BigM method

Find solution using Simplex(BigM) method MIN Z = 7560x1 + 1680x2 + 4636.8x3 + 1478.4x4subject to x1 + x2 >= 110x1 + x3 >= 100x1 + x3 >= 100x1 + x4 >= 80x1 <= 90and x1,x2,x3,x4 >= 0 Solution: Problem is $\operatorname{Min} Z = 7560 x_1 + 1680 x_2 + 4636.8 x_3 + 1478.4 x_4$ subject to $x_1 + x_2$ ≥ 110 $+ x_3$ ≥ 100 x_1 x_1 + $x_4 \ge 80$ ≤ 90 x_1 and $x_1, x_2, x_3, x_4 \ge 0;$ $\therefore \text{ Max } Z = -7560 x_1 - 1680 x_2 - 4636.8 x_3 - 1478.4 x_4$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' \geq ' we should subtract surplus variable S_1 and add artificial variable A_1

2. As the constraint 2 is of type ' \geq ' we should subtract surplus variable S_2 and add artificial variable A_2

3. As the constraint 3 is of type ' \geq ' we should subtract surplus variable S_3 and add artificial variable A_3

4. As the constraint 4 is of type ' \leq ' we should add slack variable S_4

After introducing slack, surplus, artificial variables

Max $Z = -7560x_1 - 1680x_2 - 4636.8x_3 - 1478.4x_4 + 0S_1 + 0S_2 + 0S_3 + 0S_4 - MA_1 - MA_2 - MA_3$ subject to

$x_1 +$	<i>x</i> ₂	- S ₁	$+ A_1$	= 110
x_1	$+ x_3$	- S ₂	+ A ₂	= 100
x_1	+ x	4 - S ₃	3	+ $A_3 = 80$
x_1			$+ S_4$	= 90

Iteration-1		C_j	- 7560	-1680	-4636.8	- 1478.4	0	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	CB	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	A ₁	A ₂	A ₃	MinRatio X _B x ₁
A_1	- <i>M</i>	110	1	1	0	0	- 1	0	0	0	1	0	0	110 1 = 110
A2	- <i>M</i>	100	1	0	1	0	0	- 1	0	0	0	1	0	100 1 = 100
<i>A</i> ₃	- <i>M</i>	80	(1)	0	0	1	0	0	- 1	0	0	0	1	80 1 = 80 →
<i>S</i> ₁	0	90	1	0	0	0	0	0	0	1	0	0	0	90 1 = 90
Z = 0		Z_j	-3M	- <i>M</i>	-M	- <i>M</i>	M	M	M	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
		$Z_j - C_j$	-3 <i>M</i> + 7560 ↑	- <i>M</i> +1680	- <i>M</i> +4636.8	- <i>M</i> +1478.4	M	M	M	0	0	0	0	

and $x_1, x_2, x_3, x_4, S_1, S_2, S_3, S_4, A_1, A_2, A_3 \ge 0$

Negative minimum $Z_j - C_j$ is -3M + 7560 and its column index is 1. So, the entering variable is x_1 .

Minimum ratio is 80 and its row index is 3. So, the leaving basis variable is A_3 .

```
∴ The pivot element is 1.
```

Entering $= x_1$, Departing $= A_3$, Key Element = 1

 $R_3(\text{new}) = R_3(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - R_3(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$

 $R_4(\text{new}) = R_4(\text{old}) - R_3(\text{new})$

Iteration-2	C_j	- 7560	- 1680	-4636.8	- 1478.4	0	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	

BigM method

						0								
B	C _B	X _B	<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>x</i> ₄	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄	<i>A</i> ₁	A ₂	A ₃	MinRatio X _B S ₃
<i>A</i> ₁	- <i>M</i>	30	0	1	0	- 1	- 1	0	1	0	1	0	- 1	30 1 = 3
A2	- <i>M</i>	20	0	0	1	- 1	0	- 1	1	0	0	1	- 1	20 1 = 2
<i>x</i> ₁	-7560	80	1	0	0	1	0	0	- 1	0	0	0	1	
<i>S</i> ₁	0	10	0	0	0	- 1	0	0	(1)	1	0	0	- 1	10 1 = 10
Z = -604800		Z_j	-7560	- <i>M</i>	- <i>M</i>	2 <i>M</i> - 7560	М	М	-2 <i>M</i> + 7560	0	- <i>M</i>	- <i>M</i>	2 <i>M</i> - 7560	
		$Z_j - C_j$	0	- <i>M</i> +1680	- <i>M</i> +4636.8	<i>2M</i> - 6081.6	М	М	<i>-2M</i> +7560 ↑	0	0	0	3 <i>M</i> - 7560	

Negative minimum $Z_j - C_j$ is -2M + 7560 and its column index is 7. So, the entering variable is S_3 .

Minimum ratio is 10 and its row index is 4. So, the leaving basis variable is S_1 .

 \therefore The pivot element is 1.

Entering = S_3 , Departing = S_1 , Key Element = 1

 $R_4(\text{new}) = R_4(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) - R_4(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) - R_4(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) + R_4(\text{new})$

Iteration-3		Cj	-7560	- 1680	-4636.8	-1478.4	0	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>s</i> ₁	S ₂	<i>s</i> ₃	S ₄	A ₁	A ₂	A ₃	MinRatio X _B x ₂
A ₁	- M	20	0	(1)	0	0	- 1	0	0	- 1	1	0	0	$201 = 20 \rightarrow$
A2	- <i>M</i>	10	0	0	1	0	0	- 1	0	- 1	0	1	0	
<i>x</i> ₁	-7560	90	1	0	0	0	0	0	0	1	0	0	0	
<i>S</i> ₃	0	10	0	0	0	- 1	0	0	1	1	0	0	- 1	
Z = -680400		Z_j	-7560	- <i>M</i>	- <i>M</i>	0	M	M	0	2 <i>M</i> - 7560	- <i>M</i>	- <i>M</i>	0	
		$Z_j - C_j$	0	- <i>M</i> +1680 ↑	- <i>M</i> +4636.8	1478.4	М	M	0	2 <i>M</i> - 7560	0	0	M	

Negative minimum $Z_i - C_i$ is -M + 1680 and its column index is 2. So, the entering variable is x_2 .

