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Cable-Based Robotic Crane (CBRC): Design and
Implementation of Overhead Traveling Cranes

Based on Variable Radius Drums
Lorenzo Scalera, Paolo Gallina, Stefano Seriani, and Alessandro Gasparetto

Abstract—In this paper, we present a new family of overhead
traveling cranes based on variable radius drums (VRDs), called
cable-based robotic cranes (CBRCs). A VRD is characterized by
the variation of the spool radius along its profile. This kind of device
is used, in this context, for the development of a cable-robot, which
can support and move a load through a planar working area with
just two degrees of freedom. First we present the kinematic anal-
ysis and the synthesis of the geometry of a VRD profile. Then, the
schema of a bidimensional horizontal moving mechanism, based
on the VRD theory, and an experimental prototype of a three-
dimensional CBRC are presented. The features of this wire-based
overhead crane and an analysis of cables tensions are discussed. Fi-
nally, the performance of this mechanism is evaluated, demonstrat-
ing a deviation between the end-effector and the nominal planar
surface of less than 1% throughout the whole working area.

Index Terms—Cable robot, cable-based robotic crane (CBRC),
overhead traveling crane, profile synthesis, variable radius drum
(VRD).

I. INTRODUCTION

CABLE robots are a special class of manipulators in
which flexible cables, rather than rigid links, are used

to actuate the end-effector. The main advantages of this class
of robot over conventional ones are that cable-based robots
can have a larger workspace, they can easily be made to be
reconfigurable and modular [1], they are lighter than their
rigid-links counterparts, they can be easily transported, and
their end-effector can achieve high accelerations and velocities.
For these reasons, during recent years, cable-driven systems
have received attention and different kind or cable robots have
been investigated. Applications of cable robots span from
heavy load and large-scale manipulation [2]–[5], building tasks
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[6], [7], to rescue operations [8] and upper limbs rehabilitation
[9], [10]. Cables have also been employed in surgical robots
to reduce surgeon fatigue and facilitate supervised telesurgery
[11]–[14]. Cable-suspended robots are also used to manoeuvre
aerial camera systems (sky-cams or spider-cams) over large
areas, such as a stadium [15], [16]. Several cable-suspended
parallel robots have been studied and implemented in the recent
years. Examples can be found in [17]–[19].

Disadvantages of a cable-based robotic system include re-
dundancy (as cables can carry load in tension but not in com-
pression) and interference between cables and environment. For
these reasons, several research works have been conducted over
the years, especially for control purposes [20]–[23], dynamic
modeling, and trajectory tracking [24].

Since cables are used in power transmissions, drive systems,
and load handling, drums and pulleys have been used in different
kind of applications. A drum, or spool, consists of a spindle
with flanges, around which a cable is wrapped. The cylindrical
surface of an ordinary drum has a constant radius [25]. A typical
device, in which an ordinary drum is employed, is a winch [26].
It essentially consists of a movable drum around which a cable
is wrapped, so that the rotation of the drum produces a drawing
force at the end of the cable. Winches are usually equipped with
a ratchet wheel and a pawl to prevent slippage of the load [27].

Examples of research studies in cable-drum systems can be
found in [28], where a cable mechanism is used as a linear
motion sensor, in [29], where a study on the prediction of slip
in a cable-drum system is proposed, and in [25], where the
transmission backlash of a precise cable drive system is analyzed
and experimentally measured.

While traditionally drums and winches are characterized by
a constant radius, in this paper, we propose the use of a variable
radius drum (VRD), a mechanical device consisting of a drum
with a radius that changes along its profile. As the VRD is rotated
by an angle α, a correspondent length of cable is released or
wound. This length can be expressed by a nonlinear function
g = g(α), which depends on the VRD profile and on the angular
position. With respect to constant radius drums with radius r,
where the length of the released cable is given by the linear
function g = α r, in a VRD, it is possible to synthesize a specific
profile shape in order to obtain the desired relationship g =
g(α). Furthermore, in a VRD, a specific profile shape can be
defined in order to modify the value of the torque generated by
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the cable on the VRD itself [30]. The concept of the VRD has
been introduced in [31].

This paper presents a new family of overhead traveling cranes
based on VRDs. These cable-driven mechanisms are capable of
supporting and moving a load on a planar working area, by using
just two degrees-of-freedom (DOFs).

Section II briefly summarizes related works that can be found
in the literature, Section III gives a general description of a cable-
based robotic crane (CBRC), Section IV presents the direct
kinematic analysis as well as the synthesis of a VRD, whereas
in Section V, a bidimensional horizontal moving mechanism,
based on a VRD, is proposed. Section VI reports the inverse
kinematic and dynamics of the CBRC, whereas Section VII, an
analysis of cable tensions. The experimental prototype of the
three-dimensional (3-D) CBRC is presented in Section VIII,
whereas in Section IX, the experimental results and the perfor-
mance of this mechanism are presented. Finally, Section X gives
the conclusions of this work.

