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Abstract: Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal
lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and
synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle
and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they
have important alternative functions that are not related to their classical roles in NMJ. In this review,
we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells
as an experimental model to study functional innervation in vitro. We describe how this heterologous
rat-human model, which enables experimentation on highly developed contracting human myotubes,
offers unique opportunities for AChE and agrin research. We then highlight innovative approaches
that were used to address salient questions regarding expression and alternative functions of AChE
and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared
with those obtained in other models in the context of general advances in the field of AChE and
agrin neurobiology.

Keywords: acetylcholinesterase; in vitro innervation; human muscle; neuromuscular junction;
co-cultures; agrin; apoptosis

1. Introduction

Acetylcholineesterase (AChE) and agrin, a heparan sulfate proteoglycan, are important for
termination of neuromuscular transmission and maintenance of the neuromuscular junction (NMJ),
respectively [1–6]. In addition to these canonical roles in NMJ, AChE and agrin have alternative
functions that are not related to NMJ and cholinergic transmission [7–11]. Canonical and alternative
roles of AChE and agrin have been investigated using many different in vitro and in vivo experimental
approaches. Comprehensive overview of all these approaches is beyond the scope of this review,
and here we focus solely on the challenges of investigating molecular mechanisms underlying
expression and function of AChE and agrin in human skeletal muscle. Indeed, the major challenge for
this type of studies is a lack of suitable human models.

First of all, aside from investigating effects of pharmacological agents that affect neuromuscular
transmission [12], in vivo studies on human NMJ, especially its synaptogenesis, are almost impossible
to conduct. Similarly, ex vivo models, such as preparations of the rat phrenic nerve and the
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diaphragm muscle, which can be used to assess different aspects of NMJ function [13–15], or isolated
strips of human skeletal muscles, which yielded important insights into muscle metabolism [16–20],
are not easily adaptable for experimental manipulation of human NMJ. Furthermore, under most
circumstances, a scarcity of human embryonic cells and tissues and ethical concerns regarding their
use also prevents approaches that enable the investigation of NMJ synaptogenesis and function using
animal embryonic material. In addition, unlike various skeletal muscle cells of animal origin, aneurally
cultured human cells, the most widely used in vitro model to study human skeletal muscle [21],
under standard conditions usually do not spontaneously contract or form differentiated postsynaptic
components of NMJ [22,23].

An elegant solution to these challenges is provided by co-culture with embryonic rat spinal cord,
which enables establishment of functional innervation of human skeletal muscle cells in vitro [23–25].
The model of in vitro innervation enables examination of NMJ synaptogenesis as well as different
aspects of AChE and agrin function in contracting human skeletal muscle cells that possess functional
NMJs. In this review, we provide description of biological characteristics and methodological aspects
of this model and discuss them in the context of AChE and agrin neurobiology.

2. The Experimental Model of the in Vitro Innervated Human Skeletal Muscle Cells

2.1. The Development of Skeletal Muscle is More Nerve-Dependent in Humans than in Animal Species Used in
Skeletal Muscle Research

Most of the research in the field of medicine has been performed on various animal models with
the expectation that the obtained results could be extrapolated, at least to some extent, to humans.
Among several limitations of these extrapolations are the biological differences between human skeletal
muscle and the skeletal muscles of frogs, chicks and rodents, which are the most frequently used
animal models in skeletal muscle research. These differences are evident already at the level of primary
skeletal muscle cell cultures. Neuromuscular transmission represents the only physiological path
to trigger contractions of skeletal muscle fibers under in vivo conditions. At the beginning we will
therefore describe the development of postsynaptic components of NMJ and contractile properties in
aneurally cultured human skeletal muscle cells in comparison with animal cells.

2.1.1. Postsynaptic NMJ Components in Aneurally Cultured Human and Animal Skeletal Muscle Cells

Under in vivo conditions AChE is bound to the basal lamina of NMJ and nicotinic acetylcholine
(ACh) receptors (nAChRs) are concentrated in the postsynaptic membrane of NMJ [2,3,26]. Aneurally
cultured human skeletal muscle cells express AChE [27] and nAChRs diffusely [23–25]. Furthermore,
in contrast to cultured embryonic animal myotubes [28], human myotubes [24] lack basal lamina;
i.e., the structure, which is not only a major component of the NMJ synaptic cleft, but also provides
binding sites for AChE and agrin [2,29]. Skeletal muscle cells of animal origin display a more
advanced level of postsynaptic organization than human cells. For instance, despite the absence
of neurons, clusters with high concentration of nAChRs are often present in aneurally cultured
embryonic chick [30,31], rat [32] and mouse [33] myotubes.

Sanes’s group showed that postsynaptic differentiation of NMJ in C2C12 myotubes, a widely
used mouse skeletal muscle cell line, is nerve-independent [34]. In order to get a more detailed
insight into species-specific differences in NMJ synaptogenesis, we examined whether postsynaptic
differentiation of NMJ in cultured human myotubes can also be induced in the absence of motor
neurons. We compared effects of laminin and gelatin coating on formation of differentiated pretzel-like
postsynaptic clusters of nAChRs in aneural C2C12 and human myotubes [35]. Consistent with the
results from Sanes’s group [34], we found that laminin coating significantly increased the number
of highly differentiated nAChR clusters in aneurally cultured C2C12 myotubes. However, we also
found that the presence of laminin was not necessary for formation of differentiated nAChR clusters,
since they formed also in C2C12 myotubes grown on gelatin coating. Conversely, in cultured
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human myotubes laminin or gelatin coating was unable to promote formation of nAChR clusters.
Indeed, human myotubes displayed well-developed nAChR clusters only once innervated by neurites
that extended from the rat embryonic spinal cord (see description of the co-culture model below).
Furthermore, nAChR clusters developed exclusively in the areas where neurites made contact with
myotubes [35], underscoring the role of innervation in postsynaptic differentiation of NMJ in human
skeletal muscle cells.

Our experiments clearly demonstrate that innervation is crucial for nAChR clustering in human
myotubes. Formation of nAChR clusters as well as other processes involved in postsynaptic
differentiation of NMJ require activation of the muscle-specific kinase (MuSK) [36–38]. Notably, MuSK
mRNA expression levels are ~1000-fold higher in C2C12 myotubes than in human myotubes [35].
Given that overexpression of MuSK can lead to its spontaneous activation [39], these data suggest
a mechanism whereby spontaneous MuSK activity in C2C12 myotubes is sufficiently high to induce
nAChR clustering in the absence of additional exogenous stimuli. In aneural C2C12 myotubes, laminin
therefore acts primarily as facilitator or enhancer of this intrinsically active differentiation process.
Indeed, laminin does not stimulate nAChR clusters in muscles cells that lack MuSK or express mutant
MuSK without its extracellular domain [34,40]. Similarly, nAChR clusters do not form despite the
presence of laminin in C2C12 cells lacking rapsyn [34], an intracellular membrane protein that mediates
effects of MuSK on AChR clustering [1,41]. We may therefore surmise that expression and activity of
MuSK in aneurally cultured human myotubes are too low to stimulate accumulation of nAChR and
other aspects of postsynaptic NMJ differentiation even in the presence of laminin.

When considered together, these data indicate that MuSK can be sufficiently activated in human
myotubes only once they are innervated by motor neurons and basal lamina is formed in the synaptic
cleft [42]. Basal lamina therefore likely enables neural agrin, secreted by motor neurons, to occupy its
optimal position in the synaptic cleft from where it can effectively bind to its receptor, the low-density
lipoprotein receptor-related protein 4 (Lrp4) [43,44], thus enhancing Lrp4-MuSK interaction and
activation of MuSK [1] in cultured human myotubes.

