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Abstract: Chronic non-healing wounds are a clinically important problem in terms of number of
patients and costs.  Wound dressings such as hydrogels, hydrocolloids, polyurethane
films and foams are commonly used to manage these wounds since they tend to
maintain a moist environment which is shown to accelerate re-epithelialization. The
use of antibacterial compounds is important in the management of wound infections.
A novel wound-dressing material based on a blended matrix of the polysaccharides
alginate, hyaluronic acid and Chitlac-silver nanoparticles is here proposed and its
application for wound healing is examined. The manufacturing approach to obtain
membranes is based on gelling, foaming and freeze-casting of alginate, hyaluronic
acid and Chitlac-silver nanoparticles mixtures using calcium ions as the cross-linking
agent. Comprehensive evaluations of the morphology, swelling kinetics, permeability,
mechanical characteristics, cytotoxicity, capability to inhibit metalloproteinases and of
antibacterial property were conducted.  Biological in vitro studies demonstrated that
hyaluronic acid released by the membrane is able to stimulate the wound healing
meanwhile the metal silver exploits an efficient antibacterial activity against both
planktonic bacteria and biofilms.  Overall, the experimental data evidence that the
studied material could be used as antibacterial wound dressing for wound healing
promotion.
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Abstract  

Chronic non-healing wounds are a clinically important problem in terms of number of patients 

and costs.  Wound dressings such as hydrogels, hydrocolloids, polyurethane films and foams 

are commonly used to manage these wounds since they tend to maintain a moist environment 

which is shown to accelerate re-epithelialization. The use of antibacterial compounds is 

important in the management of wound infections. 

A novel wound-dressing material based on a blended matrix of the polysaccharides alginate, 

hyaluronic acid and Chitlac-silver nanoparticles is here proposed and its application for wound 

healing is examined. The manufacturing approach to obtain membranes is based on gelling, 

foaming and freeze-casting of alginate, hyaluronic acid and Chitlac-silver nanoparticles 

mixtures using calcium ions as the cross-linking agent. Comprehensive evaluations of the 

morphology, swelling kinetics, permeability, mechanical characteristics, cytotoxicity, 

capability to inhibit metalloproteinases and of antibacterial property were conducted.  

Biological in vitro studies demonstrated that hyaluronic acid released by the membrane is able 

to stimulate the wound healing meanwhile the metal silver exploits an efficient antibacterial 

activity against both planktonic bacteria and biofilms.  Overall, the experimental data evidence 

that the studied material could be used as antibacterial wound dressing for wound healing 

promotion. 
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1.Introduction 

The cascade of events leading to a non-healing wound is not well defined, although several 

features of the impaired physiological process have been discovered [1]. These wounds are 

characterized by a prolonged inflammation [2, 3], an inhibited proliferative activity [4, 5], a 

defective migration of keratinocytes and a modified fibroblasts function with passage from a 

synthetic phenotype to a degrading and senescent phenotype [6]. Senescent fibroblasts cause 

defects on ExtraCellular Matrix (ECM) integrity because the production of high levels of 

proteolytic enzymes and of decreased levels of MMPs’ inhibitors [7-9]. 

A key problem associated with chronic non-healing wounds is drug-resistant infection because 

the skin barrier functionality has been compromised. The bacteria strains isolated from chronic 

wounds are mainly Staphylococcus, Enterococcus and Pseudomonas [10]. Co-existence of 

aerobic and anaerobic bacteria and biofilm formation can contribute to create a drug-resistance 

infection that escapes the host immune response [11, 12]. 

Although treatments of chronic wounds can differ slightly, the most common ones consist in   

removing damaged and necrotic tissue, reducing tissue exudates and minimizing pain [13-15]. 

Wound dressings such as hydrogels, hydrocolloids, polyurethane films and foams are 

commonly used since they tend to maintain a moist environment that was shown to accelerate 

re-epithelialization and create a physical barrier that reduces bacterial contamination [16, 17]. 

Alginate dressings appear to be particular effective in the management of highly exuding 

wounds. The topical and systemic administration of antibiotics constitutes the main clinical 

practice to prevent and treat bacterial infections in these wounds. 

However, the rising antibiotic-resistance of bacteria requires the use of new broad-spectrum 

antibacterial agents [18]. Silver has been proposed as a bactericidal agent in wound 

management. Wound dressing containing silver in different forms like ions, nanocrystalline 

silver, inorganic complexes and silver sulfadiazine are described in the scientific literature  [19-
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21] and some products are available on the market (e.g. Aquacel® Ag from Convatech, 

Acticoat™ from Smith and Nephew, UrgoTul® Ag/Silver from Urgo Medical). Their 

effectiveness has been ascribed to silver release [22]. 

Travan et al. [23] reported the production of well-dispersed silver nanoparticles (AgNPs) by 

chemical reduction of silver ions in the presence of a lactose-modified chitosan (Chitlac). 

Embedding  the nanocomposite system Chitlac-AgNPs into alginate and chitosan gels results 

in anti-bacterial and non-cytotoxic biomaterials [23-26]. 

Hyaluronic Acid (HA) is a bioactive molecule with a wide range of biological functions such 

as stimulation of cell proliferation, differentiation, migration and angiogenesis [27, 28], 

modulation of inflammation and of the immune cells function [29]. The beneficial effects of 

HA released by alginate-based membranes on viability and migration of human primary 

fibroblasts and keratinocytes have been already demonstrated by Travan et al.[30]. 

