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Autonomy of Artificial Systems
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines I
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines II

Machines doing something “by themselves”

an obsession coming with technique

basically, representing our way to affect the world around us
possibly, according to our goals

China, Greece, Italy, England, France

hundred years of attempts, and some success, too
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines III
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines IV
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines V

Aren’t humans just “playing God”?

maybe, ok, good point.

fascination was so huge, too

so strong, that fake automata were even quite frequent, and even
famous
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Premises Human Imagination of Machines
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Premises Human Imagination of Machines

The Obsession with (Autonomous) Machines VII

The original question

what can human artefacts actually do?

what can they achieve?

what can humans achieve with the systems they create?

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 13 / 276



Premises Human Imagination of Machines

Before Autonomous Systems: Machines I

Constructing for understanding

building machines with

initiative
autonomy
knowledge

for understanding ourselves, and the world where we live

“playing God” to understand the world
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Premises Human Imagination of Machines

Before Autonomous Systems: Machines II

Relieving humans from fatigue

goal: substituting human work in

quality
quantity
cost

more, better, cheaper work done

new activities become feasible

which work?

first, physical
then, repetitive, enduring
subsequently, intellectual, too
finally, simply more complex for any reason—or, all reasons together
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Premises Human Imagination of Machines

Before Autonomous Systems: Machines III

Some steps beyond

delegating human functions to machines

within already existing social structures, organisations, and processes

creating new functions

then, making new social structures, organisations, and processes
possible
example: steam engines on wheels

essentially, changing the world we live in
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Premises Early Symptoms

Autonomous Software Creatures
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Premises Early Symptoms

Autonomous Robot Toys
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Premises Early Symptoms

Autonomous Vacuum Cleaners
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Premises Early Symptoms

Autonomous Lawnmowers
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Premises Early Symptoms

Autonomous Cars
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Premises Early Symptoms

Autonomous Aircrafts
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Premises Early Symptoms

Autonomous Weapons
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Premises Early Symptoms

Autonomous Soccer Players & Teams
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Premises Early Symptoms

Social Pressure

activities that might be delegated to artificial systems grow in number
and complexity

people & organisations are already experiencing / conceiving
“somehow autonomous” systems, and ask for more

engineers are not yet trained on general approaches to build
autonomous systems

however, the theory of autonomous systems is at a good stage of
development, and technologies are rapidly growing in terms of
availability and reliability
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Premises Artificial Systems

Machines & Artificial Systems I

Systems and machines

we call systems what many years ago we simply called machines

complexity has grown

more and more we understand the many levels at which systems, their
components, their mutual relationships can be described

furthermore, at the right level of abstraction, HW / SW systems are
machines in the same acceptation as mechanical machines

here, we will mostly deal with two non-strictly coherent, but simple
notions

system as a primitive notion (which somehow we all share to a certain
extent)
system as an engineer-designed entity (“draw a line around what you
call ’a system’”)
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Premises Artificial Systems

Machines & Artificial Systems II

Artificial systems

here we mostly talk about artificial systems in general

systems either partially or totally designed by humans

either directly or indirectly
? systems designed by systems?

featuring

a goal (in the mind of the designer)
a function (in the body of the system)

and implicitly consider the computational part as an essential one

an artificial system, roughly speaking, is any sort of system which
humans put at work by assigning it a function in order to achieve
some goal
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Premises Artificial Systems

Which Sorts of Systems? I

Artificial & computational systems

nowadays, most (if not all) artificial systems have a prominent
computational part

for this and other obvious reasons, here we focus on that sort of
systems

computational machines
have both an abstract and a physical part

where the physical portions are often abstracted away

are (mostly) symbolic

can deal with math, logic, data, information, knowledge

are general-purpose machines

programmable, can be specialised to most purposes
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Premises Artificial Systems

Which Sorts of Systems? II

Artificial systems in context

most artificial systems participate to the activities of individuals,
groups, and societies

even more, nowadays they are mostly essential to all sorts of human
activities
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Premises Artificial Systems

Which Sorts of Systems? III

Socio-technical systems (STS)

socio-technical systems (STS) arise when cognitive and social
interaction are mediated by information technology, rather than by
the natural world alone [Whitworth, 2006]

in other words, any system in which the infrastructure enabling and
constraining interaction is technological, but the evolution of the
system is driven by social and cognitive interactions, is a STS

so, STS are artificial systems where both humans and artificial
components play the role of system components

ranging from online reservation systems to social networks

most of nowadays systems are just STS

or, at least, cannot be engineering and successfully put to work without
a proper socio-technical perspective in the engineering stage
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Premises Artificial Systems

Which Sorts of Systems? IV

Pervasive systems

affecting every aspects of our everyday life

by spreading through the whole environment where we live and act

we live surrounded by pervasive systems

Situated systems

the physical nature of artificial components cannot be always be
forgot

as well as the situatedness in time and space

along with the influence of the surrounding environment

most of the interesting systems, nowadays, are situated systems, too
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Premises Artificial Systems

What is the Matter with Autonomy? I

Who does what?

this is no longer an issue

artificial system are very welcome to do whatever we like

Who takes the decision?

autonomy is at least as much about deliberation as about action

e.g., for artificial weapons, the question is not “who pulls the trigger”,
but rather “who decides to pull the trigger”

here, ethical issues become more than relevant
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Premises Artificial Systems

What is the Matter with Autonomy? II

Who is responsible?

what is something goes wrong?

who is going to take responsibility – under either civil law or criminal
law?

legal issues are here as least as relevant as technical issues
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On the Notion of Autonomy Autonomy in Language
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On the Notion of Autonomy Autonomy in Language

Oxford Dictionary of English (2nd Edition revised 2005)

Etimology

Early 17th cent.: from Greek autonomia, from autonomos ‘having its own
laws’, from autos ‘self’ + nomos ‘law’.

Dictionary
autonomy

the right or condition of self-government

a self-governing country or region

freedom from external control or influence; independence.

(in Kantian moral philosophy) the capacity of an agent to act in
accordance with objective morality rather than under the influence of
desires

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 38 / 276



On the Notion of Autonomy Autonomy in Language

Oxford Thesaurus of English (2nd Edition revised 2008)

Thesaurus
autonomy

self-government, independence, self-rule, home rule, sovereignty,
self-determination, freedom, autarchy;

self-sufficiency, individualism.
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On the Notion of Autonomy Autonomy in Language

Merriam-Webster I

Dictionary
autonomy

1 the quality or state of being self-governing; especially: the
right of self-government

2 self-directing freedom and especially moral independence

3 a self-governing state

synonyms accord, free will, choice, self-determination, volition, will

antonyms dependence (also dependance), heteronomy, subjection,
unfreedom
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On the Notion of Autonomy Autonomy in Language

Merriam-Webster II

Thesaurus
autonomy

1 the act or power of making one’s own choices or decisions:
accord, free will, choice, self-determination, volition, will

2 the state of being free from the control or power of another:
freedom, independence, independency, liberty,
self-determination, self-governance, self-government,
sovereignty
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On the Notion of Autonomy Autonomy in Biology

Autonomy and Biological Systems

Living systems. . .

. . . are the first systems provided of (some level of) autonomy that we
have knowledge of

they work as autonomous systems

they evolved to become autonomous

The study of autonomy in biological systems

the hierarchy of living systems provide examples of many different
levels of autonomy—from lower to higher levels of autonomy

the evolutionary view over biological systems potentially sheds light
over the role of autonomy in living systems

→ the study of living system may help us understanding the many
different sorts of autonomy, and their role in (artificial) systems in
general
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On the Notion of Autonomy Autonomy in Biology

Biology & Evolutionary Biology

Biology

. . . is the study of living organisms, or – perhaps more generally – of living
systems: their structure, function, growth, origin, evolution, and
distribution

Evolutionary biology

. . . studies how evolutionary processes produced diversity of life on Earth;
that is, how biological systems evolved over the ages [Gould, 2002]. As a
result, the view of evolutionary biology over biological systems includes

not just how they are made, and how they do work

but also – and mainly – how they do evolved towards their current
form—the one we can presently observe
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On the Notion of Autonomy Autonomy in Biology

Biology vs. Evolutionary Biology

evolutionary biology is indeed a (nowadays constitutive) part of
biology

however, the way evolutionary biologists look over biological systems
tends to be less analytical – yet wider – than the one by biologists

including

an overall view of the life on Earth overcoming space and time
boundaries
the role and mutual influences of all organisms, species, and
ecosystems that inhabit (or, have inhabited) our planet

Roughly speaking, evolutionary biology provides us with a global view over
biological systems at every conceivable level
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On the Notion of Autonomy Autonomy in Biology

Evolution & Diversity I

Not just genetic expression

genes (and their products) are at the core of ours evolutionary
model(s)

however, they alone cannot explain the full range of variation and
diversity of living systems

according to molecular biology, even distantly-related organisms use
similar processes for cellular function, development, and metabolism
[Rosslenbroich, 2014]

bacteria and humans share part of the same metabolism
microscopic fungi and humans exhibit a very similar basic cell
organisation and functions
and so on and so forth

→ most processes are conserved during evolution
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On the Notion of Autonomy Autonomy in Biology

Evolution & Diversity II

Theory of facilitation variation [Kirschner and Gerhart, 2006]

while new features emerge without forerunners in more ancestral
organisms, “the core cellular processes” are conserved throughout
evolution

“a surprisingly small number of genes for humans and complex animal
forms reflects the anatomical and physiological complexity that can
be achieved by the reuse of genetic products” [Rosslenbroich, 2014]
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On the Notion of Autonomy Autonomy in Biology

Evolution & Diversity III

A key question in evolutionary biology

So

how can we explain the huge diversity of life despite its deep and
pervasively similar molecular architecture? [Rosslenbroich, 2014]

how do organisms, species, and life overall progress along their
evolutionary path?

and, do they actually progress?
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On the Notion of Autonomy Autonomy in Biology

Progress in Evolution I

A controversial issue

According to [Rosslenbroich, 2014], the acceptation of the word progress
conveys a number of diverse meanings—from Darwin to contemporary
biologists

1 change leads to new (higher) organisms

2 which are somehow improved

3 progression is linear

4 evolution is an intrinsic force driving such a process

5 progression has a goal / end / culmination / perfection

Nowadays, we just need the first acceptation: however, we need to
understand what is higher, what is change, and what is actually
progressing along with evolution

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 49 / 276



On the Notion of Autonomy Autonomy in Biology

Progress in Evolution II

Progress of what?

increased potential for survival?

increased efficiency of some form, like, energy consumption?

increased amount of information in genes?

increased differentiation?

increased complexity?

increased emancipation from the environment?

