Advanced Metaheuristics

Daniele Vigo

D.E.I. - Università di Bologna daniele.vigo@unibo.it

Main families of Metaheuristics

- Single-solution methods
- Basic: Tabu Search, Simulated Annealing ...
- Advanced:
- Iterated Local Search
- Variable Neighborhood Search
- Large Neighborhood Search
- Ruin\&Recreate

Multistart Local Search (MLS)

- Repeatedly applies a LS algorithm repeat
- generates a starting solution x
(randomly or with random parameter);
- apply Local Search and find the local optimum : $x^{\prime}=\operatorname{LS}(x)$
- if $z\left(x^{\prime}\right)<z\left(x^{*}\right)$ then $x^{*}=x^{\prime}$
until stop condition
- easy to implement but not always good
- The solutions are randomly generated thus the local optima are independently distributed
- in large problems tend to be equal

Example

- Cheapest insertion algorithm for TSP
- Parametric insertion cost
$\operatorname{IC}(\mathrm{k}, \mathrm{i}, \mathrm{j}, \alpha)=\mathrm{c}_{\mathrm{ik}}+\mathrm{c}_{\mathrm{kj}}-\alpha \mathrm{c}_{\mathrm{ij}}$

Iterated Local Search (ILS)

- Evolution of MultiStart LS
- uses the local optimum (perturbed) of the previous iteration as a starting point for the current iteration and possibly update it
$x^{*}=$ local optimum (apply LS to a random solution)
repeat
- perturb x^{*};
- $x^{\prime}=L S\left(x^{*}\right)$
- possibly replace x^{*} with x^{\prime}
until stop condition

Final solution

Iterated Local Search (ILS)

- Perturbation
- random modifications
- sequence of moves (of a different neighborhood)
- careful choice of the perturbation intensity
- small: risk of cycling on the local optimum
- large: loss of information about the optimum \rightarrow MLS
- Acceptance criteria
- Probabilistic (es. SA)
- Deterministic (es. if improving or within a threshold from the best solution)

Iterated LS

```
Algorithm 4.2: \(\operatorname{ILS}\left(N_{\text {iter }}, N_{\text {rand }}\right.\), Tour \()\)
costCurrent \(\leftarrow\) CostOf InitialTour
bestTour \(\leftarrow\) Tour
for it \(\leftarrow 1\) to \(N_{\text {iter }}\)
    Tour \(\leftarrow\) bestTour
    for \(r \leftarrow 1\) to \(N_{\text {rand }}\)
        \(i, j \leftarrow\) RandomNumber \(\left(1, \ldots,\left|V_{c}\right|\right)\)
        if \((i=j)\)
            \(p \leftarrow\) RandomNumber \(\left(1, \ldots,\left|V_{c}\right|, p \neq i\right)\)
            1Opt(Tour, \(i, p\) )
        else 2 ОРт(Tour, \(i, j\) )
    while (improvement) costNew \(\leftarrow\) Perform Best Move(Tour)
    if (costNew < costCurrent)
        costCurrent \(\leftarrow \operatorname{costNew}\)
        bestTour \(\leftarrow\) Tour
```


Figure 5: Performance of ILS, as a function of $N_{\text {rand }}$

```
Algorithm 4.1: \(\mathrm{TS}\left(N_{\text {iter }}\right.\), Tour \()\)
costCurrent \(\leftarrow\) CostOf InitialTour
for \(i \leftarrow 1\) to \(N_{\text {iter }}\)
    \((i, p, \cos t 1) \leftarrow\) FindBestNotTABu1OptMove(Tour, costCurre
    \((i, j\), cost 2\() \leftarrow\) FindBestNotTABu2OptMove(Tour, costCurre
    if \((\cos t 1<\cos t 2)\)
        Implement1OptMove(Tour, \(i, p\) )
        UpdateTabuList \((i, i)\)
    else
        Implement2OptMove(Tour, \(i, j\) )
        UpdateTabuList \((i, j)\)
    CostCurrent \(\leftarrow\) UpdateCostCurrent ()
```