In this work, we describe a pliable and porous alginate-based membrane in which Chitlac-

AgNPs and HA are combined together to endow the material with biological properties 

exploitable in the treatment of non-healing wounds. The membrane is produced by foaming, 

gelling and freeze-casting a ternary mixture of alginate, HA and Chitlac-AgNPs; the material 

is characterized in terms of physical-chemical, mechanical and biological properties. This 

material is designed to combine the bioactive properties of HA and the bactericidal activity of 

silver nanoparticles in a foamed alginate matrix. 

 

2.Materials and methods 

2.1Materials 

Chitlac (lactose-modified chitosan, CAS number 85941-43-1) was synthesized starting from 

commercial chitosan from Sigma-Aldrich (degree of acetylation 18%) as reported by Donati et 
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al.. [31]. The composition of Chitlac was determined by means of 1H-NMR and resulted to be: 

glucosamine residues 20%, N-acetyl-glucosamine 18% and 2-(lactit-1-yl)-glucosamine 62%. 

The relative Molecular Weight (MW) of Chitlac is around 1.5x106.  

Alginate from Laminaria hyperborea (Alginate Pronova UP LVG; MW= 120 000; fraction of 

guluronic residues, FG = 0.69; fraction of guluronic diads, FGG = 0.59; number average of G 

residues in G-blocks, NG>1 = 16.3) was kindly provided by Novamatrix/FMC Biopolymer 

(Sandvika, Norway). The sodium hyaluronate (Phylcare Sodium Hyaluronate extra LW) was 

purchased from Biophil Italia Spa (MW ≈ 100 - 400 kDa). 

Hydroxy-methyl-2-propyl cellulose (HMPC, CAS number 9004-65-3, Pharmacoat 603, 

substitution type 2910) was purchased from Shin-Etsu (Tokyo, Japan).  

Calcium carbonate (CaCO3), D-Gluconic acid δ-lactone (GDL), glycerol (ReagentPlus® ≥ 

99.0%), silver nitrate (AgNO3), ascorbic acid, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic 

acid (HEPES), EDTA, Mitomycin C, 2-(N-Morpholino)ethanesulfonic acid (MES), sodium 

chloride (NaCl), sodium bicarbonate (NaHCO3), hydrochloric acid (HCl), MTT formazan 

powder [1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan], glucose, ethanol, Hanks’ 

Balanced Salt solution (HBSS, product code H8264), phosphate buffered saline (PBS), Luria 

Bertani (LB) broth, LB Agar and Brain Heart Infusion (BHI) broth were purchased from Sigma-

Aldrich (Chemical Co. U.S.A). 

Dulbecco’s Modified Eagle’s Medium high glucose and fetal bovine serum were from 

Euroclone (Italy). AlamarBlue® Cell Viability Reagent, Medium106 and Low Serum Growth 

supplement was purchased from Life Technologies. MMP activity assay Kit (Fluorimetric-

Green), MMP-9 and MMP-2 recombinant enzymes were from Abcam®. 
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2.2Synthesis of silver nanoparticles 

Silver nanoparticles were prepared using Chitlac as a stabilizing agent as reported by Travan et 

al. [23]; briefly, Chitlac 4 g/L was dissolved in deionized water and the solution was added with 

AgNO3 2 mM and ascorbic acid 1 mM (final concentrations), incubated overnight at room 

temperature in the dark and subsequently stored at 4°C.  

2.3Manufacturing of membranes  

The membranes were prepared according to the following procedure: alginate (8 g/L) and HA 

(4 g/L) were completely dissolved in water and then HEPES buffer pH 7 to final concentration 

0.01 M was added. Chitlac-AgNPs solution (2 g/L of polymer final concentration), HPMC (4 

g/L) and glycerol (5% V/V) were then added. An in situ gelation of the mixture was obtained 

by the addition of CaCO3 (20 mM) and GDL (40 mM). Immediately after GDL addition, the 

solution was foamed for 30 seconds and its aliquots were cured in tissue culture plates for 24 h 

at room temperature to allow complete gelification. The hydrogels were then step-wise cooled 

by immersion in a liquid cryostat. Temperature was decreased stepwise from 20 to -20 °C by 5 

°C steps with 30 minutes’ intervals; the samples were then freeze-dried.  

2.4Mechanical characterization  

 Mechanical characterization was done according to ASTM D638 standards – by using a 

Universal Testing Machine (Multitest Mecmesine 2.5-i) with load cell of 100 N.  The 

membranes were carved with a cutter into dog-bone shape and gripped with metallic clamps. 

Tensile tests were performed on dry membranes at a crosshead speed of 5 mm/min. Tensile 

stress was calculated dividing the load by the average original cross sectional area in the gage 

length segment of the specimen. Young’s Modulus was calculated as the slope of the linear 

portion in the stress-strain curve, considering the deformation range of 1%-3%. For each 
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formulation, five replicates were used, the data were averaged and standard deviations 

calculated.  

2.5Scanning electron microscopy (SEM) analysis 

Morphological analysis of the freeze-casted membranes was performed with a Leica-

Stereoscan 430i Scanning Electron Microscope. In environmental conditions, membrane 

specimens were sputter-coated with gold prior to observation. 