II. RELATED WORKS

Several examples of the VRD can be found in the literature.
Endo et al. proposed a new weight compensation mechanism
with a noncircular pulley and a spring [32]. Kilic et al. used
a wrapping cams mechanism in the synthesis of nonlinear tor-
sional spring [33], whereas a similar methodology has been used
by Schmit and Okada to develop a nonlinear rotational spring
[34]. Furthermore, a nonconstant radius pulley for antagonistic
springs was proposed by Kim and Deshpande [35]. Shin et al.
developed a methodology to synthesize variable radius pulleys
to improve joint torque capacity in pneumatic artificial mus-
cles, used as actuators for stanford human-friendly robot [36].
An application of the VRD in locomotion is given by Kljuno
et al., who developed RoboCat, a quadruped cable-driven robot
[37]. From a kinematic point of view, the synthesis of a VRD
was approached by Gallina on a particular case of a rocker-belt
mechanism [38].

Concerning traditionally overhead cranes, the main research
area is, nowadays, the dynamical modeling and control, in order
to eliminate swing effects and ensure system stability. Examples
can be found in [4] and [39]–[42].

With respect to traditionally overhead cranes, CBRCs do not
require rails or linear guides along the whole span of the system
since they are essentially composed of a series of pulleys, drums,
and cables. For this reason, their frame is lighter and can be
easily disassembled. Furthermore, they are modular and their
accuracy only depends on the positioning of the pulleys supports
in the set-up phase. Cartesian robots are characterized by a high
stiffness and are employed in the handling of small workspaces,
where they are extremely accurate for high precision pick-and-
place tasks. On the contrary, our device is meant for the handling
of large amount of materials in very large workspaces, where
the weight of the structure can be a problem. One possible
application could be the loading and unloading of materials and
supplies for general naval applications, where the workspace is
large, the infrastructures have to be light and accuracy is much
less demanding. Furthermore, the proposed mechanism could

Fig. 1. Graphical representation of a cable-based robotic crane.

also be deployed as a two-dimensional aerial overhear conveyor
for industrial or even mining application, where vertical motion
is not required. On the other hand, it has to be noticed that in the
cases in which a movement of the load in the vertical direction
is needed (such as for pick-and-place tasks), a winch could be
mounted on the end-effector of the robotic crane.

To the best of the authors’ knowledge, no examples of over-
head traveling cranes based on cables and VRDs can be found
in the previous literature.

III. CBRC DESCRIPTION

In this section the description of a CBRC is presented. A
graphic representation of this 3-D overhead traveling crane
based on VRDs can be seen in Fig. 1.

The experimental prototype is composed of three horizontal
moving cable mechanisms (HMCMs) identical in size that allow
the motion of a load within a planar working area. The two upper
mechanisms, identified by VRDs 1 and 2, are positioned at the
same vertical height in a parallel position. The end-effector of
each of these two upper systems is then connected to one edge
of the frame of the third mechanism. Thereby, the lower frame,
identified by VRD 3, can be moved horizontally through the
y-axis. HMCMs 1 and 2 are connected by means of a trans-
mission shaft, which ensures that they have the same angular
position α. The third HMCM is located on the lower frame and
enables the motion of the load through the x-axis. In this way,
the two DOFs CBRC allows the motion of a load through a
rectangular working area.

The CBRC prototype is actuated by two motors: the first is
directly connected to the upper transmission shaft and ensures
the motion through the y-axis, whereas the second, which en-
sures the actuation along the x-axis, is located on the shifting
frame and transmits the motion to VRD 3 by means of two gear
wheels.

IV. KINEMATIC ANALYSIS AND SYNTHESIS

In this section, the kinematic analysis of a VRD for each
HMCM is briefly summarized. In Fig. 2, a graphical representa-
tion of the VRD is reported. On the left, the VRD is constrained
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Fig. 2. Kinematic analysis of a variable radius drum.

in point O by means of a revolute joint, whereas on the right, an
idle pulley is fixed in point P b with another joint of the same
type. The cable is fixed at one end of the VRD in point F , it
is wound around the drum profile and, initially, it is separated
from the VRD in the tangent point P t . We define A as this
tangent point fixed at the VRD, at initial conditions, as shown
in Fig. 2(a). The cable is then wrapped around the idle pulley
and it is tangent to its surface in points E and C0 . On the VRD,
a marker has been placed in order to easily identify the rotation
of the drum with respect to the reference frame, given by angle
α. We assume α positive in the clockwise direction. In order to
introduce the parameters that characterize the kinematic analy-
sis of the VRD, we consider two different configurations of the
drum: the case with α = 0 and the one with α > 0, reported,
respectively, in Fig. 2(a) and (b).

