

ISSN 0100-6460

Sircular & ST Técnica & ST Técn

Campina Grande, PB Novembro, 2000

Autores

Napoleão Esberard de Macêdo Beltrão

Eng. agrôn., D.Sc., da Embrapa Algodão Rua Osvaldo Cruz, 1143, Centenário, CEP 58107-720, Campina Grande-PB E-mail: napoleao@cnpa.embrapa.br

João Cecílio Farias de Santana

Eng. agrôn., M.Sc., da Embrapa Algodão E-mail: jcecilio@cnpa.embrapa.br

José Rodrigues Pereira

Assistente de Operação Embrapa Algodão E-mail: rodrigue@cnpa.embrapa.br

Maurício José Rivero Wanderley

Técnico de Nível Superior da Embrapa Algodão E-mail:mauricio@cnpa.embrapa.br

Contaminação de Algodão em Caroço, e em Especial de Sementes de Algodão por Fungos Produtores de Aflatoxina e como Evitá-La

Introdução

O algodoeiro, via as quatro espécies exploradas economicamente (*Gossypium herbaceum*, *G. arboreum*, *G. barbadense* e *G. hirsutum*), é cultivado em mais de 70 países em uma área global de

32,4 milhões de hectares, produção de 19,14 milhões de toneladas de fibra (Cotton 2000) e cerca de 31,99 milhões de toneladas de sementes (caroço), considerando um valor médio de 65% de sementes no algodão em caroço e uma quebra de 10% devido as impurezas. Do total de sementes produzidas cerca de 700.000 t são usadas anualmente como sementes, ficando 32,3 milhões de toneladas de caroço para serem utilizadas na produção de diversos manufaturados, uso na alimentação animal e até na humana, via caroços oriundos de plantios com cultivares sem glândulas de gossipol, como ocorre nos USA e principalmente em vários países da África (Lusas, 1987, Tamcot GCNH, 1988 e Marquié & Hequet, 1994). No continente africano em 1994 foram cultivados cerca de 270.000 ha com variedades de algodão sem glândulas de gossypol, sendo 130.000 ha na Costa do Marfim, 70.000 ha em Burkina e 70.000 ha no Mali (Marquié & Hequet, 1994), sendo que os caroços para serem utilizados na alimentação de monogástricos, como o caso do homem, deve ter no máximo 0,055% ou 550 ppm de gossipol livre (Tamcot GCNH, 1988), sendo que a FDA "(Food and Drug Administration)" dos USA limita o máximo para o uso humano, em 450 ppm. Mesmo para a alimentação de animais poligástricos, como bovinos, que podem se alimentar com caroços "in natura" de algodão, desde que com mais de quatro meses de idade e na quantidade de até 1,5 kg/ cabeça/dia para o animal adulto (Cardoso, 1998), que tolera até 9000 mg de gossipol/kg, quando adultos e até 200 mg gossipol/kg (Toll Vera, 1997), necessitam de se alimentar com caroços sadios, sem toxinas, como é o caso de aflatoxinas, pois caso contrário a toxina pode passar para o leite (ICAC Recorder, 1997) e afetar a saúde dos seres humanos, pois é cancerígeno, podendo afetar seriamente os órgãos vitais tais como fígado, coração e rins, além do pâncreas e do baço, proporcionando a infiltração de lipídeos no coração e rins (Cherry & Leffler, 1984).

Neste trabalho, o objetivo dos autores foi chamar a atenção dos cuidados no campo e no armazenamento que se deve ter com a semente e o caroço de

algodão para evitar contaminações com aflatoxinas, cuja presença em níveis acima do tolerado poderá trazer problemas sérios a saúde do homem e dos animais domésticos.

