
21

MODAL LOGIC AND PHILOSOPHY

Sten Lindström and Krister Segerberg

1 Alethic modal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
1.1 The search for the intended interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 1151
1.2 Carnap’s formal semantics for quantified modal logic . . . . . . . . . . . . . . . . . . . 1152
1.3 Quine’s interpretational challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
1.4 The advent of possible worlds semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
1.5 General intensional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
1.6 Logical and metaphysical necessity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

2 The modal logic of belief change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184
2.2 Conditional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
2.3 Update and the logic of conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
2.4 Revision and basic DDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
2.5 Revision and full or unlimited DDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

3 Logic of action and deontic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
3.1 Logic of action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198
3.2 Deontic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204

Modal logic is one of philosophy’s many children. As a mature adult it has moved out
of the parental home and is nowadays straying far from its parent. But the ties are still
there: philosophy is important for modal logic, modal logic is important for philosophy.
Or, at least, this is a thesis we try to defend in this chapter. Limitations of space have
ruled out any attempt at writing a survey of all the work going on in our field — a book
would be needed for that. Instead, we have tried to select material that is of interest
in its own right or exemplifies noteworthy features in interesting ways. Here are some
themes which have guided us throughout the writing:

• The back-and-forth between philosophy and modal logic. There has been a good deal
of give-and-take in the past. Carnap tried to use his modal logic to throw light on
old philosophical questions, thereby inspiring others to continue his work and still
others to criticise it. He certainly provoked Quine, who in his turn provided — and
continues to provide — a healthy challenge to modal logicians. And Kripke’s and
David Lewis’s philosophies are connected, in interesting ways, with their modal
logic. Analytic philosophy would have been a lot different without modal logic!
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• The interpretation problem. The problem of providing a certain modal logic with
an intuitive interpretation should not be conflated with the problem of providing a
formal system with a model-theoretic semantics. An intuitively appealing model-
theoretic semantics may be an important step towards solving the interpretation
problem, but only a step. One may compare this situation with that in probability
theory, where definitions of concepts like ‘outcome space’ and ‘random variable’ are
orthogonal to questions about “interpretations” of the concept of probability.

• The value of formalisation. Modal logic sets standards of precision, which are a
challenge to — and sometimes a model for — philosophy. Classical philosophical
questions can be sharpened and seen from a new perspective when formulated in
a framework of modal logic. On the other hand, representing old questions in a
formal garb has its dangers, such as simplification and distortion.

• Why modal logic rather than classical (first or higher order) logic? The idioms of
modal logic — today there are many! — seem better to correspond to human ways
of thinking than ordinary extensional logic. (Cf. Chomsky’s conjecture that the
NP + VP pattern is wired into the human brain.)

In his An Essay in Modal Logic [107] von Wright distinguished between four kinds of
modalities: alethic (modes of truth: necessity, possibility and impossibility), epistemic
(modes of being known: known to be true, known to be false, undecided), deontic (modes
of obligation: obligatory, permitted, forbidden) and existential (modes of existence: uni-
versality, existence, emptiness). The existential modalities are not usually counted as
modalities, but the other three categories are exemplified in three sections into which
this chapter is divided. Section 1 is devoted to alethic modal logic and reviews some
main themes at the heart of philosophical modal logic. Sections 2 and 3 deal with topics
in epistemic logic and deontic logic, respectively, and are meant to illustrate two different
uses that modal logic or indeed any logic can have: it may be applied to already existing
(non-logical) theory, or it can be used to develop new theory.

1 ALETHIC MODAL LOGIC

In this part we consider the challenge that Quine posed in 1947 to the advocates of modal
logic to provide an account of modal notions that is intuitively clear, allows “quantifying
in”, and does not presuppose intensional entities. The modal notions that Quine and his
contemporaries were primarily concerned with in the 1940’s were, broadly speaking, the
logical modalities rather than the metaphysical ones that have since come to prevail. In
the 1950’s modal logicians responded to Quine’s challenge by providing quantified modal
logic with model-theoretic semantics of various types. In doing so they also, explicitly
or implicitly, addressed Quine’s interpretation problem. Here we shall consider the ap-
proaches developed by Carnap in the late 1940’s, and by Kanger, Hintikka, Montague,
and Kripke in the 1950’s and early 1960’s, and discuss to what extent these approaches
were successful in meeting Quine’s doubts about the intelligibility of quantified modal
logic.

It is useful to divide the reactions to Quine’s challenge into two periods. During the
first period modal logicians provided modal logic with formal semantics as just men-
tioned. In the second period philosophers — inspired by the success of possible worlds
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semantics — came to take the notion of a possible world seriously as a tool for philo-
sophical analysis. Philosophical analyses in terms of possible worlds were provided for
many concepts of central philosophical importance: propositional attitudes [42, 43, 45],
metaphysical necessity, identity, and naming [69, 70], “intensional entities” like proposi-
tions, properties and events [84, 61, 102, 103], counterfactual conditionals and causality
[77, 78], supervenience [62]. At the same time the notion of a possible world itself came in
for philosophical analysis. The problems of giving a satisfactory analysis of this notion
indicates that Quine’s interpretational challenge is still alive. The basic philosophical
questions surrounding the notions of alethic necessity and possibility are as puzzling as
ever! We end this section by discussing the relationship between the logical and meta-
physical interpretation of the alethic modalities.

1.1 The search for the intended interpretation

Starting with the work of C. I. Lewis, an immense number of formal systems of modal logic
have been constructed based on classical propositional or predicate logic. The originators
of modern modal logic, however, were not very clear about the intuitive meaning of the
symbols ! and ♦, except to say that these should stand for some kind of necessity and
possibility, respectively. For instance, in Symbolic Logic [72], Lewis and Langford write:

It should be noted that the words “possible”, “impossible” and “necessary”
are highly ambiguous in ordinary discourse. The meaning here assigned to
♦p is a wide meaning of “possibility” — namely, logical conceivability or the
absence of self-contradiction. (160–61)

This situation led to a search for more rigorous interpretations of modal notions. Gödel
[35] suggested interpreting the necessity operator ! as standing for provability (informal
provability or, alternatively, formal provability in a fixed formal system), a suggestion
that subsequently led to the modern provability interpretations of Solovay, Boolos and
others.1

After Tarski [105, 106] had developed rigorous notions of satisfaction, truth and logical
consequence for classical extensional languages, the question arose whether the same
methods could be applied to the languages of modal logic and related systems. One
natural idea, that occurred to Carnap in the 1940’s, was to let !ϕ be true of precisely
those formulæ ϕ that are logically valid (or logically true) according to the standard
semantic definition of logical validity. This idea led him to the following semantic clause
for the operator of logical necessity:

!ϕ is true in an interpretation I iff ϕ is true in every interpretation I ′.

This kind of approach, which we may call the validity interpretation, was pursued by
Carnap, using so-called state descriptions, and subsequently also by Kanger [53, 54]
and Montague [83], using Tarski-style model-theoretic interpretations rather than state
descriptions. In Hintikka’s and Kanger’s early work on modal semantics other interpre-
tations of ! were also considered, especially, epistemic (‘It is known that ϕ’) and deontic
ones (‘It ought to be the case that ϕ’). In order to study these and other non-logical
modalities, the introduction by Hintikka and Kanger of accessibility relations between

1Cf. [101] and [13].
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possible worlds (models, domains) was crucial. Finally, Kripke [66, 67, 68] introduced
the kind of model structures that are nowadays the standard formal tool for the model-
theoretic study of modal and related non-classical logics: Kripke models. Thus Kripke
gave possible worlds semantics its modern and mature form.

In Carnap’s, Kanger’s and Montague’s early theories, the space of possibilities (the
“possible worlds”) is represented by one comprehensive collection containing all state
descriptions, domains, or models, respectively. Hence, every state description, domain,
or model is thought of as representing a genuine possibility. Hintikka, Kripke and modern
possible worlds semantics are instead working with semantic interpretations in which
the space of possibilities is represented by an arbitrary non-empty set K of model sets
(in the case of Hintikka) or “possible worlds” (Kripke). Following Hintikka’s [46, 47]
terminology, one may say that the early theories of Carnap, Kanger, and Montague were
considering standard interpretations only, where one quantifies over what is, in some
formal sense, all the possibilities. In the possible worlds approach, one also considers non-
standard interpretations, where arbitrary non-empty sets of possibilities are considered.2
The consideration of interpretations (model structures) that are non-standard in this
sense — in combination with the use of accessibility relations between worlds in each
interpretation — made it possible for Kripke [64, 67, 68] to prove completeness theorems
for various systems of propositional and quantified modal logic (T, B, S4, etc.).

1.2 Carnap’s formal semantics for quantified modal logic

The proof theoretic study of quantified modal logic was pioneered by Ruth Barcan Marcus
[5, 6, 7] and Rudolf Carnap [16, 17] who were the first to formulate axiomatic systems
that combined quantification theory with (S4- and S5-type) modal logic. The attempts
to interpret quantified modal logic by means of formal semantic methods also began with
Carnap.