Nowadays, complexity is often used instead of progress: this, however, does
not offer any explanation—no clear large-scale patterns in evolution, here
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis I

Autopoiesis is the ability of a complex system of maintaining its own
overall coherence, in terms of structure and organisation, through the
mutual interactions of its components
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis II

Living systems as autopoietic systems
[Maturana and Varela, 1980, Varela et al., 1974]

living systems as autopoietic units capable of sustaining themselves
based on an inner network of reactions that generate and regenerate
all the system components

all pertinent processes required have an inner efficient cause

structures – based on a flow of molecules and energy – produce the
components that, in turn, continue to maintain the organised
bounded structure that gives rise to these components

self-reference and self-maintenance are core notions here

coherent and ordered global system behaviour of the system
constrains / governs the behaviour of the individual components,
while the component behaviour sustains the global order (circular
causality)
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis & Autonomy [Thompson, 2010] I

According to [Maturana and Varela, 1980], autonomous systems

acquire the property of specifying their own rules of behaviour

do not work as transducers or functions for converting input
instructions into output products

are the sources of their own activity, which specify their own domains
of interaction
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis & Autonomy [Thompson, 2010] II

“In fact, the notion of autopoiesis can be described as a charac-
terisation of the mechanisms which endow living systems with the
property of being autonomous; autopoiesis is an explication of the
autonomy of the living” [Maturana and Varela, 1980]
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On the Notion of Autonomy Autonomy in Biology

Autonomy of a Cell [Thompson, 2010, Rosslenbroich, 2014]

An example of biological autonomy: the cell

the cell stands out of a molecular soup by actively creating the
boundaries that

set the cell apart from what it is not the cell
and simultaneously regulate cell interaction with the environment

metabolic processes within the cell construct those boundaries, but
the metabolic processes themselves are made possible by those
boundaries

thus, the cell emerges as a figure standing out of a chemical
background

should this process of self-production be interrupted, the cellular
components no longer form a unit, gradually diffusing back into a
molecular soup—death
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis & Autonomy [Thompson, 2010] I

Boundary

boundary is a central element of autonomy

it is a constitutive element of the identity of a system

in a cell, the membrane works as a boundary both containing
processes/components and regulating the interaction with the
environment

boundaries – strict physical ones, not necessarily material – are
essential for an autonomous system
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On the Notion of Autonomy Autonomy in Biology

Autopoiesis & Autonomy [Thompson, 2010] II

Autonomous systems are closed [Rosslenbroich, 2014]

organisationally closed in the sense that their organisation is
characterised by their internal network processes

which recursively depend on each other, thus constitute the system as
a unit
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On the Notion of Autonomy Autonomy in Biology

Heteronymous vs. Autonomous Systems
[Thompson, 2010, Rosslenbroich, 2014] I

Heteronymous systems

A heteronymous system is one whose organisation is defined by
input-output information flow and external mechanisms of control

traditional computational systems and many network views, for
example, are heteronymous

they have an input layer and an output layer
the inputs are initially assigned by the observer outside the system
output performance is evaluated in relation to an externally imposed
task

e.g., a Turing Machine typically represents computation by a
heteronomous system
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On the Notion of Autonomy Autonomy in Biology

Heteronymous vs. Autonomous Systems
[Thompson, 2010, Rosslenbroich, 2014] II

Autonomous systems

An autonomous system is defined by its endogenous, self-organising, and
self-controlling dynamics, and determines the domain in which it operates

it has input and output—which, alone, do not determine the system

it is the internal self-production process that controls and regulates
the system’s interaction with the outside environment
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On the Notion of Autonomy Autonomy in Biology

Autonomy and Environment I

Autonomy is not autarky

living systems are not independent of their environment

the interchange occurs though the physical boundary
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On the Notion of Autonomy Autonomy in Biology

Autonomy and Environment II

Plants vs. animals

plants exhibit a predominantly open relation to their environment

instead, animals have a more closed form of organisation

the exchange surfaces for metabolism are turned to the inside
special internal organs and internal cavities appear
exchange surfaces on the outside are reduced

the loss of a direct environmental relation corresponds to a gain in
degrees of freedom

stimulus-response relationships in animals tend to be less tightly
connected

in animals, signals can internally be enforced, compared to other
signals, and memorised

thus, not a rigid, but rather a flexible relation between organism and
environment emerges when “moving up” from plants to animals

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 61 / 276



On the Notion of Autonomy Autonomy in Biology

Robustness

Stability in front of change

many structures and functions – as well as proteins and genes – have
certain stability in the face of environmental variations and genetic
changes

they are resistant, robust, to perturbations, producing relatively
invariant outputs [Kitano, 2002]
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On the Notion of Autonomy Autonomy in Biology

Robustness in Living Systems

Robustness

is understood as a property that allows a system to maintain its
functions against internal and external perturbations and uncertainties

encompasses a broad range of traits: from macroscopic, visible traits,
to molecular traits, such as the expression level of a gene, or, the
three-dimensional conformation of a protein

is widely recognised as an inherent property of all biological systems
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On the Notion of Autonomy Autonomy in Biology

Autonomy & Robustness

autonomy and robustness somehow overlap, but they are not the same

robustness may be seen as a pre-requisite for autonomy: for instance,
self-maintenance requires robustness

or, robustness is a part of autonomy, as it maintains the identity,
structure, and organisation of a living system against well-separated
surroundings
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On the Notion of Autonomy Autonomy in Biology

Principles & Strategies for Robustness [Kitano, 2002]

redundancy of components to protect against failure of a specific
component by providing for alternative ways to carry out the
function the component performs

feedback circuits to monitor a system function so as to regulate it

modularity as the encapsulation of functions, for robustness and
evolvability

layering in hierarchical systems to enhance control and robustness
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On the Notion of Autonomy Autonomy in Biology

Homeostasis

Homeostasis is the ability of a system to regulate its internal conditions to
keep some or several functions stable

e.g., properties such as temperature or blood composition in animals

separating internal and external environments

where internal environment is kept relatively stable with respect to
external perturbations

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 66 / 276



On the Notion of Autonomy Autonomy in Biology

Time Autonomy

living entities establish their own cycles in time

e.g., metabolism, rest-activity cycle, development, reproduction

involving all biochemical, cellular, and organic processes

from reaction rates, frequencies are endogenous, lead to autonomous
cycles, which only later synchronise with external cycles
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On the Notion of Autonomy Autonomy in Biology

Evolutions through Increasing Autonomy

Increasing autonomy [Rosslenbroich, 2014]

which features are able to contribute to changes in autonomy of an
individual organism?

how can autonomy be defined accordingly in a more formal way?
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On the Notion of Autonomy Autonomy in Biology

38

homeostasis in body fl uids or of central nervous processing is elaborated, this is 
more a change in constitutive autonomy, although both also have relevance for 
interactive autonomy. 

 Several biological elements can contribute in different degrees to changes of 
autonomy (Fig.  3.3 ). They are not general rules or some sort of continuous trends. 
They rather function as a set of resources that can – singly or in combination with 
each other – increase autonomy.

   These elements are probably not complete. The various relations of the 
somewhat- heterogeneous elements to each other will also need further examination 
in the future. However, they can at least be identifi ed within the major evolutionary 
transitions, and changes in them can also be described. Thus, they are relevant. 

 One such element is  spatial separation from the environment , such as with cell 
membranes, cell walls, integuments of metazoans with cuticles, shells, hairs, or 
feathers. To different degrees, they all serve to keep the environment outside the 
organism and to regulate and direct the exchange with it. Changes in their organiza-
tion can contribute to an essential degree to changes in the organism-environment 
relation. 

  Homeostatic functions  are means to establish and enhance internal functional 
stability. This overlaps to a large extent with changes in robustness. Another ele-
ment is the displacement of morphological structures or functions from an external 
position into an internal position within the organism, here summarized as  internal-
ization . Multiple processes of internalization are involved in building up the inner 
anatomy of organisms, ontogenetically as well as phylogenetically. During ontog-
eny, gastrulation and neurulation are typical internalizations. During phylogeny, for 
example, the transition from prokaryotes to eukaryotes included the internalization 
of some organisms within others (endosymbiosis). 

Gain in size

e.g.:
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the surface/ 
volume ratio

Homeostatic
functions

e.g.: 
- conformer/

regulator
- robustness

Separation
from the
environment

e.g.: 
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of the cell
- epithelia 
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- cuticula
- shells

Internalization

e.g.:
- internalization

of functions
and structures

Flexibility
within the
environment

e.g.:
- physiological
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- movement

capacity 
- behavioral
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A U T O N O M Y

  Fig. 3.3    Set of resources to change autonomy       

 

3 The Concept of Biological Autonomy

Resources to change autonomy—from [Rosslenbroich, 2014]
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On the Notion of Autonomy Autonomy in Biology

A Definition for Autonomy in Living Systems

General autonomy [Rosslenbroich, 2014]

Living systems are autonomous in the sense that they maintain themselves
in form and function within time and achieve a self-determined flexibility

1 they generate, maintain, and regulate an inner network of interdependent,
energy-consuming processes, which in turn generate and maintain the system

2 they establish a boundary and actively regulate their interaction and exchange with
the environment

3 they specify their own rules of behaviour and react to external stimuli in a
self-determined way, according to their internal disposition and condition

4 they establish an interdependence between the system and its parts within the
organism, which includes a differentiation in subsystems

5 they establish a time autonomy

6 they maintain a phenotypic stability (robustness) in the face of diverse
perturbations arising from environmental changes, internal variability, and genetic
variations
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On the Notion of Autonomy Autonomy in Biology

Autonomy in Evolution

autonomy is an essential trait of living systems

many authors observe that evolution progresses through biological
systems with diverse degrees of autonomy

many additional functions resulting from evolutionary processes tends
to improve autonomy

how can autonomy help in understanding evolution?

is it a pattern of evolution?
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On the Notion of Autonomy Autonomy in Biology

Increasing Autonomy [Rosslenbroich, 2014] I

increasing autonomy is defined as an evolutionary shift in the
system-environment relationship, such that

interactive autonomy the direct influences of the environment on the
respective individual systems are gradually reduced

constitutive autonomy stability and flexibility of self-referential,
intrinsic functions within the systems are generated and
enhanced

with respect to the environment

autonomy of living systems is relative
while retaining numerous interconnections with and dependencies on
the external environment
thus, organisms can undergo relative emancipation from environmental
fluctuations, gaining self-determination and flexibility of behaviour
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On the Notion of Autonomy Autonomy in Biology

Increasing Autonomy [Rosslenbroich, 2014] II

a set of resources can be involved to change autonomous capacities
1 changes in spatial separation from the environment
2 changes in homeostatic capacities and robustness
3 internalisation of structures or functions
4 increase in body size
5 changes in the flexibility within the environment, including behavioural

flexibility
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On the Notion of Autonomy Autonomy in Biology

Overall: Autonomy as a Driver for Evolution

autonomy is an essential trait of living systems

biological systems evolve towards increasing degrees of autonomy

autonomy is an evolutionary pattern
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On the Notion of Autonomy Autonomy in Philosophy

Focus on. . .

