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An Adaptive Observer-based Robust Estimator of

Multi-sinusoidal Signals
Boli Chen, Gilberto Pin, Wai N. Ng, Shu Yuen Hui, and Thomas Parisini

Abstract—This paper presents an adaptive observer-based
robust estimation methodology of the amplitudes, frequencies
and phases of biased multi-sinusoidal signals in presence of
bounded perturbations on the measurement. The parameters of
the sinusoidal components are estimated on-line and the update
laws are individually controlled by an excitation-based switching
logic enabling the update of a parameter only when the measured
signal is sufficiently informative. This way doing, the algorithm
is able to tackle the problem of over-parametrization (i.e., when
the internal model accounts for a number of sinusoids that is
larger than the true spectral content) or temporarily fading
sinusoidal components. The stability analysis proves the existence
of a tuning parameter set for which the estimator’s dynamics are
input-to-state stable with respect to bounded measurement dis-
turbances. The performance of the proposed estimation approach
is evaluated and compared with other existing tools by extensive
simulation trials and real-time experiments.

I. INTRODUCTION

The identification of the amplitude, frequency and phase

(AFP) of a signal composed by a single or multiple sinusoids

is one of the fundamental issues arising in a variety of practical

applications, such as, for example, power quality monitoring,

vibration control and periodic disturbance rejection. In the

literature, currently there does not exist a multi-sinusoidal

estimator with semi-global stability properties and robustness

– in an ISS sense – with respect to bounded unstructured

perturbations when the number of sinusoids is possibly over-

estimated.

Usually, the Fast Fourier Transform (FFT) is preferred for

its efficiency in stationary conditions (i.e., when the frequency

content is constant within the considered time-window) and

for its simple structure. However, the accuracy drops in the

case of time-varying frequencies. In this respect, a number of

methods have been conceived to provide online detection of
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the time-varying amplitude/frequency (see, for example, [1],

[2], [3], [4] and references cited therein). Among them, it is

worth to recall the adaptive notch-filtering method (ANF) (see

[5], [6]) and the Phase-Locked-Loop (PLL) (see, for instance

[7], [8]) for their popularity in power and electrical systems,

though they are applicable for a single sinusoid only. In several

practical applications, a zero-mean sinusoidal signal is not

available; to deal with a dc offset, the traditional PLL and

ANF methodologies are typically augmented heading towards

a second-order generalized integrator-based orthogonal signal

generator (OSG-SOGI) [9]. The OSG-SOGI architecture is

also exploited in [10] and [11] to cope with the biased signal

case, namely, in [11] the OSG-SOGI is extended to the third-

order generalized integrator-based OSG (OSG-TOGI) that is

characterized by an adaptive resonant frequency. Apart from

the aforementioned methods, a number of nonlinear estimation

algorithms employing suitable pre-filtering techniques also

have been presented in literature to address the AFP estimation

in presence of an unknown bias (see, for example, [12], [13],

[14], [15], [16] and the references cited therein).

Recent research efforts have been devoted to the detection of

harmonics and inter-harmonics (multiple sinusoids). Based on

the PLL and ANF approach, the estimation of the parameters

of multi-sinusoidal signals are dealt with by linking multiple

PLL and ANF units in parallel. In [17] and [18], the AFP

estimation of two independent sinusoidal components are ad-

dressed resorting to two PLL-based blocks with a decorrelator

factor that specializes in discriminating two nearby frequen-

cies. Following the preliminary work [19] concerning harmon-

ically constructed signal with ANFs in parallel, an improved

framework handling the n inter-harmonics is reported in [20]

that is shown advantageous from a computational perspective

with respect to the counterpart relying on multiple PLLs (see

[21]). A variant of the OSG-TOGI scheme called adaptive

frequency-locked-Loop (AFLL) filter based TOGI has been

recently presented in [22], in which the explicit contents of the

multi-sinusoidal signal can be tracked by deploying a bank of

AFLL filters. In spite of the direct frequency estimation, only

local stability can be guaranteed for the aforementioned PLL

by averaging methods.

The adaptive observer is another key methodology exploited

to track multiple frequencies because of its notable feature in

terms of stability: global or semi-global stability is ensured

in most cases (see [23], [24], [25], [26], [27] and [28]). In

particular, [26] presents a simplified global stability analysis

by using contraction theory rather than traditional Lyapunov

analysis; and, on the other hand, [28] proposes a hybrid

observer to identify the n frequencies from a multi-frequency
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signal with saturated amplitudes. Recently, the effectiveness of

the hybrid observer in the presence of poorly sampled signal

is shown in [29].

Moreover, the possible bias term in the measurement can be

handled by suitably augmenting the adaptive observer system

(see [30], [31], [32]). However, the observer-based approaches

rely on a certain linear parameterization to incorporate the

unknown frequencies into a state space representation of the

measured signal; in such cases, the estimated frequencies

are usually not directly estimated. Instead, the parameter

adaptation laws regard a set of coefficients of the characteristic

polynomial of the autonomous signal generator system and

the true frequencies act as the zeros of the characteristic

polynomial, the computation of which might result in an

excessive computational burden that may severely limit the

online applicability.

In the spirit of prior work by the authors on the single

sinusoidal case (see the very recent paper [33]), a “dual-

mode” estimation scheme is proposed, which incorporates a

switching algorithm depending on the instantaneous excitation

level (concerning the excitation issues, a related contribution

focusing on switching or hybridization to improve persistence

of excitation can be found in [34]). In contrast with other

methods that are either indirectly identifying the frequency

contents or are characterized by local stability only, the present

paper deals with a direct adaptation mechanism for the squares

of the frequencies with semi-global stability based on the

recent preliminary results presented in [35]. Moreover, the

robustness to the bounded measurement noise, that is likely

to appear in real-world applications, is addressed by Input-

to-State-Stability (ISS) arguments. It is shown that the ISS

property with respect to the additive measurement noise is

ensured by suitably choosing a few suitable tuning parameters.

In comparison with [35], the proposed novel estimator adopts a

n-dimensional excitation-based switching signal to separately

control the multiple frequency adaptation in all directions

by means of suitable matrix decomposition techniques, thus

enhancing the practical implementation and avoiding unnec-

essarily disabled adaptation in the scenario that only parts

of the directions fulfill the excitation condition (e.g., over-

parametrization scenarios).

The paper is organized as follows: Section II introduces

the AFP problem in the multi-sinusoidal signal scenario. In

Section III, the adaptive observer-based estimator is proposed.

Then, the stability analysis is dealt with in Section IV.

Finally, simulation and real experimental results showing the

effectiveness of the algorithm are given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following perturbed multi-sinusoidal signal:










ŷ(t) = A0 +

n
∑

i=1

Ai sin(ϕi(t)) + d(t) ,

ϕ̇i(t) = ωi

(1)

with ϕi(0) = ϕ0i , where A0 is an unknown constant

bias, the amplitudes of the sinusoids verify the inequality

Ai ≥ 0, ∀i ∈ {1, . . . , n}, ϕ0i is the unknown initial phase of

each sinusoid, and the frequencies are strictly-positive time-

invariant parameters: ωi > 0, ωi 6= ωj for i 6= j. The term

d(t) represents an additive measurement disturbance, bounded

by a known (possibly conservative) constant d̄ > 0, such that

|d(t)| < d̄, ∀t ∈ R≥0.

