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CHAPTER 1
Preamble

1.1 General introduction

According to the newest Intergovernmental Panel on Climate Change (IPCC) re-

port, most ecosystems are vulnerable to climate change even at rates of climate

change projected under low- to medium-range warming scenarios (Cramer et al.,

2014). Furthermore, changing climate exacerbates other human impacts on biodi-

versity, such as land use change or pollution (Cramer et al., 2014). Understanding

the interactions among the different elements of global change, vegetation distribu-

tion and the services provided by ecosystems to humanity are some of the major

research challenges of the twenty-first century (Hughes, 2000; Sala et al., 2000;

Thuller, 2007; Franklin et al., 2016). Scientists have “high confidence that global

temperatures will continue to rise for decades to come, largely due to greenhouse

gases produced by human activities” (Stocker et al., 2013). Some human-induced

factors (called forcings) that affect climate are global in nature, while others differ

from one region to another (Stocker et al., 2013). Accordingly, consequences of

climate change on ecosystems differ across regions, vary over time and are expected
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to be larger in developing than in developed countries (Thomas et al., 2008).

Several global meta-analyses (Parmesan and Yohe, 2003; Root et al., 2003,

2005; Rosenzweig et al., 2008; Poloczanska et al., 2013) have provided overviews

on the fingerprints of climate change impacts across natural systems (Parmesan

et al., 2013). These fingerprints are biological trends (e.g significant range shifts,

advancement of spring phenological events, community (abundance) changes) ob-

served in line with climate change predictions. In books (Hannah, 2010; Newman

et al., 2011; Post, 2013) and primary research studies, there is ample evidence show-

ing significant changes observed at species, population, community and ecosystem

levels. An increase in the net terrestrial ecosystem productivity has been observed.

Most studies hypothesize that the main driver of this trend originates from ris-

ing CO2 through stimulation of photosynthesis (Ramakrishna et al., 2003). Similar

trends are observed in the case of biomass, soil carbon stocks (Cramer et al., 2014),

and evapotranspiration (Wang et al., 2010) in the terrestrial ecosystem; these are

vulnerable due to rising temperature, drought and fire projected for the 21th cen-

tury. As the report by Settele et al. (2014) has summarized, “Species respond to

climate change through genotypic adaptation and phenotypic plasticity; by mov-

ing out of unfavorable and into favorable climates; or by going locally or globally

extinct” (Dawson et al., 2011; Bellard et al., 2012; Penuelas et al., 2013). Species

range shifts (Williams et al., 2007; Burrows et al., 2011; Chen et al., 2011) go along

with changes in species abundances (Jiguet et al., 2010; Mair et al., 2014), which

can effect ecosystem services when they affect pollinators or vectors for various

diseases (Zarnetske et al., 2012). Among all of the different impact pathways in

which climate change exerts influence on the functioning of ecosystems, phenologi-

cal shifts are perhaps the most widespread and most studied. Phenological changes

were observed during the last decades among plants, fungi and animals (Fitter and

Fitter, 2002; Menzel et al., 2006; Kauserud et al., 2010; Ge et al., 2015). Numerous
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studies document an earlier spring by about 2.3 to 5.2 days/decade in the last 30

years in response to recent climate warming (Parry et al., 2007). Such observa-

tions are crucial to be further investigated because of their role in the evolutionary

response to recent climate change (Bradshaw and Holzapfel, 2008).

1.2 Introduction to phenology

A brief history of phenology

The word phenology originates from the Greek expression “phaino”, which means

“to appear” (Demarée and Rutishauser, 2009). Examples of phenological events

(phenophases) include growth stages of various living organisms’. These events are

repeated year after year, which constitute the seasons of the year (Stoller, 1956;

Lieth, 1974). Phenological events include, for instance, the date of the emergence

of leaves and flowers, the date of leaf colouring of deciduous trees, the first flight

of butterflies, the first appearance of migratory birds or the dates of egg-laying of

birds and amphibians. The documentation of growth stages of living organisms

has a long tradition, which recently gained new importance regarding climate

change research and environmental awareness (Demarée and Rutishauser, 2009).

Phenology, the timing of seasonal activities of animals, plants and fungi, is “the

simplest process in which to track changes in the ecology of species in response to

climate change” (Parry et al., 2007).

A complete overview on the history of phenological observations is given by

Puppi (2007), starting from the oldest written records originating from China un-

til the Renaissance in the European society. Among others, the contribution of C.

von Linné (1707–1778) to phenology must be highlighted. He investigated nature

in many aspects; for instance, he documented observations on the effect of climatic

factors on plants for decades. Furthermore, temporal patterns of flower opening
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and closure within a day are known as Linné’s floral clock (Frund et al., 2011).

R. A. F. de Réaumur (1683–1757) formalized the relation in mathematical terms

(1735), when the sum of the temperatures of the previous months reaches a cer-

tain value as the day of the year when flowering takes place. After Linnaeus, the

development of phenological monitoring networks followed, mostly organized by

services or societies that dealt with meteorology or geography (Puppi, 2007). A.

Quetelet (1796–1874) established the first phenological network for observations

of periodic events and published a guide for the methodology of observations in

1849. C. Morren (1807–1858) used the term phenology for the first time in a pa-

per (1852) entitled“Phenological memories of the winter 1852–1853” (in French) in

which he recorded extraordinary events, such as second flowering. The first pheno-

logical map was made by H. Hoffmann, the founder of the European Phenological

Network in 1881 (Puppi, 2007). In Europe, the most important network, the In-

ternational Phenological Gardens (IPG) (Chmielewski et al., 2013) was founded

in 1957. Bruns et al. (2003) recommended the establishment of the BBCH system

(Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie), which is

used to standardize phenological growth stages of plants (Meier, 2001; Meier et al.,

2009).

In the meantime in America, H. D. Thoreau was the first to conduct systematic

observations of phenophases, starting in 1852; later he became known as the father

of phenology (Stoller, 1956). Shortly affter, in 1889, A. D. Hopkins (1857–1948)

formulated the relationship of elevation, latitude and longitude to seasonal events

such as the coming of spring. The relationship was named “Hopkins Law of Bio-

climatics”. The first extensive phenological observation network in the USA began

in the late 1950s with an agricultural focus to improve predictions of crop yield. J.

M. Caprio began the first of these projects in 1956; it eventually included around

2,500 volunteer observers distributed throughout 12 states of the USA (Schwartz,
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2008).

In England, R. Marsham (1708–1797) is known as the father of phenology,

since he started his observations for the first time in 1736. Other known recorders

(Tookey and Battey, 2010) are G. White (1720–1793) and W. Markwick (1739–

1812), whose pioneer work was continued by the establishment of the national

network in 1875.

In Hungary, the oldest phenological observations are related to an ancient, but

still ongoing tradition in Kőszeg that people drawing the new sprouts of common

grapevine (Vitis vinifera L.) to a book, called “A szőlő jövésének könyve” (The

Book of the “Grape’s Coming”) on the day of Saint George since 1740. There is a

similarly long-term (1851–1994), however nationwide dataset about the flowering

times of black locust (Robinia pseudoacacia L.) based on foresters’ and beekepers’

observations (Walkovszky, 1998). There are also several shorter or longer pheno-

logical datasets about other plant species in Hungary (Csecserits and Czúcz, 2008).

Following these sporadic and fragmented efforts, A. Réthly (1879–1975) called for

a more systematic nationwide network of plant phenological observations in 1936

(Réthly, 1936). Following his advice, the Hungarian Meteorological Service orga-

nized the national phenological observation network in 1952 (see Chapter 2.2 for

more information), which unfortunately fall apart due to lack of funding in 2000

(Dunay, 1984; Szalai et al., 2008). Fortunately, not all phenological observation

have disappeared from Hungary; several modern naturalists persevered, and still

persevere. The most important recent, ’private’ phenological datasets include the

works of Szaniszló Priszter, Miklós Galántai, and Zoltán Hámori (Csecserits and

Czúcz, 2008; Isépy and Szabó, 2011).

Since the 1960’s, new operating observation networks have been established all

over the world, which provide long-term historical datasets for recent bioclima-

tological studies. Details about further phenological data collection methods are
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given in Chapter 1.3. But beforehand, let me give an overview on the main drivers

and feedbacks of phenological events in the upcoming passage.

Drivers and feedbacks of phenology

In most climatic zones of the world, there are seasons characterized by different

combinations of environmental factors, which may directly regulate the timing

of phenological events, or they may act as cues that set the organisms’ inter-

nal biological clock (Forrest and Miller-Rushing, 2010). Growth stages of plants

therefore reflect environmental conditions, genetic factors and the characteristics

of the climate (Koch et al., 2009a). Therefore, phenophases can be used as bio-

logical indicators of climate change (Donnelly et al., 2004; Koch and Scheifinger,

2004). Several signs for the consequences of climate change are currently observed

wordwide. For instance, in Europe it is shown that the phenological events of

spring/summer are advancing at an average of 2.5 days per decade (1971-2000)

(Menzel et al., 2006). These tendencies are shown for various plant and animal

taxa across several regions (Settele et al., 2014) of the Northern (Schwartz et al.,

2006; Gordo and Sanz, 2010) and Southern Hemisphere (Chambers et al., 2013).

Such patterns of responses are neither uniform nor universal; and the causes of

common patterns are still undiscovered (Wilczek et al., 2010).

Differences in phenological patterns originate from certain levels of variability

(after Diez et al., 2012). At individual level, plant age and the position of the

branches (axillary vs. terminal) are causes for the variation in flowering time.

Among individuals (within species), the following factors were identified (Diez

et al., 2012) as reasons for variability so far: (i) spatial variation in environmen-

tal conditions (e.g. cumulative degree days, thawing degree days, vernalisation,

soil moisture, drought index, snowmelt, soil temperature), (ii) resource availability

(plant size, availability of stored vegetative resources), (iii) damage (cotyledon or
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leaf damage, pathogen infection), (iv) genotype and its interaction with the envi-

ronment and (v) neighborhood density. While among populations, (i) history of

natural selection in response to environmental cues, (ii) elevation or aspect, (iii)

presence of invasive species, (iv) temperature or vernalisation, (v) photoperiod

and temperature interaction, (vi) mating system and (vii) abundance seem to be

driving factors (Diez et al., 2012). It is known that various phenophases and plant

species respond differently to various environmental factors (Defila and Clot, 2001).

Among species, the following factors were shown (Diez et al., 2012) as reasons for

variability: (i) native vs. exotic species, (ii) duration of flowering, (iii) photope-

riod, (iv) traits (fleshy vs. non-fleshy fruits, pollination syndrome, seed mass, plant

size) and (v) phylogenetic relatedness, but with unknown underlying cause. And

finally, these drivers were described among communities: (i) disturbance or habi-

tat type, (ii) rainfall, (iii) geographic effects (altitude per temperature, latitude,

photoperiod) and (iv) seasonal variation in rainfall and temperature in tropical

dry forests and rain forests (Diez et al., 2012).

Phenological events do not only have drivers but also interactions on a mul-

tiple scale (as shown in Figure 1.1). Such interactions tend to have feedback to

the weather (short term) and climate (long term) system (Penuelas et al., 2009;

Richardson et al., 2013; Franklin et al., 2016) occuring on a time scale ranging

from minutes (e.g. transpiration) to centuries (e.g. species distribution; Morisette

et al. (2009)). These feedbacks affect a wide range of ecological processes, in-

cluding species interactions (Memmott et al., 2007; Yang and Rudolf, 2010; Raf-

ferty et al., 2015; Thackeray et al., 2016), species demography (Miller-Rushing

et al., 2010), species distribution (Bertin, 2008; Chuine, 2010) and success of ex-

otic species against native ones (Wolkovich et al., 2013). All of these influences

have evolutionary consequences (Forrest and Miller-Rushing, 2010; Gienapp et al.,

2014; Johansson et al., 2015) since organisms respond to climate change via accli-
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Figure 1.1: Conceptual model showing some of the ways in which plant phenol-
ogy in temperate climates is intricately linked to variation in weather (short term,
days to weeks) and climate (long term, years to centuries), feeds back to the atmo-
sphere and climate system, and influences ecological interactions at multiple scales
(individual to community to ecosystem) and trophic (producers to consumers)
levels. Underline denotes ecosystem services from which management or economic
benefits are derived (Morisette et al., 2009).

mation (Hofmann and Todgham, 2010) and adaptation (Gienapp et al., 2008).

Several consequences of these feedbacks have already been described. For in-

stance, Cleland et al. (2012) showed that those plant species that phenologically

track climate change tend to experience performance (biomass, percent cover, num-

ber of flowers, or individual growth) increases, whereas those that do not track it

tend to experience performance declines. Similarly, an analysis (Moller et al., 2008)

of phenological trends of one hundred breeding bird species demonstrated that
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species that did not advance their spring migration declined in abundance (1990–

2000), whereas those species that did, tended to demonstrate stable or increasing

populations. Furthermore, a field survey from Colorado, using a quantitative ge-

netic experiment (Anderson et al., 2012) estimated a response to selection of 0.2

to 0.5 days acceleration in flowering per generation, which could account for more

than 20 per cent of the phenological change observed in the long-term (1973–2011)

dataset. Vanasch et al. (2013) also demonstrated selection for delayed egg-hatching

in response to climate change, which reduced asynchrony between winter moths

and their food plant. The number of such examples is growing; therefore, a unified

framework, proposed by Visser et al. (2010), is needed. It integrates approaches

of different disciplines (the view of evolutionary ecologists, physiologists, chrono-

biologists, and molecular geneticists) to explain phenological events.

1.3 Research directions in phenology

As in every dinamically developing field of science, there are several main research

directions in phenology as well. Based on my own experience gained from the

study of this field, I have categorized the following research areas of phenology

(depicted in Figure 1.2), which provide a framework for the upcoming Chapters.

Detection of past climate change impacts

Statistical analysis plays a major role in climate change detection (Lee et al., 2005)

and impact studies. In order to detect causes and consequences of variation in

phenology, researchers require tremendous amount of data from large areas of the

world. Various methods of phenological data collection providing a data source for

this purpose (Fitchett et al., 2015) have been recorded since the first observation.

These methods are briefly overviewed in the following paragraphs.
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Figure 1.2: Main research directions in phenological research.

The predominant approach to phenological data collection is ground-based

recording of the timing of annually recurrent events for a particular species and

location (Fitchett et al., 2015). Such phenological observations have been carried

out routinely for over 50 years by professionals and different governmental and

non-governmental organisations in most European countries (Nekovár et al., 2008;

Scheifinger and Templ, 2016).

The COST 725 Action∗ collected and established a reference (1971–2000) phenol-

ogy database from these observations (Nekovár et al., 2008; Koch et al., 2009b,c).

An analysis of this database provided the most comprehensive study about pheno-

logical shifts matching climate change (Menzel et al., 2006). The study highlighted

that 78% of all leafing, flowering and fruiting records shifted earlier (30% signifi-

cantly) and only 3% delayed in response to warming temperature in Europe (Men-

∗The COST 725 Action titled: Establishing a European phenological data platform for cli-
matological applications.
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zel et al., 2006). As a successor of the COST 725 Action, the PEP 725† project

aims to maintain and extend the Pan European Phenological (PEP 725) Database‡

with an open, unrestricted data access for science, research and education. Ideally,

many more scientific articles (Menzel et al., 2006; Duputie et al., 2015; Rodriguez-

Galiano et al., 2015; Wang et al., 2016) further Bachelor and Master theses about

the analysis of the PEP725 or similar databases will be published.

The increasing number of publications indicates that phenological data have

rapidly become a valuable source for impact studies since trends of such obser-

vations are known as fingerprints (Parmesan and Yohe, 2003; Root et al., 2003)

and biological indicators (Donnelly et al., 2004; Koch and Scheifinger, 2004) of

climate change. In Chapter 2 and Chapter 3 such databases (established by the

thesis author) have been analysed to detect impacts of climate change in Hungary

(Szabó et al., 2016)§ and across biogeographical regions of Europe (Templ et al.,

2017).

One subtype of such long-term (over many years) ground-based observations is

recorded by non-professionals called citizen scientists (Bonney et al., 2009; Dickin-

son et al., 2012). The role of citizen scientists in phenological research is discussed

in Chapter 6.

Another type of data source is originating from phenological experiments.

These provide short-term phenological observations made in an environment where

the environmental factors are controlled to simulate and study the effect of climatic

drivers, such as climate extremes (Jentsch et al., 2009; Wolkovich et al., 2012) on

phenological events. On the other hand, a comparison of observational studies

and warming experiments including four continents and 1634 plant species showed

†http://www.pep725.eu
‡The thesis author led the development of a manuscript about this database to be published

in Scientific Data as Templ, B., Scheifinger, H., Hubner, T., Koch, E., Paul, A., Ungersbuck
M. and 22 European Partners: PEP 725 – Pan European Phenological Database.

§Szabó, B. is the maiden name of Templ, B.
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(Wolkovich et al., 2012) that climate experiments may not reflect species’ responses

to climate change in nature; therefore, the combination of data sources is required.

The emergence of satellite remote imaging in the 1970’s and the development of

Advanced Very High Resolution Radiometer (AVHRR) technology in 1981 (Fitch-

ett et al., 2015) are additional approaches towards studying phenological responses

to climate change and became available through the measuring of leaf reflectance

(Stoeckli and Vidale, 2004). Since 2000, AVHRR has increasingly been replaced by

higher spatial resolution MODIS (Moderate Resolution Imaging Spectroradiome-

ter) imagery (Zhang et al., 2003), with the Enhanced Vegetation Index (EVI)

replacing the Normalized Difference Vegetation Index (NDVI) (Penuelas et al.,

2004; Pettorelli et al., 2005).

Digital repeat photography (Sparks et al., 2006; Sonnentag et al., 2012) and

herbarium records in biological collections (Robbirt et al., 2011; Molnár et al., 2012;

Rawal et al., 2015) are among the most recent additions to the range of methods

used in phenological data collection; these methods also provide a valuable source

for the detection of climate change impacts.

Prediction of future impacts

One of our challenges is the question of how to synthesize the growing list of

observations (overviewed in Chapter 1) indicating the influences of climate change

in order to enable the prediction of where, when and which changes will occur

(Montoya and Raffaelli, 2010; Pettorelli, 2012). This is very imprtant because the

”uncertainties about future vulnerability, exposure, and responses of interlinked

human and natural systems are large (high confidence)” (Field et al., 2014). In

this section, I intend to highlight the ways of how the timing of phenological events

play a key role in the life of humans.