Carnap’s project was not only to develop a semantics (in the sense of Tarski) for
intensional languages, but also to use metalinguistic notions from formal semantics to
throw light on the modal ones. In ‘Modalities and quantification’ from 1946 he writes:

It seems to me ... that it is not possible to construct a satisfactory system
before the meaning of the modalities are sufficiently clarified. I further believe
that this clarification can best be achieved by correlating each of the modal
concepts with a corresponding semantical concept (for example, necessity
with L-truth).

In [16, 17] Carnap presented a formal semantics for logical necessity based on Leibniz’s
old idea that a proposition is necessarily true if and only if it is true in all possible worlds.
Suppose that we are considering a first-order predicate language L with predicate symbols
and individual constants, but no function symbols. In addition to Boolean connectives,
quantifiers and the identity symbol = (considered as a logical symbol), the language L
also contains the modal operator ! for logical necessity. We assume that L comes with
a domain of individuals D and that there is a one-to-one correspondence between the
individual constants of L and the individuals in D. Intuitively speaking, each individual
in D has exactly one individual constant as its (canonical) name. A state description S
for L is simply a set of (closed) atomic sentences of the form P (a1, . . . , an), where P is

2For the standard/non-standard distinction, see also [23].
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an n-ary predicate in L and a1, . . . , an are individual constants in L.3 Carnap [17, p.
9] writes “...the state descriptions represent Leibniz’s possible worlds or Wittgenstein’s
possible states of affairs”.

In order to interpret quantification, Carnap introduced the notion of an individual
concept (relative to L): An individual concept is simply a function f that assigns to
every state description S an individual constant f(S) (representing an individual in D).
Intuitively speaking, individual concepts are functions from possible worlds to individu-
als. According to Carnap’s semantics, individual variables are assigned values relative to
state descriptions. An assignment is a function g that to every state description S and
every individual variable x assigns an individual constant g(x, S). Intuitively, g(x, S)
represents the individual that is the value of x under the assignment g in the possible
world represented by S. We may speak of g(x, S) as the value extension of x in S rel-
ative to g. Analogously, the individual concept (λS)g(x, S) that assigns to every state
description S the value extension of x in S relative to g, we call the value intension of x
relative to g. Thus, according to Carnap’s semantics a variable is assigned both a value
intension and a value extension [17, p. 45]. The value extension assigned to a variable
in a state description S is simply the value intension assigned to the variable applied to
S.

With these notions in place, we can define what it means for a formula ϕ of L to be
true in a state description relative to an assignment g (in symbols, Sϕ[g]).

For atomic formulæ of the form P (t1, . . . , tn), where t1, . . . , tn are individual terms,
i.e., variables or individual constants, we have:

(1) S # P (t1, . . . , tn)[g] iff P (S(t1, g), . . . , S(tn, g)) ∈ S.

Here, S(ti, g) is the extension of the term ti in the state description S relative to the
assignment g. Thus, if ti is an individual constant, then S(ti, g) is ti itself; and if ti is a
variable, then S(ti, g) = g(ti, S).

The semantic clause for the identity symbol is:

(2) S # (t1 = t2)[g] iff S(t1, g) = S(t2, g).

That is, the identity statement t1 = t2 is true in a state description S relative to an
assignment g if and only if the terms t1 and t2 have the same extension in S relative to g.

The clauses for the Boolean connectives are the usual ones. Carnap’s clause for the
universal quantifier is:

(3) S # ∀xϕ[g] iff for every assignment g′ such that g =x g′, S # ϕ[g′],

where g =x g′ means that the assignments g and g′ assign the same value intensions to
all the variables that are distinct from x and possibly assign different value intensions to
x. Intuitively, then ∀xϕ(x) may be read: “for every assignment of an individual concept
to x,ϕ(x)”.

Finally, the semantic clause for the necessity operator is the expected one:

(4) S # !ϕ[g] iff, for every state description S′, S′ # ϕ[g].

3Actually Carnap’s state descriptions are sets of literals (i.e., either atomic sentences or negated
atomic sentences) that contain for each atomic sentence either it or its negation. However, for our
purposes we may identify a state description with the set of atomic sentences that it contains.
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That is, the modal formula ‘it is (logically) necessary that ϕ’ is true in a state description
S (relative to an assignment g) if and only if ϕ is true in every state description S′ (relative
to g).

A formula ϕ is true in a state description S (in symbols, S # ϕ) if it is true in S
relative to every assignment. Logical truth (logical validity) is defined as truth in all
state descriptions. We write # ϕ for ϕ being logically true.

Carnap’s semantics satisfies the following principles:

(5) All truth-functional tautologies are logically true.

(6) The set of logical truths is closed under modus ponens.

(7) The standard principles of quantification theory (without identity) are valid. In
particular,
(US) ∀xϕ(x) → ϕ(x) (Universal Specification)
(EG) ϕ(t/x) → ∃xϕ (Existential Generalisation)
(where t is substitutable for x in ϕ)

hold without restrictions.

It is easy to verify that ! satisfies the usual laws of the system S5, together with the
so-called Barcan formula and its converse, and the rule of necessitation:

(K) # !(ϕ→ ψ) → (!ϕ→ !ψ).
(T) # !ϕ→ ϕ
(S4) # !ϕ→ !!ϕ.
(S5) # ¬!ϕ→ !¬!ϕ
(BF) # ∀x!ϕ(x) → !∀xϕ(x). (The Barcan formula)
(CBF) # !∀xϕ(x) → ∀x!ϕ(x). (The Converse Barcan formula)
(Nec) If # ϕ, then # !ϕ.

Notice that the Barcan formula (BF) and its converse (CBF) are schemata rather than
single formulæ.

The following schemata are also valid in Carnap’s semantics:

(8) # !ϕ iff # ϕ.

(9) # ¬!ϕ iff ̸# ϕ.

(10) Either # !ϕ or # ¬!ϕ.

For identity, we have:
(LI) # t = t. (Law of Identity)

However, the unrestricted principle of indiscernibility of identicals is not valid in Car-
nap’s semantics. In other words, the following principle does not hold for all formulæ ϕ:

(I =) # ∀x∀y(x = y → (ϕ(x/z) → ϕ(y/z))).
Instead, we have a restricted version of (I =):
(I =restr) # ∀x∀y(x = y → (ϕ(x/z) → ϕ(y/z))), provided that ϕ does not contain

any occurrences of !.
For the unrestricted case, we only have:
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(I! =) # ∀x∀y(!(x = y) → (ϕ(x/z) → ϕ(y/z))).
The following principle is of course not valid according to Carnap’s semantics:
(! =) ∀x∀y(x = y → !(x = y)). (Necessity of Identity)

In the presence of the other principles, it is equivalent to the unrestricted principle of
indiscernibility of identicals. Nor do we have:

(! ̸=) ∀x∀y(x ̸= y → !(x ̸= y)). (Necessity of Non-Identity)
In view of Church’s undecidablity theorem for the predicate calculus, it is easy to

prove that Carnap’s quantified modal logic is not axiomatizable. For every sentence ϕ of
predicate logic ϕ, either !ϕ or ¬!ϕ is true in every state description. So, if Carnap’s logic
were axiomatizable, then we could decide effectively whether ϕ is provable in predicate
logic. But this is contrary to Church’s theorem.
THEOREM 1. The set of all logically true sentences according to Carnap’s semantics
is not recursively enumerable, so there is no formal axiomatic system with this set as its
theorems.

Carnap introduced the notion of a meaning postulate to account for analytic connec-
tions between the non-logical symbols of a predicate language. Thus, suppose that MP is
the set of all the meaning postulates of a given language L. MP is then a set of sentences
in the non-modal fragment of L. We say that a state description S is admissible if MP
∪S is consistent. Then, we can interpret ! as ‘analytic necessity’ by modifying clause
(4) above to:

(4′) S # !ϕ iff, for every admissible state description S′, S′ # ϕ.

We also say that ϕ is analytically true iff ϕ is true in all admissible state descriptions.
In the modified semantics, we have:

S # !ϕ iff ϕ is analytically true.
S # ¬!ϕ iff ϕ is not analytically true.

Carnap’s semantics for the quantifiers can be understood in two ways. The most
straightforward interpretation is to say that the quantifiers simply range over individual
concepts. Sometimes Carnap himself characterises his interpretation of the quantifiers
in this way, and this is how Quine describes it. There is, however, another more subtle
interpretation according to which every individual term, including the (free) variables, has
a double semantic role given by its extension and its intension, respectively. Each variable
has a value extension as well as a value intension. According to this interpretation —
which presumably is the one that Carnap really had in mind — it is simply wrong to ask
for the range of the individual variables. In ordinary extensional contexts the variables
can be thought of as ranging over ordinary individuals. However, in intensional contexts
the intensions associated with the variables come into play. This is what explains why
the principle (! =) fails.

Carnap’s interpretation of the quantifiers can still be criticised for being unintuitive.
The problem is that he lacks a way of discriminating between those individual concepts
that, intuitively speaking, pick out one and the same individual in all possible worlds and
those that don’t. Suppose that we have assigned to the variable x as its value intension
the individual concept: the number of planets. Relative to this assignment it is true that:

(1) x = 9 ∧ ¬!(x = 9).
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However, there is no object that has the property of being identical with 9 but doesn’t
have this property necessarily. So from (1) it should not follow that:

(2) ∃x(x = 9 ∧ ¬!(x = 9)).

