Find solution using Simplex(BigM) method
MIN $Z=7560 \times 1+1680 \times 2+4636.8 \times 3+1478.4 \times 4$
subject to
$\mathrm{x} 1+\mathrm{x} 2>=110$
$\mathrm{x} 1+\mathrm{x} 3>=100$
$x 1+x 4>=80$
$\mathrm{x} 1<=90$
and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4>=0$
Solution:
Problem is
$\operatorname{Min} Z=7560 x_{1}+1680 x_{2}+4636.8 x_{3}+1478.4 x_{4}$
subject to

| $x_{1}+x_{2}$ |  | $\geq 110$ |
| ---: | :--- | ---: |
| $x_{1}+x_{3}$ | $\geq 100$ |  |
| $x_{1}$ | $+x_{4}$ | $\geq 80$ |
| $x_{1}$ |  | $\leq 90$ |

and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$;
$\therefore \operatorname{Max} Z=-7560 x_{1}-1680 x_{2}-4636.8 x_{3}-1478.4 x_{4}$

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint 1 is of type ' $\geq$ ' we should subtract surplus variable $S_{1}$ and add artificial variable $A_{1}$
2. As the constraint 2 is of type ' $\geq$ ' we should subtract surplus variable $S_{2}$ and add artificial variable $A_{2}$
3. As the constraint 3 is of type ' $\geq$ ' we should subtract surplus variable $S_{3}$ and add artificial variable $A_{3}$
4. As the constraint 4 is of type ' $\leq$ ' we should add slack variable $S_{4}$

## After introducing slack,surplus,artificial variables

$\operatorname{Max} Z=-7560 x_{1}-1680 x_{2}-4636.8 x_{3}-1478.4 x_{4}+0 S_{1}+0 S_{2}+0 S_{3}+0 S_{4}-M A_{1}-M A_{2}-M A_{3}$ subject to

and $x_{1}, x_{2}, x_{3}, x_{4}, S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3} \geq 0$

| Iteration-1 |  | $C_{j}$ | -7560 | -1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | -M | -M | -M |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $C_{B}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\boldsymbol{x}_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | MinRatio $X_{B} x_{1}$ |
| $A_{1}$ | -M | 110 | 1 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | $1101=110$ |
| $A_{2}$ | -M | 100 | 1 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | $1001=100$ |
| $A_{3}$ | -M | 80 | (1) | 0 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | $801=80 \rightarrow$ |
| $S_{1}$ | 0 | 90 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | $901=90$ |
| $Z=0$ |  | $Z_{j}$ | -3M | -M | -M | -M | M | M | M | 0 | -M | -M | -M |  |
|  |  | $Z_{j}-C_{j}$ | $-3 M+7560 \uparrow$ | $-M+1680$ | $-M+4636.8$ | $-M+1478.4$ | M | M | M | 0 | 0 | 0 | 0 |  |

Negative minimum $Z_{j}-C_{j}$ is $-3 M+7560$ and its column index is 1 . So, the entering variable is $x_{1}$.
Minimum ratio is 80 and its row index is 3 . So, the leaving basis variable is $A_{3}$.
$\therefore$ The pivot element is 1 .

Entering $=x_{1}$, Departing $=A_{3}$, Key Element $=1$
$R_{3}($ new $)=R_{3}($ old $)$
$R_{1}($ new $)=R_{1}($ old $)-R_{3}($ new $)$
$R_{2}$ (new) $=R_{2}$ (old) $-R_{3}$ (new)
$R_{4}($ new $)=R_{4}($ old $)-R_{3}($ new $)$

