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We study a coordination game, between a leader population and a fol-
lower population. Each individual of each population follows an imita-
tive behavior in order to decide between being a high- or low-type
economic agent. We show that individual behavior driven by imitation
can lead to an economy that is either in a low-level equilibrium—a
poverty trap—or a high-level equilibrium. We analyze how possible it is
for an economy placed in the basin of attraction of the poverty trap to
overcome it through the strategic action (limited on time) of a benevolent
central planner.

1 Introduction

Standard growth theory teaches us that poverty traps are stable low-level
balanced growth paths to which economies gravitate due to adverse initial
conditions (shortage of human or physical capital, as in Azariadis and
Drazen, 1990) or due to poor equilibrium selection by institutions (shallow
financial markets as in Matsuyama (2007) or weak governance as in North
(1990)) which do not allow coordinate investments successfully (see Azariadis
and Starchuski, 2005).

This paper digs deeper into the microeconomic reasons why coordination
of economic activity may fail on a scale that is large enough to cause persistent
poverty. The economy is analyzed as an evolutionary game between economic
agents, labeled as leaders and followers of high and low types that, respect-
ively, can be viewed as R&D activities or innovative firms and human capital
or skilled workers with R&D spending as a proxy for the state of ‘scientific
knowledge’. Rates of return of high-type leaders depend on average high-type
followers (i.e. human capital), and rates of return on high-type followers
depend on aggregate high-type leaders’ investment (i.e. innovative firms or
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R&D). The outcome is a self-confirming equilibrium in evolutionary stable
strategies in which unsuccessful players imitate successful ones. This equilib-
rium has the following property: in developing economies with a large fraction
of low-type followers or low-type leaders, imitative strategies do not support a
take-off into sustained growth. To achieve that take-off, society should subsidize
the cost of education and/or skill premia through a tax system on income until the
economy builds a critical mass of high-type economic agents.

Hence, the aim of this paper is to show how persistent states of under-
development can arise in strategic environments in which players are imita-
tive rather than fully rational. The point of departure for an evolutionary
model is the belief that people are not always rational. Rather than springing
into life as the result of a perfectly rational reasoning process in which each
player, armed with the common knowledge of perfect rationality, solves the
game, evolutionary game strategies emerge from a trial-and-error learning
process in which players find that some strategies perform better than others,
and afterwards they decide to adopt or simply imitate such strategies. In the
course of this learning process, the agents may simply take actions sometimes
with great contemplation and sometimes with no thought at all. Their behav-
ior is driven by rules of thumb, social norms, conventions, analogies to
similar situations, or by other possibly more complex systems for converting
stimuli into actions. In this direction, the imitative behavior is the way of
copying strategies from a learning process (see Sanditov, 2006).

In some sense, the present paper can be related with the notion of
institutional poverty traps and the membership theory of poverty traps. For
instance, in Durlauf (2003), a model of incentives for wealthier families to
segregate themselves into economically homogeneous neighborhoods is given,
and the dynamics of these combinations explain persistent income inequality.
Is precisely the concept of neighborhood effects that allows Durlauf to explain
why poverty traps exist and persist. A poverty trap is defined as a community
of economic agents initially composed by poor members with low types who
remain in the low-level equilibrium over generations.

Samuel Bowles has built the seminal concept of ‘institutional poverty
traps’, who emphasizes coordination failures and poverty traps as induced by
the presence of specific institutions. Bowles defines institutions as conven-
tions in which members of a population typically act in ways that maximize
their own pay-offs, given the actions followed by others. Such process sup-
ports continued adherence to the conventions (Bowles et al., 2006, p. 118).
Polterovich (2008) pointed out that the formation of institutional traps due to
economic agents with low types conforming specific strategies is one of the
main obstacles to improve the economic performance. An important class of
poverty traps is due to coordination failures. Such models are discussed in
Cooper and John (1998) and Hoff (2001).

The remainder of the paper is organized as follows. Section 2 states the
one-shot game and we analyze the Nash equilibria. Section 3 introduces the
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baseline model, namely behavioral rule to define an evolutionary dynamic. In
Section 4, we develop the evolutionary game and we get the replicator
dynamics driven by imitation. Section 5 presents the main result of the paper.
Section 6 defines the notion of poverty trap and offers a clue to overcome
such situation. Section 7 concludes the paper.

2 The Game

Let us allow economic agents being either leaders, (1), or followers, (2), with
two different types: high or low type. The vectors (H, L) and (h, l) are the
strategy spaces denoting high and low types of leaders and followers. Leader
and follower games are described by imperfect information in which the leader
moves first knowing the type of the follower, while followers move second
without knowing the type of the leader (see Fudenberg and Tirole, 1991).

Let us assume that a contractual period is characterized by:

• Strategic complementarities. In this economy, looking to maximize profit
the player 1 must employ player 2 under strategic complementarity, in the
sense that the H-type agent matching with an h type is more profitable
than matching with an l type. Analogously, the L-type agent matching
with an l type is more profitable than matching with an h type.

• A gross income of 1 being an H type is U or u, and of being an L type is
V or v, which depends on matching with high- or low-type followers.

• It is assumed that the leader knows the type of the follower (h or l), and
the leader also decides the level of the ‘wage’ paid to the follower: W or w.
We assume that the leader pays the same amount for any given type of
follower.

That is, a gross income of 2 is W when hired by H and w when is hired by L,
where W > w > 0. Notice that it seems to be more (or at least equally) natural
to assume that the leader pays always W when the follower is h and always w
when the follower is l. However, we consider that the H-type leader must give
a signal, p, to the h-type follower. Such a signal can be viewed as giving some
skill premium or bonus, which are perceived only by h-type followers.

• Agents 1 and 2 face income taxes g ∈ (0,1) and f ∈ (0,1).

• The leader knows the types of the followers, but the followers do not know
the type of the leaders and they assume with probability s that they will be
hired by a leader of H type and with probability (1 - s) by an L type.

