

Advanced Metaheuristics

Daniele Vigo D.E.I. - Università di Bologna daniele.vigo@unibo.it

Main families of Metaheuristics

- Single-solution methods
 - Basic: Tabu Search, Simulated Annealing ...
 - Advanced:
 - Iterated Local Search
 - Variable Neighborhood Search
 - Large Neighborhood Search
 - Ruin&Recreate

Multistart Local Search (MLS)

- Repeatedly applies a LS algorithm repeat
 - generates a starting solution x (randomly or with random parameter);
 - apply Local Search and find the local optimum : x' = LS(x)
 - if $z(x') < z(x^*)$ then $x^* = x'$

until stop condition

- · easy to implement but not always good
- The solutions are randomly generated thus the local optima are independently distributed
 - in large problems tend to be equal

- Cheapest insertion algorithm for TSP
- Parametric insertion cost

 $IC(k,i,j,\alpha) = C_{ik} + C_{kj} - \alpha C_{ij}$

Iterated Local Search (ILS)

- Evolution of MultiStart LS
 - uses the local optimum (perturbed) of the previous iteration as a starting point for the current iteration and possibly update it
 - x*= local optimum (apply LS to a random solution)

repeat

- perturb x*;
- x'=LS(x*)
- possibly replace x* with x'

until stop condition

Iterated Local Search (ILS)

Iterated Local Search (ILS)

- Perturbation
 - random modifications
 - sequence of moves (of a different neighborhood)
 - careful choice of the perturbation intensity
 - small: risk of cycling on the local optimum
 - large: loss of information about the optimum → MLS
- Acceptance criteria
 - Probabilistic (es. SA)
 - Deterministic (es. if improving or within a threshold from the best solution)

Algorithm 4.2: $ILS(N_{iter}, N_{rand}, Tour)$

 $costCurrent \leftarrow CostOfInitialTour$ $bestTour \leftarrow Tour$ for $it \leftarrow 1$ to N_{iter} $Tour \leftarrow bestTour$ for $r \leftarrow 1$ to N_{rand} $i, j \leftarrow RandomNumber(1, \ldots, |V_c|)$ if (i = j) $p \leftarrow RandomNumber(1, \ldots, |V_c|, p \neq i)$ 1 OPT(Tour, i, p)else 2OPT(Tour, i, j)while (*improvement*) $costNew \leftarrow PERFORM BEST MOVE(Tour)$ **if** (*costNew* < *costCurrent*) $costCurrent \leftarrow costNew$ $bestTour \leftarrow Tour$

Figure 5: Performance of ILS, as a function of N_{rand}

Iterated Tabu Search

Algorithm 4.3: $ITS(N_{iter}^*, N_{rand}, Tour)$

 $costCurrent \leftarrow CostOfInitialTour$ $bestTour \leftarrow Tour$ for $it \leftarrow 1$ to $N_{iter}*$ $Tour \leftarrow bestTour$ for $r \leftarrow 1$ to N_{rand} $i, j \leftarrow RandomNumber(1, \ldots, |V_c|)$ if (i = j) $p \leftarrow RandomNumber(1, \ldots, |V_c|, p \neq i)$ 1OPT(Tour, i, p)else 2OPT(Tour, i, j) $costCurrent \leftarrow TABU SEARCH(N^*_{iter}, Tour)$ if (costNew < costCurrent) $costCurrent \leftarrow costNew$ $bestTour \leftarrow Tour$

Advanced MetaHeuristics

Multiple Neighborhoods

- Often several neighborhoods are available
- Which one use ?
- Combine them to obtain larger ones ?
- Ex. Erdogan et al 2012 for a TSP variant

Variable Neighborhood Search

- Proposed by Mladenovich and Hansen (1997)
- Exploits different Neighborhoods N_k (k=1,..., k_{max})
 - The Neighborhoods are applied in sequence
 - if the local optimum is not globally improving then k=k+1
 - otherwise the move is accepted and k=1