Now, let us denote by y(t) the noise-free signal

y(t) = A0 +

n
∑

i=1

Ai sin(ωit+ ϕ0i) (2)

which is assumed to be generated by the following observable

autonomous marginally-stable dynamical system:










ẋ(t) = Fxx(t) +

n
∑

i=1

Fix(t)θ
∗
i

y(t) = Cxx(t)

(3)

with x(t) , [x1(t), · · · , x2n+1(t)]
⊤ ∈ R

2n+1 and where

x(0) = x0 represents the unknown initial condition. The new

parametrization θ∗1 , . . . , θ
∗
n used in (3) is related to the original

frequency parameters by

θ∗i = ai +Ωi, ∀i ∈ {1, .., n}, (4)

with Ωi = ω2
i , ∀i ∈ {1, .., n} and where a1, a2, · · · , an are

non-zero constants designed with the only requirements to

satisfy ai ∈ R, ai 6= aj for i 6= j. The matrices of the linear

biased multi-oscillator (3) are given by

Fx =



















J1 02×2 · · · 02×2 0

02×2 J2
. . . 02×2 0

...
. . .

. . .
. . .

...

02×2
. . .

. . . Jn 0
0 · · · · · · 0 0



















, C⊤
x =















c⊤1
c⊤2
...

c⊤n
1















,

where 0m×n represents a m× n null matrix,

Ji =

[

0 1
ai 0

]

, ci =
[

1 0
]

.

Moreover, each Fi in system (3) is a square matrix having the

(2i, 2i− 1)th entry equal to −1. Defining

J0 =

[

0 0
−1 0

]

,

F1 and F2 take on, for instance, the form:

F1 =

[

J0 02×(2n−1)

0(2n−1)×2 0(2n−1)×(2n−1)

]

,

F2 =





02×2 02×2 02×(2n−3)

02×2 J0 02×(2n−3)

0(2n−3)×2 0(2n−3)×2 0(2n−3)×(2n−3)



 .

Thanks to (3), the noisy signal ŷ(t) can be thought as

generated by the observable system
{

ẋ(t) = Fxx(t) +Gx(x(t))θ
∗

ŷ(t) = Cxx(t) + d(t)
(5)

with x(0) = x0 and where

Gx(x(t)) = [Gx1(x(t)) · · · Gxi
(x(t)) · · · Gxn

(x(t))] , (6)



Gxi
(x(t)) = [01×(2i−1) x2i−1(t) 01×(2n+1−2i)]

⊤,

∀i = 1, 2, · · · , n , (7)

and θ∗ ∈ R
n denotes the true parameter vector [θ∗1 · · · θ∗n]

⊤
.

In the following, we are going to show that the system

(5) verifies all the requirements needed for the application of

the switched-observer based methodology developed by the

authors in [36]. On the other hand, in order to cope with

the over-parametrization issue (i.e., the model is established

with a number of sinusoids-parameters that is larger than the

number of the components of the actual signal), the adaptation

mechanism presented in [36] is completely re-designed in this

paper, thus enabling the adaptation of the sole frequencies for

which enough excitation is detected based on instantaneous

checking of the excitation level.

Remark 2.1: The elements of Gx(·) are globally Lipschitz

continuous functions, that is:

||Gx(x
′)−Gx(x

′′)|| ≤ |x′ − x′′|, ∀x′, x′′ ∈ R
2n+1 .

Moreover, the true state x(t) is norm-bounded for any initial

condition, i.e. |x(t)| ≤ x̄, ∀t ∈ R≥0. Both the Lipschitz

condition on Gx(·) and the bound x̄ allow to establish the

following further bound

‖Gx(x(t))‖ ≤ x̄, ∀t ∈ R≥0 .

In the next section, the adaptive-observer scheme to com-

pute the estimates x̂(t) and θ̂(t) will be described. Hence, for

the time-being, let us suppose x̂(t) and θ̂(t) to be available.

Then, the full AFP estimates are obtained by

Ω̂i(t) = θ̂i(t)− ai, ω̂i(t) =

√

θ̂i(t)− ai, (8)

Âi(t) =

√

(

Ω̂i(t)x̂2i−1(t)2 + x̂2i(t)2
)

/Ω̂i(t), (9)

and

ϕ̂i(t) = ∠ (x̂2i(t) + jω̂i(t) x̂2i−1(t)) , i = 1, 2, · · · , n. (10)

In addition, the offset is evaluated directly by Â0 = x̂2n+1. It

worth noting that (9) is not well-defined at the time instants

t in which Ω̂(t) = 0. In spirit of the previous work by the

authors on the estimation of a single sinusoidal signal [33],

this limitation can be removed resorting to a suitable adaptive

mechanism based on gradient method. More specifically, by

defining the time-varying residual based on the equality (9):

Ri(Âi(t), t) , Âi(t)ω̂i(t)−

√

Ω̂i(t)x̂2i−1(t)2 + x̂2i(t)2 ,

then, the following adaptation law can be designed:

˙̂
Ai(t) =

{

0, if Âi(t) = 0 and ˙̂αi(t) < 0
˙̂αi(t), otherwise

where

˙̂αi(t) = −µA

∂Ri(Âi(t), t)

∂Âi(t)
Ri(Âi(t), t)

= −µAω̂i(t)

[

ω̂i(t)Âi(t)−

√

(

Ω̂i(t)x̂2i−1(t)2 + x̂2i(t)2
)

]

(11)

with Âi(0) = 0. µA ∈ R>0 denotes a tuning gain set by the

designer to ensure the asymptotic convergence of Ri(Âi(t), t)
to 0.

In order to proceed with the analysis, the following further

assumption is needed.

Assumption 1: The frequencies of the sinusoids are

bounded by a positive constant ω̄, such that ωi < ω̄, ∀i ∈
{1, · · · , n}.

According to Assumption 1, there exists a known positive

constant θ̄∗, such that |θ∗| ≤ θ̄∗ . More specifically, in the

remaining parts of the paper we consider θ∗ ∈ Θ∗, where

Θ∗ ⊂ R
n is a hypersphere of radius θ̄∗.

III. FILTERED-AUGMENTATION-BASED ADAPTIVE

OBSERVER

Now, we are going to generalize the switched-mode adaptive

observer preliminarily proposed in [36] to the biased multi-

oscillator (5). Specifically, let us augment the dynamics of the

observed system with a synthetic low-pass filter driven by the

noisy measurement vector:

˙̂yf (t) = Ff ŷf(t) +Bf ŷ(t) , (12)

where Ff and Bf are fixed by the designer such that Ff is

Hurwitz and the pair (Ff , Bf ) is controllable. ŷf (t) ∈ R
nf

denotes the accessible state vector and with arbitrary initial

condition ŷf0 , such that the dimension nf of the augmented

dynamics verifies nf = n− 1.