• Choosing between high and low types does not have any cost for the
leader. On the other hand, if the follower decides to become an h type
they incur a training cost or cost of education C, while deciding to be an
l type does not incur any costs. For instance, when engaged by a firm, a
worker must present a certificate of expertise or skill.
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A normal-form representation of this game is presented in the following
pay-off matrix:

2\1 H L

h (1 - f)W + p - C, (1 - g )U - W - p (1 - f)w - C, (1 - g )v - w

l (1 - f)W, (1 - g )u - W (1 - f)w, (1 - g )V - w

The following restrictions on the parameters hold:

• p > C > 0, incentives to be a high-type follower and it is pay-off dominant
for a low-type follower, or,

0 1< ≤ − −p W w( )( )φ
which means that h-type followers must get a positive bonus at most equal to
the difference in wages (after taxes) to being high or low type.

• The H-type leaders cannot give a bonus or skill premium greater than the
net difference of income for being high- or low-type leader plus the
difference on wages to low- and high-type followers, i.e.

p U v w W< − − + −( )( )( )1 γ
Moreover, (1 - g)(V - u) > (w - W) implies that a low-type leader prefers a
low-type follower.

Therefore, the game has two pure Nash equilibria:

H h and L l, , ; , , , ; ,( ) = ( ) ( )( ) ( ) = ( ) ( )( )1 0 1 0 0 1 0 1

the former is the pay-off dominant.
There is a mixed strategy Nash equilibrium given by

θ θ σ σ, ( ); , ( )1 1− −( )

where q is the leader’s probability of matching a high-type follower, and s is
the follower’s probability of matching a high-type leader, i.e.

σ θ γ
γ

= = −( ) −( ) + −
−( ) − + −( ) −

C
p

V u W w
U u V v p

and
1

1

Note that the skill premium p is bounded so that C < p < (1 - g)(U - u).
This means the skill premium must be large enough to encourage followers to
be high type, and small enough too as a leader always prefers to be a low type
hiring a low-type follower.

The next section analyzes this game as an evolutionary process. Recall
that the term evolutionary process means more successful types tend to
proliferate while less successful types tend to disappear, an assumption that
applies equally well to learning by imitation and cultural evolution as well as to
literal population replacement by natural selection. The model applies as long
as people tend to gravitate towards a type that does better than its alternatives.
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3 Behavioral Rules

Considered an N-population strategic-form game, where individuals from
each population t = {1, . . . , N} can choose between nt, different behaviors or
pure strategies. We say that individuals playing according to the ith pure
strategy belong to the ith club, so each population can split in different clubs or
subpopulations. Individuals randomly matched with those of the other popu-
lation to play the game. According with their characteristics (strategy) each
individual will receive a pay-off, and the game is over. The players are allowed
to change clubs or strategies, and then the game starts again.

This change from clubs or strategies is embodied in the so-called behavi-
oral rules, which generate a system of differential equations, describing the
evolution of the relative frequency at which some pure strategy occurs in a
population.

The behavioral rules are characterized by two elements. First, the time
rates at which agents in the populations review their strategy choice. This rate
may depend on the current performance of the agent’s pure strategy and on
other aspects of the current population state. The second element specifies the
choice of a reviewing agent. The probability that the i strategist in the popu-
lation t will switch to some pure strategy j in his or her own population may
also depend on the current performance of these strategies and other aspects
of the current population state. So there is one differential equation for each
possible pure strategy. The ith differential equation describes the evolution
on the population share represented by the number xi

τ for all 1 2 t 2 N and
1 2 i 2 nt.

For each population t we represent the set of mixed strategy by

Δτ τ τ τ
τ

τ
τ= ∈ = ≥ =⎧

⎨
⎩

⎫
⎬
⎭=

∑x x x i nn
i

i

n

i� …: , , , ,
1

1 0 1

where nt is the cardinality of the set of pure strategies available for the
population t ∈ [1, . . . , N].

Definition 1: A behavioral rule is a map from currently aggregate behavior to
conditional switch rates. The map is given by two basic elements:

1. The time rate r xi
τ ( ) at which agents review their strategy choice. This

time rate depends on the performance of the agent’s pure strategy and
other aspects of the current population state.1

2. The probability p xij
τ ( ) that a reviewing i strategist will switch to

some pure strategy j. The vector of this probability is written as

1This is the ‘behavioral rule with inertia’ (see Weibull, 1995; Björnerstedt and Weibull, 1996;
Schlag, 1998, 1999) that allows an agent to reconsider his or her action with probability
r ∈ (0,1) each round.
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p x p x p xi i ik
Nτ ( ) ( ), , ( )= ( )1

1 … , where p xi
τ τ( )∈Δ . This distribution may

depend on the current performance of the strategies and other aspects of
the population state.

In a finite population one may imagine that review times of an agent are
the arrival time of a Poisson process with arrival time r xi

τ ( ), and that at each
time the agents select a pure strategy according to the probability distribution
p xi

τ ( ) over the set Dt. As it is assumed that all the agents’ Poisson processes
are independent, the aggregate process in the subpopulation of i strategists is
itself a Poisson process, with arrival rate x r xi i

τ τ ( ). Consider independence of
switches across agents, and the process of switches from strategy i to strategy
j as a Poisson process with arrival rate x r pi i ij

τ τ τ. Assuming a continuum of
agents and by the law of large numbers, we model these aggregate stochastic
process as a deterministic flow:

• The outflow from the i strategists thus is

x r x p xi i ij
j i

τ τ τ( ) ( )
≠
∑

• The inflow to this is

x r x p xj j ji
j i

τ τ τ( ) ( )
≠
∑

Behavioral rules allow to define an evolutionary dynamics as an inflow–
outflow model. Rearranging terms, we obtain

�x x r x p x x r x p xi j j ji
j K

i i ij
i K

τ τ τ τ τ τ τ= −
∈ ∈
∑ ∑( ) ( ) ( ) ( ) (1)

We say that this is a dynamic of replication, by extending the con-
cept of replicator dynamics defined for the symmetric case in which a
population is confronted with itself. Hence, every behavioral rule can gen-
erate an evolutionary dynamics and they take agents’ behaviors as the start-
ing point.