1) Case α = 0: In this configuration, we assume that the
system is in equilibrium. A proper torque acting on the VRD
along the counter-clockwise direction is present as well as a
force that pulls the cable and balance the torque action.

When α = 0, we define l0 as the total length of free cable,
not wound around the drum, from point P 0 to the tangent point
A. The length of l0 is given by

l0 = ||AC0 || + ̂C0E + ||EP 0 ||. (1)

With the symbol ∗̂ we indicate arcs as well as curved segments
on the VRD.

2) Case α > 0: In this configuration, the drum has rotated
in the clockwise direction of an angle α > 0. A segment of
cable length ̂AP t is wound around the VRD. The length of
the segment PE has now changed with respect to the previous
configuration: in particular, the length of PE is a function of α
and of the shape of the VRD. We obtain

||P tC|| + ̂CE + ||EP || = l0 − ̂AP t . (2)

Fig. 3. Variable radius drum parameters in case of point-like idle pulley and
neglected cable thickness.

The length of cable wound by the VRD during its rotation is a
function of angular position. We define this function g(α)

g(α) := ||EP 0 || − ||EP ||. (3)

By replacing (1) and (2) into (3), we obtain

g(α) = (||P tC|| − ||AC0 ||) + (̂CE − ̂C0E) + ̂AP t . (4)

Three addends contribute in (4): the first is the difference be-
tween the length of the cable tangent to the VRD and the idle
pulley in case α = 0 and α > 0, the second is the difference be-
tween arcs on the idle pulley when α = 0 and α > 0, the third
is the curved profile of the VRD on which the cable is wound.

A. Direct Kinematic Analysis

The direct kinematic analysis aims to calculate the relation-
ship between the function of wound cable g(α) and the angular
position of the VRD α, by knowing the geometry of the VRD
profile. In order to do so, we define φ = φ(α) as the angle
of the tangent point Pt with respect to the horizontal line and
considered positive in the clockwise direction (see Fig. 3). We
express the profile of the VRD geometry in polar coordinates,
as ρ = ρ(βr ). We assume the angle βr positive in the counter-
clockwise direction with respect to the frame fixed to the VRD
(relative reference frame). Then, the direct kinematic analysis
can be developed by solving the integral of the VRD curve:

g(α) = (||P tC|| − ||AC0 ||) + (̂CE − ̂C0E)

+
∫ α−φ(α)

−φ(0))

√

ρ2 + (dρ/dβr )2 dβr . (5)

In (5), both the addends (||P tC|| − ||AC0 ||) and (̂CE −
̂C0E) are nonlinear functions of the angular position α. Their
calculation depends on the function ρ(βr ) and it has to be
analyzed case by case.
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B. Variable Radius Drum Synthesis

In Fig. 3, it can be seen that as the VDR rotates in the clock-
wise direction, the idle pulley is seen, by an observer on the
drum, rotating in the counter-clockwise direction of the same
angle. The unit vectors x and y define the reference frame of
the VRD, whereas the unit vectors X and Y define the inertial
reference frame, with respect to the VRD, fixed to the idle pul-
ley center P b . In this initial approach to the problem, the idle
pulley is assumed to be point-like, with a radius equal to zero.
In this configuration, we define cd as the distance between the
idle pulley and the center of the VRD, lt as the distance between
tangent point P t and the idle pulley center, and γ as the angle
between the segment OP b and the minimum distance between
the cable and the center O of the VRD. The aim of the synthesis
is to calculate the profile of the VRD by knowing the wound
cable length function g(α).

In local coordinates, the tangent point P t can be written as
a sum of two vectors: the first from O and P b , {cd 0}T , the
second from P b and P t , {lt 0}T :

P t = T (α)
{

cd

0

}

+ T (α)T (−γ)T
(

−π

2

)

{

lt
0

}

(6)

where the operator T (x) is the rotation matrix between two
reference frames rotated by an angle x.

The whole mathematical derivations to obtain the VRD pro-
file synthesis are reported in Appendix A. Finally, the geometry
of the VRD profile, in Cartesian coordinates, is given by the
following equation [(31) in Appendix A]:

cd sin(−γ) +
(

1 − dγ

dα

)

lt = 0 (7)

where lt is equal to

lt =
cdsinγ

1 +
d 2 g

d α 2
√

c2
d −( d g

d α )2

(8)

and γ can be written as

γ = cos−1
(

1
cd

dg

dα

)

. (9)

The necessary conditions for the existence of a solution for
the VRD synthesis problem are the continuity of g(α) and its
derivative. Furthermore, from (8) it has to be noticed that it
is necessary that dg/dα < cd . This fact suggests that the idle
pulley has to be located at a proper distance from the VRD.

In Appendix B, the VRD synthesis is reported by considering
the radius of the idle pulley and the cable thickness.