2.1.2. Contractile Properties of Aneurally Cultured Human and Animal Skeletal Muscle Cells

Under conventional culture conditions, primary human myotubes usually contract only if
they are innervated [24,27,35,45,46] or electrically stimulated [47–49]. In some cell culture systems,
primary human myotubes contract if they are treated with ACh [50]. Aneurally cultured human
myotubes mostly display immature contractile apparatus, including poorly developed sarcomeres,
cross-striations and T-tubular system [24]. Conversely, cultured primary chick [51–54], quail [55,56],
rat [57–62] and mouse [34,63,64] skeletal muscle cells, which are often obtained from embryos or
neonatal animals, display more advanced level of differentiation and contract spontaneously in the
absence of innervation or electrical stimulation. Indeed, to study quiescent primary rat or mouse
skeletal muscle cells tetrodotoxin (TTX), a blocker of voltage-gated Na+ channels, is used to suppress
spontaneous contractions [34,60–62,65–67]. Spontaneous discharge of action potentials provides
one explanation for autonomous contractile activity of aneurally cultured skeletal muscle cells [51].
Interestingly, cultured mouse myotubes may contract autonomously (i.e., independent of innervation)
even in the presence of motor neurons [68].

Spontaneous contractile activity, as well as the presence of nAChR clusters in animal myotubes,
has been successfully exploited to examine effects of electromechanical activity on expression and
distribution of AChE and nAChR. Indeed, by using animal embryonic cells it was possible to study
effects of TTX-induced quiescence as well as spontaneous and/or electrically-stimulated muscle
contractile activity on the expression of AChE [60,61,65] and nAChR [51,57,62,69,70]. For instance,
expression of the 16S (A12) AChE, the major NMJ AChE species [5,71], is markedly increased by
spontaneous contractile activity of rat [60,61], mouse [67] and quail [56] myotubes. On the other
hand, in cultured human skeletal muscle cells expression of the 16S (A12) AChE, was found only in
innervated co-cultures [22]. In contrast to AChE, electromechanical activity of rat myotubes reduces
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expression of several nAChR subunits [69,70]. Importantly, stimulation of nAChR with carbachol was
shown to lead to the loss of nAChR clusters in cultured rat myotubes [72]. This effect was later used to
demonstrate that the neural isoform of agrin prevents activity-induced loss of nAChR clusters [73].

Since electrical stimulation was successfully employed to produce contracting human
myotubes [47–49,74], electrical activity apparently suffices for acquisition of functional contractile
apparatus. However, development of functional contractile apparatus and postsynaptic differentiation
of NMJ are not necessarily directly coupled. For instance, primary mouse myotubes display highly
developed nAChR clusters despite treatment with TTX to suppress spontaneous contractions [34].
C2C12 myotubes, which also display highly developed nAChR clusters [34], may contract
spontaneously [75,76], but under standard conditions often fail to do so [77] unless they are exposed
to electrical [78] or pharmacological stimulation of nAChR [79,80]. Notably, MuSK and rapsyn are
required for formation of AChR clusters in electrically stimulated embryonic Xenopus myotubes
in vitro [81]. Whether electrical stimulation-induced assembly of functional contractile apparatus in
human myotubes is associated with MuSK/rapsyn-dependent postsynaptic differentiation of NMJ,
such as clustering of nAChRs, remains to be characterized.

2.1.3. Evolutionary Basis for Differences in Developmental Programme of Skeletal Muscle Cells?

Failure of aneural human myotubes to develop functional, spontaneously active, contractile
apparatus and differentiated, pretzel-like, nAChR clusters demonstrates that developmental
programming of human skeletal muscle cells is highly dependent on innervation by motor neurons.
This innervation-dependent program is contrasted by intrinsic capability of embryonic animal skeletal
muscle cells to achieve high degree of differentiation without innervation. One possible reason for
these differences is inability of standard cell culture plates and media to support further development
of human skeletal muscle cells due to a lack of specific extracellular matrix components or growth
factors. However, while agrin or the conditioned medium collected from co-cultures of contracting
human myotubes and embryonic rat spinal cord promote nAChR clustering in aneural human
myotubes [82,83], such treatment does not seem to be capable of fully supporting their further
differentiation into spontaneously contracting myofibers. This implies that secreted factors are not
sufficient and that human skeletal muscle cells require physical contact with motor neurons, formation
of functional NMJ and/or subsequent electromechanical activity to continue with their intrinsic
developmental program. Indeed, even in co-cultures, where high concentrations of nerve-derived
factors can be expected, myotubes that are not innervated by motor neurons do not further differentiate
and ultimately degenerate [24].

Regardless of the underlying mechanism NMJ development of cultured human skeletal muscle
cells is clearly more nerve-dependent, than development in avian and rodent skeletal muscle cells,
which is much more autonomous. These species-specific characteristics of skeletal muscle development
may reflect differences in organization of motor systems. Fractionation of movement, a number of
independent and individual movements that can be performed, is the most developed in humans.
The capability of performing refined movements in humans is paralleled by prominently developed
direct, i.e., monosynaptic, connections between cortical neurons and α-motor neurons [84,85].
With some rare exceptions [86] in non-primate species, cortical neurons regulate α-motor neurons
via indirect, polysynaptic, connections [85]. Monosynaptic connections between cortical neurons and
α-motor neurons enable more focalized regulation of the motor unit activity, which in turn results
in more refined regulation of movement. Innervation-dependent development of postsynaptic NMJ
differentiation in human skeletal muscle cells therefore seems to be consistent with imposition of more
direct and focalized neural control over skeletal muscle activity. According to this idea, NMJs develop
exclusively in human skeletal muscle cells that are contacted by nerve endings of motor neurons,
thus leading to their further development into contractile myotubes (myofibers), while uninnervated
skeletal muscle cells are rapidly eliminated. Notably, such sequence of events, including the tendency
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to develop monosynaptic innervation (i.e., one NMJ per myotube), occurs in co-culture of human
skeletal muscle cells and embryonic rat spinal cord [23–25,35].

2.2. Experimental Model of the in Vitro Innervated Human Skeletal Muscle Cells: Preparation and Description

Functioning of the nervous system is based on the synaptic communications among its cellular
constituents. A great deal of scientific effort in neuroscience has therefore been focused on the
mechanisms underlying this communication. NMJ is relatively easy accessible to observation and
experimental manipulation. Since basic mechanisms of neurotransmission and synaptogenesis are
relatively similar between different types of synapses, data obtained in various NMJ experimental
models can be extrapolated, with some caveats and limitations, to other synapses (reviewed in [87,88]).
NMJ has therefore been used as a model synapse, which provided the basis for understanding
synaptogenesis and synaptic communication in general.

2.2.1. Co-Culture Models to Study NMJ

The mechanisms of NMJ synaptogenesis and synaptic communication have been approached in
various in vitro models, which enable simple identification and monitoring of different stages of NMJ
synaptogenesis. In vitro models of NMJ are co-cultures that require the nervous and the skeletal muscle
component. The possibilities for the nervous component include explants of embryonic spinal cord,
isolated ganglia, dissociated ganglionic cholinergic neurons, or dissociated motor neurons [24,89–93].
Alternatively, neuroblastoma-glioma hybrid cells [33,94] or pheochromocytoma cells can be used to
study cholinergic neurotransmission [95]. The possibilities for the skeletal muscle component are
also varied and include myofibers [96], primary skeletal muscle cells derived from muscle satellite
cells [23–25,97], embryonic skeletal muscle cells [98–100] as well as immortalized skeletal muscle cell
lines [89,101,102]. The source of neurons and skeletal muscle cells is important since it affects different
aspects of NMJ synaptogenesis, such as the timing of de novo NMJ formation as well as its subsequent
stability and extent of differentiation [46]. For instance, if explanted human muscle fibers are used
basal lamina is not formed de novo [96]. Conversely, a new basal lamina is formed upon innervation if
primary human skeletal muscle cells are used to prepare the co-culture [24].

In homologous models the nervous and the skeletal muscle component are from the same
species, while heterologous models contain components from different species. Many different
homologous and heterologous co-culture models have been described to study innervation of
animal skeletal muscle cells. However, as regards in vitro innervation of human skeletal muscle
cells, heterologous co-culture with embryonic rat spinal cord has been the most widely used
approach [9,23–25,27,35,42,46,82,103–109]. Alternative approaches to innervate human skeletal muscle
cells include co-culture with embryonic mouse spinal cord [110], ventral part of embryonic rat spinal
cord [111] or dissociated embryonic rat spinal cords [22]. In addition to these well-established
traditional models, homologous human models were also established. For instance, homologous
co-culture can be established by using spinal stem cells derived from human fetus and primary skeletal
muscle cells [112]. Another possibility is to use induced pluripotent stem cell (iPSC) technology,
which enables generation of human motor neurons [50,113] as well as skeletal muscle cells [113–115].
The iPSC-derived human motor neurons can form NMJs with the iPSC-derived human myotubes [113]
as well as with primary human [50] or C2C12 [101] myotubes. In the continuation we focus
on the rat-human co-culture model, while providing relevant comparisons with other human or
animal models.