| Iteration-2 | $C_{j}$ | -7560 | -1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | -M | -M | -M |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| B | $C_{B}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $\begin{gathered} \text { MinRatio } \\ X_{B} S_{3} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | -M | 30 | 0 | 1 | 0 | -1 | -1 | 0 | 1 | 0 | 1 | 0 | -1 | $301=3 C$ |
| $A_{2}$ | -M | 20 | 0 | 0 | 1 | -1 | 0 | -1 | 1 | 0 | 0 | 1 | -1 | $201=2 \mathrm{C}$ |
| $x_{1}$ | -7560 | 80 | 1 | 0 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | --- |
| $S_{1}$ | 0 | 10 | 0 | 0 | 0 | -1 | 0 | 0 | (1) | 1 | 0 | 0 | -1 | $101=10-$ |
| $Z=-604800$ |  | $Z_{j}$ | -7560 | -M | -M | 2M-7560 | M | M | $-2 M+7560$ | 0 | -M | -M | 2M-7560 |  |
|  |  | $Z_{j}-C_{j}$ | 0 | $-M+1680$ | $-M+4636.8$ | 2M-6081.6 | M | M | $-2 M+7560 \uparrow$ | 0 | 0 | 0 | 3M-7560 |  |

Negative minimum $Z_{j}-C_{j}$ is $-2 M+7560$ and its column index is 7 . So, the entering variable is $S_{3}$.

Minimum ratio is 10 and its row index is 4 . So, the leaving basis variable is $S_{1}$.
$\therefore$ The pivot element is 1 .
Entering $=S_{3}$, Departing $=S_{1}$, Key Element $=1$
$R_{4}($ new $)=R_{4}($ old $)$
$R_{1}$ (new) $=R_{1}($ old $)-R_{4}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)-R_{4}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)+R_{4}($ new $)$

| Iteration-3 |  | $C_{j}$ | -7560 | -1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | -M | -M | -M |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $C_{B}$ | $X_{B}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $\begin{gathered} \text { MinRatio } \\ X_{B} x_{2} \end{gathered}$ |
| $A_{1}$ | -M | 20 | 0 | (1) | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 0 | 0 | $201=20 \rightarrow$ |
| $A_{2}$ | -M | 10 | 0 | 0 | 1 | 0 | 0 | -1 | 0 | -1 | 0 | 1 | 0 | --- |
| $x_{1}$ | -7560 | 90 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | --- |
| $S_{3}$ | 0 | 10 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | -1 | --- |
| $Z=-680400$ |  | $Z_{j}$ | -7560 | -M | -M | 0 | M | M | 0 | 2M-7560 | -M | -M | 0 |  |
|  |  | $Z_{j}-C_{j}$ | 0 | $-M+1680 \uparrow$ | $-M+4636.8$ | 1478.4 | M | M | 0 | 2M-7560 | 0 | 0 | M |  |

Negative minimum $Z_{j}-C_{j}$ is $-M+1680$ and its column index is 2 . So, the entering variable is $x_{2}$.

Minimum ratio is 20 and its row index is 1 . So, the leaving basis variable is $A_{1}$.
$\therefore$ The pivot element is 1 .
Entering $=x_{2}$, Departing $=A_{1}$, Key Element $=1$
$R_{1}($ new $)=R_{1}$ (old)
$R_{2}($ new $)=R_{2}($ old $)$
$R_{3}$ (new) $=R_{3}$ (old)
$R_{4}($ new $)=R_{4}($ old $)$

| Iteration-4 |  | $C_{j}$ | -7560 | - 1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | $-M$ | -M | -M |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $C_{B}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $\begin{gathered} \text { MinRatio } \\ X_{B} x_{3} \end{gathered}$ |
| $x_{2}$ | -1680 | 20 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 0 | 0 | --- |
| $A_{2}$ | -M | 10 | 0 | 0 | (1) | 0 | 0 | -1 | 0 | -1 | 0 | 1 | 0 | $101=10 \rightarrow$ |
| $x_{1}$ | -7560 | 90 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | --- |
| $S_{3}$ | 0 | 10 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | -1 | --- |
| $Z=-714000$ |  | $Z_{j}$ | -7560 | -1680 | -M | 0 | 1680 | M | 0 | M - 5880 | -1680 | -M | 0 |  |
|  |  | $Z_{j}-C_{j}$ | 0 | 0 | $-M+4636.8 \uparrow$ | 1478.4 | 1680 | M | 0 | M-5880 | M-1680 | 0 | M |  |