A population dynamics (1) will be called imitative if there are at least two
different strategies and at least one agent following one of these strategies
assesses, with a given probability, whether he or she should change his or her
behavior. The final decision depends on the relationship between the benefits
the agent obtains and the benefits obtained by agents following a different
strategy.

Certainly there are some properties we would like to be verified by the
rules of behavior. When these properties are verified by the behavioral rule we
will say that the rule is good. A good behavioral rule is, for instance, the
Lipschitz continuous function in pay-offs and social states. That is, to guar-
antee that this system of differential equations (1) induces a well-defined
dynamic on the space Δ Δ= =1Πτ

τN , we consider that r Xi
τ τ: ,⊆ →[ ]Δ 0 1
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and p Xi
τ τ: → Δ are Lipschitz continuous functions with a solution through

any initial state x0 ∈ D and such that a solution trajectory never leaves D. One
such property can be seen technically, but also reflects a fact emerging from
dynamics within large populations. The state space D is a forward invariant in
this dynamic (1).

In fact, if agents had perfect information about all pay-offs yielded by
other pure strategies, and if they knew the state of the population perfectly,
behavioral adjustments would be much faster, possibly leading to discontinu-
ous switches. Hence, Lipschitz continuity reflects an assumption that people
have limited knowledge about pay-offs and population states, which has
some appeal if we look at large populations.

The reviewing agents looking to maximize their own pay-offs will adopt
the behavior of those agents perceived as successful. Other influences can also
be worth imitating, including conformism or dissatisfaction.

In the next sections we show the replicator dynamics driven by imitation
as a behavioral rule.

4 The Evolutionary Game

The simplest setting to study the learning is one in which agents’ strategies are
completely observed at the end of each round, and agents are randomly
matched with a series of anonymous opponents so that the agents have no
impact on what they observe. Hereafter, populations of leaders (1) and
followers (2) are, Xt, denoted by X X X1 1 1= +( )H L and X X X2 2 2= +( )h l , and
the populations are composed of a large number of agents who face the
problem of selecting an i type: {H, L}; {h, l}. Let Xi( )τ

τ be the total of i
strategists, i(1) ∈ {H, L} and i(2) ∈ {h, l} and t = {1,2}. We denote a fraction
of agents, xi τ

τ
( ), as the share of i-type strategists:

x
X
X

i
iτ
τ

τ= (2)

where Xt is finite. Assume that both populations are normalized to
1, x xH L

1 1 1+ = and x xh l
2 2 1+ = . Then, xi( )τ

τ denotes the percentage of
individuals from the population t belonging to the i(t) club. Hence, the
probabilities σ = xH

1 and θ = xh
2, and thus the expected pay-offs can be

written as

E x W p x w Ch H H
2 1 11 1 1= − +[ ]+ − − −( ) ( )( )φ φ (3)

E x W x wl H H
2 1 11 1 1= −( ) + − −( )φ φ( ) (4)

E x U W p x u WH h h
1 2 21 1 1= −( ) − −[ ]+ − −( ) −[ ]γ γ( ) (5)
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E x v w x V wL h h
1 2 21 1 1= −( ) −[ ]+ − −( ) −[ ]γ γ( ) (6)

So, the profile ( xH
1 , xL

1; xh
2, xl

2) defines a mixed strategy of a two-
population normal form game:

Γ = ={ } ( ) ( )( ) ⋅( )τ τ
τ1 2, , , ; , , ( )H L h l Ei

as in Section 2, where Ei( )τ
τ is the expected pay-off from following the i(t) pure

strategy.
From now on, we argue that, when the followers and leaders decide to

imitate successful strategists and when the state of the economy is such that
playing a high type is the best strategy, the economy converges to the high-
level equilibrium. Otherwise, if the state of the economy is one in which
being a low type is the best strategy, then the economy will be caught in a
poverty trap.

4.1 Replication by Imitation

Let us consider the N-population replicator dynamics suggested by Weibull
(1995, p. 172) and Taylor (1979). In our case N = 2. Consider an i(t)-type
agent, i(1) ∈ {H, L} and i(2) ∈ {h, l}.

By si( )τ
τ we denote the i(t) pure strategy from population t = {1,2}. To

simplify the notation we will write only si. Suppose that an si strategist
reviews his or her strategy with probability r xi

τ ( ) to consider whether he or
she should or should not change his or her current strategy, where
x x xi i= ( )1 2, .

Assume that an agent’s decision depends upon the pay-off associated
with his or her own behavior, given the composition of the population,
labeled as E s xi i

τ τ( , )− , "i ∈ {h, l; H, L}, of subpopulation t, - t = {1,2},
t � -t.

Hence, r xi
τ ( ) is the average time rate at which an agent who currently

uses strategy i reviews his or her strategy choice. Then,

r x f E s x xi i i i
τ τ τ τ( ) ( , ), [ , ]= ( )∈− 0 1 (7)

The function fi
τ ⋅( ) is the propensity for a member from the ith club to switch

from one membership to another. This propensity is higher for individuals
with a lower expected pay-off.

Having opted for a change, the agent will adopt a better strategy fol-
lowed by the first person from his or her population to be encountered (his or
her neighbor), i.e. for any t = {1,2}, p xij

τ ( ) is the probability that a reviewing
i strategist changes to some pure strategy j � i, " j ∈ {(H, L); (h, l)}.