1 Premises
Human Imagination of Machines
Early Symptoms
Artificial Systems

2 On the Notion of Autonomy
Autonomy in Language
Autonomy in Biology
Autonomy in Philosophy
Autonomy in Military Systems
Autonomy in Social Sciences & AI
Autonomy in Programming Languages
Autonomy for Software Agents

3 Intentional Agents
Intentional Systems
Agents with Mental States
Intentions and Practical Reasoning
BDI Agents

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 75 / 276



On the Notion of Autonomy Autonomy in Philosophy

Robots Playing Music: Which Autonomy?
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On the Notion of Autonomy Autonomy in Philosophy

Internet Encyclopedia of Philosophy I

Many acceptations of autonomy

general an individual’s capacity for self-determination or
self-governance

folk inchoate desire for freedom in some area of one’s life

personal the capacity to decide for oneself and pursue a course of
action in one’s life

moral the capacity to deliberate and to give oneself the moral law,
rather than merely heeding the injunctions of others

political the property of having one’s decisions respected, honored,
and heeded within a political context
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On the Notion of Autonomy Autonomy in Philosophy

Internet Encyclopedia of Philosophy II

Individual autonomy

after Kant, autonomy is an essential trait of the individual, and
strictly related with its morality, represented by some high-level
ethical principles

then, with the relation between its inner self and its individual actions

that is, mind and behaviour
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On the Notion of Autonomy Autonomy in Philosophy

Internet Encyclopedia of Philosophy III

Independence from oneself

a more demanding notion of autonomy requires not only
self-determination, but also independence from oneself

this conception is connected with notions of freedom and choice, and
(maybe) non-determinism

and requires the ability of reasoning on (and possibly changing) not
just one own course of actions, but one own goals
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On the Notion of Autonomy Autonomy in Military Systems

Unmanned Systems Integrated Roadmap FY 2011-2036 I

Automatic vs. autonomous
automatic systems are fully pre-programmed and act repeatedly and independently of

external influence or control. An automatic system can be described as
self-steering or self-regulating and is able to follow an externally given
path while compensating for small deviations caused by external
disturbances. However, the automatic system is not able to define the
path according to some given goal or to choose the goal dictating its
path.

autonomous systems are self-directed toward a goal in that they do not require outside
control, but rather are governed by laws and strategies that direct their
behavior. Initially, these control algorithms are created and tested by
teams of human operators and software developers. However, if machine
learning is utilized, autonomous systems can develop modified strategies
for themselves by which they select their behavior. An autonomous
system is self-directed by choosing the behavior it follows to reach a
human-directed goal.
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On the Notion of Autonomy Autonomy in Military Systems

Unmanned Systems Integrated Roadmap FY 2011-2036 II

Four levels of autonomy for unmanned systems [Edwards, 2013]

Various levels of autonomy in any system guide how much and how often
humans need to interact or intervene with the autonomous system:

human operated

human delegated

human supervised

fully autonomous
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On the Notion of Autonomy Autonomy in Military Systems

Unmanned Systems Integrated Roadmap FY 2011-2036 III

 Unmanned Systems Integrated Roadmap FY2011-2036  

46 

… the ability to understand and control future costs from a program’s 
inception is critical to achieving affordability requirements. 

–Under Secretary of Defense Memorandum for Acquisition 
Professionals, Better Buying Power, September 2010 

 

 

While reduced reliance on human operators and analysts is the goal of autonomy, one of the 
major challenges is how to maintain and facilitate interactions with the operator and other human 
agents. An alternative statement of the goal of autonomy is to allow the human operator to “work 
the mission” rather than “work the system.” In other words, autonomy must be developed to 
support natural modes of interaction with the operator. These decision-making systems must be 
cognitively compatible with humans in order to share information states and to allow the 
operator and the autonomous system to interact efficiently and effectively. The level of 
autonomy should dynamically adjust based on workload and the perceived intent of the operator. 
Common terms used for this concept are sliding autonomy or flexible autonomy. The goal is not 
about designing a better interface, but rather about designing the entire autonomous system to 
support the role of the warfighter and ensure trust in the autonomy algorithms and the system 
itself. Table 3 contains the most commonly referenced description of the levels of autonomy that 
takes into account the interaction between human control and the machine motions. 

 

Table 3. Four Levels of Autonomy 

 

Level Name Description 
1 Human  

Operated 
A human operator makes all decisions. The system has no autonomous control of its environment 
although it may have information-only responses to sensed data. 

2 Human 
Delegated 

The vehicle can perform many functions independently of human control when delegated to do so. This 
level encompasses automatic controls, engine controls, and other low-level automation that must be 
activated or deactivated by human input and must act in mutual exclusion of human operation. 

3 Human 
Supervised 

The system can perform a wide variety of activities when given top-level permissions or direction by a 
human. Both the human and the system can initiate behaviors based on sensed data, but the system can 
do so only if within the scope of its currently directed tasks. 

4 Fully 
Autonomous 

The system receives goals from humans and translates them into tasks to be performed without human 
interaction. A human could still enter the loop in an emergency or change the goals, although in practice 
there may be significant time delays before human intervention occurs. 
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On the Notion of Autonomy Autonomy in Military Systems

Unmanned Systems Integrated Roadmap FY 2011-2036 IV

Autonomy & unpredictability

the special feature of an autonomous system is its ability to be
goal-directed in unpredictable situations.

this ability is a significant improvement in capability compared to the
capabilities of automatic systems.

an autonomous system is able to make a decision based on a set of
rules and/or limitations.

it is able to determine what information is important in making a
decision.

it is capable of a higher level of performance compared to the
performance of a system operating in a predetermined manner.
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On the Notion of Autonomy Autonomy in Military Systems

Autonomy in AWS I

Who takes the decision?

autonomy is at least about deliberation as much as about action

e.g., for artificial weapons, the question is not just

who pulls the trigger?

but also / rather

who decides to pull the trigger?

and

based on what evidence?
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On the Notion of Autonomy Autonomy in Military Systems

Autonomy in AWS II

Autonomy & responsibility

responsibility is both an ethical and a legal issue

autonomy of AWS changes the overall picture

multi-level autonomy has the potential to make things even much
more complicated [Sartor and Omicini, 2016]
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomy as a Relational Concept [Castelfranchi, 1995] I

Autonomy as a social concept

an agent is autonomous mostly in relation to other agents

autonomy has no meaning for an agent in isolation

Autonomy from environment

the Descartes’ problem: (human, agent) behaviour is affected by the
environment, but is not depending on the environment

situatedness, reactiveness, adaptiveness do not imply lack of
autonomy
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomous Goals [Castelfranchi, 1995] I

Agency

agents as teleonomic / teleologic, goal-driven entities

that is, whose behaviour is not casual under any acceptation of the
term

→ it might be non-deterministic, never casual
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomous Goals [Castelfranchi, 1995] II

Agents & goals [Conte and Castelfranchi, 1995]

agents in a society can be generally conceived as either goal-governed
or goal-oriented entities

goal-governed entities refer to the strong notion of agency, i.e. agents
with some forms of cognitive capabilities, which make it possible to
explicitly represent their goals, driving the selection of agent actions
goal-oriented entities refer to the weak notion of agency, i.e. agents
whose behaviour is directly designed and programmed to achieve some
goal, which is not explicitly represented

in both cases, agent goals are internal
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomous Goals [Castelfranchi, 1995] III

Executive vs. motivational autonomy

executive autonomy — given a goal, the agent is autonomous in achieving
it by itself

motivational autonomy the agent’s goals are somehow self-generated, not
externally imposed

Autonomy & autonomous goals

autonomy requires autonomous goals

executive autonomy is not enough for real autonomy

Goal-autonomous agent

A goal-autonomous agent is an agent endowed with its own goals
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomous Goals [Castelfranchi, 1995] IV

An agent is fully socially autonomous if

1 it has its own goals: endogenous, not derived from other agents’ will

2 it is able to make decisions concerning multiple conflicting goals
(being them its own goals or also goals adopted from outside)

3 it adopts goals from outside, from other agents; it is liable to
influencing

4 it adopts other agents’ goals as a consequence of a choice among
them and other goals

5 it adopts other agents’ goals only if it sees the adoption as a way of
enabling itself to achieve some of its own goals (i.e., the autonomous
agent is a self-interested agent)

it is not possible to directly modify the agent’s goals from outside: any
modification of its goals must be achieved by modifying its beliefs
thus, the control over beliefs becomes a filter, an additional control
over the adoption of goals
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On the Notion of Autonomy Autonomy in Social Sciences & AI

Autonomous Goals [Castelfranchi, 1995] V

6 it is impossible to change automatically the beliefs of an agent

the adoption of a belief is a special “decision” that the agent takes on
the basis of many criteria

this protects its cognitive autonomy
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On the Notion of Autonomy Autonomy in Programming Languages

Evolution of Programming Languages: The Picture

[Odell, 2002]
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On the Notion of Autonomy Autonomy in Programming Languages

Evolution of Programming Languages: Dimensions

Historical evolution

monolithic programming

modular programming

object-oriented programming

agent programming

Degree of modularity & encapsulation

unit behaviour

unit state

unit invocation
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On the Notion of Autonomy Autonomy in Programming Languages

Monolithic Programming

the basic unit of software is the whole program

programmer has full control

program’s state is responsibility of the programmer

program invocation determined by system’s operator

behaviour could not be invoked as a reusable unit under different
circumstances

modularity does not apply to unit behaviour
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On the Notion of Autonomy Autonomy in Programming Languages