For the sake of the forthcoming analysis, it is convenient to

split the filtered output into two components:

ŷf(t) = yf(t) + df (t) ,

where yf (t) and df (t) can be thought as produced by two

virtual filters, driven by the unperturbed output and by the

measurement disturbance respectively:

ẏf (t) = Ffyf(t) +Bfy(t) (13)

and

ḋf (t) = Ffdf (t) +Bfd(t). (14)

Consequently, in view of (5), (13) and (14), the overall

augmented system dynamics with the extended perturbed

output measurement equation can be written as follows:






ż(t) = Fzz(t) +Gz(z(t))θ
∗

η(t) = Czz(t)
η̂(t) = η(t) + dη(t)

(15)

with z(0) = z0 ∈ R
nz , nz = 2n + 1 + nf = 3n,

and z(t) , [x⊤(t) y⊤f (t)]
⊤, z0 , [x⊤0 (t) y

⊤
f0
]⊤, η̂(t) ,



[ŷ(t) ŷ⊤f (t)]
⊤, dη(t) , [d(t) d⊤f (t)]

⊤

Fz ,

[

Fx 0(2n+1)×(n−1)

BeCx Ff

]

,

Cz ,

[

Cx 01×(n−1)

0(n−1)×(2n+1) I(n−1)

]

,

and

Gz(z(t)) ,

[

Gx(Tzxz(t))
0(n−1)×n

]

,

with the transformation matrix given by Tzx ,

[I2n+1 0(2n+1)×(n−1)]. It is worth noting that Gz(z(t))
is also Lipschitz, with unitary Lipschitz constant as Gx(x(t)),
and can be norm-bounded by x̄. Moreover, the assumed

norm-bound d̄ on the output noise implies the existence of

d̄η such that d̄η > 0 : |dη(t)| ≤ d̄η, ∀t ∈ R≥0 .
Now, we introduce the structure of the adaptive observer for

joint estimation of z(t) and θ∗ in (15), and in turn estimating

the frequencies Ω̂i, i = 1, · · · , n. Besides the measured output

filter (12), the architecture of the estimator also includes three

dynamic components (16), (17) and (19), which are described

below:

1) Augmented state estimator:

˙̂z(t) = (Fz − LCz)ẑ(t) + Lη̂(t) +Gz(ẑ(t))θ̂(t) + Ξ(t)
˙̂
θ(t)
(16)

with ẑ(0) = ẑ0 and where Ξ(t) is defined in (18). The gain

matrix L is given by

L ,

[

Lx 0(2n+1)×(n−1)

0(n−1)×1 0(n−1)×(n−1)

]

where Lx is a suitable gain matrix such that Fx −LxCx < 0.

2) Parameter-affine state-dependent filters:

Let Gz1(z(t)), · · · , Gzn(z(t)) be the columns of Gz(z(t)),
that is

Gz(z(t)) =
[

Gz1(z(t)) · · · Gzi(z(t)) · · · Gzn(z(t))
]

.

Then, we introduce a set of auxiliary signal ξi(t), i =
1, · · · , n, whose dynamics obeys the following differential

equations driven by the available (estimated) counterpart of

Gz(z(t)):

ξ̇i(t) = (Fz − LCz)ξi(t) +Gzi(ẑ(t)), ∀i = 1, · · · , n , (17)

with ξi(0) = 0nz×1 . By collecting all the filters’ states, let

us also define an auxiliary signal matrix

Ξ(t) = [ξ1(t) · · · ξi(t) · · · ξn(t)]. (18)

3) Frequency adaptation unit:

Herein, a projection operator P is utilized to confine the

estimated parameter θ̂(t) to the predefined convex region Θ∗

˙̂
θ(t) = P

[

˙̂
θunc(Ψ(t), t)

]

|θ̂|≤θ̄∗
(19)

with θ̂(0) = θ̂0 set arbitrarily, and where
˙̂
θunc is the uncon-

strained parameter’s derivative, whose explicit expression is

given in (22); Ψ(t) ∈ R
n×n represents a diagonal matrix

consisting of binary (1: on, 0: off) on-off switching signals

which enable or disable the adaptation of a specific parameter

Ψ(t) , diag[ψ1(t), · · · , ψi(t), · · · , ψn(t)], (20)

with the adaptation-enabling signals ψi(t), ∀i = 1, 2, · · · , n
specified later on. For brevity, in the sequel we will write

θ̂unc(t) instead of θ̂unc(Ψ(t), t), dropping the dependence of

θ̂unc on Ψ(t). The parameters’ derivative projection operator

in (19) is defined as:

P
[

˙̂
θunc(t)

]

|θ̂|≤θ̄∗

,















nsp(θ̂⊤(t))
(

nsp
(

θ̂⊤(t)
)

)⊤ ˙̂
θunc(t),

if |θ̂| = θ̄∗ and θ̂⊤(t)
˙̂
θunc(t) > 0

˙̂
θunc(t), otherwise

in which nsp(·) denotes the null-space of a row vector. The

projection can be expressed as

˙̂
θ(t) =

˙̂
θunc(t)− I(θ)

θ̂(t)θ̂⊤(t)

θ̄∗2
˙̂
θunc(t) (21)

where I(θ) denotes the indicator function given by

I(θ) ,

{

1, if |θ̂(t)| = θ̄∗ and θ̂⊤(t)
˙̂
θunc(t) > 0 ,

0, otherwise .

Now, the unconstrained derivative is given by:

˙̂
θunc(t) , −µUΨ(t) (Ψ(t)SΨ(t))U

⊤
Ψ (t)UΞ(t)S̆Ξ(t)U

⊤
Ξ (t)

× Ξ⊤(t)C⊤
z (Cz ẑ(t)− η̂(t)) , (22)

with UΨ, SΨ, UΞ, S̆Ξ defined in the following. The matrices

UΨ and SΨ are obtained by the SVD of ΦΨ(Ξ(t)):

ΦΨ(Ξ(t)) =
(

Ξ⊤(t)Ξ(t) + ρ2I
)−1

Ξ⊤(t)C⊤
z CzΞ(t)

= UΨ(t)SΨ(t)U
⊤
Ψ (t)

(23)

in which SΨ(t) is a diagonal matrix comprising all the eigen-

values of ΦΨ(Ξ(t)). Analogously, UΞ and SΞ are obtained by

the SVD of the matrix ΦΞ(Ξ) defined as:

ΦΞ(Ξ(t)) , Ξ⊤(t)C⊤
z CzΞ(t) = UΞ(t)SΞ(t)U

⊤
Ξ (t) .

Thanks to the above decomposition, let us define the matrix

S̆Ξ(t) , diag {s̆Ξi
(t)} where

s̆Ξi
(t) =

{

λi (SΞ(t))
−1
, if ψi(t) = 1 ,

0, if ψi(t) = 0
(24)

where λi(·) is the notation for ith eigenvalue. We assign

the following hysteretic dynamics to the binary switching

signal ψi(t), i = 1, 2, . . . , n that determines the activa-

tion/suppression of the parameter adaptation:

ψi(t) =







1, if λi (ΦΨ(Ξ(t))) ≥ δ̄
0, if λi (ΦΨ(Ξ(t))) < δ
ψi(t

−), if δ ≤ λi (ΦΨ(Ξ(t))) < δ̄
(25)

The transition thresholds δ, δ̄ are designed such that 0 < δ <
δ̄ < 1.

It is worth noting that the above hysteresis strategy ensures a



minimum finite duration between transitions (see Section IV-C

for a detailed discussion) and hence a suitable dwell-time.

In the next section, the stability of the proposed switching

mechanism is characterized to analytically determine a dwell-

time, in turn depending on the signals to be estimated, the

adaptation gains and the transition thresholds. Clearly, intro-

ducing hysteresis is not the only way to ensure the presence

of a dwell-time and other alternatives are available like, for

instance, the introduction of a suitable delay.

The detailed pseudocode for the proposed algorithm is given

in Algorithm 1 illustrated below.

Remark 3.1: To avoid the possible interference between the

estimators (e.g., two or more estimators to converge to the

same frequency value), we may apply distinct frequency ‘clips’

in different ranges of frequency based on a priori knowledge

on the nominal frequency values (a similar idea of frequency

separation can be found in [20]).