The outflow from the i club in population t is x r x p xi i ij
τ τ τ( ) ( ) and the

inflow is x r x p xj j ji
τ τ τ( ) ( ). Then, " j � i ∈ {(H, L); (h, l)}, t = {1,2}, and by the

law of large numbers we model these processes as deterministic flows and,
rearranging terms, we obtain
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�x x f E s x p x x f E s x pi j j j j ji i i i i ij
τ τ τ τ τ τ τ τ τ τ τ= ( )[ ]− ( )− −( , ) ( ) ( , ) (xx)[ ] (8)

System (8) represents the interaction between two groups of agents who
imitate their neighbors.

By the normalization rule, x xH L
1 1 1+ = and x xh l

2 2 1+ = , system (8) can be
reduced to two equations with two independent state variables. Taking
advantage of this property, we choose variables xH

1 and xH
1 with their respect-

ive equations.
Björnerstedt and Weibull (1996) studied a model where those agents who

revise may imitate other agents in their player population, and show that a
number of pay-off-positive selection dynamics, including the replicator
dynamics, may be derived. In particular, if an agent’s revision rate is linearly
decreasing in the expected pay-off to his or her strategy (or to the agent’s
latest pay-off realization), then the intensity of each pure strategy’s Poisson
process will be proportional to its population share, and the proportionality
factor will be linearly decreasing in its expected pay-off. If every revising
agent selects his or her future strategy by imitating a randomly drawn agent
in their own player population, then the resulting flow approximation is again
the replicator dynamics.

Assume fi
τ ⋅( ) is linear in pay-off levels. Thus, the propensity to switch

behavior is decreasing in the level of the expected utility, i.e. " j � i ∈ {(H, L);
(h, l)}, t = {1,2}, we get

f E s x E s xi i i i i
τ τ τ τ τ τ τα β( , ) ( , )− −( ) = − (9)

where at, bt
3 0 and α βτ τ τ τ≥ −E s xi i( , ) assures that fi

τ ⋅( )∈[ ]0 1, . at is
interpreted as a degree of dissatisfaction and bt measures the performance of
the own pay-off on reviewing the current strategy. As far as the pay-off level
of the i strategist, Ei

τ ⋅( ), increases his or her average reviewing rate, r xi
τ ( ),

will decrease.
Schlag (1998, 1999) pointed out an evaluation rule of simple imitation

which is the ‘average rule or proportional rule’ where each strategy is evalu-
ated according to the average pay-off observed in the reference group (see
Apesteguia et al., 2007).

Consider that economic agents do not know the exact pay-offs of their
corresponding neighbors, but they can compute some average pay-offs in
their neighborhoods and they can imitate the behavior that yields the
highest average pay-off. Although an agent does not know all the true
values of the pay-off of the others, he or she can take a sample of such true
values in order to estimate the average. Let �Ei

τ and �E j
τ be the estimators

for the true values Ei
τ and E j

τ . Hence, the process of copying successful
behaviors exhibits pay-off monotonic updating, since strategies with above-
average pay-offs are adopted by others and thus increase their share in the
population, i.e. each i strategist changes his or her strategy if and only if
� �E Ei j
τ τ< .
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Let us apply the behavioral rule from Definition 1 where a reviewing
strategist, i, who decides to change his or her current strategy must take into
consideration: (i) a probability of imitating one strategy which performs
better than his or her current strategy, P E s x E s xi j j i[ ( , ) ( , )]� �τ τ τ τ− −< , and (ii) the
probability of meeting the agent, xj

τ , who currently uses such strategy.
Therefore, for any pair i � j ∈ {(H, L); (h, l)}, t = {1,2):

p x E x Eij j j j
τ τ τ τλ( ) = ⋅( ) ⋅( ) >if 0

and

p x E x Eji i i i
τ τ τ τλ( ) = ⋅( ) ⋅( ) >if 0

where

λ τ τ=
⋅( ) + ⋅( )

1
E Ei j

Hence, by the above considerations, system (8) becomes the system of
replicator dynamics driven by imitation, i.e.

�x x x E Ei i i j i
τ τ τ τ τ τ τ τ τλ α β α β= − − ⋅( ) − − ⋅( )[ ]( ) ( ) ( )1 (10)

The term x xi i
τ τ( )1− is the matching product when i meets j and the

term l[·] > 0 measures the proportional growth of the j reviewers thought to
be an i (a decrease if negative), from population t. By substitution of the
expected pay-offs (equations (3)–(6)), and after some algebraic manipula-
tion, we get

� �x x x x
px C

x W x w px
h l h h

H

H H H

2 2 2 2
2 1

1 1 1
1

2 1 1
= − = −( ) −( )

+ −[ ] −( ) + −
β

φ( ) CC

x x x x

x v U p x

L

⎧
⎨
⎩

⎫
⎬
⎭

= − = −

− − −[ ]− −( ) −

� �H H H

h h

1
1

1 1

1 2 2

1

1 1 1

( )

( )( )β γ γγ
γ

γ

( ){
− −( ) − −( )[ ]− + }

−( ) +( ) − − −[ ]
+ −

u

V x x W w

x U v W w p

x

1 1

1

1

2 2

2

h h

h

h( 22 1) −( ) +( ) − −[ ]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪ γ V u W w

(11)

The system ( �xh
2, �xH

1 ) describes the case where strategies propagate via
imitation, and expected pay-offs drive the rate of imitation, reinforcement
and inhibition of behaviors of the high-type agents from the populations of
leaders 1 and followers 2.

As we know, the system ( �xh
2, �xH

1 ) admits five stationary states or dynamic
equilibria, i.e.