2.6Swelling tests 

Freeze-casted membranes were cut into pieces of 20 mm of diameter, weighed and immersed 

in 10 mL of HBSS. After 1, 2, 10, 30, 45 and 60 minutes, materials were blotted for 1 minute 

on a filter paper and weighted. The swelling ratio was calculated as the ratio between the weight 

at time X and the initial dry weight at time 0, following the equation:  

 

2.7Water-vapor transmission rate 

For determining the ability of the membranes to transmit vapor, ASTM E96 standard test 

method for Water Vapor Transmission of materials was used.  

Glass bottles with a top closure of 16 mm of diameter were filled with mQ water in order to 

have 2 cm of distance between the water and the sample, closed with a round shaped piece of 

membrane sample of 17 mm of diameter and sealed laterally with Parafilm®. The bottle was 

weighted and incubated for 24 and 48 hours at 32 ± 0.4 °C and 45 ± 2 % humidity. At the end 

of the incubation time the bottle was weighed.  

Commercially available dressings were used as control samples: Connettivina plus® (Fidia 

farmaceutici S.p.A.) and Chitoderm™ (Pietrasanta Pharma S.p.A.). Furthermore, uncapped 

0timeatWeight

timeatWeight
ratioSwelling x
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bottles and bottles capped with Parafilm were used as control of free evaporation and no 

evaporation, respectively. 

Water vapor transmission rate was calculated according to the formula:  

hA

WW
hmgWVTR

24*
)/( 0242 
  

where: 

W24 = weight at 24 hours (in grams),  

W0 = initial weight of the filled and capped bottle (in grams), 

A = area of the top closure of the bottle (in m2). 

 

Four replicates were performed per each sample and the analysis was done by calculating 

average and standard deviation of samples both at 24 and 48 hours. 

2.8Silver release  

For the quantification of released silver, 60 mg of membrane composed of alginate 8 g/L, HA 

4 g/L, Chitlac-AgNPs 2 g/L, HPMC 4 g/L, glycerol 5 %, CaCO3 20 mM, and GDL 40 mM was 

immersed in 3 mL of HBSS for 2, 24, 72 hours and 7 days at 37 °C. At the defined time the 

membrane was removed from HBSS solution to which 0.5 mL NH4OH 1 N solution was added 

in order to solubilize silver precipitates (release solution). The membrane was washed in 3 mL 

of HBSS for 2 minutes and, after membrane removing, 0.5 mL NH4OH 1 N was added to the 

solution. Both release solution and washing solution were used for the measurement. 

Membranes without Chitlac-AgNPs (45 mg) and composed of alginate 8 g/L, HA 4 g/L, HPMC 

4 g/L, glycerol 5%, CaCO3 20 mM, GDL 40 mM) were used as control samples.  

 Measurements were performed by Electro-Thermal Atomic Absorption Spectrometry 

(ETAAS) with Zeeman background correction. A Thermo M series AA spectrometer equipped 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 

 

with a GF95Z Zeeman Graphite Furnace and a FS95 Furnace Autosampler (Thermo Electron 

Corporation, Cambridge, UK) was used for analysis.  

The obtained values have been compared with a calibration curve calculated with a standard 

solution of silver (Silver ICP/DCP-Sigma Aldrich). The limit of detection (LOD) at the 

analytical wavelength of 328.1 nm was 0.5 μg/L and the precision of the measurements as 

repeatability (RSD %) for the analysis was always less than 5%. 

Data analysis was performed by summing the silver found in the release solution and the 

washing solution. The values were express as percentage of silver released in comparison with 

the total amount of silver contained in the membrane (148 µg/60 mg of membrane). 

2.9Antimicrobial tests 

To assess the antimicrobial activity three different bacterial strains were used: Staphylococcus 

aureus (ATCC® 25923™), Staphylococcus epidermidis (ATCC® 12228™) and Pseudomonas 

aeruginosa (ATCC® 27853™).  Two different protocols were employed: bacterial growth 

inhibition assay and biofilm eradication assay. 

Bacterial growth inhibition assay: 

Membrane samples were cut into pieces of 40 mg and sterilized under UV rays. Bacteria were 

inoculated in Luria Broth medium (LB) and incubated for 16 hours at 37 °C.  After 16 h, 500 

µL of bacterial suspension was diluted in 10 mL of LB and grown up for 120 min at 37 °C in 

order to restore an exponential growth phase. The optical density at 600 nm was measured in 

order to assess bacterial concentration. Bacteria were diluted to 5x106 CFU/mL in 10% (V/V) 

LB in PBS and 1 mL of bacteria was added to each sample and incubated for 24 hours at 37°C. 

Tests were carried out in shaking condition (140 rpm) to optimize the contact between bacteria 

and membranes. At the end of the incubation time, bacterial suspensions were diluted in PBS 

and each suspension was spread on LB agar. After overnight incubation at 37 °C, the colony 
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forming units (CFU) were counted. A suspension of bacteria grown in liquid medium was used 

as control.  