Modular Programming

the basic unit of software are structured loops / subroutines /
procedures / . . .

this is the era of procedures as the primary unit of decomposition

small units of code could actually be reused under a variety of
situations

modularity applies to subroutine’s code

program’s state is determined by externally supplied parameters

program invocation determined by CALL statements and the likes
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On the Notion of Autonomy Autonomy in Programming Languages

Object-Oriented Programming

the basic unit of software are objects & classes

structured units of code could actually be reused under a variety of
situations

objects have local control over variables manipulated by their own
methods

variable state is persistent through subsequent invocations
object’s state is encapsulated

object are passive—methods are invoked by external entities

modularity does not apply to unit invocation
object’s control is not encapsulated
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On the Notion of Autonomy Autonomy in Programming Languages

Agent-Oriented Programming

the basic unit of software are agents
encapsulating everything, in principle

by simply following the pattern of the evolution

whatever an agent is

we do not need to define them now, just to understand their desired
features

agents could in principle be reused under a variety of situations

agents have control over their own state

agents are active

they cannot be invoked
agent’s control is encapsulated

agents are autonomous entities
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On the Notion of Autonomy Autonomy for Software Agents

Autonomy as the Foundation of the Definition of Agent

Lex Parsimoniae: Autonomy

autonomy as the only fundamental and defining feature of agents
let us see whether other typical agent features follow / descend from
this somehow

Computational Autonomy

agents are autonomous as they encapsulate (the thread of) control
control does not pass through agent boundaries

only data (knowledge, information) crosses agent boundaries

agents have no interface, cannot be controlled, nor can they be
invoked
looking at agents, MAS can be conceived as an aggregation of
multiple distinct loci of control interacting with each other by
exchanging information
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On the Notion of Autonomy Autonomy for Software Agents

(Autonomous) Agents (Pro-)Act

Action as the essence of agency

the etimology of the word agent is from the Latin agens

so, agent means “the one who acts”

any coherent notion of agency should naturally come equipped with a
model for agent actions

Autonomous agents are pro-active

agents are literally active

autonomous agents encapsulate control, and the rule to govern it

→ autonomous agents are pro-active by definition

where pro-activity means “making something happen”, rather than
waiting for something to happen
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On the Notion of Autonomy Autonomy for Software Agents

Agents are Situated

The model of action depends on the context

any “ground” model of action is strictly coupled with the context
where the action takes place

an agent comes with its own model of action

any agent is then strictly coupled with the environment where it lives
and (inter)acts

agents are in this sense are intrinsically situated
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On the Notion of Autonomy Autonomy for Software Agents

Agents are Reactive I

Situatedness and reactivity come hand in hand

any model of action is strictly coupled with the context where the
action takes place

any action model requires an adequate representation of the world

any effective representation of the world requires a suitable balance
between environment perception and representation

→ any effective action model requires a suitable balance between
environment perception and representation

however, any non-trivial action model requires some form of perception
of the environment—so as to check action pre-conditions, or to verify
the effects of actions on the environment

agents in this sense are supposedly reactive to change
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On the Notion of Autonomy Autonomy for Software Agents

Agents are Reactive II

Reactivity as a (deliberate) reduction of proactivity

an autonomous agent could be built / choose to merely react to
external events

it may just wait for something to happen, either as a permanent
attitude, or as a temporary opportunistic choice

in this sense, autonomous agents may also be reactive

Reactivity to change

reactivity to (environment) change is a different notion

this mainly comes from early AI failures, and from robotics

it stems from agency, rather than from autonomy

however, this issue will be even clearer when facing the issue of
artifacts and environment design
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On the Notion of Autonomy Autonomy for Software Agents

(Autonomous) Agents Change the World

Action, change & environment

whatever the model, any model for action brings along the notion of
change

an agent acts to change something around in the MAS

two admissible targets for change by agent action

agent an agent could act to change the state of another agent

since agents are autonomous, and only data flow among
them, the only way another agent can change their state
is by providing them with some information
change to other agents essentially involves
communication actions

environment an agent could act to change the state of the
environment

change to the environment requires pragmatical actions
which could be either physical or virtual depending on
the nature of the environment
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On the Notion of Autonomy Autonomy for Software Agents

Autonomous Agents are Social

From autonomy to society

from a philosophical viewpoint, autonomy only makes sense when an
individual is immersed in a society

autonomy does not make sense for an individual in isolation
no individual alone could be properly said to be autonomous

this also straightforwardly explain why any program in any sequential
programming language is not an autonomous agent per se
[Graesser, 1996, Odell, 2002]

Autonomous agents live in a MAS

single-agent systems do not exist in principle
autonomous agents live and interact within agent societies & MAS
roughly speaking, MAS are the only “legitimate containers” of
autonomous agents
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On the Notion of Autonomy Autonomy for Software Agents

Autonomous Agents are Interactive

Interactivity follows, too

since agents are subsystems of a MAS, they interact within the global
system

by essence of systems in general, rather than of MAS

since agents are autonomous, only data (knowledge, information)
crosses agent boundaries

information & knowledge is exchanged between agents

leading to more complex patterns than message passing between
objects
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On the Notion of Autonomy Autonomy for Software Agents

Autonomous Agents Do not Need a Goal

Agents govern MAS computation

by encapsulating control, agents are the main forces governing and
pushing computation, and determining behaviour in a MAS
along with control, agent should then encapsulate the criterion for
regulating the thread(s) of control

Autonomy as self-regulation

the term “autonomy”, at its very roots, means self-government,
self-regulation, self-determination

“internal unit invocation” [Odell, 2002]

this does not imply in any way that agents needs to have a goal, or a
task, to be such—to be an agent, then
however, this does imply that autonomy captures the cases of
goal-oriented and task-oriented agents

where goals and tasks play the role of the criteria for governing control
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On the Notion of Autonomy Autonomy for Software Agents

Agents as Autonomous Components

Definition (Agent)

Agents are autonomous computational entities

genus agents are computational entities

differentia agents are autonomous, in that they encapsulate control
along with a criterion to govern it

Agents are autonomous

from autonomy, many other features stem

autonomous agents are interactive, social, proactive, and situated;
they might have goals or tasks, or be reactive, intelligent, mobile
they live within MAS, and interact with other agents through
communication actions, and with the environment with pragmatical
actions
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Intentional Agents
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Intentional Agents

Intelligent Agents I

According to a classical definition, an intelligent agent is a computational
system capable of autonomous action and perception in some environment

Reminder: computational autonomy

agents are autonomous as they encapsulate (the thread of) control

control does not pass through agent boundaries

only data (knowledge, information) crosses agent boundaries

agents have no interface, cannot be controlled, nor can they be
invoked

looking at agents, MAS can be conceived as an aggregation of
multiple distinct loci of control interacting with each other by
exchanging information
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Intentional Agents

Intelligent Agents II

Question: what about the other notions of autonomy?

autonomy with respect to other agents – social autonomy

autonomy with respect to environment – interactive autonomy

autonomy with respect to humans – artificial autonomy

autonomy with respect to oneself – moral autonomy

. . .

Question: what is intelligence to autonomy?

any sort of intelligence?

which intelligence for which autonomy?

which intelligent architecture for which autonomy?

. . .
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Intentional Systems

an idea is to refer to human attitudes as intentional notions

when explaining human activity, it is often useful to make statements
such as the following:

Seb got rain tires because he believed it was going to rain
Kimi is working hard because he wants to win world championship
again

these statements can be read in terms of folk psychology, by which
human behaviour can be explained and can be predicted through the
attribution of mental attitudes, such as believing and wanting (as in
the above examples), hoping, fearing, and so on.
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The Intentional Stance

the philosopher – cognitive scientist – Daniel Dennett coined the term
intentional system to describe entities ‘whose behaviour can be
predicted by the method of attributing to it belief, desires and
rational acumen’ [Dennett, 1971]

Dennett identifies several grades of intentional systems:
1 a first-order intentional system has beliefs, desires, etc.

Seb believes P

2 a second-order intentional system has beliefs, desires, etc. about
beliefs, desires, etc. both its own and of others

Seb believes that Kimi believes P

3 a third-order intentional system is then something like

Seb believes that Kimi believes that Seb believes P

4 . . .
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The Intentional Stance in Computing

What entities can be described in terms of intentional stance?

human beings are prone to provide an intentional stance to almost
anything

sacrifices for ingratiating gods benevolence
animism
. . .

Ascribing mental qualities to machines [McCarthy, 1979]

Ascribing mental qualities like beliefs, intentions and wants
to a machine is sometimes correct if done conservatively and is
sometimes necessary to express what is known about its state [...]
it is useful when the ascription helps us understand the structure
of the machine, its past or future behaviour, or how to repair or
improve it
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Agents as Intentional Systems

Strong notion of agency

early agent theorists start from a (strong) notion of agents as
intentional systems

agents were explained in terms of mental attitudes, or mental states

in their social abilities, agents simplest consistent description implied
the intentional stance

agents contain an explicitly-represented – symbolic – model of the
world (written somewhere in the working memory)

agents make decision on what action to take in order to achieve their
goals via symbolic reasoning
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Which Domains for Intention Systems? I

Mental states are a worth abstraction for developing agents to effectively
act in a class of application domains characterised by various practical
limitations and requirements [Rao and Georgeff, 1995]
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Which Domains for Intention Systems? II

at any instant of time there are many different ways in which an
environment may evolve—the environment is not deterministic

at any instant of time there are many actions or procedures the agent
may execute—the agent is not deterministic, too

at any instant of time the agent may want to achieve several
objectives

the actions or procedures that (best) achieve the various objectives
are dependent on the state of the environment—i.e., on the particular
situation, context

the environment can only be sensed locally

the rate at which computations and actions can be carried out is
within reasonable bounds to the rate at which the environment
evolves
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Goal-Oriented & Goal-Directed Systems

there are two main families of architectures for agents with mental
states

teleo-reactive / goal-oriented agents are based on their own design
model and internal control mechanism. The goal is not
explicitly represented within the internal state, instead it
is an ‘end state’ for agents internal state machine

deliberative / goal-directed agents are based on symbolic reasoning
about goals, which are explicitly represented and
processed aside the control loop
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Modelling Agents with Mental States I

Modelling agents based on mental states. . .

eases the development of agents exhibiting complex behaviour

provides us with a familiar, non-technical way of understanding and
explaining agents

allows the developer to build MAS by adopting the perspective of a
cognitive entity engaged in complex tasks—e.g., what would I do in
the same situation?

simplifies the construction, maintenance, and verification of
agent-based applications

is useful when the agent has to comunicate and interact with users or
other system entities
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Modelling Agents with Mental States II

The intentional stance [Dennett, 2007]

The intentional stance is the strategy of interpreting the be-
haviour of an entity (person, animal, artifact, whatever) by treat-
ing it as if it were a rational agent who governed its ‘choice’ of
‘action’ by a ‘consideration’ of its ‘beliefs’ and ‘desires’.

