An implementation and
analysis of the ECPP
algorithm

Gyongyvér Kiss
PhD Thesis

Department of Computer Algebra

Eotvos Lorand University, Faculty of Informatics

Supervisor:
Antal Jarai D.Sc.

PhD School of Computer Science
Dr. Andras Benczur
PhD Program of Numeric and Symbolic Calculus
Dr. Antal Jarai

Budapest, 2016

Contents

Acknowledgements

1 Introduction
1.1 AKStest.
1.2 Elliptic curves
1.3 Goldwasser-Kilian test

1.4 ECPP test

2 Theoretical results
2.1 Asymptotic running time analysis of ECPP
2.2 Heuristics
2.3 Strategies
2.4 Experimentso

2.5 Conclusions

3 Practical results
3.1 Magma Computational Algebra System
3.2 Modified-ECPP
3.2.1 The first version of Modified-ECPP

i

vi

14
14
21
25
29
40

CONTENTS il

3.3

3.4

3.2.2 The second version of Modified-ECPP 49
Experiments Lo 54
3.3.1 Running times oL 54
3.3.2 Experiments on the strategy o7
Conclusions and future improvements 61

Bibliography 64

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14

VD/h(D) as a function of D, 30
VD /h(D) as a function of D on finer scale 31
e(n) and its mean as a function of D for 3400 digit numbers . 31

The mean of e(n) as a function of D for 500 —3400 digit numbers 32
e(n) and its mean as a function of S for 3400 digit numbers . 32
The mean of e(n) as a function of S for 500 — 3400 digit numbers 33
Precisionofe 0 34
[(m) as a function of A(m) for 3400 digit numbers using actual

values e 35

[(n) as a function of A(n) for 500 — 3400 digit numbers using

estimated values e(n) 35
[as a function of T" for 3400 digit numbers 36
[as a function of e for 3400 digit numbers 37
G(n) as the function of G(n) for 3400 digit numbers 38
G(n) as the function of G’(n) for 3400 digit numbers 39

Iy(n) and I,(n) as the function of log;y,n up to 7000 digit

numbers oL 39

v

LIST OF FIGURES

2.15 Average I,(n) and I,,(n) as the function of log,,n up to 7000

digit numbers

3.1 Running timeso
3.2 Average running times on logarithmic scale
3.3 Running time as function of £ for 3000 digits numbers
3.4 The proportion of the execution time compared to the total
running time Lo Lo oo
3.5 The number of backtracks and repetitions as a function of the
length of the paths
3.6 The level and size differences of backtracks
3.7 The length of the repetition sequences
3.8 The proportion of the repetition sequences
3.9 The time of the repetition sequences

3.10 The length of the repetition sequences

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Pro-
fessor Antal Jarai for the continuous support of my PhD study and related
research, for his patience, motivation, and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis.

Besides my supervisor, I would like to thank Professor Wieb Bosma for
his valuable help and insightful comments, but also for the hard question
which incited me to widen my research from various perspectives.

Last but not the least, I would like to thank my family: my husband and
my parents for supporting me spiritually throughout writing this thesis and
my life in general.

vi

Chapter 1

Introduction

The idea of prime numbers was already well known in ancient Greece. It has
been a challenge since ancient times to find big prime numbers. In the recent
past, more than ever, this line of research has been the focus of attention
as more applications of big prime numbers emerged. They are often used
in public key cryptography algorithms, hash functions and pseudo random
number generators.

There are several algorithms, called primality tests, that determine whet-
her a given number n is a prime or not. These tests can be probabilistic or
deterministic.

Probabilistic tests are those primality tests for which a number passing
such test is likely a prime. There are composite numbers that pass these
tests but there are bounds on the probability of such event occurs. These
tests frequently involve a randomly selected sample from a given space to
test the primality of the input n. In general we can assert that the only
possible erroneous situation can be that a composite number is reported as
a prime, not vice versa. The probability of such errors can be reduced to a
certain accuracy by repeating the test with independent random samples. If
we reach the required accuracy by repeating the test with input n, and n is
not reported as composite, then we say n is probably prime. As examples
we can mention here the Miller-Rabin test and Solovay-Strassen test.

Deterministic tests deterministically distinguish whether the input num-
ber n is prime or not and provide a proof of primality. To implement a
general, deterministic, unconditional primality test we need to involve time
consuming computations. There is still no algorithm that fulfills all these
adjectives, runs in polynomial time and is efficient in practice. If we drop
some of our expectations, we can come up with solutions. For example the
Pocklington test [19] is deterministic and unconditional, but requires a par-
tial factorization of n — 1. The cyclotomy test of Adleman, Pomerance and

CHAPTER 1. INTRODUCTION 2

Rumely [1], APR in short, works much better in practice. However the run-
ning time of APR is O((Inn)°™™") " Despite of the later improvements it is
still not possible to prove to have polynomial running time. In contrast, the
running time of the version of the Miller—Rabin test [17] that is deterministic
under the extended Riemann hypothesis, can be proven to be ON(ln4 n), but
in practice, it is less efficient than the previous two.

There are two primality tests that are described in detail in the following.
The first one is the relatively new AKS test [2], found in 2002 by Agrawal,
Kayal and Saxena. The second one, that is the topic of this thesis, is the
elliptic curve primality test [3], ECPP. It is the fastest algorithm in practice,
though the worst case execution time of it is unknown.

1.1 AKS test

The significance of the AKS test is that it is an unconditional, deterministic
and polynomial time algorithm, thus primality proving is in P follows from
it. This section was written following the original paper of Agrawal, Kayal
and Saxena [2]. The base idea of the algorithm is the following:

Lemma 1.1.1. Suppose that n > 2, n € N, a € Z and ged(a,n) = 1.
Then n is a prime if and only if

(r+a)"=2"4+a (mod n). (1.1)

Proof. The coefficient of z' in (z+a)" — (z" + a) is (7)a""", where
0 < i< n. If nis prime, (?) = 0 mod n, thus all the coefficients are 0.
If n is composite, let p be a prime factor of n with p* | n. Then p* ¢ (Z)
and is coprime to a" 7P, thus the coefficient of 27 modulo n is non-zero and
(x4+a)*— (2" +a) Z0 (mod n) O

Checking the condition 1.1 takes too much time because in the worst case
we need to evaluate n coefficients. To reduce the number of the coefficients
we evaluate 1.1 modulo 2" — 1, n for an appropriate small 7:

(r+a)"=2"4+a (modz" —1,n). (1.2)

Now we run into the problem that there are composite n’s that also satisfy
the equation 1.2 for some values of a and r. However it can be proven for
appropriate r, if condition 1.2 is satisfied for a number of a’s, then n is a
power of a prime. As the number of a’s and the size of r are bounded by
a polynomial in logn, the algorithm is deterministic and polynomial time.
The bound to the size of the appropriate r is:

CHAPTER 1. INTRODUCTION 3

Lemma 1.1.2. There exists an r < max{3, [log” n|} such that the order
of n modulo r, ord,(n), is greater than log®n.

The algorithm proceeds in the following stages with input n:
Algorithm 1.2.1. AKS(n)
1) If n = p*, where k > 1 and p € N prime, return false.

2) Find the smallest r such that ord,(n) > log®n.

4

(1)
(2)
(3) If 1 < ged(a,n) < n for some a < r, return false.
(4) If n <r return true.

()

5) For a = 1 to [y/®(r)logn] check 1.2 with a and r. If for any a 1.2
does not hold, return false.

(6) Return true.

The running time of the algorithm is proved to be O <10g21/ 2 n> It can
be reduced heuristically to O (10g6 n) if the following two conjectures hold.
Conjecture 1.1.1. Artin’s Conjecture. Let n € N an arbitrary num-

ber that is not a perfect square. The number of primes p such that p < m
and ord,(n) = p — 1 is asymptotically

m
Aln) - ——
(n) Inm’
where A(n) is the Artin constant with A(n) > 0.35.
Definition 1.1.1. A prime p is a Sophie-Germain prime if 2p + 1 is also
a prime.

Conjecture 1.1.2. Sophie-Germain Prime Density Conjecture.
The number of Sophie-Germain primes p such that p < m is asymptotically

202771

)
In®m

where Cy is the twin prime constant that is estimated approximately 0.66.

There is a variant of the algorithm though that runs in O(log3 n) time
if the following conjecture is true. Although Lenstra and Pomerance have
given heuristic proof that suggests that it is false.

CHAPTER 1. INTRODUCTION 4

Conjecture 1.1.3. Ifr is a prime such that r { n and
(x—1)"=2"—-1 (mod 2" —1,n),
then either n is prime or n?> = 1 mod r.

There are many variants of the algorithm, for instance Pomerance and
Lenstra suggested an improved algorithm too, that runs in O(log®n).

The algorithm has a huge impact on the theory of primality testing, it is
not really used in practice though, because it needs a lot of storage. ECPP
and APR works better in practice and they produce a primality certificate
that can be verified fast and independently.

1.2 Elliptic curves

The elliptic curve primality test, ECPP for short, can prove primality for
numbers with several thousand digits. To describe the algorithm in detail
we need the following definitions.

Definition 1.2.1. An algebraic curve over a field F' is a set

G ={(z,y):p(z,y) =0},

where p is a bivariate polynomial over the field F'. The order of p is the order
of G.

Definition 1.2.2. An elliptic curve E modulo n, where n € Z and
ged (n,6) = 1, is a nonsingular cubic algebraic curve, that is given by the
equation y*> = 3 + az® + b, where a,b € (Z/nZ) and the discriminant
A = 4a® + 27b* is nonzero. This is abuse of the language a bit, because
(Z/nZ) is a field only if n is a prime.

Cubic curves of the form ay? + bxy + cy = 23 + ex® + fx + g over a field
with characteristic # 2,3 can be transformed (on the projective plain) into
the form y? = 23 + az + b.

If point (x,y) is on the curve E, that is defined by y* = 2% + az? + b, it
is clear that (z, —y) will be on the curve too. If a non-vertical line crosses
two points of a curve, it will cross a third one too. In case of a tangent
we consider two intersections to be overlapping. If the two intersections are
(z1,71) and (x2,ys), the coordinates of the third one will be

273:)\2—271—1’2,

CHAPTER 1. INTRODUCTION 5

ys = A(xg — 1) + 11

where A = (yo — y1) / (2 — 11), if 21 # 2o and A = (322 4+ a) / (2y1) other-
wise.

Definition 1.2.3. Let (x1,y;) and (22, y2) are two points of the elliptic
curve £ modulo n. We can define a partial addition (z1,y1) + (2, y2) =
(3, —y3) on E, where x3 and y3 are the same as defined above. We define the
zero element O, as the point in infinity; (z,y)+(z, —y) = (2, —y)+(z,y) = O.

If n is prime, the set of points of the curve will form an Abelian group,
with the addition, which is not partial in this case. If ged(n,6) = 1, but
n is composite, we still be able to define the partial addition, but then the
points of the curve will not form a group. If n is coprime to 6, let R =
P + @, applying the partial addition on P, @), that are points on an elliptic
curve E = E,[Z/nZ]. 1t can be shown that for any prime divisor p of n,
R, = P, + @, in the group E,;[Z/pZ], where R,,), and P, are obtained by
reducing the coordinates of R, ¢) and P modulo p, furthermore, @ = a mod p
and b = b mod p.

Using the partial addition algorithm repeatedly, it is possible to obtain
a partial multiplication algorithm by integers. If P = (x,y), we can get the
first coordinate of 2P = (x2, y2);

(322 + a)?

e — 2.

Ty =

Similarly, it is possible to get the first coordinate of 2iP = (z;,ys;) from
the first coordinate of iP = (z;,y;). Furthermore we can calculate the
first coordinate of (2i 4+ 1) P = (%941, ¥2i11) from the first coordinate of
iP, (i+1)P = (xi1,yi+1) and P, if x; # x;41 and ged (x,n) = 1;

(a — $z‘$z’+1>2 — 4b (x; + xi11)

x (l’z - l’i+1)2

L2i4+1 =
These formulas make it possible to use the first coordinates only, while
multiplying with integers.

Definition 1.2.4. A projective plane modulo n, P? (Z/nZ), where n > 0,
n € Z, consists of equivalence classes (X :Y : Z) of triplets (X,Y,Z2) €
(Z/nZ)3, satisfying ged (X, Y, Z,n) = 1, under equivalence

(X,Y, Z) ~ (AX,\Y, \Z)

for any unit A € (Z/nZ).

CHAPTER 1. INTRODUCTION 6

It is much more convenient to represent the points of an elliptic curve
E[Z/nZ] with equivalence classes (X :Y : Z) of the projective plane. P =
(x,y), will be associated with the class (z :y: 1) € P?(Z/nZ), and let O =
(0:1:0). In this case the equation of E will be ZY? = X? + a X Z? + bZ3.
Using this representation it is possible to avoid the division while applying
the partial multiplication algorithm;

Xoi = (X2 — aZ?)? — 8bX, 72,
Zoi = AZ; (X} + aX; Z7 + b2},

Xojy1 =2 ((Xin'H - CLZ¢Z¢+1)2 —4bZ; 2 (XiZi+1 + X¢+1Zz')))
Zoir = X (X1 Zi — XiZi1)* |

After a brief outline of the necessary background, two theorems follow;
the first theorem is needed to prove the second theorem that is the basic idea
of the Goldwasser—Kilian test and the ECPP test. In the rest of this study,
writing about the sum and multiplies of points on elliptic curves modulo
n, we mean the result of the partial addition and multiplication, which in
exceptional cases means that a divisor of n is found, rather than a point, as
n is only a probable prime.

Theorem 1.2.1. Hasse’s theorem. The order m of an elliptic curve E
over Z/pZ, where p > 3 prime, will be p+1—2,/p <m < p+1+42,/p.

Theorem 1.2.2. Let n € N, such that ged (6,n) = 1, and E an elliptic
curve over Z/nZ. Let m,n’ € Z with n' | m. Suppose that we have found
a point P € FE such that for every prime factor q of n’ holds mP = O and
(m/q) - P # O. Then for every prime factor p of n holds #FE[Z/pZ] =
0 mod n/. Furthermore, if ' > (/n 4 1)*, then n is prime.

Proof. Let p be a prime factor of n, and let
m
Q= ﬁpp € E[Z/pZ).