( , ), ( , ), ( , ), ( , ) (0 0 0 1 1 0 1 1 1and a positive interior equilibrium Hx **, *)xh
2
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Let us denote as P x x= ( , )H h* *1 2 such interior equilibrium lying in the
square C = [0, 1] ¥ 0, 1], i.e.

x
C
p

x
V u W w

U u V v p

H

h

*

*

1

2 1
1

=

= −( ) −( ) + −
−( ) − + −( ) −

⎧

⎨

⎪
⎪

⎩

⎪
⎪ γ

γ

(12)

The interpretation of the above equilibria is as follows. (i) The trivial
equilibrium is one where leaders and followers are all low-type economic
agents {L, l} or (0,0). (ii) At the opposite corner (1,1) is the case where all
agents are high type {H, h}. (iii) The two remaining border equilibria, which
are not Nash equilibria, show a different club dominating the two popula-
tions and in a sense a mismatch between strategies {L, h}, {H, l} or (0,1),
(1,0). (iv) The interior equilibrium is composed of marriages among low- or
high-type economic agents: P x x= ( , )H h* *1 2 . In the next section we study the
main dynamical properties of these equilibria.

5 Analyzing the Evolutionary Dynamics

To observe the dynamics of the game we calculate trajectories, i.e. how the
mixed strategies change. We start with any pair of mixed strategies (x th

2
0( ),

x tH
1

0( )) for any initial time t = t0, and calculate the dynamics given by the
system ( �xh

2, �xH
1 ) as we progress along certain trajectory. In this vein, let us

recall the standard definitions (not stated in formal mathematical terms) on:

Definition 2: A ‘trajectory’ is a path determined in the phase space of the
solution of a dynamical system passing through a given point of the space at
a given time.

Definition 3: An ‘attractor’ of a dynamical system is a subset of the state
space to which orbits originating from typical initial conditions tend as time
increases.

Definition 4: A ‘saddle point’ is a fixed point that has at least one positive
eigenvalue and one negative eigenvalue in its linearization. More generally, a
fixed point for which there are trajectories that tend to the fixed point in both
positive and negative time. That is, a saddle point is a point whose stable and
unstable manifolds have a dimension which is not zero.

Definition 5: The ‘basin of attraction’ of an attractor is the set of initial
conditions as a region in the state space leading to long-time behavior that
approaches to the attractor.
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Thus the qualitative behavior of the long-time motion of a given
system can be fundamentally different depending on which basin of attrac-
tion the initial condition lies in (e.g. attractors can correspond to periodic,
quasi-periodic or chaotic behaviors of different types). Regarding a basin of
attraction as a region in the state space, it has been found that the basic
topological structure of such regions can greatly vary from system to
system.

Another important concept is that of evolutionarily stable strategy
(ESS). A population playing such a strategy is uninvadable by any other
strategy. Uninvadability is a useful characterization of evolutionary stabil-
ity, and indeed its original definition is that a strategy x* is evolutionarily
stable if and only if (i) it is a best response to itself and (ii) it is a better
response to all other best responses than these are to themselves. By defini-
tion, no alternative best response exists for any player population if the
profile in question x* happens to be a strict Nash equilibrium, so such
profiles should qualify. In other words, consider a two-population normal
form game:

Γ = ={ } ( ) ( )( ) ⋅( )τ τ
τ1 2, , , ; , , ( )H L h l Ei

where each population has two possible behaviors (H, L) and (h, l) denoting
high and low types of leaders (1) and followers (2) with expected pay-offs
Ei( )τ

τ ⋅( ). Then:

Definition 6: A strategy x ∈ Dt is an ESS in asymmetric games, for a popu-
lation t if and only if

E x y E z y zi i i i
τ τ τ( , ) ( , )− −≥ ∀ ∈Δ

and for all y′ ∈ D, y′ � y there exists some ε ′ ∈y ( , )0 1 such that, for all
ε ε∈ ′( , )0 y and with we = ey′ + (1 - e)y,

E x w E y wi i
τ

ε
τ

ε τ( , ) ( , ) ,> ∀ ∈{ }1 2

Intuitively, we say that x is an ESS if and only if after a mutation
in the population -t continues to be a best response for the post-entry
population, we.

Zeeman (1992) shows that an ESS is asymptotically stable in the
replicator dynamics such that trajectories do not necessarily have to
settle at the equilibrium (which would be neutrally stable) to be an
ESS (more details in Weibull, 1995), but the converse of this statement
is not necessarily true, and being asymptotically stable does not imply
ESS.

An ESS against the field is a mixed Nash equilibrium that is uninvadable
by any alternative strategy into the basin of attraction. That is:
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Definition 7: Consider that the profile distribution from population 1 is given
by x x x1 1 1= ( )H L, , then we say that the strategy x x x2 2 2= ( )H L, is an ESS against
the field of x1 if there exists εx1 0> such that

E x x E x x2 2 1 2 2 1, ,
� �( ) ≥ ( )

for all x2 ∈ S2 where x x x
1 1

1− ≤� ε .

Nevertheless, by complementarities it can happen that the field, defined
by the strategy or the profile distribution from one population which the
opponent takes as given, evolves at the same time under the pressures in the
changes of the distribution generated by such opponents. Then, such inter-
dependence of behaviors can generate ESS in both populations. For that
reason, we should consider the definition of ESS against the field for strategic
profiles:

Definition 8 (Evolutionarily stable strategic profile): A strategic profile
(x1, . . . , xn) is evolutionarily stable, if xi defines for all I = 1, . . . , n an ESS
against the field x-i being x-i = (x1, . . . , xi-1, xi+1, . . . , xn) generated by the
strategic behavior of all the other opponents.

Hence, if an economic system evolves into a poverty trap, it is not
enough that any small perturbation in the initial conditions can lead the
system outside to the basin of attraction. This means that the poverty trap is
an attractor of trajectories defined by probability distributions that are
evolutionarily stable strategic profiles.

The following proposition summarizes our main results.

Proposition 1: By imitation of agents the evolutionary dynamics from the
system ( �xh

2, �xH
1 ) is as follows:

(i) Equilibria (0,0) and (1,1) are asymptotically stable points (in 10) and
define the strategic profiles (0,1; 0,1) and (1,0; 1,0), respectively, and they
are ESS against the field into their basin of attraction.