The scare-quotes around all these terms draw attention to the
fact that some of their standard connotations may be set aside
in the interests of exploiting their central features: their role in
practical reasoning, and hence in the prediction of the behaviour
of practical reasoners.
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Modelling Agents with Mental States III

Agents with mental states

agents governing their behaviour based on internal states that mimic
cognitive (human) mental states

epistemic states representing agents knowledge—their knowledge on
the world

i.e., percepts, beliefs

motivational states representing agents objectives—what they aim to
achieve

i.e., goals, desires

the process of selecting one action to execute among the many
available based on the actual mental states is called practical
reasoning

i.e., action(next(i , perception(e))
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Practical vs. Epistemic Reasoning

practical reasoning is reasoning directed towards actions—the process of
figuring out what to do in order to achieve what is desired

[Bratman, 1987]

Practical reasoning is a matter of weighing conflicting considerations for
and against competing options, where the relevant considerations are
provided by what the agent desires/values/cares about and what the agent
believes.

epistemic reasoning is reasoning directed towards knowledge—the process
of updating information, replacing old information (no longer
consistent with the world state) with new information
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Practical Reasoning

practical reasoning consists of two main cognitive activities

deliberation when the agent makes decision on what state of affairs
the agent desire to achieve

means-ends reasoning when the agent makes decisions on how to
achieve these state of affairs

the outcome of the deliberation phase are the intentions

what agent desires to achieve, or what he desires to do

the outcome of the means-ends reasoning phase is the selection a
given course of actions

the workflow of the actions the agent intends to adopt in order to
achieve its own goals expressed as intentions
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Basic Architecture of a Mentalistic Agent

Perception

Action

Plans

Reasoning

Beliefs

Agent
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Intentional Agents Intentions and Practical Reasoning

The Role of Intentions in Practical Reasoning I

1 intentions represent a problem to solve for the agent who need to
determine how to achieve them

if I have an intention to φ, you would expect me to devote resources to
deciding how to bring about φ.

2 intentions provide a filter for adopting other intentions, which must
not conflict

if I have an intention to φ, you would not expect me to adopt an
intention ψ such that φ and ψ are mutually exclusive

3 intentions tend to be stable: agents track the success of their
intentions, and are inclined to try again if their attempts fail

if an agent’s first attempt to achieve φ fails, then all other things being
equal, it will try an alternative plan to achieve φ

4 agents believe their intentions are possible

that is, they believe that there is at least some way that the intentions
could be brought about
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The Role of Intentions in Practical Reasoning II

5 agents do not believe they will not bring about their intentions.

it would not be rational for me to adopt an intention to φ if I believed
φ was not possible.

6 under certain circumstances, agents believe they will bring about their
intentions

it would not normally be rational of me to believe that I would bring
my intentions about; intentions can fail
moreover, it does not make sense that if I believe φ is inevitable that I
would adopt it as an intention

7 agents need not intend all the expected side effects of their intentions

if I believe φ→ ψ and I intend that φ, I do not necessarily intend ψ also
→ intentions are not closed under implication

this last problem is known as the side effect or package deal problem: I
may believe that going to the dentist involves pain, and I may also
intend to go to the dentist—but this does not imply in any way that I
intend to suffer pain
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Intentions vs. Desires

the adoption of an intention follows the rise of a given desire

i.e., it follows the adoption of a given goal

desires and intentions are different concepts

“My desire to play basketball this afternoon is merely a potential
influencer of my conduct this afternoon. It must live with my other
relevant desires [...] before it is settled what I will do”.
“In contrast, once I intend to play basketball this afternoon, the matter
is settled: I normally need not continue to weigh the pros and cons.
When the afternoon arrives, I will normally just proceed to execute my
intentions.” [Bratman, 1990]
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Means-Ends Reasoning I

the basic idea is to provide agents with three sorts of representations

representation of goal / intention to achieve
representation of actions / plans – in repertoire
representation of the environment

given the environmental conditions, means-ends reasoning aims at
devising out a plan that could possibly achieve the adopted goal /
intention

the selected intention is an emergent property, reified at runtime by
selecting a given plan for achieving a given goal
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Means-Ends Reasoning II

Means-Ends
  (planner)

Tasks
(Goals/Intentions)

State of Environment
(Beliefs)

Possible Actions
(Plan library)

Intention /
Plan to Achieve a 

Goal
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Intentional Agents BDI Agents

Implementing a Practical Reasoning Agent: Issues I

Problem

Agents have bounded resources—what is called bounded rationality

deliberation and means-ends processes are not for free: they have
computational costs

the time taken to reason and the time taken to act are potentially
unbounded

→ this harms agent fitness—that is, the reactivity and the promptness
that is essential for the agent to survive
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Implementing a Practical Reasoning Agent: Issues II

if the agent

starts deliberating at t0

begins means-ends at t1

begins executing a plan at t2

ends executing a plan at t3

then

time for deliberation is

tdeliberation = t1 − t0

time for means-ends reasoning is

tmeansend = t2 − t1
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Implementing a Practical Reasoning Agent: Issues III

agents environments are supposed to be highly dynamic

many concurrent changes may occur during agent decision-making as
well as during the execution of plans

the deliberated intention is surely worth to be pursued at the precise
time when it the deliberation process starts—so, at t0

at time t1, the agent selects a goal/intention that would have been
optimal if it had been achieved at t0

the agent runs the risk that the intention selected is no longer optimal
– or no longer achievable – by the time the agent has committed to it
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Implementing a Practical Reasoning Agent: Issues IV

So, this agent will exhibit an overall optimal behaviour in the following
circumstances / under the following conditions:

1 when deliberation and means-ends reasoning take a vanishingly-small
amount of time

2 when the world is guaranteed to remain (essentially) static while the
agent is deliberating and performing means-ends reasoning, so that
the assumptions upon which the choice of intention to achieve and
plan to achieve the intention remain valid until the agent has
completed both deliberation and means-ends reasoning

3 when an intention that is optimal when achieved at t0 – the time at
which the world is observed – is guaranteed to remain optimal until
t2—the time at which the agent has found a course of action to
achieve the intention
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The BDI Framework I

According to [Dasgupta and Ghose, 2011]

one of the most popular and successful framework for agent
technology is defined by Rao and Georgeff [Rao and Georgeff, 1992]

there, the notions of belief, desire, and intention are the core ones

hence, agents in this framework are typically referred to as BDI agents
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The BDI Framework II

beliefs represent at any time the agent’s current knowledge about
the world, including

information about the current state of the environment
inferred from perception devices
messages from other agents
internal information

desires represent a state of the world the agent is trying to achieve

intentions are the chosen means to achieve the agent’s desires, and are
generally implemented as plans and post-conditions

as in general it may have multiple desires, an agent can
have a number of intentions active at any one time
these intentions may be thought of as running
concurrently, with one chosen intention active at any
one time
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The BDI Framework III

Besides these components, the BDI model includes

plan library — namely, a set of “recipes” representing the procedural
knowledge of the agent

event queue — where

events — either perceived from the environment or
generated by the agent itself to notify an update of its
belief base

internal subgoals — generated by the agent itself while
trying to achieve a desire

are stored.
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The BDI Framework IV

Plans & plan library

usually, BDI-style agents do no adopt first principles planning at all

all plans must be generated by the agent programmer at design time,
which are then selected for execution at run time

pre-programmed plans are collected in the plan library

the planning done by agents consists entirely of context-sensitive
subgoal expansion, which is deferred until a subgoal is selected for
execution
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The BDI Abstract Architecture

Accordingly, the abstract architecture proposed by [Rao and Georgeff, 1992]

comprise three dynamic and global structures representing agent beliefs,
desires, and intentions (BDI), along with an input queue of events

update (write) and query (read) operations are possible upon the
three structures

update operation are subject to compatibility requirements
formalised constraints hold upon the mental attitudes

the events that the system is able to recognise could be either
external – i.e., coming from the environment – or internal ones—i.e.,
coming from some reflexive action

events are assumed to be atomic, and can be recognised after they
have occurred
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Implementing a BDI Agent

1 the agent initialises the internal states

2 the agent enters the main loop

3 the option generator reads the event queue, and returns a list of
options

4 the deliberator selects a subset of options to be adopted, and adds
these to the intention structure

5 the intentions to be adopted are filtered from the selected ones

6 if there is an intention to perform an atomic action at this point in
time the agent executes it

7 any external events that have occurred during the interpreter cycle are
then added to the event queue (the same for internal events)

8 the agent modifies the intention and the desire structures by dropping
successful ones

9 finally, impossible desires and intentions are dropped, too
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How does a BDI Agent Deliberate?