Iterated Tabu Search

```
Algorithm 4.3: \(\operatorname{ITS}\left(N_{\text {iter }}^{*}, N_{\text {rand }}\right.\), Tour \()\)
    costCurrent \(\leftarrow\) CostOf InitialTour
    bestTour \(\leftarrow\) Tour
    for \(i t \leftarrow 1\) to \(N_{\text {iter }} *\)
    Tour \(\leftarrow\) bestTour
    for \(r \leftarrow 1\) to \(N_{\text {rand }}\)
        \(i, j \leftarrow\) RandomNumber \(\left(1, \ldots,\left|V_{c}\right|\right)\)
        if \((i=j)\)
            \(p \leftarrow\) RandomNumber \(\left(1, \ldots,\left|V_{c}\right|, p \neq i\right)\)
        1Opt(Tour, \(i, p\) )
        else \(2 \mathrm{Opt}(\) Tour, \(, i, j\) )
    costCurrent \(\leftarrow\) Tabu Search \(\left(N_{\text {iter }}^{*}\right.\), Tour \()\)
    if (costNew < costCurrent)
        costCurrent \(\leftarrow \operatorname{costNew}\)
        bestTour \(\leftarrow\) Tour
```


Multiple Neighborhoods

- Often several neighborhoods are available
- Which one use?
- Combine them to obtain larger ones?
- Ex. Erdogan et al 2012 for a TSP variant

Variable Neighborhood Search

- Proposed by Mladenovich and Hansen (1997)
- Exploits different Neighborhoods $\mathrm{N}_{\mathrm{k}}\left(\mathrm{k}=1, \ldots, \mathrm{k}_{\max }\right)$
- The Neighborhoods are applied in sequence
- if the local optimum is not globally improving then $\mathrm{k}=\mathrm{k}+1$
- otherwise the move is accepted and $\mathrm{k}=1$

Input: a set of neighborhood structures N_{l} for $l=1, \ldots, l_{\max }$.
$x=x_{0} ; /{ }^{*}$ Generate the initial solution */
$l=1$;
While $l \leq l_{\max }$ Do
Find the best neighbor x^{\prime} of x in $N_{l}(x)$;
If $f\left(x^{\prime}\right)<f(x)$ Then $x=x^{\prime} ; l=1$;
Otherwise $l=l+1$;
Output: Best found solution.

Variable Neighborhood Search

- Stochastic algorithm which uses various Neighborhoods $\mathrm{N}_{\mathrm{k}}\left(\mathrm{k}=1, \ldots, \mathrm{k}_{\max }\right)$
- Iterative procedure based on 3 phases:
- Shaking: generates a random move from $\mathrm{N}_{\mathrm{k}}(\mathrm{x}) \rightarrow \mathrm{x}$
- Local Search: apply LS to $x^{\prime} \rightarrow \mathrm{x}$ "
- Move: if x " improving, accept it and restart from N_{1}, otherwise use N_{k+1}

Basic VNS

Input: a set of neighborhood structures N_{k} for $k=1, \ldots, k_{\max }$ for shaking. $x=x_{0} ; /{ }^{*}$ Generate the initial solution */
Repeat
$k=1$;
Repeat
Shaking: pick a random solution x^{\prime} from the $k^{\text {th }}$ neighborhood $N_{k}(x)$ of x; $x^{\prime \prime}=$ local $\operatorname{search}\left(x^{\prime}\right)$;
If $f\left(x^{\prime \prime}\right)<f(x)$ Then
$x=x^{\prime \prime}$;
Continue to search with $N_{1} ; k=1$;
Otherwise $\mathrm{k}=\mathrm{k}+1$;
Until $k=k_{\text {max }}$
Until Stopping criteria
Output: Best found solution.

General VNS

Input: a set of neighborhood structures N_{k} for $k=1, \ldots, k_{\max }$ for shaking. a set of neighborhood structures N_{l} for $k=1, \ldots, l_{\max }$ for local search.
$x=x_{0} ; /^{*}$ Generate the initial solution */
Repeat
For $\mathrm{k}=1$ To $k_{\max }$ Do
Shaking: pick a random solution x^{\prime} from the $k^{t h}$ neighborhood $N_{k}(x)$ of x;
Local search by VND ;
For $1=1$ To $l_{\text {max }}$ Do
Find the best neighbor $x^{\prime \prime}$ of x^{\prime} in $N_{l}\left(x^{\prime}\right)$;
If $f\left(x^{\prime \prime}\right)<f\left(x^{\prime}\right)$ Then $x^{\prime}=x^{\prime \prime} ; 1=1$;
Otherwise $1=1+1$;
Move or not:
If local optimum is better than x Then
$x=x^{\prime \prime}$;
Continue to search with $N_{1}(k=1)$;
Otherwise $k=k+1$;
Until Stopping criteria
Output: Best found solution.