(ii) Equilibrium P x x= ( , )H h* *1 2 is a threshold since it separates the basins of
attraction of the low-level and high-level equilibria and, with the excep-
tion of a single curve through this point, all solution trajectories con-
verge to the attractors.

Proof: See the Appendix. Figure 1 draws the evolutionary dynamics of the
replicator dynamics driven by imitation (system (10)).

Recall that the location of the saddle point P depends on the parameters
values: education costs, premia or bonus and income taxes. �

In other words:
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1. Consider a pair of initial distributions x x x0 0
1

0
2 1 2= ∈ ×( , ) Δ Δ such that the

corresponding values of the high types are lower than P x x= ( , )H h* *1 2 then,
the economy will evolve on trajectories defined by the solutions of the
system (10), where (0,1) ∈ D1 is a best response for x2(t) and (0,1) ∈ D2 is
a best response for x1(t), and (x1(t), x2(t)) is the solution for the system
(10) with the initial conditions (x0

1, x0
2). Moreover, it holds that x1(t) →

(0,1) and x2(t) → (0,1) with t → •. Then, the whole economy converges
to the attractor (0,1; 0,1).

2. But if the initial conditions of the economy defined by (x0
1, x0

2) ∈ D1 ¥ D2

are such that the initial values of profile distributions xH0
1 and xh0

2 are
larger than P, then we obtain trajectories such that the economy con-
verges to (1,0; 1,0).

6 Overcoming the Poverty Trap

The following statement emphasizes our notion of poverty trap:

Equilibrium (0,0) is a poverty trap in the sense that an economy starting with a
(sufficiently) low number of high-type agents experiences a decreasing sequence
of high-type economic agents that eventually leads to no high-type agents. This is
due to the rationality of the economic agents that are facing a population state (or
an economy) where low-type agents are dominant strategies. Then, for such an
economy an imitative agent should decide to become a low-type economic agent.

In terms of game theory:

Definition 9: A poverty trap is a Nash equilibrium Pareto-dominated which is
a steady state of the replicator dynamics defined by the rules of conduct

(1, 1)

(1, 0)

P
_

(0, 0)

(0, 1)

x1
H

x1
H∗

x2
h∗

x2
h

Fig. 1. Evolutionary Dynamics Driven by Imitative Behavior
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(imitation) which define a local attractor, to which trajectories converge
shaped by evolutionarily stable strategic profiles.

For a large initial number of high-type agents, greater than the level
P x x= ( , )1 2

H h* * , the economy converges over time towards the sample path
t → (1,1) of high-type agents. To overcome the poverty trap we should reduce
the basin of attraction of the low-level equilibrium (0,0) and either x1

H* or x2
h*

should decrease, i.e.

1. The ratio of education costs–skill premia, C/P, decreases if the training
costs C fall or the value of the premia p rises.

2. With fixed training costs, C, if the followers’ probability of matching with
a high-type leader, s, decreases, then the number of high-type followers
decreases also. To avoid this situation, the value of p must be larger than
C. For instance, if σ = ≥1

2 C p the bonus should be twice as large as the
training costs, p 3 2C. Hence, when the number of high-type followers is
small, then the skill premia p should be large enough in order to encour-
age the other agents to switch their current behavior and to join the club
of high-type followers.

Decreasing the value of x1
H*: either training costs C should decrease, or the

bonus p must increase, i.e.
either * or * *H H H

C e
x x x

→ →∞
⇒ =

0
1 1 1 0lim lim

Hence, it fully expands the basin of attraction to (1,1) which is the
high-level equilibrium.

6.1 Replicator Dynamics with Fiscal Incentives

We argue that fiscal incentives may encourage players to become high type. A
short numerical example helps to understand the key role of taxes and sub-
sidies for overcoming a poverty trap. Let us consider that the gross income of
high-type followers is W = 10 units and w = 5 units for low types. Gross
income of high-type leaders is U = 100 units when hiring high types while it is
u = 50 units hiring low types. Gross income of low-type leaders is V = 60 units
hiring low types and v = 40 units hiring high types.

2\1 H L

h (1 - f)10 + p - C, (1 - g )100 - 10 - p (1 - f)5 - C, (1 - g )40 - 5

l (1 - f)10, (1 - g )50 - 10 (1 - f)5, (1 - g )60 - 5

This is a coordination game and the following inequalities hold: (i) p > C
> 0, (ii) p < (1 - g )60 - 5, and (iii) g < 1. Then, still the two pure Nash equilibria
are (H, h) and (L, l) and the former is the pay-off dominant while the latter
is the risk dominant. Now, the threshold is
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x
C
p

x
p

H

h

*

*

1

2 1 10 5
1 80

=

= −( ) +
−( ) −

⎧

⎨

⎪
⎪

⎩

⎪
⎪ γ

γ

(13)

Recall that p 2 (1 - f)(W - w) = (1 - f)5, and hence to overcome the
poverty trap requires exogenous changes like fiscal policies on g or reductions
in training costs (or education costs) and increments of skill premia (or
bonuses).

Consider that a central planner has implemented a policy characterized
by income taxation and subsidies. The subsidies are awarded only to those
who decide be a high-type economic agent.

Let Xi( )τ
τ be the total of i strategists, i ∈ {(H, L); (h, l)}, from the

population t = {1,2}, and let N Xii
=∑ ( ), τ

τ
τ

be the total number of agents in
the whole economy. The mass (or number) of leaders and followers that
adopt a strategy i is given by

m
X

N

x X

N
i

i i= =( ) ( )τ
τ

τ
τ τ

(14)

where X X Xτ = +( ){ H L
1 1 ; X Xh l

2 2+( )}. Then, we denote by

Δ = ∈ ={ }+ =∑m R mk
ii

k
:

1
1 the simplex of Rk. In our case k = 4.