Negative minimum $Z_{j}-C_{j}$ is $-M+4636.8$ and its column index is 3 . So, the entering variable is $x_{3}$.
Minimum ratio is 10 and its row index is 2 . So, the leaving basis variable is $A_{2}$.
$\therefore$ The pivot element is 1 .
Entering $=x_{3}$, Departing $=A_{2}$, Key Element $=1$
$R_{2}($ new $)=R_{2}($ old $)$
$R_{1}($ new $)=R_{1}($ old $)$
$R_{3}$ (new) $=R_{3}($ old $)$
$R_{4}($ new $)=R_{4}($ old $)$

| Iteration-5 |  | $C_{j}$ | -7560 | -1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | -M | -M | -M |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $C_{B}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $\begin{gathered} \text { MinRatio } \\ X_{B} S_{4} \end{gathered}$ |
| $x_{2}$ | -1680 | 20 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 0 | 0 | --- |
| $x_{3}$ | -4636.8 | 10 | 0 | 0 | 1 | 0 | 0 | -1 | 0 | -1 | 0 | 1 | 0 | --- |
| $x_{1}$ | -7560 | 90 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | $901=90$ |
| $S_{3}$ | 0 | 10 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | (1) | 0 | 0 | -1 | $101=10 \rightarrow$ |
| $Z=-760368$ |  | $Z_{j}$ | -7560 | -1680 | -4636.8 | 0 | 1680 | 4636.8 | 0 | -1243.2 | -1680 | -4636.8 | 0 |  |
|  |  | $Z_{j}-C_{j}$ | 0 | 0 | 0 | 1478.4 | 1680 | 4636.8 | 0 | -1243.2 $\uparrow$ | M-1680 | M-4636.8 | M |  |

Negative minimum $Z_{j}-C_{j}$ is -1243.2 and its column index is 8 . So, the entering variable is $S_{4}$.
Minimum ratio is 10 and its row index is 4 . So, the leaving basis variable is $S_{3}$.
$\therefore$ The pivot element is 1 .
Entering $=S_{4}$, Departing $=S_{3}$, Key Element $=1$
$R_{4}($ new $)=R_{4}($ old $)$
$R_{1}$ (new) $=R_{1}($ old $)+R_{4}($ new $)$
$R_{2}($ new $)=R_{2}($ old $)+R_{4}($ new $)$
$R_{3}($ new $)=R_{3}($ old $)-R_{4}($ new $)$

| Iteration-6 |  | $C_{j}$ | -7560 | -1680 | -4636.8 | -1478.4 | 0 | 0 | 0 | 0 | -M | $-M$ | $-M$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $C_{B}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | MinRatio |
| $x_{2}$ | -1680 | 30 | 0 | 1 | 0 | -1 | -1 | 0 | 1 | 0 | 1 | 0 | -1 |  |
| $x_{3}$ | -4636.8 | 20 | 0 | 0 | 1 | -1 | 0 | -1 | 1 | 0 | 0 | 1 | -1 |  |
| $x_{1}$ | -7560 | 80 | 1 | 0 | 0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 1 |  |
| $S_{4}$ | 0 | 10 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | -1 |  |
| $Z=-747936$ |  | $Z_{j}$ | -7560 | -1680 | -4636.8 | -1243.2 | 1680 | 4636.8 | 1243.2 | 0 | -1680 | -4636.8 | -1243.2 |  |
|  |  | $Z_{j}-C_{j}$ | 0 | 0 | 0 | 235.2 | 1680 | 4636.8 | 1243.2 | 0 | M-1680 | M-4636.8 | M-1243.2 |  |

Since all $Z_{j}-C_{j} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$x_{1}=80, x_{2}=30, x_{3}=20, x_{4}=0$
$\operatorname{Max} Z=-747936$
Min $Z=747936$