In agriculture and horticulture, phenological observations have a long tradition
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and importance since many management decisions and the timing of field works

(planting, fertilizing, irrigating, crop protection etc.) are based on plant develop-

ment (Chmielewski, 2013). Crop phenology prediction is a growing research field

since the 1980’s (Hodges, 1990) because an earlier start of crop flowering and matu-

rity has been documented in recent decades (Craufurd and Wheeler, 2009). These

changes led to the trend that the farmers’ activities (sowing, harvesting) also occur

earlier, which indicates a change (i) in crop season length (Menzel et al., 2006),

(ii) in farm management practices, and (iii) introduction of new cultivars – which

can produce the same yield (Craufurd and Wheeler, 2009). Phenological data can

support management (e.g. effective timing of herbicide and fungicide spraying)

and conservation (predictions of species vulnerability) needs, as summarized by

Rosemartin et al. (2014), the effective timing of herbicide and fungicide spraying.

Plant-pollinator interactions are critical components of a healthy ecosystem.

However, these interactions are at risk due to potential phenological mismatches

that may disrupt the timing of successful pollination (Solga et al., 2014). On the

other hand, there are examples, which do not confirm the occurance of mismatches

in plant-pollinator interactions. Bartomeus et al. (2011) have found that pheno-

logical changes in bees have paralleled changes (over the past 130 years, based on

observations from North-America) with the plants that they visit. An experimen-

tal study from Gezon et al. (2016) has shown (based on snow removal vs. control

treatments) that plants face tradeoffs between pollination services and suscepti-

bility to frost damage. Therefore, climate change may constrain the success of

early-flowering plants not through plant-pollinator mismatch but through the di-

rect impacts of extreme environmental conditions (Gezon et al., 2016). Not only

bees but also beekeepers face challenges world-wide since several predators, par-

asites and pathogenes affect honeybees. As the phenological responses of plants

are species-specific and affected by local environmental conditions, beekeepers must
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track local flowering schedules and regularly monitor hive conditions (Gupta et al.,

2014).

Phenology has a direct importance for cultural ecosystem services as well. In

Japan, “hanami” (flower viewing) is the centuries-old practice of picnicking under

a blooming cherry tree (Prunus sp.). Since AD 812, people enjoy the view and

record the first flowering dates of sakura, which became part of the Japanese art

and culture (Aono and Kazui, 2008).

Solely in Europe, even more people, circa 150 million, are affected by another

phenological event, namely the start of the pollen season. Allergy is the most

common chronic disease in Europe. It is known to be triggered by environmental

allergens, such as pollen grains from a variety of plants. Accurate prediction of

pollen emission (start of allergy season) is an important service, which, we think

(Scheifinger et al., 2016), can be improved through enhanced model input (e.g.

real-time phenological data).

Changes in climate may result in changes in population growth rates of agricul-

turally important insects. These result in (i) increases in the number of generations,

(ii) extension of the development season, (iii) changes in crop-pest synchrony, (iv)

changes in interspecific interactions, and (v) increased risk of invasion by migrant

pests (Porter et al., 1991; Thomson et al., 2010). Therefore, timely and reliable

models are required to understand and predict the dynamics of insect populations

in agroecosystems (Strand, 2000). Phenological observations of plants are related

to this issue as well since they (e.g. flowering time) can be used to predict insect

activity (Herms, 2004) via the tracking of degree-day¶ accumulation. In Chapter 4,

an attempt to predict flowering time is introduced, which can later be extended

to any other phenological event. Our results (Templ et al., 2016), obtained by

¶Degree-days are the sum of daily mean temperatures expressed in degrees that can be
accumulated above a particular temperature threshold to provide a sum of (growing) degree
days over a period (Cleland et al., 2007).
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survival modelling, provide an improved prediction of flowering time compared to

traditional regression methods.

Paleoclimate reconstruction

In paleoclimatology, or the study of past climates, scientists use what is known

as proxy data to reconstruct past climate conditions. These proxy data are “pre-

served physical characteristics of the environment, can be gathered from natural

recorders of climate variability such as tree rings, ice cores, fossil pollen, ocean sed-

iments, corals, shells and microfossils” (Masson-Delmotte et al., 2013), and plant

phenophases. Paleoclimatologists apply a wide variety of techniques to determine

climatic conditions before the global record-keeping began in the 1880’s.

Several studies used a combination of different types of proxy data (tree rings,

sediments, ice cores) for the reconstruction of historical climate changes (Jones

et al., 1988; Mann et al., 1999). They also refer to plant phenophases as indicators

of climate change or proxies for temperature (Menzel, 2002, 2003; Miller-Rushing

et al., 2008), especially when the timing of the phenological event is closely related

to specific climatic conditions during plant development (Sparks et al., 2000; Aono

and Kazui, 2008). In Kyoto (Japan), phenological data series for the cherry tree

(Prunus serrulata Lindl.) have been recorded in old diaries and chronicles since

the 9th century. Aono and Kazui (2008) used these records and successfully re-

constructed spring temperature. Another observation, famous for its length and

originating from England, is known as Marsham’s phenological data (Margary,

1926). Sparks and Carey (1995) re-discovered these data and predicted changes

for the future timing of phenological events. In contrast, Lauscher and Lauscher

(1981) used leafing dates of the chestnut tree, observed in Geneva (Switzerland)

since 1808 to show climatic warming. Temperature reconstruction, beginning in

the 16th century, was done by Maurer et al. (2009) using grape harvest dates
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recorded in Vienna and Klosterneuburg (Austria). Similarly, Kiss et al. (2010)

made a reconstruction of May-July temperatures possible by using multi-proxy

data (vine and grain) documented in Köszeg (Hungary). In Chapter 5, the usage

of flowering data as temperature proxy is discussed based on our sensitivity study

(Lehoczky et al., 2016).

Citizen science

Observations of amateur naturalists have been important for centuries, while cit-

izen science projects proliferated into hundreds of various disciplines solely in the

past decade. These projects are mostly focused on ecological questions, for instance

the monitoring of biodiversity (Wildlife Sightings‖), weather (Old Weather∗∗),

palaeontology (Paleo Quest††) and phenology (USA National Phenology Network

(USA–NPN),‡‡ and many others). In this Chapter (1.3), the connection between

phenology and citizen science is discussed.

Astronomy and ornithology have the largest body of amateur experts and the

longest history of engaging volunteers in scientific research. In recent years, sophis-

ticated internet applications effectively utilize crowdsourcing for data collection

across large geographic regions, offering opportunities for participants to provide,

gain access to, and make meaning of their collective data. Today, public and

professional ecologists alike have access to a growing number of tools to explore

changes in phenology, relative abundance, distributions, survival, and reproduc-

tive success of organisms across time and space. In the process, citizen science has

influenced both the scale of ecological research that is being done and the rela-

tionship between ecologists and the public (Dickinson et al., 2010; Kobori et al.,

‖http://http://www.wildlifesightings.net
∗∗https://www.oldweather.org
††http://www.paleoquest.org
‡‡http://https://www.usanpn.org
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2016). Silverton (2009) mentions three factors responsible for “this great explosion

of activity” in citizen science: (i) easily available technical tools for disseminating

information about projects and gathering data from the public, (ii) the increasing

realization among professional scientists that the public represents a free source

of labour, skills, computational power and even finance, and (iii) project related

science outreach possibly benefiting citizen science. Undoubtedly, the best way for

the public to understand and appreciate science is to participate in it.

As it was discussed before (Chapter 1.2), traditional phenological data collec-

tion has always relied on observers, operated by national meteorological and hy-

drometeorological services (Scheifinger and Templ, 2016). This has been challenged

by several factors, which caused a significant drop of phenological observations in

Europe (Nekovár et al., 2008). In the meantime, people are getting more and

more dependent on electronic devices, which may open another era for ecological

monitoring. There are existing examples where such new technologies facilitate

ecological data collection enormously, for example through mobile applications,

social media, education programs, webcams, and even drones.

We have already published the possible ways of how citizen science technologies

could be implemented in the monitoring systems of national meteorological and

hydrometeorological services (Scheifinger and Templ, 2016). These aspects and

our vision for the future of the European phenological networks can be found in

Chapter 6.
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1.4 Outline of the thesis

This PhD thesis is principally dedicated to applications and new developments

of phenological research. In total, research results of five scientific papers (four

original research articles and one viewpoint article) are included in this thesis;

three of them with first authorship and the other two with co-authorship of this

author. Four of the papers are already published/online first articles and one is

accepted for publication in international journals.

According to the research directions in phenology outlined in Chapter 1, the

following two Chapters focus on the detection of climate change impacts. InChap-

ter 2, observed trends and influences of climate on flowering phenological records

for six plant species are introduced based on observations from the Hungarian

Meteorological Service recorded between 1952 and 2000. The paper‡ Szabó, B.,

Vincze, E. and Czúcz, B. (2016) “Flowering phenological changes in relation to cli-

mate change in Hungary” is published in International Journal of Biometeorology,

60: 1347–1356; doi: 10.1007/s00484-015-1128-1. Impact factor: 2.309.

Chapter 3 focuses on the description of spatio-temporal patterns of flowering

time across biogeographical regions of Europe, based on data (1970–2010) that

were collected from twelve countries along a 3000 km long transect from northern

to eastern Central Europe. The manuscript Templ, B., Templ, M., Filzmoser,

P., Lehoczky, A., Bakšiené, E., Fleck, S., Gregow, H., Hodzic, S., Kalváne, G.,

Kubin, E., Palm, V., Romanovskaja, D., Vučetič, V., Žust, A., Czúcz, B. and the

NS-Pheno Team (2017) “Phenological patterns of flowering across biogeograph-

ical regions of Europe” is accepted (19.01.2017) in the International Journal of

Biometeorology, doi: 10.1007/s00484-017-1312-6. Impact factor: 2.309.

‡The thesis author was nominated and became the winner of the European Meteorologi-
cal Society (EMS) Tromp Award 2016 for this paper. The Tromp Foundation is funding this
award with the intention to promote biometeorology in Europe, as a recognition for outstanding
achievements in biometeorology.
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The aim of Chapter 4 is related to another research direction (prediction

of future impacts) discussed in Chapter 1. We tested the predictive power of

Cox hazards models in phenological research, in order to calculate the hazard

ratio of different climate variables and to show their influence on the “risk” of

flowering time. The paper Templ, B., Fleck, S., Templ, M. (2016) “Change of

plant phenophases explained by survival modelling” is accepted for publication

(already Online first published) in International Journal of Biometeorology, doi:

10.1007/s00484-016-1267-z. Impact factor: 2.309.

Chapter 5 discusses one potential application of phenological data, namely

for paleoclimate reconstruction. It is another important research field outlined in

Chapter 1. We evaluated the accuracy of the usage of plant phenophases as proxies

for temperature estimations. The paper Lehoczky, A., Szabó, B., Pongrácz, R.,

Szentkirályi, F. (2016) “Applicability of flowering onset time series for a proxy

of temperature – based on Transylvanian phenological observations from the 19th

century”is published in Applied Ecology and Environmental Research, 14: 213–233;

doi: 10.15666/aeer/1402–213233. Impact factor: 0.557.

The last Chapter 6 related to citizen science, another field of phenological

research outlined in Chapter 1. It discusses potential solutions to rebuild and

maintain phenological observation networks in Europe. The paper is a viewpoint

article, published as Scheifinger, H. and Templ, B. (2016) “Is citizen science

the recipe for the survival of paper-based phenological networks in Europe?” in

BioScience, 66: 533–534; doi:10.1093/biosci/biw069. Impact factor: 4.294.

19





CHAPTER 2
Flowering phenological changes in

relation to climate change in

Hungary∗

Abstract

The importance of long-term plant phenological time series is growing in moni-

toring of climate change impacts worldwide. To detect trends and assess possible

influences of climate in Hungary, we studied flowering phenological records for 6

species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus ni-

gra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from

the Hungarian Meteorological Service recorded between 1952 and 2000.

Altogether 4 from the 6 examined plant species showed significant advancement

in flowering onset with an average rate of 1.9–4.4 days per decade. We found that

it was the mean temperature of the 2–3 months immediately preceding the mean

∗The paper is published in the International Journal of Biometeorology (Szabó et al., 2016)
and is co-authored with Enikő Vincze and Bálint Czúcz.
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flowering date, which most prominently influenced its timing. In addition, several

species were affected by the late winter (Jan–Mar) values of the North Atlantic Os-

cillation (NAO) index. We also detected sporadic long-term effects for all species,

where climatic variables from earlier months exerted influence with varying sign

and little recognizable pattern: the temperature / NAO of the previous autumn

(Aug–Dec) seems to influence C. majalis, and the temperature / precipitation of

the previous spring (Feb–Apr) has some effect on T. cordata flowering.

2.1 Introduction

There is a worldwide increase in the number of studies, which call attention to

the ecological consequences of global climate change. These effects appear at

population, community, as well as ecosystem levels by modifying species compo-

sition, spatial patterns and ecosystem functioning (Parmesan, 2006; Root et al.,

2003; Rosenzweig et al., 2008). Shifts in the timing of recurring life history events

(phenophases) of species constitute a major component of the ecological impacts of

climate change (Parmesan and Yohe, 2003; Walther et al., 2002). Diverging phe-

nological shifts in communities may lead to a breakdown of synchronous species

interactions (Buse et al., 1999; Stenseth et al., 2002), which eventually can re-

sult in increased risk of extinctions (Memmott et al., 2007). Several studies warn

about potentially detrimental impacts of these processes (Both et al., 2009; Visser

and Both, 2005). Furthermore, phenology also exerts control over many potential

feedbacks from vegetation to the climate system by influencing the seasonality of

albedo, canopy conductance, fluxes of water and energy, CO2 and biogenic volatile

organic compounds (Richardson et al., 2013).

The analysis of long-term plant phenological time series have been in the focus

of climate impact research since the early 1990s (Schwartz, 1999). Several stud-
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ies have demonstrated significant advancements in spring phenophases of plants

across the Northern Hemisphere (Menzel et al., 2006; Schleip et al., 2009; Schwartz

et al., 2006). Similar tendencies can be seen across several other taxonomic groups,

including e.g. fungi (Kauserud et al., 2010), insects (Robinet and Roques, 2010),

amphibians (Beebee, 2002), and birds (Gordo, 2007). These changes are not lim-

ited to terrestrial ecosystems but can also be observed in freshwater and marine

systems (Thackeray et al., 2010).

Induction of different phenophases along the lifecycle of individuals are gov-

erned by species-specific environmental thresholds. Alterations in CO2 level, tem-

perature, photoperiod, solar radiation, precipitation, snowmelt and frost effects

exert influence together on plants’ physiological processes (Körner and Basler,

2010; Nord and Lynch, 2009). There are several conflicting reports in the liter-

ature about the relative roles of different drivers and/or explanatory variables of

the phenological development (Migliavacca et al., 2012). The best predictors of

plant phenology within the temperate zone are local meteorological variables, like

air temperature and precipitation, but macroclimatic circulation patterns, such

as the North Atlantic Oscillation (NAO) index are also frequently considered as

predictors. It is also well known that NAO-induced local weather conditions can

affect phenology and this relationship can be different in different parts of Europe

(Gordo and Sanz, 2010; Scheifinger et al., 2002; Stenseth et al., 2003), as it is ex-

pected from this impact system (Hurrel and van Loon, 1997; Pauling et al., 2006;

Trigo et al., 2002).

Strongly connected to the problem of identifying the appropriate predictor vari-

ables is the problem of finding the effective time period, the weather of which most

strongly influences the subsequent phenological events. The timing of flowering is

controlled by complex mechanisms, which act to ensure that flower emergence oc-

curs in suitable conditions attuned to seasons (Tookey and Battey, 2010). Most
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studies report that the flowering phenophase shows the strongest correlation with

the average air temperature of a few months preceding the event, but focusing

only on spring temperatures can lead to inaccurate interpretations and predic-

tions for species, because photoperiod and vernalisation plays also major roles in

spring phenological events (Cook et al., 2012; Körner and Basler, 2010; Tookey

and Battey, 2010).

The aim of our study is to evaluate the shift in the flowering phenologies of six

spring-flowering plant species in Hungary during the second half of the last century

(1952–2000). In spite of the number of phenological time series available, Hungary

is a relatively unexplored country in central Europe in terms of phenological stud-

ies. Similarly to other parts of western and central Europe, Hungary is relatively

warm and springs tend to be drier during positive NAO periods, while wetter than

average during negative NAO periods (Bartholy et al., 2009a). In this study we

have set two main goals: (i) to test whether trends similar to those observed in

other parts of Europe can also be detected within Hungarian spring phenological

changes, (ii) to determine which month’s climate exerts the greatest effect on the

flowering onset of different species.

2.2 Materials and methods

Phenological data

To seek for potential shifts in spring phenological events, we studied the beginning

of flowering (BF) of 6 angiosperm species: lily of the valley (Convallaria majalis

L.), common dandelion (Taraxacum officinale W.), common lilac (Syringa vulgaris

L.), black elder (Sambucus nigra L.), black locust (Robinia pseudoacacia L.), and

small-leaved lime (Tilia cordata Mill.) during the period 1952–2000 in Hungary.

Historical data on plant phenological observations were obtained from the Hun-
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garian Meteorological Service (Table 2.1). Our selection of species and observing

stations was seriously limited by the extreme fluctuation in the number of stations,

observers and observed species which characterized the phenology observations of

the Hungarian Meteorological Service (Dunay, 1984; Szalai et al., 2008). During

1952–1961 the observation network of the Meteorological Service consisted of 100

stations performing phenological observations on 100 phenological events of 37

plant species. The number of stations decreased to 60 with an increasingly uneven

geographical coverage during 1961–1981 (Table 2.1). After a one-year disruption

in 1982, the network was reorganized with a drastically reduced list of observed

species and phenological events (shifting from wild plant species to crops), and a

reduced number of stations with a more even coverage (Dunay, 1984; Szalai et al.,

2008). This reorganized network, which was hosted by the regional Pest Control

and Agrochemistry stations of the Agriculture and Food Ministry, operated in con-

sistent and reliable way from 1983 until 2000, when the entire network fall apart

due to lack of funding. As a consequence of these recurrent reorganizations phe-

nological time series long enough for climate impact analysis can only be studied

for a few phenological events, which were observed both prior to and after 1982,

and even for these events the number of complete time series is very limited (Ta-

ble 2.1). Luckily, the definition of phenological events did not change during the

reorganizations, so the beginning of flowering phenological event was consequently

defined as “the appearance of the first flowers producing pollens on at least 50% of

the observed plants” (Dunay, 1984), which equals the event 61, according to the

BBCH scale (Meier, 2001).