But of, course, on Carnap’s interpretation of the quantifiers, (2) is a logical consequence
of (1). Intuitively, one should be able to make the inference from (1) to (2) only if the
concept assigned to x in (1) is, what might be called, a logically rigid concept, i.e. a
concept that picks out the same individual relative to every state description.4

1.3 Quine’s interpretational challenge

Quine’s criticism of quantified modal logic comes in different strands. First, there is the
simple observation that classical quantification theory with identity cannot be applied to
a language in which substitutivity of identicals for singular terms fails. It seems, from
the so-called Morning Star Paradox, that either universal specification (US) (and its mir-
ror image: existential generalisation (EG)) or indiscernibility of identicals, (I=), has to
be given up. This observation gives rise to the following weak, and apparently uncon-
troversial, Quinean claim: Classical quantification theory (with identity and individual
constants) cannot be combined with non-extensional operators (i.e., operators for which
substitutivity of identicals for singular terms fail) without being modified in some way.
This weak claim already gives rise to the challenge of extending quantification theory in
a consistent way to languages with non-extensional operators.

In addition to the weak claim, there is the much stronger claim that one sometimes can
find in Quine’s early works, that objectual quantification into non-extensional (so called
“opaque”) constructions simply does not make sense [91, 93, 94]. The argument for this
claim is based on the idea that occurrences of variables inside of opaque constructions
do not have purely referential occurrences, i.e., they do not serve simply to refer to their
objects, and cannot therefore be bound by quantifiers outside of the opaque construction.
Thus quantifying into contexts governed by non-extensional operators would be like try-
ing to quantify into quotations. This claim is hardly credible in the face of the multitude
of quantified intensional logics that have been developed since it was first made, and we
take it to be refuted by the work of among others, David Kaplan [59, 61] and Kit Fine
[26, 27].5

Then, there is Quine’s claim that quantified modal logic is committed to Aristotelian
essentialism, i.e., the view that it makes sense to say of an object, quite independently
of how it is described, that it has certain of its traits necessarily, and others only contin-
gently. Aristotelian essentialism, however, comes in stronger and weaker forms. Kripke’s
“metaphysical necessity” of Naming and Necessity represents a strong form of essen-
tialism, while there are weaker forms according to which only logical properties that are
shared by all individuals are essential. A quantified modal logic needs only be committed
to this weak relatively benign form of essentialism.

4The notion of a logically rigid concept is closely related Carnap’s [17, Part II] notion of an L-
determinate intension. Intuitively, an L-determinate intension picks out the same extension in every
state description. Thus, Carnap’s notion of L-determinacy may be viewed as a precursor of Kripke’s
notion of rigidity.

5See also Burgess [14] and Neale [86] for recent evaluations of Quine’s criticism of quantified modal
logic.
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Here we shall only consider the specific criticism that Quine directed in 1947 toward
quantification into contexts of logical or analytical necessity. In his paper ‘The problem
of interpreting modal logic’ from 1947, Quine formulates what one might call Quine’s
challenge to the advocates of quantified modal logic:

There are logicians, myself among them, to whom the ideas of modal logic (e.
g. Lewis’s) are not intuitively clear until explained in non-modal terms. But
so long as modal logic stops short of quantification theory, it is possible ...
to provide somewhat the type of explanation required. When modal logic is
extended (as by Miss Barcan) to include quantification theory, on the other
hand, serious obstacles to interpretation are encountered — particularly if
one cares to avoid a curiously idealistic ontology which repudiates material
objects.

What Quine demands of the modal logicians is nothing less than an explanation of the
notions of quantified modal logic in non-modal terms. Such an explanation should satisfy
the following requirements:

(i) It should be expressed in an extensional language. Hence, it cannot use any non-
extensional constructions.

(ii) The explanation should be allowed to use concepts from the ‘theory of meaning’
like analyticity and synonymy applied to expressions of the metalanguage. Quine
is, of course, quite sceptical about the intelligibility of these notions as well. But he
considers it to be progress of a kind, if modal notions could be explained in these
terms.

(iii) The explanation should make sense of sentences like:

∃x(x is red ∧ ♦(x is round)),

in which a quantifier outside a modal operator binds a variable within the scope
of the operator and the quantifier ranges over ordinary physical objects (in distinc-
tion from Frege’s “Sinne” or Carnap’s “individual concepts”). In other words, the
explanation should make sense of ‘quantifying in’ in modal contexts.

Quine [92] — like Carnap before him — starts out from a metalinguistic interpretation of
the necessity operator ! in terms of the predicate ‘... is analytically true’. Disregarding
possible complications in connection with the interpretation of iterated modalities, we
have for sentences ϕ of the object language:

‘!ϕ’ is true iff ϕ is analytically true.

Now Quine argues for the thesis that it is impossible to combine analytical neces-
sity with a standard theory of quantification (over physical objects). The argument (a
variation of “the Morning Star Paradox”) is based on the premises:

(1) !(Hesperus = Hesperus)

(2) Phosphorus = Hesperus
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(3) ¬!(Phosphorus = Hesperus),

where ‘Phosphorus’ and ‘Hesperus’ are two proper names (individual constants) and !
is to be read ‘It is analytically necessary that’. We assume that ‘Phosphorus’ is used by
the language community as a name for a certain bright heavenly object sometimes visible
in the morning and that ‘Hesperus’ is used for some bright heavenly object sometimes
visible in the evening. Unbeknownst to the community, however, these objects are one
and the same, namely, the planet Venus. ‘Hesperus = Hesperus’ being an instance of the
Law of Identity is clearly an analytic truth. It follows that the premise (1) is true. (2)
is true, as a matter of fact. ‘Phosphorus = Hesperus’ is obviously not an analytic truth,
‘Phosphorus’ and ‘Hesperus’ being two different names with quite distinct uses. So, (3)
is true.

From (1), (2), (3) and the Law of Identity, we infer by sentential logic:

(4) Phosphorus = Hesperus ∧ ¬!(Phosphorus = Hesperus),

(5) Hesperus = Hesperus ∧ !(Hesperus = Hesperus).

Applying (EG) to (4) and (5), we get:

(6) ∃x(x = Hesperus ∧¬!(x = Hesperus)),

(7) ∃x(x = Hesperus ∧ !(x = Hesperus)).

As Quine [92] points out, however, (6) and (7) are incompatible with interpreting ∀x
and ∃x as objectual quantifiers meaning “for all objects x (in the domain D)” and “for
at least one object x (in D)” and letting the identity sign stand for genuine identity
between objects (in D). Because, under this interpretation, (6) and (7) imply that one
and the same object, Hesperus, both is and is not necessarily identical with Hesperus,
which seems absurd.

The following are classical proposals for solving Quine’s interpretational challenge:

(i) Russell–Smullyan (Smullyan [99]). According to this proposal, all singular terms
except variables are treated as Russellian terms, i.e., as “abbreviations” of definite
descriptions that are eliminated from the language by means of contextual definition
à la Russell. If we let ‘Hesperus’ and ‘Phosphorus’ be Russellian terms having
minimal scope everywhere — which clearly corresponds to the intended reading
— then the inference will not go through (i.e., once the Russell terms have been
contextually eliminated): the (EG)-steps above will not correspond to valid steps in
primitive notation. With this treatment of singular terms, the paradox is avoided.
One has the feeling, however, that the problem has been circumvented rather than
solved.

(ii) Carnap (at least the way Quine reads him): The individual variables are not taken
to range over physical objects, but instead over individual concepts. According to
this reading, the names ‘Phosphorus’ and ‘Hesperus’ stand for different but coexten-
sive individual concepts. The identity sign is interpreted not as a genuine identity
between physical objects but as coextensionality between individual concepts. That
is, an identity statement ‘u = v’ is true if and only if the terms ‘u’ and ‘v’ stand for
coextensive individual concepts. According to this interpretation, (6) and (7) mean:
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(6′) There is an individual concept x which actually coincides with the individual
concept Hesperus but does not do so by analytical necessity.

(7′) There is an individual concept x which not only happens to coincide with the
individual concept Hesperus but does so by analytic necessity.

No contradiction ensues from these two statements. The price for this interpreta-
tion, however, seems to be as Quine expresses it: “a curiously idealistic ontology which
repudiates material objects”.

1.4 The advent of possible worlds semantics

1.4.1 Semantics for quantified modal logic in 1957: Hintikka and Kanger

1957 was a pivotal year in the history of modal logic.6 In that year Stig Kanger published
his dissertation Provability in Logic and a number of other papers where he outlined a
new model-theoretic semantics for quantified modal logic. In the same year, Jaakko
Hintikka published two papers on the semantics of quantified modal logic: ‘Modality as
referential multiplicity’ and ‘Quantifiers in deontic logic’ (Hintikka [39, 40]). There are
some striking parallels between these works by Hintikka and Kanger, but there are also
notable differences.

Hintikka and Kanger had both done important and closely similar work in non-modal
predicate logic. Using so-called model sets (nowadays often called “Hintikka sets” or
“downward saturated sets”) for predicate logic, Hintikka [38] had developed a new com-
plete and effective proof procedure for predicate logic.