Then
n'Q =mP, = (mP), = O,

therefore the order of () is a divisor of n’. If ¢ is a prime factor of n’, then

“o="p - (TP) 40,
q q a /,

CHAPTER 1. INTRODUCTION 7

as

"p 2o,
q

therefore the order of @ is not a divisor of n’/q. As q was arbitrary, the order
of Q is n/, thus #F[Z/pZ] = 0 mod n’

According to Hasse’s theorem # E[Z/pZ] = p+1—t, with t € Z, [t| < 2,/p.
From this (/p+1)" > #E[Z/pZ]. 1t n' > (Yn+1)°, then (p+1)* >
(Wn+1)°, thus p > /n. O

1.3 Goldwasser—Kilian test

To prove the primality of n probable prime using Theorem 1.2.2 we need to
choose an elliptic curve E over Z/nZ and determine the order of the curve,
m. If m can be written in the form m = fn’, where the factors of f are known
and n’ is a probable prime - we call such m’s almost smooth - furthermore
n' > (/n+ 1)2 then the proof of primality of n follows from Theorem 1.2.2.
Namely if we find a point P € E that fulfills fP # O and mP = O, then n
will be prime if n’ is prime, as in this case the only prime factor of n’ that
we have to check is n’ itself. Then apply the same procedure to ny = n/, and
so forth. This way we are generating a sequence of n;, where i = 1,... [and
n; is below a limit, L, where we can prove primality easily. This idea comes
from Goldwasser and Kilian.

Given a probable prime n as input the Goldwasser—Kilian algorithm pro-
ceeds in the following stages (see [8]):

Algorithm 1.2.2. Goldwasser—Kilian(n)
(1) If n < L test n for primality. If n is prime, return true.

(2) Select random a,b € Z/nZ until ged(4a® + 2706*,n) = 1 and m =
#E,|Z/nZ] is even.

(3) Let n’ =m/2. If 2 or 3 is a factor of n’, go back to 2. Test the primality
of n’ with a probabilistic primality test. If that returns composite, go
back to 2.

(4) Select random P € E, p[Z/nZ)]
(5) If (m/n') P = O, go back to 4.

(6) Store (n,a,b, P,m,n’), let n =n’ and go back to 1.

CHAPTER 1. INTRODUCTION 8

Goldwasser and Kilian used only 2 to divide the curve orders. In prac-
tice it is better to use a bigger set of primes, we find the small factors of
the curve orders using trial division. The bottleneck of this algorithm is
to determine the order of the elliptic curve; Goldwasser and Kilian prefer
Schoof’s algorithm, which is still very cumbersome. The running time of
Schoof’s algorithm is O (ln8 n), using fast arithmetic it can be reduced to
O(In° n). Elkies and Atkin improved the algorithm and reduced the heuris-
tic running time to O(In n) using fast arithmetic, but it is probabilistic and
the complexity in practice is still too high ([20]).

1.4 ECPP test

Atkin and Morain described an algorithm that is also recursively based on
Theorem 1.2.2, but as opposed to the Goldwasser—Kilian algorithm, it avoids
counting points of the elliptic curves. To give an outline of the algorithm,
some definitions and details are necessary. This section follows the original
paper of Atkin and Morain [3].

In the rest of the thesis In*n shall denote (Inn)*, Inln®n shall denote
(Inlnn)*, and so on.

Definition 1.4.1. D is a negative fundamental discriminant, that means
that D < 0, that D = 0mod 4 or D = 1 mod 4 and D/ f? is not a discrimi-
nant, for any f > 1 integer.

The cases D = —3 and D = —4 requires special treatment, thus we
assume that D < —7.

Definition 1.4.2. The quadratic form az? + bxy + cz?® of a negative
fundamental discriminant D, is given by the 3-tuple (a, b, ¢), where a,b,c € Z
and b? — 4ac = D. We identify the quadratic form with the 3-tuple.

For each quadratic form @ = (a, b, ¢) there is a corresponding 222 matrix
la b2
M@=y "
Two forms @) and @ are equivalent if there exists N € SLy(Z) such that
M(Q) = N"'M(Q)N.

Definition 1.4.3. A form @ = (a, b, ¢) is called positive if a > 0 and its
discriminant is negative, it is called primitive if a, b and ¢ are coprime and
it is called reduced if [b] < a < c and if b > 0 then |b| = a otherwise a = c.

CHAPTER 1. INTRODUCTION 9

Theorem 1.4.1. Gauss’s theorem. FEach equivalence class contains
exactly one reduced form.

Definition 1.4.4. The set of primitive reduced forms of discriminant
D, denoted by H (D), is a finite Abelian group for the operation called
composition of classes. The order of H (D) is denoted by h (D). The neutral
element is called the principal form and it is equal to (1,0,—D/4) if D is
even, and to (1,1, (=D + 1) /4) otherwise.

Let C = (a,b,c) € H (D), (x,y) € Z and C (z,y) = ax?® + bry + cy* with
ged (a, D) = 1. In general it is possible to replace the variables z, y with new
variables. If we consider the quadratic form C (z,y) = az?® + bxy + cy?, and
we apply the substitutions

r = Y, y/ =, (13)
the new coefficients of the new form will be @’ = ¢, ¥’ = —b and ¢ = a.
If we apply substitutions
¥ =x+kyy =y, (1.4)

where k € Z, the new coefficients will be @' = a, ¥ = b — 2ka and ¢ =
c — kb + Ka.

Clearly applying these substitutions the range and the discriminant of
the quadratic form will not change and every positive primitive form can be
reduced by repeating them. An algorithm to reduce positive primitive form
C (z,y) = ax?® + bry + cx? works as follows:

Algorithm 1.4.1. Reduction(C (x,y))

(1) If C (x,y) is reduced then return (a, b, c).
(2) Apply 1.4 until —a < b < a.

(3) If C (z,y) is reduced then return (a, b, c).
(4) If C (x,y) is not reduced then apply 1.3.
(5) If C (z,y) is not reduced go to 2.

(6) Return (a,b,c).

Consider the equation n = az? + bxy + cy?, where n is a prime. This
equation has a solution only if
D
—) =1, 1.5
() (15)

CHAPTER 1. INTRODUCTION 10

<g> B (5) lL<ist, (L6)

We can write the factorization of D as pj...p}, where pi = (—1
pi is an odd prime and —4 or —8 otherwise. Let f; (C) = (I;i) for1 <i<t¢
and let F': H(D) = {1}, F(C) = (/1 (C),... fi (C)).

Theorem 1.4.2. F' is a homomorphism and F' is onto. The associated

cosets, called the genera, are forming a group. The cardinality of the cosets
ise=h/g, where g =271,

Definition 1.4.5. It is known that Q (\/E) is quadratic field of degree
two over Q, where D is a negative fundamental discriminant. The algebraic
integers v of Q (\/5) can be written in the form v = z + yw, where z,y € Z

and w = (D + \/ﬁ) /2. The conjugate of vis v =7 (v) = x + y7 (w), where

7 is the complex conjugation. The norm of v is N@(\/B) (v)=v-v

Definition 1.4.6. The Hilbert-polynomial Hp (x) is a degree h (D) poly-
nomial with integer coefficients. It is defined by the product:

-1 (52))
)

(a,b,c

where (a,b,c) runs through all the positive primitive reduced forms that
belong to D and j is a fixed complex function:

(1+240 27, k3" / (1 - ¢¥))°
T, (1 —gt)™ ’

where ¢ = 2™, It can be proved that

j(z) =

. 1 S
Jj(z) = p +744+chqk,
k=1

where the coefficients ¢, € Z, ¢, > 0.

After providing the necessary background, we describe the ECPP algo-
rithm in detail, given a probable prime n as input. As we saw in the previous
section that determining the order of a random elliptic curve is quite cum-
bersome, the improvement is to find an appropriate curve order first and

CHAPTER 1. INTRODUCTION 11

determine the belonging elliptic curve later. It can be achieved by finding
an algebraic integer v € Q (\/5), with |v|?> = n, where D is a negative
fundamental discriminant. If we have such v, then it is relatively easy to find

elliptic curves with order m = |v & 1|2, In this case |v|? is the norm of v,
thus, if v = x + yw, we are looking for the solution of

D* ,D
x+y§ yz—n

Reordering the equation we get

C(z,y) —x2+a:yD+y2w =n (1.7)

(%) =1, (1.8)

(ﬁ) =1, 1<i<t, (1.9)

p

where D = p;...p;. This comes from the conditions 1.5 and 1.6, with a = 1.
Note that these conditions are necessary but not sufficient conditions, but
they make it possible to filter the discriminants in advance that are not
appropriate for n.

Equation 1.7 can be solved if

Algorithm 1.9.1. Determine-Next-Input(n, D)

(1) If 1.7 has a solution, there will be a C’ (z,y) = a’z* + Vxy + y* that
is equivalent to C (z,y), and C’"(1,0) = n. Coefficient o’ must be n,
b? — D must be a factor of 4n, otherwise ¢’ is not an integer. Take
b>=Dmodn, 0 <b<nandlet ¥ =bif b and D has the same parity
and b’ = b+ n otherwise. Let ¢ = (b2 — D)/ (4n).

(2) Reduction(C (z,vy)).
(3) Reduction(C’ (x,y)).

(4) If the reduced form of C' (z,y) and C’ (z,y) is not the same, 1.7 has no
solution, return NULL.

(5) Follow the steps of the reduction of C (x,y) backwards to get the re-
quired x and y.

CHAPTER 1. INTRODUCTION 12

(6) Determine v =z +yw, my = [v+ 1| and m_ = |v — 1%
(7) Try to factor m, and m_.

(8) If neither m, nor m_ is almost smooth with my = fn/, and n’ >
(¥n + 1)° return NULL.

(9) Let the successful my be m. Store (n, D, m,n’). Return n’.

In 2. reducing C (z,y) is only one step. If D is even, the reduced form of
C (z,y) is x* — (D/4) y?, otherwise it is * + zy + y* (1 — D) /4.

Note that there three bottlenecks in this algorithm; extracting the square
root of b modulo n from 1., the reduction algorithm from 3. and the factoring
from 7. The success of the first two; the solubility of 1.7, is equivalent to

the ideal (n, (b— \/E)/Q) being principal in the ring of integers of Q <\/E>
If the ideal class is assumed to be random, this happens with probability
1/ (2h(D)), where h(D) is the ideal class number from 1.4.4.

Algorithm 1.9.2. Downrun(n)
(1) If n < L test n for primality. If n is prime, return.

(2) Select a D that is appropriate for n from a relatively big set of negative
fundamental discriminants.

(3) n' =Determine-Next-Input(n, D).
(4) If n' is NULL then go back to 2.

(5) Let n =n’ and go back to 1.

The algorithm Downrun(n) results in a list of tuples (n;, D;, m;, n;), where
1 =0,...,l. Repeated call of the following function loops through the list of
tuples (n;, D;,m;,n;) to determine the elliptic curves F; with order m; and

the points P; on the curves E; that satisfy the conditions of Theorem 1.2.2.
Algorithm 1.9.3. Generate-Proof (n, D, m,n’)
(1) Determine the Hilbert-polynomial Hp mod n for D.
(2) Determine an arbitrary root xy of Hp mod n.

(3) Elliptic curves with orders m. = |v+1|? will be * = 2®+ 3kz + 2k and
y? = 23+ 3kc*r + 2k, where k = xy/ (1728 — 1) mod n, (¢/n) = —1.
Find out which elliptic curve belongs to m and let it be F.

CHAPTER 1. INTRODUCTION 13

(4) Find a point P on the appropriate elliptic curve that satisfies the con-
ditions in 1.2.2.

(5) Return (n,m, E, P,n’)

The Generate-Proof (n, D, m,n’) algorithm thus constructs the elements
of the proof; a list of tuples (n;, m;, F;, P;,n;). This list will serve as a prime
certificate that can be verified by showing that the given points lie on the
given curves and have the given orders.

After determining the proof, we need to verify it. It is done as follows for
one element of the proof list.

Algorithm 1.9.4. Proof-Verification(n, m, E, P,n’)

(1) Verify that n’ | m, (m/n")P € E,mP € E, (m/n')P # O and mP = O,
where F is the given elliptic curve mod n.

The heuristic running time of ECPP is O (In°*¢) [16], but it can be re-
duced to O (In***) [18], [16]. In the next chapter we prove that it is possible
to decrease the heuristic running time to o(In*n) using the fastest known
algorithms for various parts and applying refinements.

Chapter 2

Theoretical results

2.1 Asymptotic running time analysis of
the ECPP algorithm

In this chapter we give a detailed analysis of the running time of the ECPP
algorithm. The following three sections are written according to our paper
[5]. The content of these sections are mostly joint results of Antal Jarai and
Gyongyvér Kiss unless it is stated otherwise.

We drop the index of n; in the course of this chapter and use only n,
unless it is necessary to keep it, because we are not talking about a list of n;
for the time being. Our notations are according to Theorem 1.2.2.

As the analysis strongly depends on the complexity of the integer mul-
tiplication, m(k) will denote the time that we need to multiply arbitrary
k-bit numbers, to keep our calculations independent from the selected fast
multiplication method. Multiplication is of the same order as division and
squaring and exceed the complexity of addition, subtraction and multipli-
cations by powers of 2. Applying the Fast Fourier Transformation and the
Schonhage-Strassen method for fast multiplication will allow us to keep this
time at O(kInkInlnk).

There are three main parameters that we use during the Downrun (see
1.9.2). Two of them have been already present in the implementation of
Atkin and Morain [3], but they are used differently.

Parameter d — In stage 2 of the algorithm Downrun(n) we select a set
of fundamental discriminants D. In order to control the size of this set, we
apply an upper bound d on the size of the discriminants. In stage 3 we need
to perform a reduction for essentially every discriminant that is suitable for
the current input, as well as a factorization and a primality test on each curve
order and n’ that were produced processing the suitable discriminants; thus

14

CHAPTER 2. THEORETICAL RESULTS 15

the number of the selected discriminants has a huge impact on the running
time.

Parameter s — In stage 3 we also have to extract the square root of
discriminants D modulo n, which can be done faster if we extract the modular
square roots of all the possible prime divisors of the D’s instead. An upper
bound s on the size of the factors of the discriminants can control the size
of the set on which we have to perform the square root extraction modulo
n. The size of s also has an effect on the number of the discriminants, as we
throw away everything that is not s-smooth.

Parameter b — One of the bottlenecks is factoring the curve orders,
performed in stage 3. There are two ways to control the running time of
the factoring. The first one, mentioned above, is to control the size of the
discriminant set through d and s, but we can also restrict the set of primes
that we use to factor the curve orders. The bound on these primes is b.

Most of the ECPP implementations use these parameters as fixed limits.
For example in [3], d is taken to be 10°, for practical purposes. In our case
they are of the form

alnninln“n

where n = n; is the input probable prime of the i*" iteration. The three
parameters shall be denoted by d(n), s(n) and b(n), to indicate that they
depend on n.

First we give a detailed analysis of the algorithm ECPP.

D, - Selection of the discriminants. In this stage we need to select
D’s from a set of fundamental discriminants. As we need the square root
of these discriminants modulo n in stage 3, which is one of the bottlenecks
of the algorithm, we have to keep the number of square root calculations
reasonable. To achieve that we will consider only s(n)-smooth discriminants
below d(n) for some d(n) and s(n).

