were diluted to a final 

volume of 1.9 mL with sodium acetate buffer (100 mM, pH 4.3). To each urine sample ß-

Glucuronidase from Helix promatia (10 000 units/mL) were added and samples were incubated 

in a thermoshaker thorough shaking (2 hrs, 900 rpm, 55 °C). Samples were centrifuged (10 min, 

16,000 × rcf, 4 °C). For solid phase extraction supernatant of each sample or calibrator (1800 

µL) was transferred to Oasis HBL SPE cartridges (preconditioned with methanol and water, 3 

mL each). Samples were washed with water (3x1 mL), water/methanol (3x1 mL, 90/10 v/v) and 

water-methanol-ammonia (1 mL, 60/40/2; v/v/v). Samples were allowed to dry under full vacuum 

for 5 minutes and eluted with methanol (3x 500 µL). Samples were evaporated to dryness and 

reconstituted in 25 µL methanol (10 min, 1300 rpm, 4 °C, thermoshaker). 

Chromatographic performance: Ten-point calibration curves over the range of 0.002 to 0.6 

mmol/L for creatinine and 1.9 to 500 nmol/L for corticosterone, 11-dehydro-corticosterone and 

5alpha-dihydro-corticosterone were generated by a zero sample and nine calibrators in 

phosphate buffered saline. The coefficient of determination (R2) was 0.99 and at least 75% of all 

calibrators had to be valid. 
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