General VNS

- The critical issue is the choice of the Neighborhoods and their order
- Often parametric families are used

Cyclic-Exchange Neighborhoods (Thompson and Orlin 1989)

- Parameters
- $\boldsymbol{\varnothing}$: number of depots at which the routes originate
■ Ω : number of routes involved
- $\Gamma_{\text {max }}$: maximum sequence length to exchange

No.	Φ	Ω	$\Gamma_{\max }$	No.	Φ	Ω	$\Gamma_{\max }$
1	0	2	1	14	0	3	6
2	0	2	2	15	0	3	7
3	0	2	3	16	0	3	8
4	0	2	4	17	1	2	1
5	0	2	5	18	1	2	2
6	0	2	6	19	1	2	3
7	0	2	7	20	1	2	4
8	0	2	8	21	1	2	5
9	0	3	1	22	1	2	6
10	0	3	2	23	1	2	7
11	0	3	3	24	1	2	8
12	0	3	4	25	1	2	9
13	0	3	5	26	1	2	10

General VNS

- All Neighborhoods may provide a contribution

- Local Search using Neighborhoods with very large cardinality (exponential)
- Ex. Ejection chains or cyclic exchanges

Very Large N. Search

- Neighborhood search can be perfromed:
- exactly (in some cases)
- the best move is determined by solving an optimization problem
- Ex. Dynasearch for the TSP
- remove half of the arcs
- the best recombination is foundby solve a shortest path on a suitably defined graph

Very Large N. Search

- Ex. Assignment Neighborhood for the TSP
- remove $\mathrm{n} / 2$ vertices and form a subtour with the remaining ones
- define the (square) matrix of reinsertion costs for the vertices in the subtour
- select the best subset of reinsertions by solving an assignment problem in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- is a restriction in which each reinsertion can be after a different vertex of the subtour

Very Large N. Search

- Heuristic search
- generate just a heuristic solution belonging to the neighborhood
- Reinsertion LNS (Shaw, 1998)

```
Algorithm 1 LNS heuristic
    Function LNS (s\in{solutions}, q\in\mathbb{N )}
        solution S Sest}=s
        repeat
            s}=s
            remove q requests from s
            reinsert removed requests into s';
            if (f(s)
            sbest = s';
            if accept (s',s) then
                s=\mp@subsup{s}{}{\prime};
        until stop-criterion met
        return sbest;
```


Ruin\&Recreate

- Ruin\&Recreate (Schrimpf et al., 2000)
- remove q elements and reinsert them (heuristically)
- Removal (Ruin)
- Random removal: random choice of removed elements
- Shaw removal: remove "similar" elements (e.g. customers with similar demand) so that the reinsertion will be easier
- Worst removal: remove elements "badly served" or inefficient portions of the solution
- Reinsertion (Recreate)
- greedy/construction or regret-based heuristic (complete the partial solution)
- exact algorithm

Adaptive mechanisms

- Often there are several alternatives for implementing a component of an algorithm
- Some work better than others on some instances but work badly on others
- How "guide" the algorithm to detect the best component "automatically" (i.e. to "adapt" to the specific instance) ?

Example: Adaptive LNS

- Adaptive LNS (Pisinger \& Ropke, 05)
- Different alternatives for Removal and Insertion
- Each may work better on specific instances
- Initially all methods have same probability
- At each iteration the method is selected with a probabiltity that is proportional to the effectiveness shown by the method in the previous iterations

Adaptive VNS

- In some problems a totally random shaking can produce very bad solutions
- The local search returns to the initial solution
example: multiple depot VRP

Adaptive VNS

- Introduce some "bias" in the selection of the elements of the random move (e.g. the involved routes must be "close")
- (Stenger et al. 2012) Several mechanisms for selecting the routes and the customers involved in the shaking
- Adaptive selection of the "best performing" mechanisms

Granular Neighborhoods

- Restriction of standard neighborhoods (Toth, V., INFORMS JC, 03):
- include and examine only few "promising" moves (e.g. linear cardinality)
- much faster exploration without degradation in quality
- May be seen as an implementation of Candidate List concept (Glover, Laguna, 97)

Granular Neighborhoods (cont'd)

- How to define promising moves ?
- CVRP (T\&V, 2003): avoid "long" arcs ($\mathrm{c}_{\mathrm{ij}}>\theta$)