V. HORIZONTAL MOVING CABLE MECHANISM

Before presenting the prototype of a CBRC, which will be
illustrated in Section IV, we propose the schema of a bidi-
mensional HMCM based on a VRD, by applying the theory
developed in Section II.

An HMCM (see Fig. 4), which is a module of the crane, is
capable of moving a load along a linear path, parallel to the
x-axis. This cable-based device can be developed by having

Fig. 4. Graphical representation of a horizontal moving cable mechanism
based on a variable radius pulley.

recourse just to pulling cables, revolute joints, a regular drum,
and a VRD. It has to be noted that no prismatic joints are
required.

Conventional planar cable-based robots or mechanisms,
which act in a vertical plane and are subjected to gravity force,
are, in general, two DOFs systems. The most common config-
uration of this kind of mechanisms is in the form of a triangle,
and a load is suspended through two cables between the related
motor drums. The two actuators need to be correctly controlled,
if, for example, the load has to be carried through a linear path
and a trajectory parallel to the ground has to be followed. Hence,
the path planning of such systems acts on a two DOFs system.
Here, on the contrary, we present a mechanism able to reach the
same target using just one DOF.

The HMCM, proposed in Fig. 4, is composed of a VRD, a
constant radius pulley (whose radius is r1 and it is represented
in grey), two idle pulleys (that revolute around points P b1 and
P b2 and have each one radius equal to r), and the load. The
latter, represented by a little grey rectangle, is assumed to have
mass m at point L, where m is the third HMCM load for
the first two modules whereas the load of the end-effector for
the third HMCM. The mechanism is located in the vertical
plane and, therefore, gravity force is acting on the mass, which
is connected by two cables at point L. In this context, we assume
cable thickness to be null. The left cable goes around the idle
pulley, constrained in P b1 , and it is then wound around the
variable radius pulley. On the contrary, the right cable goes
around the idle pulley, fixed in P b2 , and then it is wound around
the constant radius pulley. It has to be noticed that the VRD
and the CRD are connected to the same shaft and, therefore,
they have the same angular position α. In Fig. 4, cd indicates
the distance between the centers of the lateral pulleys and the
center of the variable and constant radius drums, whereas dL is
the distance between the horizontal linear path of the load and
the x-axis. Finally, lL indicates the horizontal distance between
point L of the load and the vertical segment intersecting the
center of the right idle pulley P b2 . The angular position α of
the VRD is considered positive in the clockwise direction and
it is assumed to be null when the load is on the right.
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In order to apply the theory developed in Section II, we con-
sider the horizontal moving mechanism in its initial position
(α = 0, lL = 0). In this configuration, the point L of the load
has coordinates {cd ,−dL}T . When the VRD/CRD rotates in
the clockwise direction, a segment of the left cable is wound
around the variable radius profile whereas, simultaneously, the
right cable is released.

By indicating with D1 and D2 the tangency points on the
idle pulleys, the synthesis of the VRD profile can be obtained
by the following relationship:

g(α) = ̂D1(0)D1(α) + (||L(0) − D1(0)|| − ||L(α) − D1(α)||)
(10)

where

||L(0) − D1(0)|| =
√

||L(0) − P b ||2 − r2

=
√

(2cd)2 + d2
L − r2 (11)

and

||L(α) − D1(α)|| =
√

(2cd − ll(α))2 + d2
L − r2 . (12)

The function lL (α) expresses the correlation between the VRD
angular position and the horizontal translation of the load L. It
can be written as follows:

lL (α) =
√

||L(α) − P b ||2 − d2
L

=
√

||L(α) − D2(α)||2 + r2 − d2
L (13)

where ||L(α) − D2(α)|| can be expressed as

||L(α) − D2(α)|| = ||L(0) − D2(0)|| + r1α + ̂D2(0)D2(α)

=
√

d2
L − r2 + r1α − ̂D2(0)D2(α). (14)

For the sake of simplicity, the arcs ̂D1(0)D1(α) as well as
̂D2(0)D2(α) can be considered equal to zero in the numeric

implementation. Finally, the analytical function for the synthesis
of the VRD profile can be obtained by backward replacing (14),
(13), (12), and (11) into (10).

The 3-D model of the VRD obtained by implementing the
analytical profile in SolidWorks is reported in Fig. 9.

VI. INVERSE KINEMATIC AND DYNAMICS

The inverse kinematic analysis and the reduced inertia of
the CBRC are here presented. With reference to Fig. 5, the
function lL (α) can be expressed as lL (α) = cd − x, where
x is the position of the end-effector in the Cartesian space.
With simple trigonometric considerations and by knowing that
LP b2 =

√

lL
2 + dL

2 , it is possible to find the values of angles

Fig. 5. Inverse kinematic analysis of the HMCM.