Problem

How can we made reasoning procedures of deliberation and option
generation sufficiently fast to satisfy the real time demands placed upon
the cognitive system?

deliberation can be decomposed in two phases:

option generation — understand what are the available alternatives
deliberation — choose (and filter) between the adoptable

goals/intentions

chosen options are then intentions, so the agents commit to the
selected ones—and executes them
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Refining Deliberation Function I

option generation — the agent generates a set of possible alternatives;
represents option generation via a function, options, which
takes agent’s current beliefs and current intentions, and from
them determines a set of options (i.e., desires)

deliberation — the agent chooses between competing alternatives, and
commits to the intention to achieving them; in order to select
between competing options, an agent uses a filter function
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Refining Deliberation Function II

Notes

the strategy for deliberating between goals typically is in the hands of
the agent developer

most BDI programming platforms provide mechanisms to describe
under which conditions some goal should inhibit the others (goal
formulae)

typically, such goal formulae are first-order logic predicates indicating
contexts and trigger conditions

game theory can enter the picture, here: i.e., maximising expected
utilities
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Structure of BDI Systems

BDI architectures are based on the following constructs

a set of beliefs

a set of desires (or goals)

a set of intentions

or better, a subset of the goals with an associated stack of plans for
achieving them; these are the intended actions

a set of internal events

elicited by a belief change (i.e., updates, addition, deletion) or by goal
events (i.e. a goal achievement, or a new goal adoption)

a set of external events

perceptive events coming form the interaction with external entities
(i.e. message arrival, signals, etc.)

a plan library (repertoire of actions) as a further (static) component
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Basic Architecture of a BDI Agent [Wooldridge, 2002]

BRF

Effectors

Action

Filter

Beliefs

Desires

Intentions

Agent

Generate
Options

Sensors
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Post-Declarative Systems

It was said that this approach leads to a kind of post-declarative
programming

in procedural programming, we say exactly what a system should do

in declarative programming, we state something that we want to
achieve, give the system general info about the relationships between
objects, and let a built-in control mechanism (e.g., goal-directed
theorem proving) figure out what to do

with intentional agents, we give a very abstract specification of the
system, and let the control mechanism figure out what to do, knowing
that it will act in accordance with the built-in theory of agency

Actually, the BDI framework combines in an excellent way both
(post)declarative structure and procedural knowledge in terms of plans
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Beliefs

Beliefs

Agents knowledge is structured in beliefs about the current state of the
world

they are informational units, typically implemented as ground sets of
literals, possibly with no disjunctions or implications

they should reflect only the information which is currently held (i.e.
situated)

they are expected to change in the future, i.e., as well as the
environment changes
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Plans

Plans

Plans represent the means the agent has to change the world, and to bring
it closer to his desires

they are language constructs, typically implemented in the form of
procedural structures

plans have a ‘body’, describing the workflow of activities (actions)
that have to be executed for plan execution to be successful

the conditions under which a plan can be chosen as an option are
specified in an invocation condition (triggering event) and a pre- or
context- condition (situation that must hold for the plan to be
executable)
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Intentions

Intentions

Intentions are emergent properties reified at runtime by selecting a given
plan for achieving a given goal

represented ‘on-line’ using a run-time stack of hierarchically plans
related to the ongoing adopted goals

similarly to how Prolog interpreter handle clauses

multiple intention stacks can coexist, either running in parallel,
suspended until some condition occurs, or ordered for execution in
some way
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BDI Viewpoints I

There are three main viewpoints over the BDI Model [Mazal et al., 2008]:

philosophical based on the work of philosopher Bratman [Bratman, 1987],
using uses terms of folk psychology to view humans as
planning agents: the main concepts in his work are beliefs
(what an agent knows about the world), desires (what the
agent wants, can be contradictory) and intentions (desires
that the agent has decided to reach, cannot be contradictory)

logical mainly Rao and Georgeff’s BDI CTL [Rao and Georgeff, 1998] –
multimodal logics with possible world semantics –, providing
beliefs, goals (desires), and intentions with a precise logical
semantics
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BDI Viewpoints II

implementation there are a huge number of systems and technologies that
are said to conform to the BDI model—between the BDI
CTL logics (very expressive) and the implementing systems.
which then treat the main modalities rather as data
structures, and mostly focus on plans
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BDI Agents Programming Platforms

Jason (Brasil) http://jason.sourceforge.net/

Agent platform and language for BDI agents based on AgentSpeak(L)

JADEX (Germany) http://www.activecomponents.org/

Agent platform for BDI and Goal-Directed Agents

2APL (Netherlands) http://www.cs.uu.nl/2apl/

Agent platform providing programming constructs to implement cognitive
agents based on the BDI architecture

3APL (Netherlands) http://www.cs.uu.nl/3apl/

A programming language for implementing cognitive agents

PRACTIONIST (Italy) http://practionist.eng.it/

Framework built on the Bratman’s theory of practical reasoning to support the
development of BDI agents

ASTRA http://astralanguage.com/

A distributed / concurrent programming language based on agent-oriented
programming
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Part II

System Autonomy & Self-Organisation
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Autonomy in Complex Artificial Systems

Complex Systems

. . . by a complex system I mean one made up of a large number
of parts that interact in a non simple way [Simon, 1962]

Which “parts” for complex systems?

is autonomy of “parts” a necessary precondition?

is it also sufficient?

Which kind of systems are we looking for?

what is autonomy for a system as a whole?

where could we find significant examples?

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 161 / 276



Autonomy in Complex Artificial Systems

Nature-inspired Models

Complex natural systems

such as physical, chemical, biochemical, biological, social systems

natural system exhibit features

such as distribution, opennes, situation, fault tolerance, robustness,
adaptiveness, . . .

which we would like to understand, capture, then bring to
computational systems

Nature-Inspired Computing (NIC)

for instance, NIC [Liu and Tsui, 2006] summarises decades of research
activities

putting emphasis on

autonomy of components
self-organisation of systems
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Intuitive Idea of Self-Organisation

self-organisation generally refers to the internal process leading to an
increasing level of organisation

organisation stands for relations between parts in term of structure
and interactions

self means that the driving force must be internal, specifically,
distributed among components
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History of Self-Organisation

the idea of the spontaneous creation of organisation can be traced
back to René Descartes

according to the literature, the first occurrence of the term
self-organisation is due to a 1947 paper by W. Ross Ashby [Ashby, 1947]

Ashby defined a system to be self-organising if it changed its own
organisation, rather being changed from an external entity
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Elements of Self-Organisation

increasing order — due to the increasing organisation

autonomy — interaction with external world is allowed as long as the
control is not delegated

adaptive — suitably responds to external changes

dynamic — it is a process not a final state
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Self-Organisation in Sciences

initially ignored, the concept of self-organisation is present in almost
every science of complexity, including

physics
chemistry
biology and ecology
economics
artificial intelligence
computer science
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History of Emergence

emergence is generally referred as the phenomenon involving global
behaviours arising from local components interactions

although the origin of the term emergence can be traced back to
Greeks, the modern meaning is due to the English philosopher G.H.
Lewes (1875)

with respect to chemical reactions, Lewes distinguished between
resultants and emergents

resultants are characterised only by their components, i.e. they are
reducible
conversely, emergents cannot be described in terms of their components
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Definition of Emergence

we adopt the definition of emergence provided in [Goldstein, 1999]

Emergence [..] refers to the arising of novel and coherent
structures, patterns, and properties during the process of self-
organisation in complex systems. Emergent phenomena are con-
ceptualised as occurring on the macro level, in contrast to the
micro-level components and processes out of which they arise.
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Emergence vs. Holism

emergence is often, and imprecisely, explained resorting to holism

holism is a theory summarisable by the sentence the whole is more
than the sum of the parts

while it is true that an emergent pattern cannot be reduced to the
behaviour of the individual components, emergence is a more
comprehensive concept
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Properties of Emergent Phenomena

novelty — unpredictability from low-level components

coherence — a sense of identity maintained over time

macro-level — emergence happens at an higher-level w.r.t. to
components

dynamism — arise over time, not pre-given

ostensive — recognised by its manifestation

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 171 / 276



Autonomy in Complex Artificial Systems Self-Organisation

Requirements for Emergency

Emergence can be exhibited by systems meeting the following
requirements

non-linearity — interactions should be non-linear and are typically
represented as feedback-loops

self-organisation — the ability to self-regulate and adapt the behaviour

beyond equilibrium — non interested in a final state but on system
dynamics

attractors — dynamically stable working state
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Definition of Self-Organisation

Widespread definition of self-organisation by [Camazine et al., 2001]

Self-organisation is a process in which pattern at the global level of a
system emerges solely from numerous interactions among the lower-level
components of the system. Moreover, the rules specifying interactions
among the system’s components are executed using only local information,
without reference to the global pattern.

it is evident that the authors conceive self-organisation as the source
of emergence

this tendency of combining emergence and self-organisation is quite
common in biological sciences

in the literature there is plenty of misleading definitions of
self-organisation and emergence [De Wolf and Holvoet, 2005]
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Natural Systems

natural systems can be broadly thought as [Di Marzo Serugendo et al., 2011]

physical systems
biological systems
social systems
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Physics and Chemistry

theory of self-organisation were originally developed within physics
and chemistry

most typical features included

when the system reaches a critical threshold, an immediate change
occurs
self-organisation can be observed globally
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Self-Organisation of Matter

self-organisation of matter happens in several fashion

in magnetisation, spins spontaneously align themselves in order to
repel each other, producing and overall strong field

Bénard cells is a phenomena of convection where molecules arrange
themselves in regular patterns because of the temperature gradient

The left hand side picture displays Bénard cells.
The right hand side picture displays magnetisation.
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Belousov-Zhabotinsky Reaction I

discovered by Belousov in the 1950s and later refined by
Zhabontinsky, BZ reactions are a typical example of
far-from-equilibrium system

mixing chemical reactants in proper quantities, the solution colour or
patterns tend to oscillate

these solutions are referred as chemical oscillators

there have been discovered several reactions behaving as oscillators
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Belousov-Zhabotinsky Reaction II

A snapshot of the Belousov-Zhabotinsky reaction.
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Living Organisms

self-organisation is a common phenomenon in subsystems of living
organisms

an important field in biological research is the determination of
invariants in the evolution of living organisms

in particular the spontaneous appearance of order in living complex
systems due to self-organisation

in biological research, self-organisation essentially means the global
emergence of a particular behaviour or feature that cannot be reduced
to the properties of individual system’s components—such as
molecules and cells
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Prey-Predator Systems

the evolution of a prey-predator systems leads to interesting dynamics

these dynamics have been encoded in the Lotka-Volterra equation
[Solé and Bascompte, 2006]

depending on the parameters values the system may evolve either to
overpopulation, extinction or periodical evolution

the Lotka-Volterra equation:

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)
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Lotka-Volterra Equation

A chart depicting the state space defined by the Lotka-Volterra equation.

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 182 / 276



Autonomy in Complex Artificial Systems Self-Organisation and Emergence in Natural Systems

Synchronised Flashing in Fireflies I

some species of fireflies have been reported of being able to
synchronise their flashing [Camazine et al., 2001]

synchronous flashing is produced by male during mating

this synchronisation behaviour is reproducible using simple rules

start counting cyclically

when perceive a flash, flash and restart counting
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Synchronised Flashing in Fireflies II

A photo of fireflies flashing synchronously.
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Schools of Fishes

School of fishes exhibit coordinated swimming: this behaviour can be
simulated based on speed, orientation, and distance perception

[Camazine et al., 2001].
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Flocks of Birds

The picture displays a flock of geese: this behaviour can be simulated
based on speed, orientation, and distance perception [Camazine et al., 2001].
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Insects Colonies

behaviours displayed by social insects have always puzzled
entomologist

behaviours such as nest building, sorting, routing were considered
requiring elaborated skills

for instance, termites and ants build very complex nests, whose
building criteria are far than trivial, such as inner temperature,
humidity, and oxygen concentration
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Termites Nest in South Africa

The picture displays the Macrotermes michealseni termite mound of
southern Africa.
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Trail Formation in Ant Colonies

The picture food foraging ants. When carrying food, ants lay pheromone,
adaptively establishing a path between food source and the nest. When

sensing pheromone, ants follow the trail to reach the food source.