2.2.2. Co-cultures of Primary Human Skeletal Muscle Cells and Rat Embryonic Spinal Cord:
Basic Characteristics

Co-culture of embryonic rat spinal cord explants with primary human skeletal muscle cells was
introduced to NMJ research by Askanas and her group [23–25]. In this model, rat embryos are dissected
to obtain spinal cord explants, which are needed as a source of motor neurons, while human skeletal
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muscle cells are obtained from biopsies or discarded surgical material. The preparation of co-cultures
and time course of its development are schematically depicted in Figure 1A (technical aspects are
reviewed in [109]). The typical co-culture with spinal cord explant and contraction units is shown in
Figure 1B. The heterologous, rat-human co-culture model, which uses primary human skeletal muscle
cells, has four major characteristics which make it particularly suitable for in vitro investigation of
NMJ formation and neuromuscular transmission.

The first characteristic is that human skeletal muscle cells do not, under most circumstances,
contract unless they are innervated by motor neurons [21–24,27,45]. Formation of NMJs
leads to functional neuromuscular transmission, which drives contractions of muscle cells.
Indeed, electrophysiological studies demonstrated miniature as well as stimulus-evoked endplate
potentials [116,117]. Furthermore, contractions of human myotubes cease in the presence of
NMJ blockers that prevent ACh action at the nAChR, such as nAChR antagonists tubocurarine,
α-bungarotoxin [24] or rocuronium [118]. Importantly, block induced by rocuronium can be completely
reversed by the addition of sugammadex [118], which binds to rocuronium and thereby prevents its
effects on nAChR. These experiments underscore that contractions of innervated human myotubes
are not autonomous (i.e., nerve-independent) but are triggered by release of ACh from motor neuron
at the NMJ. Thus, contractions observed in rat-human co-cultures are triggered by neuromuscular
transmission, which enables quantitative analyses of functional innervation [46] (see Figure 1 and
Table 1).

Although embryonic rat [57–62], mouse [34,63,64] and chick [51–54] myotubes may develop
vigorous contractions in the absence of neurons, very useful co-culture models using animal skeletal
muscle cells have also been developed. For instance, in a homologous mouse-mouse model, which
uses explants of embryonic mouse spinal cord and skeletal muscle, contractions of skeletal muscle
cells are completely suppressed by succinylcholine (aka suxamethonium) [99,100], a depolarizing
nAChR agonist and an NMJ blocker. Contractions in this model are also suppressed by nAChR
antagonist rocuronium [119], as well as by AChE inhibitors, such as soman and VX [100,120],
and by botulinum toxin [98], which blocks release of ACh from presynaptic terminals. Furthermore,
in a homologous rat-rat model, in which both spinal cord and skeletal muscle cells are obtained from
rat embryos, the pattern of contractions is modulated by application of strychnine and bicuculline,
which antagonize effects of inhibitory neurotransmitters glycine and GABA, respectively, as well as
by electrical stimulation of spinal cord explants [68], which underscores the role of motor neurons in
driving the muscle activity. The great majority of muscle contractions in homologous models using
embryonic animal tissues therefore seem to be driven by motor neuron activity despite the ability of
skeletal muscle cells to contract autonomously. However, in the homologous rat-rat model, muscle
contractions were suppressed, but not completely abolished, by the application of nAChR antagonist
tubocurarine [68,121]. Some contractions are also not modulated by strychnine, bicuculline, CNXQ
(an antagonist of excitatory neurotransmitter glutamate) or electrical stimulation of the spinal cord
explant, thus further indicating that not all contractions are the result of neuronal activity [68]. Thus,
a minor fraction of contractions is independent of neuromuscular transmission [68], which is consistent
with spontaneous electromechanical activity of aneurally cultured embryonic muscle cells.

The second important characteristic is that heterologous models can be used to assess the origin
of synaptic proteins simply by using wild type cells. Indeed, in the rat-human model all proteins
produced in the nervous tissue are of rat origin, while all proteins produced in skeletal muscle cells
are of human origin. By using species-specific antibodies, such chimeric expression pattern can be
exploited to investigate whether various components of the synaptic cleft, such as AChE, are nerve-
and/or muscle-derived [122]. Similarly, species-specific antibodies were used in co-culture of chick
skeletal muscle cells and dissociated rat neurons to determine that, in addition to motor neurons,
skeletal muscle cells also secrete agrin into the synaptic cleft of NMJ [123].

Third, the heterologous rat-human model uses skeletal muscle cells obtained from muscle biopsies.
On the one hand, the use of primary human skeletal muscle cells avoids some of the challenges
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associated with extrapolation of data obtained in animal skeletal muscle cells or the iPSC-derived
human skeletal muscle cells. Furthermore, by obtaining myogenic cells from diagnostic muscle biopsies,
genetic neuromuscular disorders can be directly studied in cell culture. Such approach was used to
investigate biological characteristics of innervated skeletal muscle cells in various neuromuscular
diseases, such as McArdle’s disease (deficiency of the muscle glycogen phosphorylase) [124], Duchenne
muscular dystrophy [125], myotonic dystrophy [126], spinal muscular atrophy [127,128] and X-linked
myotubular myopathy [129].

Finally, the rat-human model enables long-term studies on innervated human myotubes. Indeed,
in addition to being markedly more developed, innervated myotubes can be maintained in culture for
6 months, while aneural myotubes do not survive beyond 6–8 weeks [24,25]. Long-term studies are
important because some innervation-induced alterations, such as expression of metabolic enzymes,
may gradually evolve over many weeks [124,130,131]. Longevity of co-cultures might be particularly
useful for examination of molecular mechanisms underlying pathogenesis of neuromuscular disorders.
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Figure 1. Schematic presentation of the stages of skeletal muscle development and co-culture
preparation (A) and micrographic illustration of co-culture stages (B). A. Stages of skeletal muscle
development as followed in co-culture system. Myoblasts are derived from satellite cells released
from muscle biopsy; these proliferate further and subsequently fuse to myotubes. Myotubes are
innervated by neurites growing from the embryonic rat spinal cord explants and mature into innervated
contracting myotubes, thus giving rise to myofibers. B. Micrographic illustrations of co-culture stages:
mononucleated myoblasts, multinucleated myotubes, myotubes co-cultured with embryonic rat spinal
cord explant with innervation area; mature innervated and contracting myotube with cross striations
seen at higher magnification (insert). Adopted from [42,46,132]. For definition of the contracting unit
see Table 1.