As a standard example take d(n) < In* n. We consider only discriminants
of the classes —3, —4, —7, —8, —11 and —15 from the residue classes modulo
16, as the numbers from these classes that are free from a square of any
odd primes, are fundamental discriminants. It is possible to prove that only
these are the fundamental discriminants. We estimate the density of such
numbers. The density of the squarefree numbers is [cp(1 — 1/p?) having
reciprocal

-1yt = H(1+pi+ +- Z—:—

peP peP neNTt

CHAPTER 2. THEORETICAL RESULTS 16

If we take x as the density of numbers that are squarefree and odd, we have
6/m% = 3/4 - x as all such numbers reside only in 3 of the residue classes
modulo 4. Additionally the fact that a number is odd and squarefree is
independent from its residue class modulo 4, thus the density of such numbers
in a residue class is the same as in all the integers. Thus the density of odd

squarefree numbers z is

6 4 8

3w
They reside in six residue classes modulo 16, we get asymptotically at least
3d(n)/7? fundamental discriminants below d(n). As computing the mod-
ular square root of all fundamental discriminants up to d(n) is too time-
consuming, we consider only those that are s(n)-smooth, with some s(n) =<
d(n)¢, 0 < ¢ < 1. In this case we compute the modular square root of each
prime p up to s(n), for which (n|p) = 1. That is approximately half of the
primes below d(n)¢, around O (d(n)¢/Ind(n)) primes. Let d(n) =< In®n, and
the running time of computing a square root modulo n is O(In? n) according
to [6]. To determine the modular square roots of the discriminants up to
d(n) takes time

In®nInlnnInlnlnn o
n“nlnlnnlnlnlnnln n:1n20+2nlnlnlnn-

Inlnn

Thus we need O (ln3nln Inln n) bit operations if ¢ = 1/2 and o (ln3 n) if
¢ < 1/2 and we still suppose that the number of successfully factored dis-
criminants is O (ln2 n)

To check all the discriminants up to d(n) whether they are d(n)¢ smooth
and to factor them with simple trial division takes O(In?*2“n) bit operations
even if we use the classical division procedure.

Thus if we choose ¢ < 1/2, the time of this stage can be neglected com-
pared to the other stages.

D, - Modular square roots. First we check each d(n)%smooth discrim-
inant D up to d(n) whether it is appropriate for n, namely D satisfies the
conditions 1.8 and 1.9. The probability that these conditions are satisfied
is 27, where D = p;...p;, if we consider —4 and —8 as prime factors, but
—1 not. The average number of factors up to z has normal distribution with
expected value and variance Inlnz, see in [11] Erdés-Kac theorem, thus we
obtain that this probability is

1

29— Inlnd(n) .
In"2d(n)

(67 Inln d(n))ln? _

CHAPTER 2. THEORETICAL RESULTS 17

If d(n) < In“ nlnln® n with ¢; > 0, this probability is =< 1/InIn"™?n. The
time of this calculation can be neglected as (n|p) is already checked. One of
the bottleneck of this stage is the next step; calculating the square root of
the discriminants modulo n. This needs

O(m(lnn)d(n)/In™?d(n))

time, if we precalculate the square root modulo n of all £k € Z for k <
\/d(n), then at most three modular multiplications gives the modular square
root of D; if D has four factors, the product of the least two is not greater
than /d(n).

D3 - Reduction of quadratic forms. To get the curve orders we have to
reduce the quadratic forms that we have gained for the remaining discrim-
inants. This can be done with applying a refined version of the reduction
algorithm 1.4.1 or the Cornacchia algorithm [6]. The Cornacchia algorithm
consists of three main stages:

Algorithm 2.0.1.
(1) Compute Kronecker symbol (D|n)
(2) Compute the square root of D modulo n.
(3) Controlled Euclidean descent algorithm.

In our case stage 1 and 2 were already done in D, and D5. In stage 3 we
have to use controlled Euclidean descent algorithm of Schénehage [21] which
runs in O (m (Inn)Inlnn) time instead of the usual Euclidean algorithm. If
we apply the algorithm on all the remaining D’s, we get running time

O (m(Inn)d(n)Inlnn/In"™*d(n)) .

D, - Factorization. In this step we try to factor the curve orders that we
have gained in step Dj3. Let e(n) be the number of these curve orders. This
is twice the number of the remaining discriminants. We remove the small
factors of these curve orders with trial division up to ¢(n). This requires time

O (e(n)t(n)lnn).

If t(n) = O(1), this time can be neglected.
After removing the small factors we can apply various methods to remove
the large factors.

CHAPTER 2. THEORETICAL RESULTS 18

(a) Trial division. Using only simple trial division to remove the factors
up to b(n) takes time
O (e(n)b(n)Inn).

(b) Batch trial division. This method is based on trial division and it is
efficient in practice if we want to use a set of primes to factor a set of
integers. The method was suggested by Antal Jarai several years ago
and appeared independently by other authors; for example [9]. Let P
be the set of primes up to b(n) and M be the set of integers; curve
orders in our case. First we have to calculate the product of curve
orders m. This is done by the following algorithm.

Algorithm 2.0.2. Batch-Multiplication(M)

(1) If M has one element m return m.

(2) Pair up the elements of M and multiply them with their pairs.
Then we get # M /2 products. Let M; be the set of these products.

(3) Store M and let M = M.
(4) Go back to stage 1.

We also need the product of the primes p = Hpe p D, but as it can be
reused, it is precomputed and stored in a file. We take the ged(m, p)
then the gcd calculations are distributed to the partial products of
curve orders, that were computed running Batch-Multiplication, finally
to the curve orders themselves. This method surprisingly depends only
really weakly on the size of the curve orders. The algorithm seems to
work better here in practice, compared to other factorization methods
as Pollard p, p — 1, or ECM, but finding the best limit needs further
investigation.

If b(n) > e(n) Inn, splitting the product p, which is of magnitude e*™,

to parts with the same size as the product of curve orders, we get

parts. Then we take the gcd of each part with the product of curve
orders m. This takes time

n)lnn

0 (€<b(—n)m(e(n) It) In(e(n) In n))

CHAPTER 2. THEORETICAL RESULTS 19

and size

O(e(n)Inn)
of core space.

We can divide p with the m and take the gcd of the remainder and m.
This needs
O (e(n)Inn)

core space too, but the time drops to

b(n)

o) (m (e(n) Inn) (6—

(n)lnn

+1n (e(n) lnn))) .

(c) Pollard p method. Applying this method to find factors up to b(n) we
need roughly O <\ / b(n)) iterations and the iterations need O (m (Inn))

time. There are also ged calculations, which take O (m (Inn) Inlnn) bit
operations, but it might be enough to use gcd only after each Inlnn
iterations. In this case the total running time is

O (e(n)\/Mm(ln n)) :

(d) Pollard p — 1 method. If we apply the Pollard p — 1 method, we
can choose parameters to find all factors p < b(n) for which p — 1 is
\/b(n)-smooth. In this case it is very likely to find prime factors p such
that p < b(n), but p &~ b(n) only with probability ~ 0.34, [15]. The
running time is similar to the Pollard p method.

(e) ECM. If we use the elliptic curve factorization method, the optimal
choice to find prime factors below b(n) is to choose Ly (1 / \/5) as the

parameter of ECM and to use L) (1 / \/5) elliptic curves, where

Lk(ﬁ) _ 6[3 ln(k)lnln(k).

In this case we probably find prime factors below b(n). The total time
to factor e(n) curve orders is

@) <e(n) Inb(n)m(In n)Lb(n)(\/i)) :

See [16] for details.

Ds - Miller—Rabin test. To test e(n) remaining unfactored parts we apply

CHAPTER 2. THEORETICAL RESULTS 20

Miller-Rabin test [6] with a fixed number of bases. It requires
O(e(n)m(Inn)Inn)

bit operations.

After analyzing one step of the algorithm Downrun(n) we give details to
the complexity of the algorithm Generate-Proof (n, D, m) 1.9.3.

F; - Hilbert polynomial. To build up the certificate of primality of n,
first we have to calculate the Hilbert polynomial. The running time of this
process can be neglected.

F; - Root of the Hilbert polynomial. To calculate the appropriate curves
with the given curve orders, we have to find a root of the Hilbert polynomial.
The degree of this polynomial is h(D). To find a root of the polynomial
we can use the splitting procedure, until a degree 1 part is obtained. To
do this we have to calculate the n'® power of a random polynomial with
degree 1 modulo the Hilbert polynomial modulo n. There is a refinement to
this part of the algorithm, then the degree is h*(D) = h(D)/2!!, where ¢
is the number of factors of D. Using Hilbert polynomials, the degree h(D)
is certainly < 24/d(n)lnd(n), but might be =< \/d(n) [16]. In the refined
version, the degree h*(D) might be < /d(n)/In™%d(n).

(a) In the first case the running time of one step is

O(m (h(D)Inn)Inn),

(b) in the second case it is

O(m (h*(D)Inn)Inn).

F3 - Find elliptic curve. From the parameters determined above we have
to calculate the two elliptic curves. The only difficulty of this step is to find
out which elliptic curve belongs to the selected curve order. But the time of
this step still can be neglected compared to the other steps.

O(m(Inn)Inn)

F, - Find point on the curve. If we have the elliptic curve, we still have
to find an appropriate point on it. As the expected number of the points to
try is bounded this step can be neglected too.

CHAPTER 2. THEORETICAL RESULTS 21

P, - Proof verification. One step of verification of the proof needs time
O(m(Inn)Inn).

This can be neglected.

2.2 Heuristics

As we saw from the previous section, the number of discriminants has a huge
impact on the running time and on the success of the algorithm. This amount
determines the number of reductions, factorizations, produced curve orders
and the probability of getting at least one almost-smooth curve order. We
have to be careful. Would we process too few discriminants, the algorithm
will fail, on the other hand, too many discriminants diminishes efficiency.
Thus the question is, what is the optimal number of discriminants. There
are well-known estimations listed in this section, from probability theory, the
work of Hendrik and Arjen Lenstra [16] and the original Atkin—Morain paper
[3], that can be applied to answer this question at least partially. First, we
can give an estimation on the number of curve orders we get if we process a
certain set of discriminants. Of course this number does not depend only on
the number of the discriminants, but also on the discriminants themselves.
We have given the definition of the class number h(D) of the discriminant D,
in 1.4.4 and also that the possibility that equation 1.7 can be solved for given
D < —Tis1/(2-h(D)). Thus if we consider a set of negative fundamental
discriminants 71, where the discriminants D < —7, then the expected e(n);
the number of the curve orders that we get is

> wD
DeT h(D)
Note that for each successful discriminant D we get two curve orders.

This expected number is independent from n so far. If we filter the
discriminants for given n with the Jacobi symbol tests (1.8, 1.9), the expected
e(n) will be

2t
e(n) = — 2.1
)= 15y 21)
DeT

where D = p;...p;. The asymptotic behavior of this function is still un-
known. We assume that for s(n) < d(n)® we have é(n) < \/d(n) for some
¢ < 1/2 or at least for ¢ = 1/2.

We can also estimate the number of the almost smooth curve orders [(n)

CHAPTER 2. THEORETICAL RESULTS 22

from e(n) curve orders. If we are able to find all prime factors of m that are
less than b(n), were m is the order of an elliptic curve modulo n, then m is
a suitable candidate if the second largest prime factor of m is less than b(n).
If we use trial division, or batch trial division, this probability supposed to
be approximately

67M ~ 1.78111nlbﬂ.

Inn nn
Note that if we use trial division with bound b(n), we can guarantee that all
prime factors below b(n) will be found. Thus if we factor e(n) curve orders m,
then the number of successfully factored m’s has a probability distribution
with mean approximately equal to

,Inb(n)

Inn

An)=ce e(n). (2.2)
This means that we can estimate the number of the almost smooth curve
orders that we gain after processing a set of discriminants. Now the question
is, what is the minimal value of A(n) for which the algorithm still terminates
successfully.

To give partial answer to this question, first we set up a simple model of
the Downrun process. If we want to optimize the algorithm then we face with
difficulties, namely in the choices that we have to make at a given iteration
7; assume that we can produce more than one new primes in one iteration to
make it more likely that the algorithm gets to the small primes and it is also
possible to backtrack to some previous prime if there are no suitable new
ones. This process is similar to traversing a decision tree, as in each iteration
we create a set of descendants (the big factors of the elliptic curve orders),
and choose the one that is considered the best, which will be the input of
the next iteration.

The proof of the following theorem and the statements below that are
concerning our model are the results of Eric Cator (see [5]).

Theorem 2.2.1. If the probability that the given curve order is almost
smooth is small and independent from the given elliptic curve, these prob-
abilities are independent for different curves and do not vary too much, the
number of descendants is asymptotically distributed according to a Poisson-\
distribution, where X\ is equal to the average ratio of suitable curves to all
elliptic curves.

Proof. Let X; be stochastic variables, where 1 < j < N, representing
that the it curve order mj, is almost smooth. Our assumption is that the
probability of success

CHAPTER 2. THEORETICAL RESULTS 23

is small. Let p; = "ﬁj If X; are independent, the expected number of almost
smooth curve orders will be

ZIg

B -3 -

Jj=1

We assume that this average u converges to some limit y as N — oo.

If we want to show that the distribution of) X; converges to a Poisson
distribution, it is enough to show that E(etzyzle), with variable ¢ € R
converges to E(e'Y) for stochastic variable Y with Poisson-\ distribution.

As X are supposed to be independent, P(X; = 1) = u;/N and P(X; =
0)=1-—u;/n,

N N
N) u
E(e' =05 %) = T E(||(1——e+N“):
=1

ﬁ(e—1>>.

If we take the logarithm

al e —1 N fulet — 1)
Zlog(l + u]T) = Z (]T + O(u?/N2)> —a(e’ — 1),
Jj=1 Jj=1
for N — oo, if we assume that Z = o(N). Thus E(¢* Zi Xi) — erle=1)
as N — oo.
For a stochastic variable Y with Poisson-\ distribution

N = (Aet) :
E<€tY) _ fefx\et] _ : 67/\ _ 6)\(6 71)'

Thus) Xj;, the number of almost smooth curve orders, behaves like a
Poisson-distributed stochastic variable with parameter A = u. [J

If we still stick to our model, suppose that at each node in the decision
tree, the number of the almost smooth curve orders has Poisson distribution
with parameter j;, where ¢ means now the i* level. We would like to see
that our tree has an infinite branch, which means that we can get to the
small primes.

CHAPTER 2. THEORETICAL RESULTS 24

Let po be the probability that our tree has an infinite branch.
Po = Pop,..(co—branch).

This probability depends on the parameters d(n), s(n) and b(n) in the nodes.
If we are at level k, we have

Pk = Py, .- (00—branch).

This leads to a recursion

(Z i uk) (1= (1= pr1)’) = 1 —ermmes,

where the first factor represents the probability of having at least one de-
scendant at the k™" node, the second represents the probability that at least
one of these descendants will have a further descendant.This is roughly the
probability of such scenario when we do not have to backtrack at all; there
will be always suitable descendants.