Biofilm eradication assay:  

S. aureus and P. aeruginosa were inoculated in Brain Heart Infusion (BHI) broth plus 3 % w/V 

sucrose and incubated for 16 hours at 37 °C. Bacteria were then diluted 1:100 in the same broth 

and seeded (300 μL/well) into 24-well plates for 48 hours in static conditions at 37 °C. Broth 

was then removed and biofilm was carefully rinsed twice with 100 μL of sterile PBS in order 

to remove non-adherent cells. 300 μL of PBS were added to each well and circular specimens 

of membranes (40 mg) were deposited on the bacterial layer and incubated for 24 hours. MTT 

assay was then performed according to Brambilla et al. (Brambilla et al., 2012). Briefly, MTT 

stock solution was prepared by dissolving 5 mg/mL of MTT powder in PBS and sterilized by 

filtration. Membranes and PBS were gently removed from the plates and each well was 

carefully rinsed three times with 100 μL of PBS. 200 µL of MTT solution (prepared by mixing 

0.5 mL of MTT stock solution and 4.5 mL of sterile PBS) were placed into each well and the 

plates were incubated for 3 h under lightproof conditions at 37 °C. The MTT solution was then 

gently removed and formazan crystals were dissolved by adding 200 µL of DMSO to each well. 

Plates were stored for 1 h under lightproof conditions at room temperature, then 80 μL of the 

solution were transferred into the wells of a 96-well plate and, absorbance was measured using 

a spectrophotometer (Infinite M200 PRO NanoQuant, Tecan) at a wavelength of 550 nm. 

Outcomes were expressed as optical density (O.D.) units. 

For confocal laser scanning microscopy (LSCM) analyses of biofilm, bacteria were seeded on 

sterile 13 mm tissue culture coverslips (Sarstedt, U.S.A.) placed inside a 24-well plate. After 

biofilm growth and its treatment with membranes as described above, FilmTracer Live/Dead 

biofilm viability kit (Invitrogen™) was used for biofilm staining following the manufacture’s 

protocol. Images were acquired on a Nikon Eclipse C1si confocal laser-scanning microscope 
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with a Nikon Plan Fluor 20X as objective. Resulting stacks of images were analyzed using 

ImageJ software. The ratio between red and green signals was calculated as: 



















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d
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Green

d
Sample

rateNormalized
Re

Re

 

where: 

Red = means grey value of the red channel 

Green = means grey value of the green channel 

 

2.10Cell culture 

Primary human dermal fibroblasts (HDFa) were purchased from GibcoTM. Cells were grown in 

Medium 106 supplemented with Low Serum Growth supplement, 100 U/mL penicillin, and 

100 μg/mL streptomycin.  

Human keratinocyte cell line HaCaT (kindly gifted by Dr. Chiara Florio, University of Trieste) 

was grown in Dulbecco’s Modified Eagle’s Medium high glucose, 10% heat-inactivated fetal 

bovine serum, 100 U/mL penicillin, 100 μg/mL streptomycin and 2 mM L-glutamine.  Cells 

were maintained at 37 °C in a humidified, 5 % CO2 environment. 

2.11Cytotoxicity test  

Evaluation of cellular toxicity of membranes was performed according to ISO10993-5 

specifications by direct-contact test.  

Membranes were cut using biopsy punches into cylinders of 4 mm of diameter and sterilized 

under UV-rays.  
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HDFa and HaCaT cells were seeded in 24-well plates at a density of 2x104 cells per well and 

16 hours later, test samples were placed directly on the cell layer for 24 and 72 hours. Samples 

were then removed, cells were washed in PBS and 250µL of Alamar Blue dye diluted 1:10 in 

culture medium was added and incubated for 4 hours. 100 µL of Alamar solution were 

transferred onto a 96-well microtiter plate and fluorescence was measured with a microplate 

reader (Tecan Infinite® M100 Pro) at ex 544nm / em 616 nm. As positive control material, 

polyurethane films (PU) containing 0.25% zinc dibuthyldithiocarbamate (ZDBC) (6 mm disks) 

were used (Hatano Research Institute / Food and Drug Safety Center Reference Material Office 

- Japan). As a negative control material, polystyrene sheets (PS) (6 mm disks) were used (Wako 

Pure Chemical Industries).  

2.12Scratch wound healing assay 

UV-sterilized membrane samples were placed in Dulbecco’s modified Eagle’s medium, FBS 

10%, penicillin 100 U mL-1, streptomycin 100 μg mL-1 and L-glutamine 2 mM for 24 h at      

37 °C (extract medium). The ratio between sample weight and medium volume was 15 mg/mL 

for the membrane without Chitlac-AgNPs and 20 mg/mL for the membrane with Chitlac (ChM 

membranes) and with Chitlac-AgNPs (SM membranes).  

HDFa and HaCaT cells were seeded in 6-well plates at a density of 2.5x105 and 3.5 x105 cells, 

respectively, and incubated at 37 °C until reaching a confluent monolayer. Cells were then 

treated with extract medium. Each treatment was performed in duplicate. 24 hours after 

treatment cell layers were wounded by scratching with a 200 µl pipette tip and the scratch 

closure was followed over time through an Olympus CK2 Inverted Microscope (Phase 

Condenser ULWCD 0.3) equipped with a camera Canon PowerShot A630. The images of the 

scratch were acquired over time to monitor the wound closure. The analysis was performed 
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using software Image J: the region of interest (ROI) was outlined per each scratch and the 

percentage of closure over time was plotted. For each treatment, eight images were analyzed.  