2.2.3. Developmental Characteristics of the in Vitro Innervated Human Skeletal Muscle Cells

Functional maturation of innervated human skeletal muscle cells is evident at several levels.
First of all, innervation leads to development of highly differentiated and functional NMJs [24].
Establishment of NMJs is paralleled by alterations in AChE and nAChR expression and distribution.
While aneural myotubes express AChE mRNA in most nuclei, innervated myotubes express it mostly
in nuclei close to the NMJ [27]. In innervated myotubes, AChE and nAChR are concentrated at
NMJ, while their abundance is low in extrajunctional sites [23,25,27]. In vitro innervation therefore
induces functional diversification of myonuclei and formation of junctional AChE and nAChR patches.
These events are paralleled by de novo development of basal lamina, to which agrin and AChE
bind in myofibers in vivo [2,3,29]. Furthermore, innervated myotubes tend to make transition from
polysynaptic towards monosynaptic innervation [25]. Thus, while co-culture clearly cannot fully mimic
in vivo conditions, innervated myotubes resemble mature myofibers, which display high concentration
of AChE and nAChR at a single NMJ containing basal lamina [2].
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Maturation of innervated human skeletal muscle cells is evident also at the level of cytoskeleton.
Sarcomeres and the T-tubular system in innervated myotubes display a more advanced stage of
organization than in aneural myotubes [24]. Under in vivo conditions different types of muscle fibers
are characterized by expression of specific myosin heavy chains (MyHC). Type I (slow) fibers, which are
highly oxidative and resistant to fatigue, express predominantly MyHC-β/slow (MYH7 gene) and type
IIA (fast) fibers, which are oxidative-glycolytic and fatigue resistant, express predominantly MyHC 2A
(MYH2 gene) [133,134]. Type IIX (fast) fibers, which are glycolytic and fast fatigable, express MyHC 2X
(MYH1 gene) [133,134]. Aneurally cultured human myotubes express MYH1, MYH2 and MYH7 [47].
Several studies investigated sarcomere ultrastructure [24] and MyHC expression in innervated human
skeletal muscle cells [135,136]. Two major conclusions can be drawn from these studies. First, while
different MyHCs are expressed in innervated as well as aneural human myotubes, only innervated
myotubes consistently display well-developed cross-striations [24]. Second, innervation of cultured
skeletal muscle cells induces assembly of myosin into myofilaments, thus leading to formation of
functional contractile apparatus. While these conclusions are consistent across different studies,
investigation of MyHC expression pattern produce divergent results, which can partly be explained
by usage of different anti-MyHC antibodies and different models of in vitro innervation [111,135,136].
However, as assessed by PCR, immunoblotting and immunofluorescence innervated human myotubes
express MYH1, MYH2 and MYH7 (unpublished observations T.M., K.M., S.P. and Nataša Nikolic).

In addition to maturation of myofilaments, innervated skeletal muscle cells display a continuous
subsarcolemmal distribution of dystrophin. Conversely, distribution of dystrophin in aneural cells
is patchy [125]. Aside from morphological and functional maturation of NMJ and cytoskeleton,
in vitro innervated skeletal muscle cells display biochemical characteristics resembling those in mature
myofibers. For instance, the innervated cells have higher expression of the muscle-specific isoforms
of creatine kinase (CK-MM), glycogen phosphorylase, lactate dehydrogenase and phosphoglycerate
mutase than aneural cells [104,106,124,130].

Innervation also promotes maturation of electrophysiological properties of cultured skeletal
muscle cells [117,137]. First, in innervated contracting myotubes resting membrane potential is lower,
and therefore closer to that of mature myofibers, than in aneural myotubes [117]. Second, treatment
with caffeine or high concentrations of KCl, which trigger transient increases in intracellular Ca2+

concentration, are less dependent on extracellular Ca2+ in innervated than in aneural myotubes [137].
Excitation-contraction coupling in vertebrate skeletal muscle is typically independent of extracellular
Ca2+ [138,139]. Innervated myotubes therefore display more mature excitation-contraction coupling
mechanism than aneural myotubes. Finally, innervated myotubes contract in response to caffeine,
which stimulates ryanodine receptors and thereby triggers release of Ca2+ from sarcoplasmic
reticulum, as well as KCl-induced depolarization, while aneurally cultured myotubes fail to do
so [137], underscoring that functional and morphological maturation of contractile apparatus develop
in parallel.

2.2.4. Challenges and Limitations of Using the Coventional Rat-Human Co-Culture Model

Challenges and limitations of the co-culture model can be divided into two broad categories:
biological and technical. From the biological perspective, immaturity of skeletal muscle cells and
NMJ needs to be taken into consideration. Innervated human skeletal muscle cells are markedly
more developed than aneural cells; however, they cannot be considered fully mature. For instance,
concentration of non-muscle isoforms of creatine kinase, such as CK-BB, is relatively higher in
co-cultured cells than in samples from muscle biopsies [130]. Also, while innervation promotes
expression of the A12 AChE [140], it represents a relatively low fraction of total AChE activity
even after 8 weeks of co-culture [140]. Indeed, average activity of the A12 AChE in the rat-human
co-cultures represents approximately 9% of the total AChE activity [140], consistent with observations
in the homologous chick co-culture model [141]. Furthermore, even after weeks of innervation
in vitro NMJ and the T-tubular system do not attain the organizational level of mature myofiber
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in vivo [24]. Innervated myotubes are also thinner than normal myofibers [25]. Their diameter is
usually not much bigger than diameter of myonuclei, which therefore occupy almost the entire
thickness of the innervated myotubes. Nevertheless, some myonuclei in innervated myotubes assume
the subsarcolemmal position [129].

One of the challenges in traditional cell culture is also absence of normal tissue architecture.
Haphazard growth of skeletal muscle cells under traditional cell culture conditions may adversely affect
their potential for fusion and NMJ formation. Possible solutions include the use of various patterned
substrates, which direct the growth of myotubes and/or motor neurons, and three dimensional culture
systems [101,142–145]. However, even aneurally cultured myotubes, which are frequently used to
investigate various aspects of skeletal muscle physiology and pharmacology, reflect properties of
skeletal muscle [21] despite displaying lower degree of maturity than innervated myotubes. Thus,
innervated human myotubes can be regarded as a valid in vitro model for investigation of human
skeletal muscle function.

From the technical perspective, heterogeneity of co-cultures needs to be considered. Indeed,
co-cultures encompass innervated myotubes, non-innervated myotubes, various non-myogenic cells
originating from skeletal muscles as well as spinal cord explants. On the one hand, the presence of
different types of cells is beneficial for the function of cultured skeletal muscle cells and/or motor
neurons [25,45,146]. Also, despite heterogeneity the co-culture model is very suitable to conduct
morphological, such as electron microscopy [24], or electrophysiological studies [117,137] since
analyses can be selectively conducted on innervated myotubes. Conversely, heterogeneity provides a
challenge for analyses which require to work with homogenates. For instance, results of metabolic
assays, such as glucose uptake, will reflect to a certain extent the metabolism of skeletal muscle cells as
well as the metabolism of non-muscle cells. Similarly, western blot analyses are a challenge whenever
species-specific antibodies are not available and target proteins are expressed in skeletal muscle as well
as nervous and other non-myogenic cells. A similar problem arises with PCR analyses if 18S rRNA
is used as an endogenous control, since gene expression assays then detect 18S rRNA from human
as well as rat origin. One approach to circumvent these challenges is to use single-cell PCR [147,148].
Another possibility is to perform in situ hybridization [27]. In addition, compartmentalized cell
culture models, which partially separate the nervous and the muscle component of co-culture, such as
microfluidic chamber, allow more selective experimental manipulations and analyses [63,101] than
conventional co-culture system, in which spinal cord explants are plated directly on monolayer of
skeletal muscle cells.

Finally, while rat embryonic spinal cord is easier to work with than mouse embryonic spinal
cord due to size differences between rat and mouse embryos, transgenic mouse models are more
widely available than rat models. For instance, mouse agrin knock-out models were used to
prepare co-cultures of chick ciliary ganglion cells and agrin-deficient myotubes [93] as well as
agrin-deficient motor neurons and chick myotubes [73]. Another example are HB9:GFP mice, which
can be used to prepare co-culture of embryonic GFP-expressing motor neurons and primary mouse
myotubes, thus enabling visualization of presynaptic motor neuron terminals apposing nAChR
clusters in myotubes [63,149]. The use of the mouse-human co-culture would therefore enable
the usage of transgenic mouse models to interrogate the function of various proteins that are
important for motor neuron or NMJ function and to uncover molecular mechanisms underlying
pathogenesis of neuromuscular diseases. An alternative solution is to express wild type or mutant
proteins in co-cultured cells by introducing plasmids with lipofectamine-mediated transfection or
electroporation [108]. Another interesting possibility is to use the iPSC technology to generate human
myotubes carrying specific mutations [150]. Similarly, fibroblasts and other non-muscle cells, obtained
from patients with genetic diseases, can be transformed into myotubes by transfecting them with genes
that regulate myogenesis [151]. Suchapproaches may be used to interrogate involvement of specific
proteins in pathogenesis of neuromuscular diseases, such as the amyotrophic lateral sclerosis [108,150]
and muscular dystrophy [151]
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2.3. Characterization of the Neural Component of the Co-Cultures of Human Skeletal Muscle Cells and Rat
Spinal Cord Explants

Motor neurons that extend their axons from embryonic rat spinal cord explants form highly
differentiated, functional and long-lived NMJs. Conversely, dissociated neurons from either chick [152]
or mouse [89] spinal cords form neuromuscular contacts that are not only morphologically and
functionally immature, but also short-lived [89,90]. Dissociated motor neurons co-cultured with
skeletal muscle cells do not survive long enough to allow formation of mature NMJs [89,153]. Under
in vivo conditions, segmental and suprasegmental afferents play an important role in survival of motor
neurons [154]. However, the loss of such afferent inputs probably does not provide the sole explanation
for poor survival of dissociated motor neurons in culture. Indeed, while motor neurons in explants of
embryonic rat spinal cord also lack all suprasegmental and the majority of segmental afferent inputs,
they are nevertheless capable of forming mature and long-lived NMJs. Major functional differences
among various co-culture models can be explained by the presence or absence of glial cells, sensory
cells and neural networks.

