

Introduction to Metaheuristics

Daniele Vigo DEI – University of Bologna daniele.vigo@unibo.it

- Local Search algorithms which use special techniques to escape local optima found
- Must avoid cycling

- Iterative heuristic approaches based on Local Search procedures.
 - They frequently include randomized steps.
 - At any iteration, let x be the current solution and N(x) the corresponding "neighborhood".
- The main goal of the Metaheuristic Algorithms is to "escape" from the current "local optimum" (best solution within the current neighborhood) so as to explore a larger portion of the feasibility region.

- From the 80s several Metaheuristics paradigms were proposed:
 - Simulated Annealing
 - Tabu search
 - Genetic Algorithms
 - Neural Networks
 - Ant Systems ...
- In general very effective and simple to implement but much more time consuming than construction heuristics

- Generalization of local search where acceptance of worsening "moves" is allowed
- Use of short term memory (Tabu List) to avoid returning on the last *t* visited solutions
- *T* tabu list := memorize the last *t* visited solutions

•
$$T = \{x_{k-1}, x_{k-2}, \dots, x_{k-t}\}$$

Tabu Search: Base algorithm

```
/* for minimization problem */
generate an initial solution s whose value is z(s)
s^* = s; k := 1; T = \{s\};
while not STOP CRITERION do
  generate neighborhood N(s) T /* non tabu */
  find the best solution s' \in N(s) \setminus T wrt z(\cdot)
  if z(s') < z(s^*) then s^* := s'; k_{\text{best}} := k
  s := s'
  k := k+1
  insert s' in T replacing the "oldest" solution
endwhile
```

Tabu Search: termination criteria

- Possible termination criteria :
 - $N(s) \setminus T = \emptyset$
 - $k > k_{max}$
 - time limit reached
 - $k k_{best} > k_{non improving}$
 - s* is optimal (e.g. = to a lower bound)

- *T* avoids occurrence of cycles with length $\leq |T|$
- store in T complete solutions may be too time consuming
- ex. TSP
 - each solution is a vector with *n* elements ;
 - compare two solutions costs O(*n*);
 - verify if a solution is tabu costs $O(n \cdot |T|)$

- Alternative: store "attributes" of the solutions and not entire solutions (for example moves)
- move m: set of the elementary operations to obtain a solution s' from the current one s
 s' = s ⊕ m (ex. arc exchanges).
- N(s) := {s' : \exists m such that s' = s \oplus m}

- *TI* stores the reverse moves of the last executed moves
 - TSP 1: if the last move has moved vertex *i* from the 5° to the 7° position of the circuit then it is forbidden to bring back i to 5° position
 - TSP 2: if the last move has exchanged arcs (i, s(i)) and (j, s(j)) with (i, j), (s(i), s(j)) the moves that involve vertexs i or j are forbidden
 - KP-01: if the last move has inserted item i in the Knapsack it is forbidden to remove it

- TI much more restrictive than T
 - $R := \{x' : \exists m \in TI \text{ such that } x' = x \oplus m\}$
 - $|N(x)\setminus R| \leq |N(x)\setminus T|$

(often <<)

 Ex. consider all possible triples of distinct elements of the set {a,b,c,d,e}

Current solution	move	Tabu List
abc	$c \rightarrow d$	$d \rightarrow c$
abd	$b \rightarrow c$	$\begin{array}{c} d \to c \\ c \to b \end{array}$
acd	$d \rightarrow b$	$d \to c$ $c \to b$ $b \to d$
acb = abc		

Limits of the reverse moves

- TI does not guarantee to avoid cycles having period ≤ |TI|
- Ex. TSP: TI stores the last moved vertexs
 - |*TI*| > 2

$$\cdot 1 \quad 3 \quad 2 \quad 4 \quad 5 \quad 6$$

- 1 2 3 4 5 6
- cycle with period 1 !

- Technique used to overcome the too restrictive conditions of the reversed moves list
- A move even if tabu can be anyway executed if it produces a "good solution"

Intensification and diversification

- TI is the short term memory
- An effective search requires also a mid/long term memory that allows for:
 - intensification of the search: it is not permitted to move too much from the area of solution space that is currently visited
 - favor moves which have common characteristics with a good solution recently encountered
 - penalty to be added to z(·) for the moves altering such characteristic

Intensification and diversification

- diversification of the search: to move towards unexplored areas of the solutions space
 - penalty to be added to z(·) for the solutions too "close" to the current one
 - penalty to the most frequently performed moves ("long term memory")

- Sometimes the problem is too constrained:
 - the cardinality of N(s) can be very small (it is easy that N(x)\T = Ø)
 - some constraints can be relaxed (removed) by adding to z(x) a penalty proportional to theviolation of the constraints in x
 - the search moves also through infeasible solutions
 - Adaptive adjustment of the penalty:
 - increase if recently all infeasible solution are found
 - decrease if recently all feasible solutions are found