If we assume that p; = p, for all j and some fixed p, then p = py =
pr=1=e" 1If p> 1, we will get a unique solution p > 0 and increasing
the value of u, the value of p is also increasing; the more descendants we
produce, the larger the probability is, that we do not have to backtrack.
This simple model is missing the concept of cost though. Sometimes it is
not beneficial to increase u, because the values of the parameters are so high
already that it would cost less to backtrack. Therefore the aim of our second,
more sophisticated model will be to introduce the concept of cost and gain
and their ratio would give us a more realistic view on the process of the
Downrun.

But we can still draw the conclusion; if the number of almost smooth
curve orders is large enough we will succeed with a fixed positive probability.
As A(n) from 2.2 is the parameter of the Poisson distribution, we have

Inb(n)

Inn

A(n) =€’

e(n) > 1.

It is also possible to give an estimation of the gain G(n); the size difference
between n and n’, if we use trial division or batch trial division. In these
cases, if n and we can guarantee to find all prime factors below b(n), the
expected gain will be G(n) = Inb(n); as for each prime p the probability
that p divides a curve order m is 1/p with a gain In p, the expected total gain

CHAPTER 2. THEORETICAL RESULTS 25

1S

1 Mmoo
Z MN/ Inz——dzx ~ Inb(n).
9 Inzax

pEP,p<b(n) P

Using other factorization methods we may still expect that the gain only
differ by a bounded factor, thus it will be also < Inb(n).

The expected size of the gain gives us the opportunity to estimate the
length of the path from n = ng to n;, where n; is sufficiently small. Let I(n;)
be the length of the path from n; to n;. It is reasonable to assume that the

expected value of I(n) is
7 Inn

2.3 Strategies

After given a detailed running time analysis of one step of the algorithm as
a function of Inn, d(n), s(n) and b(n), we compute the running time of the
whole algorithm. The aim of this section is to verify that with certain choices
of the three parameters the running time can be reduced to o (1114 n)

We suppose from the previous section that:

- s(n) < d(n)¢ for some appropriate ¢ < 1/2,

- e(n) < \/d(n),

- (D) = 0 (V/d(n))

- (D) = O (V(m)/ " d(n))
~ G(n) = Inb(n), and

- I(n) < Inn/G(n),

From the running time analysis it was clear that the most time consuming
steps are D3, D4, D5 and F5 thus we will consider only these steps analyzing
the following strategies, as they determine the running time.

Strong factorization strategy. Let d(n) < In®n. In this case h(D) =
O(Ilnn), h*(D) = O(Inn/InIn™?n) and the running time of the most time
consuming steps will be the following:

D; : O(d(n)m(lnn)Inlnn/In"™?d(n)) = O(In* nInIn* ™*nlnlnlnn),

CHAPTER 2. THEORETICAL RESULTS 26

Dy : O(e(n)m(lnn) lnn) = O(ln3nlnlnnlnlnlnn),
F(a) : O(m(h(D)Inn)Inn) = O(In’* nInlnnlnlnlnn),
Fy(b) : O(m(h*(D)Inn)Inn) = O(In’ nInln""™*nlnlnlnn),

D, : In this step we have several choices of factoring algorithms, that are
mentioned when describing step Dy4. The running time of each method
depends on the choice of b(n), now we choose such b(n) for each of them that
the running time of them will not exceed step Djg, the reduction, thus we
can take the running time of D3 as the total running time of one step. As
G(n) and I(n) also depend on b(n), we determine the total running time of
the algorithm here too for each factoring method.

(a): Trial division. If we choose b(n) such that it is between =< Inn and

=Innlnln*™2nlnlnlnn then the running time
O(e(n)b(n)Inn)
will be between
O (1n3 n)

and
0] (ln3 ninln®> ™2 nIninln n))

In both cases G(n) < Inlnn and I(n) < Inn/Inlnn, thus the total
running time is
O(1n4n1n In' ™2 plnlnln n).

(b): Batch trial division. If we choose b(n) to be between =< Inn and
= In®nInln' % n, then the running time

+ In(e(n) lnn)>>

@) (m(e(n) Inn) <e(bﬂ

n)lnn

will be between
@) (ln2 ninln®ninlnln n)

and
0] (1n3 nInln®> ™2 nInlnln n))

The running time of the factoring does not exceed D3, G(n) < Inlnn
and I(n) < Inn/Inlnn again, therefore the total running time is the
same as in (a).

CHAPTER 2. THEORETICAL RESULTS 27

(c): Pollard p. If b(n) is between < Inn and < In* nIn1n?"2"?n, then the

running time
O(e(n)/b(n)m(Inn))
will be between
0 (1n2'5 ninlnninlnln n)

and
0] (ln3 nlnln®> ™2 nIninln n) .

The time of D3 is not exceeded again, and G(n), I(n) are the same as
previously thus the total running time is the same as in (a) or (b).

(d): Pollard p — 1. As the running time of this method is the same as the
running time of Pollard p, this case is similar to (c).

(e): ECM. Let b(n) < Ip' i/ mindn®e) Cghen the running time of ECM is
O(e(n) Inb(n)m(In n)Lb(n)(\/é)) =
= 0(1112“/v ity nln® n/Inlnlnn),

as

Lb(n)(\/ﬁ) _ 6,/zlnb(n) Inlnb(n) _ e\/4(lnlnlnn—lnlnlnlnn) Inln?n/Inlnln?n <

/ 2
<e 4lnln*n/Inlnlnn _ €2lnlnn/\/lnln1nn — an/\/lnlnlnnn.

As G(n) = Inln*n/Inlnn®*n, I(n) = InnInlnln®*n/In1n®n, the total
running time is
O(ln*nlnlnln®n/Inn™?n).

Our aim is to prove that the heuristic running time of the ECPP can be
reduced to o(In*n). As we can see we were successful only in (e). If we
want to reduce the other cases also to o(In*n), we have two choices; we
can either reduce the number of steps, I(n), or reduce the time of one step.
Reducing I(n) can be achieved by increasing the value of b(n), but then the
time of factoring will possibly exceed the time of Dj3. Thus it seems a better
solution to reduce the time of one step, by decreasing the value of the other
two parameters; d(n) and s(n).

Strong factorization and small discriminants strategy. If we want to
decrease d(n) and s(n), we have to be careful about the value of A(n); the
expected number of the new descendants, should be above 1. In order to

CHAPTER 2. THEORETICAL RESULTS 28

achieve this let d(n) < In*n/InIn*n. In this case h(D) = O(lnn/Inlnn)
and h*(D) = O(Inn/Inln'"™?n) and the running time of the critical steps
will be the following;:

D; : O(d(n)m(lnn)Inlnn/In™*d(n)) = O(In® nInlnlnn/Inn™?n);
Ds : O(e(n)m(Inn)Inn) = O(In*nlnInlnn);

Fy(a) : O(m(h(D)Inn)Inn) = O(In* nInlnlnn);

Fy(b) : O(m(h*(D)Inn)Inn) = O(In’ nInlnlnn/Inln"™?n).

D, : We want to choose the b(n) so that the running time of factoring will
not become the most critical step, like in the previous strategy. In this case
the bottleneck is surprisingly Dj5, the Miller-Rabin test.

(a): Trial division. If we choose b(n) such that it is between < Inn and
= Innlnlnnlnlnlnn then the running time

O(e(n)b(n)Inn)
will be between
O(In®n/Inlnn)
and
O (ln3 nlnlnln n) .

In both cases G(n) < Inlnn and I(n) < Inn/Inlnn, thus the total
running time is

O(ln*nInlnlnn/Inlnn).

(b): Batch trial division. If we choose b(n) to be between =< Inn and
= In*n/Inlnn, then the running time

@) (m(e(n) Inn) <e(fl()—?1)1n + In(e(n) lnn)))
will be between
O(ln2 nilnlnnlinlnln n)

and
O (ln3 nlnlnln n))

As G(n), I(n) is the same as in (a), the total running will be also the
same.

CHAPTER 2. THEORETICAL RESULTS 29

(c): Pollard p. If b(n) is between =< Inn and < In?n, then the running

time
O(e(n)/b(n)m(Inn))
will be between
O (1112'5 nlnlnln n)

and
O (ln3 nlnlnln n) .

Here we have again the same G(n), I(n), thus the total running time
is the same as in (a) or (b).

(d): Pollard p — 1. This case is similar to (c).

(e): ECM. Let b(n) < I/ np Chen the running time of ECM is
again as in the previous strategy:

O(e(n) Inb(n)m(In n) Ly, (\/5)) =

= 0(1112+2/v ity nln®n/Inlnlnn),

G(n) =Inln’n/Inlnln*n, I(n) = Innlnlnln®n/Inln®n, the total run-
ning time is
O(In*nlnlnln®n/Inln®n).

Applying this strategy, using any of the listed factoring algorithms, the total
running time will be o(In* 7). We have to be careful when choosing constants
for d(n) and b(n) as our assumption is that e(n) < y/d(n) and the value of

,Inb(n)

Inn

A=e e(n)
must be > 1. In (a), (b), (c) and (d)

A=< e,

while in (e)
NSPRILUS
Inlnln“n

2.4 Experiments

In the previous section we saw a collection of estimations and heuristics that
are useful if we want to implement an efficient ECPP algorithm. This section

CHAPTER 2. THEORETICAL RESULTS 30

will deal with such experiments that justifies some of the results in practice.
This section is the result of Gyongyvér Kiss and follows her paper [12]. The
experiments were run in Magma Computational Algebra System [4], in later
sections there will be more details about it.

49 41
3.8 38
3.6 364
3.4+ 3.4

3.2 3.2

0 2.x108 4.x10% 6.x108 8 x10% 1.x10° 0 2.x108 4.x108 6.x108 8 x10% 1.x10°
X X

Figure 2.1: v/D/h(D) as a function of D

Our first statement is
h(D) = O (d(n)) . (2.3)

We show the relation 2.3 between the class number A(D) of D, and /D
in Figure 2.1 and 2.2, where D is a negative fundamental discriminant. The
two graphs present the same data only Figure 2.2 is on a much finer scale.
The graphs on the left present the average value of v D/h(D) as a function
of D. The graphs on the right present the cumulative average of the same
function. The data on the discriminants is collected up to 10°. As we expect,
the curves are more or less straight lines, but on the finer scale of 2.2 we see
that they seem to have a maximum at 3 - 10%. This could be an effect of the
implementation of the class number function in Magma, as the cut at that
point seems to be very drastic.

As we saw it in the previous sections, the parameters d(n) and s(n)
determine the number of the curve orders e(n).

The standard example is to take d(n) = In*n, but it is clear from the
analysis of the two strategies described above, that in this case it is hard to
decrease the running time to o(In* n). The second strategy suggests that we
should go under In®n when selecting the value of d(n), but not too far. We

CHAPTER 2. THEORETICAL RESULTS 31

3.1437

3.142

3.141+

3.140 1 ; : : :)
0 2.x108 4.x10% 6.x108 8x10% 1.x10° 3.140 1 . . : :)
x 0 2.x108 4.x10% 6.x10° 8.x10% 1.x10°

Figure 2.2: v/D/h(D) as a function of D on finer scale

would like to see, how far we can go below In®n in practice and we can still
make sure that the number of the curve orders does not drop considerably.

7000
20000 ©

6000

<

15000 5000

00 0000 0

4000+
10000
30004
20004

5000

1000 N

TR0 OO O
COBIIBEEEREREO KOBD O O O
COGIIIIMDIBRIDORIBOOD OOONO B O O
<
<
<
<
<
<

| —ce >
SE———OWO O O
o
3
<
<

A..-il'|i

Y

0.5 1 1.5 2 0.5 1 1.5 2

Figure 2.3: e(n) and its mean as a function of D for 3400 digit numbers

We also take s(n) = d(n)¢, where ¢ < 1/2. Should we select ¢ < 1/2,
the running time of extracting the modular square roots will drop from
O(In* nlnlnlnn) to o(In®n) and theoretically we do not lose too many curve
orders. We wanted to see this behavior in practice.

In Figure 2.3 and 2.4 we can sce the relation between d(n) = In”(n) and
e(n), where D = 0.5,...,2 and s(n) = In"'n is fixed. On the first graph

CHAPTER 2. THEORETICAL RESULTS 32

7000
6000+
5000
4000+
3000+ / /
2000+

1000+

05 1 I's 2
Figure 2.4: The mean of e(n) as a function of D for 500 — 3400 digit numbers

7000
20000

6000
15000+ $ 5000+
4000
10000+
5000 5

3
b4
8
$
4
<
3000
4
2000
o
10001
i .

0.5 0.6 0.7 08 09 10 11 0.5 0.6 0.7 08 0.9 10 11

1 ommmassemmemnsonno o 00 o
4 oxsmsommmenmmonomno %@ 0 O 00

Figure 2.5: e(n) and its mean as a function of S for 3400 digit numbers

of 2.3 e(n) is presented as the function of D. The samples were taken from
experiments ran on several numbers with 3400 digits (around 10000 bits),
one point on the graph corresponds to the number of curve orders that we
gain for a given n and D. On the second graph we can see the mean of
the same function for the same numbers n. In Figure 2.4 we present the
same mean values as in the second graph of 2.3, it is not only for 3400 digit
numbers but from 500 up to 3400 digits. The topmost curve corresponds to
the curve for 3400 digits numbers.

CHAPTER 2. THEORETICAL RESULTS 33

7000
6000- «
5000-
4000

3000 //

2000+

N, N

1000+

—

05 1 I's 2
Figure 2.6: The mean of e(n) as a function of S for 500 — 3400 digit numbers

In Figure 2.5 and 2.6 we can see similar data presented as in 2.3 and
2.4, only in this case it is e(n) as a function of S, where S = 0.5,...,1.1,
s(n) = In®n and d(n) = In?n fixed.

It is clear that decreasing the value of d(n) has a drastic effect on the
value of e(n); if we decrease the value of D from 2 to 1.9, the value of e(n)
drops from around 7500 to just over 5000, thus it does not really worth to
decrease the exponent of Inn in d(n).

If we decrease the value of S from 1 to 0.9 though we still have almost
4500 curve orders from the original 6000. Thus taking d(n) = In®nInIn“ n
and s(n) = d(n)®, where ¢; < 0 and ¢y < 1/2, seems to be a good choice,
because the time of extracting modular square roots will drop significantly
but the number of curve orders will not.

The next statement that we would like to justify in practice is that the
expected number of the curve orders e(n) is

en) =Y %, (2.4)

DeTl

where T is the set of s(n)-smooth discriminants up to d(n), for some values
of s(n) and d(n), that are appropriate for given n.