2.3.1. The Essential Role of Glial Cells and Sensory Neurons

Glial cells, such as Schwann cells, play major roles in differentiation, maturation and long-term
survival of motor neurons as well as maintenance of NMJs [155] (reviewed in [156–158]), indicating
that the presence of glial cells may promote survival and function of motor neurons in culture.
This notion is indirectly supported by observation that differentiation of astrocytes, Schwann cells and
oligodendrocytes in the rat-human co-culture model progresses in parallel with the differentiation
of motor neurons and NMJ synaptogenesis [46]. Furthermore, motor neurons that lack interactions
with glial cells are not sufficiently differentiated to establish functional NMJs [155,156]. In co-cultures
of Xenopus embryonic spinal neurons and skeletal muscle cells, survival of dissociated neurons can
be increased by a cocktail of growth factors, but such artificial growth support results in lower
synaptogenetic potential, as assessed by reduced nAChR clustering [159]. Synaptogenetic potential
can be restored by adding the Schwann cell-conditioned medium containing transforming growth
factor-β1 [160], which again underscorses the importance of glial cells.

Aside from glial cells, connections with sensory neurons are also important for the function of rat
motor neurons in spinal cord explants. Indeed, the presence of dorsal root ganglia, where perikarya
of primary sensory neurons reside, is essential for successful innervation of human myotubes [25].
Importantly, contractions of cultured myotubes emerge only if motor neurons, Schwann cells and
sensory neurons are added to cell culture together [45]. Taken together, these findings show that
survival and maturation of motor neurons as well as formation of morphologically and functionally
well-developed NMJ in vitro are dependent on glial and sensory cells. Thus, absence of these cells
is likely a major reason why dissociated motor neurons cannot establish functional NMJs when
co-cultured alone with skeletal muscle cells [89]. However, as evident by establishment of functional
NMJs between the iPSC-derived human motor neurons and primary human myotubes [50], recent
developments in the iPSC technology may have overcome some of the shortcomings associated with
using dissociated primary motor neurons. For instance, co-culture of the iPSC-derived motor neurons
and myotubes can be used to study neuromuscular disorders, such as myasthenia gravis [50].

2.3.2. Neural Networks and Spontaneous Neural Activity in Spinal Cord Explants

A corollary to the presence of motor neuron-driven contractions of human myotubes in the
rat-human co-culture model is that rat motor neurons are spontaneously active. The simplest
explanation for this would be the absence of suprasegmental inhibitory inputs to the motor neurons.
According to this idea spontaneous activity of motor neurons would be analogous to increased muscle
tone and hyperreflexia in patients who are spastic after spinal cord injury or stroke. In these patients,
spontaneous firing of action potentials in motor neurons is explained by neuroplasticity and the lack of
inhibitory signals from the supraspinal areas of the central nervous system [84,161]. In the homologous
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rat-rat model strychnine and/or bicuculline, which block the action of inhibitory neurotransmitters
glycine and GABA, respectively, convert asynchronous contractions of individual myotubes into
episodic, rhythmic and tetanic contractions of bundles of myotubes [68]. This indicates not only that
motor neurons receive local inhibitory inputs, but also that embryonic spinal cord explants contain
neural networks which display rhythmic activity. These networks, which have been described in detail
elsewhere [68,121,162–166], seem to reflect the presence of spinal rhythm generators [167] and are
consistent with spontaneous bursts of activity in embryonic spinal cord [168].

2.4. Formation of the Basal Lamina in the Synaptic Cleft coincides with the Transformation of Immature
Neuromuscular Contact into Differentiated NMJ

Mature NMJ contains basal lamina in the synaptic cleft. As mentioned before, basal lamina
provides structural support and binding sites for synaptic molecules, such as AChE and agrin [2,3,29].
During synaptogenesis in co-cultures, synaptic basal lamina starts to form approximately after
10 days (Table 1). At this point first dense patches, which are typical for its structure, appear at
the neuromuscular contacts [24]. Appearance of synaptic basal lamina approximately coincides with
transformation of immature, bouton-like, neuromuscular contacts into differentiated NMJs, which are
characterized by mature nAChR clusters, subsynaptic accumulation of myonuclei and dense patches of
AChE [27]. Concurrent formation of basal lamina between the presynaptic and postsynaptic membrane
and maturation of NMJ observed in our co-cultures is in agreement with the view that appearance of
basal lamina is a key event in NMJ synaptogenesis [169] and with the observation that it determines
the location of AChE in the synaptic cleft of NMJ [170].

Table 1. Developmental characteristics of functional innervation in co-cultures of rat spinal cord and
human skeletal muscle cells. A contracting unit is a distinct group of cultured myotubes (myofibers)
that contract simultaneously at a frequency that is different from the frequencies of other contracting
units. Contraction-positive explant is an explant that established functional neuromuscular contacts
(i.e., has at least one contracting unit). Presented data are based on: [27,42,46,122,171]. Staging of
co-cultures is based on the appearance of basal lamina [24,171].

Co-Culture Stage Basal Lamina Formation of Functional
Neuromuscular Junctions

Acetylcholinesterase
and nAChR

Stage I (Day 1–9) Not formed

First neurite-myotube
contact (Day 3)

Diffuse AChE staining in
myotubes and neurites extending

from the spinal cord explant

First α-bungarotoxin-sensitive
contractions occur (Day 7)

AChE expressed in all myonuclei
and present along the whole

myotube length

No visible cross-striations
in myotubes

Immature nAChR clusters at
neuromuscular contacts

Stage II (Day 10–21) Formed

Number of contraction-positive
explants attains plateau (Day 10)

AChE expressed predominantely
at junctional myonuclei

Number of contracting units
attains plateau (Day 17)

Discrete patches of AChE
originating in motor neurons

and myotubes

Cross-striations visible in
contracting myotubes

Mature nAChR cluster at
neuromuscular contacts AChE

and nAChR co-localize in
discrete patches

3. The Expression of AChE during NMJ Formation in Co-Cultures of Human Skeletal Muscle
Cells and Embryonic Rat Spinal Cord Explants.

Understanding formation of the NMJ requires also an answer to the question of the cellular origin
of the NMJ components. Some of these components are expressed either exclusively in the skeletal
muscle or the motor neuron and their origin is therefore clear. However, some NMJ components,
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such as AChE and agrin are expressed in both, skeletal muscle and motor neuron. Specific isoforms of
AChE and agrin are secreted into the extracellular space and subsequently bound to synaptic basal
lamina, which means that they might originate in motor neuron and/or myofiber.

The question regarding the muscle vs. neuronal origin of junctional AChE was investigated
by several authors using different experimental approaches and models. Muscle origin of AChE
in the NMJ has never been disputed as it is supported by strong evidence [170,172,173]. It is now
accepted that great majority of AChE, in the NMJ belongs to A12 AChE, the asymmetric collagen-tailed
form, in which three tetramers of tailed (T) variant of AChE catalytic subunit are bound to the triple
helical strands of collagen Q (ColQ) structural subunit. This subunit enables AChE binding to the
perlecan [174,175], a component of the synaptic basal lamina (reviewed in [3,5]). It is known that both
the catalytic [176] and the structural ColQ subunits [177] of asymmetric AChE molecular forms are both
expressed in the myonuclei at the NMJ. A minor part of AChE in the NMJ belongs to AChE tetramers
linked to plasma membrane of both skeletal muscle and motor nerve terminal with another structural
subunit, a small transmembrane protein named proline rich membrane anchor (PRiMA) [172,178,179].
Although minor in comparison to ColQ bound AChE, this portion of tetrameric AChE seems to serve
for the fine tuning of the AChE level as its expression is controlled by muscle activity [180–183].
Interestingly, PRiMA-bound AChE is high in the extrajunctional regions [172,184] opening again
a question of AChE function in the areas where other cholinergic components are practically absent.