Problem	n	K	z^{*}	\bar{z}^{*}	$\bar{c}_{i j}$
E051-05e	50	5	524.61	9.54	33.75
E076-10e	75	10	835.26	9.83	34.13
E101-08e	100	8	826.14	7.65	34.64
E151-12c	150	12	1028.42	6.35	33.92
E200-17c	199	17	1291.45	5.98	33.24

moves inserting "long" arcs
are avoided

Granular Neighborhoods (cont'd)

$$
\theta=\beta \cdot U B /(n+K)
$$

Granular N. for CVRP

- Given θ (Granularity threshold), define:

$$
A^{\prime}=\left\{(i, j) \in A: c_{i j}^{\prime} \leq \theta\right\} \cup L, \text { with }\left|A^{\prime}\right|=m \ll n^{2}
$$

where L includes relevant arcs:

- incident into the Depot, belonging to best solutions,...
- $G^{\prime}=\left(V_{0}, A^{\prime}\right)$ is stored as a sparse graph
- The G.N. can be examined in $O(m)$ time:
- each $(a, b) \in A^{\prime}$ defines a unique move

Tabu search methods results

Problem	$\begin{gathered} \text { Osman }^{(7)} \\ (\mathrm{BA}) \end{gathered}$	Taillard ${ }^{(8)}$	Taburoute ${ }^{(9)}$			$\begin{aligned} & \text { Rochat and } \\ & \text { Taillard }{ }^{(10)} \end{aligned}$	$\begin{gathered} \text { Xu and } \\ \text { Kelly }^{(4,5)} \end{gathered}$		Rego and Roucairol $f^{(11)}$	Toth and Vigo ${ }^{(12)}$	
	$f^{*} \quad$ Time ${ }^{(1)}$	f^{*}	f^{*}	Time ${ }^{(2)}$	f^{*}	f^{*}	f^{*}	Time ${ }^{(3)}$		f^{*}	Time ${ }^{(6)}$
E051-05e	$524.61 \quad 1.12$	524.61	524.61	6.0	524.61		$524.61{ }^{(4,5)}$	$29.22^{(4,5)}$	524.61	524.61	0.81
E076-10e	8441.18	835.26	835.77	53.8	835.32		$835.26{ }^{(4,5)}$	$48.80^{(4,5)}$	835.32	838.60	2.21
E101-08e	83511.25	826.14	829.45	18.4	826.14		$826.14{ }^{(4,5)}$	$71.99{ }^{(4,5)}$	827.53	828.56	2.39
E101-10c	$819.59 \quad 6.79$	819.56	819.56	16.0	819.56		$819.56{ }^{(4,5)}$	$56.61{ }^{(4,5)}$	819.56	819.56	1.10
E121-07c	1042.1123 .31	1042.11	1073.47	22.2	1042.11		$1042.11{ }^{(4,5)}$	$91.29^{(4,5)}$	1042.11	1042.87	3.18
E151-12c	105251.25	1028.42	1036.16	58.8	1031.07		$1029.56{ }^{(4,5)}$	$149.90^{(4,5)}$	1044.35	1033.21	4.51
E200-17c	135432.88	1298.79	1322.65	90.9	1311.35	1291.45	$1298.588^{(4,5)}$	272.5% (4,5)	1334.55	1318.25	7.50
D051-06c	555.442 .34	555.43	555.43	13.5	555.43		$555.43^{(5)}$	$30.6 \%^{(5)}$	555.43	555.43	0.86
D076-11c	$913 \quad 3.38$	909.68	913.23	54.6	909.68		$965.62^{(5)}$	$102.13^{(5)}$	909.68	920.72	2.75
D101-09c	866.7520 .00	865.94	865.94	25.6	865.94		$881.38{ }^{(5)}$	$98.155^{(5)}$	866.75	869.48	2.90
D101-11c	866.3792 .98	866.37	866.37	65.7	866.37		$915.24^{(5)}$	$152.98{ }^{(5)}$	866.37	866.37	1.41
D121-11c	154722.38	1541.14	1573.81	59.2	1545.93		$1618.55^{(5)}$	$201.75{ }^{(5)}$	1550.17	1545.51	9.34
D151-14c	118840.73	1162.55	1177.76	71.0	1162.89		No nolution	$168.08^{(5)}$	1164.12	1173.12	5.67
D200-18c	142255.17	1397.94	1418.51	99.8	1404.75	1395.85	$1439.29^{(5)}$	$368.3 \chi^{(5)}$	1420.84	1435.74	9.11
E ins	t. $+1.32 \%$	+0.08\%	+0.95\%				.09\%	+0.73	\% +0.47\%		