Figure 2.7 displays the relation between é(n) and e(n) for numbers with
3400 digits; we would like to see in practice how reliable our estimation, € is,
on the number of the curve orders. This graph presents the actual number
of curve orders e(n) as a function of é(n), our estimation. The experiments

CHAPTER 2. THEORETICAL RESULTS 34

6000 1

5000

4000

3000

2000

1000

0 T T T T T)
0 1000 2000 3000 4000 5000 6000
X

Figure 2.7: Precision of e

were ran on numbers with 3400 digits with varying values of s(n) and d(n);
in all experiments that we did in this topic we collected the e(n)’s and é(n)’s.
The graph also presents the identity function. We can see that all points of
the function are close to it, indicating that € is a good estimator for e.
Estimating the number of the almost smooth curve orders [(n) for input
n plays a mayor role in our theory and implementation, as this means the
expected number of the new descendants that we can produce with input n.

,Inb(n)

Inn

An)=e

e(n), (2.5)

There are two aspects of this estimation. In the definition of A(n) we
use e(n) as the number of curve orders that are produced, but in practice,
using this actual value would be too time consuming, thus we use é(n), which
is relatively easy to determine. Figure 2.8 and 2.9 both show the relation
between A(n) and I(n).

In Figure 2.8 we generated e random integers m with 3400 digits and
factored them with bound b(m), for several different values of b(m), and
in each situation we determined the value of A(m) and I(m). We drop the
suffix (n) from e and changes the suffix of the other parameters to (m). This
experiment was carried out on a set of random numbers, thus the values of e
are fixed and the value of the other parameters do not depend on any parent
node n, rather on the random integer m itself. We can do that as the input
number n and a curve order m that we gain are of the same size. This is a

CHAPTER 2. THEORETICAL RESULTS 35

601 607
© < o 0O
501 o I 501
< < Ld <
o 9995 %9
3
° °
° Py
N 00 00 06 o 3
° oo © e e
o s 906 306 99 o °
40 3o 93 36 95 3% 2 P
IR IRS S 92 92 23 2 Py %
NS BRI § s
°
%6 90 9 00 66 90 00 006 o /ve/
IR RIRINI NI
o 60 6 0O e o L4 0/ e
06 906 9 60 90 98 99 (3 °
00 00 O OO e 4)3 4 d
33 83388 38 378 38 ¢ $
30 35 338338 8528 88 28 ¢ b3
% %0 o o 33 9% 93 2 b3
bo S 4 b d 4 o 4 d d
s T 33 99 93 83 9o o pY
32 3 36 83 96 90 9 °
00 060 6 o0 O o e L4 e e © o
9 99 9 6% 0o 0% 83 66 o o N
33 38 9 6% 098 9% 8o N
33 883888 8° 88 oo 0% °°
20 00 606 o o e o © 20
% 209 .o oo
36 6335 039 N
% o $e o
o
oo o o
10+ r T T T T r T 10+ T r r r T T T
24 26 28 30 32 34 36 38 24 26 28 30 32 34 36 38
x X

Figure 2.8: [(m) as a function of A\(m) for 3400 digit numbers using actual
values e

0 10 20 30 40

Figure 2.9: I(n) as a function of A(n) for 500 — 3400 digit numbers using
estimated values é(n)

fast way to carry out this experiment, as in this particular case we do not
use any special properties of curve orders, they could be ordinary integers.
The first graph of Figure 2.8 presents [as a function of A, the second graph
presents the mean of the same function.

Figure 2.9 shows the same function; [as a function of A, as it is in practice.
While running the algorithm, instead of using an actual value e(n), we use

CHAPTER 2. THEORETICAL RESULTS 36

the estimation é(n) while estimating the value of A(n). In this case we use
the suffix (n) again, because the numbers to factor, are actual curve orders
produced by the algorithm; the parameters are depending on the value of n.
The set of data is similar to Figure 2.7 in the sense that all the I(n)’s and
A(n)’s are collected while running different kind of experiments on numbers
with 3400 digits. Therefore it does not make sense to determine the mean
value of the function here, as the A(n) values are all different.

In both Figure 2.8 and 2.9 we included the identity function. We can see
that the points of the mean of the function on Figure 2.8 are close to the
identity function, but as we expect, Figure 2.9 has a bigger deviation from
it, but seems to be still of a plausible degree.

There is another important question concerning [(n); the number of the
almost smooth curve orders. In order to increase I(n) is it better to increase
b(n) or e(n)? In Figure 2.10 and 2.11 we see the relation between [, b and e.
The lack of the suffixes indicates that we are using again random numbers
m in this experiment, but now the parameters depend on neither a parent
node n, nor m itself.

The first graph of Figure 2.10 shows [as a function of 7', where b =
2T . sIn2, with s = 10% and 7' = 0,...,12. This means all the values that
occurred as [while increasing 7T are included. The second graph gives the
average of the same function. In Figure 2.11 we present [as a function of e.
We have the same situation here as in Figure 2.10; the left hand graph gives
all the values of [, and the right hand graph only shows the average value of
the [’s.

<
EXs
<

50 ° ° b ° ° ° 501

000 o

40 407

301
309

0 00000000000000000006000 O
0 00 000000000000000000
00000000000000000000000 00
O ©00000000000000000000 000
0 0000000000000000000006000
000000000000000000000000

00 00000000000000000000600

204
204

© 0000000000000000000000
0 000000000000000000000 o
00 0000000000000000000 000 O
00000000000000000000000 O O
0 0000000000000000000000 ©

Figure 2.10: [as a function of T" for 3400 digit numbers

CHAPTER 2. THEORETICAL RESULTS 37

501 50

401 407

301 304

6 060000000000000000000006000
6 000000000000000000000060000 ©
0 0 0000000000000000000000009

0 00 0000000000000000000000000

0 000000000000000000000000

204

0000000000000000006000000
0 0000000000000000000000

20+

0 000000000000000000000 o
000 0000000000000000000 o
00 000000000000000000000

6 600000000000000000 000
0 00000000000000000000000

: : : : : 8000 9000 10000 11000 12000
8000 9000 10000 11000 12000 x

Figure 2.11: [as a function of e for 3400 digit numbers

The gradients of the curves in the right side graphs of 2.10 and 2.11 are
similar, but we have to be aware that increasing e results in linear while
increasing T results in logarithmic growth in the value of [. Consider the
expected value

A=e? e ——
Inm
of I, where m is a random integer in this case. If we increase e 1.04-fold then
the value of A will be also 1.04-fold, while increasing the value of b = 27-5-1n 2
to 27+ . 5. In 2 results in
T+1
A2 b) =t p R s

Inn

- (ln(QT-s-IHZ) N ln2)

Inn lnn

A(b) (1 + Mﬁ) ,

thus on average A\ will be also 1.04-fold if T'= 0, ..., 12, but we had to increase
b 2-fold. Of course there are many situations in which it can be still worth-
while, even necessary to increase b, for example if we have a huge amount of
curve orders already, if we have a very efficient factoring algorithm or if we
run out of discriminants.

In the rest of this section we deal with topics concerning the length of
the path I(n) from n = n; to n;, where n; small enough to be proved as

CHAPTER 2. THEORETICAL RESULTS 38

prime easily, and the gain G(n); the size difference between n and n’. As
we saw that in the analysis of the two strategies, if we have a fast factoring
algorithm, increasing b(n) will be very pleasant, because it shortens the path
by increasing the gain, G(n).

The two statements concerning this topic, that we would like to justify
in practice are

G(n) =1nb(n) (2.6)
and |
I(n) = GIEZ), (2.7)

where G(n) is the expected gain and I(n) is the expected path length from
n to ny.

Figure 2.12: G(n) as the function of G(n) for 3400 digit numbers

In Figure 2.12 we see G(n) as a function of G(n) in the first graph and
the mean of the function in the second graph. In both graphs the identity
function is included. We observe a constant difference between G(n) and
G(n), due to the relatively significant difference between the sum and the
integral for small primes and

CHAPTER 2. THEORETICAL RESULTS 39

251

Figure 2.13: G(n) as the function of G’(n) for 3400 digit numbers

.
l) i
' 7001 '
25001
6001 !
20001 ' 500 I

1500 ‘ 4001 !

3004

30001

1000+

© 0

2004

5001
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000

Figure 2.14: Iy(n) and I,(n) as the function of log,,n up to 7000 digit
numbers

If we consider the estimation

G'n)= Y 1“7]9

PpEP,p<b(n)

then the curve will be closer to the identity function (see Figure 2.13), in
practice it is faster to use the equation 2.6 though.
The length I(n) of the ECPP-path could refer to two different measures:

CHAPTER 2. THEORETICAL RESULTS 40

7000 1
6000 -
5000
4000
3000
2000

1000 -

°
o

0 T T T T T T)
0 1000 2000 3000 4000 5000 6000 7000
X

Figure 2.15: Average I,(n) and I,(n) as the function of log;,n up to 7000
digit numbers

on one hand we simply have a path from n to the small primes, along which we
verify the primality of n; on the other hand, there is a sequence of probable
primes that we used to get to the small primes, including backtracks and
repetitions. We will denote the first one by I,,(n) and the second by I,(n);
one would expect a constant factor between them.

Figure 2.14 shows I,(n) on the left and I,(n) on the right, both as a
function of log;, n. We can see that the graph of I(n) is much steeper. This
we can see from Figure 2.15 too, that shows the average I(n) and I,(n)
as a function of log;,n together with the identity function. The graphs are
consistent with a constant factor of around 3.95 between the two functions.

2.5 Conclusions

To summarize the results of this chapter we have given a detailed running
time analysis of the ECPP algorithm and have proved that the heuristic
running time can be reduced to o(In* n) using refinements and fast algorithms
to implement the different parts of the primality test. These are mostly
joint results of Antal Jarai and Gyongyvér Kiss. The heuristics behind the
refinements has the following main points, that are well-known estimations
from probability theory, the work of Hendrik and Arjen Lenstra [16] and the
original Atkin—-Morain paper [3].

CHAPTER 2. THEORETICAL RESULTS 41

(1)

(2) The heuristic running time of extracting the modular square roots will
drop from O(In® nInlnlnn) to o(ln® n) if we choose a value of s(n) that
is below /d(n) while retaining a reasonable number of discriminants
by not decreasing the exponent of Inn in d(n) below 2.

_ 2¢
e(n) = [; ma

where é(n) is the expected number of curve orders that we gain after
processing all the s(n) smooth discriminants D up to d(n).

(4)
Inb(n)

Inn

A(n) =¢€7

e(n),

where A(n) is the expected number of almost smooth curve orders.

(5)

G(n) = Inb(n),

where G(n) is the expected size of the difference between n and n’.

(6)

- Inn
I(n)=——=
") = Gy
where I(n) is the expected length of the path from n to the small

primes.

We have justified these estimations on a manageable set of experimental
data; numbers with 500 digits up to 3400. The following is the own result of
Gyongyvér Kiss.

For (1) we presented a non cumulative and a cumulative average of
V'D/h(D) up to 10° and in this range the function is close to a constant
value of approximately 3.14.

To see (2) we looked at e(n) as a function of s(n) and d(n) and the latter
has a much bigger gradient, which means that if we want to decrease the
running time by decreasing the number of discriminants, it is indeed much
more efficient to decrease s(n) below \/d(n).

For (3) we presented e(n) as a function of é(n) and the graph is indeed
close to the identity function.

CHAPTER 2. THEORETICAL RESULTS 42

Regarding (4), as we expected, the estimation of I(n), the number of
almost smooth curve orders, is much more precise if we use the actual e(n)
instead of €(n). However practice shows (see [13]) that it is not worthwhile to
compute the curve orders for estimation purposes, as it takes too much time,
and working with é(n) seems to be appropriate enough. We also examined
the behavior of [(n) if we increase e(n) and b(n). We have found that in
general it is not worthwhile to increase b(n) in big steps, but it seems more
reasonable to collect a relatively big set of curve orders first and then increase
b(n) c-fold. In our case ¢ = 2.

We could justify (5) too, apart from the constant difference between the
functions G(n) and b(n) that was explained above, as the two lines are par-
allel; the same holds for (6).

The overall conclusion is that the experiments support our assumptions
in practice for numbers in the range of 500, ...,3400 digits. Running exper-
iments on numbers beyond this range would take too much time.

Chapter 3

Practical results

In the previous chapter we listed a couple of refinements based on the heuris-
tics described there, that should make it possible to give an efficient imple-
mentation of the ECPP algorithm. This chapter deals with two implementa-
tions of the algorithm that uses the given heuristics and refinements. They
are both implemented by Gyongyvér Kiss. This chapter follows the content
of two papers, refer to [10] and [13]. The implementations are written in
Magma Computational Algebra System (see [4]).

In this chapter we cannot drop the index of n;, except for the descrip-
tion of the algorithms for simplicity and consistency reasons, because our
explanations would become unclear.

3.1 Magma Computational Algebra System

Magma [4] is a large software system, that has several highly optimized
modules in different fields of computer algebra e.g. number theory, group
theory, and geometry. It was launched in 1993 at the First Magma Conference
on Computational Algebra in London. It consists of a large amount of built-
in functions implemented in C language but also supports implementation of
new functions in a command line interface environment. It is efficient, well
documented and easy to use both under Linux and Windows.

Magma has a large scale of built-in primality tests, both probabilistic and
deterministic. We are describing one of them here in detail, as this function
is a combination of the Miller-Rabin test and ECPP. It can be invoked by
the following function:

IsPrime(n: parameter) : RngIntElt — BoolElt

This test is deterministic by default using ECPP after a quick Miller-

43

CHAPTER 3. PRACTICAL RESULTS 44

Rabin test, but it is possible to set a Boolean parameter Proof to false to
use only the Miller-Rabin test with the default number of bases. We will refer
to this function of Magma v2.17 (2011) as Magma-ECPP. This function is
based on the implementation of F. Morain and works more or less according
to the description above (1.9.2) as precise as it is possible to determine it
from the verbose output, as the source code is not public. It operates on a set
of predefined discriminants D, that are possibly fully factored and ordered
by their class number h(D). In the i iteration it first applies a trial division
sieve on n; then it loops through the set of discriminants performing one
step of the algorithm Downrun(n) until it either finds n;,1 = n} or runs out
of discriminants. In case of success it goes to the (i + 1) iteration with
the new input, otherwise it loops through the same set of discriminants,
possibly increasing b(n;) or applies stronger factorization methods. If this
effort is still unsuccessful, it has to backtrack to n;_; starting from the next
discriminant of n;_; as after each iteration the last successful discriminant is
stored together with the input n;.

This implementation works well in most cases, but there are situations
when it gets stuck, because of the small amount of discriminants that it
uses. The numbers are not equally appropriate, some of them filter out
more discriminants than others, thus changing only one parameter, in this
case only b(n;), sometimes will fail. We can draw the conclusion from these
situations; if we want to get closer to probability 1 to reach the small primes,
we have to apply a strategy in the algorithm Downrun(n), when selecting
the input n; of the next attempt and also when choosing the value of d(n;),
s(n;) and b(n;). To achieve this we implemented our version of ECPP, called
Modified-ECPP.