Algorithm 1 Algorithm for the proposed estimator

Parameters: tuning parameters

ai, Ff , Bf , µ, ρ, µA, δ, δ, sampling time Ts, simulation

time T and the poles;

Initialization: Define the initial condition of the estimated

variables, x̂, θ̂ while Lx is determined by pole placement;

1: Calculate parameters Fz , Cz, L for the augmented sys-

tem;

LOOP Process

2: for k = 1 to N = T/Ts do

3: Calculate the filtered signal ŷf (k) using (12);

4: Calculate the state estimate ẑ(k) using (16), x̂(k) is part

of ẑ(k) and the estimated bias is Â0(k) = x̂2n+1(k);
5: Calculate the auxiliary signals ξi(k) using (17);

6: Collect all the filters’ states to get auxiliary signal

matrix Ξ(k) using (18);

7: Calculate ΦΨ(Ξ(k)) using (23) and the associated

eigenvalues by SVD;

8: if (λi (ΦΨ(Ξ(k))) ≥ δ̄) then

9: ψi(k) = 1;

10: else if (λi (ΦΨ(Ξ(k))) < δ) then

11: ψi(k) = 0;

12: else

13: ψi(k) = ψi(k − 1);
14: end if

15: Calculate SΞ(k) from the SVD of ΦΞ(Ξ(k));
16: Calculate S̆Ξ(k) based on ψi(k) using (24) and

S̆Ξ(k) , diag {s̆Ξi
(k)};

17: Calculate parameter estimate θ̂(k) using (21) and (22);

18: Calculate the amplitude, frequency and phase estimates

Âi(k), ω̂i(k), ϕ̂i(k) using (11), (8), (10), respectively;

19: Reconstruct the sinusoidal signals by ŷ(k) = Â0(k) +
∑n

i=1 Âi(k) sin(ϕ̂i(k));
20: end for

21: return Âi, ω̂i, ϕ̂i and ŷ.

IV. STABILITY ANALYSIS

In order to carry out the stability analysis, let us define the

augmented state-estimation error vector

z̃(t) , ẑ(t)− z(t).

Moreover, in order to address the case of overparametrization

(that is, the number of model parameters n is larger than the

number of sinusoids ne(t) ∈ N : 0 ≤ ne(t) ≤ n that at

time t are adapted), it is convenient to define two parameter

estimation errors, one accounting for all the parameters

θ̃(t) , θ̂(t)− θ∗ ∈ R
n,

and the other considering the ne(t) components that are

adapted at a given instant

θ̃ne(t)(t) , θ̂ne(t)(t)− θ∗ne(t)
∈ R

ne(t),

where θ̂ne(t)(t) and θ∗
ne(t)

collect all and only those scalar

components of the estimated and true parameter vectors for

which ψi(t) = 1. In this connection, let Ene(t) ∈ N
ne(t)

be a set containing the integer indexes of all and only those

components for which the adaptation is enabled at time t.

As said above, the case of overparametrization corresponds

to a situation in which the number of frequency parameters

of the observer, n, is larger than ne, the number of non-

zero amplitude sinusoids with unique frequency forming the

measured signal1 (more details of overparametrization in the

context of adaptive control can be found in [37]). In this

case a minimal realization of the generator of the measured

signals is a multi-harmonic oscillator of order 2ne, composed

by the collection of exactly ne unique harmonic oscillators

[38]. Nonetheless, a non-minimal realization for such a signal

generator can be taken as the union of the said minimal multi-

harmonic oscillator with an augmented dynamics formed by

(n − ne) harmonic oscillators with null-states and arbitrary

frequency. The possibility to assign arbitrarily the frequency

of the augmented null-amplitude multi-oscillator is the key

for proving the stability in this context. For the sake of the

further discussion, without loss of generality, let us take the

frequency parameters of the augmented dynamics equal to the

present estimates produced by the filter for the components

not adapted due to poor excitation, achieved by

θ∗i = θ̂i(t), ∀i ∈ {1, 2, · · · , n}\Ene(t), (26)

which implies

θ̃i(t) , θ̂i(t)− θ∗i = 0, ∀i ∈ {1, 2, · · · , n}\Ene(t). (27)

For the sake of the further discussion let us also define

the linear time-varying combination of state and parameter

vectors ζ̃(t) ,
∑n

i=1 ξi(t)θ̃i(t) − z̃(t). The state-estimation

1The residual sinusoidal signals not accounted for by the adaptation are
masked and implicitly treated as a disturbance.



error evolves according to the differential equation:

˙̃z(t) = (Fz − LCz)z̃(t) + Ldη(t) +Gz(z̃(t))θ̃(t)

+Gz(z(t))θ̃(t) +Gz(z̃(t))θ
∗ +

n
∑

i=1

ξi(t)
˙̂
θi(t)

= (Fz − LCz)z̃(t) + Ldη(t) +Gz(z̃(t))θ
∗

+
∑

i∈Ene(t)

Gzi(ẑ(t))θ̃i(t) + Ξ(t)
˙̂
θ(t) ,

(28)

where Gz(z̃(t)) , Gz(ẑ(t)) − Gz(z(t)) . Meanwhile, the

auxiliary variable ζ̃(t) evolves according to

˙̃
ζ(t) =

∑

i∈Ene(t)

ξ̇i(t)θ̃i(t) + Ξ(t)
˙̃
θ(t) − ˙̃z(t) , (29)

which, after some algebra, leads to

˙̃ζ(t) =
∑

i∈Ene(t)

(

(Fz − LCz)ξi(t)θ̃i(t) +Gzi(ẑ(t))θ̃i(t)
)

+Ξ(t) ˙̃θ(t) − (Fz − LCz)z̃(t)−Gz(z̃(t))θ̃(t)

−Ldη(t)−Gz(z(t))θ̃(t)−Gz(z̃(t))θ
∗−Ξ(t) ˙̃θ(t)

= (Fz − LCz)ζ̃(t)− Ldη(t)−Gz(z̃(t))θ
∗ .

(30)

In Fig. 1, we draw the overall excitation-based switching

scheme, which is instrumental for the forthcoming analysis.

More specifically, let ke(t) be a counter for the transitions to

Ene
6= ∅Ene

= ∅

ne active
identification

active
identification

disexcitation
interval

(k − 1)-th window k-th window

disexcitation
interval

td(k) te(k)

0

≥ 1
a b

0

δ
δ

σmax

(

Φ (Ξ(t))
)

excitation-based transitions

Fig. 1. Scheme of the excitation-based switching scheme for en-
abling/disabling the parameter adaptation. The transitions to dis-excitation (a)
and to active identification phases (b) have been highlighted.

excitation, described by the jump dynamics given below:

ke(t) =

{

ke(t
−) + 1, if Ene

(t−) = ∅ andEne
(t) 6= ∅ ,

ke(t
−), if Ene

(t−) 6= ∅ andEne
(t) = ∅ .

Analogously, let k1→0(t) be a counter with respect to the

transition from excitation to dis-excitation:

kd(t) =

{

kd(t
−) + 1, if Ene

(t−) 6= ∅ andEne
(t) = ∅ ,

kd(t
−), if Ene

(t−) = ∅ andEne
(t) 6= ∅ .

Moreover, let td(k) and te(k) denote the transition time-

instants:
te(k) , inf(t ≥ 0 : ke(t) = k) ,

td(k) , inf(t ≥ 0 : kd(t) = k) .

Without loss of generality and taking into account that the

system starts from zero-excitement, then

te(k) > td(k), ∀k ∈ Z
+ .

and the counters are initialised by ke(0) = 0, kd(0) = 1 .

Hence, the integer k always identifies a two-phase time-

window made up of a dis-excitation interval followed by an

active estimation interval (see Fig. 1).