Origem dos Contaminantes (Aflatoxinas e Outros) na Semente e no Caroço do Algodão no Campo e no Armazenamento

As sementes do algodão ainda no campo e no armazenamento podem ser contaminadas por microorganismos tais como os fungos Aspergillus sp., Mucor spp., Alternaria spp. entre outros e bactérias como Pseudomonas e Xantomonas que causam problemas, deteriorando as sementes, especialmente quando a umidade do ambiente e das sementes é satisfatória para o crescimento e o desenvolvimento de tais microorganismos (Cherry & Leffler 1984 e Cherry et al., 1986). A umidade da semente é fator vital para sua conservação sendo que com 14,0% a 15,0% de umidade, a semente fica conservada por somente três dias, contra 30 dias se a umidade for de 8,0% (Delouche, 1986) pois com o excesso de água as lipases são ativadas iniciando-se as reações de hidrólises dos lipídeos, liberando os ácidos graxos. No campo e no armazenamento, mesmo temporário do algodão em caroço, caso a umidade seja elevada, superior a 12% já ocorre problemas sérios no algodão, inclusive no próprio processo de beneficiamento, pois leva mais tempo para ser processado, com maior consumo de energia e ocorre a formação de carneiros, denominados pelos classificadores como algodão encarneirado (Figura 1) e novelos, que são enrodilhados de fibras que depreciam e até inviabilizam a classificação do algodão, sendo considerado um grave "defeito" da fibra (Passos, 1977).

Fig. 1. Algodão em fibra, encarneirado, com a qualidade comprometida.

Além dos problemas anteriormente colocados, a umidade excessiva no final do ciclo da cultura, quando os frutos iniciam a abertura, pode trazer outros problemas que prejudicam a fibra e também a qualidade da semente, quanto seu uso para plantio, no caso de sementes básicas e/ou fiscalizadas, quanto de caroço, a ser usada na alimentação do homem (cultivares "glandless" ou derivados da semente, após a retirada do gossipol) e animal, "in natura" para ruminantes ou produtos manufaturados, com racões, tortas, etc.

Além dos problemas causados por precipitações pluviais ocasionais próximo da colheita do algodão, a própria planta do algodoeiro é complexa, tendo crescimento indeterminado com longo período de floração e não é raro encontrar frutos já abertos e flores ao mesmo tempo na mesma planta, cada um logicamente com idades diferentes, em função dos intervalos vertical e horizontal de floração (Beltrão & Azevedo, 1993). Como é dito por Cherry & Leffler (1984) os frutos do algodoeiro, na fase final de maturação, quando já estão abertos e antes de serem colhidos, ficam sujeitos as variações do ambiente, especialmente temperatura e umidade relativa do ar e os frutos mais velhos que ficam na parte de baixo das plantas ficam mais sujeitos a elevada umidade, causada também pela própria vegetação (dossel) e assim sofrem mais e as sementes ficam mais expostas a variações que causam a deteriorização das mesmas, com o aumento de ácidos graxos livres. Além disso com a exposição a condições atmosféricas com temperaturas elevadas e excessiva umidade, um razoável número de compostos de colorações amarelada, esverdeada ou marrom-verde, incluindo terpenóides glandulares como o gossipol, flavonoides e glucosídeos flavônicos, presentes na semente normalmente, colaboram para a autodestruição das sementes, mudando a coloração das mesmas (Halloin, 1982), bem como aldeídos terpenoides não glandulares que são sintetizados nas sementes "glandless" quando a umidade é elevada (Halloin & Bell, 1979), podendo inclusive ter início a germinação das sementes ainda nos capulhos no campo, como pode ser observado na Figura 2, com o prévio processo da lipólise (Cherry & Leffler, 1984).

Fig. 2. Algodão próximo da colheita, com excesso de umidade, com as sementes nos capulhos iniciando a germinação. Sapezal, MT.