- Tabu tenure t: length of the tabu list
 - constant = ...
 - updated dynamically (Ex. every h iterations)
 - if s* was improved \Rightarrow t := max {t_{min}, t-1} (INTENS.)
 - if s* was not changed \Rightarrow t := min {t_{max},t+1} (DIVERSIFICATION)
 - randomly chose \overline{h} in $[t_{min}, t_{max}]$
 - which values for t, t_{min} , t_{max} , h ???
- How to memorize the tabu list
 - memory vs time

- It is tabu moving vertex i for t iterations
- Stores the list tabu vertexs
 - $T = \{i, j, ...\}$ \rightarrow space O(t), time O(t)
- Store the iteration in which vertex i is moved
 - \forall vertex i \Rightarrow T(i) := iteration in which i is moved

```
k = current iteration
if k \le T(i) + t
then move is tabu
```


Basic Tabu search for TSP

- Glover 86, Knox and Glover 89, Knox 89-94
- Neighborhood 2-opt exchange $\Rightarrow O(n^2)$
- Tabu list :
 - G 86 : T stores the shortest edge removed by an exchange → cannot be reinserted
 - Aspiration level → improving tabu moves are accepted
 - K 94 : T stores the pairs of longest removed arcs (less restrictive) → cannot be reinserted
 - Aspiration level → tabu moves are accepted when the cost is reduced wrt when the arcs were present

• Efficient implementation of 2/3-opt

 $\underline{a}_{\underline{t}_{4}} \qquad \underline{b}_{\underline{t}_{2}} \qquad \underline{a}_{\underline{t}_{4}} \qquad \underline{b}_{\underline{t}_{2}} \qquad \underline{t}_{4} \qquad \underline{t}_{2}$ every exchange is represented by a 4-tuple

<u>L</u>3

$$< t_1, t_2, t_3, t_4 >$$

<u>t</u>3

С

- remove $(t_1, t_2), (t_4, t_3)$
- insert (t_2, t_3) , (t_1, t_4)

•

Basic tabu search for TSP (2)

- Every exchange corresponds to 2 4—tuples
 - $t_1 = a$ $t_2 = b$ < a, b, c, d >
 - $t_1 = d$ $t_2 = c$ < d, c, b, a >
- $\Delta(a,b,c,d) = c_{t1t2} + c_{t4t3} c_{t2t3} c_{t1t4}$
 - to have an improving exchange (> 0)
 - (a) $c_{t1t2} > c_{t2t3}$ or (b) $c_{t4t3} > c_{t1t4}$ or both
- if it is improving (a) is verified for at least one of the two representations

- we don't miss an improving exchange if we limit ourself to 4-tuples t1, ..., t4 for which $C_{t1t2} > C_{t2t3}$
- given t1 and t2 it suffices to consider t3 and t4 such that :
 - t3 : $c_{t1t2} > c_{t2t3}$
 - t4 follows t3 in the current solution
- How to implement the algorithm efficiently?
 - ∀ i Li = {v1, v2, ...} list of vertices in order of distance from i ⇒ time O(n² log n), space O(n²)

Simulated Annealing (SA)

- Search Algorithm based on a randomized neighborhood (Kirkpatrick et al., 1983)
- Simulates the thermodynamic behaviour of re-cooking ("annealing") of solid materials (metal, glass, ...).
- When a solid material is warmed over its melting point and successively cooled, returning to the solid state, its structural properties depend on the cooling process ("cooling schedule").
- The algorithm simulates the changes in the system energy (considered as a set of particles) during the cooling process up to the "convergence" to the solid state

Simulated Annealing (SA)

- given s (current solution), a $s' \in N(s)$ is randomly generated
 - if s' is improving, then execute it
 - otherwise non-improving moves are executed with decreasing probability
 - The probability depends on a parameter *T* ("temperature") decreasing during execution according to a "cooling schedule"
 - intial value T_0 , final value T_f
 - e.g., T is decreased by α every k iterations

Basic SA Algorithm

```
generate an initial solution s with value z(s)
s* := s
determine the starting (and ending) temperatures T=T_0 (T_f)
while T > T_f do
  choose randomly a move that transforms s in s'
  \Delta = z(s') - z(s)
  if \Delta \leq 0 then /* downhill */
       s := s'
       if z(s) < z(s^*) then s^* = s
  else
                             /* uphill */
       generates a random value r in [0,1]
       if r < e^{-\Delta/T} then s := s'
  decrease T according to a cooling schedule
endwhile
```


- Non homogeneous version:
 - The temperature decreases at every (k) move
- Homogeneous version:
 - Keep the same temperature until an equilibrium status is reached, then decrease it
- final temperature: in theory T_f
 - in practice stop when
 - the optimal solution is not improved since P iterations
 - a move is not accepted since Q iterations, or time limit
- Converges to global optimum

- Reannealing
 - first run: store the termperature T° for which the best solution is found
 - second run: more accurate search with T=T°
- Restricted neighborhood
 - moves not leading to good solutions are not considered
 - Ex. TSP only moves connecting close vertices