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 189 / 276



Autonomy in Complex Artificial Systems Self-Organisation and Emergence in Natural Systems

Simulating Food Foraging

The snapshots display a simulation of food foraging ants featuring a nest
and three food sources. Ants find the shortest path to each sources ad

consume first the closer sources. When no longer reinforced, the
pheromone eventually evaporates.
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Swarm Intelligence

swarm intelligence is a problem solving approach inspired by collective
behaviours displayed by social insects
[Bonabeau et al., 1999, Bonabeau and Théraulaz, 2000]

it is not a uniform theory, rather a collection of mechanisms found in
natural systems having applications to artificial systems

applications of swarm intelligence include a variety of problems such
as task allocation, routing, synchronisation, sorting

in swarm intelligence, the most successful initiative is Ant Colony
Optimisation
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ACO: Ant Colony Optimisation

ACO [Dorigo and Stützle, 2004] is a population-based metaheuristic that
can be used to find approximate solutions to difficult optimisation
problems

a set of software agents called artificial ants search for good solutions
to a given optimisation problem

to apply ACO, the optimisation problem is transformed into the
problem of finding the best path on a weighted graph

ACO provided solutions to problems such as VRP-Vehicle Routing
Problem, TSP-Travelling Salesman Problem and packet routing in
telecommunication networks

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 193 / 276



Autonomy in Complex Artificial Systems Self-Organisation and Emergence in Artificial Systems

Autonomic Computing

an industry driven research field initiated by IBM
[Kephart and Chess, 2003], mostly motivated by increasing costs in systems
maintenance

basic idea: applying self-organising mechanisms found in human
nervous system to develop more robust and adaptive systems

applications range from a variety of problems such as power saving,
security, load balancing
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SWARM-BOTS

SWARM-BOTS [Dorigo et al., 2005] was a project funded by European
Community tailored to the study of self-organisation and self-assembly of

modular robots
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AGV – Automated Guided Vehicles

stigmergy has been successfully applied to several deployments of
Automated Guided Vehicles [Weyns et al., 2005, Sauter et al., 2005]

basically, the AGVs are driven by digital pheromones fields in the
same way ants perform food-foraging

Pictures of AGVs
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Are SOS Autonomous?

they are adaptive, in that they properly respond to external stimuli

so their autonomy from the environment is partial

at the same time, they are self-governed, in that their evolution is
self-driven, in some essential sense—it is at least teleonomic

so, their autonomy is evident, as well
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Systems as Agents?

in the following, we take as understood the fact that the notion of
autonomy applies to systems

our implicit assumption is that users (generally) and designers (at
some point) consider a system as a whole, and conceive it as such

that is, as a computational system with its own computational
autonomy—which for us means an agent, at a certain level of
abstraction

→ this basically means that we can evaluate other notions of autonomy
for a system as a whole
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How Much Autonomy?

good design of a SOS provides the goals to be achieved, and the
means to self-organise the system structure accordingly

how much autonomy in that?

how much autonomy from the designer, from the user, from the
environment, overall?
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Which Autonomy for SOS?

self-organising systems (SOS) exhibit some autonomy by definition

their evolution over time is not pre-defined by the designer
→ in this sense, SOS are autonomous with respect to the designer

however, any evolution of a well-engineered SOS tends towards the
tasks / goals assigned by the designer

→ in this sense, SOS are not autonomous with respect to the designer
their evolution over time is not is influenced by the environment, but is
not directly driven by it

→ in this sense, SOS are autonomous with respect to the environment

most of the SOS we know are natural systems, where it is not clear
whether one can say that the goals are somehow self-generated

however, for sure, computational SOS built from those examples are
likely to show executive autonomy, without motivational autonomy

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 201 / 276



Autonomy in Complex Artificial Systems SOS & Autonomy

Autonomy of SOS Depends on. . .

the models, mechanisms, and technologies adopted for implementing
computational SOS

! the level of autonomy of a SOS do not depend straightforwardly on
the level of autonomy of the agent components
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Component vs. System Autonomy

SOS are systems with some autonomy made of autonomous
components

however, no clear relationship between the sort of autonomy of
components and the sort of autonomy of the system can be stated a
priori

→ which basically means that autonomy of a SOS does not necessarily
rely upon its components only

→ and also means that issues like responsibly and liability require a
non-trivial, non-obvious treatment
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MAS 4 SOS

is the agent paradigm the right choice for modelling and developing
SOS?

are agents the right abstractions for SOS components?

are MAS the right way to put together components of a SOS?

in order to answer this question we have to compare requirements for
SOS with features of MAS
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SOS Requirements

from our previous discussion on self-organisation and emergence, a
possible basic requirements list can be given as follows:

autonomy and encapsulation of behaviour
local actions and perceptions
distributed environment supporting interactions
support for organisation and cooperation concepts
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MAS Checklist

It is easy to recognise that the agent paradigm provides suitable
abstractions for each aspect

agents for autonomy and encapsulation of behaviour

situated agents for local actions and perceptions

MAS distribution of components, and MAS environment supporting
interactions through coordination

MAS support for organisation and cooperation concepts
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Interaction & Coordination

Interaction

most of the complexity of complex computational systems – MAS
included – comes from interaction [Omicini et al., 2006]

along with an essential part of their expressive power [Wegner, 1997]

Coordination

since coordination is essentially the science of managing the space of
interaction [Wegner, 1997]

coordination models and languages [Ciancarini, 1996] provide abstractions
and technologies for the engineering of complex computational
systems [Ciancarini et al., 2000]
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Coordination Models for Complex Computational Systems

Coordination model as a glue

A coordination model is the glue that binds separate activities into
an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the inter-
action of active and independent entities called agents can be
expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and de-
struction of agents, communication among agents, and spatial
distribution of agents, as well as synchronization and distribu-
tion of their actions over time [Ciancarini, 1996]
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What is Coordination?

Ruling the space of interaction

coordination 

elaboration /  
computation 

!"

!"

!"

!"
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A New Perspective over Computational Systems

Programming languages

interaction as an orthogonal dimension

languages for interaction / coordination

Software engineering

interaction as an independent design dimension

coordination patterns

Artificial intelligence

interaction as a new source for intelligence

social intelligence
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A Meta-model for Coordinated Systems I

The coordination meta-model [Ciancarini, 1996]

coordination entities — the entities whose mutual interaction is ruled by
the model, also called the coordinables (or, the agents)

coordination media — the abstractions enabling and ruling interaction
among coordinables

coordination laws — the rules governing the observable behaviour of
coordination media and coordinables, and their interaction as
well

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 214 / 276



Coordination for Self-Organisation & System Autonomy Coordination Models

A Meta-model for Coordinated Systems II

interaction space

coordinable

coordination

medium

coordinable

coordinable

coordination

medium

coordination

medium
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A Meta-model for Coordinated Systems III

The coordination media. . .

“fill” the interaction space

enable / promote / govern the admissible / desirable / required
interactions among the interacting entities

according to some coordination laws

enacted by the behaviour of the media
defining the semantics of coordination
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The Ancestor

Linda [Gelernter, 1985]

Linda is the ancestor of all tuple-based coordination models
[Rossi et al., 2001]

in Linda, agents synchronise, cooperate, compete

based on tuples
available in the tuple spaces, working as the coordination media
by associatively accessing, consuming and producing tuples

the same holds for any tuple-based coordination model
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The Tuple-space Meta-model

The basics [Gelernter, 1985]

coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples
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Tuple-based / Space-based Coordination Systems

Linda meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples / tuple templates

tuples as ordered collections of (possibly heterogeneous)
information items

templates as specifications of tuple sets

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space
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Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination

many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

for instance, ts @ node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 221 / 276



Coordination for Self-Organisation & System Autonomy Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples a tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access templates allow accessing tuples through their content
& structure, rather than by name, address, or location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available
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Nature-inspired Coordination for MAS

Coordination issues in natural systems

coordination issues did not first emerge in computational systems

[Grassé, 1959] noted that in termite societies “The coordination of tasks
and the regulation of constructions are not directly dependent from
the workers, but from constructions themselves.”

Coordination as the key issue

many well-known examples of natural systems – and, more generally,
of complex systems – seemingly rely on simple yet powerful
coordination mechanisms for their key features—such as
self-organisation

it makes sense to focus on nature-inspired coordination models as the
core of complex nature-inspired MAS

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 224 / 276



Coordination for Self-Organisation & System Autonomy Nature-inspired Coordination

Stigmergy I

Stigmergy in insect societies

nature-inspired models of coordination are grounded in studies on the
behaviour of social insects, like ants or termites

[Grassé, 1959] introduced the notion of stigmergy as the fundamental
coordination mechanism in termite societies

in ant colonies, pheromones act as environment markers for specific
social activities, and drive both the individual and the social
behaviour of ants
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Stigmergy II

Stigmergy in computational systems

nowadays, stigmergy generally refers to a set of nature-inspired
coordination mechanisms mediated by the environment

digital pheromones [Parunak et al., 2002] and other signs made and sensed
in a shared environment [Parunak, 2006] can be exploited for the
engineering of adaptive and self-organising MAS
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Chemical Coordination

Chemical reactions as (natural) coordination laws

inspiration comes from the idea that complex physical phenomena are
driven by the (relatively) simple chemical reactions

coordinating the behaviours of a huge amount of agents, as well as
the global system evolution

Chemical reactions as (computational) coordination laws

Gamma [Banâtre and Le Métayer, 1990] is a chemistry-inspired coordination
model—as for the CHAM (chemical abstract machine) model
[Berry, 1992]

coordination in Gamma is conceived as the evolution of a space
governed by chemical-like rules, globally working as a rewriting system
[Banătre et al., 2001]
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Field-based Coordination