Let L be a language of predicate logic with identity and let U be a non-empty set
of individual constants that do not belong to L. A model set (over U) is a set m of
sentences of the expanded language LU satisfying the following conditions:7

(C.¬) if ¬ϕ ∈ m, then ϕ ̸∈ m,
(C.¬¬) if ¬¬ϕ ∈ m, then ϕ ∈ m,
(C.∧) if ϕ ∧ ψ ∈ m, then ϕ ∈ m and ψ ∈ m,
(C.¬∧) if ¬(ϕ ∧ ψ) ∈ m, then ¬ϕ ∈ m or ¬ψ ∈ m,
(C.∀) if ∀xϕ ∈ m, then for every constant a in U , ϕ(a/x) ∈ m,
(C.¬∀) if ¬∀xϕ ∈ m, then for some constant a in U , ¬ϕ(a/x) ∈ m,
(C. =) for no individual constant a in LU , a ̸= a ∈ m,
(C.Ind) if ϕ(a/x) ∈ m, where ϕ is atomic, and a = b ∈ m, then ϕ(b/x) ∈ m.

Hintikka showed, what nowadays goes under the name Hintikka’s lemma, namely, that a
set Γ of sentences is satisfiable (true in some Tarski-style model) iff it can be imbedded
in a model set over some non-empty set U of (new) individual constants. Furthermore,
he provided an effective proof procedure for classical predicate logic. The method is very
similar to the nowadays more familiar semantic tableaux method of Beth [11].

Hintikka [38, p. 47] points out that there is a close connection between his proof pro-
cedure and proofs in Gentzen’s sequent calculus. The systematic search for a counterex-
ample of a formula ϕ corresponds to the backward application of the rules of Gentzen’s

6See [24] for a comprehensive historical account of the development of possible worlds semantics. For
a mathematical exposition of the development of modal logic, see [36]).

7Here we have assumed that ¬,∧ and ∀ are primitive and that ∨,→ and ∃ are introduced as abbre-
viations in the usual way. For other choices of primitive logical constants, the definition of a model set
has to be adjusted accordingly.
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cut-free calculus for predicate logic. As a matter of fact, Kanger in Provability in Logic
[53] provided an elegant effective proof procedure for classical predicate logic based on a
sequent calculus that is equivalent to Hintikka’s.

Hintikka’s formal semantics for modal logic. When studying classical predicate logic,
Hintikka and Kanger used strikingly similar techniques and obtained similar results.
However, their approaches to modal logic were different. Kanger started out from the
work of Tarski and set himself the task of extending the method of Tarski-style truth-
definitions to predicate languages with modal operators. Hintikka, on the other hand,
generalised his method of model sets to the case of modal logic. In doing so he invented
the notion of a model system. Roughly speaking, a model system consists of a set Ω of
model sets and a binary relation R defined between the members of Ω. Different versions
of Hintikka’s semantics impose different conditions on model sets, but in order simplify
the exposition, we can say that a model system is an ordered pair S = ⟨Ω, R⟩, such that:

(a) Ω is a non-empty set of model sets for L,

(b) R is a binary relation between the members of Ω (the alternativeness relation),

(c) for all m ∈ Ω, if !ϕ ∈ m, then for all n ∈ Ω such that mRn,ϕ ∈ n,

(d) for all m ∈ Ω, if ¬!ϕ ∈ m, then ¬ϕ ∈ n, for some n ∈ Ω such that mRn.

Hintikka thought of the members of Ω as partial descriptions of possible worlds. A
set Γ of sentences is satisfiable (in the sense of Hintikka) iff there exists a model system
S = ⟨Ω, R⟩ and a model set m ∈ Ω such that Γ ⊆ m. A sentence ϕ is valid iff the set
{¬ϕ} is not satisfiable.

Hintikka [40] sketched a tableaux-style method of proving completeness theorems in
modal logic. The idea is a generalisation of his proof procedure for first order logic.
Hintikka [41] states (without formal proofs) that the systems T, B, S4, S5 for sentential
logic are sound and complete with respect to the Hintikka-style semantics where R is
assumed to be reflexive, symmetric, reflexive and transitive and an equivalence relation,
respectively. Rigorous completeness proofs using the tableaux method were published
by Kripke, [64], for the case of quantified S5, and for numerous systems of propositional
modal logic in [67, 68].8

An important difference between Hintikka’s semantics for modal logic, on the one
hand, and the ones developed by Carnap, Kanger and Montague [83], on the other, is
that Hintikka allows the space of possibilities Ω to vary from one system to another. The
only requirement is that Ω is a non-empty set satisfying the constraints (b), (c) and (d)
above. In the formal semantics of Carnap, Kanger and Montague, on the other hand,
the space of possibilities is fixed once and for all to be the set of all state descriptions
(Carnap), the class of all systems (or alternatively, domains) (Kanger), or all first-order
models over a given domain (Montague). One could say that Carnap, Kanger and Mon-
tague only allow interpretations of modalities that are in a sense standard and disallow
non-standard interpretations. Thus, the relationship between Hintikka’s semantics (and
the one later developed by Kripke) and the ones developed by Carnap, Kanger and Mon-
tague is analogous to that between standard and non-standard semantics for higher-order

8In [65], Kripke announces a great number of completeness results in modal propositional logic. He
also notes “For systems based on S4, S5, and M, similar work has been done independently and at an
earlier date by K. J. J. Hintikka”.
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predicate logic. This distinction between the various approaches has been emphasised
by Cocchiarella [23] and Hintikka [46]. Allowing non-standard interpretations for modal
logics, of course, facilitated the proofs of completeness results, since the logics for log-
ical or analytical necessity corresponding to the standard semantics are in general not
recursively enumerable.

Kanger’s Tarski-style semantics for quantified modal logic. Kanger’s ambition was
to provide a language of quantified modal logic with a model-theoretic semantics à la
Tarski.9

A Tarski-style interpretation for a first-order predicate language L consists of a non-
empty domain D and an assignment of appropriate extensions in D to every non-logical
symbol and variable of L. Kanger’s basic idea was to relativise the notion of exten-
sion to various possible domains. In other words, he thought of an interpretation for a
given language L as a function that simultaneously assigns extensions to the non-logical
symbols and variables of L for every possible domain. Such a function Kanger called a
(primary) valuation. Formally, a valuation for a language L of quantified modal logic is
a function v which for every non-empty domain D assigns an appropriate extension in
D to every individual constant, individual variable, and predicate constant in L. Kanger
also introduced the notion of a system S = ⟨D, v⟩ consisting of a designated domain D
and a valuation v. Notice that v does not only assign extensions to symbols relative to
the designated domain D, but relative to all domains simultaneously.

Kanger then defined the notion of a formula ϕ being true in a system S = ⟨D, v⟩ (in
symbols, S # ϕ):

(1) S # (t1 = t2) iff v(D, t1) = v(D, t2),

(2) S # P (t1, . . . , tn) iff ⟨v(D, t1), . . . , v(D, tn)⟩ ∈ v(D,P ),

(3) S ̸# ⊥,

(4) S # (ϕ→ ψ) iff S #̸ ϕ or S # ψ
(5) ⟨D, v⟩ # ∀xϕ iff ⟨D, v′⟩ # ϕ, for each v′ such that v′ =x v,

(6) for every operator !,S # !ϕ iff ∀S ′, if SR!S ′, then S ′ # ϕ.

Explanation: v′ is like v except possibly at x (also written, v′ =x v) if and only if,
for every domain U and every variable y other than x, v′(U, y) = v(U, y). In the above
definition, R! is a binary relation between systems that is associated with the modal
operator !. R! is what is nowadays called the accessibility relation associated with
the operator !. Kanger points out that by imposing certain formal requirements on
the accessibility relation, like reflexivity, symmetry, transitivity, etc., one can make the
operator satisfy corresponding well-known axioms of modal logic.

One source of inspiration for Kanger’s use of accessibility relations in modal logic was
no doubt the work of Jónsson and Tarski [52] on representation theorems for Boolean
algebras with operators.10 Jónsson and Tarski define operators ♦ on arbitrary subsets
X of a set U in terms of binary relations R ⊆ U × U in the following way:

♦X = {x ∈ U : ∃y ∈ X(yRx)},
9Cf. Kanger [53, 54, 55, 56, 57]). See also Lindström [81] for a more extensive discussion of Kanger’s

approach to quantified modal logic.
10On [53, p. 39] Kanger makes an explicit reference to Jónsson and Tarski [52].
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that is ♦X is the image of X under R. They also point to correspondences between
properties of ♦ and properties of R. Among other things, they prove a representation
theorem for so-called closure algebras that, via the Tarski-Lindenbaum construction,
yields the completeness theorem for propositional S4 with respect to Kripke models with
a reflexive and transitive accessibility relation. However, Jónsson and Tarski do not say
anything about the relevance of their work to modal logic.

Among the modal operators in L, Kanger introduced two designated ones, N (“analytic
necessity”) and L (“logical necessity”), with the following semantic clauses:

⟨D, v⟩ # Nϕ iff for every domain D′, ⟨D′, v⟩ # ϕ
⟨D, v⟩ # Lϕ iff for every system S,S # ϕ.