Simulated Anealing: variants

- Record-to-Record travel
 - deterministic variant of SA (Dueck, '93)
 - let s* be the best solution so far
 - the current solution is accepted if it is within a prescribed maximum deviation Δs from s*
 - For example $\Delta s = 0.01 s^*$

- Differences
 - Tabu search
 - non improving moves only when a local optimum is found
 - no randomization
 - Simulated annealing
 - non improving moves always possible
 - strongly based on randomization
 - random examination of the neighborhood moving either to the first improving one or to one the pass a randomized test

- (Holland 1975; Goldberg 1987)
- Based on the analogy with the evolution of a population of elementary individuals
 - individual ⇔ solution
 - fitness of an individual ⇔ cost of the solution
- Individuals combine to generate new ones in successive generations
 - mutation and recombination operators
- Evolution process selects the best individuals

- INITIALIZATION: build an initial population with n individuals S={S1, ...,Sn}
- repeat /* generations */
 - MUTATION: chose m individuals in S and apply a randomized mutation to obtain m new individuals
 - RECOMBINATION (CROSSOVER): chosei r pairs of individuals and combine them in a random way to generate r new individuals that reflects the characteristics of the parents
 - SELECTION: use a selection criterion to reduce the population again to n individuals chosen from n + m + r individuals of S
- until STOP CRITERION

- The scheme is not suited for te solution of constrained problems
- Given an initial population of feasibel solutions mutation and crossover operators produce new solutions that are generally infeasible:
 - Use of specialized operators that keep feasibility
 - Use of a local search to regain feasibility and bring solutions to local optima ("send individuals to school before they start reproducing")

- INITIALIZATION: build an initial population with n individuals S={S1, ...,Sn}
- IMPROVEMENT: determine the local optima associated with the n individuals with a Local Search Algorithm
- repeat /* generations */
 - MUTATION: chose m individuals in S and apply a randomized mutation to obtain m new individuals
 - RECOMBINATION (CROSSOVER): chosei r pairs of individuals and combine them in a random way to generate r new individuals that reflects the characteristics of the parents
 - IMPROVEMENT: apply a Local Search Algorithm to each m+r ndividuals to obtain a new set of solutions S'
 - SELECTION: use a selection criterion to reduce the population again to n individuals chosen from n + m + r individuals of S U S'
- until STOP CRITERION

- In a GA the solution is represented by a string of values which are the "genes"
- Ex. in KP-01 string of binary variables associated to items
- MUTATION
 - chose one or more genes randomly (generally with uniform probability P = 1/n)
 - change the value of selected genes

- CROSSOVER
 - Chose 2 individuals ("parents")
 x = {x1, ..., xn} ed y = {y1, ..., yn}
 - combine them so as to create one or more new individuals ("offspring")
 - $z = \{z1, ..., zn\}$ (and $w = \{w1, ..., wn\}$)
 - whose genes are a combination of the genes of the parents

- ONE–POINT CROSSOVER (1 or 2 offspring)
 - Chose a "cutting" point t uniform in [1,n]

- TWO–POINT CROSSOVER (1 or 2 offspring)
 - Chose two "cutting" point s and t uniform in [1,n]

 MUTATION: randomly change the value of one or more genes x_i of the solution

• ONE-POINT CROSSOVER:

 It must be checked the feasibility of the new solutions

- Representation of the solution:
 - visit sequence of the vertices (permutation)

 mutation and crossover may produce infeasible solutions

8

9

6

• Ex. MUTATION random change of a gene

- New mutation operator that generates a new feasible solution
- Chose two cutting point and revert the subsequence between the two points

if a TWO-POINT CROSSOVER is used

- *x*' and *y*' are NOT tours !
- solution: ORDER CROSSOVER

• Chose s and t and in y replace the elements of the substrin in x with "holes"

- Move the holes left or right until they reach the central position by minimizing the pertrubation in the solution
- replace the holes with the substring of x

Considerations on Metaheuristics

- General algorithmic paradigms that must be specialized for specific problems
- Often non compatitive with ad hoc heuristics
- Development time much smaller than for ad hoc heuristics
- Generally much better than basic local search but with much larger computing times
- Often become complex and dependent from several parameters that are diffcult to tune

- VJ RaywardSmith, IH Osman, CR Reaves, GD Smith eds Modern Heuristics Search Methods, Wiley Chichester
- IH Osman, JP Kelly eds *MetaHeuristics Theory and Applications* Kluwer Academic Publishers Boston MA
- F Glover, M Laguna eds Tabu Search Kluwer Academic Publishers Boston MA
- E Aarts, JK Lenstra eds Local Search in Combinatorial Optimization Wiley Chichester
- S Voss, S Martello, I Osman, C Roucairol eds MetaHeuristics Advances and Trends in Local Search Algorithms for Optimization Kluwer Academic Publishers Boston MA
- CC Ribeiro, P Hansen eds *Essays and Surveys in Metaheuristics* Kluwer Academic Publishers Boston MA