ε1 , ε2 , and ε3 as follows:

ε1 = atan

(

lL
dL

)

ε2 =
π

2
− asin

(

r

LP b2

)

− ε1

ε3 =
π

2
− asin

(

r

dL

)

− ε2 . (15)

For a given value of the free coordinate α, we can easily calculate
the length of an unrolled segment of cable as follows:

α r1 = ||L(α) − D2(α)|| + ̂D2(α)D2(0) − ||L(0) − D2(0)||

=
√

lL
2 + dL

2 − r2 + ε3 r −
√

dL
2 − r2 . (16)

The equation of inverse kinematic α = f̃(x) is straightforward:

α =
1
r

(
√

lL
2 + dL

2 − r2 −
√

dL
2 − r2 + ε3 r

)

. (17)

As far as dynamics is conceived, the reduced inertia I related
to the shaft of the VRD can be calculated as follows:

I = IVRD + IP τα,θ2
2 + IP τα,θ1

2 + mτα,x
2 (18)

where IVRD is the inertia of the VRD, IP the inertia of the idle
pulley, and m the mass of the load. Furthermore, we indicate
with τα,θ2 , τα,θ1 , and τα,x the transmission ratios between the
VRD shaft (which rotates of an angle α) and the right pulley
(θ2), left one (θ1), and the end-effector (x), respectively. In
particular, the contributions of the different transmission ratios
can be written as follows:

τα,θ2 =
θ̇2

α̇
=

r1

r

τα,x =
ẋ

α̇
=

d f̃−1(α)
dα

τα,θ1 =
θ̇1

α̇
. (19)

By considering that

θ2 =
r1

r
α =

r1

r
f̃(x) (20)
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Fig. 6. Graphical representation of cable tensions in the HMCM.

for symmetry, we can easily obtain the expression of θ1 in
function of angle α:

θ1 = −r1

r
f̃(−x) = −r1

r
f̃(−f̃−1(α)) (21)

where the direct kinematic equation x = f̃−1(α) has been taken
into account.

Finally, by calculating the derivative function with respect to
α, the expression of the transmission ratio between the VRD
and the idle pulley 1 is obtained:

τα,θ1 =
θ̇1

α̇
=

r1

r

f̃ ′(−x)
f̃ ′(x)

=
r1

r

f̃ ′(−f̃−1(α))
f̃ ′(f̃−1(α))

. (22)

VII. CABLE TENSION ANALYSIS

In this section, we present an analysis of tensions in the
cables of the CBRC. For the sake of simplicity, we consider
the bidimensional horizontal moving mechanism presented in
Section III. In Fig. 6, a graphical representation of cable ten-
sions T 1 and T 2 in the robotic crane is shown. L is the weight
force, whereas θ1 and θ2 are the angles between the cables and
the vertical plane. It has to be noticed that, in this analysis, the
idle pulleys as well as the VRD and the CRD are considered to
be point-like.

By solving the horizontal and vertical equilibrium equations
system, the two tensions can be easily obtained:

T 2 =
L

sin(θ2)
cos(θ1 )
sin(θ1 ) + cos(θ2)

T 1 = T 2
sin(θ2)
sin(θ1)

. (23)

In order to make the examination nondependent from distance
dL and from interaxle spacing cd , we introduce the parameter d,
defined as d := dL/2 cd . Furthermore, the tensions T 1 and T 2
are divided by the weight force mg, whereas the x-coordinate
by the distance 2 cd .

In Fig. 7, the trend of tension T 1 over the x-axis, for differ-
ent values of the parameter d, is reported. It has to be noticed
that only tension T 1 has been reported, since the two tensions

Fig. 7. Tension T 1 over the x-axis, for different values of parameter d.

Fig. 8. Maximum tension T 1 and its position on the x-axis with respect to d.

are symmetric with respect to the central vertical axis of the
mechanism, corresponding to a value of x = 0.5.

In Fig. 8, the maximum tension T 1 and its position on the
x-axis with respect to parameter d are reported. As it can be
seen, for d = 0.3, a discontinuity point in the position of the
x-coordinate is present and, for values of d greater than this
value, the maximum tension in the cable is equal to the weight
force. This examination can be useful in the first stage of the
design of a CBRC, when the vertical distance of the end-effector
with respect to the pulleys horizontal height has to be chosen.
Additionally, it has to be noticed that the torque required to
maintain the load in an equilibrium point is null. This is because
the potential energy is constant since the load moves along a
horizontal path.