Minimum ratio is 20 and its row index is 1. So, the leaving basis variable is A_1 .

 \therefore The pivot element is 1.

Entering = x_2 , Departing = A_1 , Key Element = 1

 $R_1(\text{new}) = R_1(\text{old})$

 $R_2(\text{new}) = R_2(\text{old})$

 $R_3(\text{new}) = R_3(\text{old})$

 $R_4(\text{new}) = R_4(\text{old})$

Iteration-4		Cj	-7560	-1680	-4636.8	-1478.4	0	0	0	0	- M	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	A ₁	A ₂	A ₃	MinRatio X _B x ₃
<i>x</i> ₂	-1680	20	0	1	0	0	- 1	0	0	- 1	1	0	0	
A ₂	- <i>M</i>	10	0	0	(1)	0	0	- 1	0	- 1	0	1	0	$101 = 10 \rightarrow$
<i>x</i> ₁	-7560	90	1	0	0	0	0	0	0	1	0	0	0	
<i>S</i> ₃	0	10	0	0	0	- 1	0	0	1	1	0	0	- 1	
Z = -714000		Z_j	-7560	-1680	- <i>M</i>	0	1680	M	0	M - 5880	-1680	- <i>M</i>	0	
		$Z_j - C_j$	0	0	- <i>M</i> +4636.8 ↑	1478.4	1680	M	0	M - 5880	<i>M</i> - 1680	0	M	

Negative minimum $Z_i - C_i$ is -M + 4636.8 and its column index is 3. So, the entering variable is x_3 .

Minimum ratio is 10 and its row index is 2. So, the leaving basis variable is A_2 .

 \therefore The pivot element is 1.

Entering = x_3 , Departing = A_2 , Key Element = 1

 $R_2(\text{new}) = R_2(\text{old})$

 $R_1(\text{new}) = R_1(\text{old})$

 $R_3(\text{new}) = R_3(\text{old})$

 $R_4(\text{new}) = R_4(\text{old})$

Iteration-5		Cj	-7560	-1680	-4636.8	- 1478.4	0	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>S</i> ₁	S ₂	<i>S</i> ₃	S ₄	A ₁	A ₂	A ₃	MinRatio X _B S ₄
<i>x</i> ₂	-1680	20	0	1	0	0	- 1	0	0	- 1	1	0	0	
<i>x</i> ₃	-4636.8	10	0	0	1	0	0	- 1	0	- 1	0	1	0	
<i>x</i> ₁	-7560	90	1	0	0	0	0	0	0	1	0	0	0	90 1 = 90
<i>S</i> ₃	0	10	0	0	0	- 1	0	0	1	(1)	0	0	- 1	$101 = 10 \rightarrow$
Z = -760368		Z_j	-7560	-1680	-4636.8	0	1680	4636.8	0	-1243.2	-1680	-4636.8	0	
		$Z_j - C_j$	0	0	0	1478.4	1680	4636.8	0	-1243.2 ↑	<i>M</i> - 1680	<i>M</i> - 4636.8	M	

Negative minimum $Z_j - C_j$ is -1243.2 and its column index is 8. So, the entering variable is S_4 .

Minimum ratio is 10 and its row index is 4. So, the leaving basis variable is S_3 .

 \therefore The pivot element is 1.

Entering = S_4 , Departing = S_3 , Key Element = 1

 $R_4(\text{new}) = R_4(\text{old})$

 $R_1(\text{new}) = R_1(\text{old}) + R_4(\text{new})$

 $R_2(\text{new}) = R_2(\text{old}) + R_4(\text{new})$

 $R_3(\text{new}) = R_3(\text{old}) - R_4(\text{new})$

Iteration-6		C_j	- 7560	-1680	-4636.8	- 1478.4	0	0	0	0	- <i>M</i>	- <i>M</i>	- <i>M</i>	
В	C _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>S</i> ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	A ₁	A ₂	A ₃	MinRatio
<i>x</i> ₂	-1680	30	0	1	0	- 1	- 1	0	1	0	1	0	- 1	
<i>x</i> ₃	-4636.8	20	0	0	1	- 1	0	- 1	1	0	0	1	- 1	
<i>x</i> ₁	-7560	80	1	0	0	1	0	0	- 1	0	0	0	1	
<i>S</i> ₄	0	10	0	0	0	- 1	0	0	1	1	0	0	- 1	
Z = -747936		Zj	- 7560	-1680	-4636.8	-1243.2	1680	4636.8	1243.2	0	-1680	-4636.8	-1243.2	
		$Z_j - C_j$	0	0	0	235.2	1680	4636.8	1243.2	0	<i>M</i> - 1680	<i>M</i> - 4636.8	<i>M</i> - 1243.2	

Since all $Z_j - C_j \ge 0$

Hence, optimal solution is arrived with value of variables as : $x_1 = 80, x_2 = 30, x_3 = 20, x_4 = 0$

Max Z = -747936

Min Z = 747936