A formula ϕ is true in a system ⟨D, v⟩ iff ⟨D, v⟩ # ϕ. A formula ϕ is said to be valid
(logically true) if it is true in every system ⟨D, v⟩. A formula ϕ is a logical consequence
of a set Γ of formulæ (in symbols, Γ # ϕ) if ϕ is true in every system in which all the
formulæ in Γ are true.

In order to get a clearer understanding of Kanger’s treatment of quantification, we
shall speak of selection functions that pick out from each domain an element of that
domain as individual concepts. We can think of a system S = ⟨D, v⟩ as assigning to
each individual constant c the individual concept {⟨D, v(D, c)⟩ : D is a domain} and
to each variable x the individual concept {⟨D, v(D,x)⟩ : D is a domain}. The formula
P (t1, . . . , tn) is true in S = ⟨D, v⟩ if and only if the individual concepts designated by
t1, . . . , tn pick out objects in the domain D that stand in the relation v(D,P ) to each
other. The identity symbol designates the relation of coincidence between individual
concepts (at the “actual” domain D). That is, t1 = t2 is true in a system S = ⟨D, v⟩
if and only if the individual concepts designated by t1 and t2, respectively, pick out one
and the same object in the domain D of S.

The universal quantifier ∀x can now be thought of as an objectual quantifier that
ranges not over the “individuals” in the “actual” domain D, but over the (constant)
domain of all individual concepts. That is, ∀xϕ is true in a system ⟨D, v⟩ if and only if
ϕ is true in every system that is exactly like ⟨D, v⟩ except, possibly, for the individual
concept that it assigns to the variable x.

Kanger’s solution to Quine’s paradox of identity is essentially the same as Carnap’s.
Quine’s objection to Kanger would therefore be the same as to Carnap: Kanger’s quanti-
fiers do not range over ordinary individuals but over individual concepts instead. More-
over, Kanger’s treatment of quantification in modal contexts does not provide any means
of identifying individuals from one domain to another. Hence there is no way of saying
in Kanger’s modal language that one and the same individual has a property P and pos-
sibly could have lacked P . That is, neither Carnap’s nor Kanger’s semantics can account
for modality de re.

1.4.2 Hintikka’s response to Quine’s challenge

Quine’s interpretational challenge seemed to place the advocates of quantified modal logic
in a dilemma. They would either have to accept standard quantification theory (with
the usual laws of universal instantiation, existential generalisation and indiscernibility of
identicals) and reject quantified modal logic, or accept a quantified modal logic, where
the quantifiers were interpreted in a non-standard way à la Carnap as ranging over
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intensional entities (individual concepts), rather than over robust extensional entities as
Quine would demand.

Hintikka [39, 40], however, rejected the terms in which Quine’s interpretational chal-
lenge was stated. First of all he broadened the discussion by not only considering the
logical modalities and Quine’s metalinguistic interpretation of these, but also epistemic
modalities (‘It is known that ϕ’) and deontic ones (‘It is obligatory that ϕ’). He then
introduced the idea of referential multiplicity. In answer to Quine’s question whether
a certain occurrence of a singular term in a modal context is purely referential, and
thus open to substitution and existential generalisation, or non-referential, in which case
substitution and existential generalisation would fail according to Quine, Hintikka [39]
pointed to a third possibility. According to the classical Fregean approach [32] singular
terms would in non-extensional contexts not have their standard reference but instead
refer to intensional entities, their ordinary senses. Hintikka saw no need to postulate
special intensional entities for the singular terms to refer to in non-extensional contexts.
The failure of substitutivity was instead explained by the referential multiplicity of the
singular terms and by the fact that in intensional contexts the reference of the terms in
various alternative courses of events (“possible worlds”) is considered simultaneously.

Informally Hintikka [39] expressed the basic ideas behind the possible worlds interpre-
tation of modal logic in the following words:

. . . we often find it extremely useful to try to chart the different courses the
events may take even if we don’t know which one of the different charts we
are ultimately going to make use of. . . . This analogy is worth elaborating.
The concern of a general staff is not limited to what there will actually be. Its
business is not just to predict the course of a planned campaign, but rather
to be prepared for all the contingencies that may crop up during it. . . . Most
of the maps prepared by the general staff represent situations that will never
take place. . . . There are for the most parts some actual units for which the
marks on the map stand, and the mutual positions of the units are such that
the situation could conceivably arise. . . . But the location of the units on the
maps may be different from the locations the units have or ever will have.
Some of the marks may stand for units which have not yet been formed; other
maps may be prepared for situations in which some of the existing units have
been destroyed. All these features have their analogues in modal logic.

In this example Hintikka informally speaks of the same units as occurring in different
situations (“cross-world identification of individuals”) and of individuals coming into
existence or disappearing as one goes from one situation to another (“varying domains”).

Hintikka goes on to explain the bearing of the above example on referential opacity.

We may perhaps say that when we are doing modal logic, we are doing more
than one thing at one and the same time. We use certain symbols — constants
and variables — to refer to the actually existing objects of our domain of
discourse. But we are also using them to refer to the elements of certain
other states of affairs that need not be realized. Or, which amounts to the
same, we are employing these symbols to build up ‘maps’ or models for the
purpose of sketching certain situations that will perhaps never take place.
If we could confine our attention to one of these possible states of affairs
at a time, the occurrences of our symbols would be purely referential. The
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interconnections between the different models interfere with this. But since
the symbols are purely referential within each particular model, the deviation
from pure referentiality is not strong enough to destroy the possibility of
employing quantifiers with pretty much the same rules as in the ordinary
quantification theory. If I had to characterize the situation briefly, I should
say that the occurrences of our terms in modal contexts are not usually purely
referential, but rather that they are multiply referential.

This idea of referential multiplicity is perhaps the basic intuitive idea behind the
possible worlds interpretation of modal notions and of indexical semantics in general. It
seems that Hintikka here gives one of the earliest, or perhaps the earliest, clear expression
of the idea.

Hintikka’s semantics for quantified modal logic is informally interpreted in such a
way that the quantifiers range over genuine individuals. Thus, Hintikka has a notion of
cross-world identification: one and the same individual may occur in different worlds.
However, the semantics allows individuals to split from one world to another, i.e., the
individuals a and b may be identical in one world w0 but they may fail to be identical in
some alternative world to w0. Thus, the principle:

(! =) ∀x∀y(x = y → !(x = y)), (Necessity of Identity)

is not valid in Hintikka’s semantics. As a consequence, the unrestricted principle of
indiscernibility of identicals does not hold in modal contexts according to Hintikka (cf.,
Hintikka [41] and later writings).

Hintikka’s solution to Quine’s paradox of identity. There are two cases to consider:

(1) One or the other of the singular terms under consideration (‘Hesperus’ or ‘Phospho-
rus’) is not a “rigid designator”, that is it does not designate the same individual
in every possible world (or “scenario”) under consideration. Then, existential gen-
eralisation fails and Quine’s paradoxical argument does not go through.

(2) Each of the two names picks out “the same” individual in every world under consid-
eration. However, some scenario w under consideration is such that the individual
Hesperus in w is distinct from the individual Phosphorus in w. In this case, Quine’s
argument goes through, but Hintikka has to argue that the conclusion:

(6) ∃x(x = Hesperus ∧ ¬!(x = Hesperus))

(7) ∃x(x = Hesperus ∧ !(x = Hesperus)),

contrary to appearance, is not absurd, since an individual can “split” when we go
from one possible scenario to one of its alternatives. Consider for example:

Superman and Clark Kent are in fact identical, but Lois Lane doesn’t
believe that they are identical.

Hintikka may explain the apparent truth (according to the story) of this sentence by
the fact that some scenarios (possible worlds) in which Superman and Clark Kent are
different individuals are among Lois Lane’s doxastic alternatives in the actual world
(where they are identical).
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1.4.3 Montague’s early semantics for quantified modal logic

A semantic approach to first-order modal predicate logic that has a certain resemblance
to Kanger’s was developed by Montague [83].11 Like Kanger, Montague starts out from
the standard model-theoretic semantics for non-modal first-order languages and extends
it to languages with modal operators. He defines an interpretation for an ordinary first-
order predicate language L to be a triple I = ⟨D, I, g⟩, where (i) D is a non-empty set
(the domain); (ii) I is a function that assigns appropriate denotations in D to the non-
logical constants (predicate symbols and individual constants) of L; and (iii) a function
g (an assignment in D) that assigns values in D to the individual variables of L. For
each non-logical constant or variable X, let I(X) be the semantic value (i.e., denotation
for non-logical constants and value for variables) of X in the interpretation I. Then the
notion of truth relative I is defined as follows:

(1) I # P (t1, . . . , tn) iff ⟨I(t1), . . . , I(tn)⟩ ∈ I(P ),

(2) I # (t1 = t2) iff I(t1) = I(t2),

(3) I # ¬ϕ iff I ̸# ϕ,

(4) I # (ϕ→ ψ) iff I ̸# ϕ or I # ψ,

(5) I # ∀xϕ iff for every object a ∈ D, I(a/x) # ϕ.