VIII. PROTOTYPE OF THE CABLE-BASED ROBOTIC CRANE

A general overview of the experimental prototype is reported
in Fig. 9. Before describing the features of the experimental
prototype, it is necessary to underline that the fabrication of
a VRD is a critical aspect, since its shape cannot be easily
obtained by means of traditional manufacturing processes. In
order to obtain a working prototype, we have used 3-D print-
ing fused deposition modeling technology, which allows the
creation of free-form shapes by means of a 3-D modeling soft-
ware. Not only the VRDs, but also the CRDs, the idle pulleys,
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Fig. 9. Experimental prototype of the cable-based robotic crane. On the top,
a general overview of the experimental set-up can be seen. On the bottom-right
corner, the actuator system, the gear wheels, and VRD 3 are shown, whereas on
the bottom-left corner, the 3-D model of the VRD is reported.

and the bearing supports have been produced with 3-D print-
ing technology in PLA plastic. The upper and lower frames of
the CBRC have been realized with aluminum profile shapes,
whereas the transmission shaft has been built in carbon. With
reference to Fig. 4, the geometrical parameters for each of the
three single HMCM that composes the experimental CBRC are
cd = 500 mm, dL = 500 mm, r = 15 mm, and r1 = 10 mm. In
this prototype, a load with a mass equal to m = 0.550 kg has
been chosen. As actuators, we used two 12 V powered NEMA
17 stepper motors, which have been chosen for the compact
shape, lightweight, and output torque properties. The motors
are driven by two L293D drivers directly controlled by an Ar-
duinoUNO rev.3 microcontroller board, based on the ATmega
328P.

In order to measure the cable tensions, we developed a proper
measurement system, reported in Fig. 11. It consists of three
3-D printed idle pulleys and a Phidgets microload cell that allow
to measure the cable tension in the vertical direction. The load
cell has been calibrated and the data acquired by means of a
SparkFun OpenScale board.

As it can be noticed from the figures and the graphic rep-
resentations, the VRDs and the constant radius drums are not

planar, but they are in the form of a helical cone and a cylin-
der, respectively. Except when the spiral angle is less than 360º,
purely planar VRDs and CRDs are impossible to build. This
fact introduces an error with respect to the mathematical theory
developed in Sections III and IV, which is inherent to purely
planar mechanisms. As it can be seen in Fig. 9, the idle pulleys
and the drums are not coplanar. In fact, as the bearings supports
(printed in green plastic) for both idle pulleys and drums shafts
are mounted on the same plane, a small offset between the tan-
gent point of the cable on the drums and the tangent point of
the cable on the pulleys is present. This deviation produces an
error source with respect to the nominal behavior of the mecha-
nism but, for the sake of simplicity, it has been neglected in this
context.

Finally, the most important error sources that affect the CBRC
can be summarized in the following list.

1) manufacturing errors;
2) mathematical approximation in the VRD synthe-

sis [see (14), namely, ̂D1(0)D1(α) � 0 as well as
̂D2(0)D2(α) � 0];

3) nonplanarity of the idle pulleys and drums;
4) geometrical errors;
5) misalignment of the pulleys and drums axis;
6) cables elongation and elasticity [4], [12], [43].

Cables elongation Δx with respect to the nominal length
x0 can be calculated with the following equation:

Δx =
T (x)
AE

x0 (24)

where T (x) is the cable tension, A is the cross-sectional
area of the cable, whereas E is Young’s modulus. In the
plastic cable employed in our prototype, EA � 13 kN .
In particular, with respect to Fig. 6, the accuracy errors Λx

and Λy in the x- and y-directions, due the cable elasticity
and relative to the payload, can be evaluated as follows:

Λx =
|xE − xL |

mg
Λy =

|yE − yL |
mg

(25)

where (xL , yL ) and (xE , yE ) are the end-effector coordi-
nates in nominal position and the ones affected by cable
elongations, calculated with (23) and (24). Fig. 10 reports
the trend of these errors along the x-axis.

7) scale errors.
The scale error ex for a single HMCM (see Fig. 6) affects
the measure on the end-effector position along the x-axis,
resulting in the following error:

ex =
(K2

1 − 1)l21 (α) − (K2
2 − 1)l22 (α)

2L2 (26)

where K1 and K2 are the scale factors on idle pulleys 1
and 2, respectively, l1(α) and l2(α) are the length of the
free-cables 1 and 2 in function of the free-coordinate α,
and L = 2 cd .

IX. EXPERIMENTAL RESULTS

The performance of the CBRC here presented can be eval-
uated by measuring the deviation of the end-effector from a
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Fig. 10. Accuracy errors Λx and Λy , relative to the payload, over the x-axis
(a value of d = 0.5 has been chosen).

Fig. 11. Cable tension measurement system.

nominal planar surface. In order to do so, a grid has been marked
out on the working area of the overhead traveling crane and the
height of the load has been measured, under static conditions,
by means of a vertical calliper through the surface in both the x-
and y-directions. On the working area, a sampling interval has
been chosen of Δx = 50 mm and Δy = 50 mm starting from
(x = 0, y = 0) till (x = 700 mm, y = 700 mm).