2.13Matrix Metalloproteinases activity assay 

MMPs activity was determined by using the MMP Activity Assay Kit following the 

manufacture’s protocol. Recombinant MMP-2 and MMP-9 enzymes were activated by 

treatment with 1 mM 4-Aminophenylmecuric Acetate (APMA) for 1 h and 2 h, respectively 

and used in the reaction mixture at the concentration 1 U/L.   

For MMPs extraction, HDFa and HaCaT were lysed in PBS by freeze-thaw cycles using a dry 

ice/ethanol bath and a water bath at 37°C. MMP enzymes present in HDFa and HaCaT lysates 

were activated with 1 mM APMA for 3 hours at 37 °C.  

Chitlac and Chitlac-AgNPs were pre-incubated 20 minutes at RT with recombinant MMPs or 

cell lysates before addition of the substrate solution supplied by the manufacturer of the kit. 

After 1 h of incubation with substrate at RT, endpoint measurement was performed at λex 490 

nm and λem 525 nm with a Tecan Infinite® M100 Pro plate reader.  

 

 

3. Results  

 

3.1Material preparation and characterization 

The employed method for the manufacturing of the membranes consists of gelling a foamed 

solution composed of alginate, HA, a colloidal suspension of antimicrobial silver nanoparticles 

coordinated by the polymer Chitlac (Chitlac-AgNPs), HPMC and glycerol (as the plasticizer), 

followed by freeze casting the resulting hydrogel (Figure 1). The experimental conditions to 

obtain the miscibility of the oppositely charged polysaccharides (namely Chitlac, alginate and 
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HA), avoiding polymer phase separation, have been already explored in previous studies of this 

group [32]. 

The hydrogel was formed by the use of Ca2+ ions (derived from CaCO3 dissociation by 

acidification of the solution) which homogeneously cross-link the alginate chains.  

After freeze-drying, the gel became a soft, flexible and spongy membrane (Figure 1). The 

orange-brown color is produced by the combination of the specific size (i.e. 35 nm) and of the 

spectroscopic properties of the silver nanoparticles. It should be noticed that, owing to the 

procecure devised, such material can be easily produced with the desired dimensions or cut in 

different shapes to match the wound shape and size. 

For the sake of clarity, the resulting membranes will be named in the manuscript as “SM” when 

containing silver (in the form of the Chitlac-AgNPs system), as “ChM” when containing Chitlac 

(without silver nanoparticles), and as “CM” when containing neither Chitlac nor silver 

nanoparticles. 

The foamed membrane was analyzed by electron microscopy in the dry state both as top view 

and as cross-section. Figure 2 reports the SEM images of SM and CM membranes. In both 

cases, the cross section shows a highly porous structure while the top view shows a smooth 

surface. 

An ideal wound dressing material must have good tensile strength because the dressing should 

not be damaged by handling procedures and must withstand the stress resulting from skin 

movements without rupturing. 

The stiffness (Young’s Modulus), the resistance (stress at break) and the deformation (strain at 

break) of the material were then studied by uniaxial tensile tests; the results are reported in 

Figure 3. 

The results revealed that, in the presence of Chitlac-AgNPs (SM), the material displays lower 

strength and deformation at break as compared with the membrane without Chitlac-AgNPs 
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(CM): this could be reasonably ascribed to the destabilizing role of the polycation Chitlac with 

respect to the alginate cross-linked matrix. However, in the range of small (elastic) 

deformations, the Young’s modulus of SM and CM membranes are comparable.  

3.2Reswelling and water vapor transmission rate studies 

The reswelling behavior of SM was studied in HBSS buffer. Figure 4a reports the liquid uptake 

expressed as a variation over time of the normalized weight (weight of the membrane at tx over 

weight of the dry membrane). It can be observed that within the first minute of soaking the 

material weight underwent a six-fold increase.   

After the initial liquids uptake, the slow decrease of membrane weight can be ascribed to the 

slow release of HA, in line with the data previously reported by Travan et al. (2016) [30]. 

WVTR (Water Vapor Transmission Rate) was measured for the SM membrane, as well as for 

the ChM and CM membranes. Their thickness was 3 mm. WVTR is defined as the transmission 

of the water vapor per unit time through a unit area of the tested material. Two commercially 

available membranes were used as control samples: Connettivina plus® (Fidia farmaceutici 

S.p.A.) is a highly permeable gauze soaked with hyaluronic acid while Chitoderm™ 

(Pietrasanta Pharma S.p.A.) is a chitosan-containing pad with a polyurethane layer which limits 

water permeability. The results are reported in Figure 4b.  

The SM membrane has a WVTR (78.5 ± 2.6 g/m2h) comparable with that of ChM and CM 

membranes. Moreover, the WVTR of these membranes are comparable with the WVTR of 

Connettivina plus®. As expected, the WVTR of Chitoderm™ is much lower (20.8 ± 1.2 g/m2h) 

than that of the other samples.  

3.3Silver release studies 

The amount of silver released from the membranes was quantified by Electro-Thermal Atomic 

Absorption Spectrometry (ETAAS). 
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A progressive, albeit very low, release of silver can be seen over time (Figure 5). The silver 

released from membranes is only a minimal fraction of the total content of silver: after one 

week, only 0.9% of the total silver is leaked, indicating that most of the metal is firmly 

entrapped inside the material, which represents a potential reservoir for a long-term slow release 

of the antimicrobial compound. Similar results were described also by Travan et al. for alginate 

hydrogels containing Chitlac-AgNPs [23]. It is noteworthy to observe that the capability of the 

polymeric matrix to stabilize silver particles is an important feature to avoid  an excessively 

fast release of silver in the physiological environment, thus limiting potential toxic effects 

towards eukaryotic cells [23]. 