Variable Neighborhood Descent

Variable Neighborhood Search

- Stochastic algorithm which uses various Neighborhoods N_k (k=1,..., k_{max})
- Iterative procedure based on 3 phases:
 - Shaking: generates a random move from $N_k(x) \rightarrow x'$
 - Local Search: apply LS to $x' \rightarrow x''$
 - Move: if x" improving, accept it and restart from N_1 , otherwise use N_{k+1}

Input: a set of neighborhood structures N_k for $k = 1, ..., k_{max}$ for shaking. $x = x_0$; /* Generate the initial solution */ Repeat

k = 1;

Repeat

```
Shaking: pick a random solution x' from the k^{th} neighborhood N_k(x) of x;

x'' = \text{local search}(x');

If f(x'') < f(x) Then

x = x^{''};

Continue to search with N_1; k = 1;

Otherwise k=k+1;

Until k = k_{max}

Until Stopping criteria
```

Output: Best found solution.

Input: a set of neighborhood structures N_k for $k = 1, ..., k_{max}$ for shaking. a set of neighborhood structures N_l for $k = 1, ..., l_{max}$ for local search. $x = x_0$; /* Generate the initial solution */ Repeat For k=1 To kmax Do Shaking: pick a random solution x' from the k^{th} neighborhood $N_k(x)$ of x; Local search by VND ; For l=1 To l_{max} Do Find the best neighbor x'' of x' in $N_l(x')$; If f(x'') < f(x') Then x' = x''; l=1; Otherwise l=l+1; Move or not: If local optimum is better than x Then x = x: Continue to search with N_1 (k = 1); Otherwise k=k+1; Until Stopping criteria Output: Best found solution.

- The critical issue is the choice of the Neighborhoods and their order
- Often parametric families are used

Cyclic-Exchange Neighborhoods (Thompson and Orlin 1989)

- Parameters
 - Φ: number of depots at which the routes originate
 - Ω: number of routes involved
 - Γ_{max}: maximum sequence length to exchange

No.	Φ	Ω	Γ _{max}	No.	Φ	Ω	Γ _{max}
1	0	2	1	14	0	3	6
2	0	2	2	15	0	3	7
3	0	2	3	16	0	3	8
4	0	2	4	17	1	2	1
5	0	2	5	18	1	2	2
6	0	2	6	19	1	2	3
7	0	2	7	20	1	2	4
8	0	2	8	21	1	2	5
9	0	3	1	22	1	2	6
10	0	3	2	23	1	2	7
11	0	3	3	24	1	2	8
12	0	3	4	25	1	2	9
13	0	3	5	26	1	2	10

• All Neighborhoods may provide a contribution

- Local Search using Neighborhoods with very large cardinality (exponential)
- Ex. Ejection chains or cyclic exchanges

- Neighborhood search can be perfromed:
- exactly (in some cases)
 - the best move is determined by solving an optimization problem
 - Ex. Dynasearch for the TSP
 - remove half of the arcs
 - the best recombination is foundby solve a shortest path on a suitably defined graph

20

- Ex. Assignment Neighborhood for the TSP
 - remove n/2 vertices and form a subtour with the remaining ones
 - define the (square) matrix of reinsertion costs for the vertices in the subtour
 - select the best subset of reinsertions by solving an assignment problem in O(n³)
 - is a restriction in which each reinsertion can be after a different vertex of the subtour

- Heuristic search
 - generate just a heuristic solution belonging to the neighborhood
- Reinsertion LNS (Shaw, 1998)

Algorithm 1 LNS heuristic

```
1 Function LNS (s \in \{solutions\}, q \in \mathbb{N})
      solution s<sub>best</sub>=s;
 2
 3
      repeat
        s' = s
 4
     remove q requests from s'
 5
      reinsert removed requests into s';
 6
        if (f(s') < f(s_{best})) then
 7
       s_{hest} = s';
 8
        if accept (s', s) then
 9
10
          s = s':
     until stop-criterion met
11
12
    return shest;
```


- Ruin&Recreate (Schrimpf et al., 2000)
 - remove q elements and reinsert them (heuristically)
- Removal (Ruin)
 - Random removal: random choice of removed elements
 - Shaw removal: remove "similar" elements (e.g. customers with similar demand) so that the reinsertion will be easier
 - Worst removal: remove elements "badly served" or inefficient portions of the solution
- Reinsertion (Recreate)
 - greedy/construction or regret-based heuristic (complete the partial solution)
 - exact algorithm

- Often there are several alternatives for implementing a component of an algorithm
- Some work better than others on some instances but work badly on others
- How "guide" the algorithm to detect the best component "automatically" (i.e. to "adapt" to the specific instance) ?