We converted all dates given in months and days to day of the year (doy)

values. To exclude potential coding and typing mistakes we first checked for out-

liers using the extremevalues R package (van der Loo, 2010) assuming a normal

distribution. In order to cope with the fluctuations and inhomogeneity in the dis-
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Table 2.1: An overview of the phenological observations by the Hungarian Meteo-
rological Service (HMS) for the studied species. For each species and phenophase
(BF – beginning of flowering, FL –appearance of first leaves, BR: beginning of
ripening, LF: leaf falling) the following three numbers are given: a: the total num-
ber of records between 1952-2000; b: the number of stations with at least 10 years
of observations before 1982 (the reorganization of the HMS phenology network);
and c: the number of stations with at least 10 years of observations after 1982.
For each phenophase the corresponding BBCH code (Meier, 2001) is also given in
parentheses. The datasets used in our study are marked in bold.

Species BF (#61) FL (#11) BR (#86) LF (#97)

a (b, c) a (b, c) a (b, c) a (b, c)

Taraxacum officinale 2012 (62, 20)

Syringa vulgaris 2339 (71, 19) 1304 (45, 0) 1719 (65, 0)

Convallaria majalis 2039 (64, 19)

Robinia pseudoacacia 2330 (72, 20) 1689 (66, 0) 1336 (45, 0) 1850 (67, 0)

Sambucus nigra 2167 (64, 20) 1716 (62, 0) 1631 (61, 0)

Tilia cordata 1729 (51, 20) 597 (22, 0) 1113 (38, 0) 1381 (54, 0)

tribution of stations, we grouped the observations according to the 6 geographical

macroregions of Hungary (Dövényi, 2010). For each region we only kept observa-

tion time series of at least 10 years of continuous data. As an additional criterion,

we only analyzed data for those regions where there were at least two stations

with at least 10 years of continuous data both before and after the reorganization

of 1982. This way, we compiled regional datasets for three geographical macrore-

gions (Alföld – Great Hungarian Plain, r1; Nyugat-magyarországi peremvidék –

West Hungary, r3; and Dunántúli-középhegység – Transdanubian Mountains, r5)

consisting altogether of 133 local data series of the studied species (see Figure 2.1).

To deal with uneven data coverage, we used linear mixed models to derive single

homogenized time series as described by Schaber and Badeck (2002). Accordingly,

for each species and region, we created time series using a fixed effect of year,

with a station-level random effect with the help of the pheno R package (Schaber,

2012). Accordingly, the analyses were carried out on 18 homogenized time series
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for the six species and the three regions (r1, r3, r5).

Figure 2.1: The location of the study regions and the data sources. Local obser-
vational stations used in our analysis: w: phenological stations; ×: meteorological
stations. Abbreviations of the regions: 1: Alföld (Great Hungarian Plain), 3:
Nyugat-magyarországi Peremvidék (West Hungary); 5: Dunántúli-középhegység
(Transdanubian Mountains). Phenological stations outside the three study regions
are also shown in this map, but they were not used in the analysis.

Climate data

To determine any correlations between the macroclimatic conditions and the flow-

ering phenology of the selected species, we generated a large number of climatic

variables based on air temperature, precipitation and NAO indices data. As a

starting point for generating air temperature and precipitation variables we used
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monthly records from the Hungarian Meteorological Service. After check for out-

liers similar to what was done in case of the phenological data we used the same

linear mixed model procedure (Schaber and Badeck, 2002) to generate a single

homogenized macroclimatic signal for each region (see Figure 2.1).

To identify the combination of climatic variables and effective periods, which

effectively influence the spring phenologies of the studied species we used the

methodology of Gordo and Sanz (2010). Accordingly, we defined a series of

monthly, bimonthly, and trimonthly means (temperature) and sums (precipita-

tion) of climate variables, which could potentially influence the actual phenological

event. We created 18 monthly mean temperature (T1) variables relative to the cur-

rent year: from the previous year‘s January (T101) to current year’s June (T118).

Similarly, we defined seventeen bimonthly (T2) variables, with T201 meaning the

mean temperature of previous year‘s Jan–Feb, T202 being previous year‘s Feb–

Mar, and T217 being current year‘s May-June. Trimonthly temperature dataseries

(T3) were also created in a similar way, ranging from T301 (previous year‘s Jan–

Mar) to T316 (current year’s Apr–June). We defined precipitation variables the

same way as T, namely 18 monthly (P101–P118), 17 bimonthly (P201–P217) and

16 trimonthly (P301–P316) precipitation sum variables were created.

To check for potential effects of large-scale circulation patterns on the timing

of the studied phenological events we also defined predictor variables based on the

values of the North Atlantic Oscillation (NAO) index. Based on the monthly NAO

values taken from the NOAA Climatic Research Unit homepage †, we defined 18

variables for monthly (N101–N118), 17 variables for bimonthly (N201–N217), and

16 variables of trimonthly (N301–N316) mean NAO values, exactly following the

structure of the other climatological variables. This way we created a set of 153

strongly correlated climatic predictors (51 for temperature, 51 for precipitation

†http://www.cru.uea.ac.uk/cru/data/nao/
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and 51 for NAO). However, unlike mean temperature and sum of precipitation

data (which were constructed for each individual region separately) there was a

single common NAO data series for all of the studied regions.

Data analysis

We first computed linear regression coefficients for the time series to assess the

magnitude and the significance of the trends in flowering date over time for each

species and within each region (Sneyers, 1990).

As a next step, we looked for statistical relationships between the phenological

data and the climatic variables. To this end we first removed temporal trends

from all of the time series, taking the residuals of the univariate linear regressions

fitted in the prevous step as “detrended” phenological variables. After this de-

trending step, we created separate linear regression models for each species and

region. As the set of predictors was still highly intercorrelated, we used forward

stepwise selection to sequentially add terms from the set of potential predictors

until reaching minimal AIC (Akaike’s Information Criterion), a metric commonly

applied to compare and rank multiple competing models (Johnson and Omland,

2004). We checked the significance of the parameters from the best models with

univariate F tests, adding the terms sequentially to the model in the same order

they were found by the stepwise algorithm. We used Bonferroni correction to

avoid a potential proliferation of type I errors (Abdi, 2007). All data preparation

and statistical analysis steps were performed in the R statistical environment (R

Development Core Team, 2015), using the add-on packages reshape2 (Wickham,

2007), extremevalues (van der Loo, 2010), and pheno (Schaber, 2012).
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2.3 Results

We found significant shifts in flowering onset dates for 4 species (C. majalis, T.

officinale, S. nigra and T. cordata) in the examined period (1952–2000). All

of the trends (even the non-significant ones) were negative (onset of flowering

gradually shifting earlier). The strongest advancements (2.8–4.4 days per decade)

were found for T. cordata. Two of the examined woody species (S. vulgaris and R.

pseudoacacia) did not show significant trends. Altogether 7 of the 18 studied cases

(species ×regions) showed significant advancement in their beginning of flowering

(Table 2.2).

Table 2.2: Mean dates (a), trends (b) and significance levels in the flowering of the
studied species in three regions of Hungary. Trends are expressed as linear regres-
sion coefficients (day/year, negative values mean advancement), significance level
symbols: ***: 0<p<0.001; **: 0.001<p<0.01; *: 0.01<p<0.05. Relationships
found to be significant above α =.05 are highlighted in bold.

Species r1: Great Hun-
garian Plain

r3: West Hun-
gary

r5: Transdanu-
bian Mountains

a (b) a (b) a (b)

Taraxacum offici-

nale

11 Apr (-0.275**) 12 Apr (-0.08) 11 Apr (-0.371***)

Syringa vulgaris 28 Apr (-0.103) 1 May (-0.05) 1 May(-0.043)

Convallaria ma-

jalis

29 Apr (-0.024) 2 May (-0.188*) 2 May (0.073)

Robinia pseudoa-

cacia

17 May (0.011) 22 May (-0.014) 22 May (-0.084)

Sambucus nigra 19 May (-0.138*) 24 May (-0.188**) 21 May (-0.137)

Tilia cordata 10 Jun (-0.069) 16 Jun (-0.442***) 16 Jun (-0.279***)

Altogether we found 45 significant relationships between the timing of the flow-

ering events and the meteorological variables studied (Table 2.3, Figure 2.2). The

majority (33) of these relationships were linked to temperature, whereas NAO and

precipitation were found in 9 and 3 relationships respectively. For almost all of

the studied cases the most influential predictor was the temperature of the 2 or
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3 months immediately preceding the typical date of the phenological event stud-

ied (henceforward called “short term” relationships, Table 2.3). We also found 15

significant “long-term” connections documenting delayed influence of past mete-

orological conditions. However, these long-term relationships were much weaker,

involving all 3 climatic elements (temperature, precipitation and NAO) with very

little pattern recognizable. The coefficients for“short-term”temperature and NAO

variables were generally negative, indicating that warm years and positive NAO

anomalies generally induced earlier flowering onset. On the other hand coeffi-

cients for long-term effects greatly varied among species and seasons (Table 2.3,

Figure 2.2).

There were only 27 out of the 153 climatic predictors studied that were included

in any of the significant relationships identified. The most influential meteorologi-

cal predictors seemed to be Mar-Apr temperature (T215: T. officinale, S. vulgaris,

C. majalis), Apr-May temperature (T216: T. cordata) and Mar-May temperature

(T315: R. pseudoacacia, S. nigra). There is also a weak recurrent pattern in the

case of NAO, with an effective period at the end of the winter (Jan-Mar, N313),

which seems to influence several species (S. vulgaris, C. majalis, R. pseudoacacia).

As for long term relationships, the temperature / NAO of the previous autumn

seems to influence C. majalis, and the temperature / precipitation of the previous

early spring (Feb-Apr) has some effect on T. cordata flowering (Table 2.3, Figure

2.2).
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Table 2.3: The highest monthly/bi/trimonthly temperature, precipitation and NAO values influencing flowering
phenology according to the results of the forward stepwise variable selection. Climatic variables follow the naming
convention introduced and used in the text, the periods ending in the month of the mean flowering date are highlighted
by shading; r1, r3, r5: the three study regions (Figure 2.1), regions with significant trends are highlighted in bold;
+/−−, ++/−−, + + +/−−−: significant positive/negative relationships at α =0.05, 0.01 and 0.001 respectively.
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(a) Periods are grouped by species along the vertical axis, and grouped by color according
to climatic variable.

(b) Periods are grouped by the direction of the relationship.
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(c) Periods are grouped by the significance level.

Figure 2.2: Periods of the climatic predictors significantly influencing the flowering
onset of the studied species (T. officinale, S. vulgaris, C. majalis, R. pseudoacacia,
S. nigra, T. cordata). Periods grouped by climate variables (a), the direction of
relationship (b) and significance level (c). Triangles indicate the mean date of the
flowering onset in Hungary.

2.4 Discussion

Shifts in spring plant phenological events in the Carpathian Basin (Central Europe)

are particularly poorly documented, with a few exceptions coming from the works

of Keresztes (1984); Walkovszky (1998); Schieber et al. (2009); Molnár et al. (2012);

Varga et al. (2012), and Lehoczky et al. (2016). Based on datasets for six plant

species, the current paper presents the most in-depth study so far of phenological

trends and their environmental drivers among Hungary.
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Throughout Europe, the vast majority of spring phenological time series end-

ing after 1988 reveal advancing trends (Dose and Menzel, 2004). We also detected

significantly advancing trends in 7 of the studied 18 cases for 4 of the 6 examined

species during the second half of the 20th century in Hungary. This ratio is con-

siderably smaller than the findings of Parmesan and Yohe (2003) for the entire

Northern Hemisphere, where 87% of the terrestrial datasets exhibited responses

coherent with global warming. Askeyev et al. (2010) pointed out that phenological

changes have been less marked in the eastern part of Europe, than in western and

central Europe. This can be one of the possible reasons for not finding significant

flowering trends in all of the studied regions and species. Nevertheless, our results

also show shifts very similar to the tendencies experienced in other parts of Europe

(2.2–2.5 day advance per decade) (Chmielewski and Rotzer, 2002; Menzel et al.,

2006).

Similarly to most of the studies exploring the relationship between climatic vari-

ables and spring phenological events (Parry et al., 2007), we have found tempera-

ture to be the most influential determinant of the timing of flowering in Hungary.

All of the most significant (p <.001) relationships found belong to temperature

from the Jan-May period (Figure 2.2). In most cases, the effective periods are

the 2-3 months containing or immediately preceding the month of mean flowering

time. This observation is highly supported by other studies as well (e.g. Estrella

et al., 2009; Fitter and Fitter, 2002; Sparks et al., 2000).

Beyond question, there are no other meteorological variables and effective pe-

riods, which could match the significance of short-term air temperature in shaping

the spring phenologies of the studied species. The only exeception is NAO, with

a weak effective period at the end of the winter (Jan-Mar, N313), which seems

to influence a broad range of plants in Hungary, including earlier and later flow-

ering species (S. vulgaris, C. majalis, R. pseudoacacia). In many parts of the
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world teleconnection indices, like NAO, describing large-scale circulation patterns

are considered as a useful proxy for precipitation anomalies (Lopez-Moreno et al.,

2011). In Hungary, winter NAO is known to be strongly correlated to both tem-

perature (positively) and precipitation (negatively, Zsilinszki (2014)). It is impor-

tant to note, however, that being an abstract teleconnection index, NAO cannot

directly influence plant physiological processes, probably just indirectly through

further unidentified meteorological variables. As we have explicitly added both

mean temperature and precipitation to our set of predictors, thus the significant

influence of NAO cannot be attributed to either of them as an underlying factor

in our case. Consequently, we can assume that there is still a significant, yet un-

known meteorological factor (e.g. temperature or precipitation extremities, solar

radiation, wind, etc. – see also Gordo and Sanz (2010)) influencing the flowering

phenologies of a broad range of taxa, for which Jan-Mar winter NAO values act

as a proxy in Hungary.

Even though spring phenologies are known to be highly rainfall-sensitive in

many parts of the world (Penuelas et al., 2004), we could not find any clear rela-

tionships for precipitation. On the other hand it is known (Fu et al., 2014) that

at higher latitudes, the effect of GDD requirement, chilling and precipitation in-

fluence the spring vegetation green-up in complex interaction. The simple linear

modelling technique applied by us might not be appropriate for capturing such

complex responses in general, whereas the few weak but significant long-term re-

lationships involving precipitation (and NAO) might be seen as legacies testifying

to the presence of such complex nonlinear relationships.

Taraxacum officinale showed significant phenological trends in 2 of the 3 stud-

ied regions for the 1952–2000 period. T. officinale exhibits a strong response to the

temperature (Feb-Apr, ) of the current year, with sporadic additional long term

effects (N109, P104, T201). At the European level, T. officinale shows a stronger
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response to temperature in warmer than in colder countries (Menzel et al., 2006).

We also documented a relatively high-speed advancement for this species in Hun-

gary (–3.4 - –3.9 days per decade), which fits well into this broader European

picture (Menzel et al., 2006; Jatczak and Walawender, 2009).

In the case of Syringa vulgaris we did not find any significant shifts, but we

demonstrated a temperature (Feb-Apr, T314) and a NAO (Jan-Mar, N313) sen-

sitivity of the flowering onset. There is a known temperature sensitivity of this

species across Europe (–2 - –4 days/°C for the mean temperature of the previ-

ous months) exhibiting a stronger response to temperature in warmer than in

colder countries (Menzel et al., 2006). There are several studies that documented

significant shifts of 4–6 days per decade in the flowering of S. vulgaris both in Eu-

rope (Sparks et al., 2011; Jatczak and Walawender, 2009), and in North America

(Schwartz and Reiter, 2000).

Convallaria majalis is one of the species in Europe, which is not really well

represented in phenological studies (Nekovár et al., 2008). We have detected a

significant trend for this species in West Hungary, and we also found that the

temperature of the 60 days preceding flowering (Mar-Apr, T216) is strongly related

to the timing its flowering. A similar relationship has already been demonstrated

between the emergence of C. majalis shoots and the Feb-Apr temperature by

Sparks et al. (2011) in western Poland. Furthermore, we have also found a weak

but noteworthy memory effect: several temperature and NAO variables from the

previous autumn (T108, T111, T310, N309) seemed to influence the beginning

of flowering of this species. Such impact of the previous autumn’s weather has

already been documented for other herbaceous species (Crimmins et al., 2010). At

semi-arid environments, autumn conditions are more important to low-elevation

species and spring variables found to play greater role in flowering of high-elevation

species (Crimmins et al., 2010).
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One of the most explored species in Hungary in terms of shifts in flowering

phenology is Robinia pseudoacacia. Using a long-term data series of 144 years

(1851–1994) Walkovszky (1998) showed 3–8 days advancement in the flowering

date of R. pseudoacacia, relating the event to the mean temperature of March-

May. Our results confirm the findings of temperature sensitivity of this species

(with an effective period of (Mar-)Apr-May, T216 & T315), but we did not find

any significant shifts in flowering during our study period (1952-2000). At the

European level the flowering of R. pseudoacacia shows stronger response to tem-

perature in colder countries (Menzel et al., 2006). In contrast to the response

of other species (Menzel et al., 2006), R. pseudoacacia has negative regression

coefficients of the temperature sensitivity against flowering. In Poland, Jatczak

and Walawender (2009) has found an advancement of 2.7 days per decade for this

species during the second half of the 20th century.

Sambucus nigra flowering in Europe is shifting in average ˜2.8 days earlier per

decade (Menzel, 2000). There is also clear documented temperature sensitivity for

this species: Sparks et al. (2000) have found a strong relationship with March and

April mean temperatures. This influence of the spring temperatures are clearly

supported also with our results showing an unambiguous and highly significant

negative relationship between the timing of flowering and the trimonthly temper-

ature of the current year’s Mar-May period (T315). And additionally, we also

documented a relatively clear influence of NAO for almost the same period (N216)

in the only macroregion lacking a significant temporal trend (r5).

Late spring temperature values (Apr-Jun: T117, T216, T316) were the most

influential ones also in case of Tilia cordata, but we also documented a relatively

clear long term influence of previous year’s early spring temperature and precipi-

tation as well (Feb-Apr: T302, P302). Schleip et al. (2009) have also found that

April-June temperatures influence the flowering of the closely related Tilia platy-

38



phyllos, even though the strength of this relationship (temperature weights) was

weaker than for most of the other studied tree species.