Since (Fz−LCz) is Hurwitz, for any positive definite matrix

Q, there exists a positive definite matrix P that solves the

linear Lyapunov equation

(Fz − LCz)
⊤P + P (Fz − LCz) = −2Q .

In the following, we will analyze the behaviour of the adaptive

observer in two situations by a Lyapunov candidate that

accounts for all the parameters:

V (t) ,
1

2

(

z̃⊤(t)P z̃(t) + θ̃⊤(t)θ̃(t) + gζ̃⊤(t)P ζ̃(t)
)

, (31)

where g ∈ R>0.

i) Active adaptation interval of finite duration, i.e. in which

ne(t) ≥ 1 = ne, ∀t ∈ [te(k), td(k + 1)] (we will omit the

time-dependence of ne assuming that for the whole interval

it remains constant). In this case the set Ene
(t) is non-empty,

V (t) defined in (31) shrinks to the following positive definite

function, considering the sole components actively adapted:

Vne
(t) ,

1

2

(

z̃⊤(t)P z̃(t) + θ̃⊤ne
(t)θ̃ne

(t) + gζ̃⊤(t)P ζ̃(t)
)

.

(32)

In this interval, we will prove that Vne
is an ISS-Lyapunov

function for the system comprising all states and only the

parameters undergoing adaptation, that will converge to the

true values. The present scenario comprises, besides the over-

parametrization case, also the full-parametrization case, which

yields to the ISS of the whole dynamics.

ii) Total dis-excitation, i.e., none of the parameters is

adapted due to poor excitation. In this scenario the set Ene(t)

is empty. In this case we will show that the overall function

(31) will remain bounded.

After that, the Lyapunov analysis in these two scenarios are

linked properly and we are able to prove that the alternate

occurrence of active identification phases and poorly excited

phases yields to convergence, provided that the active iden-

tification phases have a sufficient duration. To simplify the

analysis, we will consider that the number of adapted sinusoids

ne is fixed within a whole excitation/dis-excitation interval

(see Fig. 1), that is the set Ene(t) may be either the empty set

{0} during the dis-excitation phase, either a set Ene
6= ∅ for

an arbitrary active adaptation interval (invariant set). Note that

this assumption does not limit the applicability of the adaptive

observer to this very special case, being it just a technicality

needed to render the problem tractable in a simple analytical

way (an active adaptation phase with time-varying ne(t) can

be regarded as a combination of multiple excited intervals).



A. Active adaptation interval of finite duration

Consider an arbitrary active identification phase te(k) ≤
t < td(k+1) (see Fig. 1) and let Ψne

(t) be the binary matrix

in this scenario with only ψi(t) = 1, ∀i ∈ Ene
. The upcoming

analysis is carried out in order to exhibit the benefit of using

the derivative projection on the parameters’ estimates. Thanks

to (21), in presence of the projection I(θ) = 1 and |θ̂(t)| = θ̄∗,

we have

θ̃⊤(t)
˙̂
θ(t) = θ̃⊤(t)

˙̂
θunc(t)− θ̃⊤(t)

θ̂(t)θ̂⊤(t)

θ̄∗2
˙̂
θunc(t)

= θ̃⊤(t)
˙̂
θunc(t)−

1

θ̄∗2
θ̃⊤(t)θ̂(t)θ̂⊤(t)

˙̂
θunc(t) .

Owing to the convexity of the admissible set, it holds that

θ̃⊤(t)θ̂(t) =
(

θ̂⊤(t)− θ∗⊤
)

θ̂(t) ≥ 0 .

Now, we recall the triggering condition of projection

θ̂⊤(t)
˙̂
θunc(t) > 0, which implies that

1

θ̄∗2
θ̃⊤(t)θ̂(t)θ̂⊤(t)

˙̂
θunc(t) ≥ 0 .

Finally, we can bound the scalar product θ̃⊤(t) ˙̃θ(t) by:

θ̃⊤(t) ˙̃θ(t) = θ̃⊤(t)
˙̂
θ(t) ≤ θ̃⊤(t)

˙̂
θunc(t) .

For instance, a 2-dimensional pictorial representation of the

projection-based adaptation is shown in Fig. 2 to enhance

the influence of the derivative projection on the parameters

estimates.

θ̄∗

θ∗
θ̂(t)

Proj
˙̂
θunc(t)

˙̂
θ(t)

θ̃(t)

b
a

Fig. 2. 2D pictorial representation of the projection-based adaptation.

When |θ̂(t)| = θ
∗

and
˙̂
θunc(t) points out of the feasible region, then

the derivative of the parameter vector is obtained by projecting
˙̂
θunc(t)

to the tangential hyperplane. To visually compare the values of the scalar

products −θ̃⊤
˙̂
θunc(t) and −θ̃⊤

˙̂
θ(t), consider the projected vectors (a) and

(b) respectively.

In virtue of the fact that

UΨ(t) (Ψne
(t)SΨ(t))U

⊤
Ψ (t) =

(

Ξ⊤(t)Ξ(t) + ρ2I
)−1

× UΞ(t) (Ψne
(t)SΞ(t))U

⊤
Ξ (t)

the unconstrained derivative
˙̂
θunc(t) can be expanded as fol-

lows:

˙̂
θunc(t) = −µ

(

Ξ⊤(t)Ξ(t) + ρ2I
)−1

× UΞ(t) (Ψne
(t)SΞ(t))U

⊤
Ξ (t)UΞ(t)S̆Ξ(t)U

⊤
Ξ (t)

× Ξ⊤(t)C⊤
z

(

CzΞ(t)θ̃(t)− dη(t)− Cz ζ̃(t)
)

= −µ
(

Ξ⊤(t)Ξ(t) + ρ2I
)−1

Ψne
(t)Ξ⊤(t)C⊤

z

×
(

CzΞ(t)θ̃(t)− dη(t)− Cz ζ̃(t)
)

. (33)

Thanks to (27) and let c̄ , ‖Cz‖, the following inequality

holds in presence of over-parametrization:

d

dt
(θ̃⊤ne

(t)θ̃ne
(t)) ≤ −µδ|θ̃ne

(t)|2 +
µc̄

2ρ
|θ̃ne

(t)||dη(t)|

+
µc̄2

2ρ
|θ̃ne

(t)||ζ̃(t)| ,

The following result can now be proven.

Theorem 4.1 (ISS of the dynamic estimator): If

Assumption 1 holds, then in an active adaptation interval

te(k) ≤ t < td(k + 1), given the sinusoidal signal y(t)
defined in (2) and the perturbed measurement (1), there exist

suitable choices of µ ∈ R>0, ρ ∈ R>0 and L such that Vne
(t)

is an ISS Lyapunov function with respect to any bounded

disturbance dη and in turn ISS with respect to bounded

measurement disturbance |d(t)| ≤ d̄. Thus z̃(t) and θ̃ne
(t)

are ISS with respect to d̄.

Proof: In view of (26), we immediately have |θ̃(t)| =
|θ̃ne(t)|, which implies V (t) = Vne

(t), and makes it possible

to study the time-derivative of Vne
(t) in place of V (t):

V̇ne
(t) =

1

2

(

z̃⊤(t)P ˙̃z(t) + ˙̃z
⊤
(t)P z̃(t)

)

+ θ̃ne
(t)⊤

˙̃
θne

(t)

+
g

2

(

ζ̃⊤(t)P
˙̃
ζ(t) +

˙̃
ζ⊤(t)P ζ̃(t)

)

.