While skeletal muscle origin of AChE is undisputed, there are several lines of evidence which
suggest that motor neurons may also contribute to AChE in NMJ. Expression of AChE in the motor
neurons has been demonstrated a long time ago [185]. Consistent with this finding, Anglister [186]
demonstrated de novo synthetized AChE in the NMJ basal lamina in the frog experimental model,
in which the skeletal muscle fiber part of NMJ was eliminated while the nerve terminal remained intact.
Furthermore, AChE in the synaptic cleft is localized closer to the nerve terminal than to the postsynaptic
membrane [187]. Besides, ColQ mRNA is also expressed in the spinal cord explants [122,188] and
most of the AChE along the nerve terminal is anchored by ColQ, while only a small fraction is
anchored by the neuronal membrane anchor PRiMA [172]. Furthermore, tailed (T) catalytic subunits
and structural ColQ subunits of AChE are co-expressed in the perikarya of motor neurons [189].
Notably, motor neurons are actually the only producers of the tailed (T) AChE catalytic subunits
in the ventral horns of the rat spinal cord [188]. In addition, axons extending from the spinal cord
explant and approaching myotubes exhibit strong thiocholine-based [190,191] AChE staining [27,122].
That this AChE activity belongs to the ColQ-bound catalytic subunits was strongly supported by the
demonstration of anterograde transport of the asymmetric A12 AChE in the sciatic nerve of rat, chick
and rabbit [192–194]. All this data clearly supports the view that a part of the AChE synthetized in the
perikarya of motor neurons contributes to the basal lamina-bound AChE in NMJ.

Evidence supporting neuronal origin of AChE in the NMJ was also obtained in co-cultures of
embryonic rat spinal cord and human skeletal muscle cells, which provided an alternative approach
to tackle the question of the cellular origin of AChE in the NMJ. Unlike some other experimental
approaches, in which neuronal or muscular component was removed [170,186] or NMJs were
more immature [195], the rat-human co-cultures contain well-differentiated NMJs comprising the
presynaptic and postsynaptic components of rat and human origin, respectively [24]. By using
species-specific antibodies, we were able to distinguish between muscular (i.e., human) and neuronal
(i.e., rat) AChE. As assessed by immunocytochemistry, human-specific anti-AChE antibodies resulted
in a particularly strong signal [122], consistent with skeletal muscle being the major source of synaptic
AChE [170,172,173]. Immunocytochemical staining of AChE in NMJ was weaker when the rat-specific
anti-AChE antibodies were used, but it was nevertheless clearly recognizable [122]. Thus, motor
neurons are apparently capable of contributing a fraction of synaptic AChE at least in NMJs formed by
rat motor neurons and human myotubes in vitro.

Expression pattern of AChE and synaptogenetic (z8 and z19) and non-synaptogenetic (z0) agrin
isoforms (for nomenclature see subchapter 4 below) in the spinal cord provides additional, albeit
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indirect, support for the notion that motor neurons contribute to the basal lamina-bound AChE [8].
As assessed by in situ hybridization and PCR, expression of the synaptogenetic agrin-z8 isoform
and ColQ, which enables AChE binding to basal lamina of NMJ, increase in parallel after NMJ basal
lamina is formed. Based on the assumption that neuronal proteins that are targeted to basal lamina
have similar expression patterns and are expressed within a similar time-frame, this result indirectly
suggests that neuronal AChE is delivered to NMJ. Consistent with this notion, expression pattern of
muscle agrin-z0, which lacks synaptogenetic activity, was completely different from that of agrin-z8.
Expression patterns of catalytic AChE subunits and agrin-z19 differed from patterns of ColQ and
agrin-z8, suggesting their central nervous system functions unrelated to the NMJ. These results are
compatible with the report of Dobbertin et al. [196], who found that distribution and targeting of AChE
in mouse striatum critically depends on the binding to PRiMA. Catalytic AChE subunits synthetized
in motor neurons have different functions and must therefore be targeted to different places: targeting
is obviously determined by its binding to appropriate structural subunit. Similar temporal patterns of
expression of ColQ and synaptogenetic variant of agrin in motor neurons supports the possibility that
tailed AChE is delivered to the same target, i.e., basal lamina in the synaptic cleft, as agrin [8].

Results supporting the partial neuronal origin of synaptic AChE are in apparent contradiction
with those of Camp et al. [197] and Bernard et al. [172]. In these studies, no AChE was found in
the NMJs of mice, in which AChE expression had been selectively eliminated in skeletal muscle.
This discrepancy might results from the difference in the experimental models. In the experiments
by Camp et al. [197] and Bernard et al. [172], basal lamina was formed without muscular AChE,
which is a basal lamina component in the wild-type mice. According to the “molecular parking lot”
hypothesis [198], AChE occupies distinct location (“parking lot”) in the basal lamina, which is involved
in AChE trafficking so that AChE molecules can be removed from their “parking lot” and replaced by
new ones. If synaptic basal lamina is formed in the absence of muscular AChE, it is quite possible that
its “parking lot” in the basal lamina scaffold is absent or structurally deformed to the point which does
not allow AChE of the neuronal origin to bind to this site.

It is worth mentioning that NMJs in the AChE knockout mice exhibit morphological as well
as functional differences in comparison to the wild-type mice [199]. Furthermore, data obtained in
knock-out mice models should be treated with some degree of caution because these mice sometimes
exhibit characteristics that do not relate to physiology in their wild-type counterparts. A good example
of such discrepancy is the AChE knock-out mouse [200,201], which is born alive although wild-type
newborns and adults die if AChE is inhibited. According to Bernard et al. [172], the nerve-derived
AChE in the NMJ belongs only to the PRiMA-anchored tetramers, which is in disagreement with
the previously mentioned anterograde transport of the ColQ-bound asymmetric A12 AChE in the
sciatic nerve of rat, chick and rabbit [192–194]. These studies did not demonstrate that the ColQ-bound
asymmetric A12 AChE accumulates at the synaptic basal lamina. However, while more recent studies
do not support the idea that this A12 AChE is delivered to NMJ [172], existence of anterograde
transport of AChE in motor neurons still requests the answer to the question where this transportation
is destined to.

In sum, aside from skeletal muscle, AChE in NMJ seems to partially originate from motor neurons.
Skeletal muscle is the predominant, but likely not the exclusive, source of AChE in mammalian
NMJ. What is the biological meaning of having an additional, neuronal, source of AChE remains an
open question. As evident from clinical cases of poisoning with organophosphorous compounds,
AChE inhibition in the NMJ is lethal and its absence [202] or absence of ColQ causes myasthenic
syndrome [202,203]. Importantly, a recent study showed that exercise training increases synaptic
AChE activity. The increase was due to elevated expression of membrane-bound G4 AChE isoform
in myofibers [183]. Expression of the basal lamina-bound A12 isoform, which is the most important
NMJ isoform [5,71], remained unaltered, indicating that other AChE isoforms dynamically respond to
physiological stimuli and actively contribute to NMJ function. By extension, we can speculate that
contribution of synaptic (basal lamina-bound) AChE from both myofibers and motor neurons might
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also have a role in fine-tuning the neuromuscular transmission. Alternatively, dual origin of AChE
might represent a safety factor against malfunctions due to impaired AChE turnover in either skeletal
muscle or motor neuron.