Um dos problemas sérios que reduz qualidade global do algodão, fibra e sementes, é o ataque da lagarta rosada (Pectinophora gossypiella, Saunders, 1844), inseto da ordem lepdoptera, família gelechiidae que ataca o algodoeiro promovendo a imbricação das flores formando uma roseta e nas maçãs a parede do carpelo ficam com galerias, minas ou verrugas e as fibras, de uma ou mais lojas, ficam manchadas ou destruídas e as sementes total ou parcialmente destruídas (Almeida & Silva, 1999), como pode ser visto na Figura 3, sendo que a larva pode ficar em diapausa por até 23 meses e a semente do algodoeiro é o maior veículo de disseminação desta praga, que teve origem possivelmente na Índia e chegou em São Paulo, pela primeira vez no Brasil em 1918 em sementes importadas do Egito, (Passos, 1977).

Com o dano causado pela lagarta rosada nos frutos, deixando furos, os fungos tais como *Aspergillus niger*, *Mucor spp., Alternaria spp., Rhizopus, Fusarium*, Diplodia e outros atacam os frutos e danificam as sementes e as fibras ainda mais, (Cherry Leffler, 1984, e Cherry et al., 1986), sendo que alguns deles como é o caso do *Aspergillus flavus* produz toxinas denominadas de aflatoxinas que são segundo McMeans

Fig. 3. Maçã do algodoeiro danificada pela lagarta rosada.

& Brown (1975) cancerígenas. Na Figura 4, pode ser vista parte de um fruto com a colonização de fungos no orifício deixado pela lagarta rosada. Quando as fibras são intimamente manchadas elas recebem a classificação comercial de manchadas, representadas pelos tipos 6 MAN, 6/7 MAN e 7 MAN. A sigla MAN, refere-se ao algodão manchado (Santana & Beltrão, 1999).

Fig. 4. Dano causado pelos fungos no fruto do algodão. Detalhe de um ponto de colonização do patógeno.

As aflatoxinas são compostos químicos que se formam no algodão em caroço durante o desenvolvimento das sementes e depois da abertura dos frutos do algodoeiro (ICAC Recorder, 1999), estando como foi dito anteriormente associados ao ataque da lagarta rosada e produzido pelo fungo A. flavus; sendo que o nível nas sementes não pode ultrapassar 10 mg/kg (Lee & Goldblatt, 1981), tendo vários tipos denominados de B₁, B₂, G₁ e G₂. Ciegler et al. (1981) citados por Cherry & Leffler (1984) identificaram vários tipos de aflatoxinas e suas estruturas químicas, sendo que as mais comuns são as retromencionadas cujas fórmulas estruturais podem ser vistas na Figura 5. As aflatoxinas causam necroses no fígado, infiltrações de lipídeos e outros distúrbios em vários órgãos de suínos, equíneos, bovinos e outros (Cherry & Leffler, 1984). A umidade do algodão em caroço e a umidade relativa do ar são os

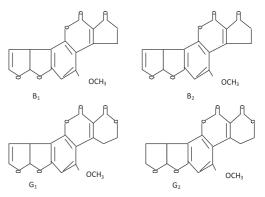


Fig. 5. Fórmulas estruturais das quatro principais aflatoxinas. Fonte: Ciegler et al. (1981) citados por Cherry & Leffler (1984).

principais fatores envolvidos no crescimento do fungo produtor das aflatoxinas, que podem produzir toxidez aguda em vários animais, incluindo aves, além dos anteriormente mencionados.