(34)

By letting l̄ , ‖L‖, q , min eig(Q), p̄ , max eig(P ), after

some algebra, V̇ (t) can be bounded as follows:

V̇ne
(t) ≤ −q|z̃(t)|2 − gq|ζ̃(t)|2 − µδ|θ̃ne

(t)|2

+ p̄l̄|z̃(t)||dη(t)|+ p̄|z̃(t)|2|θ̃(t)|+ p̄x̄|z̃(t)||θ̃(t)|

+ p̄θ̄∗|z̃(t)|2 + µp̄c̄2|z̃(t)|2 + µp̄c̄|z̃(t)||dη(t)|

+ µ
c̄

2ρ
|θ̃ne

(t)||dη(t)|+ µ
c̄2

2ρ
|θ̃ne

(t)||ζ̃(t)|

+ gp̄l̄|ζ̃(t)||dη(t)|+ gp̄θ̄∗|z̃(t)||ζ̃(t)| .

In view of the inequality |θ̃ne
(t)| = |θ̃(t)| ≤ 2θ̄∗ and by re-

arranging the above inequality to put in evidence the square

monomial and the binomial terms, we get:

V̇ne
(t)≤−(q − µp̄c̄2 − 3p̄θ̄∗)|z̃(t)|2 + p̄

(

l̄ + µc̄
)

|z̃(t)||dη(t)|

−
gq

2
|ζ̃(t)|2 −

gq

4
|ζ̃(t)|2 + gp̄θ̄∗|z̃(t)||ζ̃(t)|

−
gq

4
|ζ̃(t)|2 + gp̄l̄|ζ̃(t)||dη(t)| −

µδ

2
|θ̃ne

(t)|2

−
µδ

6
|θ̃ne

(t)|2 + p̄x̄|z̃(t)||θ̃ne
(t)| −

µδ

6
|θ̃ne

(t)|2

+ µ
c̄

2ρ
|θ̃ne

(t)||dη(t)| −
µδ

6
|θ̃ne

(t)|2 + µ
c̄2

2ρ
|θ̃ne

(t)||ζ̃(t)| .



Now, we complete the squares, thus obtaining

V̇ne
(t) ≤ −

µδ

2
|θ̃ne

(t)|2 − (
gq

2
−

3µc̄4

8ρ2δ
)|ζ̃(t)|2

−

[

(q − µp̄c̄2 − 3p̄θ̄∗)

2
−

g

q
p̄2

(

θ̄∗
)2

−
3(p̄x̄)2

2µδ

]

|z̃(t)|2

+

[

p̄2
(

l̄ + µc̄
)2

2(q − µp̄c̄2 − 3p̄θ̄∗)
+

3µc̄2

8ρ2δ
+

g

q
p̄2 l̄2

]

|dη(t)|
2 .

Finally, the following inequality can be established:

V̇ne
(t) ≤ −β1

[

Vne
(t)− γ1(d̄η)

]

, (35)

where

β1 , 2min

{

(q − µp̄c̄2 − 3p̄θ̄∗)

2p̄
−

g

q
p̄
(

θ̄∗
)2

−
3x̄2p̄

2µδ
,

µδ

2
,
q

2p̄
−

3µc̄4

8gρ2δp̄

}

(36)

and

γ1(s),
1

β1

[

p̄2
(

l̄ + µc̄
)2

2(q − µp̄c̄2 − 3p̄θ̄∗)
+

3µc̄2

8ρ2δ
+

g

q
p̄2 l̄2

]

s2 ,

∀s ∈ R≥0 . (37)

Hence, the proof is concluded iff

β1 > 0. (38)

In view of (38), all the components involved in (36) should

be positive, wherein µδ/2 > 0 can be immediately verified by

choosing a positive µ. Now, we set the excitation threshold

δ and the Q matrix arbitrarily, determining q. Then, letting

p̄ ≤ µ, we determine a sufficient condition to ensure the

positiveness of the first term in (36):

(q − µ2c̄2 − 3µθ̄∗)

2
− µ2 g

q

(

θ̄∗
)2

− µ
3x̄2

2δ
> 0. (39)

Being the Lyapunov parameter g > 0 arbitrary, let us fix g =
1 for simplicity. At this point, with any fixed regularization

parameter ρ ∈ R>0 (we do not pose limits on ρ now) we can

always determine a sufficiently small value of µ for which the

inequality holds true. Next, by suitably allocating the poles, we

compute the output-injection gain L that realizes the needed

p̄. Finally, to render β1 strict-positive, we choose a sufficient

large ρ such that

q

2p̄
−

3µc̄4

8gp̄ρ2δ
> 0 .

B. Total dis-excitation phase

Clearly, it is important to show that the estimation error

remains bounded also during the time-intervals in which no

excitation is present (e.g., td(k) ≤ t < te(k) as illustrated in

Fig. 1). This is carried out in the following result.

Lemma 4.1 (Boundedness in dis-excitation phase):

Consider an arbitrary dis-excitation interval td(k) ≤ t < te(k)

in which Ene
(t) = ∅. Then, under the same choices of

µ ∈ R>0, ρ ∈ R>0 and L as in Theorem 4.1, V (t) is an ISS

Lyapunov function with respect to d(t) (where |d(t)| ≤ d̄)

and with respect to V (td(k)).
Proof: In the considered dis-excitation scenario, the esti-

mation is totally unexcited in all directions, i.e.
∑n

i=1 ψi(t) =

0, ∀t ≥ td(k) > 0, thus yielding
˙̃
θ(t) = 0n×1, and θ̃(t) =

θ̃(t̄−). In this respect, the time-derivative of the Lyapunov

function V (t) satisfies

V̇ (t) ≤ −(q − 3p̄θ̄∗)|z̃(t)|2 + p̄l̄|z̃(t)||dη(t)|

−
gq

2
|ζ̃(t)|2 −

gq

4
|ζ̃(t)|2 + gp̄θ̄∗|z̃(t)||ζ̃(t)|

−
gq

4
|ζ̃(t)|2 + gp̄l̄|ζ̃(t)||dη(t)|+ p̄x̄|z̃(t)||θ̃(t)| .

Applying the inequality |θ̃(td(k))|2 ≤ 2V (td(k)), ∀t ≥ td(k),
we have:

V̇ (t) ≤ −(q − 3p̄θ̄∗)|z̃(t)|2 + p̄l̄|z̃(t)||dη(t)|

−
gq

2
|ζ̃(t)|2 −

gq

4
|ζ̃(t)|2 + gp̄θ̄∗|z̃(t)||ζ̃(t)|

−
gq

4
|ζ̃(t)|2 + gp̄l̄|ζ̃(t)||dη(t)|

− |θ̃(t)|2 + 2V (td(k)) + p̄x̄|z̃(t)||θ̃(t)| .

By completing squares, we obtain the following upper bound

for V̇ (t):

V̇ (t)≤−

[

(q−3p̄θ̄∗)

2
−

g

q
p̄2

(

θ̄∗
)2
−
3(p̄x̄)2

2

]

|z̃(t)|2

−
5

6
|θ̃(t)|2 −

gq

2
|ζ̃(t)|2 + 2V (td(k))

+

[

p̄2 l̄2

2(q − 3p̄θ̄∗)
+

g

q
p̄2 l̄2

]

|dη(t)|
2

and hence, after some algebra, it follows that

V̇ (t) ≤ −β0
(

V (t)− L0V (td(k))− γ0(d̄η(t))
)

(40)

where L0 , 2/β0,

β0 , 2min

{

(q − 3p̄θ̄∗)

2p̄
−

g

q
p̄
(

θ̄∗
)2
−
3p̄x̄2

2
,
5

6
,
q

2p̄

}

and

γ0(s) ,
1

β0

[

p̄2 l̄2

2(q − 3p̄θ̄∗)
+

g

q
p̄2 l̄2

]

s2, ∀s ∈ R≥0 .