Computational fields as coordination laws

field-based coordination models like Co-Fields [Mamei and Zambonelli, 2006]

are inspired by the way masses and particles move and self-organise
according to gravitational/electromagnetic fields

there, computational force fields – generated either by the mobile
agents or by the pervasive coordination infrastructure – propagate
across the environment, and drive the actions and motion of the
agent themselves
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(Bio)chemical Coordination

Chemical reactions as coordination laws

chemical tuple spaces [Viroli et al., 2010] exploit the chemical metaphor
at its full extent—beyond Gamma

data, devices, and software agents are represented in terms of
chemical reactants, and system behaviour is expressed by means of
chemical-like laws

which are actually time-dependent and stochastic

embedded within the coordination medium

biochemical tuple spaces [Viroli and Casadei, 2009] add compartments,
diffusion, and stochastic behaviour of coordination primitives
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Basic Issues of Nature-inspired Coordination I

Environment

Environment is essential in nature-inspired coordination

it works as a mediator for agent interaction — through which agents
can communicate and coordinate indirectly

it is active — featuring autonomous dynamics, and affecting agent
coordination

it has a structure — requiring a notion of locality, and allowing
agents of any sort to move through a topology
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Basic Issues of Nature-inspired Coordination II

Stochastic behaviour

Complex systems typically require probabilistic models

don’t know / don’t care non-deterministic mechanisms are not
expressive enough to capture all the properties of complex systems
such as biochemical and social systems

probabilistic mechanisms are required to fully capture the dynamics of
coordination in nature-inspired systems

coordination models should feature (possibly simple yet) expressive
mechanisms to provide coordinated systems with stochastic
behaviours
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Linda is not a Nature-inspired Model

Warning

Linda is not a Nature-inspired Model

So, why Linda?

Why tuple-based models?
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Why Tuple-based Models? I

Expressiveness

Linda is a sort of core coordination model

making it easy to face and solve many typical problems of complex
distributed systems

complex coordination problems are solved with few, simple primitives

whatever the model used to measure expressiveness of coordination,
tuple-based languages are highly-expressive [Busi et al., 1998]
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Why Tuple-based Models? II

Environment-based coordination

generative communication [Gelernter, 1985] requires permanent
coordination abstractions

so, the coordination infrastructure provides agents with tuple spaces
as coordination services

coordination as a service (CaaS) [Viroli and Omicini, 2006]

they can be interpreted as coordination artefacts shaping
computational environment [Omicini et al., 2004]

and used with different levels of awareness by both intelligent and
“stupid” agents [Omicini, 2013]

as such, they can be exploited to support environment-based
coordination [Ricci et al., 2005]
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Why Tuple-based Models? III

Extensibility

whatever its expressiveness, Linda was conceived as a coordination
model for closed, parallel systems

so, in fact, some relevant problems of today open, concurrent systems
cannot be easily solved with Linda either in practice or in theory

as a result, tuple-based models have been extended with new simple
yet powerful mechanisms

generating a plethora of tuple-based coordination models
[Rossi et al., 2001]
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Why Tuple-based Models? IV

Nature-inspired extensions

Linda may not be nature-inspired, but many of its extensions are

many of the coordination models depicted before

stigmergy [Parunak, 2006]

field-based [Mamei and Zambonelli, 2004]

chemical [Viroli et al., 2010] and biochemical [Viroli and Casadei, 2009]

along with many others, such as

cognitive stigmergy [Ricci et al., 2007]

pervasive ecosystems [Viroli et al., 2012]

are actually nature-inspired tuple-based coordination models
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Examples I

StoKlaim

StoKlaim [De Nicola et al., 2006] – a stochastic extension of the
Linda-derived Klaim model for mobile coordination
[De Nicola et al., 1998] – adds distribution rates to coordination
primitives—thus making it possible the modelling of non-deterministic
real-life phenomena such as failure rates and inter-arrival times

SwarmLinda

SwarmLinda [Tolksdorf and Menezes, 2004] enhances Linda
implementation with swarm intelligence to achieve features such as
scalability, adaptiveness, and fault-tolerance—by modelling tuple
templates as ants, featuring probabilistic behaviour when looking for
matching tuples in a distributed setting
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Examples II

Situated ReSpecT [Mariani and Omicini, 2013]

ReSpecT [Omicini and Denti, 2001] generally addresses situated
dependency by capturing time, space, and environment events, and
supporting the definition and enforcement of situated coordination
policies

so, ReSpecT-programmed tuple centres can work as situated
abstractions for MAS-environment coordination
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Blending Metaphors

Mixing abstractions & mechanisms from different conceptual sources

most natural systems, when observed in their whole complexity,
exhibit layers each one featuring its own metaphors and mechanisms

correspondingly, many novel approaches to complex MAS
coordination integrate diverse sources of inspiration, e.g.:

TOTA [Mamei and Zambonelli, 2004] exploits mechanisms from both
stigmergic and field-based coordination
the SAPERE coordination model for pervasive service ecosystems
[Zambonelli et al., 2011, Viroli et al., 2012] integrates

the chemical metaphor for driving the evolution of coordination
abstractions
biochemical abstractions for topology and diffusion
the notion of ecosystem in order to model the overall system structure
and dynamics
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Expressing Full Dynamics

Expressing the full dynamics of complex natural systems

mostly, coordination models just capture some of the overall system
dynamics

which makes them basically fail

for instance, Gamma mimics chemical reactions, but does not capture
essential issues in chemical processes such as reaction rates and
concentration [Banâtre and Le Métayer, 1990, Banătre et al., 2001]

instead, (bio)chemical tuple spaces fully exploit the chemical metaphor
by providing time-dependent and stochastic chemical laws
[Viroli et al., 2010, Viroli and Casadei, 2009]

more generally, the goal is to allow coordinated MAS to capture and
express the full dynamics of complex natural systems
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Core Mechanisms I

Understanding the basic elements of expressiveness

Linda is a glaring example of a minimal set of coordination
mechanisms providing a wide range of coordination behaviours

the goal is understanding the minimal set of coordination primitives
required to design complex stochastic behaviours

for instance, uniform coordination primitives – that is, Linda-like
coordination primitives returning tuples matching a template with a
uniform distribution [Gardelli et al., 2007] – seemingly capture the
full-fledged dynamics of real chemical systems within the coordination
abstractions
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Core Mechanisms II

Issues

autonomy and the limits of computational systems

expressiveness of languages and technologies
(technically, ethically, legally) admissible behaviours of computational
systems
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Predicting Complex Behaviours I

Engineering unpredictable systems around predictable abstractions

coordination models are meant to harness the complexity of complex
MAS [Ciancarini et al., 2000]

coordination abstractions are often at the core of complex MAS

while this does not make complex MAS generally predictable, it
makes it possible in principle to make them partially predictable,
based on the predictably of the core coordinative behaviour

suitably-formalised coordination abstractions, along with a
suitably-defined engineering methodology, could in principle ensure
the predictability of given MAS properties within
generally-unpredictable MAS
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Predicting Complex Behaviours II

Issues

autonomy and predictability

is unpredictability a pre-condition to choice, freedom, and so
autonomy?
how could unpredictability coexist with well-founded notions of
responsibility and liability?

partial predictability?
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Coordination for Simulation I

Simulation of complex systems is a multidisciplinary issue

. . . ranging from physics to biology, from economics to social sciences

no complex system of any sort can be studied nowadays without the
support of suitable simulation tools

nowadays, experiments done in silico are at least as relevant as those
in vitro and in vivo

Andrea Omicini (DISI, UniBO) Frontiers of Autonomous Systems Bologna, March 2018 246 / 276



Coordination for Self-Organisation & System Autonomy Tuple-based models for Nature-inspired Coordination

Coordination for Simulation II

Interaction issues are prominent in complex systems

coordination technologies potential core of agent-based simulation
frameworks

in particular, self-organising nature-inspired coordination models are
well suited for the simulation of complex systems

so, coordination middleware could play a central role in the
development of rich agent-based simulation frameworks for complex
systems

e.g., [González Pérez et al., 2013]

Issues

autonomy and simulation

what autonomy is required to simulate autonomous systems?
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Knowledge-oriented Coordination I

Integrating nature-inspired with knowledge-oriented coordination

intelligent MAS in knowledge intensive environments – as well as
complex socio-technical systems, in general – require automatic
understanding of data and information

knowledge-oriented coordination exploits coordination abstractions
enriched so as to allow for semantic interpretation by intelligent
agents [Fensel, 2004, Nardini et al., 2013]

for instance

chemical tuple spaces
SAPERE coordination abstractions and mechanisms
semantic tuple centres [Nardini et al., 2011]

all relay on the semantic interpretation of coordination items
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Knowledge-oriented Coordination II

Self-organisation of knowledge

explicit search of information is going to become ineffective while the
amount of available knowledge grows at incredible rates

knowledge should autonomously organise and flow from producers to
consumers

knowledge self-organisation for knowledge-intensive MAS
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Knowledge-oriented Coordination III

MoK (Molecules of Knowledge) [Mariani and Omicini, 2012a]

Molecules of Knowledge is a a nature-inspired coordination model
promoting knowledge self-organisation, where

sources of knowledge continuously produce and inject atoms of
knowledge in biochemical compartments
knowledge atoms may then aggregate in molecules and diffuse
knowledge producers, managers and consumers are modelled as
catalysts, whose workspaces are biochemical compartments, and their
knowledge-oriented actions become enzymes influencing atoms
aggregation and molecules diffusion
so as to make relevant knowledge spontaneously aggregate and
autonomously move towards potentially interested knowledge workers

the first application scenario for experimenting with MoK is news
management [Mariani and Omicini, 2012b]
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Knowledge-oriented Coordination IV

Issues

autonomy and knowledge

if (informed) choice is essential to freedom, and freedom is essential to
autonomous choice, then knowledge is essential to autonomy

autonomy of knowledge?

what is autonomy, when knowledge chunks autonomously move
towards knowledge consumers?
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Coordination Middleware

JavaSpaces http://www.oracle.com/technetwork/articles/javase/

javaspaces-140665.html

A Java-based high-level tool for building distributed and
collaborative applications [Freeman et al., 1999]

Law-Governed Interaction (LGI) http://www.moses.rutgers.edu

A decentralised coordination and control mechanism for
distributed systems [Minsky and Ungureanu, 2000]

TuCSoN http://tucson.unibo.it

A model and technology for tuple-based coordination of
complex distributed systems [Omicini and Zambonelli, 1999]
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