Recomendações para Evitar ou Controlar a Contaminação e Detectação da Aflatoxina

O ponto central é o controle correto das pragas do algodão, especialmente da diretamente envolvida que é a lagarta rosada, que deve ser monitorada constantemente, e se usar inseticidas recomendados, quando o nível de dano for atingido que de acordo com Santos (1999) é de 7% de maçãs atacadas, além de usar o controle cultural como destruição dos restos da cultura no final de cada safra e o plantio uniforme, por região, cultura livre de plantas daninhas, hospedeiras (vários malváceas, como o quiabeiro e a vinagreira) e outras medidas, sendo importante no seu combate a destruição dos restos culturais e rotação cultural (Gridi-Papp et al., 1992), bem como o uso racional de inseticidas, em especial os piretróides, como a deltametrina, a cipermetrina e outros (Santos, 1999). Além disto, é de suma importância a época de plantio bem definida em sincronia com o ciclo da cultivar para que a colheita, manual ou mecânica, seja feita em tempo seco, sem chuvas e com baixa umidade relativa do ar para evitar o crescimento do fungo causador da aflatoxina, pois esta substância pode contaminar até o leite de vaca alimentada com caroço de algodão e seus derivados, sendo que neste caso o caroço a ser ministrado ao gado não deve ter mais de 20 g/kg, de aflatoxina e no leite não pode ter mais de 0,5 g/kg (ICAC Recorder, 1997).

Existem cepas de A. flavus que não produzem aflatoxinas, denominadas de atoxigénicas, diferentes do ponto de vista morfológico, fisiológico e genético e podem ser usados, semeando-se nos campos de algodão sementes de trigo estéres e colonizadas por cepas atoxigénicas que são antagônicas das cepas toxígenas, e assim reduzem as populações das últimas, decrescendo o problema das aflatoxinas (ICAC Recorder, 1997). A presença de aflatoxina pode ser detectada com o uso de luz ultravioleta, sendo que o algodão contaminado apresenta uma coloração fluorescente amarelo-esverdeada característica (Ashworth & McMeans, 1966, citados por Cherry & Leffler, 1984).

Conclusões

- O algodão em caroço e caroço ou sementes de algodão podem ser atacados com diversos microorganismos, especialmente os fungos produtores de aflatoxinas.
- 2. Pode-se evitar a contaminação do algodão em caroço e sementes ou caroços de algodão controlando-se a umidade no armazenamento e no descaroçamento, além de se colher dentro das recomendações técnicas com umidade adequada e assim preservar a qualidade da fibra do algodão.
- 3. Os fungos e as bactérias, além de danificarem a semente e o caroço do algodão concorrem, também, para danificar a fibra forçando a sua classificação para tipos inferiores, quais sejam: 6MAN, 6/7MAN e 7MAN.

Referências Bibliográficas

ALMEIDA, R. P. de; SILVA, C. A. D. da. Manejo integrado de pragas do algodoeiro. In; BELTRÃO, N. E. de M. (Org.). **O agronegócio do algodão no Brasil**. Campina Grande: EMBRAPA-CNPA/EMBRAPA-CTT, 1999. p. 753-820.

BELTRÃO, N. E. de M.; AZEVEDO, D. M. P. de. **Defasagem entre as produtividades real e potencial do algodoeiro herbáceo**: limitações morfológicas, fisiológicas e ambientais. Campina Grande: EMBRAPA-CNPA, 1993. 108 p. (EMBRAPA-CNPA. Documentos, 39).

CARDOSO, E. G. Utilização de subprodutos do algodoeiro na alimentação animal. In: EMBRAPA. Centro de Pesquisa Agropecuária do Oeste (Dourados, MS).

Algodão: informações técnicas. Dourados: EMBRAPA-CPAO/EMBRAPA-CNPA, 1998. p. 255-267.

(EMBRAPA-CPAO. Circular Técnica, 7).

CHERRY, J. P.; KOHEL, R. J.; JONES, L. A.; POWEL, W.H. Food and feeding quality of cotton seed. In: MAUNEY, J. R.; STEWART, J. McD. (Ed.). **Cotton physiology**. Memphis, Tennessee: Cotton Foundation, Publisher. 1986. p. 557-595.

CHERRY, J. P.; LEFFLER, H. R. Seed. In: KOHEL, R. J.; LEWIS, C. F. (Ed.). Cotton. Madison, Wisconsin: American Society of Agronomy, 1984. p. 511-570.

COTTON: Review of the world situation. Washington: ICAC. v. 53, n. 4. March-April. 2000. 21 p.