It is immediate to show that β1 > 0 implies β0 > 0 through a

suitable design of µ, ρ and the observer gain L (see the proof

taken in Section IV-A), thus concluding the proof.

Remark 4.1 (Parameter tuning): In view of (35), (36) and

(37), some tuning guidelines for the parameters of the pro-

posed estimator can be concluded. To avoid the increase of

the worst-case sensitivity to bounded noises, instead of using

a low value of p̄ that leads high-gain output injection through

L, and high values of l̄ and γ1 correspondingly, we can set

p̄ = µ and increase the regularization parameter ρ. Moreover,



the tuning criterion of ρ and µ is subject to a typical trader-

off between accuracy and convergence speed. For example, a

larger ρ or a smaller µ can result in more accuracy estimates

at the price of slower convergence speed.

C. Robustness Under Alternate Switching

At this stage, the stability of the adaptive observer under

alternate switching is characterized by linking the results ob-

tained for the two excitation phases. Thanks to the Gronwall-

Bellman lemma, we will be able to prove that the alternate

occurrence of active identification phases and poorly excited

phases may yield to convergence provided that the active

identification phases have a sufficient duration.

Theorem 4.2: Under the same assumptions of Theorem 4.1,

consider the adaptive observer (12), (16), (17), (19) equipped

with the excitation-based switching strategy defined in (25).

Then, the discrete dynamics induced by sampling the adaptive

observer in correspondence of the switching transitions is

ISS with respect to the disturbance dη and in turn ISS with

respect to bounded measurement disturbance |d(t)| ≤ d̄ if the

excitation phases last longer than β−1
1 ln(L0).

Proof: By the Gronwall-Bellman Lemma, the value of

the Lyapunov function (40) within the dis-excitation intervals

can be bounded as follows:

V (t)≤V (td(k)) +
(

1−e−β0(t−td)
)

×
(

L0V (td(k))+γ0(d̄η)−V (td(k))
)

,

∀t ∈ [td(k), te(k)), ∀k ∈ Z
+ .

Instead, during the excitation phases, the Lyapunov function

(35) can be bounded as

V (t) ≤ V (te(k)) +
(

1− e−β1(t−te(k))
)

×
(

γ1(d̄η)− V (te(k))
)

,

∀t ∈ [te(k), td(k + 1)), ∀k ∈ Z
+ .

In order to link the two modes of behaviour, let us denote by

Vk = V (td(k)) the value of the Lyapunov function sampled at

the k-th transition to dis-excitement, occurring at time td(k)
(or equivalently, at the end of the (k−1)-th active identification

phase).

Due to the poor excitation during the interval [td(k), te(k)),
at the transition time te(k) we can establish the (possibly

conservative) bound

V (te(k)) ≤ L0Vk + γ0(d̄η) .

Such a bound holds for any duration the disexcitation phase.

For any subsequent active identification time t = te(k) + ∆t
with ∆t < td(k + 1)− te(k), we get the inequality:

V (t) ≤V (te(k))+
(

1− e−β1(t−te(k))
) (

γ1(d̄η)−V (te(k))
)

= γ1(d̄η)−e−β1(t−te(k))γ1(d̄η)+e
−β1(t−te(k))V (te(k))

≤ γ1(d̄η)− e−β1(t−te(k))γ1(d̄η)
+e−β1(t−te(k))

(

γ0(d̄η) + L0Vk
)

= γ1(d̄η) + e−β1∆t
(

γ0(d̄η)− γ1(d̄η) + L0Vk
)

.

Now, let us arbitrarily set 0 < κ < 1 and let ∆Te =
−β−1

1 ln
(

L−1
0 κ

)

. If the active identification phase is long

enough to verify the inequality td(k + 1) − te(k) > ∆Te,

then we can guarantee the following difference bound on the

discrete (sampled) Lyapunov function sequence:

Vk+1 ≤ γ1(d̄η) +
κ

L0

(

γ0(d̄η)− γ1(d̄η)
)

+ κVk

which can be rewritten in the following compact form:

Vk+1 − Vk ≤ −(1− κ)Vk + γ(d̄η) ,

where γ(s) = γ1(s) + κL−1
0 (γ0(s)− γ1(s)) , ∀s ≥ 0.

We can conclude that Vk is a discrete ISS Lyapunov function

for the sampled sequence, with samples taken at the end

of the excitation phases assumed always to last longer than

β−1
1 ln(L0).
Now, we recover the ISS properties for the continuous-time

system by studying the inter-sampling behaviour of V (t). Let

k(t), ∀t > 0 denote the index of the current time-window:

k(t) = k : t ∈
[

td(k), td(k + 1)
)

and consider two positive

constants ∆t1, ∆t2, such that ∆t1 ≤ te(k) − td(k), ∆t2 ≤
td(k+1)−te(k). Between two samples, the Lyapunov function

is bounded by:

V (t) ≤

max
∆t1∈R≥0

{

Vk(t) +
(

1− e−β0∆t1
) (

L0Vk(t) + γ0(d̄η)− Vk(t)
)}

+ max
∆t2∈R≥0

{

γ1(d̄η)− e−β1∆t2
(

γ1(d̄η)− γ0(d̄η)− L0Vk(t)
)}

≤
[

(1 + L0)Vk(t) + γ0(d̄η)
]

+
[

γ1(d̄η) + γ0(d̄η) + L0Vk(t)
]

= (1 + 2L0)Vk(t) + γ1(d̄η) + 2γ0(d̄η) . (41)

If we let k(t) −−−→
t→∞

∞ (i.e., an infinite number of active iden-

tification phases occurs asymptotically or a single excitation

phase lasts indefinitely), then the estimation error in the inter-

sampling times converges to a region whose radius depends

only on the assumed disturbance bound.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

In this subsection, some numerical examples are given to

illustrate the effectiveness of the proposed multi-sinusoidal

estimator. The Forward-Euler discretization method with sam-

pling period Ts = 3× 10−4s is employed in all simulations.

Example 1: In this example, we compare the proposed

method with two techniques available from the literature: the

adaptive observer methods [30], [32] and the parallel AFLL

method [22], all fed by the following signal composed by two

sinusoids:

y(t) = sin (2t) + sin (5t) .

All the methods are initialized with the same initial conditions

ω̂1(0) = 3 and ω̂2(0) = 4. Method [30] is tuned with: γ1 =
γ2 = 8 × 103, k = 1, d2 = 9, d3 = 27, d4 = 27, while

the adaptive observer [32] is tuned with λ0 = λ3 = 4, λ1 =
λ2 = 6, k1 = k2 = 20. The FLL method [22] is set to:

Ks1 = Ks2 = 1, γs1 = 0.3, γs2 = 0.5, ωs1 = 3, ωs2 = 4.

The tuning gains of the proposed method are chosen as: a1 =
0, a2 = −0.5, Ff = −5, Bf = 4.5 , µ = 6, ρ = 0.2, µA =
0.15 with the poles placed at (−2, −0.7, −0.5, −0.2). The

simulation results are reported in Fig.3.
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Fig. 3. Time-behavior of the estimated frequencies obtained by using the
proposed method (blue) compared with the time behaviors of the estimated
frequencies by [30] (green), [22] (red) and [32] (yellow).