 

3.4 Antibacterial activity against planktonic bacteria and mature biofilms 

The antimicrobial activity on planktonic bacteria was tested on Staphylococcus aureus, 

Staphylococcus epidermidis and Pseudomonas aeruginosa by incubating the bacterial 

suspension with the membranes for 24 hours. The Colony Forming Units per milliliter (Log 

CFU mL-1) calculated for each sample after 24 hours are reported in Figure 6.  

In Figure 6 it can be observed that the SM membrane induces a significant decrease of CFUs 

for all the bacterial strains tested, in comparison with the growth of bacteria treated with the 

CM membrane. More specifically, there is a decrease of 3.5, 5.6 and 4.8 Log CFU mL-1 for S. 

aureus, S. epidermidis, P. aeruginosa, respectively.  

There is a significant difference also between the bacteria in plain broth and the bacteria treated 

with the SM membrane. In detail, there is a decrease of 3.1, 3.5 and 4.8 Log CFU mL-1 for        

S. aureus, S. epidermidis, and P. aeruginosa, respectively.  

Bacteria growing into biofilms are metabolically very different from planktonic bacteria and 

often display a high antibiotic resistance [11]. Antibacterial tests on mature biofilms have been 

then performed: Figure 7 pointed out the results obtained after 24 h of treatment of P. 
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aeruginosa and S. aureus biofilms with the antibacterial membrane. In both cases, the 

antibacterial activity is preserved even when bacteria grow into biofilms. The optical density 

after MTT assay is twice lower for biofilms treated with the membrane containing silver 

compared with the control membrane. 

To confirm the data obtained via MTT assay, bacterial viability in the biofilms was visualized 

by fluorescence confocal microscope after treatment with the Live/Dead staining assay. 

Biofilms were grown into glass coverslips and treated for 24 hours with the membranes. After 

Live/Dead staining, images were acquired and analyzed calculating the ratio between the red 

signals (dead cells) and the green signal (living cells) both for the treated sample and the non-

treated sample as shown in Figure 8. 

The Live/Dead assay confirmed data from MTT assay: in the biofilm treated with the silver-

containing membrane, there is a significant increase of the ratio between red and green signal 

compared to the non-treated biofilms. The difference is definitely higher for S. aureus biofilms 

(ratio value = 3.2) than for P. aeruginosa (ratio value = 1.85).  

3.5 Viability of cells treated with membranes  

In order to assess the in vitro biocompatibility of SM membranes for dermatological 

applications, their toxicity was tested by the Alamar Blue assay using human primary 

fibroblasts (HDFa) and a keratinocyte cell line (HaCaT). Sterilized membranes were applied 

by direct contact on the cells and the analysis were performed after 24 and 72 hours. As a 

positive control of cell death, cells treated with a toxic material (Pb/Zn) were considered. Figure 

9 shows the results on HDFa and HaCaT cells, respectively.  

The result pointed out that 24 and 72 h after treatment, the products released from SM sterilized 

membranes did not affect cell viability. The growth rate of the cells treated with the SM 

membranes is not significantly different from that of the cells in contact with the membranes 
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without silver (ChM) and in contact with the negative control material (PS). On the contrary, a 

dramatic and significant decrease of growth rate is observed for the cells treated with the 

positive control material (Pb/Zn).   

3.6Scratch test on cells treated with components released from membranes  

Travan et al. demonstrated that HA released from the alginate matrix during the first hours of 

soaking in physiological solutions promotes in vitro fibroblast proliferation and migration [30]. 

To confirm also for the SM membranes the wound healing effect in vitro, scratch tests were 

performed on both keratinocytes (HaCaT) and fibroblasts (HDFa) treated with the components 

released from membranes in culture medium. Confluent monolayers of cells were scratched as 

described in the Methods and then allowed to re-epithelialize for 48 h at 37 °C. The percentage 

of scratch closure over time is shown in Figure 10 for both HDFa and HaCaT cells. The 

behavior of the cells treated with the extracts from SM and ChM membranes can be considered 

as comparable, indicating that the presence of the metal does not impair the positive biological 

response. For HaCaT cells, after 24 hours from the treatment, there is a significant difference 

between cells treated with the membrane containing Ag and the non-treated cells (75% vs. 56% 

of gap closure, respectively, with p-value < 0.05). Also HDFa cells, exposed to SM membranes, 

showed significantly improved scratch closure (p-value < 0.01) after 24 and 30 hours in 

comparison with the control. In former case the gap closure was 60% after 24 hours and almost 

100% after 32 hours, while in the control the gap closure was 40% and 87% at 24 and 32 hours, 

respectively. 

Overall, the data indicates that HA released from the SM membrane can support the 

physiological healing process. 
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3.7 MMPs activity assay  

The influence of Chitlac-AgNPs on MMPs activity was then studied both on total MMPs 

extracted from cells and on purified MMP-2 and MMP-9 enzymes (Figure 11). 

Chitlac-AgNPs are more efficient to influence MMP-2 activity rather than MMP-9 and they 

display an inhibition efficacy more pronounced than that exerted by Chitlac alone, used as 

control.   