The connections between flowering phenologies and climate identified in this

paper offer some insight into the future potential consequences of climate change

in this region. As the temperature increase expected in Hungary (Krüzselyi et al.,

2011) may considerably exceed the global rate of warming (Bartholy et al., 2009b;

Pieczka et al., 2010), future advancement of spring flowering is to be expected.

Further understanding of the relationship between plant phenologies and climate in

Central and Eastern Europe may be gained from future studies on more species and

phenophases. There is still a lot of data to analyze in Hungary, as well as in other

European countries (Szabó et al., 2014). For detecting climate change impacts

the best solution would be a coordinated renaissance of the national phenological

observation networks in this region, supported by citizen science.
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CHAPTER 3
Phenological patterns of flowering

across biogeographical regions of

Europe∗

Abstract

Long-term changes of plant phenological phases determined by complex interac-

tions of environmental factors are in the focus of recent climate impact research.

There is a lack of studies on the comparison of biogeographical regions in Europe in

terms of plant responses to climate. We examined the flowering phenology of plant

species to identify the spatio-temporal patterns in their responses to environmen-

tal variables over the period 1970–2010. Data were collected from twelve countries

along a 3000 km long, North–South transect from northern to eastern Central Eu-

rope. Biogeographical regions of Europe were covered from Finland to Macedonia.

Robust statistical methods were used to determine the most influential factors

∗The manuscript (Templ et al., 2017) was accepted (19.01.2017) for publication in Interna-

tional Journal of Biometeorology, DOI: 10.1007/s00484-017-1312-6.
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driving the changes of the beginning of flowering dates. Significant species-specific

advancements in plant flowering onsets within the Continental (3 to 8.3 days),

Alpine (2 to 3.8 days) and by highest magnitude at the Boreal biogeographical

regions (2.2 to 9.6 days per decades) were found, while less pronounced responses

were detected at the Pannonian and Mediterranean regions. While most of the

other studies only use mean temperature in the models, we show that also the

distribution of minimum and maximum temperatures are reasonable to consider

as explanatory variable.

Not just local (e.g. temperature) but large scale (e.g. North Atlantic Oscilla-

tion) climate factors, as well as altitude and latitude play significant role in the

timing of flowering across biogeographical regions of Europe. Our analysis gave

evidences that species show a delay in the timing of flowering with an increase in

latitude (between the geographical coordinates of 40.9-67.9), and an advance with

changing climate. The woody species (R. pseudoacacia and T. cordata) showed

stronger advancements in their timing of flowering than the herbaceous species (T.

officinale, C. majalis). In later decades (1991–2010) more pronounced phenologi-

cal change was detected than during the earlier years (1970–1990), which indicates

the increased influence of human induced higher spring temperatures in the late

20th century.

3.1 Introduction

The scientific understanding of the causes of observed changes in the climate system

has been increasing according to the report of the Intergovernmental Panel on

Climate Change (Stocker et al., 2013). Climate model projections indicate that,

regarding temperature and precipitation changes, similar tendencies are likely to

continue over the coming century; however, future changes will vary across regions
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(Stocker et al., 2013). These evidences also call ecologists‘ attention to phenomena

in the natural ecosystems‘s shifting in time related to global warming (Walther

et al., 2002; Parmesan, 2006; Parry et al., 2007; Franks, 2015).

Phenology is the study of periodically repeating stages in the life cycle of ani-

mals and plants as influenced by environmental conditions (Demarée and Rutishauser,

2009). The likelihood of species occurrence in a certain area depends on survival

and reproduction, which are both depending on the species’ phenology and thus

intimately linked to climate (Cleland et al., 2007). Observational (Menzel et al.,

2006; Koch et al., 2009b; Schleip et al., 2009), field experimental (Wolkovich et al.,

2012), predicted (Aguilera et al., 2015) and remotely sensed (White et al., 2005)

data suggest that the timing of several plant phenological phases advance and /

or delay across the globe, from the Northern (Schwartz et al., 2006) to the South-

ern Hemisphere (Chambers et al., 2013) due to climatic changes. Several studies

demonstrate significant advancements in phenological phases of plants across Eu-

rope (Menzel and Fabian, 1999; Chmielewski and Rotzer, 2001; Schleip et al.,

2009). These changes in central Eastern Europe have so far been documented to

be less marked than in western and central Europe (Askeyev et al., 2010).

Climate factors, phenophases and their timing play the most important role

in such changes. The main causes depend on the climatic region(s) from Mediter-

ranean to high latitudes. The most influential variables are temperature (Rutishauser

et al., 2009), precipitation (Penuelas et al., 2004), photoperiod (Körner and Basler,

2010), the North Atlantic Oscillation (Scheifinger et al., 2002), as well as cold or

warm spells (Menzel et al., 2011) and edaphic factors (Wielgolaski, 2001).

Biogeographical regions are useful geographical reference units when describ-

ing habitat types and species living under similar conditions in different countries

(Roekaerts, 2002). The establishment of plant phenology across regions of Europe

is a first important step towards providing a general overview, still covering a wide
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spatial window. The purpose of the study presented in this Chapter was (i) to com-

pare different biogeographical regions (Boreal, Continental, Alpine, Pannonian and

Mediterranean), and test whether the areas experienced any trends in flowering

time, (ii) to evaluate the possible factors that influence phenological shifts, and (iii)

to discover phenological patterns along various latitudes and periods (1970–1980,

1981–1990, 1991–2000 vs 2001–2010).

3.2 Materials and methods

Phenological data of plants

Phenological data we analysed were collected from twelve countries (Finland, Es-

tonia, Latvia, Lithuania, Poland, Slovakia, Hungary, Slovenia, Croatia, Bosnia and

Herzegovina, Montenegro, Macedonia) in northern to eastern Central Europe for

the period 1970–2010 (Figure 3.1). The data comprise phenological records on

the beginning of flowering time of six plant species: lily of the valley (Convallaria

majalis L.), common dandelion (Taraxacum officinale L.), common lilac (Syringa

vulgaris L.), black elder (Sambucus nigra L.), black locust (Robinia pseudoacaica

L.), and small-leaved lime (Tilia cordata Mill.). Even though the datasets include

observations originating from different phenological networks (Table 3.1), the stud-

ied beginning of flowering (BF) event was consequently defined as ”the appearance

of the first flowers producing pollen on at least 10 % of the observed plants visi-

ble”. This phenophase equals the event 61, according to the BBCH (Biologische

Bundesanstalt, Bundessortenamt and Chemical Industry) code (see Meier, 2001).

The observations provided coverage for twelve North- and East-Central European

countries along the geographical coordinates of 40.9°–67.9°latitudes ranging to the

13.6°–32.1°longitudes (Figure 3.1). The aim of the phenological site selection was

to provide the best temporal and spatial coverage as possible. To reach this, the
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selection criteria were as follows: (1) the site has at least 10 years of continuous

records; (2) there are at least 5 sites within one biogeographical region. This cri-

teria set resulted in the North–South phenological (NS-Pheno) database (see also

Templ et al., 2016) that included different numbers of observations per biogeo-

graphical region.

The indicative map of European Biogeographical Regions was first defined in

practice of the conservation of natural habitats, wild fauna and flora (Roekaerts,

2002; ETCBD, 2006). The dataset of biogeographical regions was taken from the

European Environment Agency web page†. We merged these data sets with the

phenological time series in order to compare the following biogeographical macrore-

gions: Boreal, Continental, Alpine, Pannonian and Mediterranean (Figure 3.1).

The Boreal region is the largest biogeographical region of Europe. Its climate is

cool and mainly continental, its vegetation is dominated by coniferous forests, while

the biodiversity is relatively low. The Continental region is characterized by clear

continental climate, especially across the central and eastern parts. Widespread

grasslands are decreasing due to intensification of agriculture and afforestation.

The region shows increasing fragmentation of habitats due to dense and increasing

infrastructure within urban areas. The Alpine region is determined by vertical

zonality induced by the exposition of mountain slopes and advecting air masses.

In this way, different ecological conditions are represented at different altitudes

resulting in various vegetation types. The Pannonian region, situated in the low-

land areas of the Carpathian Basin used to be dominated by a mosaic of deciduous

forests and forest steppes, which are mostly turned into agricultural fields by now.

The Mediterranean region is characterized by a climate where warm, moist winters

alternate with hot, dry summers. The region is dominated by evergreen forests

and shrublands.

†http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1
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Figure 3.1: Left panel: Locations (dots) of the 963 phenological stations in certain biogeographical regions of
Europe along a North–South transect where phenological records have been collected. Right panel: Flowering time
(1970–2010) of the studied species shows the relation to latitude. (The colour key of both panel correspond to the
plant species: (i) Conmaj (C. majalis) – light blue, (ii) Robpse (R. pseudoacacia) – blue, (iii) Samnig (S. nigra) –
light green, (iv) Syrvul (S. vulgaris) – green, (v) Taroff (T. officinale) – light red, (v) Tilcor (T. cordata) – red.)
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Table 3.1: Phenological networks along a North to South transect in Europe,
maintaining observations and provided data by the members of the NS-Pheno
Team

Country Observational network Reference

Finland National Phenological Net-
work

Kubin et al. (2007)

Estonia Estonian Naturalists Soci-
ety, Estonian Environment
Agency

Ahas and Aasa (2006)

Latvia volunteer collected sites Grisule and Briede (2008)
Lithuania Voke Branch of the Lithua-

nian Research Centre for
Agriculture and Forestry

Romanovskaja and Bak-
siene (2008)

Poland Institute of Meteorology and
Water Management

Niedžwiedž and Jatczak
(2008)

Slovakia Slovak Hydrometeorological
Institute

Remisová and Nejedlik
(2008)

Hungary Hungarian Meteorological
Service

Szalai et al. (2008)

Slovenia Environmental Agency of the
Republic of Slovenia

Crepinsek et al. (2008)

Croatia Meteorological and Hydrolog-
ical Service

Vučetić et al. (2008)

Bosnia and Herce-
govina

National Phenological Net-
work

Hodžič and Voljevica
(2008)

Montenegro National Phenological Net-
work

Popovič and Drljevic
(2008)

Macedonia National Phenological Net-
work

Nekovár et al. (2008)
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Environmental data

Climatic variables based on air temperature (daily arithmetic mean, minimum,

maximum), precipitation and the indices of the North Atlantic Oscillation (NAO)

were obtained from different databases. Daily data (January to May) of air temper-

ature and precipitation were used from the E-OBS high-resolution gridded dataset

developed by the ENSEMBLES EU-FP6 project‡ with a 0.25 degree spatial reso-

lution (Haylock et al., 2008).

As a descriptor of the frequency distribution, the quartiles at 0.25 (Q.25 ),

0.5 (median), 0.75 (Q.75 ) level and the skewness of climate data series were de-

termined. Additionally to raw climate data, the motivation behind using such

characteristics of predictors was to also take into account the spread of values, in

terms of the interquartile distance. This is often done using the classical standard

deviation. However, since squared distances to the mean are taken into account,

outliers have a large influence on this estimate.

We created a set of environmental predictors (a) for monthly temperature

(namely, the 0.25, 0.5, 0.75 quartiles and skewness of the minimum-, mean-,

maximum- temperature datasets) and (b) for precipitation (0.25, 0.5, 0.75 quartiles

and skewness of the monthly precipitation).

Additionally, monthly indices (January to May) of the NAO (Hurrel, 1995)

were used from the database provided by the Climatic Research Unit (CRU) of

the University of East Anglia.

Furthermore, metadata information regarding the locations, namely latitude,

longitude and altitude of phenological sites, were also used in the models to consider

spatial differences.

‡http://www.ecad.eu/download/ensembles/ensembles.php
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Data analysis

Data pre-processing: Dates of the phenological observations –flowering data–

were converted to days of the year (doy), starting with first of January and con-

sidering leap years. Each phenological station (shown in Figure 3.1) was assigned

to the closest grid cell.

Calculation of trends: The obtained time series were assigned to 5 biogeo-

graphical regions (Figure 3.1), based on the code list of the European Environ-

mental Agency. Accordingly, trend analyses were carried out on long-term (1970–

2010) data series of (a) monthly climate data (Figure 3.2) and (b) flowering onset

(Figure 3.3) for each biogeographical region. We found that the data contain out-

liers, therefore a robust regression method, namely MM-type estimators for linear

regression (see Maronna et al., 2006) were applied to calculate trends. The rea-

son for using this method was that least squares estimates for regression models

are highly sensitive to outliers. Outliers are observations which do not follow the

pattern of the other observations. Robust techniques reduce the influence of out-

liers (without removing them from the data series), but approximately give the

same results as if no outliers were presented in the dataset (see more details in

Todorov and Filzmoser, 2009). Finally, significant trends were found at the level

of significance p < 0.05 using the Mann-Kendall trend test (Mann, 1945).

Comparison of decades: In order to compare various decades, phenological

time series were divided into four decadal-long periods: 1970–1980, 1981–1990,

1991–2000 and 2001–2010. As it was found to be a highly influential factor, the

differences in flowering onset dates (station-wise) according to latitudes (N) were

analysed. Trends in the timing of flowering dates were illustrated with regression

lines using locally weighted scatterplot smoothing (loess) (Cleveland, 1979) for all

decades (Figure 3.4).
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Influence of environmental variables: To describe the influence of the en-

vironmental variables on the timing of flowering, we again used robust MM-type

estimators for linear regression (see Maronna et al., 2006) on each plant species for

each biogeographical region. The difference between the models was only given by

the applied explanatory variables. Namely, the climatological data sets preceding

the timing of flowering and metadata information about the station locations were

included in the models, fitted by the lmrob function of the R package robustbase

(Rousseeuw et al., 2015). For better interpretability, the predictors were standard-

ized to zero mean and unit variance. The predictor expressing the first quartile

of precipitation was excluded from the models because these first quartiles were

mostly zero. The estimated regression coefficients obtained with robust methods

were visualized on heatmaps (Figure 3.5). On the heatmaps we distinguish between

cells including values of corresponding regression coefficients and empty (white or

grey) cells. The color key of the heatmaps expresses the values of the regression

coefficients. Namely, the darker the color the stronger the effect, which is either

negative or positive. Naturally, the maximum and minimum of the coefficients

vary depending on each heatmap. For better comparison, the colour range was

restricted to -1 and 1, thus any coefficient larger or smaller than this range was

assigned to black colour. Non-significant regression coefficients were suppressed to

reduce the amount of information to gain a better overview about the important

values. Thus, for any empty white-coloured cell the null hypothesis (regression

coefficient equals zero) cannot be rejected (no effect). The empty grey-coloured

cells report that no data were available in some biogeographical regions for certain

species.

All statistical analyses were performed using R (R Development Core Team, 2015,

version 3.2.2).
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3.3 Results

Trends in climatic variables

Regarding the climatological variables, we found that the monthly mean (Fig-

ure 3.2), minimum, maximum temperatures preceding the flowering onset dates

showed significant warming trends (1970–2010) across the Alpine and continental

regions calculated by the Mann-Kendall trend test. Temperature has been in-

creased significantly during April (1970–2010) across the Mediterranean and the

Pannonian region. Over the studied 41 years, the Boreal region did not show sig-

nificant changes in temperature. Furthermore, we did not detect any significant

long-term changes in case of precipitation and NAO.

Temporal characteristics of flowering

According to climatological trends, this section provides an overview about flower-

ing trends (1970–2010) over biogeographical regions of Europe, with special interest

on the North–South transect, drawn by latitude. As expected, the flowering time

starts earlier across the warmer Mediterranean and Pannonian regions, i.e. along

the lower latitudes, while it starts later across the cooler Boreal and Alpine re-

gions. From 23 studied cases, 17 showed significant flowering trends (Figure 3.3).

All of these phenological changes were related to earlier appearance – indicated

by negative regression coefficients (Table 3.2). Most species showed significant

trends in the Continental and Alpine regions (Table 3.2), according to significant

temperature increase (Figure 3.2). Less significant phenological shifts were found

across the Pannonian region. However, data availability does not allow us to give

such general statements about phenological changes in the Mediterranean region.

Still it is noticeable that all coefficients were negative (except for S. vulgaris in

the Boreal region and C. majalis in the Pannonian region) indicating advance-
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Figure 3.2: Annual variation and trends (1970–2010) of monthly mean temperature
(°C) in different biogeographical regions of Europe. Solid lines report significant
trends.
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ments in flowering time (Table 3.2). The strongest advancement was found for

R. pseudoacacia (3.8–9.6 days earlier shift per decade) and T. cordata (3.2-9.5

days per decade), while less pronounced responses were given by the herbaceous

T. officinale and C. majalis (Table 3.2).

Convallaria majalis Robinia pseudoacacia Sambucus nigra

Syringa vulgaris Taraxacum officinale Tilia cordata

100

150

200

100

150

200

1970 1980 1990 2000 20101970 1980 1990 2000 20101970 1980 1990 2000 2010
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Alpine Boreal Continental Mediterranean Pannonian

significant trend p < 0.05 p > 0.05

Figure 3.3: Inter-annual variation in the timing of flowering (doy) in different bio-
geographical regions of Europe (1970–2010). Solid lines report significant trends.

Furthermore, we detected differences in the mean flowering onset date between

decades (Figure 3.4). Differences were detected in mean flowering date (doy) along

a North–South transect as we evaluated the time series over different time peri-
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Table 3.2: Coefficients of robust linear regression between flowering onset and
years (1970–2010) for the studied species and biogeographical regions in Europe.
Negative values: indicate advancement in the beginning of flowering. Significant
relationships (p < 0.05) are visualized in bold.

species Alpine Boreal Cont. Mediter. Pannonian

Convallaria majalis -0.20 0.07
Robinia pseudoacacia -0.38 -0.96 -0.69 -0.17 -0.18

Sambucus nigra -0.35 -0.30 -0.18

Syringa vulgaris -0.39 0.03 -0.55 -0.24 -0.08
Taraxacum officinale -0.16 -0.22 -0.83 -0.16
Tilia cordata -0.32 -0.95 -0.52 -0.01

ods. Accordingly, the flowering of different species generally starts earlier in the

latest period (1991–2010) compared to the earlier years (1970–1990). This applies

especially to R. pseudoacacia, S. vulgaris and S. nigra over the whole range of

latitudes. For other species, like T. officinale, this is only true along some ranges

of latitudes, especially in the southern part of Northern Europe. However, because

of missing data problems (no values for the North during the period 2001–2010)

not much can be concluded from the current database for T. cordata.