Here, I(a/x) is the interpretation that is exactly like I, except for assigning the object
a to the variable x as its value.

Montague now asks the same question as Kanger: How can this definition of the
truth-relation be generalised to first-order languages with modal operators? As we recall,
Kanger solved the problem by modifying the notion of an interpretation: a Kanger-type
interpretation (what he called ‘a system’) assigns denotations to the non-logical constants
and values to the variables not only for one single domain (the ‘actual’ one) but for all
domains in one fell swoop. Montague’s approach is simpler than Kanger’s: he keeps the
notion of an interpretation I of first-order logic intact, and just adds semantic evaluation
clauses for the modal operators. As in the Kanger semantics, each modal operator !
is associated with an accessibility relation R!. Now, however accessibility relations
are relations between interpretations I = ⟨D, I, g⟩ of the underlying non-modal first-
order language. The semantic clause corresponding to the operator !, with associated
accessibility relation R!, is:

(6) I # !ϕ iff for every interpretation I ′ such that IR!I ′, I ′ # ϕ.

Montague associates with the operator L of logical necessity the accessibility relation
RL defined by:

⟨D, I, g⟩RL⟨D′, I ′, g′⟩ iff D = D′ and g = g′.

Thus, his semantic clause for L becomes:
11Montague [83] writes: “The present paper was delivered before the Annual Spring Conference in

Philosophy at the University of California, Los Angeles, in May, 1955. It contains no results of any great
technical interest; I therefore did not initially plan to publish it. But some closely analogous, though not
identical, ideas have recently been announced by Kanger [54, 55] and by Kripke in [64]. In view of this
fact, together with the possibility of stimulating further research, it now seems not wholly inappropriate
to publish my early contribution.”
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(7) ⟨D, I, g⟩ # Lϕ iff for every I ′ defined over D, ⟨D, I ′, g⟩ # ϕ.

That is, Lϕ is true in an interpretation I iff ϕ is true in every interpretation I ′ that is
like I except for, possibly, assigning different semantic values to the non-logical constants
of L.

Stated in contemporary terms, Montague’s semantic clause for the logical necessity
operator becomes:

(8) Lϕ is true in a model M = ⟨D, I⟩ relative to an assignment g iff for every model
M′ with domain D, ϕ is true in M′ relative to g.

Let us say that a formula ϕ of L is D-valid relative to g iff for every model M with
domain D, ϕ is true in M relative to g. We say that ϕ is D-valid iff it is D-valid
relative to every assignment g in D. Then, from Montague’s semantic clause for L, we
can conclude:

(9) Lϕ is true in M = ⟨D, I⟩ relative to g iff ϕ is D-valid relative to g.

and

(10) Lϕ is true in M = ⟨D, I⟩ iff ϕ is D-valid.

We say that a formula ϕ of L is logically true iff it is D-valid in every non-empty domain
D.

Montague’s [83] semantics for L is exactly what Cocchiarella [23] refers to as the
“primary semantics” for logical necessity. Hence, we can reformulate Cocchiarella’s [23]
incompleteness theorem for that semantics as follows:

THEOREM 2. Suppose that L contains at least one binary predicate symbol. Then, the
set of logically true sentences in Montague’s [83] semantics for logical necessity is not
recursively enumerable. Thus, Montague’s [83] logic for logical necessity is not axioma-
tizable.

Montague’s solution to Quine’s paradox of identity. According to Montague’s interpreta-
tion, Lϕ is logically equivalent with a formula of second-order predicate logic ()ϕ, where
() stands for a string of universal quantifiers that bind all non-logical symbols in ϕ. In
other words, Montague’s semantics induces a translation from first-order modal logic to
extensional second-order predicate logic. According to Montague’s semantics from [83],
the quantifier ∀x is interpreted as a genuine quantifier over individuals. Free variables
are “directly referential”, i.e., a free variable is interpreted uniformly inside a formula as
standing for one and the same individual regardless of where in the formula it occurs.
Individual constants, on the other hand, are reinterpreted freely from one interpretation
to another.

Montague’s semantics validates the following principles without restrictions:
(LI) ∀x(x = x), (Law of Identity)
(I=) ∀x∀y(x = y → (ϕ(x/z) → ϕ(y/z))). (Indiscernibility of Identicals)

In addition, we have: ∀xL(x = x). Therefore, the following principle is valid:
(!I) ∀x∀y(x = y → L(x = y)). (Necessity of Identity)

But the following is not valid:
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Phosphorus = Hesperus → L(Phosphorus = Hesperus).

It follows that the principles of Universal Specification (US) and Existential Generali-
sation (EG) are not valid. Thus, Quine’s paradoxical argument (Section 1.3, (1)–(7))
cannot be carried through within Montague’s logic. Although (US) and (EG) cannot be
applied to individual constants, they do hold for variables.

It appears that Montague’s semantical interpretation satisfies all requirements imposed
by Quine [92] on an interpretation of quantified modal logic for the logical modalities.
However, Montague’s semantics still has counterintuitive consequences. Consider, for
instance, the following proof of the thesis that everything there is exists necessarily :

(1) ∀x∃y(x = y) predicate logic

(2) L∀x∃y(x = y) from (1) by necessitation

(3) ∀x∃y(x = y) → ∃y(x = y) universal specification (US) (for variables)

(4) L(∀x∃y(x = y) → ∃y(x = y)) from (3) by necessitation

(5) L∃y(x = y) from (2) and (4) by modal logic

(6) ∀xL∃y(x = y) from (5) by universal generalization (UG)

This proof is valid according to Montague’s semantics: line (1) is logically true and the
steps in the proof preserve logical truth. It is also easy to see directly that the conclusion
(6) of the argument is logically true according to Montague’s definition. This conclusion,
however, is extremely counterintuitive (provided we read the quantifiers in the normal
way as ranging over ordinary objects). Intuitively, it is simply false that everything there
is exists necessarily. Hence, there are still problems with Montague’s semantics. We
shall return to the above problematic argument in connection with Kripke’s [66] possible
worlds semantics.

It should also be noted that Montague’s semantics validates the schema:
(I) ∃xLϕ(x) ↔ ∀xLϕ(x).

i.e., ϕ holds necessarily of one thing just in case ϕ holds necessarily of everything. More-
over, the semantics validates the Barcan schema and its converse:

(BF) ∀xLϕ(x) → L∀xϕ(x)
(CBF) L∀xϕ(x) → ∀xLϕ(x).

From (1), (BF) and (CBF) we infer:
(II) ∃xLϕ(x) ↔ L∀xϕ(x).

That is, a property holds necessarily of one thing just in case it is necessary that it holds
of everything.

According to Montague’s semantics the logically necessary properties are the same for
everything; namely, just those properties that by logical necessity hold of everything.
That is, Montague’s semantics is essentialist in the weak Quinean sense of distinguishing
between properties that hold necessarily of a thing and properties that hold only con-
tingently of it. But it rejects the strong essentialist thesis that there are properties that
some objects have necessarily and others do not have at all, or have only contingently
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(cf. [8, 89]).12 Hence, condition (I) seems to be correct, as long as we speak of logical
necessity. Logic does not discriminate between individuals, so if F is a logically necessary
property of one thing, it is a logically necessary property of everything there is.13

The Barcan formula and its converse, however, are dubious. Consider first (BF).
Suppose that a is the only thing that exists. Then, ∀xL(x = a). However, it does not
seem intuitively correct to infer: L∀x(x = a). Next, consider (CBF). Clearly, L∀x∃y(x =
y). If (CBF) were valid, we could infer ∀xL∃y(x = y), which — as we have already
pointed out — is counterintuitive. We will return to the semantic significance of (BF)
and (CBF) in Section 1.4.4. Finally, condition (II) is clearly counterintuitive. Burgess
[14] says of (II) that it “could silence any critic who claimed the notion of de re modality
to be more obscure than that of de dicto modality, but would do so only at the cost of
making de re notation pointless”.

1.4.4 Kripke’s semantics for quantified modal logic

Kripke 1959. The possible worlds semantics introduced by Kripke [64] may be cast in
the following form (which differs from Kripke’s original formulation in terminology as
well as in some minor details). We consider a language L of modal predicate logic with
identity containing for each n ≥ 1, a denumerably infinite list of n-ary predicate symbols,
but no function symbols or individual constants. Let D be a non-empty set. We define
a valuation for L over D to be a function V which to every n-ary predicate symbol
P (n ≥ 1) in L assigns a value V (P ) ⊆ Dn. An assignment in D is a function g which to
every individual variable x assigns a value g(x) ∈ D. A model over D is an ordered pair
M = ⟨K, V0⟩ such that (i) K is a set of valuations for L over D, and (ii) V0 ∈ K.

Given a model M = ⟨K, V0⟩ over D, an evaluation V in K, assignment g in D, and
formula ϕ we define recursively what it means for ϕ to be true in V relative to M and
g (in symbols: V #M ϕ[g]):

(1) V #M P (x1, . . . , xn)[g] iff ⟨g(x1), . . . , g(xn)⟩ ∈ V (P ),

(2) V #M (x = y)[g] iff g(x) = g(y),

(3) V #M ¬ϕ[g] iff V ̸#M ϕ[g],

(4) V #M (ϕ→ ψ)[g] iff V ̸#M ϕ[g] or V #M ψ[g],

(5) V #M ∀xϕ[g] iff for every object a ∈ D,V #M ϕ[g(a/x)],

(6) V #M !ϕ iff for every valuation V ′ in K, V ′ #M ϕ.