If such taxes are imposed on each population t ∈ {F, W}, then the total
revenue collected in the economy is

T m U u m V v m m W w= −( ) +( )[ ]+ −( ) +( )[ ]+ +( ) −( ) +( )[ ]H L h l1 1 1γ γ φ

Consider that a proportion q ∈ (0,1) of the total tax revenue collected, T,
is shared with high-type followers and the rest by high-type leaders.

The new expected pay-offs, after transfers, for strategists h and l are
now, respectively,

E E T

E E
T

T

( )

( )

h

l
h

l

= +
=

2

2

θ
(15)

For strategist H and L, the new expected pay-offs are now, respectively,

E E T

E E
T

T

( ) ( )

( )

H

L
H

L

= + −
=

1

1

1 θ
(16)

Hence, the replicator dynamics (10), for all i(t)-type agent i(1) ∈ {H, L}
and i(2) ∈ {h, l}, is now substituted by the new replicator system with fiscal
subsidies given by

�x x x E i E ji i i T T
τ τ τ τ τλ α β= −( ) +( ) −( )[ ]1 ( ) ( ) (17)
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Consider that the initial conditions are z(t0) = (xS (t0), yI (t0)), then the
solution of this system will be unique and symbolized by x(t, t0z(t0)). Now, the
threshold value corresponding to this system is given by the equations:

E E T

E E T
T

T

( ) =

( ) = (1 )

2

1

h

H
l

L

−
− −
θ

θ
(18)

From these equations we get the new threshold value with subsidies
in terms of the share of high-type leaders and high-type followers:
G x x P x x= ( ) ≤ =ˆ , ˆ ( , )H h H h* *1 2 1 2 . This value is given by

ˆ *

ˆ * ( )

x x T

x x T

H H

h h

1 1

2 2 1

= −

= − −

θ

θ
(19)

where xH*1 and xh*2 are the former threshold value defined in (12). So, if the
initial value z t x t x t( ) ( ), ( )0

2
0

1
0= ( )h H in any given time, t = t0 of the economy, is

below the threshold value P x x= ( , )H h* *1 2 , then the central planner needs to
implement fiscal subsidies such that

x t x T

x t x T

H H

h h

*

*

1
0

1

2
0

2 1

( )

( ) ( )

≥ −

≥ − −

θ

θ
(20)

and therefore the initial conditions are outside from the basin of attraction of
the low-level equilibrium (poverty trap), corresponding to the system (17).
Hence, the economy moves towards a high-level equilibrium. Once the
economy surpasses the threshold value G x x= ( )ˆ , ˆH h

1 2 , the central planner may
leave the economy to evolve by its own rules, i.e. the evolution of the
economy will be determined by the system (10), but now the initial conditions
are in the basin of attraction of the high-level equilibrium. This means that
the central planner should withdraw fiscal subsidies once the economy, fol-
lowing a trajectory which corresponds to a solution of (17), surpasses G.
Subsequently, the agents following their imitation rule will drive the economy
to a high-level equilibrium. Therefore, the intervention by fiscal subsidies of
the central planner in the economy, in a time t = t0, could be justified for a
given time period of z(t0) below the threshold value G.

7 Concluding Remarks

In this paper we developed and studied a framework which encapsulates a
strategic coordination game between leaders and followers into an evolution-
ary dynamics based on the imitative behavior of two populations of leaders
and followers. The economic interpretation of this set-up focus on the pres-
ence of poverty traps in economic development stemming from the equilibria
multiplicity of the basic coordination game. The ‘favorable’ and the ‘unfa-
vorable’ equilibrium are attractors of an evolutionary process of imitation
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and matching between leaders and followers populating the economy. The
two basins of attraction are separated by a saddle path which depends upon
the (unique) Nash equilibrium in mixed strategies of the coordination game.
This latter equilibrium depends on the model’s parameters, such as training
or education costs, skill premia and the tax structure, so that the extension of
the two basins of attraction is affected by these parameters. Even though the
general motivation of this paper is mainly theoretical, the paper’s policy
proposal (i.e. to subsidize education, R&D etc.) is rather intuitive and
common in poverty traps literature. Our most important point is the provi-
sion of a novel mechanism capable of explain the presence of poverty traps
based on imitative behavior and bounded rationality coupled with a strategic
coordination problem.

The central planner can change the initial conditions that define the
future evolution of the economy. To do this, he or she must implement
appropriate economic policy measures. For instance, some fiscal subsidies
could encourage followers and leaders to become high types. The purpose of
these policies is to withdraw the economy from a trajectory converging to an
inefficient equilibrium (the poverty trap). This intervention of the central
planner might stop once the solution x(t, t0, z(t0)) of the dynamical system
given by (17) surpasses the threshold value G. From this period on, the
economy will follow a trajectory, then according to a solution of the dynami-
cal system (10) it converges to a high-level equilibrium. Then, the intervention
of the central planner becomes superfluous. When this moment arrives is a
question for future research.

Appendix

Proof: Consider the Jacobian associated to the system ( �xh
2, �xH

1 ) given by

J

x x p C x x p

x x U u V v

⋅( ) =
− −( ) −

− − − + −( ) −

( ) ( )

( )( )

1 2 1

1 1 1

2 1 2 2

1 1

h H h h

H H γ 22 1xH( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟k

(21)

where k = − +( )[ ]− − +( ) − +x U V V u W wh
2 1 1( ) ( )γ γΔ Δ . Equilibria for which it is

determined that det(J) > 0 and tr(J) < 0 are asymptotically stable, thus from Definition
7 they are ESSs against the field. We evaluate J x x� �h H

2 1,( ):

1. x xh H
2 1 0= = . The evaluated Jacobian in this case is given by

J
C

V u W w
=

−
− − +( ) + −[ ]

⎡
⎣⎢

⎤
⎦⎥

0

0 1( )γ

It yields detJ = [W - w + (1 - g)(V + u)](C) > 0) and trJ < 0. Hence this equilibrium
point (0,0) is an attractor and therefore an ESS.