In Fig. 12, the experimental results are shown. The red dots
indicate the measure points, whereas the blue planar surface
is the nominal plane. As it can be seen, the maximum devia-
tion from the theoretic path is actually really small and equal
to 5.8 mm. At this value, it corresponds a maximum relative
error of 0.83% to the total length of the path in one direction
(700 mm). It can be appreciable how the relative error is very
small and lower than 1% throughout the whole working area.
These results show that the experimental prototype, even in this
early stages of development, can achieve its task with acceptable
accuracy and precision. Moreover, the offset of the drums does
not produce a worrying effect on the performance of the global
mechanism. The deviation error could be further reduced by

Fig. 12. Absolute experimental error with reference to nominal planar surface.

Fig. 13. Absolute experimental error in the x-axis.

Fig. 14. Absolute experimental error in the y-axis.

using more accurate manufacturing technologies for the VRD
and the pulleys, with respect to 3-D printing technique, e.g.,
milling machine manufacturing.

Furthermore, the errors along the x- and y-axis have been
evaluated in order to provide the positional accuracy of the up-
per and lower HMCMs separately. In particular, errors in the
x-direction have been evaluated by fixing the upper HMCMs
and moving only the lower HMCM. In the same manner, y
errors refer to the center of the frame of the lower HMCM, when
only the two upper mechanisms are activated. As we have done
for the evaluation of vertical accuracy, measures in the x- and
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TABLE I
STATISTICAL ANALYSIS OF ABSOLUTE ERRORS [%]

Axis Max Mean St. Dev. p-value (K.–S. test)

x 0.4254 0.1352 0.0938 <0.05
y 0.6880 0.1895 0.1626 <0.05
z 0.8326 1.6858 1.1992 <0.05

Fig. 15. Tension T1 over the x-axis, comparison between theoretical and
experimental data (d = 0.5).

TABLE II
EXPERIMENTAL CABLE TENSION ERRORS IN FUNCTION OF x POSITION WITH

RESPECT TO THEORETICAL DATA (d = 0.5)

x-coord. [mm] Max Mean St. Dev.

150 0.0556 0.0336 0.0181
250 0.0427 0.0237 0.0173
350 0.0402 0.0237 0.0172
450 0.0421 0.0231 0.0183
550 0.0415 0.0189 0.0191
650 0.0334 0.0159 0.0131
750 0.0224 0.0130 0.0058
850 0.0268 0.0130 0.0095

y-directions have been acquired under static conditions. In fact,
measurements have been taken after the dynamic oscillations
became negligible. In Figs. 13 and 14, the absolute experimen-
tal errors in the x- and y-directions, respectively, are reported.
Table I summarizes the statistical analysis of the absolute errors
in the three directions. As it can be seen, a Kolmogorov–Smirnov
test has been applied to the errors in order to verify the normal
distribution of data.

Finally, the cable tensions of the presented prototype have
been measured in order to compare them with those previously
computed in Section VII (case d = 0.5 in Fig. 7). The results are
reported in Fig. 15. For each point, six different measures have
been acquired and the statistical analysis of the data is reported
in Table II. In particular, the results have been divided by mg,
where m is the mass of the load used in the measures, in order to
compare them with the theoretical data. As it can be seen from
Fig. 15, a good agreement between the theoretical curve and the
experimental results can be appreciated.

X. CONCLUSION

In this paper, a new family of overhead traveling cranes, based
on variable drums and named CBRC, was presented. The direct
kinematic analysis and the synthesis of the geometry of a VRD
were proposed. The VRD theory was applied first on a bidimen-
sional horizontal moving mechanism and then to a 3-D overhead
crane. An experimental prototype of a CBRC, produced using
3-D printing technology, was presented and an analysis of ten-
sions in cables was provided. Finally, the performance of this
mechanism was evaluated, and a deviation of the end-effector
from the nominal position of less than 1%, throughout the whole
working area in the x-, y-, and z-directions, was found. Further-
more, the cable tensions have been measured and compared with
the theoretical values.

The presented prototype of the CBRC highlights the advan-
tages of using VRDs with respect to traditional CDRs, the first
and foremost being the simplicity in the required actuation sys-
tem. In fact, it is well known that one would need several CRDs
with a coupled actuation system to drive them in a synchronous
manner in order to make the end-effector moving along a linear
path on a planar surface. On the other hand, the VRD requires
only to compensate the variation of the radius, in order to pro-
duce a demanded speed or torque output. Moreover, the CBRC
here described is characterized by a lighter weight with respect
to traditional overhead traveling cranes, it is reconfigurable and
modular. It has to be noticed that in this preliminary proto-
type, oscillation and vibration effects might occur during the
end-effector motion. Even if this problem raises also in tradi-
tional overhead traveling cranes, in the presented experimental
system, the cables flexibility as well as the pendulum phenom-
ena might introduce negative issues during the movement of
the load. From a practical perspective, where stiffness might
be required by several applications, this aspect needs to be fur-
ther investigated, e.g., by implementing antiswing as well as
vibration-suppression control strategies [23]. Furthermore, the
maximum speed of the system depends on the size of the cables
and their tensions, as well as its acceleration is limited by the
cables stability, since they support traction but no compression.
Such problems have been addressed in other cable robots, where
gravity forces are involved [44].