It is worth noting from Fig. 3 that all the estimators succeed

in detecting the frequencies in a noise-free scenario, after a

similar transient behavior (throuhg a suitable choice of the

tuning gains), though method[30] is subject to a slightly larger

overshoot.

Let us now consider the input signal y(t) corrupted by

a bounded noise d(t) uniformly distributed in the interval

[−0.25, 0.25]. As shown in Fig. 4, the stationary performance

of methods [30] and [32] deteriorate due to the injection of

the perturbation, while the proposed method and the FLL tool

[22] exhibit a relatively better noise immunity.
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Fig. 4. Time-behavior of the estimated frequencies by using the proposed
method (blue) compared with the time behaviors of the estimated frequencies
by the method [30] (green), [22] (red) and [32] (yellow).

The estimated amplitudes obtained by [22] are compared

with the outcomes of the proposed adaptive observer in Fig. 5

(we only pick two methods that perform better in frequency

estimation). Thanks to the adaptive scheme (11), the proposed

method offers a smoother transitory and improves the steady

state behavior in presence of an external disturbance d(t), at

the cost of a slower convergence speed.
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Fig. 5. Time-behavior of the estimated amplitudes by using the proposed
method (blue) compared to the estimates by the method [22] (red).

Moreover, resorting to the estimated amplitudes and phases,

the input is reconstructed by the next equation

ŷ(t) = Â1(t) sin ϕ̂1(t) + Â2(t) sin ϕ̂2(t).

Some periods of the estimates are plotted for observation

in Figure 6, where the accuracy of the phase estimation is

verified.
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Fig. 6. Estimated sinusoidal signal by the proposed AFP method.

Example 2: In order to evaluate the performance of the

method in presence of a dc offset and of a partial dis-

excitation, consider a biased signal consisting of two sine

waves that turn into a pure single sinusoid after a certain time

instant:

ŷ(t) = 4 sin (3t) +A2(t) sin (2t) + 1 + d(t)

where A2(t) obeys a step-wise change: A2(t) = 3, 0 ≤ t <
120, A2(t) = 0, t ≥ 120 and d(t) is a random noise with the

same characteristics as in the previous example. The behavior

of the proposed estimator is recorded in Figs. 7-9 with the

tuning gains chosen as follows: Ff = −6, Bf = 6, a1 =
−2, a2 = −1, µ = 70, ρ = 0.3, µA = 0.1, δ = 3×10−4, δ =
3×10−5 and the poles’ location [−0.6,−0.5,−0.3,−1,−10].

More specifically, in Fig. 7 the excitation signals

λ1(Φ(Ξ(t))), λ2(Φ(Ξ(t))) are shown together with the cor-

respondent switching signals ψ1(t), ψ2(t), to enhance the fact

that the proposed methodology allows to check in real-time

the excitation level for the single components, thus allowing
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Fig. 7. (a) Excitation level λ1(Φ(Ξ(t))); (b) Excitation level λ2(Φ(Ξ(t)));
(c) Switching signal ψ1(t); (d) Switching signal ψ2(t).
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Fig. 8. Time-behavior of the estimated frequencies by using the proposed
method.
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Fig. 9. Time-behavior of the estimated amplitudes (blue) and the estimated
bias (red) by using the proposed method.

to possibly stop the parameter adaptation in case of poor

excitation.

Moreover, it follows from Fig. 8 and Fig. 9 that all the

initialized parameters including the offset are successfully

estimated. After time t = 120s, the system is characterized

by over-parametrization. The vanishing of the second sinusoid

is captured by the associated amplitude estimate, that fades to

0 eventually, though the frequency estimate is non-zero. Con-

versely, the parameters of the excited sinusoidal components

remain in a neighborhood of the true ones.

Example 3: In the example, we consider a different sce-

nario to show the effectiveness of the proposed method in the

presence of step-changing frequencies. Let

y(t) = sinω1(t)t+ sinω2(t)t+ d(t) .

where ω1(t) and ω2(t) are time-varying frequencies, namely:

ω1(t) = 2 rad/s, 0 ≤ t < 70, ω1(t) = 3 rad/s, t ≥ 70,

ω2(t) = 5 rad/s, 0 ≤ t < 70, ω2(t) = 4.5 rad/s, t ≥ 70.

The disturbance d(t) is a bounded signal with the same

characteristics as in the previous example. The tunable pa-

rameters are given by: a1 = 0, a2 = −0.5, Ff = −5, Bf =
4.5 , µ = 6, ρ = 0.2, µA = 0.15 with the poles placed at

(−2, −0.7, −0.5, −0.2).
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Fig. 10. Time-behavior of the estimated frequencies by using the proposed
method.

It is worth noting from Fig. 10 that the proposed adaptive

observer succeeded in tracking sudden changes of frequency

in a noisy environment.

B. Experimental Results

In order to investigate the behavior of the proposed method

in a real-time digital implementation, we have deployed the

proposed algorithm on a dSpace board connected to a pro-

grammable electrical signal generator (see Fig. 11): Tektronix

AFG3102 dual channel function generator, which produces

the voltage signal

y(t) = 4 sin (7t) + 2 sin (5t)

affected by additive random noise. Fig. 12 shows some periods

of the noisy sinusoidal signal generated by the programmable

source. Computation burden is one of the most important as-

pects of implementation in practice. For the sake of simplicity,

all the dynamic equations of the estimator are discretized by

the forward Euler method, avoiding an excessive load for the

dSpace system. The parameters of the estimator (4th order for

two frequencies) is set to a1 = 0, a2 = −1, Ff = −2, Bf =
1 , µ = 20, ρ = 1, µA = 0.2 with the poles placed at

(−0.7, −0.4, −0.5, −1).
The dSpace board computes the estimates in real-time with

a fixed sampling rate of 10KHz based on the Maltab/Simulink

platform. The results are captured by an oscilloscope with

4 channels respectively allocated to dual frequencies and

amplitudes. The measured signals are then imported in Matlab

for carrying out the post-analysis. As shown in Fig. 13 and 14,

the estimator is capable to gather the frequency and amplitude

contents with great accuracy, despite the unavoidable measure-

ment noise due the limitation of the measurement devices.



Fig. 11. The experimental setup.
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Fig. 12. A real-time noisy signal generated by the electrical signal generator.
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Fig. 13. Real-time frequency detection of a signal made up of two sinusoids
by the proposed method

VI. CONCLUDING REMARKS

In this paper, a new adaptive-observer based technique

[36] is proposed for estimating the amplitudes, frequencies

and phases of the sinusoids composing a multi-sinusoidal

signal, in presence of bias and bounded additive disturbances.

Compared to other adaptive observer methods that estimate the

characteristic polynomial’s coefficients of the signal-generator

system, the proposed algorithm allows for the direct adap-

tation of the squared-frequencies of the components. Thanks

to the excitation-based switching dynamics that disables the
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Fig. 14. Real-time amplitude detection of a single with two frequency
contents by using the proposed method.

adaptation under poor excitation conditions in real-time, the

proposed estimator is proven to be ISS with respect to

bounded disturbances and overparametrization. The tuning

criteria of the adaptation parameters of the estimator are

obtained analytically as a result of the ISS based analysis.

The effectiveness of the proposed algorithm has been shown

by extensive simulations and real-time experiments.

Future research efforts will be devoted to extend the analysis

and the algorithm to the important case of tracking time-

varying changes of the frequencies of the multi-sinusoidal

signals. Moreover, challenging practical use-cases will be dealt

with such as, for example, estimation of vibrations in power

generators and estimation in sea-wave analysis contexts.
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