Spatial patterns in flowering phenology across Europe

In order to explain the causes of phenological changes, the effect of climatic vari-

ables and geographical information on flowering dates were analysed (1970–2010).

In Figure 3.5 we illustrate the robust regression coefficients for the six species in

each biogeographical region of Europe using heatmaps. In most cases, the effects

of latitude and altitude were significantly positive. Thus, the species living in

northern or higher habitats were characterized by later dates of flowering onset

(see Figure 3.4).

On the contrary, the effect of longitude was rather negative or non-explainable
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(70 % of the cases). This indicates that the species living in more eastern parts of

Europe were characterised by earlier dates of flowering.

Regarding climatological variables, the clearest pattern arises from the indirect

effect of NAO. All species revealed a significantly negative relationship to the in-

dex of NAO (Figure 3.5).From our study, the effect of mean temperature seems

to give the most vague information. Earlier flowering in response to increased

temperatures is better visible when looking at the minimum and maximum tem-

peratures and thus it is easier to interpret the flowering dates with the distribution

of minimum and maximum temperatures. It can be seen that in most cases, the

quartiles of the minimum temperature have negative effect on the timing of flow-

ering. Namely, the higher the minimum temperature the earlier the flowering time

– except in the Alpine region. The second (median) and third quartiles of the

maximum temperature distribution also show negative effects (again except for

the Alpine region). The effect of precipitation did not show a general pattern

among species and biogeographical regions, but about half of the the studied cases

indicated significant influence.

3.4 Discussion

The term of phenological pattern has mainly been associated with plant communi-

ties (e.g. Pilar and Gabriel, 1998; Martinková et al., 2002)); in other cases, areas at

different scales were compared to describe phenological patterns of areas. Studies

have described phenological changes in timing of various spring plant phenophases

across hemispheres (Schwartz et al., 2006; Chambers et al., 2013), continents (Men-

zel and Fabian, 1999), along countries (Ahas and Aasa, 2006; Kalváne et al., 2009;

Szabó et al., 2016) and zones (Karyieva et al., 2012) related to climate driven

mechanisms and recent human induced climatic changes. Phenological events of
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Figure 3.5: Regression coefficients given for each plant and explanatory variable within different biogeographical
regions of Europe. Cases of grey cells without values report that no data were available in those biogeographical
regions. White cells indicate that non-significant influence was found. Negative values indicate negative influence
on flowering time (i.e. advancement), while positive values express positive effect.
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plants across biogeographical regions are particularly poorly documented, except

the efforts done by Rodriguez-Galiano et al. (2015) and Templ et al. (2016).

We aimed to discover phenological patterns across biogeographical regions of

Europe between various time windows of the period 1970–2010. Besides the estab-

lished NS-Pheno database, the novelty in our study is that we described flowering

patterns along a 3000 km long North–South transect of Europe. Our NS-Pheno

database allowed us to test, if the species living in the northern latitudes show

more pronounced response to climate change than those living in southern biogeo-

graphical regions. In the Boreal region, the intensity of the phenological response

of Betula pubescens to temperature increases from South to North across Finland

(Pudas et al., 2008). The reason is that the observed (1847–2013) warming in Fin-

land is almost twice as high as the global temperature increase (Mikkonen et al.,

2015). Our results seem to be contradictory to the findings of Mikkonen et al.

(2015), because we did not show significant temperature increase in this region

(Figure 3.2). But in contrast to Mikkonen et al. (2015), we studied shorter time

series (1970–2010) and applied robust methods, which both may have influence

on the results. Similarly to Lappalainen et al. (2008), we experienced the most

pronounced advancing flowering trends (Table 3.1) at a species level within this

subarctic climate zone. There is also a known phenological sensitivity of species

in other boreal countries such as in Estonia (Ahas and Aasa, 2006), Latvia and

Lithuania (Kalváne et al., 2009). Furthermore, our results confirm the observed

climate variability patterns and trends in the Alpine region (Auer et al., 2007;

Gobiet et al., 2014). Namely, the region has been facing a significant tempera-

ture increase (Figure 3.2), which resulted in significant phenological shifts in the

area (see Table 3.2). As we move from the northern areas to temperate and cool

climate zones, phenological responses of plants to warmer environment are strong

(Menzel et al., 2006; Jatczak and Walawender, 2009). The territory of Hungary
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covers 80–85 % of the drier Pannonian region. For this region Szabó et al. (2016)

already showed that plant species advanced their flowering time (1952–2000) by

1.9-4.4 days per decade. This tendency is confirmed in our study, but only for 2

out of 5 species significantly (Table 3.2), which inconsistency might stem from the

different i) lengths of the study periods and the ii) number of stations per region

involved in the analysis.

It is known that the annual pattern of phenological seasons across Europe is

related to the North Atlantic Oscillation (Menzel et al., 2005). Similarly to most

of the studies, we have also found temperature to be an influential determinant

for the timing of flowering (Stocker et al., 2013). Our results highlighted that

not just the mean temperature but the distribution of minimum and maximum

temperatures are reasonable to consider as explanatory variables when explaining

flowering times. The importance of rainfall and water availability is pronounced

by Penuelas et al. (2004) as complex drivers of phenological shifts. We showed

(Figure 3.5) a significant influence of precipitation on the beginning of flowering

in approximately half of the studied cases.

Our main focus was not only to test the effect of climatic variables, but also

others such as latitude. We addressed the question: Which patterns can we draw

when comparing northern biogeographical regions to southern ones? Are they

similiar to the patterns shown for the territory of China (Ge et al., 2015) and the

findings of a meta-analysis conducted by Root et al. (2003)?

It is known that over the past half century the temperature along higher lat-

itudes has increased more than along lower latitudes (Stocker et al., 2013). Ac-

cordingly, Root et al. (2003) showed that the estimated phenological shifts from

32.0°N to 49.9°N latitude are smaller than between the 50.0°N to 72.0°N latitude

band. Our observations confirm these findings for Europe, since we noticed the

most significant plant responses within the Boreal biogeographical region (approx-
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imately between 54.0°N and 67.0°N), which was followed by the Continental and

Alpine regions (from 40.0°N in 55.0°N). But, is only the latitude responsible for

this pattern? Ge et al. (2015) investigated the 20.0°–50.0°latitudes in China and

found significant phenological advancements, however, they could only explain

9 % of the overall variance in spring phenological trends. Previously, Estrella

et al. (2009) stated that the geographic coordinates (latitude and longitude) have

only a modest influence on the mean onset of the groups of phenophases, however,

inclusion of altitude can improve models for some cases. In our study, not only the

effects of latitude (Figure 3.4), but also altitude were found to have a significantly

positive effect on the beginning of flowering (Figure 3.5). These findings indicate

that although we experience a similar pattern (stronger response at higher lati-

tudes) among continents, the drivers of these changes cannot be described simply.

We showed that among biogeographical regions of Europe, the effect of longitude

was mostly non-significant. This can be explained by the longitudinal extent of

our study window, which probably was too narrow (13.6°–32.1°longitudes) to show

any West–East oriented flowering pattern. Therefore our results cannot support

the findings of Askeyev et al. (2010) who demonstrated less marked phenological

changes at the eastern edge of Europe.

According to our results, more pronounced phenological changes occur in the

latest (1991–2010) than in the earliest (1970–1990) study periods, as the effect of

climate change is more and more influential since the industrial era (Stocker et al.,

2013).
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CHAPTER 4
Change of plant phenophases

explained by survival modelling∗

Abstract

It is known from many studies that plant species show a delay in the timing of

flowering events with an increase in latitude and altitude, and an advance with an

increase in temperature. Furthermore, in many locations and for many species,

flowering dates have advanced over the long-term. New insights using survival

modelling are given based on data collected (1970–2010) along a 3000 km long

transect from northern to eastern Central Europe. We could clearly observe that

in the case of common dandelion (Taraxacum officinale) the risk of flowering time,

in other words the probability that flowering occurs, is higher for an earlier day of

year in later decades. Our approach assume that temperature has greater influence

than precipitation on the timing of flowering. Evaluation of the predictive power

of tested models suggests that Cox models may be used in plant phenological

∗The related paper is co-authored with Stefan Fleck and Matthias Templ (Templ et al., 2016)
and online first published in International Journal of Biometeorology, DOI: 10.1007/s00484-016-
1267-z.
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research. The applied Cox model provides improved predictions of flowering dates

compared to traditional regression methods, and gives further insights into drivers

of phenological events.

4.1 Introduction

Phenology is the study of the seasonal timing of recurrent biological events (such as

flowering, migration of birds and emergence of insects), the causes of their timing

with regard to biotic and abiotic forces, and the interrelations among phenophases

(developmental stage) of the same or different species. Drivers of phenological

responses range from macroclimatic circulation patterns (e.g. North Atlantic Os-

cillation) (Stenseth et al., 2003), to local environmental factors such as photoperiod

(Körner and Basler, 2010), edaphic factors (Wielgolaski, 2001), precipitation (Fu

et al., 2014) and temperature (Parry et al., 2007). Several studies have demon-

strated significant changes in plant phenological events in the Northen and South-

ern Hemisphere (Menzel et al., 2006; Schwartz et al., 2006; Way, 2011; Chambers

et al., 2013). However there are variations in the trends of phenological time-series

caused by phenophases, species, study periods and geographical locations. Thus

differing responses to climate change can result in mismatches between the timing

of plant and insect life cycles that impact other trophic levels, and which may lead

to population declines (Walther et al., 2002).

The phenology of most plant and insect species depends strongly on the thermal

accumulation, determined by daily temperature. Each phenophase of an organ-

ism has its own total heat requirement and there have been many attempts to

predict the onset of plant phenophases using heat sums. Most of these studies

were conducted on agricultural species, e.g. budburst date in vineyards (Cortazar-

Atauri et al., 2009), maturation in apricot cultivars (Ruml et al., 2011) or pollen
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prediction (Garcia-Mozo et al., 2009), where accurate forecasts are crucial.

Various methods have been tested previously to model the relevance of envi-

ronmental conditions for plant phenophases. Current plant phenological studies

either focus on temporal and spatial characterization of a stage in the annual life

cycle of a plant based on observed or modeled data, or attempt to predict the

future timing of plant stages. Survival analysis is a branch of statistics (see e.g.

Rodriguez, 2007) which deals with the analysis of the time duration until one or

more events happen. Proportional hazard models — such as the one proposed

by Cox (1972) — were originally developed for the medical field. In our case, the

event of interest is the flowering time of a plant species rather than patient survival

time. Such models are nowadays applied to a broad range of “time to event” data

sets in ecological studies as well (Kleinbaum and Klein, 2012). Examples range

from improved understanding of spring migration phenology (Bauer et al., 2004),

estimation of population growth predictions for an endangered species (DeCesare

et al., 2014), as well as the development of a descriptive model for egg-laying dates

of birds Gienapp et al. (2005, 2010).

We attempt to improve our understanding of flowering time by applying a

non-traditional method, proportional hazard models to plant phenology. We used

common dandelion (Taraxacum officinale W.) as a model organism, because ac-

curate long-term (1970–2010) data sets from biogeographical regions of Europe

are available for this species. By calculating the hazard ratio of different climate

variables, we showed their influence on flowering times and tested the predictive

power of Cox models in phenological research.
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4.2 Materials and methods

Phenological data

Plant phenological time-series were collected for the period of 1970–2010 from

northern to eastern Central Europe. These data comprise phenological observa-

tions of common dandelion (Taraxacum officinale L., Asteraceae).

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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Figure 4.1: Phenological observation sites

and the studied North to South transect

of biogegraphical regions in Europe.

The studied beginning of flower-

ing (BF) event was defined as ”the

appearance of the first flowers pro-

ducing pollen on at least 10 percent

of the observed plants visible“. This

phenophase corresponds to event 61

according to the BBCH (Biologische

Bundesanstalt, Bundessortenamt and

Chemical Industry) code (Meier, 2001).

Data from nine European countries

(Finland, Latvia, Lithuania, Poland,

Hungary, Slovenia, Croatia, Bosnia

and Herzegovina, Macedonia), between

40.9–67.9 degrees in latitude and 13.6–

32.1 degrees in longitude, were col-

lected (see Figure 4.1). More precisely,

data on T.officinale were taken from

the NS-Pheno database (Templ et al.,

2017) – this is the reason why Figure 4.1 has similarities with Figure 3.1. The

NS-Pheno database includes phenological data collected from countries along the

North–South transect across Europe (see Table 3.1), coordinated by the author.
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The database comprises records from the following national observation net-

works. Phenological data from Finland were recorded by the National Phenological

Network (Kubin et al., 2007). Estonia has data over years compiled by the Esto-

nian Naturalists Society and the Estonian Environment Agency (Ahas and Aasa,

2006). Data from Lithuania originate from records collected by the Voke Branch of

Lithuanian Research Centre for Agriculture and Forestry (Romanovskaja and Bak-

siene, 2008). Observations from Latvia (Grisule and Briede, 2008) originate from

volunteer-collected sites of the humid continental climatic zones (Kalváne et al.,

2009). The Institute of Meteorology and Water Management introduced and pro-

vided phenological observations from Poland (Niedžwiedž and Jatczak, 2008). The

Slovak Hydrometeorological Institute collected phenological observations from the

territory of Slovakia (Remisová and Nejedlik, 2008). The observational network of

Hungary (Szalai et al., 2008; Szabó et al., 2016) (the main country of the Pannon-

ian region) was maintained by the Hungarian Meteorological Service. Phenological

data preserved by the Environmental Agency of the Republic of Slovenia (Crepin-

sek et al., 2008) were also included in the database. The phenological network

maintained by the Meteorological and Hydrological Service of Croatia (Vučetić

et al., 2008) covers all of the main climatic zones (moderate continental, moun-

tain and Mediterranean) of the country. From historical reasons, Montenegro has

similar phenological observations (Popovič and Drljevic, 2008) to other former Yu-

goslavian states. Data were collected from Bosnia and Herzegovina too; however,

a number of observational sites were affected by the wars in the 1990s (Hodžič and

Voljevica, 2008). The southernmost data provider for this study was Macedonia,

which is a mostly unexplored region in terms of phenological research.
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Environmental data

Temperature and precipitation data were obtained from the E-OBS regular gridded

dataset developed by the ENSEMBLES EU-FP6 project† with a 0.25 degree spatial

resolution (Haylock et al., 2008; Hofstra et al., 2009). Available temperature data

included daily minimum, maximum and mean in degrees Celsius. Precipitation

records were available as millimeters per day. The temperature data contained

some suspicious observations, where, for instance, the minimum temperature was

greater than maximum temperature. To err on the side of caution, such observa-

tions were removed from the dataset before further data processing.

The relationship between growing degree days (GDD) and the onset of plant

phenophases is well known (Cleland et al., 2007). A degree day is a measure of the

amount of heat that accumulates above a specified base temperature during a 24

hour period. Phenological models are usually based on accumulated temperature,

termed growing degree days, which were calculated as:

GDD =
Tmax + Tmin

2
− Tbase, (4.1)

where Tbase was chosen as 10◦C for GDD calculations. Days with a mean temper-

ature lower than 10◦C were set to zero (McMaster and Wilhelm, 1997).

The data were collected in nine European countries representing five biogeo-

graphical regions, namely the Alpine, Boreal, Continental, Pannonian and the

Mediterranean (Figure 4.1). We included the dataset of these regions from the

European Environment Agency web page‡. The biogeographical regions were first

defined within the field of conservation biology, and are useful geographical refer-

ence units for describing habitat types and species which live under similar condi-

tions (Roekaerts, 2002; ETCBD, 2006).

†http://www.ecad.eu/download/ensembles/ensembles.php
‡http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1
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Instead of incorporating the geographical location of the station into the model

(latitude, longitude, altitude) we stratified the model per station, i.e. we included

the phenological stations in the Cox model as strata (see Sect. 4.2 and Equa-

tion 4.2). For the Cox model this means that a separate baseline hazard function

is fitted to each station. This way we lose the ability to make statements on the

influence of geographic factors on a fine scale, but we minimize the effect of site-

specific environmental conditions on our analysis by the influence of GDDs and

precipitation on the beginning of flowering time. Because of the large numbers of

climate and phenological stations that we have, we can nevertheless interpret the

results by biogeoregion. This is also the strategy that yielded the best predictive

power of all our attempts.

Data analysis

Dates of the phenological observations were converted to days of the year (doy)

with 1st of January as the starting point. We found that the collected national

phenological timeseries (see Section 4.2) were different in their length because of

missing values. To handle this and to reach the best temporal and spatial coverage

possible, the data were filtered based on the following selection criteria: (1) the

station has at least 10 years of continuous records; (2) there are at least 5 stations

within one biogeographical region. This way we created single homogenized phe-

nological time series for each biogeographical region, using two-way crossed linear

mixed models by using the pheno R package (Schaber, 2012). This approach allows

the aggregation of time series data in an optimal manner (details can be found in

Schaber and Badeck, 2002).

We modelled the influence of climate variables on the timing of flowering onset

as a survival analysis problem. We fitted the Cox proportional hazards model (Cox,

1972) with time dependent covariates (hereinafter Cox model), implemented in the
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R package survival (Therneau, 2015). The Cox model can be used to calculate a

hazard ratio for each time dependent covariate (climate variables). The hazard

ratio can be regarded as the relative risk of an event occurring at time t. In other

words, the relative risk is the ratio of the probability of an event occurring in the

exposed group (influenced by environmental factors) versus a non-exposed group.

For the purpose of comparison we also fitted a Cox proportional hazards model

without time dependent covariates and a classical linear regression model. We

used fivefold cross-validation to compare the predictive power of the models and

reported the mean error (ME) and mean percentage error (MPE), to indicate

whether the forecasts were biased.

In our case, GDD and precipitation were included in the Cox model as cumula-

tive time dependent covariates. To study whether the influence of these covariates

varies between biogeographical regions, they were included as an interaction term.

In addition, the model was stratified by station to account for geographical varia-

tions in flowering time. The hazard was thus defined as

hs(t,X) = h0s(t)e
β1X1(t)b+β2X2(t)b (4.2)

where hs(t,X) is the hazard at time t for stratum (=station) s, h0s(t) is the

time-dependent baseline hazard function for a given stratum, X contains the co-

variate vectors X1 (growing degree days) and X2 = (precipitation), b is the vector

of biogeoregions, β1 and β2 the unknown coefficients to be estimated.