Example: Adaptive LNS

- Adaptive LNS (Pisinger & Ropke, 05)
 - Different alternatives for Removal and Insertion
 - Each may work better on specific instances
 - Initially all methods have same probability
 - At each iteration the method is selected with a probability that is proportional to the effectiveness shown by the method in the previous iterations

- In some problems a totally random shaking can produce very bad solutions
- The local search returns to the initial solution

- Introduce some "bias" in the selection of the elements of the random move (e.g. the involved routes must be "close")
- (Stenger et al. 2012) Several mechanisms for selecting the routes and the customers involved in the shaking
- Adaptive selection of the "best performing" mechanisms

Advanced MetaHeuristics

Granular Neighborhoods

- Restriction of standard neighborhoods (Toth, V., INFORMS JC, 03):
 - include and examine only few "promising" moves (e.g. linear cardinality)
 - much faster exploration without degradation in quality
- May be seen as an implementation of Candidate List concept (Glover, Laguna, 97)

Granular Neighborhoods (cont'd)

- How to define promising moves ?
 - CVRP (T&V, 2003): avoid "long" arcs ($c_{ii} > \theta$)

Granular Neighborhoods (cont'd)

$\theta = \beta \cdot UB / (n + K)$

• Given θ (Granularity threshold), define:

$$A' = \{(i, j) \in A: c'_{ij} \le \theta \} \cup L, \text{ with } |A'| = m \le n^2$$

where L includes relevant arcs:

- incident into the Depot, belonging to best solutions,...
- $G'=(V_0, A')$ is stored as a sparse graph
- The G.N. can be examined in O(m) time:
 - each (a,b) $\in A'$ defines a unique move

Tabu search methods results

	$Osman^{(7)}$		Taillard ⁽⁸⁾	Taburoute ⁽⁹⁾		(9)	Rochat and	Xu and		Rego and	Toth and	
	(B.	A)		standard		best	Taillard ⁽¹⁰⁾	$Kelly^{(4,5)}$		Roucairol (11)	Vigo ⁽¹²⁾	
Problem	f^*	Time ⁽¹⁾	f^*	f^*	Time ⁽²⁾	f^*	f^*	f^*	Time ⁽³⁾	f^*	f^*	Time ⁽⁶⁾
E051-05e	524.61	1.12	524.61	524.61	6.0	524.61		$524.61^{(4,5)}$	$29.22^{(4,5)}$	524.61	524.61	0.81
E076-10e	844	1.18	835.26	835.77	53.8	835.32		$835.26^{(4,5)}$	$48.80^{(4,5)}$	835.32	838.60	2.21
E101-08e	835	11.25	826.14	829.45	18.4	826.14		$826.14^{(4,5)}$	$71.93^{(4,5)}$	827.53	828.56	2.39
E101-10c	819.59	6.79	819.56	819.56	16.0	819.56		$819.56^{(4,5)}$	$56.61^{(4,5)}$	819.56	819.56	1.10
E121-07c	1042.11	23.31	1042.11	1073.47	22.2	1042.11		$1042.11^{(4,5)}$	$91.23^{(4,5)}$	1042.11	1042.87	3.18
E151-12c	1052	51.25	1028.42	1036.16	58.8	1031.07		$1029.56^{(4,5)}$	149.90 ^(4,5)	1044.35	1033.21	4.51
E200-17c	1354	32.88	1298.79	1322.65	90.9	1311.35	1291.45	$1298.58^{(4,5)}$	272.52 ^(4,5)	1334.55	1318.25	7.50
D051-06c	555.44	2.34	555.43	555.43	13.5	555.43		$555.43^{(5)}$	$30.67^{(5)}$	555.43	555.43	0.86
D076-11c	913	3.38	909.68	913.23	54.6	909.68		$965.62^{(5)}$	102.13 ⁽⁵⁾	909.68	920.72	2.75
D101-09c	866.75	20.00	865.94	865.94	25.6	865.94		$881.38^{(5)}$	$98.15^{(5)}$	866.75	869.48	2.90
D101-11c	866.37	92.98	866.37	866.37	65.7	866.37		$915.24^{(5)}$	152.98 ⁽⁵⁾	866.37	866.37	1.41
D121-11c	1547	22.38	1541.14	1573.81	59.2	1545.93		$1618.55^{(5)}$	201.75 ⁽⁵⁾	1550.17	1545.51	9.34
D151-14c	1188	40.73	1162.55	1177.76	71.0	1162.89		No solution	168.08 ⁽⁵⁾	1164.12	1173.12	5.67
D200-18c	1422	55.17	1397.94	1418.51	99.8	1404.75	1395.85	1439.29 ⁽⁵⁾	368.37 ⁽⁵⁾	1420.84	1435.74	9.11
E ins	s t. +1.	32%	+0.08% +0.95%				+0.09% +0.7		'3% +0.47%			