2. x xh H
2 1 1= = . The evaluated Jacobian is given by
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J
p C

W w U u v
=

0

0 (1 ) 2

− −( )
− − + − − −( )[ ]

⎡
⎣⎢

⎤
⎦⎥γ

Thus, detJ > 0 and trJ < 0. Hence this equilibrium point (1,1) is an attractor and an
ESS.

3. xh
2 1= , xH

1 0= . The evaluated Jacobian is

J
C

U u v W w
=

− − −( ) − +
⎡
⎣⎢

⎤
⎦⎥

0

0 1 2( )γ

Thus, detJ > 0 and trJ > 0. In this case, the equilibrium point (1,0) is a repulsor.

4. xh
2 0= , xH

1 1= . The evaluated Jacobian in this case is

J
p C

V u W w
=

−
− +( ) + −

⎡
⎣⎢

⎤
⎦⎥

0

0 1( )γ

Thus, detJ > 0 and trJ > 0. In this case, the equilibrium point (0,1) is a repulsor.
Since the C square is partitioned into four regions, the point (xh*2 , xH*1 ) is a saddle

and the other four are local attractors or repulsors. The curve that converges to P is
a set of critical values into the state of the C square with the following property: the
optimal strategy is different depending on which side of the threshold the current state
lies. Therefore, there is just a one-dimensional manifold (threshold level) which goes
through P. Such a threshold separates the basins of attraction into (0,0) and (1,1).
Hence, if the initial distribution of high-type economic agents, ( xH0

1 , xh0
2 ), is lower than

the threshold (xh*2 , xH*1 ), then the strategic profile (L, l) = (0,1; 0,1) is an ESS against
the field of (xh

2, xH
1 ) for all x x x x k

h H h H* *2 1 2 1, ( , )( ) ≠ ∈Δ . Otherwise if it is upper to the
threshold the equilibrium (H, h) = (1,0; 1,0) is an ESS against the field. �

References

Apesteguia, J., Huck, S. and Oechssler, J. (2007). ‘Imitation—Theory and Experi-
mental Evidence’, Journal of Economic Theory, Vol. 136, pp. 217–235.

Azariadis, C. and Drazen, A. (1990). ‘Threshold Externalities in Economic Develop-
ment’, Quarterly Journal of Economics, Vol. 105, No. 2, pp. 501–526.

Azariadis, C. and Starchuski, H. (2005). ‘Poverty Traps’, in P. Aghion and S. Durlauf
(eds), Handbook of Economic Growth, Oxford, Elsevier.

Björnerstedt, J. and Weibull, J. W. (1996). ‘Nash Equilibrium and Evolution by
Imitation’, in K. Arrow, E. Colombatto, M. Perlman and C. Schmidt (eds), The
Rational Foundations of Economic Behavior, London, Macmillan, pp. 155–171.

Bowles, S., Durlauf, S. and Hoff, K. (2006). Poverty Traps, Princeton, NJ, Princeton
University Press.

Cooper, R. and John, A. (1998). ‘Coordinating Coordination Failures in Keynesian
Models’, Quarterly Journal of Economics, Vol. 103, pp. 441–463.

Durlauf, S. N. (2003). ‘Neighborhood Effects’, Madison, University of Wisconsin,
Department of Economics, SSRI Working Paper 2003-17 (prepared for J.
Vernon Henderson and Jacques-François Thisse (eds), Handbook of Regional and
Urban Economics, Vol. 4, Cities and Geography (Handbooks in Economics 7),
Amsterdam, North-Holland).

Fudenberg, D. and Tirole, J. (1991). Game Theory, Cambridge, MA, MIT Press.

The Evolutionary Game of Poverty Traps 399

© 2011 The Authors
The Manchester School © 2011 Blackwell Publishing Ltd and The University of Manchester



Hoff, K. (2001). ‘Beyond Rosenstein–Rodan: the Modern Theory of Coordination
Problems in Development’, Annual World Bank Conference on Development,
Washington, DC, The World Bank, pp. 145–176.

Matsuyama, K. (2007). ‘Aggregate Implications of Credit Market Imperfections’, in
D. Acemoglu, K. Rogoff and M. Woodford (eds), NBER Macroeconomics
Annual, Vol. 22, Cambridge, MA, National Bureau of Economic Research, and
Chicago, University of Chicago Press.

North, D. (1990). Institutions, Institutional Change and Economic Performance, Cam-
bridge, Cambridge University Press.

Polterovich, V. (2008). ‘Institutional Trap’, in S. N. Durlauf and L. E. Blume (eds),
The New Palgrave Dictionary of Economics, London, Palgrave Macmillan.

Sanditov, B. (2006). ‘Essays on Social Learning and Imitation’, PhD thesis, Maas-
trictht University.

Schlag, K. H. (1998). ‘“Why Imitate, and If So, How?” A Boundedly Rational
Approach to Multi-armed Bandits’, Journal of Economic Theory, Vol. 78, No. 1,
pp. 130–156.

Schlag, K. H. (1999). ‘Which One Should I Imitate’, Journal of Mathematical Eco-
nomics, Vol. 31, No. 4, pp. 493–522.

Taylor, P. (1979). ‘Evolutionarily Stable Strategies with Two Types of Player’, Journal
of Applied Probability, Vol. 16, pp. 76–83.

Weibull, W. J. (1995). Evolutionary Game Theory, Cambridge, MA, MIT Press.
Zeeman, A. C. (1992). ‘Population Dynamics from Game Theory’, in Z. Nitecki and

C. Robinson (eds), Global Theory of Dynamical Systems, Heidelberg, Springer-
Verlag, pp. 471–497, Lecture Notes in Mathematics 819.

The Manchester School400

© 2011 The Authors
The Manchester School © 2011 Blackwell Publishing Ltd and The University of Manchester