3.2 Modified-ECPP

To describe the algorithm we have to slightly modify our view on the algo-
rithms Downrun and Determine-Next-Input.

Algorithm 3.0.1. Determine-Next-Inputs(n, 1, b(n))

1

(1) N
(2) If 71 # () select and remove D from 71, otherwise return N'.
(3) Determine C' (z,y) = a’x?® + b'zy + 'y*.

(4)

4) Reduction(C (x,y)).

CHAPTER 3. PRACTICAL RESULTS 45

(5) Reduction(C’ (x,y)).

(6) If the reduced form of C (z,y) and C’ (z,y) is not the same, 1.7 has no
solution, go back to 2.

(7) Follow the steps of the reduction of C (z,y) backwards to get the re-
quired x and y.

(8) Determine v = x + yw, my = |v + 112 and m_ = |v — 1]°.
(9) Try to factor m, and m_ up to b(n).

(10) If neither m, nor m_ is almost smooth with my = fn/, and n’ >

(Wn+1)*, go back to 2.

(11) Let the successful m. be m. Store (n, D,m,n’). Add n’ to N'. Go
back to 2.

Algorithm 3.0.2. Downrun(n)

(1) N ={n}
(2) If n < L test n for primality. If n is prime, return.

(3) Select a set of discriminants 1 that is appropriate for n. Determine the
value of b(n).

(4) N’ =Determine-Next-Inputs(n, 1, b(n)).
(5) N = N UN'. Select the best n from N and go back to 2.

The point of the modification of the two algorithms is that we do not
stop at the first produced n’ but we process a given set of discriminants and
in an attempt on the number n we return a set N’ of n’. The main question
is the following; how do we choose the best n from N. Of course the best
n can be a new n/, can be a result of a previous iteration, we consider this
backtracking and it can be the same n as the input of the current iteration,
we call this situation repetition.

There are two versions of Modified-ECPP. They both work based on this
interpretation of the algorithm Downrun(n), but there is a major difference
between them; their definition of the best.

From this point of the chapter we cannot use one dimensional index any-
more to indicate the current input and output, because the input and output
of an iteration are both sets. The i*" iteration means a sequence of operation

CHAPTER 3. PRACTICAL RESULTS 46

from Downrun(n) that has one or more input n;; and has one or more out-
put n; ;. Note that the n; ;’s must be new descendants, thus if we backtrack
or repeat an n,j, that is not considered the end of an iteration. One run
of Determine-Next-Inputs (see 3.0.1), on an input n,; is called an attempt.
There are successful and failed attempts. In an iteration we can have several
failed attempts and one successful attempt, which ends the iteration.

3.2.1 The first version of Modified-ECPP

As we already mentioned, a single iteration can have one or more inputs and
outputs. A larger number of inputs increases the probability of reaching the
small primes, but on the other hand, it slows down the computation. Our
aim is to find a balanced situation, where the implementation is reasonably
fast but we still have a good chance to terminate successfully.

The definition of best in this case is determined based on the function
A(n; ;). The idea is that the computations for smaller discriminants will be
cheaper, and hence the algorithm will be completed faster. Thus we are
searching for the minimal power of d(n; ;) = In” (ni.j) n; ; for which the value
of A(n; ;) is still above a certain bound, with s(n; ;) and b(n, ;) fixed. These
D(n; ;)’s are stored in an array and a certain penalty p; is added to the
D(n;;)’s, that is computed from the level i. If a value 0;; = D(n;;) + p;
reaches a given bound, n; ; is excluded from the array of the possible choices.
Then the array is ordered and the smallest one is selected. Thus in this case
the best n; ; is the one with the minimal 6; ;.

Algorithm 3.0.3. Process-First-N(n, b(n))
(1) D(n) = Dy, s(n) = In"n.
(2) d(n) = InP™p.

(3) Let 7T be the set of s(n)-smooth discriminants up to d(n) that is ap-
propriate for n.

(4) N’ =Determine-Next-Inputs(n, 1, b(n)).
(5) D(n) = D(n) + A. If N’ = (), then go back to 2.
(6) Add (n,D(n)) to N, return N’

The function Process-First-N(n) is kind of a brute force strategy to find
the descendants of ng, the input of the algorithm. We have to force ng
because at that point of the algorithm it is our only choice. It runs only
at the beginning of the algorithm. As Dy and S are independent from the
choice of n; ;, it is stored as a global variable. In our case Dy = 1 and S = 1;

CHAPTER 3. PRACTICAL RESULTS 47

Algorithm 3.0.4. Determine-Discriminant-Limit(n, b(n))
(1) D(n) = Dy, s(n) =1n°n.
(2) d(n) = InP™p.

(3) Let 71 be the set of s(n)-smooth discriminants up to d(n) that is ap-
propriate for n.

(4) Determine A\(n) = eYe(n)Inb(n)/Inn for .
(5) If A(n) < Ao, then D(n) = D(n) + A. Go back to 2.
(6) Let 6(n) = D(n), add (n,d(n)) to N.

This function increases the discriminant set by incrementing D(n; ;) with
A, until the value of A(n;;) reaches the bound X¢. In this case g, A, S
are global variables, and independent from n; ;. We have chosen Ay = 1.3,
A=01 5=1

Algorithm 3.0.5. Modified-Downrun(n)

CHAPTER 3. PRACTICAL RESULTS 48

Note that the value p added to d(n;;)’s in each iteration except for the
one in which the associated n;;’s are produced. The value of p and B is
also global; p = 0.8 and B = 2 are our choices. The size of the set N; the
possibilities to backtrack to, is also a global variable, we use a set of 100.

Modified-ECPP uses simple trial division up to 1000 and batch trial di-
vision up to b(n; ;) computing the prime products on the fly. As we do not
change the value of b(n; ;) = In®n, ; this approach seems sufficient.

We ran several experiments on numbers with more than 1000 digits to
see the advantages and disadvantages of this implementation in practice. We
managed to prove big prime numbers that are determined from the Pascal’s
triangle, see [7]. We have found an example when Magma-ECPP got stuck
and Modified-ECPP terminated successfully, see [10].

There are certain advantages of Modified-ECPP compared to Magma-
ECPP, although in most of the situations the latter will terminate successfully
too.

First of all the bigger set of discriminants; Modified-ECPP uses a list of
predefined and factored discriminants together with their class number up
to 10°. Obviously if we have more discriminants, the possibility of failure is
smaller.

There is a bigger range of eligible choices and freedom in the decision in
case of a failed attempt. Modified-ECPP keeps track of a hundred n; ;’s and
in case of failure backtracking from n; to n;_; is not the only option in the *
iteration; there are possibly more n; ;’s on the same level, but stepping back
more levels is also possible, thus we can avoid getting stuck in an unfortunate
branch.

The goal of producing more nodes in an iteration is not only making
the implementation more robust against getting stuck but to avoid running
multiple attempts on the same n;; by switching between the sibling nodes
on the same level. In addition, if it turns out that an n; ; is not as successful
as estimated, and thus produces no descendants after the first iteration on
the expected interval, we become more careful and try to take small steps at
a time and reestimate. We try to keep backtracking fast and flexible.

We try to minimize the number of backtracks to the previous levels
though, because that might make our whole effort on the current level use-
less, and also because the size of the numbers is growing going up in the
tree. The goal of the estimation of the initial value of d(n; ;) is to reduce the
probability of backtracking and repetition by predicting the minimal interval
where an attempt will run successfully.

As the predictions give us no hundred percent certainty to avoid such
situations, we introduced the penalty p. The default value of the penalty is
high, 0.8. After one unsuccessful attempt we increase the value §(n; ;) with

CHAPTER 3. PRACTICAL RESULTS 49

0.1, thus roughly speaking 0.8 would mean 8 unsuccessful attempts on an
n; ;. This is a tough condition, does not occur frequently. Of course different
n;;'s starts from different §(n;;), thus in practice we do not always need 8
unsuccessful iterations, if none of the n;;’s on the current level is suitable
enough. The numbers are just to get a feeling about the size of the penalty.

The strategy gives also the basis to predict, on which n; ; we have to pro-
cess the smallest amount of discriminants to provide at least one descendant
to avoid unnecessary efforts.

Modified-ECPP was tested with several numbers with around 1000 digits
on a machine with 8001 Mb RAM and eight 2.5 GHz Intel Xeon processors,
and it provided proof in each situation in 2000 — 3000 seconds. Magma-
ECPP was running on the same numbers, failed on one number (see [10]),
and provided proof in 2000 — 8000 seconds in every other cases. Depending
on whether we backtrack or not there are bigger differences in running time.
It seems that the running times of Modified-ECPP are more balanced on
numbers with similar size.

There are still defects of this implementation though; it takes advantage
of only one parameter d(n; ;). If we consider a strategy that controls only the
number of the discriminants, we would not get far by changing only d(n,),
because after a while the size of the prime factors, that is fixed in this case,
becomes too small compared to the discriminants themselves, thus we will
not find any more s(n; j)-smooth discriminants. Therefore it is not enough
to change only d(n;;), at certain points we have to increase s(n; ;) too. It
would be also good to know which parameter is more efficient to increase at
a certain point.

On the other hand controlling only the size of the discriminants seems also
insufficient as we could have so many processed discriminants without finding
new descendants, that it would be worthwhile to increase the factoring bound
b(n;), or we can even run out of discriminants. If we change b(n; ;), the gain
G(n; ;) will also change, thus we cannot consider the expected descendants
equal anymore. We have to apply a strategy that determines the best number
depending on all the parameters; d(n;;), s(n;;) and b(n;;) and takes the
expected gain and work into account too.

3.2.2 The second version of Modified-ECPP

This section is written according to the paper of Gyongyvér Kiss [13] that
describes her implementation of this version of Modified-ECPP in detail.
The definition of best has two aspects in this case;

1- First we have to consider that the numbers are not equally appropri-

CHAPTER 3. PRACTICAL RESULTS 20

ate. Applying the Jacobi symbol filters on n;, ; could filter out more
discriminants than on n;, j,, so to produce the same number of descen-
dants we would have to process a larger number of discriminants or use
bigger factoring bound for n;, ;. Higher bounds imply more execution
time, as we need to deal with bigger discriminants, primes. So the first
aspect is the time it takes to produce a given number of descendants
on input n; ;.

2- The second aspect is the size of the descendants; the smaller they are,
the faster we get to the small primes.

To estimate 1, we have to acquire running time information on the n; ;’s.
This information can be collected from running algorithm Determine-Next-
Inputs (see 3.0.1), on each newly produced n; ; with certain (small) values of
parameters s(n; ;), d(n; ;) and b(n; ;):

bo(ni,j) = 1112 TLZ'J'

In N j

So(n ,j) 0 @’Y-lnbo(ni,j>

do(ni;) = so(ni;)*
The choice for sg(n;;) comes from A(n;;) = eYe(n;;)Inb(n;;)/Inn,;;. If
we suppose that e(n;;) < +/d(n;;) and A(n;;) = Ao is a parameter, we
take so(n; ;) = e(ni;) and do(n; ;) = s(n;;)?* despite of [5], where we suggest
keeping the value of s(n; ;) below y/d(n;), but in practice, on small numbers,
taking s(n; ;) < \/d(n;;) led to some difficulties.

In these initial runs we store the time needed for extracting the modular
square roots, for the reduction algorithm and for factoring, and we also see
how many actual descendants are produced. With this information, we can
estimate the time needed if we increase s(n;;), d(n;;) k-fold or b(n; ;) 2°
fold separately; the running time of the three subroutines depends (via the
three parameters) only on n; j, so it is possible to express these running times
as functions of n; ;. Estimating the running time of square root extraction
modulo a prime and of form reduction is fairly easy. We can measure the
running time of a single operation and multiply by the number of times we
need to perform them (which is the number of appropriate primes and the
number of successful discriminants, respectively). In the case of factoring the
running time of batch trial division is linear neither to the number of curve
orders nor to the number of primes used, but as we do not use huge amount
of curve orders or primes simultaneously, linear approximation works well in

CHAPTER 3. PRACTICAL RESULTS o1

practice. For b(n; ;) = 2"-10%-1In2 we double the expected time if we increase
t to t + 1 as we have to deal with products of twice the size.

If we have the initial running time we will determine the value of A4(n; ;)
for k- s(n;), d(n; ;) and Ag(n; ;) for s(n;;), k-d(n; ;) where k is a parameter,
by collecting the discriminants in both cases and compute é5(n;;), €q(n;).
Using the original b(n; ;) we can compute As(n; ;) and Ag(n; ;).

Parameter b(n; ;) must be treated differently. We do not have to evaluate
the discriminants to see the change of the value of A(n; ;), but vice versa, it
is possible to compute directly how far we have to increase b(n; ;) to induce a
certain rise in the value of A\(n; ;). First we determine A\,(n; ;) = A(n;;) + «,
where « is the minimal excepted increase of the value of A(n; ;), the previous
estimation of A for n; ; that we get from the last attempt on n; ;. We certainly
have a last attempt from the initial runs. From Ay(n;;) with the help of
the actual e(n; ;) of the last attempt, we get the minimal required ¢ from
b(ni,j) == 2t . 106 -In 2.

Now we have \s(n;;), Aq(n;;) and Ay(n; ;) and also the estimated times
ts(ni;), ta(n; ;) and t(n; ;) that it necessary to increase A(n; ;). Then we can
store the different t4q (i) /Asjapp(n4,;) values.

We have determined the expected work for each parameter that we have to
invest to obtain a given increase of the value A(n;), but we do not know the
expected size of the descendants that we would get. This can be determined
with the help of the gain function G(n; ;), which depends only on b(n; ;), the
factorization effort on the curve orders. From this we can see that we gain
descendants with the smallest expected size if we increase b(n; ;). Further-
more if we increase s(n; ;) or d(n;;), the expected size of the descendants
that we gain is the same. After incrementing s(n; ;) or d(n;;), we want to
know how much effort it takes to reduce the descendants further; what is the
average work per bit, w, that we needed to decrease them? This we can esti-
mate from the previous iterations. After multiplication by the estimated size
differences, we obtain a value, aaq(n; ;) for the expected effort of reducing
the descendants to the size of the smallest one, of course as(n;;) = aq(n; ;)
and a(n; ;) = 0. Then compare the values agjap(n:;) + tojap(Mij)/Asjap(1i5)
and select that parameter for which this value is minimal. We denote this
minimal value by mt(n;;), for the given n, ;.

Now we now which parameter to increase for each n;;, but it is still
unclear which is the best n; ;. The selected parameter determines mt(n; ;)
for each n; ;, but we cannot yet compare them as the expected size of the
predicted descendants are different. We would like to know the size of the
smallest because we would still have to work on the other descendants to
reduce their size so far. Thus we have to add the average work per bit, w

CHAPTER 3. PRACTICAL RESULTS 52

to mt(n; ;) after multiplying with the estimated size differences, then we get
mt*(n; ;). Now the best number is the n;; for which this value mt*(n; ;) is
the smallest.