One of the principal results of this modeling approach is the hazard ratio —

that is in our case the change in risk of flowering time associated with a unit

increase of one of our covariates (GDD, precipitation). For example, a hazard

ratio of 1.01 indicates a 1.01 times higher risk of flowering at a given day. Thus,

the Cox model can further be used to predict a flowering risk for any given day of

the year (daily hazard) based on climate data.
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We made several attempts to include geographic variables such as longitude,

latitude, and altitude into the Cox model; however, we were not able to produce

models that yielded satisfying predictions. This is likely due to the fact that those

variables are not sufficient to describe local climatic variations between stations

well enough to account for variations in flowering. To get around this problem we

stratified the model by stations, thus we removed all static, site-specific factors.

All analyses were performed using the statistical software and environment R

(R Development Core Team, 2015), the pheno package in version 1.6, the survival

package in version 2.38.3. and for visualization we used the R package ggplot2

(Wickham, 2009) in version 2.1.0.

4.3 Results

In order to calculate the risk of flowering time over Europe, we determined the long-

term trends (1970–2010) of climate variables, which were included in the fitted

models. We found that the monthly mean, minimum, maximum temperatures

(previous to the flowering onset dates) showed significant warming trends in the

Alpine and continental regions. We did not find significant changes in temperature

for the Boreal region from our dataset (but see Mikkonen et al. (2015)). We present

results from the Cox model, and we describe the shift of flowering dates using

Kaplan-Meier curves (Kaplan and Meier, 1958). We also compare results on the

prediction of survival dates with a traditional method (linear regression).

Shift of flowering date and Kaplan-Meier curves

An important part of survival analysis is to show the survival of each group of

interest. In our case, various time periods were handled as groups (see Figure 4.2).

We visualized the shift in onset of flowering by generating Kaplan-Meier survival
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curves from the phenological data. The Kaplan-Meier estimator is a stepwise

estimator for survival probability, which in our case can be interpreted as the

probability that T. officinale has already or has not yet flowered. Figure 4.2

shows the percentage of individuals that have not yet flowered at a given point in

time. In general, we can see that the latter the decade the earlier the flowering

date. More precisely, on a given day of year, the percentages of individuals that

have not yet flowered is less in the following decade than in the preceding decade.

Differences between the last two decades (1990-2000 and 2000-2010) are especially

large. The survival curve relating to the time 1970-1980 period is the exception to

this trend, since the temperatures in the seventies (mean flowering time 110 and

mean temperature (January till August) 9.36 degree Celsius) were higher than in

the eighties (mean flowering time 113 and mean temperature (January till August)

9.19 degree Celsius).
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Figure 4.2: Kaplan-Meier survival curves of Taraxacum officinale indicating shift
in flowering dates over decades.

70



Table 4.1: Hazard ratios, the change in risk of flowering associated with a unit
increase of one of the covariates. Interaction terms between the covariates (growing
days degree (GDD), precipitation) and biogeographical regions were also included
in the Cox model. Relationships found to be significant (p< 0.001) are highlighted
in bold. Three statistics were used to evaulate the model fit: Concordance = 0.747
(SE = 0.071), Rsquare = 0.004 (max possible = 0.044), Likelihood ratio test =
830.4 (on 10 df).

Covariates Hazard ratio p-value

GDD × Alpine 1.008 0.001
GDD × Boreal 1.016 0.001
GDD × Continental 1.012 0.001
GDD × Mediterranean 1.011 0.001
GDD × Pannonian 1.010 0.001
Precipitation × Alpine 1.000 0.974
Precipitation × Boreal 1.003 0.035
Precipitation × Continental 0.999 0.327
Precipitation × Mediterranean 1.000 0.870
Precipitation × Pannonian 0.999 0.478

Cox model for time dependent covariates

The hazard ratios and corresponding p-values from the Cox model are reported for

each covariate in Table 4.1. The main feature to note in such a table is whether

the hazard ratio is greater or smaller than one. As mentioned earlier, a hazard

ratio of 1.01 for instance means a 1.01 times higher risk that flowering will happen

on any given day per additional growing degree day. A ratio of 1.01 % is thus not

a small number since it is a higher risk per day.

Our Cox model found a statistically highly significant link between GDD and

onset of flowering time. This relationship varies slightly between different biogeo-

graphical regions (see Table 4.1). For precipitation the calculated hazard ratios are

ambiguous, because the Cox model found almost no statistically significant link be-

tween precipitation and onset of flowering. Only a slightly significant (p ≈ 0.035)

relationship can be shown for the Boreal region, which is likely an artifact because
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of the large amount of data. The Likelihood ratio (LR) test confirmed that our

model was significantly better than the null model (without predictors); the LR

test statistic equals 830.4, p ≈ 0.

We addressed two questions: (i) how do environmental covariates affect the

relative risk of the onset of flowering? (ii) is there a significant difference in this

risk among the various regions and time periods? The shift of risk of flowering time

among decades can be seen in Figure 4.3. The relative risk is a measure relative to

the mean covariate (GDD, precipitation and their interaction with biogeographical

region) value of each stratum (station). It can be observed that the risk of flowering

time is higher for a given date in the year in later decades. Similarities can be

seen between decades 1970-1980 and 1980-1990, because of similar temperature

conditions. Notice also the similarities between the relative risk and the Kaplan-

Meier curves in Figure 4.2.
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Figure 4.3: Relative flowering risk of Taraxacum officinale averaged by decades.
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Prediction of the flowering date

For comparison purposes we predicted the mean flowering date from a classical lin-

ear regression model, as well as from a Cox model with and without time dependent

covariates. The Cox model itself does not directly predict a flowering date based

upon given predictor variables (station, GDD, precipitation), but rather gives the

probability that plants have not yet flowered by a given day. The mean predicted

flowering date we use for our prediction is the date where there is a 50% percent

chance that the plant has flowered.

The results are visualized in Figure 4.4. The predicted mean flowering of T.

officinale correlated the best with the observed dates for the Cox model with time

dependent covariates (≈ 0.89, see Figure 4.4). Naturally, model deviations are

highest for observations that depart from the bulk of the data. In our case, this

mainly occurred with observed flowering dates earlier than day 45 and a few late

flowering dates.

According to Figure 4.4, it becomes obvious that the Cox model, especially

the one with time dependend covariates (bottom right), gives better fit also to the

extremes of the distribution as the traditional linear regression model (top right).

Table 4.2 shows several estimates of prediction accuracy based on stratified fivefold

cross validation. We can see that the Cox model for time dependent covariates

outperforms the other models in terms of the root mean square error (RMSE), the

mean absolute error (MAE) and the mean absolute percentage error (MAPE).
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Figure 4.4: Predicted against observed mean flowering dates (doy) of Taraxacum
officinale. For comparative purposes the four cases indicate results from the me-
dian observed doys for each station against original observations (Median), the
traditional regression model (Linear Regression), the Cox model without time de-
pendent covariates (Cox (prop.hazard)) and the Cox model with time dependent
covariates (Cox (time dep. covar.)).
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Table 4.2: Estimation of prediction accuracy using fivefold cross validation for
the following models: (1) the median of the observed flowering date of each sta-
tion (baseline model), (2) a simple linear regression model (classical modelling
approach), (3) the Cox proportional hazard model (without time dependent co-
variates), and (4) the Cox model with time dependent covariates. Abbreviations:
RMSE = root mean squared error, MAE = mean average error, MAPE = mean
average percentage error.

RMSE MAE MAPE
median 12.84 9.72 10.51

regression 11.01 8.52 9.10
cox (prop.hazard) 11.71 8.92 9.53

cox (time dep. covar.) 10.46 7.44 8.07

4.4 Discussion

Plant phenological responses are well documented across the Northern Hemisphere

(Menzel et al., 2006; Schwartz et al., 2006) since such phenomena are sensitive to

variations in climate, especially to temperature, as highlighted by recent studies

on the ecological consequences of global climate change. Observed climate trends

and future scenarios show regionally varying changes in temperature and precipi-

tation in Europe (Kovats et al., 2014). Temperature increase in the Alpine region

is expected to accelerate in the next century (Gobiet et al., 2014). We also de-

tected warming trends (1970–2010) in 2 (Alpine and continental) of the studied 5

biographical regions in Europe (see Figure 3.2).

Predictions of future warming necessitate further development of tools to better

understand plant phenological responses, and this includes the testing of poten-

tially useful non-traditional methods. Relative risk is a known terminology in

epidemiology to describe the likelihood of developing a disease, as well as in en-

vironmental management to assess ecological risk. We present an application of

this approach to the prediction of flowering time, by calculating the probability of

flowering onset date by survival modeling. In general, survival models investigate
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follow-up time from a defined starting point to the occurrence of a given event

(Bewick et al., 2004).

Compared to traditional linear regression, a major difference, and advantage

of survival models is the possibility of including time dependent (time-varying) co-

variates. These are predictor variables (in our case GDD and precipitation) whose

values may change over the course of observation. Classical phenological models

estimate plant developments by accumulating degree days between temperature

thresholds throughout the season. The accumulation of degree days from a start-

ing point can help to predict when a phenological stage will be reached. Similarly,

survival models are able to integrate more environmental variables, but without

the requirement to aggregate them. This is advantage, because the usage of daily

data (Pau et al., 2011) and the avoidance of the modifiable temporal unit prob-

lem (Jong and Bruin, 2012). Based on the assumption that the probability of a

phenological event happening can be interpreted as a survival event, we calculated

the relative risk of flowering time for T. officinale across biogeographical regions

in Europe. To our knowledge, this method has only been tested on bird pheno-

logical data (Gienapp et al., 2005, 2010; Visser et al., 2006; Williams et al., 2015)

so far. Thus, the potential of this application is yet to be recognised by the plant

phenological community.

Zeng et al. (2011) investigated recent changes in phenology over Northern high

latitudes from multi-satellite data. They found that the period 2000–2010 was

associated with an advanced start of the growing season (SOS) of larger magnitude

than the SOS trends of the 1980s and 1990s. Similarly to these findings, based on

Kaplan-Meier estimation, we have found that within each decade since the 1980s,

the timing of flowering of T. officinale has shifted towards earlier dates in Europe.

By introducing survival curves to phenological research, it is possible to compare

the timing of phenological phases by decades, locations and species. There is

76



potential in the development of the method to estimate the change in phenological

phases under various climate scenarios (Gienapp et al., 2005).

There is evidence from a wide range of taxa and across a wide range of geo-

graphic locations that phenological events in spring have been happening earlier

in recent decades (Sparks and Menzel, 2002; Parry et al., 2007). As is the case

for most of the spring phenophases, the flowering date of T. officinale exhibits a

stronger phenological response to temperature in warmer than in colder countries

(Menzel et al., 2006; Jatczak and Walawender, 2009). But what are the driving

factors of such response? Phenology uses environmental cues to attune flowering

to appropriate seasonal conditions (Tookey and Battey, 2010). Several covariates

(North Atlantic Oscillation, precipitation, temperature, photoperiod, snowmelt)

have been determined as appropriate predictors for flowering onset. In the case of

T. officinale we documented no significant influence of precipitation on the timing

of flowering across biogeographical regions in Europe. Fu et al. (2014) showed

that the GDD requirement for vegetation green-up onset plays an important role

at higher latitudes along the geographical coordinates of 35◦ – 70◦. Our findings

confirm the significant effect of GDD on plant phenology (Cox, 1972).

We aimed, not just to give a spatio-temporal description of climatic drivers of

flowering onset dates across Europe, but also to compare various models that can

be used to predict phenological events. The forecasting of ecological responses to

climate change represents a major challenge for many reasons (Cook et al., 2010),

such as systematic errors in simulations (Migliavacca et al., 2012). Our work

demonstrated that Cox models can compete with traditional regression models or

even outperform them. We find that survival models can be a fruitful extension to

well-established traditional approaches in phenology. However the approach needs

further testing, to assess whether it can be generalized for any other phenophase

of living organisms.
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CHAPTER 5
Testing plant phenophase as

proxy: sensitivity analysis of first

flowering data from the 19th

century∗

Abstract

Eco-climatological studies recognise plant phenophases as high-confident climate

indicators, since they are strongly dependent on heat conditions. We investigated

the first flowering response of numerous plant species to inter-annual fluctuation

of seasonal temperatures (e.g., heat sensitivity of the phenophase), also the rate

of these species-specific sensitivities in order to test their applicability as proxy

of temperature. From the few available data sources recorded in the Carpathian

Basin during the 19th century, the first flowering data sets of 16 plant species

∗The paper co-authored with Annamária Lehoczky, Rita Pongrácz and Ferenc Szentkirályi
(Lehoczky et al., 2016) is published in Applied Ecology and Environmental Research.
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and time series of monthly mean temperature (site: Hermannstadt; period: 1851-

1891) were selected for the analysis. We found that the first flowering dates of

different plants fluctuated significantly synchronously, however, temporal trends

were not detected in any of the time series. Based on the main heat sensitivity

characteristics, the species were ranked as phyto-thermometers to select the best

heat indicator plants. The first flowering data of these indicators were applicable

to estimate temperature data. The accuracy of different plants as proxies varied

in the range of 1.0 °C and 1.5 °C. Therefore our procedure is of interest in order

to better understand past climates of periods or locations, where no instrumental

records are available.

5.1 Introduction

The Earth is already experiencing human induced global scale climatic changes,

which affect the whole biosphere. The number of evidences are increasing according

to the biological responses documented (Walther et al., 2002; Parmesan and Yohe,

2003; Root et al., 2003; Bartholy et al., 2012) in plant and animal populations. The

most easily detectable and widely reported changes can be seen worldwide in the

timing of phenological events (Miller-Rushing and Primack, 2008). Several studies

have been gathered from the past half-century about spatial and temporal shifts

of plant phenophases associated with global warming trends. Evidences of plant

phenological responses are known across the globe (Badeck et al., 2004; Cleland

et al., 2007; Elzinga et al., 2007), from the Northern (Schwartz et al., 2006) to

the Southern Hemisphere (Chambers et al., 2013), towards Europe (Fitter et al.,

1995; Ahas and Aasa, 2006; Menzel et al., 2006), Russia (Ovaskainen et al., 2013)

and China (Ge et al., 2015). Thus, one of the most appropriate indicators of

climatic changes is the phenophase of living beings. Phenology, the science of
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natural recurring events (Demarée and Rutishauser, 2011) analyses the timing of

periodic life-history events (i.e. phenophases) such as budburst or first flowering

of plants (Pau et al., 2011). Specifically, the first definition by Lieth (1974) says:

’Phenology is the study of timing of recurrent biological events, the causes of their

timing with regard to biotic and abiotic forces, and the interrelation among phases

of the same or different species’.

In moderate and cold climatic zones, phenological phases occure in the spring

season are particularly sensitive to their environment. Adaptation to inter-annual

day length of these phenophases can cause detectable changes in their growth

activity if they are reinforced by increasing temperature (Rutishauser et al., 2007).

Atmospheric teleconnection patterns, e.g. the North Atlantic Oscillation, influence

both temperature and precipitation conditions of the Northern Hemisphere (Trigo

et al., 2002; Hurrell et al., 2003; Bartholy et al., 2009a; Mándl, 2009), and thus,

indirectly the phenological patterns, too (Menzel, 2003; Stenseth et al., 2003).

Precipitation cannot be considered as a major driving factor at the mid-latitudes

(Buermann et al., 2003), because it usually does not significantly explain variances

of the spring plant development (Rutishauser et al., 2007). However, it is more

important in arid and semi-arid regions (Lima and Rodal, 2010).

Eco-climatological studies refer to plant phenophases can often be used as bio-

indicators of climate change or proxies for temperature (Menzel, 2002, 2003; Miller-

Rushing et al., 2008), especially when the seasonal timing of the phenological event

is closely related to specific climatic conditions during plant development (Aono

and Kazui, 2008; Sparks et al., 2000). The so-called climate proxies are preserved

physical characteristics of the past that stand for direct measurements and can

be utilized for climatological reconstructions (Rutishauser et al., 2007). Further-

more, vice versa, future climate projections can be used for the prediction of the

proxy based on the strong relationship between the variables. Numerous studies
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reconstructed temperature conditions using different phenophases from available

phenological data series (e.g., Holopainen et al., 2006; Lavoie and Lachance, 2006;

Rutishauser et al., 2007; Aono and Kazui, 2008; Kiss et al., 2010). Although phe-

nological data series compiled from historical records allow climate reconstructions

on shorter time-scale compared to other proxies (such as tree ring, pollen or ice

core data), they are also important sources for the analysis of past climate and

cross-validation (Dickinson and Bonney, 2012). Detailed analyses of heat sensi-

tivity of different phenophases were carried out in Germany, Switzerland and UK

(Rutishauser et al., 2009; Schleip et al., 2009), but not yet for the Carpathian

Basin.

The enhanced protection of plant species and their habitats under climatic

changes is substantial in the, otherwise they might face to severe consequences

and even extinction (Root et al., 2003; Thuiller et al., 2005; Estes et al., 2011). In

order to understand and predict the impact of current climatic changes on plant

phenophases, it is necessary to analyse phenological time series as a reference

from the period when the recent anthropogenic warming effect did not influence

the local climate conditions. Unfortunately, most of the phyto-phenological data

series recorded in the 19th century, suffer lacks both in time and space for the

Carpathian Basin (Szalai et al., 2008). The available studies from this region

(e.g., Walkovszky, 1998; Varga et al., 2009a,b, 2010; Szabó et al., 2016) rely on

phenological data series recorded at the second half of 20th century, which period

is already significantly influenced by the warming spring (Pongrácz et al., 2011;

Cramer et al., 2014).

In the present study, we investigated the first flowering response of 16 wild

plant species to interannual fluctuation of local seasonal temperatures (i.e., heat

sensitivity of the flowering onset), also the rate of these species-specific sensitivities

in order to test their applicability as proxy of temperature. The analyses were
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accomplished using first flowering data series, recorded in the second half of the

19th century, in Hermannstadt and Mediasch located in Transylvania (nowadays in

Romania). The following issues were addressed using different statistical methods:

(i) characterization of the effect of mean temperatures in various time periods

(monthly, bi-monthly, tri-monthly, etc) on flowering onset dates using a moving-

window technique; (ii) determination of the effective temperature values (Teff)

estimated from the responses of each species; (iii) calculation of the temporal

shifts of first flowering date as a response to Teff . Furthermore, (iv) the plant

species were ranked based on the temperature sensitivity of their first flowering

dates; and (v) the accuracy of use of plant phenophases as proxy estimations was

evaluated.