This research study has reached remarkable results in the ap-
plication of VRDs to cable-based overhead cranes. Nevertheless,
improvements can be done in the manufacturing of the complex
shapes of VRDs profiles. Furthermore, a complete sensitivity
analysis of CBRC kinematics would be useful to evaluate po-
tential issues before providing interesting real applications. In
the future, we plan to further investigate cable-driven cranes
based on VRDs. In particular, the safety of the system in the
case of cable failure [45] can be analyzed and the elongation of
the cables [12] can be taken into account.

APPENDIX A
MATHEMATICAL DERIVATIONS OF THE VRD SYNTHESIS

In this appendix, the mathematical derivations of the VRD
profile synthesis are reported.
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For the further calculations, it is to be noticed that

dT (x)
dx

= T
(

x +
π

2

)

. (27)

In particular, by differentiating (6) with respect to angle α, we
can obtain

dP t

dα
=

dT (α)
dα

{

cd

0

}

+
dT (α)

dα
T (−γ)T

(

−π

2

)

{

lt
0

}

−dγ

dα
(α)

dT (−γ)
d(−γ)

T (α)T
(

−π

2

)

{

lt
0

}

= T
(

α +
π

2

)

{

cd

0

}

+ T (α)T (−γ)
(

1 − dγ

dα

) {

lt
0

}

.

(28)

The unit vector normal to the VRD profile in tangent point P t

is

n = T (α)T (−γ)
{

1
0

}

. (29)

Since dP t/dα points at any time along the tangent line P tP b ,
it is normal to unit vector n. This orthogonality relationship can
be written as

nT dP t

dα
= 0. (30)

By substituting (28) and (29) into (30) and by using the property
of orthogonal matrices T T T = I , it follows

{

1 0
}

T T (−γ)T
(

pi

2

){

cd

0

}

+
(

1 − dγ

dα

)

{

1 0
}

{

lt
0

}

= 0

cd sin(−γ) +
(

1 − dγ

dα

)

lt = 0. (31)

The relationship between the lever arm la , the unrolled cable
length, and the VRD rotation angle α is la = dg/dα. In partic-
ular, from Fig. 3, it can be easily seen that cdcos(γ) = la . By
combining the two previous equations, we obtain cdcos(γ) =
dg/dα. At this stage, we can differentiate the previous relation-
ship and, by considering that cd sin(γ) =

√

c2
d + l2a , we obtain

dγ

dα
= −

d2 g
dα2

√

c2
d −

(

dg
dα

)2
. (32)

APPENDIX B
VRD SYNTHESIS BY CONSIDERING THE RADIUS OF THE IDLE

PULLEY AND THE CABLE THICKNESS

In the following, we introduce the radius r of the idle pulley
and the thickness of the cable 2f . The radius r includes the ra-
dius of the idle pulley and half of the cable thickness. In Fig. 16,
a graphical representation of this configuration is reported. Sim-
ilarly to what is stated in (6), the geometry of the VRD can be
now expressed as

P t = T (α)
{

cd

0

}

+ T (α)T (−γ)T
(

−π

2

)

{

lt
0

}

+ χ(α)

(33)

Fig. 16. Variable radius drum parameters by considering the radius of the idle
pulley and the cable thickness.

where the function χ(α) is equal to

χ(α) = T (α − γ)
{

r
0

}

− T (γ + α)
{

f
0

}

. (34)

We can express the vector tangent to the profile in P t as

dP t

dα
=

dT (α)
dα

{

cd

0

}

+
dT (α)

dα
T (−γ)T

(

−π

2

)

{

lt
0

}

− dγ

dα
(α)

dT (−γ)
d(−γ)

T (α)T
(

−π

2

)

{

lt
0

}

+
dχ(α)

dα

= T
(

α +
π

2

)

{

cd

0

}

+ T (α)T (−γ)
(

1 − dγ

dα

){

lt
0

}

+
dχ(α)

dα
(35)

since

dχ(α)
dα

=
dT (α − γ)

dα

(

1 − dγ

dα

){

r
0

}

− dT (α − γ)
dα

(

1 − dγ

dα

){

f
0

}

= T
(

α − γ +
π

2

)

(

1 − dγ

dα

){

r
0

}

+ T
(

α − γ +
π

2

)

(

1 − dγ

dα

){

f
0

}

. (36)

It has to be noticed that (35) is equal to (28). Consequently, the
orthogonality condition of (30) leads to the same results of (8)
and (9). In fact

nT dχ(α)
dα

= 0. (37)

Finally, we obtain that the geometry of the VRD profile, in
Cartesian coordinates, is given by (33), associated with (8), (9),
and (34).
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