If no new descendants are produced, we need to be able to backtrack. We
keep a window with a certain number of n; ;’s for which we store all the data
that is necessary to continue using this value of n;; if turns out to be the
best. Newly found n; ;’s are always going to the window. If the number of the
n;;’s in the window exceeds a limit, we throw away the worst ones. It is not
possible to backtrack to a number that is not in the window anymore. We
compute w for values n; ; in this window and update it after each iteration.

Algorithm 3.0.6. Estimate(n,d(n), s(n),b(n))

(1) Determine A4(n) by computing the value of e4(n): collect the s(n)-
smooth discriminants up to k - d(n), that are appropriate for n.

(2) Determine As(n) by computing the values of es(n): collect the & - s(n)-
smooth discriminants up to d(n), that are appropriate for n.

(3) Determine the new value of b(n;;) from A\y(n) = A(n) + a.

(4) From the actual running times stored for n, determine t¢(n), t4(n) and
ty(n) for k- s(n), k-d(n), 2¢- b(n).

(5) Compute the expected gain G(n), and compute the value as(n) =
aq(n). Let ap(n) = 0.

(6) Determine the value of mt(n) together with the corresponding lists of
discriminants and primes, add them to the window together with n.

Algorithm 3.0.7. Modified-Downrun(n)
(1) N = {n}
(2) If N # () select and remove n from N, otherwise go to 5.

(3) N’ =Determine-Next-Inputs(n, 1,bp(n)), where T is the set of so(n)-
smooth discriminants up to dy(n).

(4) Estimate(n, do(n), so(n),bo(n)). N =N U N’ and go back to 2.
(5) Reorder the window by the values mt* (all of them are up to date).
(6) Pick the best as n. N' =Determine-Next-Inputs(n, T1,b(n)); T and b(n)

come from the window.

CHAPTER 3. PRACTICAL RESULTS 23

(7) Estimate(n,d(n), s(n),b(n)), update the window.
(8) If N' # () then N = N’ and go back to 2. Otherwise go back to 5.

There is a list of additional parameters that we use in the algorithm.

Parameter)\ — This parameter provides the initial value of A in the
initial run. We have to keep in mind that this part of the algorithm runs
only because we would like to collect some data on the new descendants.
Thus we keep the value of \g relatively small to avoid spending too much
time here. We also have to be aware of that if it runs with a big value of
Ao the tree would expand too much as this part of the algorithm runs on
each n; ;. On the other hand if it is too small, we will not be able to collect

realistic data about the running time. In practice we keep this value between
1/3 and 1/2.

Parameter k£ — In algorithm Estimate(n,d(n), s(n),b(n)) we take k -
s(n;;), k- d(n;;) as the new values of these parameters that we want to
examine. We have to be careful with our choice here as if it is too big, we
take too big steps and the algorithm becomes slow and we also loose the
flexibility of it (reestimating after small steps to see if the selected n; ; is as
good as it was predicted). On the other hand it cannot be too small because
then we spend too much time estimating the n; ;’s compared to the time to
process them. In practice we usually use £ = 2, but there are experiments
described later, that use k = 1.5,...,4.

Parameter o — As it is mentioned above « is the minimal increase of
value A(n; ;). Increasing the parameters k-fold does not give us any certainty
of the degree of increase of €(n; ;), as the exact connection between s(n;),
d(n;;) and e(n;;), even e(n;;) is unknown. Thus it is possible that a k-
fold rise in the value of the parameters will not increase the value of A(n; ;)
enough. If Ag(n;;) — A(nij) < a or As(n;;) — A(n;;) < a then we have to
increase the value of k for that particular parameter as one step would be
too small. The new value of b(n; ;) we determine directly from o. We use
a = 0.25;

Parameter wSize — This parameter denotes the size of the window of
the n; ;s that we keep track of. It is possible to backtrack only in the window.
This window cannot be too small, to make sure that it contains all the n; ;’s
that the strategy would choose as best, but if we store too much of them,
the program becomes slow. This parameter is of the form Inn/(clnlnn).
Experiments confirm that it would be more suitable to express the size of
the window in terms of level instead of number of n; ;’s.

CHAPTER 3. PRACTICAL RESULTS o4

3.3 Experiments

In the rest of this study we will refer to the second version of Modified-ECPP
as Modified-ECPP.

Implementing Modified-ECPP allowed us to carry out experiments on
numbers up to 7000 digits to study the behavior of the strategy and the
running time of the algorithm. In this section we will describe these exper-
iments. This section is entirely the work of Gyongyvér Kiss and is written
following her paper [13].

We ran various experiments on the running time and on the strategy with
around 200 numbers each for k-1000 decimal digits, with £ =1,2,...,7. We
have produced many graphs, but presenting all of them here is impossible
thus we will display the graph for the largest size for which data are avail-
able for each type of experiment. The others, that are not displayed here
can be downloaded from the page http://www.math.ru.nl/~gykiss. The
experiments were run on computers with Intel(R) Core(TM) i5-3470 CPU @
3.20GHz processors and 8 GB memory.

3.3.1 Running times

700000 ° 700000

600000 600000

@ ComBIEENEESO

500000 500000

400000 . 400000
°

300000 | 300000

200000 200000

100000 100000

J
0+ $ T T T T 1 0-r f T T T T 1
2000 3000 4000 5000 6000 7000 2000 3000 4000 5000 6000 7000

Figure 3.1: Running times

Figure 3.1 shows the running times of the algorithm Modified-ECPP.
On the first graph of Figure 3.1 the total running time is presented as a
function of the decimal digits of the input numbers of k - 1000 digits for
k=1,2,3,...,7. A single dot indicates the running time for a given number.

CHAPTER 3. PRACTICAL RESULTS 25

On the second graph the average running times of the algorithm on the same
numbers is indicated. A single dot here shows the average running time of
the numbers with the same size.

-204

Figure 3.2: Average running times on logarithmic scale

We have applied least squares linear approximation method, to find out
the running time in the examined range and we found that the best fit for the
running time on a logarithmic scale is given by the line y = 3.86 - — 21.00.
See Figure 3.2.

220007
210007
20000+
19000+

18000+

17000+

Figure 3.3: Running time as function of £ for 3000 digits numbers

CHAPTER 3. PRACTICAL RESULTS 26

We indicated in the previous section that at each attempt we increase
the size of the parameters s(n;;), d(n;;) or b(n;;) and the increase in the
first two cases is k-fold. We state that in practice we use k£ = 2 and that
k =1.5,...,3seems to be a useful range. We tested this behavior on numbers
with 3000 digits with k£ = 1.5,2,2.5,3,3.5,4 and the result can be seen in
Figure 3.3. The experiments were also done on numbers with 1000 and 2000
digits (see http://www.math.ru.nl/~gykiss/graphs/S.html). We can see
that for smaller numbers, bigger steps seem to work well in practice, but as
the numbers are growing, the range k = 1.5,...,3 becomes more preferable.
It is also visible that the difference is rather insignificant.

700000
600000 /
500000

400000 1

°

300000

200000

100000

0 T T T T T T |
0 100000 200000 300000 400000 500000 600000 700000
X

Figure 3.4: The proportion of the execution time compared to the total
running time

We also indicated that the size of the steps k cannot be too small, as
in this case the time of estimations and such administrative jobs would be-
come too big compared to the time of executional jobs such as extracting
modular square roots modulo n; ;, reduction of binary forms, factoring and
Miller-Rabin tests on the new descendants. We have to emphasize that in
one iteration there will typically be several execution and administration
steps, and these experiments are not meant to measure the time used in an
iteration. Figure 3.4 shows the time of the executional tasks as a function of
the total running time for numbers from 1000 digits up to 7000 with k = 2
and the identity function for comparison. The clusters for the data for the
numbers of the same size are clearly visible. As expected, the time spent on
administration rather than execution is negligible.

CHAPTER 3. PRACTICAL RESULTS o7

3.3.2 Experiments on the strategy

In this section we would like to study the behavior of the strategy of Modified-
ECPP mainly via the analysis of the number and size of backtracks and repe-
titions compared to the length of the path. Repetitions and backtracks occur
if the initial runs on the new n; ;’s as well as one attempt on the best available
input do not provide new descendants; we would not consider the first at-
tempt after the initial runs as backtrack or repetition, as the initial runs are
only precomputation and in general we do not expect new descendants run-
ning them (of course in practice in many cases they produce descendants),
thus in both cases we have to select an n;; from existing ones. The only
difference between the two is when we backtrack, we select a different num-
ber, whereas in a repetition the same n;; is selected, because it is still the
best. We expect that repetitions occur frequently as we increase A(n; ;) with
around o = 0.25 after each attempt on n;; instead of 1. This means that
one may expect to repeat the procedure as much as 4 times before producing
new descendants.

Note that when we are talking about backtracking, we do not only mean
stepping back to a previous level, as we may step either backwards or forward.

Note that the length of the path I,(ng) from ng, the input of the algo-
rithm, is not equal to the number of iterations, as we include each number on
which an attempt was ever made, and one iteration likely consists of several
attempts. However, the number of the iterations is equal to the maximum
level, the ¢ from the index of n; ;, as we consider numbers produced in the
same iteration to be on the same level.

Figure 3.5 shows the proportion of the number of backtracks and repe-
titions to the length of the path, for numbers of various sizes. In the first
graph of Figure 3.5 we can see the number of backtracks as the function of
the length of the path from ng, Iy(ng), in the second graph the number of
repetitions are indicated as the function of I,(ng). The length of the path is
of order O(In(n)), and the graphs clearly show the 7 clusters corresponding
to numbers of size k- 1000, for £k = 1,...,7. Furthermore it is also clear that
we need backtracks during the Downrun, as around one of each 30 steps is a
backtrack on the path. As we expected, the repetitions are far more frequent.
Although around half of the length of the path are repetitions, it is less than
our expectations; 4 repetitions before producing descendants. This means
that it is worthwhile to take small steps only, because besides the flexibility
that we gain with small steps, in general it seems that we do not have to
have A(n; ;) = 1 in practice to produce descendants.

Besides knowing how often we backtrack in a run, we also want to know
how far we backtrack in terms of level and size. If these differences are not

CHAPTER 3. PRACTICAL RESULTS 28

o :
150 1600

@ 1400
1200+
100
1000+

800

50 600

400

200

0 1000 2000 3000 500 1000 1500 2000 2500 3000

Figure 3.5: The number of backtracks and repetitions as a function of the
length of the paths

40 °

Pao ©O o6 00 000 06X O 0P < 00 00

1000 2000 3000 4000 5000 6000 7000

24 e o WO 00 CONNO 00 WE WOMDOOHS O OONS WO

3
<

-40

Figure 3.6: The level and size differences of backtracks

too big, it would mean that the strategy is balanced as it aims to avoid these
situations as taking a big step backwards could mean that our efforts on a big
branch will be lost. We present these size and level differences in Figure 3.6.
The data was collected during several runs of the algorithm on numbers with
7000 digits, which means that along the path, several attempts were made
on numbers with size between 0 — 7000 digits. The first graph of Figure 3.6
shows the level differences of backtracks as the function of the size of the
numbers (in decimal digits) from which we backtracked. The second graph

CHAPTER 3. PRACTICAL RESULTS 29

shows the size differences of the backtracks as the function of the size of the
start-up points. A positive number means that we stepped back, a negative
number means that we stepped forward, 0 indicates that we stayed on the
same level but we have selected a different number. These graphs and the rest
of them (see http://www.math.ru.nl/~gykiss/graphs/B.html), where the
input numbers are smaller, suggest the same conclusion: neither the level nor
the size differences depend on the size of the input, except for really small
numbers, when the work that we loose with backtracking is negligible, and
there are only a very few outliers. This result supports our idea to express
the size of the window of stored n;; in terms of level instead of cardinality.
According to the first graph we could just say, store the numbers of the last
7 levels.

12 oo ° o o o 0 00 0 o

DGAW0M0O W OOO VO 0B G W O GO XBO O WA GO OB W O

0 1000 2000 3000 4000 5000 6000 7000
Figure 3.7: The length of the repetition sequences

Information on the length of the repetition sequences is also important,
that gives an indication on the reliability of the estimations. These results
can be seen in Figure 3.7, Figure 3.8. In Figure 3.7 we can see the length of
the repetition sequences as the function of the size of the number repeated
in decimal digits. We can see that the length of the repetition sequences
does not go above 13. It is visible from this graph that even 12 and 13 long
sequences occur rarely, but the proportion of the smaller lengths are unclear
as the dots are to dense. We also want to see for which size of numbers the
repetitions are more frequent. In the first chart of Figure 3.8 we can see the
number of the repetitions for the number of digits indicated on the pie chart;
the number of the repetitions seems to be independent from the size of the
numbers. The second chart shows the proportion of the repetition sequences

CHAPTER 3. PRACTICAL RESULTS 60

2000-3000

digits
0-1000
digits

3000-4000

digits

6000-7000
digits
4000-5000
digits

Figure 3.8: The proportion of the repetition sequences

40000 40000
<
@
300001 o0 300001
R4
IS R4
0
200001 200001
., %0
R4
R4
%
2
10000- 2 10000-
.
E-3 hd °

04 - — 0 y y ? T T T]
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Figure 3.9: The time of the repetition sequences

with given lengths that are indicated on the fields of the chart for numbers
with 6000 — 7000 digits. The pie chart of smaller numbers look really similar.
We can see that the number of repetition sequences with length 1, 2 and 3
is around 2/3 and with length 1, 2, 3 and 4 is around 3/4 compared to the
total number of repetitions. Longer sequences are relatively rare.

In Figure 3.9 we can see the time of the repetition sequences as the
function of the size of the numbers that are repeated in decimal digits in the
first graph and the average of the same function in the second graph. The
time of course does depend on the size of the numbers, as for bigger numbers

CHAPTER 3. PRACTICAL RESULTS 61

Figure 3.10: The length of the repetition sequences

an attempt takes longer; still the dependence is rather controlled with few
outliers. We have applied the least squares method again, and the best fit
for the running time on a logarithmic scale in this range is given by the line
y = 2.55-x—14.67. See Figure 3.10. Note that it is not equal to the running
time of one iteration, we just wanted to check that the time of repetitions
does not become unmanageable.

3.4 Conclusions and future improvements

To sum up the results of this chapter we describe two implementations of the
ECPP primality test that uses refinements and a strategy based on the heuris-
tics from the previous chapter and justify in practice, that it has advantages
compared to an implementation without heuristics. The first implementa-
tion uses a light weight strategy that is appropriate to test numbers around
1000 digits. We showed a situation in our paper [10], when an implementa-
tion without a strategy, Magma-ECPP get stuck on a number, while for our
implementation, the first version of Modified-ECPP, we could not find such
number. Despite of the fact that the strategy requires additional time, the
running time of Magma-ECPP (2000 — 8000 seconds), and the first version of
Modified-ECPP (2000 — 3000 seconds) on numbers with 1000 digits, is sim-
ilar, our implementation runs even more balanced from running time point
of view.