DELOUCHE, J. C. Harvest and post-harvest factors affecting the quality of cotton planting seed and seed quality evaluation. In: MAUNEY, J. R.; STEWART, J. McD. (Ed.). Cotton physiology. Memphis, Tennessee: Cotton Foundation, 1986. p. 483-518.

GRIDI-PAPP, I. L.; FUZATTO, M. G.; SILVA, N. M. da.; FERRAZ, C. A. M.; CARVALHO, N. de; CARVALHO, L. H.; SABINO, N. P.; KONDO, J. I.; PASSOS, S. M. de G.; CHIAVEGATO, E. J.; CAMARGO, P. P. de; CAVALERI, P. A. Manual do produtor de algodão. São Paulo: Bolsa de Mercadorias & Futuros, 1992. 158 p.

HALLOIN, J. M. Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol, v. 90, p. 651-657, 1982.

HALLOIN, J. M.; BELL, A. A. Production of monglandular terpenoid aldehydes within diseased seeds and cotyledons of Gossypium hirsutum L. J. Agric. Food Chem., v. 27, p. 1407-1409, 1979.

ICAC RECORDER. Washington: ICAC, v. 15, n. 2, jun. 1997.

LEE, L. S.; GOLDBLATT, L. A. Contributions of Walter A. Pons, Jr., to development of methodology for mycotoxins. J. am. Oil chem. Soc., v. 58, p. 928a -930a, 1981.

LUSAS, E. W.; JIVIDEN, G. M. Glandless cottonseed: a review first 25 years of processing and utilization research. Jaocs, v. 64, n. 6. p. 839-986, 1987.

MARQUIÉ, C.; HÉQUET, E. O algodoeiro sem gossipol: Utilização do caroço de algodão na alimentação. Montepellier: CIRAD, 1994. 13 p.

McMEANS, J. L.; BROWN, C. M. Aflatoxins in cottonseed as affected by the pink bollworm. Crop Science, v. 15. p.865-866, 1975.

PASSOS, S. M. de G. Algodão. Campinas: Instituto Campineiro de Ensino Agrícola, 1977. 424 p.

SANTANA, J. C. F. de; BELTRÃO, N. E. de M. Padronização e classificação do algodão no Brasil. Campina Grande: EMBRAPA-CNPA, 1999. 27 p. (EMBRAPA-CNPA. Circular Técnica, 32)

SANTOS, W. J. dos. Monitoramento e controle das pragas do algodoeiro. In: CIA, E.; FREIRE, E. C.; SANTOS, J. W. dos. (Ed.). Cultura do algodoeiro. Piracicaba: POTAFOS, 1999. p. 134-179.

TAMCOT GCNH. A glandless, multi-adversity resistant cotton variety. Texas: The Texas A. & M University System, 1988. não paginado.

TOLL VERA, J. R. La semilla de algodon en la alimentacion de ruminantes. Avance Agroindustrial, Tucuman, n. 68, p. 33-35, 1997.

Circular Técnica, 38

Exemplares desta edição podem ser adquiridos na: Embrapa Algodão

Rua Osvaldo Cruz, 1143 Centenário, CP 174 58107-720 Campina Grande, PB Fone: (83) 3315 4300 Fax: (83) 3315 4367

e-mail: sac@cnpa.embrapa.br

1ª Edição Tiragem: 2000

Ministério da Agricultura, Pecuária e Abastecimento

Comitê de **Publicacões**

Presidente: Alderi Emídio de Araúio Secretária Executiva: Nivia Marta Soares Gomes Membros: Eleusio Curvelo Freire

Francisco de Sousa Ramalho José da Cunha Medeiros José Mendes de Araúio José Wellingthon dos Santos Lúcia Helena Avelino Araújo Malaguias da Silva Amorim Neto

Expedientes: Supervisor Editorial: Nivia Marta Soares Gomes Revisão de Texto: Nisia Luciano Leão

Tratamento das ilustrações: Oriel Santana Barbosa Editoração Eletrônica: Oriel Santana Barbosa