4. The Role of Neural Agrin in the Formation of the NMJ in the in Vitro Innervated Human
Skeletal Muscle Cells

Homologous and heterologous co-culture models, which used various combinations of
neural and skeletal muscle cells, had an important role in establishing that nerve-derived factors
promote aggregation of nAChRs and differentiation of postsynaptic membrane [23,33,92,204–208].
Investigations of NMJ synaptogenesis culminated in discovery of agrin and its biological
functions [4,209–216]. The neural isoform of agrin, which plays a major role in formation and
maintenance of NMJ, contains an 8, 11, or 19 amino acid insert at the z-site (called the B-site in avian
species) [217–221]. The insert at the z-site enables neural agrin to bind to Lrp4 and activate MuSK,
which in turn promotes clustering of nAChRs and organization of other NMJ components [1,43,44].

The co-culture approach proved to be very useful for investigation of agrin action in vitro. Indeed,
very early on in the agrin research several co-culture models using chick, rat and frog spinal cords
and skeletal muscle cells were used to assess its nAChR aggregating activity [222–225]. For instance,
the heterologous rat-chick model was used to investigate the role of muscle agrin [123], which lacks
an amino acid insert at the z site (agrin-z0) and, compared with neural agrin, displays nAChR
aggregating activity only at high concentrations [73,219,221,222]. Using this heterologous model and
species-specific antibodies, muscle agrin was shown to be present in the NMJ, which indicated that
muscle agrin may have a role in NMJ independent of nAChR aggregation [123]. Consistent with
this notion, chick muscle agrin (agrin-B0) was shown to promote presynaptic differentiation of chick
ciliary ganglion cells co-cultured with COS cells [226]. In the same study, the homologous chick model,
a co-culture of chick ciliary gangion and skeletal muscle cells, was used to demonstrate that anti-agrin
antibody reduces presynaptic as well as postsynaptic differentiation of NMJs [226].

In a similar approach, co-cultures of Xenopus embryonic neurons and skeletal muscle cells
were used to assess the role of α-dystroglycan, an alternative agrin receptor [227–232], in NMJ
formation [233]. Later research showed that presynaptic differentiation of dissociated chick ciliary
ganglion cells was not impaired when they were co-cultured with mouse myotubes lacking agrin [93],
indicating that muscle-derived agrin may be dispensable for NMJ assembly. Consistent with this idea,
neural agrin is required to prevent activity-dependent dispersal of nAChR clusters in co-cultures of
mouse motor neurons and chick skeletal muscle cells, while muscle agrin does not oppose declustering
of nAChRs [73]. These studies in various animal co-culture models provided important insights into
agrin action; however, they did not examine the effect of agrin on NMJ synaptogenesis in human
skeletal muscle cells.

In mouse embryos NMJ develops in two stages as regards effects of agrin [234]. In the first
stage nAChRs clusters form independently of agrin and innervation. In the second stage, neural
agrin promotes formation of new nAChR clusters or stabilization of existing nAChR clusters [234].
The rat-human co-cultures were used to assess the role of agrin in the establishment of functional
innervation in human skeletal muscle cells. As mentioned above, this model is particularly suited for
assessment of functional innervation since all observable contractions of myotubes are the result of
innervation and formation of functional NMJs. Furthermore, establishment of functional innervation
can be easily quantified by counting the number of the contraction-positive explants and the contracting
units (for definitions see Table 1). Treatment of co-cultures with anti-agrin antibody, Agr 33, which
blocks the action of neural agrin, reduced the number of nAChR clusters by 80% and their long
axes by 50%. Nevertheless, contractions of myotubes were present at 7–10 days of co-culturing.
While this result seems to indicate that blockage of agrin action does not prevent establishment of
functional innervation, Agr 33 antibody suppressed the increase in the number of contracting units [42].
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In contrast, under control conditions, the number of contracting units steadily increases to reach a
plateau up to approximately 17th day of co-culture (Table 1).

Based on these results, establishment of functional innervation in vitro can be divided into the
agrin-insensitive and the agrin-sensitive stage, consistent with findings in animal models [234,235].
In the early, agrin-insensitive, stage a small fraction of NMJs become functional (i.e., contraction
competent) even if the agrin action is suppressed. Obviously, at these nerve-muscle contacts
concentration of nAChR is already sufficient for eliciting end-plate potentials, while the number of Na+

voltage-gated channels is sufficient for this endplate potential to subsequently reach the threshold and
trigger action potential. However, the majority of NMJs requires agrin to become functional during
the later, agrin-sensitive, stage. The two-stage development of functional innervation with regard to
agrin effects explains why, in the presence of Agr33 antibody, the number of contracting units did
not increase after day 10, although contractions were observed in 7–10 day old co-cultures. This was
the first characterization of the contribution of agrin to NMJ development in human skeletal muscle
cells [42]. This observation suggested that neural agrin is sufficient as an inducer of NMJ formation at
the contact with the skeletal muscle membrane but is not absolutely necessary for the establishment
of early primitive neuromuscular contacts between rat motor neurons and human myotubes. This
finding is in line with the current model of agrin action, in which MuSK, but not agrin, is required for
initial nAChR clustering, while agrin primarily stabilizes existing nAChR clusters and prevents their
activity-induced disaggregation [1,6,7,73,235,236].

5. Possible Alternative Roles of AChE and Neural Agrin in Human Skeletal Muscle

From the standpoints of their classical roles, AChE and agrin have very little in common. One is a
cholinergic component and the other a synaptogenic inducer. Traditional view holds that components
of the NMJ belong to the two functional groups. The first encompasses proteins that play a role in
cholinergic signaling. Aside from AChE, representatives of this group include choline acetyl transferase,
which synthesizes ACh, and nAChR, which transduces ACh signal (reviewed in [237]). The second
group encompasses proteins that underlie synaptogenesis and maintenance of NMJ. Aside from
neural agrin, major representatives of this group are agrin receptor Lrp4 and MuSK, which triggers
downstream signaling cascade leading to NMJ differentiation (reviewed in [1,38]). While useful,
this simple functional division does not fully reflect molecular characteristics of AChE and agrin.

Members of the same group differ in many respects. For instance, while AChE and nAChR both
bind ACh, they have dissimilar expression patterns, protein structure and even the ACh binding site.
Also, AChE and agrin share several features despite belonging to different functional groups. First of
all, they are both polymorphic. Indeed, while AChE and agrin exist in several different variants, they
are both a product of a single gene. Alternative splicing is therefore a major mechanism underlying
functional diversity of AChE and agrin variants. Another similarity between AChE and agrin is
that, unlike most other NMJ components, they are expressed in motor neuron as well as in skeletal
muscle. Furthermore, AChE [238] and agrin [7] are expressed in various other types of cells, where
they play physiological roles that are not related to cholinergic neurotransmission or synaptogenesis
and maintenance of NMJ. Finally, both AChE and agrin apparently play non-canonical, alternative,
roles during myogenesis and skeletal muscle regeneration, such as apoptosis [239] and differentiation
of primary human skeletal muscle cells [8,82,240], respectively.

5.1. AChE and Apoptosis of Primary Human Myoblasts

As well as for the generation of new cells, normal tissue turnover requires apoptosis to remove
cells that are senescent or do not function properly [241]. On the other hand, excessive apoptosis of
myogenic cells reduces regeneration capacity, thereby impairing skeletal muscle function [242,243].
Notably, AChE was shown to be involved in regulation of apoptosis of different types of cells, including
hematopoietic cells [244], cultured smooth muscle cells, fibroblasts, endothelial cells and various cancer
cells [245].
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AChE is expressed not only in innervated muscle fibers but also in proliferating myoblasts [27],
although these cells lack most other components of the cholinergic system. We therefore examined
whether AChE might have a similar role during the early stages of skeletal muscle regeneration
in vitro. We made two major observations. First, siRNA-mediated silencing of AChE in primary human
myoblasts reduced staurosporine-induced activity of the initiator caspase 9 and the executioner caspase
3/7 [239]. Consistent with reduced caspase activity, AChE silencing reduced the fraction of apoptotic
myoblasts as assessed with annexin V/propidium-iodide and 3,3-dihexyloxacarbocyanine iodide
(DiOC6(3)) staining. Second, staurosporine differentially affected AChE variants T, H and R; it induced
an 8-fold increase in AChE-R mRNA expression in myoblasts and a statistically non-significant 2-fold
increase in AChE-T mRNA, but it did not alter expression of AChE-H mRNA. These data suggest
that AChE-R variant might play a key role in modulation of myoblast apoptosis. However, on the
other hand, in cultured myoblasts AChE-T is the most abundant AChE isoform and represents a major
fraction of the total AChE activity [132]. A small increase of its expression may therefore have a greater
impact on myoblast apoptosis than a marked increase in expression of AChE-R.