As usual, g(a/x) is the assignment that is exactly like g except for assigning a to the
variable x.

12See also Kaplan’s [61] penetrating analysis of the distinction between logical and metaphysical ne-
cessity. According to Kaplan, logical necessity is committed to a benign form of Aristotelian essentialism
that “makes a specification of an individual essential only if it is logically true of that individual”. Meta-
physical necessity, on the other hand, is invidious, since it allows for distinct individuals to have different
essential properties.

13On the other hand, (I) is clearly counterintuitive for metaphysical necessity. Let, for example, ϕ(x)
be the formula ‘(∃y(y = x) → x ∈ {Socrates})’ and let ! stand for metaphysical necessity. Then,
!ϕ(Socrates) is true. Socrates is a member of {Socrates}, in every possible world where Socrates exists.
But, of course, !ϕ(Plato) is false. Thus (I) fails for metaphysical necessity.
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We say that ϕ is true in M relative to g if V0 #M ϕ[g]. ϕ is true in M if V0 #M ϕ[g]
for every assignment g in D. ϕ is valid in the domain D if ϕ is true in all models M
over D. ϕ is universally valid if ϕ is valid in every non-empty domain D (i.e., just in
case ϕ is true in every model M).

Kripke gives the following intuitive motivation for this semantics: The valuations in K
are thought of as representing the set of all “possible” (or “conceivable” or “imaginable”)
worlds. The valuation V0 represents the “real” world. It is assumed that the set D of
individuals is the same for all possible worlds. Necessity is defined as truth in all possible
worlds.

Kripke’s [64] semantics validates all the classically valid schemata of first-order pred-
icate logic with identity, the characteristic axioms of S5, as well as the Barcan formula
(BF) and its converse (CBF). The set of valid sentences is closed under modus ponens,
uniform substitution, necessitation, and universal generalization. In [64], Kripke defines
a formal system S5∗= for quantified modal logic and proves using semantic tableaux
methods that it is sound and complete for the given semantics.

Let us now compare Kripke’s [64] semantics with Montague’s semantics [83] for logical
necessity. Let us say that a Kripke [64] model M = ⟨K, V0⟩ over a non-empty domain D
is maximal if K contains all valuations for L over D.14

Montague’s semantics for logical necessity differs from Kripke’s [64] semantics in con-
sidering maximal models only. We obtain Montague’s semantics for logical necessity by
imposing the requirement on Kripke’s [64] models that the set K should contain all val-
uations V for L over D. Hence, a sentence ϕ of L is logically true in Montague’s [83]
semantics for logical necessity iff it is true in all maximal Kripke [64] models. By restrict-
ing our attention to maximal models, we get what Cocchiarella [23] calls the “primary
semantics” for logical necessity.

At this point it is natural to ask what intended interpretation Kripke had in mind for
the necessity operator in 1959. Was it logical necessity, analytical necessity, or perhaps
some kind of metaphysical necessity? One reason for thinking that Kripke’s notion of
necessity in 1959 was not logical necessity is his use of models that are non-maximal (or
“non-standard” in the terminology of Hintikka [46]). Instead of working with all models
or valuations over D, like Montague, or with all possible systems as Kanger, Kripke is
considering an arbitrary non-empty subset of all possible valuations. This feature of his
models may suggest that Kripke’s intended interpretation of the necessity operator is not
strict logical necessity, but perhaps instead some kind of metaphysical necessity. This
conclusion is however, not unavoidable: Kripke’s intended interpretation of the necessity
operator could still have been logical necessity and his intended interpretations could still
be some or all of the maximal models. Kripke’s reason for allowing non-maximal models,
in addition to maximal ones, when defining validity, could have been logical rather then
philosophical.15 If Kripke, like Kanger and Montague, had chosen to work only with
maximal models, the set of valid sentences would not have been recursively enumerable
and there would be no completeness theorem to be proved. Kripke’s intended model
could, for instance, be a maximal model over some infinite set. A modal sentence of an
interpreted language of modal predicate logic would then be true if it was true in the

14The term “maximal model” was introduced by Parsons [89] in connection with Kripke’s [66] semantics
for quantified logic. It is less tendentious than Hintikka’s term “standard model”.

15Ballarin [4] argues that Kripke’s development of his possible worlds semantics was driven entirely
“by formal considerations, not interpretive concerns”.
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intended model. Interpreted in this way, Kripke’s 1959 approach would be very close to
Montague’s of 1960. The only essential difference would be Kripke’s use of non-standard
models in addition to the standard ones for the purpose of defining a notion of universal
validity that is recursively enumerable.

On the other hand, in [64, p. 3], Kripke speaks of K as representing the set of all
“conceivable” worlds. He writes “. . . a proposition !B is evaluated as true when and only
when B holds in all conceivable worlds”. This seems to indicate that Kripke’s operator
! of [1959] should not be interpreted as strict logical necessity. It is very likely that the
set of valuations representing all “conceivable” worlds is a proper subset of the set of
absolutely all valuations. Thus Kripke may have had philosophical reasons, in addition
to formal ones, for favouring a “non-standard” semantics allowing non-maximal models
to a “standard” one.16

Kripke 1963. We present a version of Kripke’s [66] semantics for modal predicate
logic with identity, where the notion of a possible world is an explicit ingredient of the
semantic theory. We differ from Kripke [66] in letting the language L contain individual
constants.

A (Kripke) frame (or to use Kripke’s own terminology, a model structure) for a lan-
guage L of first-order modal predicate logic (with identity and individual constants, but
no function symbols) is a quintuple F = ⟨W,D,R,E,w0⟩ where, (i) W is a non-empty
set; (ii) D is a non-empty set; (iii) R ⊆ W × W ; (iv) E is a function which to each
w ∈ W assigns a subset Ew of D; and (v) w0 is a designated element of W . Intuitively
we think of matters thus: W is the set of all (possible) worlds (possible states of affairs,
possible ways the world could have been), D is the set of all (possible) individuals, R is
the accessibility relation between worlds, for each world w,Ew is the set of individuals
that exist in w; and w0 is the actual world. It is required that D =

⋃
w∈W Ew, i. e., that

every possible individual exists in at least one world.
Next, let us say that I is an interpretation (in D with respect to W ) if it is a family of

functions Iw, where w ranges over W , such that Iw assigns a subset Iw(P ) of Dn to each
n-ary predicate constant P of L and an element Iw(c) ∈ D to each individual constant c
of L. A Kripke model (for L) is an ordered pair M = ⟨F , I⟩, where F = ⟨W,D,R,E,w0⟩
is a frame and I is an interpretation in D with respect to W . A model M of the form
⟨F , I⟩ is said to be based on the frame F .

Observe that Iw(P ) is not necessarily a subset of (Ew)n, i. e., the extension of P in w
may contain individuals that do not exist in w. Nor do we require that Iw(c) ∈ Ew. An
assignment in M is a function g which assigns to each variable x an element g(x) in D.
For any term t in L, we define Mw(t, g) to be g(t) if t is a variable; and Iw(t) if t is an
individual constant. We speak of Mw(t, g) as the denotation of the term t at the world
w relative to the model M and the assignment g.

With these notions in place, we can define what it means for a formula ϕ to be true at
a world w with respect to the model M and the assignment g (in symbols, w #M ϕ[g]):

(1) w #M P (t1, . . . , tn)[g] iff ⟨Mw(t1, g), . . . ,Mw(tn, g)⟩ ∈ Iw(P ).

(2) w #M (t1 = t2)[g] iff Mw(t1, g) = Mw(t2, g).

(3) w #M ¬ϕ[g] iff w ̸#M ϕ[g].
16Cf., however, Almog [1, p. 217], who writes about Kripke [64]: “. . . Kripke had at the time nothing

more than “complete assignments,” and the modality he worked with was definitely logical possibility”.
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(4) w #M (ϕ→ ψ)[g] iff w ̸#M ϕ[g] or w #M ψ[g].

(5) w #M ∀xϕ[g] iff, for every a ∈ Ew, w #M ϕ[g(a/x)].

(6) w #M !ϕ[g] iff, for every u ∈ W such that wRu, u #M ϕ[g].

We say that ϕ is true with respect to the model M and the assignment g (in symbols
#M ϕ[g]), iff ϕ is true at the actual world w0 with respect to M and g. ϕ is true in the
model M (in symbols, #M ϕ), if for every assignment g,#M ϕ[g]. ϕ is true in a frame
F (in symbols, #F ϕ) if ϕ is true in every model based on F . Let K be a class of frames.
We say that ϕ is K-valid if ϕ is true in every F ∈ K.