 

4.Discussion 

The biomaterial proposed in this work is based on the modification and implementation of a 

protocol used for the preparation of alginate/hyaluronic acid membranes recently published by 

some authors of this paper [30];  that material was designed to release HA, as a bioactive 

polysaccharide, from the 3D solid-like architecture of the calcium-alginate structure to promote 

the healing of tissues. 

Based on the above mentioned paper, the present study is aimed at implementing such 

membranes with additional bioactive components for the specific management of infected non-

healing wounds. The resulting reticulated matrix was meant to provide the physical structure 

for the entrapment of silver nanoparticles coordinated by Chitlac and the release of the bioactive 

component HA upon contact with the target tissue.  

The process of foaming aims at creating a spongy structure to enable a high uptake of water 

and to increase the extension of the bactericidal surface.  

HPMC was chosen as foaming agent because of its biocompatibility and its use in the 

preparation of porous alginate-based matrices [33]. The concentration of HPMC was selected 

by testing cell viability at different concentrations of HPMC inside the membranes (data not 

shown). The HA here used (MW 240 000) was previously selected between a range of HA with 
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different molecular weights. HA 240 000 was shown to stimulate proliferation of fibroblasts 

and keratinocytes and migration of fibroblasts [30].  

All the three polysaccharides (alginate, hyaluronic acid and Chitlac) used for membrane 

preparation are very hydrophilic polymers because of the presence of a large number of 

hydrophilic groups such as hydroxyl, carboxyl and amino groups. It was so not unexpected to 

observe that in water solution the polymeric structure rapidly absorbed a high amount of liquid 

(Figure 4a). Hydrophilic dressings able to efficiently absorb large amount of fluids have been 

shown to possess a key role in the treatment of highly exudative wounds. A wound requires a 

moist but not wet environment for proper functioning of the cells responsible for wound healing 

and to avoid wound margin maceration [34]. Moreover, the absorption of the wound fluids by 

the dressing promotes the entrapment of colonizing bacteria inside the membrane matrix where 

antibacterial agents like silver nanoparticles can exert their bactericidal activity.   

Besides the capability of swelling in contact with fluids, an important requisite of a wound 

dressing is a suitable water vapor transmission rate (WVTR), adequate to maintain a moist 

environment, without risking dehydration or exudates accumulation. The biomaterial should 

keep a balance between presence of liquid and water evaporation [35].  

Commercial dressings have been shown to cover a very large spectrum of WVTR, ranging from 

90 (Dermiflex®, Johnson&Johnson) to 3350 g/m2 /day (Beschitin®, Unitika). Clearly, the 

WVTR is related to the structural properties (thickness, porosity) of the dressing as well as to 

the chemical composition of the material. However, WVTR within the range 2000 – 2500 

g/m2day have been claimed by Queen et al. as the ideal rate (half of that of a granulating wound) 

that a wound dressing should possess to provide adequate level of moisture without risking 

wound dehydration  [36]. The SM membrane described in this paper displays an average 

WVTR of 1920 g/m2/day (Figure 4b), which matches with reasonable approximation the 

WVTR value range indicated by Queen et al.[36]. 
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The silver-release test (Figure 5) points out the successful entrapment of the nanoparticles 

inside the membrane and the low release of free silver ions, evidenced also by the lack of 

cytotoxicity of the material (Figure 9). The potential cytotoxicity of silver, both as ions or 

nanoparticles, is a big concern to be given much attention when this metal is used for its 

antibacterial features. Despite the large use of this compound in silver dressing, delivering of 

the metal into tissues can result in toxic effects on growing keratinocytes and fibroblasts. 

Paddle-Ledinek et al. reported cytotoxicity of extracts of some commercial silver-containing 

dressings (Acticoat, Aquacel-Ag, Contreet-H, and Avance) when exposed to keratinocyte 

cultures [37]. 

Besides chronic infections, excess of proteolytic enzymes is one of the major issues of the 

chronic non-healing wound since it shifts the balance of matrix synthesis towards its 

degradation, so impairing the granulation tissue formation. MMPs activity in chronic wounds 

is thirty times higher than the MMPs activity in acute wounds [38]. In particular, elevated levels 

of MMP-2 and MMP-9 have been found in chronic wounds [38-40]. Selective inhibition of 

MMPs at the wound site by a dressing is considered an efficient way in achieving a fast tissue 

healing [41]. The, albeit weak, inhibiting effects that Chitlac exerts on MMPs is not surprising 

since also chitosan is described to reduce peptidolytic activity of these enzymes, in particular 

of MMP2. A possible mechanism for the reduction of the activity of MMPs by chitosan is a 

direct molecular interaction between the enzyme and the polysaccharide [42, 43]. 

It should be stressed that our findings show a quantifiable higher inhibitory effect of Chitlac-

AgNPs on MMPs with respect to Chitlac alone (see Figure 11): in fact, in the former case, the 

presence of the metal seems to play a leading role to reduce the proteinase activity. Indeed, the 

use of silver-containing wound care products has been already reported to reduce MMP activity 

both in vitro and in vivo, although the mechanism for remains unclear. One explanation may 
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be the displacement of zinc ions by silver (ions) from the proteolytic enzyme, [44, 45] the Ag+ 

ions deriving from the nanoparticle reservoir. 