The strategy of the first implementation was based only on the parameter

CHAPTER 3. PRACTICAL RESULTS 62

d(n; ;) and the exponent of Inn; ; in the other two parameters were fixed and
it also did not take gain into account, thus we introduced another strategy,
that finds the parameter for each n; ; that requires the least work to produce
descendants and then selects the n; ; for which the quotient of the invested
work and the expected gain is the smallest. We ran experiments on this
implementation of the Modified-ECPP on numbers up to 7000 decimal digits
and the running time in this range seems to be below o(ln4(n)) for input n.
Of course there is no experimental way to show that this is asymptotically
correct. The amount of the running time needed for administration of the
strategy to be applied is small, which is necessary for the strategy to be
useful.

Experiments show that in around half of the cases the strategy chooses
to increment d(n; ;) (allow the use of larger discriminants) and in almost all
the other cases it chooses to increase s(n; ;) (allow larger primes in the dis-
criminants). For bigger numbers enlarging d(n; ;) is a bit more frequent, for
smaller numbers enlarging s(n; ;). Selection of b(n; ;) (allow larger primes in
the factorization of the m-s) hardly ever happens, although in some situa-
tions, e.g. when we run out of discriminants, or if we have already a huge
set of curve orders, it is necessary to have the possibility to increase this
parameter. As we saw that the number of repetitions does not exceed 13,
the implementation should be able to work with numbers up to 10000 digits
without running out of discriminants. After running out of discriminants it
would be still possible to continue with increasing b(n; ;) (there is no upper
limit to that parameter). Of course testing such big numbers would take very
long.

The number of the backtracks and repetitions are proportional to the
length of the path. The maximum level of backtracks and the lengths of
repetitions seem to be similar for different sizes of inputs. That is what we
expect as the input selection depends on the estimated running times + the
work that we have to do to reduce the new descendants to the same size.
The size differences for backtracks are growing with bigger inputs, but the
differences are negligible. According to the experiments there are negligible
amount of extreme cases concerning the repetitions and backtracks.

The overall conclusion is that the implementation seems to be working
as it was intended, but there is still space for improvement; speeding up the
factoring would make it more likely that the strategy selects b(n; ;). This has
a pleasant effect on the size of the descendants and the length of the path.
Currently we are using trial division up to 10830, batch trial division up to
2 -10% and Pollard p method further.

One goal is to replace the current implementation of ECPP in Magma
with the Modified-ECPP. Another goal is to provide an optimized implemen-

CHAPTER 3. PRACTICAL RESULTS 63

tation of the ECPP algorithm that combines the strategy of Modified-ECPP
with a collection of highly optimized packages written in C and Assembly in
order to be able to find bigger primes than the current general prime record.

Bibliography

1]

Adleman, M.A., Pomerance, C., Rumely, R.S., On distinguishing
prime numbers from composite numbers, Annals of Mathematics 117
(1983), 173-206

Agrawal, M., Kayal, N., Saxena, N., Primes is in P, Annals of
Mathematics 160 (2004), 781-793

Atkin, A.O.L., Morain, F., Elliptic curves and primality proving,
Math. of Computation 61 (1993), 29-68.

Bosma, W., Cannon, J., Playoust, C., The Magma algebra sys-
tem. I. The user language, J. Symbolic Comput., 24, 3-4, (1997) 235-
265.

Bosma, W., Cator, E., Jarai, A., Kiss, Gy. Primality proofs with
elliptic curves: heuristics and analysis, Ann. Univ. Sci. Budapest. Sect.
Comput. 44 (2015), 3-27.

Cohen, H., A course in computational algebraic number theory,
Springer Verlag, 1993.

Farkas, G., Kallés, G., Kiss, Gy., Large primes in generalized
pascal triangles, Acta Univ. Sapientiae, Informatica 3, 2 (2011) 158—
171.

Goldwasser, S., Kilian, J., Primality testing using elliptic curves,
Journal of the ACM 46, 4 (1999) 450-472

Gowers, T., The Princeton Companion to Mathematics, Princeton
University Press, Princeton and Oxford, 2008.

Jarai, A., Kiss, Gy., Finding suitable paths for the elliptic curve
primality proving algorithm, Acta Univ. Sapientiae, Informatica 5, 1
(2013) 35-52.

64

BIBLIOGRAPHY 65

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Kac, M., Statistical Independence in Probability, Analysis and Number
Theory, Wiley, New York, 1959.

Kiss, Gy., Primality proofs with elliptic curves: experimental data,
Ann. Univ. Sci. Budapest. Sect. Comput. 44 (2015), 197-201.

Kiss, Gy., A strategy for elliptic curve primality proving, Acta Univ.
Sapientiae, Informatica 7, 2 (2015) 125-142.

Knuth, D.E., The Art of Computer Programming, Vol. 1-3., Addison-
Wesley, 1968.

Knuth, D.E., The Art of Computer Programming, Vol. 1-3. Second
Edition, Addison-Wesley, 1981.

Lenstra, A. K., Lenstra Jr., H. W., Algorithms in Number Theory,
in: van Leeuwen, J., (Ed.), Algorithms in Complexity, Vol.A, Elsevier,
1990, 673-716.

Miller, G.L., Riemann’s hypothesis and tests for primality, Journal of
Computer and System Sciences 13 (1976), 300-317

Morain, F., Implementing The Asymptotically Fast Version Of The El-
liptic Curve Primality Proving Algorithm, Mathematics of Computation
76, 2007, 493-505

Pocklington, H.C., The determination of the prime or composite na-
ture of large numbers by Fermat’s theorem, Proc. Cambridge Philo-
sophical Society 18 (1914), 29-30

Schoof, R., Counting points on elliptic curves over finite fields, Journal
de thorie des nombres de Bordeauz 7,1 (1995) 219-254.

Schonhage, A., Grotefeld, A.F.W., Vetter, E., Fast Algorithms:
A Multitape Turing Machine Implementation, B.1.Wissenschaftverlag,
Mannheim, 1994.

Summary

This thesis collects the results of Gyongyvér Kiss. She deals with the heuris-
tic running time analysis and implementation of the elliptic curve primality
proving (ECPP) algorithm of Atkin and Morain. ECPP is a recursive al-
gorithm, that starts from an input probable prime n = ny and traverses a
graph to get down to such n; that is small enough to be easily proven prime.

In the work of Atkin and Morain the background and an exact imple-
mentation of the ECPP algorithm is described. Lenstra, Lenstra and Morain
have found that, using asymptotically fast methods for multiplication, divi-
sion, polynomial calculation, etc., and a trick attributed to J. O. Shallit, the
heuristic running time of the algorithm can be to reduced to O(In**n) for
input possible prime n. We show that it is possible to reduce the heuristic
running time to o(In*n) using refinements based on certain assumptions. We
give a detailed running time analysis of each step using these refinements.
This is mostly result of a joint effort of Antal Jarai and Gyongyvér Kiss. As
own result, the assumptions are also justified in practice on a manageable
set of possible primes.

Two ECPP implementations of the author in Magma Computational Al-
gebra System are described too. Based on the theory in the first part of
the thesis, it possible to converge to the optimal choices of parameters. A
strategy is applied to produce more then one descendants in each step and
to determine the best of them. The first implementation uses a light weight
strategy. It is best to apply it on numbers up to 1000 digits. The second
implementation is rather designed for numbers with 1000 — 10000 digits. In
earlier implementations that we know of, it is only dealt with one descen-
dant to go further down in this graph. The author managed to justify that
in practice it is worthwhile to use strategies when traversing such graph.

This research is part of a project. The goal of the project is to combine
a traversing strategy with a collection of highly optimized package collection
written in C and Assembly.

66

(")sszefoglalés

Ez a disszertacio Kiss Gyongyvér eredményeit gytjti Ossze. A szerzo az
Atkin—Morain féle elliptikus gorbés primteszt (ECPP) futdsi id6 elemzésével
és implementacidjaval foglalkozik. Az ECPP egy rekurziv algoritmus, ami
kiindulva egy n = ng valdszinti prim inputbdl bejar egy gréafot, hogy elérjen
egy olyan n; szamig, ami elég kicsi ahhoz, hogy konnyen bizonyithatjuk hogy
prim.

Atkin és Morain munkajaban az ECPP algoritmus elméleti héattere és
pontos megvalésitasa megtaldlhatd. Lenstra, Lenstra és Morain megalla-
pitotta, hogy aszimptotikusan gyors szorzast, osztast, polinom miveleteket,
stb., hasznalva, ezen kiviil J. O. Shallit triikkjét alkalmazva az algoritmus
heurisztikus futési ideje lecsokkentheté O(In** n)-ra n valészint prim input
esetén. Mi megmutatjuk, hogy a heurisztikus futasi ido tovabb csokkenthetd
0(1n4 n)-re, ha bizonyos feltevéseken alapulé finomitdsokat hasznalunk. Meg-
hatérozzuk az algoritmus minden 1épésének részletes futasi idé elemzését a fi-
nomitasok alkalmazéasaval. Ez a rész tobbnyire Jarai Antal és Kiss Gyongyvér
kozos munkajanak eredménye. Sajat eredményként a szerzo igazolja a fenti
feltevéseket gyakorlatban, valészinti primek egy kezelheté méretli halmazan.

A tanulményban a szerzo két ECPP implementéacidja is talalhaté, Magma
Szamitogépes Algebra Rendszerben. Felhasznélva az elsé rész elméleti ered-
ményeit, lehet6évé valik a paraméterek optimalis értékéhez vald konvergalds.
A szerz6 altal alkalmazott stratégia minden lépésben tobb leszarmazottat
allit el6 és eldonti, hogy melyik a legjobb. Az els6 implementacié egy konny
sulyu stratégian alapszik, amit 1000 jegyl szamokig érdemes hasznalni. A
masodik implementacié inkabb 1000 — 10000 jegyl szamokra lett tervezve.
Altalunk ismert el6z6 implementaciok csak egy leszarmazottat kezeltek 1épé-
senként a bejaras soran. A szerzo kisérletekkel tamasztotta ala, hogy gyakor-
latban érdemes stratégiat alkalmazni a grafbejarashoz.

Ez a kutatas egy projekt része, aminek célja hogy egy stratégiat kom-
binaljon egy C és Assembly nyelven {rott optimalizalt programcsomaggal.

67

'ADATLAP
a doktori értekezés nyilvanossagra hozatalahoz

I. A doktori értekezés adatai

A szerzd neve: Kiss Gyongyvér

MTMT-azonosité: 10046284

A doktori értekezés cime és alcime: An implementation and analysis of the ECPP algorithm
DOl-azonosité”: 10.15476/ELTE.2016.124

A doktori iskola neve: ELTE Informatika Doktori Iskola

A doktori iskolan belili doktori program neve: Numerikus és szimbolikus szamitasok

A témavezetd neve és tudomanyos fokozata: Jarai Antal az MTA doktora

A témavezetd munkahelye: ELTE Informatika Kar (professor emeritus)

Il. Nyilatkozatok
1. A doktori értekezés szerzGjeként?

a) hozzdjdrulok, hogy a doktori fokozat megszerzését kbvetSen a doktori értekezésem és a tézisek
nyilvanossdgra kerilienek az ELTE Digitdlis Intézményi Tudastdrban. Felhatalmazom az Informatika
Doktori Iskola hivataldnak iigyintéz§jét Boda Annamariat, hogy az értekezést és a téziseket feltdltse az
ELTE Digitdlis Intézményi Tuddstarba, és ennek soran kitéltse a feltltéshez sziikséges nyilatkozatokat.

b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illet6leg oltalmi bejelentés
kozzétételéig a doktori értekezést ne bocsassak nyilvanossdgra az Egyetemi Konyvtarban és az ELTE
Digitalis Intézményi Tudastarban;*

c) kérem, hogy a nemzetbiztonsdgi okbdl mindsitett adatot tartalmazd doktori értekezést a
mindsités (ddtum)-ig tartd id6tartama alatt ne bocsassak nyilvdnossagra az Egyetemi Kényvtarban és
az ELTE Digitélis Intézményi Tuddstérban;’

d) kérem, hogy a m(i kiaddsara vonatkozd mellékelt kiadd szerz6désre tekintettel a doktori
értekezést a konyv megjelenéséig ne bocsassak nyilvanossagra az Egyetemi Konyvtdrban, és az ELTE
Digitalis Intézményi Tudastarban csak a kényv bibliogréfiai adatait tegyék kozzé. Ha a konyv a
fokozatszerzést kdvetdn egy évig nem jelenik meg, hozzajarulok, hogy a doktori értekezésem és a
tézisek nyilvdnossdgra keriiljenek az Egyetemi Konyvtdrban és az ELTE Digitdlis Intézményi
Tudéstarban.®
2. A doktori értekezés szerzGjeként kijelentem, hogy

a) az ELTE Digitdlis Intézményi Tuddstarba feltéltend6 doktori értekezés és a tézisek sajat eredeti,
6nalld szellemi munkdm és legjobb tudomdsom szerint nem sértem vele senki szerzgi jogait;

b) a doktori értekezés és a tézisek nyomtatott valtozatai és az elektronikus adathordozén benyujtott
tartalmak (szoveg és dbrdk) mindenben megegyeznek.

3. A doktori értekezés szerzGjeként hozzajarulok a doktori értekezés és a tézisek szovegének
plagiumkeres6 adatbazisba helyezéséhez és plagiumellenérzé vizsgalatok lefuttatdsahoz.

Kelt: Budapest, 2016.08.23.
a doktori értekezés szerz6jének alairasa

¢

{ P -1 N o c
L/’ { y‘/) L ‘L(/) v 1 '*f T {,\3\&3 V,

! Beiktatta az Egyetemi Doktori Szabélyzat modositasarol sz6lé CXXXIX/2014. (VI. 30.) Szen. sz. hatarozat.
Hatalyos: 2014. VII.1. napjatol.

* A kari hivatal tigyintézéje tolti ki.

* A megfeleld szoveg alahtzando.

* A doktori értekezés benyujtasaval egyidejiileg be kell adni a tudomanyagi doktori tandcshoz a szabadalmi,
illetéleg oltalmi bejelentést tanusitd okiratot €s a nyilvanossagra hozatal elhalasztdsa iranti kérelmet.

> A doktori értekezés benytjtasaval egyidejileg be kell nyujtani a minésitett adatra vonatkozé kozokiratot.

% A doktori értekezés benyujtasaval egyidejiileg be kell nywjtani a mi kiadasarél szol6 kiadoi szerz6dést.