- Inspired by the capacity of ants to optimize collectively the choice of paths to the food
- the path followed by an ant is proportional to the pheromone trace found on the trail

- Ant systems are a population based approach (Dorigo, Colorni and Maniezzo), similar to GA
- There is a population of ants, with each ant finding a solution and then communicating with the other ants
 - Time, *t*, is discrete
 - At each time unit an ant moves a distance, d, of 1
 - Once an ant has moved it lays down 1 unit of pheromone
 - At *t*=0, there is no pheromone on any edge

At *t*=1 there will be 16 ants at B and 16 ants at D.

At *t*=2 there will be 8 ants at D and 8 ants at B. There will be 16 ants at E

The intensities on the edges will be as follows

FD = 16, AB = 16, BE = 8, ED = 8, BC = 16 and CD = 16

16 ants are moving from A - F and another 16 are moving from F - A

- We are interested in exploring the search space, rather than simply plotting a route
- We need to allow the ants to explore paths and follow the best paths with some *probability* in proportion to the intensity of the pheromone trail
- We do not want them simply to follow the route with the highest amount of pheromone on it, else our search will quickly settle on a sub-optimal (and probably very sub-optimal) solution
- The probability of an ant following a certain route is a function, not only of the pheromone intensity but also a function of what the ant can see (*visibility*)
- The pheromone trail must not build unbounded. Therefore, we need "evaporation"

- At the start of the algorithm one ant is placed in each city
- When an ant decides which town to move to next, it does so with a probability that is based on the distance to that city and the amount of trail intensity on the connecting edge
- The distance to the next town, is known as the visibility, n_{ij}, and is defined as 1/d_{ij}, where, d, is the distance between cities i and j.

- In order to stop ants visiting the same city in the same tour a data structure, Tabu, is maintained
- This stops ants visiting cities they have previously visited
- Tabu_k is defined as the list for the kth ant and it holds the cities that have already been visited

• After each ant tour the trail intensity on each edge is updated using the following formula

 $T_{ij}(t + n) = p \cdot T_{ij}(t) + sum_k \Delta T_{ij}^k$

 $\Delta T_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if the kth ant uses } edge(i, j) \text{ in its tour} \\ 0 & \text{(between time t and } t + n) \\ 0 & \text{otherwise} \end{cases}$

• Q is a constant and L_k is the tour length of the k^{th} ant

Transition Probability

$$p_{ij}^{k}(t) = \begin{cases} \frac{[T_{ij}(t)]^{\alpha} \cdot [n_{ij}]^{\beta}}{\sum k \in allowed_{k}} & [T_{ik}(t)]^{\alpha} \cdot [n_{ik}]^{\beta} \\ 0 & otherwise \end{cases}$$

- where α and β are control parameters that control the relative importance of trail versus visibility