 

5. Conclusions 

Chronic non-healing wounds are a great clinical problem that is expected to become more 

serious due to the increasing duration of life and thus the increasing number of people affected 

by diseases correlated with chronic non-healing wounds. Despite a number of products in the 

form of membranes, gels and pomades are available in the market [46], there is continuous need 

of biocompatible biomaterials with a wide spectrum of antimicrobial efficacy and with the 

capability to prevent biofilm formation, while at the same time stimulating wound closure.  

In this work, a wound dressing material based on alginate, hyaluronan and Chitlac-nAg was 

successfully designed and manufactured in the form of a pliable membrane by using a technical 

procedure that could be easily scaled-up.  

The membrane was shown to support in vitro the healing process and to be effective against 

both planktonic bacteria and bacterial biofilms. This feature makes them appealing for the 

prevention of bacteria colonization as well as for the treatment of infected sites. Moreover, the 

component Chitlac-AgNPs was demonstrated to inhibit in vitro the proteolytic activity of 

MMPs, whose overexpression is shown to impair the recommencement of healing in 

recalcitrant wounds. 

In vitro biological studies on the biocompatibility of the membrane on a keratinocyte cell line 

and on primary fibroblasts showed that the membranes are non-cytotoxic. This behavior can be 

ascribed to the very low rate of silver release over time due to the effective nanoparticles 

stabilization within the polysaccharide network. 

The reswelling kinetic studies demonstrated that the biomaterial is highly hygroscopic, an 

important feature in the perspective to remove excessive exudates containing bacteria nutrients 
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from the wound beds. At the same time, the membranes possess a good water-vapor 

transmission rate (WVTR) value, which could ensure a moist environment on the wound beds, 

without risking dehydration or exudates accumulation. The membranes are flexible and can be 

easily cut into the desired shape. Overall, this novel biomaterial appears particularly suited to 

contrast the drawbacks of chronic non-healing wounds and so to support tissue regeneration.  
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Figure captions 

Fig.1 Sketch of the procedure to obtain foamed membranes containing Chitlac-AgNPs (left) 

and image of a membrane with cut edge where the internal spongy structure and the flexibility 

of the material can be observed (right) 

Fig. 2 SEM images of SM (lower figures) and CM membranes (upper figures) 

Fig. 3 Mechanical properties of the foamed membranes (SM and CM membranes): Young’s 

modulus (left), stress at break (center) and strain at break (right). Data are expressed as mean ± 

st.dv. with n = 5 

Fig. 4  a) Reswelling behavior of SM membranes. Data are expressed as mean ± st.dv. with n 

= 4. b) WVTR of membranes and of commercial samples (Connettivina plus® and 

Chitoderm™). No capped bottles and bottles capped with parafilm were used as control for free 

evaporation and no evaporation. Data are expressed as mean ± st.dv. with n = 6 

Fig. 5 Silver release from the SM membrane over time. Data are expressed as percentage of the 

total silver contained into the membrane. Data are mean ± st.dv. with n = 3 

Fig. 6 Growth rate expressed as Log CFU mL-1 of S. aureus (a), S.epidermidis (b) and P. 

aeruginosa (c) following 24 h of treatment with SM membranes, ChM membrane and grown 

in plain culture medium.  Data are expressed as mean ± st.dv. with n = 3. For statistical analysis, 

samples treated with SM membrane were compared with samples treated with ChM membrane. 

In the Student’s test *** indicate p < 0.001 

Fig. 7 Viable biomass MTT assay expressed as O.D. at 550 nm of P. aeruginosa (a) and S. 

aureus (b) following 24 h of treatment with SM and ChM membranes. For statistical analysis, 

samples treated with SM membrane were compared to samples treated with ChM sample. In 

the Student’s test * indicate p < 0.1; ** indicate p < 0.05 
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Fig. 8 Live/Dead assay for P. aeruginosa (a) and S. aureus (b) biofilms treated with SM 

membranes: the graphs show the ratio between the red (propidium iodide, indicating dead cells) 

and the green signal (Syto9, indicating living cells) normalized over the non-treated sample 

Fig. 9 In vitro cytoxicity tests of HDFa (left) and HaCaT cells (right) treated with membranes 

by direct contact. PS represents the negative control and ZDBC the positive control. Data are 

expressed as mean ± st.dv. with n = 4. For statistical analysis (Student’s test), samples treated 

with SM and ChM membrane were compared to samples treated with negative control (PS) 

Fig. 10 Scratch assay using human dermal fibroblasts (HDFa) and keratinocytes cells (HaCaT) 

cultured in absence and presence of extracts from ChM and SM membranes. Data represent 

means ± st.dv. Statistically significant differences were calculated with a paired student t-test 

with n=8; *p<0.05, **p<0.01 

Fig. 11  MMPs activity in presence of Chitlac-AgNPs (ChAg) or Chitlac (Ch): (a) effects on 

MMP-2; (b) Effects on MMP-9; (c) Effects on MMPs extracted from fibroblasts (HDFa cells); 

and (d) effects on MMPs extracted from keratinocytes (HaCaT cells). Data are expressed as 

mean ± st.dv. with n=4. Ch = Chitlac, ChAg = Chitlac-AgNPs. The percentage of enzyme 

inhibition is calculated in comparison with the enzyme activity in the absence of polymers. 

Statistically significant differences were calculated with a paired student t-test with *p<0.05, 

**p<0.01 
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