Ant systems

- Inspired by the capacity of ants to optimize collectively the choice of paths to the food
- the path followed by an ant is proportional to the pheromone trace found on the trail

Ant algorithms

- Ant systems are a population based approach (Dorigo, Colorni and Maniezzo), similar to GA
- There is a population of ants, with each ant finding a solution and then communicating with the other ants
- Time, t, is discrete
- At each time unit an ant moves a distance, d, of 1
- Once an ant has moved it lays down 1 unit of pheromone
- At $t=0$, there is no pheromone on any edge

Ant Algorithms

16 ants are moving from A - F and another 16 are moving from F - A

At $t=1$ there will be 16 ants at B and 16 ants at D.
At $t=2$ there will be 8 ants at D and 8 ants at B . There will be 16 ants at E

The intensities on the edges will be as follows

$$
F D=16, A B=16, B E=8,
$$

$$
\mathrm{ED}=8, \mathrm{BC}=16 \text { and } \mathrm{CD}=
$$ 16

Exploration

- We are interested in exploring the search space, rather than simply plotting a route
- We need to allow the ants to explore paths and follow the best paths with some probability in proportion to the intensity of the pheromone trail
- We do not want them simply to follow the route with the highest amount of pheromone on it, else our search will quickly settle on a sub-optimal (and probably very sub-optimal) solution
- The probability of an ant following a certain route is a function, not only of the pheromone intensity but also a function of what the ant can see (visibility)
- The pheromone trail must not build unbounded. Therefore, we need "evaporation"

Ants for TSP

- At the start of the algorithm one ant is placed in each city
- When an ant decides which town to move to next, it does so with a probability that is based on the distance to that city and the amount of trail intensity on the connecting edge
- The distance to the next town, is known as the visibility, n_{ij}, and is defined as $1 / d_{\mathrm{ij}}$, where, d, is the distance between cities i and j.

Ants for TSP

- In order to stop ants visiting the same city in the same tour a data structure, Tabu, is maintained
- This stops ants visiting cities they have previously visited
- $T a b u_{k}$ is defined as the list for the $k^{\text {th }}$ ant and it holds the cities that have already been visited

Ants for TSP

- After each ant tour the trail intensity on each edge is updated using the following formula

$$
\begin{gathered}
\mathrm{T}_{\mathrm{ij}}(\mathrm{t}+\mathrm{n})=p \cdot \mathrm{~T}_{\mathrm{ij}}(\mathrm{t})+\operatorname{sum}_{\mathrm{k}} \Delta \mathrm{~T}_{\mathrm{ij}}^{\mathrm{k}} \\
\Delta T_{i j}^{k}=\left\{\begin{array}{l}
\frac{2}{L_{k}} \\
\begin{array}{c}
\text { if the kth ant uses edge }(i, j) \text { in its tour } \\
0
\end{array} \\
\text { (between time t and } t+n)
\end{array}\right.
\end{gathered}
$$

- Q is a constant and L_{k} is the tour length of the $k^{\text {th }}$ ant

Ants for TSP

- Transition Probability

$$
p_{i j}^{k}(t)=\left\{\begin{array}{cl}
\frac{\left[T_{i j}(t)\right]^{\alpha} \cdot\left[n_{i j}\right]^{\beta}}{\sum^{k \in \text { allowed }_{k}\left[T_{i k}(t)\right]^{\alpha} \cdot\left[n_{i k}\right]^{\beta}}} & \text { if } j \in \text { allowed } k \\
0 & \text { otherwise }
\end{array}\right.
$$

- where α and β are control parameters that control the relative importance of trail versus visibility

Ant Algorithms

- If younaremitteresfed wimd willing to do some workthere is aspreadshection theoweb site that implementssone mithe aboveiformula

- The spreadsheet was developed by:myself simply atimeans of being able to cross check valueswhilist I developed an antealgorithm

Probability A to G	0.08062
Probability A to H	0.09002

$\begin{array}{ll}\text { Probability A to H } & 0.09002\end{array}$
Probability A to I 0.08955

This spreadsheet models the transition probability shown in the paper [ref12]
See notes, if necessary