Although direct stimulation of apoptosis by AChE was noted in some cases [246], increased AChE
expression per se is not necessarily sufficient to directly trigger apoptosis. Thus, AChE promotes
apoptosis primarily in conjunction with other apoptotic stimuli [11], such as staurosporine [239].
The mechanism by which AChE modulates apoptosis in myoblasts and other cells is unclear. One
possibility is that AChE promotes apoptosis indirectly by hydrolyzing ACh, which would tend to
decrease pro-survival cholinergic signalling via nAChR and/or muscarinic AChR [247]. For instance,
AChE inhibitors, such as tacrine and physostigmine, decreased apoptosis in fibroblasts [245], thereby
suggesting that the catalytic activity of AChE might be linked to regulation of apoptosis. However,
AChE inhibitors failed to protect against apoptosis of Jurkat cells [248]. Indirect, ACh-dependent,
mechanism might therefore be important for pro-apoptotic effects of AChE under special circumstances,
such as in ACh-secreting cells or in the presence of exogenous ACh, but they likely do not represent
the most important mechanism by which AChE modulates apoptosis. Consistent with this view,
nAChR agonist carbachol was unable to prevent apoptosis in glioblastoma cells [246]. Furthermore,
C-terminal fragment of AChE [249] as well as AChE that possesses no cholinesterase activity both
promote apoptosis [250], underscoring the separation of cholinesterase and proapoptotic functions
of AChE. Pharmacological inhibitors of AChE, when effective, may therefore reduce apoptosis by
inducing structural changes, which subsequently suppress its pro-apoptotic activity, and not by
reducing cholinesterase activity per se [246].

Importantly, AChE-T variant was recently shown to possess DNase activity [250]. AChE inhibitors
or mutation of the catalytic triade residues (S234A, E365A and H478A) abolish cholinesterase activity
but not DNase activity [250]. This discovery suggests a mechanism whereby AChE translocates into
the nuclei of apoptotic cells and directly contributes to degradation of DNA [250]. Furthermore,
since AChE-T is capable of translocation into the nucleus [250,251], while AChE-R apparently
is not [251], we may speculate that different AChE isoforms or differences in their localization
insubcellular compartments might have complementary modulatory functions in apoptotic cells.
For instance, the nuclear fraction of AChE-T may contribute to DNA degradation and laddering, while
its cytoplasmic fraction or one of the other AChE isoforms may promote apoptosis by interacting
with Apaf-1, cytochrome c or other regulators of apoptosis [252,253]. Taken together, although the
underlying mechanisms should be characterized in more detail, current evidence strongly supports
involvement of AChE in modulation of apoptosis [10,11]. Indeed, AChE is even regarded as a marker
of apoptosis [10,248].

In most cells, which play no role in cholinergic transmission, AChE is expressed and active
only once these cells enter apoptosis [245]. In contrast, AChE is prominently expressed and active
in proliferating myogenic precursors, such as myoblasts [132,239], as well as in mature myofibers.
Involvement of AChE in termination of neuromuscular transmission as well as apoptosis of myogenic
precursors raises the question how these two divergent biological functions are reconciled. Balance



Molecules 2017, 22, 1418 17 of 30

between AChE functions might be maintained by their temporal and spatial separation. For instance,
during the early stages of myogenesis or muscle regeneration, when cholinergic components are not
developed, AChE might be important for regulation of myoblast survival and apoptosis. To promote
apoptosis, AChE should be localized in cytoplasm or nucleus of myoblasts, which is indeed the
case [27]. In apoptotic myoblasts, AChE might be redirected from the secretory route, which delivers
AChE to the extracellular space, to nucleus, cytoplasm or other subcellular compartments, where it can
exert its pro-apoptotic functions. Conversely, in later stages of skeletal muscle regeneration, during
synaptogenesis and in mature myofibers, redistribution of AChE to the secretory route would tend
to increase its delivery to the NMJ, while suppressing its pro-apoptotic function. Thus, regulation
of subcellular distribution of AChE in different developmental stages may provide a mechanism by
which AChE performs two divergent functions in skeletal muscle.

5.2. Neural Agrin and Differentiation of Cultured Human Skeletal Muscle Cells

Biological significance of alternative, non-cholinergic, roles of AChE has been subjected to different
interpretations, although these roles were demonstrated in various experimental systems. While this
discussion regarding alternative roles of AChE continues, multitasking proteins have emerged as
a common theme in biology of enzymes and various other proteins [254,255]. One example are the
metabolic enzymes performing functions that are unrelated to their catalytic activities. For instance,
lactate dehydrogenase, which interconverts pyruvate and lactate, is also a structural component
of duck lens [256], while aconitase, which interconverts citrate and isocitrate in the Krebs cycle,
can act as an RNA binding protein that is involved in iron homeostasis [257]. Another example of
a multitasking protein is agrin, which was discovered as an α-motor neuron-derived heparan-sulfate
proteoglycan that plays a major role in formation and maintenance of NMJ [4,7]. Later research
showed that agrin plays additional roles in immune system [7], cancer [258] and, most recently,
heart regeneration [259]. Non-neural isoforms of agrin and/or alternative agrin receptors, such as
α-dystroglycan or integrins [227–232,260], are likely responsible for many of these additional roles [7].
Nevertheless, neural agrin and the canonical Lrp4/MuSK pathway promote proliferation of liver
cancer cells [258], indicating neural agrin is also involved in functions that are not related to NMJ.

In skeletal muscle, the role of agrin is also not limited exclusively to its functions in NMJ. Indeed,
we showed that agrin promotes different aspects of myotube maturation. First, neural agrin increases
the fraction of human myotubes that raise intracellular Ca2+ concentration in response to depolarizing
solution (60 mM KCl) or caffeine (40 mM). Furthermore, agrin increases the density of L-type
Ca2+ currents, indicating that it promotes the development of excitation-contraction coupling [82].
In contrast to human myotubes, in murine myotubes neural agrin does not alter excitation-contraction
coupling [82], again underscoring functional differences between human and rodent skeletal muscle
cells. Second, neural agrin makes the resting membrane potential of human myotubes more negative.
In addition, strophantidin, an inhibitor of Na+/K+-ATPase, depolarizes agrin-treated myotubes more
than control myotubes [240]. These effects are paralleled by increased expression of α1- as well as
α2-subunit of Na+/K+-ATPase [240]. Taken together, these data indicate that in cultured myotubes,
neural agrin increases both expression and activity of Na+/K+-ATPase, which plays a major role in
skeletal muscle physiology [261,262]. Third, we also showed that neural agrin increases the expression
of slow and fast MyHCsin cultured myotubes [8] and increases secretion of interleukin-6 in human
myoblasts as well as in co-cultures with embryonic rat spinal cord [9]. Collectively these data indicate
that neural agrin, like AChE, has multiple alternative modulatory roles in addition to its canonical role
in NMJ.

6. Conclusions and Perspectives

In this review we demonstrate that the human-rat co-culture model has served as a useful
experimental approach for the investigation of NMJ synaptogenesis and the function of innervated
human skeletal muscle cells. In addition to basic neurobiology, this model enabled investigation
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of molecular mechanisms underlying pathogenesis of various neuromuscular diseases using cells
obtained from patients. Although these approaches have been validated a long time ago, they are
still relevant today. Indeed, the advances in culturing of skeletal muscle cells, such as 3D scaffolds,
and in molecular biology, especially the arrival of new powerful techniques, such as RNA interference,
CRISPR and the iPSC technology open new opportunities to address unresolved issues regarding AChE
and agrin function in human skeletal muscle as well as NMJ neurobiology in general. Conventional
models of in vitro innervation of human skeletal muscle cells combined with these new methodologies
represent a powerful set of complementary experimental tools to uncover new molecular mechanisms
underlying NMJ development and function, which may lead to discovery of new pharmacological
targets and development of novel therapeutic options for neuromuscular diseases.
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