5.2 Materials and methods

Phenological data

The analyses are accomplished using flowering onset data sets of 16 wild plant

species (Table 5.1) recorded in the second half of the 19th century. The obser-

vations were carried out in the period 1851–1891, near Hermannstadt (45°48’ N,

24°9’ E, named Sibiu today, located in Romania), by Ludwig Reissenberger, a lo-

cal teacher deeply interested in natural science. The data records are considered

reliable and the documentation is precise due to the unchanged observer.

In order to test the accuracy of flowering dates as proxy, data from Mediasch

(46°10’ N, 24°21’ E, named Mediaş today, located at cc. 50 km distance from Her-

mannstadt) have also been involved into analyses for the period 1854–1865. (All

the data mentioned above are available in the Austro-Hungarian and Hungarian

Meteorological Yearbooks.) At both sites, the date of flowering onset was defined

as the date when some individuals from the whole plant population were totally
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Table 5.1: Flowering onset data characteristics of the observed 16 plant species
near Hermannstadt in the period 1851–1891 (SD=standard deviation; *herbaceous
plants).

Species names
Flowering onset (FO)

Mean FO
date

Days
after
1 Jan-
uary

±SD
[day]

Sp-1 Tussilago farfara L. Coltsfoot* 02 March 62 15.7
Sp-2 Scilla bifolia L. Two-leaf squill* 25 March 85 10.0
Sp-3 Taraxacum officinale

W.
Common dandelion* 05 April 96 12.0

Sp-4 Caltha palustris L. Marsh marigold* 07 April 98 9.1
Sp-5 Salix fragilis L. Crack willow 16 April 106 9.9
Sp-6 Ribes rubrum L. Red currant* 20 April 110 9.0
Sp-7 Fragaria vesca L. Woodland strawberry* 23 April 113 8.9
Sp-8 Orchis morio L. Green-winged orchid* 01 May 122 8.2
Sp-9 Syringa vulgaris L. Common lilac 02 May 123 8.8
Sp-10 Aesculus hippocas-

tanum L.
Horse chestnut 04 May 125 8.5

Sp-11 Euonymus europaeus

L.
European spindle 07 May 128 8.1

Sp-12 Salvia pratensis L. Meadow sage* 10 May 130 8.7
Sp-13 Dianthus carthusiano-

rum L.
Carthusian pink* 24 May 144 9.3

Sp-14 Robinia pseudoacacia

L.
Black locust 25 May 145 9.1

Sp-15 Sambucus nigra L. Black elder 26 May 146 9.3
Sp-16 Vitis vinifera L. Common grape vine 13 June 165 7.3

flowering as it was given by the protocol of phenological observation in the 19th

century (see in Meteorological Yearbooks). At Hermannstadt 24 plant species were

observed by Reissenberger, however for detailed analyses 16 species were selected

based on two criteria: (i) the plant was required to be common, widespread and

possibly wild, in order to identify them by the observer easily, (ii) the average first

flowering date was required to occur in the period from late-winter/early-spring

until early-summer to enable comparisons of species-specific responses to different

seasonal temperatures. According to similar investigations (Menzel, 2002, 2003;
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Fitter and Fitter, 2002), these early flowering species are more sensitive to climatic

variations than the later (summer and/or autumn) flowering ones. In addition, half

of the selected 16 species were herbaceous plants and the others were woody. The

date of phenophase was given as the ’day of the year’, i.e., the number of days

elapsed since 1st January of a given calendar year (doy).

Climatological data

The time series of monthly mean temperatures were also obtained from the men-

tioned Meteorological Yearbooks, and covered the same period (1851-1891 and

1854-1865) as the phenological observations originated from the two observational

sites. The monthly means of air temperature were calculated from daily data.

These daily time series were averaged and corrected from three daily measure-

ments, recorded in the yearbooks. The meteorological measurements were carried

out by standard devices of the Austrian weather service. Detailed descriptions of

the measuring methods, conditions, devices, and applied corrections can be found

in the yearbooks. After transforming the Réaumur degrees into standard Cel-

sius degrees, and completing quality control, the monthly averaged data sets were

considered as local homogeneous time series.

Statistical methods

Both phenological and temperature data sets can be characterized by normal dis-

tribution, which was checked with Kolmogorov-Smirnov statistical test using 95%

confidence interval.

Linear regression analyses were applied to describe the possible long-term

trends in the time series and possible relations between temperature and phe-

nological data. The goal was to identify linear trend via regression of the observed

time series against time and test the estimated slope coefficient of the linear regres-
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sion equation for significance (Haan, 2002). The well-known least squares method

was used for parameter estimation.

Cross correlation function (CCF) was calculated between the two time series

(yt: phenological and xt :climatic) for identifying lags of the x-variable that might

be useful predictors of yt. CCF was defined as the set of sample correlations

between xt+l and yt for l = 0. Cross correlation values reflect the degree of linear

relationship between the two data sets. Significant negative values for r0 show if

there was a negative correlation between the x-variable and the y-variable at time

t with 0-lag (confirmed by t-test with 0.95 level of significance).

In phenological analyses, climatic variables are usually aggregated into aver-

ages over a month or more. Despite the loss of information due to aggregation,

this aggregating method was applied in order to avoid both numerical problems

and difficulties with interpretation arising from the high dimensional and corre-

lated nature of daily weather data (Roberts, 2010). In this study bi-, tri-, and

tetra-monthly mean temperatures were calculated from the monthly mean data to

examine the relationships between the timing of first flowering and temperature

data.

The effective temperature (Teff) is a nominal temperature that represents the

heat conditions of the period, which is considered to possess the highest impact

on the timing of flowering onset of a plant species. So, the Teff values represent

different heat conditions due to different length of aggregating periods. The ef-

fective temperature periods were found by a ‘moving window’ technique: bi-, tri-,

and tetra-monthly temperatures were calculated from the monthly means by shift-

ing 1-month-steps. As a result of this method, newly aggregated time series were

obtained such as TFM, TMA, TAM, TMJ; TJFM, TFMA, TMAM, TAMJ; and TJFMA,

TFMAM, TMAMJ – in the subscripts the first letter of months is given. The heat con-

ditions of the winter-spring period prior to the time of flowering (even the previous
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summer and autumn conditions) can significantly influence as well as determine

the date of flowering onset (Miller-Rushing and Primack, 2008). Hence the av-

erage temperatures of these periods can be considered as rough representation of

the cumulative amount of heat. We determined the most effective temperature

period for the phenophase of each species, by calculating serial CCF values. The

most effective temperature period for a certain plant was selected by the highest

absolute value of r0 (see details on Figure 5.4).

The temporal shifts of first flowering date as a response to Teff and the heat

sensitivity were described after applying linear regression. These characteristics

were determined from the slope of the regression equations between the flowering

and temperature time series. The regression coefficients indicate the effect (shift

of flowering onset in days) of 1°C change in temperature in the certain period.

Negative value of the regression coefficient indicates the advancement of flowering

in response to increasing temperature.

To describe the species-specific relative response of flowerings to relative changes

in Teff , both data series were converted into relative measures (expressed in per-

centages). These were obtained as follows: (i) determination of the anomalies of

time series compared to the average of time series, (ii) sum of these anomalies

without signs (this sum means the 100%), and finally (iii) expression the anoma-

lies with signs as a percent of the previously calculated amount of 100%. The

obtained relative responses of flowerings were considered as rough indicators of

heat sensitivity characterising the plant species. By this indicator the plants were

ranked and compared in terms of possible utilization as proxy.

In order to test the flowering onset of the selected plants as proxy data for

local average seasonal temperatures (assuming relatively constant heat sensitivity

in at least 50 km vicinity of the Hermannstadt site), phenological and temper-

ature data of Mediasch (period: 1854–1865) were involved into the analysis. In
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case of 14 plant species observed at both places, by replacing the phenological

data of Mediasch into the regression equation established on the relation between

the phenological and temperature data of Hermannstadt, a robust estimation of

local effective temperature was gained. The statistical analysis was carried out

with codes written in FORTRAN language and with the Statistica 6.1 software

(StatSoft, 2003).

5.3 Results

Characteristics of studied time series

Observed temperature data According to the completed trend analysis, sig-

nificant temporal trend was not detected in any of the temperature time series of

Hermannstadt (1851–1891) and Mediasch (1854–1865), except mean temperature

of April at Hermannstadt (p <0.05), which was detrended for further analyses.

After comparing monthly temperature data of the two locations, Mediasch was

warmer than Hermannstadt by 1.04 °C on a yearly basis. Such difference could be

resulted from the microclimates caused by differences in topographical conditions.

Nevertheless, the general temperature conditions are quite similar at both places.

Based on the preliminary analysis (data not shown), the early spring temperature

series were significantly synchronously fluctuating at the two sites in the same

period.

Overview of flowering onset data The means of flowering onset dates with

their standard deviations are listed for each species in Table 5.1. The order of plant

species listed in Table 5.1 are based on increasing mean FO dates. Accordingly,

numbers were given for each studied species (Sp1–Sp16), which provide reference

for the species indicated on many Figures of this Chapter 5.
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Standard deviation (SD) of the first flowering date was decreasing from the

earlier to later flowering plants due to the higher variability of mean temperatures

in cooler months (January–March) (Figure 5.1). The earliest spring flowering

plant was T. farfara, which was characterized by relatively high SD (15.7 days)

and total range (75 days). In contrast, the early summer flowering V. vinifera

had the lowest SD among the examined species and significantly lower range (47

days) than the others. The group of early May flowering plants (i.e., O. morio, S.

vulgaris, A. hippocastanum and E. europaeus) as well, as the group of late May

flowering species (i.e., D. carthusianorum, R. pseudoacacia and S. nigra) were

characterized by similarly high minimum, maximum and SD values within the

groups (Table 5.1).

Significant temporal trend was not detected in any of the time series. Based

on the CCF values, flowering time series significantly synchronously fluctuated not

just intralocally (between species), but interlocally (between locations) as well. In

order to illustrate this synchrony, the temporal patterns of FO of four plants are

drawn in Figure 5.2. The sharp yearly fluctuation of T. farfara (Sp-1) – as the

earliest flowering plant – is conspicuous, indicating a strong sensitivity to late-

winter temperatures.

Impact of temperature on flowering onset In order to determine the strength

of the relationship between the timing of flowering onset and temperature data,

correlation coefficients (r0) at 0 lag CCFs were calculated (Table 5.2). To deter-

mine the Teff period the moving window method was applied on monthly data

from the previous June until the July of the actual year regarding the occurrence of

phenophase. The signs of r0 were mostly negative in case of winter-spring months,

indicating that plants responded to higher temperatures with earlier flowering on-

sets (Figure 5.3).
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Figure 5.1: Relationship between mean flowering onsets and their standard de-
viations (SD) in case of plants observed (1851–1891) near Hermannstadt. Both
linear and exponential regressions clearly show significant decrease of SD towards
the late flowering plant species.
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Figure 5.2: The synchronous fluctuations of four early flowering plants near Her-
mannstadt (1851–1891). The value of correlation coefficient (r0) was higher be-
tween the later ones, S. bifolia (Sp-2), C. palustris (Sp-4) and S. fragilis (Sp-5),
than the earliest flowering T. farfara (Sp-1). The black arrows point at the marked
deviations of Sp-1 due to late winter heat waves.
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In late winter – spring seasons, strong correlations (p <0.05) were found be-

tween the flowering onset data series and monthly, multi-monthly mean tempera-

ture time series in case of most species (indicated in bold in Table 5.2). Effective

temperatures of 16 plant species were determined by serial correlations using the

‘moving window’ method described above (Section 5.2).

	
Figure 5.3: Mean flowering onset (FO) of 16 plant species and tri-monthly mean
temperature of the period March–May recorded near Hermannstadt (1851–1891).

Periods of the effective temperature (Teff) and periods with high FO-T cor-

relation (r0 >0.5) are given in Table 5.3 for the 16 examined plant species. The

majority of plants expressed the highest correlation with the bi-monthly mean

temperature preceding the flowering onset, however there were some examples,

which produced the highest r0 with tri-monthly period (e.g. T. farfara – JFM) or

even longer, tetra-monthly period (e.g. V. vinifera – MAMJ). In case of almost

all plants the DJFM and the JFMA periods were the first ’negative-effect’ (i.e.

causing advanced FO) periods, while for T. farfara and T. officinale the mean
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Table 5.2: Four examples (Sp-1: T. farfara, Sp-2: S. bifolia, Sp-4: C. palustris, and Sp-5: S. fragilis) for finding
the period of most effective temperature (Teff) of flowering onsets using serial cross correlation functions (CCF)
and moving window technique with different number (1, 2, 3 and 4) of months. Legend: bold numbers: significant
correlation coefficient value (r0) (p <0.05); pale yellow cell: the highest correlation coefficient in the column; orange
cell: the highest correlation coefficient for the plant, so it reflects to the effective temperature period; blue cell:
significant influence of the previous year.
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Figure 5.4: Two examples (Sp-7: F. vesca and Sp-15: S. nigra) for finding the
most effective temperature (Teff) of flowering onsets using serial cross correlation
functions (CCF) and moving window technique with different number (1, 2, 3 and
4) of months. Scattered lines on the graphs indicate the threshold of significant (p
<0.05) correlation coefficient values (r0).

temperature of the late autumn – winter (ONDJ, NDJF) period was found to be

also significantly effective on the timing of subsequent flowering onset (Table 5.2).

For half of the species a ’positive effect’ (i.e. causing delayed FO) by the

multi-monthly mean temperatures of previous years in summer-autumn season was

observed. In case of eight plants, significant (p <0.05) positive values of r0 were

found, associated with relation to bi-, tri-, tetra-monthly summer – autumn mean

temperatures and the mean flowering onset. The FO of S. bifolia was influenced

by the mean temperature of late summer – early autumn period; similarly the FO

of S. fragilis, S. vulgaris, D. carthusianorum and R. pseudoacacia by the mean
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Table 5.3: The effective temperature (Teff) periods and the 1-month periods of
temperature with the highest influence (r >0.5; p<0.05) on the timing of flowering
onset (FO) of the 16 studied plant species observed near Hermannstadt (1851–
1891).

Species Period of Teff

(multi-month)
Correlation abd F0−
Tmonth(r > 0.5)

Tussilago farfara JFM Feb

Scilla bifolia FM Feb, Mar

Taraxacum officinale FM Mar

Caltha palustris FMA Mar

Salix fragilis MA Mar, Apr

Ribes rubrum MA Mar, Apr

Fragaria vesca MA Apr

Orchis morio MA Mar, Apr

Syringa vulgaris MA Apr

Aesculus hippocastanum MA Apr

Euonymus europaeus MA Mar, Apr

Salvia pratensis A, MA Apr

Dianthus

carthusianorum

MAM Apr

Robinia pseudoacacia AM Apr, May

Sambucus nigra MAM Mar, Apr

Vitis vinifera MAMJ Apr, May

temperature of autumn period; and FO of F. vesca by the mean temperature of

late autumn – winter period were affected as well. Finally, for A. hippocastanum

the FO seemed to be influenced by the temperature conditions of the entire June

to December period.
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Species-specific heat sensitivity of flowering onset

Flowering sensitivities of the selected plants in response to their effective tem-

peratures were different. Based on results of the regression analysis (RA) the 16

plants species were ranked. The rank was created by (i) the correlation coeffi-

cients between the first flowering dates and the Teff temperatures (Figure 5.5 and

Figure 5.6), (ii) the temporal shifts (expressed in day/°C) of first flowering as a

response to a unit change in Teff (Figure 5.5), (iii) the relative response of first

flowering to a relative change in (Teff). The negative value of slope (a) referred

to the straightforward feature that higher mean temperature of previous periods

of phenophase caused advanced flowering onset dates. These responses of the

flowering onsets were species-specific and significant (p <0.05; see Figure 5.5 and

Figure 5.6).

Plants related to the same Teff period were compared and ranked by the

strength of the relation (r0) between FO and Teff . Then the magnitude of the

response to a unit change in Teff (a) was considered. In Figure 5.5 the strongest

relationships (r0 >0.5) of plants belong to different monthly and multi-monthly

effective temperature periods are shown. The strongest correlation and the highest

response to 1°C change in temperature were found in the following cases. Correla-

tion coefficients (r0) and slopes (a) in cases of the mean temperature of February

(TFEB), March (TMAR), April (TAPR) and May (TMAY ) were considered. For TFEB

the highest reaction was shown by T. farfara (r0 =–0.68; a =–3.18); for TMAR by

S. fragilis (r0 =–0.72; a =–2.75) and T. officinale (r0 =-0.68; a =–3.56); for TAPR

by S. vulgaris (r0 =–0.77; a =–3.44) and V. vinifera (r0 =–0.75; a =–4.01); and

for TMAY by R. pseudoacacia (r0 =-0.56; a =-2.68) as it is drawn in Figure 5.5.
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Figure 5.5: Rank of 16 plant species by significant (p <0.05) correlations (vertical
axis on the right, full symbols) and response of flowering onsets (expressed in
the value of slopes originated from regression equations; vertical axis on the left,
empty symbols) given to the mean temperatures of various time periods based
on observations near Hermannstadt from 1851–1891. The straight dashed lines
indicate the threshold of the strongest relations between the phenophase and the
mean temperature.
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In case of bi-monthly temperature means, for TFM the relationships of the five

earliest flowering plants were nearly the same (r0 =–0.62–0.65), but in terms of

the FO response, T. farfara seemed to be the most ’sensitive’ (a =–4.08). TMA

influenced 12 plants effectively, in which case E. europaeus was at the first place

of the ranked series. TAM showed the strongest correlation with the late spring

flowering plants, the highest response to 1°C change in temperature was expressed

by R. pseudoacacia (r0 =–0.83; a =–5.43).

In terms of the tri- and tetramonthly effective temperature periods in the

ranked plant series belonging to TJFM , the first was again T. farfara (r0 =–0.66;

a =–4.87) and a late spring plant, S. nigra (r0 =–0.63; a =–2.46) occurred in the

ranked series, too. The strongest relationship was detected and the highest reac-
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tion of FO was given to 1°C change in TFMA by S. fragilis (r0 =–0.76; a =–4.03);

and in TMAM by E. europaeus (r0 =–0.79; a =–4.72) and S. nigra (r0 =–0.78;

a =–4.72). Finally, in case of the tetramonthly TMAMJ V. vinifera (r0 =–0.78;

a =–5.69) showed the strongest relation between Teff and FO.

Taking into consideration the FOs climatological utilization (e.g. as a proxy),

the highest CCF r0 values per period are shown for each monthly, multi-monthly

’time-window’ in Figure 5.6. Interestingly, to all investigated time periods a total

of 7 plants expressed the strongest response as ’thermal indicators’. These species

(T. farfara, S. bifolia, S. fragilis, S. vulgaris, E. europaeus, R. pseudoacacia, V.

vinifera) were mostly characterized by the highest FO responses as well.

In order to determine a rough but comparable indicator of heat sensitivity of

FO, regression analyses were carried out on the time series of relative changes of

FO and monthly, multi-monthly temperatures. Figure 5.7 is an illustration for

the regression slope assessment of sensitivity using relative monthly temperature

and flowering changes. From a geometric aspect, heat sensitivity is the higher, the

regression line fits the better to the 45◦ line, namely to the theoretic, perfect phyto-

thermometer. Thus, in the example of the Figure 5.7, E. europaeus (Sp-11) (a =–

0.90; R2 =0.69) responded more sensitively to 1°C change in mean temperature of

MA period, than F. vesca (Sp-7) (a =–0.60; R2 =0.39).
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Figure 5.7: Example of regression slope assessment of heat sensitivity using rel-
ative bi-monthly effective temperature (Teff) as explanatory variable and relative
changes of flowering onset (FO) as dependent variable. In this way the plants are
comparable as thermometers for the same period. (Sp-7: F. vesca; Sp-11: E. eu-
ropaeus ; MA=Teff period; solid line=linear regression line; dotted line=line with
a = −1 as a 45° slope).

Testing flowering onset as a proxy

The phenophase onset was tested as temperature proxy using datasets from Me-

diasch (Figure 5.8). Results of the regression analyses on temperature and pheno-

logical data of Hermannstadt were applied to estimate the effective temperature of

14 plant species observed at both places. According to the proxy-testing, the later

the plant begins to flower, and the longer the period of effective temperature is

(i.e. multi-monthly mean temperature was the most effective), the more accurate

the estimation of Teff by the FO.

In Figure 5.8 the four most accurate indicator plants are shown, which were

selected by considering the previous results of heat sensitivity rankings. These

were mostly late spring – early summer flowering species, namely E. europaeus
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Figure 5.8: Four examples of testing the accuracy of the proxy by estimating
the effective temperature (Teff) from the flowering onset data of Mediasch based
on the linear regression equations on temperature and phenological data of Her-
mannstadt in case of 14 plant species observed (1854–1865) at both places. (Sp-11:
E. europaeus ; Sp-14: R. pseudoacacia; Sp-15: S. nigra; Sp-16: V. vinifera; Teff

periods: MA, AM, MAM, MAMJ).

(Sp-11), R. pseudoacacia (Sp-14), S. nigra (Sp-15), and V. vinifera (Sp-16). In

case of R. pseudoacacia the average difference between measured and estimated

Teff (=TAM) was 0.50 °C, and SD was 0.41 °C. For S. nigra concerning TMAM the

same values were 0.34 °C and 0.84 °C, respectively. Finally, in terms of V. vinifera

these values appertain to TMAMJ were found as 0.32 °C and 1.24 °C, respectively.

In summary, FO data of the most sensitive heat indicator plants were applicable to

estimate the Teff data – as a first guess. The accuracy of estimation was between

1.0 °C and 1.5 °C.
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5.4 Discussion

In the first part of this study the main characteristics of the flowering phenological

and climatological time series, as well as their relationships were analysed. Our

results are consistent with other studies (Auer et al., 2001; Bohm et al., 2001)

found for climatological conditions in the second part of the 19th century, namely,

the temperature time series did not contain any increasing or decreasing trend in

this part of Europe. Based on our findings, the majority of plants are affected

most strongly by the mean bi-monthly or tri-monthly temperatures prior to the

date of flowering. In addition, several plants (such as the flowering onset of Scilla

bifolia) were also influenced by the heat conditions in late summer – autumn of

the previous year, as similar conclusion was drawn by Gordo and Sanz (2010) for

the Mediterranean region.

The main aim of this study was to analyse the species-specific heat-sensitivity

of flowering onset characteristics of different plant species. Only few studies (see,

e.g., Root et al., 2005; Aono and Kazui, 2008; Rutishauser et al., 2009) focused on

this topic using this perspective so far. According to studies of 20th century’ data,

major synchronous break was found in phenological time series during the 1980s

in Europe (Dose and Menzel, 2004; Schleip et al., 2006). Furthermore, significant

earlier shift in flowering onset dates (1952–2000) of Taraxacum officinale, Sambucus

nigra, as well as in case of the Robinia pseudoacacia (1951–1994) were shown

by Szabó et al. (2016) and Walkovszky (1998) among our examined species. In

contrary their findings in the neighbourhood country, Hungary, we did not find

linear trend in the flowering onset data – probably because our data were recorded

during the 19th century, when the impacts of human induced climatic changes

were not yet as influential as in the late 20th century.

Our central addressed issue of testing flowering onset as proxy variable for

temperature was based on our heat sensitivity results. According to the validation
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tests on data from Mediasch, the flowering onsets of Robinia pseudoacacia and

Vitis vinifera proved to be the most accurate phyto-thermometers. Hence, these

two species can be utilized to provide data with highest confidence as proxy for

estimating the mean temperature of their effective temperature periods (Robinia

pseudoacacia – April-May; Vitis vinifera – March-April-May-June) in the exam-

ined time period and region. Overall, we could estimate effective temperature of

14 plant species with 1–1.5 °C accuracy. Taking into account the general climato-

logical differences of the two sites (Mediasch is warmer in yearly average by 1.04

°C compared to Hermannstadt), the average bias of proxy estimations could be

slightly reduced by applying a simple additive correction. Therefore, this method

in first approach is appropriate as a robust estimation of mean temperature from

flowering data. The estimation is robust, which originates from the uncertainty

of geographical factors, which can explain the spatial variance of flowering dates

(Wang et al., 2015). Furthermore, this uncertainty also comes from the rough res-

olution of the temperature records, since the monthly and multi-monthly averages

of temperature time-series are good representatives of the spring heat conditions,

but not as accurate as if the effective temperatures were obtained based on daily

data (e.g. degree-day calculation; see Schwartz (2013)). If more detailed data

series (either temporally or spatially) are available, the method can be refined to

result in a more accurate estimation, which is of interest in order to better un-

derstand past climates of periods or locations where no instrumental records are

available.
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CHAPTER 6
Is citizen science the recipe for

the survival of paper-based

phenological networks in

Europe?∗

Viewpoint

Prior to the late nineteenth century, nearly all scientific research was conducted

by unpaid amateurs. Members of the public have long investigated scientific ques-

tions or recorded observations about nature (Miller-Rushing et al., 2012). Farmers,

hunters, and amateur naturalists often kept records of phenological events. Grape

harvest dates, for instance, were recorded in Austria since the sixteenth century

(Maurer et al., 2009) at monasteries, and court diarists noted the flowering dates

of cherry blossoms in Japan for over 1200 years (Primack et al., 2000). The cul-

∗The paper co-authored with Helfried Scheifinger (Scheifinger and Templ, 2016) is published
in BioScience.
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ture of science changed during the nineteenth century, and science became almost

exclusively an activity of professional scientists. Nevertheless, the contribution

of citizen science (CS) – based publications to various fields of research has been

steadily increasing in recent years. This contribution fills niches that tackle eco-

logical questions at scales that would be unachievable through professional science

alone (Miller-Rushing et al., 2012; Tulloch et al., 2013). Such activity was termed

citizen science in the 1990s by researchers at the Cornell Laboratory of Ornithol-

ogy and refers to the engagement of nonprofessionals in scientific investigations.

Recently, hundreds of CS projects have proliferated in various scientific disciplines.

Phenology – the timing of seasonal activities of living organisms – is perhaps

the simplest method for tracking the response of species to environmental change.

Examples of phenological occurrences include the first flight of butterflies or the

first appearance of migratory birds – or the date of the emergence of the leaves

and flowers of plants. Plant phenological observations have traditionally been col-

lected in Europe by a network of volunteer observers operated by national mete-

orological and hydrometeorological services (NMHS). The report of the European

Cooperation in Science and Technology (COST) Action 725 summarizes the avail-

able information about national phenological networks in Europe (Nekovár et al.,

2008).

Phenological data collection, with its rather small data volume, has often run

unobtrusively alongside mainstream meteorological data collection and has there-

fore survived in many NMHSs despite the ups and downs of interest in phenological

science over time. An advantage of NMHSs is their experience in running station

networks, controlling the quality of incoming data, and digitizing and storing those

data on appropriate devices. Traditional phenological data collection has always

relied on volunteer observers, who were willing to regularly visit their selected

plants and places, working with pencil and paper, filling in and sending obser-
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vational sheets to their national weather service. Such data collection has been

challenged by a number of unknown sociological factors, which together caused a

dramatic drop of phenological observations in recent decades in Europe (Nekovár

et al., 2008).

However, the recent development of personal electronic devices has great po-

tential to for increasing the stream of phenological observations. This technology

already facilitates CS ecological data collection enormously, such as through mobile

applications, social media, education programs, webcams, and even drones.

At the Zentralanstalt für Meteorologie und Geodynamik (ZAMG), the Austrian

national meteorological service, we have decided to add new CS technologies to our

traditional paper-based phenological data collection. Since 2006, our Web interface

has contributed about 50 percent of our phenological observations, although we

do not know the percentage of new observers, how many started contributing with

the Web interface, or how many traditional observers made the switch from paper.

Within the next few months, our PhenoWatch app, which has been developed

within CS projects related to schools, will become accessible to the public and

help resolve these questions.

If one compares the USA National Phenology Network (USA–NPN) with tra-

ditional European phenological observation programs , one finds that it is very

young, has always relied on state-of-the-art electronic media, has comparatively

large financial support, and has a much broader scope (more than 300 animal

and 800 plant species) and therefore a higher added value for a number of eco-

logical questions (Rosemartin et al., 2014). The traditional European programs

appear more limited in scope, for historical reasons: They are usually sited within

NMHSs, which are per se not ecological institutions, although phenology is of in-

terest to climatologists who study the impact of atmospheric variability on plants

and animals. The USA-NPN is an organization employing a staff of about 15.
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In Europe, most of the phenological networks are run by the NMHSs, involving

only one or two people, who have limited time to spend on the comparably narrow

and restricted programs. The size and scope of the USA-NPN could extend far

beyond what NMHSs could ever provide, but it will need to secure continuous

financing, whereas predominantly government-financed NMHSs offer established

infrastructure and promise continuous operation over decades.

What does the future hold for European phenology? On one hand, we definitely

need a continuation of phenological data collection within standard networks. On

the other hand, most NMHSs in Europe have experienced problems from either

dwindling numbers of traditional observers or simply being shut down because of

a lack of interest. One might wonder whether new CS technologies can help solve

these problems. And even if they secure or even extend the traditional European

phenological networks, the question remains: In which way could these new CS

technologies be implemented in the NMHS observational systems?

The first area to address concerns phenological data collection procedures.

Here, we see the following options for the NMHSs phenological networks: (a)

Continue to maintain phenological observations with the traditional observer sheet

programs, which bears the risk of dying out because of dwindling observer numbers.

(b) Continue to maintain phenological observations with the traditional observer

sheet program but extend it with new CS technologies. In this model, the – old

– phenological time series are continued by the traditional observers. The risk of

a collapse of the network might be avoided, and at some later date, the new CS

technologies will have replaced traditional phenological data collection completely.

The second issue is that new CS technologies facilitate data collection such

that the range of species and phases can easily be extended indefinitely. Is there

any benefit to extending the range of species and phase observations? Possible

approaches include the following: (a) Continue with the traditional set of plants,
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animals, and phenophases but extend their range with the new CS technology.

This bears the risk of proliferation, when an NMHS tries to handle data with a

too-large ecological scope. (b) Transfer ecological data collection to a specialized

institute, as Bonney et al. (2014) have mentioned, by creating centers for citizen

science that coordinate and synthesize the whole process from research hypothesis

to data evaluation. This would be the ideal case, but here, we see funding risks

and other problems associated with building such infrastructure from scratch.

The third aspect concerns the value of international data collection efforts: (a)

PEP725 (www.pep725.eu) is a good initiative, but it is so far restricted to the a

posteriori fusion of phenological data from national NMHS phenological programs.

New CS technologies can easily be adjusted to international applicability. Just

as the International Phenological Gardens of Europe and the GLOBE program

have standard observation guides, collection of phenological observations with CS

methods could also adhere to a common standard in Europe. Therefore, the indi-

vidual countries could recruit their citizens, but the observations would be carried

out on the basis of an internationally coordinated scheme.

A possible vision for the future of the European NMHS phenological networks

could encompass the implementation of CS methods through an internationally

coordinated program at the NMHSs of each country. The European Citizen Science

Association could play a major role in the coordination of such a program.

107

www.pep725.eu


Summary

Phenology is the study of periodically recurring life-cycle events (phenophases) of

living organisms’. A growing number of studies call attention to the ecological

impacts of climate change, including shifts in phenology. Changes in phenological

patterns have major implications on many sectors, including agriculture (e.g. ap-

pearance of pests), health (e.g. allergy season) and climate change research (e.g.

biological indicators).

This PhD thesis consists of studies from several major fields of phenological

research in order (i) to understand spatial and temporal patterns of flowering phe-

nology in Europe, (ii) to improve predictions of phenological events, (iii) to utilize

phenological data for reconstruction of paleoclimate and (iv) to call attention to a

particular option of phenological data collection.

One of the major aims of the research was to discover phenological patterns of

flowering. It is shown that negative (timing of flowering gradually shifting earlier)

phenological trends can be detected over the last few decades in Hungary (Chap-

ter 2) and in many regions of northern and eastern Central Europe (Chapter 3).

The influence of various direct (temperature, precipitation) and indirect (North

Atlantic Oscillation) climate variables was identified due to these spatio-temporal

trends. As a methodological development, a specialized statistical method was

applied to plant phenological data. It was demonstrated that Cox proportional

hazards models have a stronger predictive power in phenological research than

traditional regression models (Chapter 4). It is known that phenological data

can be effectively utilized for paleoclimate reconstruction. Additionally, a method

which is appropriate to estimate past heat conditions with an accuracy of 1–1.5°C

was introduced (Chapter 5). And finally, an outlook on the future of phenological

networks involving volunteers in data collection (citizen science) in Europe is given

in Chapter 6.
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Összefoglalás

A fenológia, az élőlények életmenetében ciklikusan bekövetkező, évenként vissza-

térő jelenségeket (fenofázisok) vizsgáló tudományterület. Egyre növekvő számú

tanulmány h́ıvja fel a figyelmet az éghajlatváltozás ökológiai hatásaira, ideértve a

fenofázisok eltolódásait. Ezzel összefüggésben, a fenológiai mintázatokban fellépő

változásoknak jelentős szerepe van a mezőgazdaságban (pl. kártevők megjelenése),

az egészségügyben (pl. allergia szezon), valamint a kĺımaváltozás kutatásban (pl.

biológiai indikátorok).

E doktori értekezés több tanulmányt tartalmaz a fenológiai kutatás főbb terü-

leteiről annak érdekében, hogy (i) megértsük a virágzás-fenológia tér- és időbeli

mintazátait Európában, (ii) továbbfejlesszük a fenológiai események előrejelzését,

(iii) paleoéghajlati rekonstrukciókat álĺıtsunk elő fenológiai adatok alapján, vala-

mint (iv) felh́ıvjuk a figyelmet a fenológiai adatgyűjtés új lehetőségeire.

Kutatásaim egyik legfontosabb célja a virágzás-fenológiai mintázatok feltárása

volt. Azt tapasztaltuk, hogy Magyarországon (2. fejezet) és Európa számos régiójá-

ban (3. fejezet) negat́ıv fenológiai trendek (azaz a növények korábban lépnek az

egyes egyedfejlődés virágzási stádiumába) figyelhetőek meg. Direkt (hőmérséklet,

csapadék) és indirekt (Észak Atlanti Oszcilláció) kĺıma változókat azonośıtottam,

melyek e tér- és időbeli trendekért felelősek. Módszertani fejlesztésként egy, a

növény-fenológiai elemzések eszköztára számára eddig nem ismert statisztikai mód-

szert alkalmaztunk. Kimutattuk (4. fejezet), hogy a Cox-féle arányos kockázati

modellek (proportional hazards models) előrejelző ereje nagyobb, mint a regressz-

iós modelleknek. Ismert, hogy a virágzás-fenológiai adatok alkalmasak éghajlati

rekonstrukcióra. Bemutattunk egy módszert (5. fejezet), mely lehetőve teszi a

múltbeli hőviszonyok 1–1.5 °C pontosságú becslését. S végül kitekintést adtunk

a széles társadalmi részvételen (citizen science) alapuló fenológiai megfigyelések,

megfigyelőhálózatok jövőjéről Európában (6. fejezet).
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Isépy I, Szabó I (2011). “In memoriam Dr. Priszter Szaniszló.” Botanikai Kö-
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Martinková J, Smilauer P, Mihulka S (2002). “Phenological pattern of grassland
species: relation to the ecological and morphological traits.” Flora, 197, 290 –
302.

Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González-
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papers with me, especially Annamária Lehoczky (Centre for Climate Change, Uni-

versity Rovira i Virgili, Spain), Stefan Fleck (Statistics Austria, Austria) and the

NS-Pheno Team (a group of researchers who provided data that were used to

build up a North–South transect based phenological database). In person I thank

138
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Tadeusz Niedžwiedž (Faculty of Earth Sciences, University of Silesia; Poland),

Vello Palm (Institute of Ecology and Eart Science, University of Tartu; Estonia),
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1. Szabó, B., Vincze, E. and Czúcz, B. (2016): Flowering phenological changes
in relation to climate change in Hungary. International Journal of Biome-
teorology, 60: 1347–1356; doi: 10.1007/s00484-015-1128-1. Impact factor:
2.309.†

2. Templ, B., Templ, M., Filzmoser, P., Lehoczky, A., Bakšiene, E., Fleck, S.,
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Born October 9, 1987 in Budapest, Hungary
Nationality Hungarian
Marital status Married

Education and Qualifications

2011 – 2013 Master of Science in Biology at Eötvös Loránd University
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