Observe that there are two notions of validity that are naturally defined on classes of
Kripke frames. With respect to the notion that we have just defined — we may call it
real-world validity — the actual world plays a special role: a sentence ϕ is real-world
valid in a class K of frames if it is true at the actual world in every frame in K. Then,
there is another notion of validity that we may call general validity : A sentence ϕ is
generally valid in a class K just in case it is true at each world w in each frame in K.17
In the definition of general validity, the designated point of a Kripke model does not play
any role. Thus, if we are only interested in general validity, there is no need to provide
Kripke frames with designated worlds. Let us write #K and #∗K for real-world validity
in K and general validity in K, respectively. Then we have, for any sentence ϕ of L

(1) #∗K ϕ iff #K !ϕ

Let us say that a class K of Kripke frames is normal iff it satisfies the condition:

Whenever F is in K and F ′ is a frame that differs from F only with respect
to which world is the actual one, then F ′ is also in K.

For normal classes of frames, real-world validity coincides with the general validity.
Thus, for any sentence ϕ of L,

(1) if K is normal, then #K ϕ iff #∗K ϕ

The semantic import of the Barcan formula and its converse. Notice that Kripke frames
in general have varying domains, i.e., the domains of quantification Ew are allowed to
vary from one possible world to another. We say that a frame F = ⟨W,D,R,E,w0⟩
has increasing domains iff for all u, v ∈ W , if uRv, then Eu ⊆ Ev. F has decreasing
domains iff for all u, v ∈ W , if uRv, then Ev ⊆ Eu. F has locally constant domains
iff for all u, v ∈ W , if uRv, then Eu = Ev. F has globally constant domains iff for all
u ∈ W,Eu = D. We also say that F is a constant domain frame iff F has globally
constant domains.

Consider now the following conditions on frames F :

(ID) F has increasing domains.

(DD) F has decreasing domains.

(LCD) F has locally constant domains.
17Cf. [51, 22–24], for a comparison between the two concepts of logical truth (validity) and for the

history of the distinction between the two.
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(CBF) Every instance of the converse Barcan formula: !∀xϕ(x) → ∀x!ϕ(x), is
generally valid in every model based on F .

(BF) Every instance of the Barcan formula: ∀x!ϕ(x) → !∀xϕ(x), is generally
valid in every model based on F .

(CBF + BF) Every instance of the Barcan formula and its converse is generally valid in
every model based on F .

There is an exact correspondence between the conditions (ID), (DD), (LCD) and (CBF),
(BF) and (CBF + BF), respectively (cf. [30]). That is:

(i) F has increasing domains iff it satisfies (CBF).

(ii) F has decreasing domains iff it satisfies (BF).

(iii) F has locally constant domains iff it satisfies (CBF + BF).

Moreover,

(iv) A sentence is generally valid in the class of all constant domain frames iff it is
generally valid in all locally constant domain frames.

We may introduce an existence predicate E as a new logical constant and give it the
semantic clause:

w #M E(t)[g] iff Mw(t, g) ∈ Ew.

However, this is unnecessary as long as we have identity in the language, since the
predicate E is definable in terms of the existential quantifier and identity:

w #M E(t)[g] iff w #M ∃y(y = t)[g], where y is a variable that is distinct from t.

Hence, we may take E(t) as an abbreviation of ∃y(y = t).
In terms of E we can express the requirements of increasing and decreasing domains

in a simple way:

(v) F has increasing domains iff the sentence !∀x!E(x) is valid in F .

(vi) F has decreasing domains iff the formula !(♦E(x) → E(x)) is valid in F .

We are especially interested in frames where R is the universal relation in W , i.e., in
which:

w #M !ϕ[g] iff, for every u ∈ W,u #M ϕ[g].

Let QS5= be the class of all such frames. It follows from what we have stated above,
that neither the Barcan formula nor its converse is (QS5=)-valid.

In order to illustrate the difference between Kripke’s [66] semantics and his earlier
semantics from 1959, consider again the purported proof that everything there is exists
necessarily (Section 1.4.3). The proof is valid in the semantics of Montague [83] as well
as in Kripke [64]. However, according to Kripke [66], the argument fails. It is easy to see
that the conclusion is not valid according to Kripke [66]. When we look at the purported
proof, we see that it is line (3) that fails:
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(3) ∀x∃y(x = y) → ∃y(x = y) universal specification (US) (for variables)

That is, (US) is not valid according to Kripke [66] (not even for variables): The universal
quantifier in the antecedent of (3) ranges over the domain of actually existing objects,
while the free variable x in the succedent may take possible objects as values that lie
outside the domain of actually existing objects. The failure of this intuitively invalid
argument in Kripke’s [66] semantics speaks in favour of this semantics in comparison
with Montague [83] and Kripke [64].

Rigid designators. Kripke’s [66] semantics validates the Law of Identity,

(L=) ∀x(x = x),

as well as the principle of Indiscernibility of Identicals,

(I=) ∀x∀y[x = y → (ϕ(x/z) → ϕ(y/z))],

applicable without restrictions also to modal contexts ϕ(z). From these principles, to-
gether with the rule of Necessitation it is easy to infer:

(! =) ∀x∀y(x = y → !(x = y)) (Necessity of Identity)

(! ̸=) ∀x∀y(x ̸= y → !(x ̸= y)). (Necessity of Distinctness)

However, neither

(1) c = d → !(c = d)

nor

(2) c ̸= d → !(c ̸= d),

is valid, for arbitrary individual constants c, d. This reflects an important difference
between how individual variables and individual constants are treated in our modelling:
in spite of their name, the denotation of individual constants may vary from one possi-
ble world to another, whereas the denotation of variables — in spite of their name —
remains fixed throughout the universe of possible worlds. Here is obviously a niche to
be filled! Suppose we introduce a new syntactic category of names and require that the
interpretation of a name n be constant over the set of all possible worlds in any model
M; formally,

Iu(n) = Iv(n),

for all u, v ∈ W . Then, if n and m are any names, then:

(3) n = m → !(n = m)

(4) n ̸= m → !(n ̸= m).

are both valid. The proposed modification amounts to treating the elements of the new
category of names as what is now known, after Kripke [71], as rigid designators. In
[71] Kripke made the claim that ordinary “proper names” in natural language are rigid
designators.

Maximal models and maximal validity. Next, we introduce a special kind of Kripke
models that we refer to as maximal models. We say that an ordered triple ⟨D,A, V ⟩ is a
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first-order model for L with outer domain D and inner domain A iff (i) D ̸= ∅, A ⊆ D;
and (ii) for each n-ary predicate constant P, V (P ) ⊆ Dn; (iii) for each individual constant
c, V (c) ∈ D.

A Kripke model M = ⟨W,D,R,E,w0, I⟩ is maximal if (i) R = W × W ; (ii) for every
subset A of D and every first-order model ⟨D,A, V ⟩ with outer domain D and inner
domain A, there exists a w ∈ W such that Ew = A and Iw = V ; and (iii) if u, v ∈ W and
Eu = Ev and Iu = Iv, then u = v. Thus, in a maximal Kripke model with individual
domain D, the possible worlds can be identified with all first-order models with outer
domain D. Thus, for each non-empty set D, there is a unique maximal Kripke model
with individual domain D.

The notion a maximal Kripke model is due to Terence Parsons [89]. Montague’s [83]
models correspond to the maximal Kripke models with a constant domain, i.e. where
each Ew = D. If M is the maximal Kripke model with domain D, then for every formula
ϕ of L:

!ϕ is true at a world w in M relative an assignment g iff ϕ is true in every
first-order model with outer domain D relative to g.

Thus, it is natural to interpret ! as a kind of logical (or combinatorial) necessity with
respect to maximal Kripke models: !ϕ is true in a maximal model with domain D iff ϕ
is true in every first-order model with outer domain D.

Let us say that a formula ϕ is maximally valid iff for every maximal Kripke model M
and every assignment g in M,#M ϕ[g]. Observe that the set of maximally valid sentences
is not closed under uniform substitution of arbitrary sentences for atomic sentences: for
an atomic formula Pc,♦Pc is maximally valid, but, of course, ♦ϕ is not in general
maximally valid. Moreover, if ϕ is a formula that does not contain ! or ♦ which is not a
theorem of first-order logic, then ¬!ϕ is maximally valid. Of course, neither the Barcan
schema nor its converse is maximally valid.

Suppose now that the intended model of L is some maximal Kripke model M0 with
an infinite domain D0. Then, all sentences of the form:

(n) ♦∃x1 . . .∃xn(x1 ̸= x2 ∧ . . . ∧ x1 ̸= xn ∧ x2 ̸= x3 ∧ . . . ∧ x2 ̸= xn ∧ . . . ∧ xn−1 ̸= xn),

where x1, . . . , xn are n(n > 1) distinct variables, are true in (the intended model for) L.
This appears to be as it should be, given the interpretation of ♦ as (a kind of) logical
possibility. With this notion of truth in L, we can associate various notions of logical
truth. One alternative is to say that a sentence in L is logically true iff it is true in
every maximal model with the given outer domain D. With this notion all the sentences
(n) come out as logically true. Another alternative is to say that a sentence is logically
true if it is maximally valid, i.e., true in all maximal Kripke models. Then the sentences
(n) are no longer logically true. Finally, we may identify logical truth in L with truth
in all QS5=-Kripke models. Of these choices, only the last one satisfies the standard
requirement on a logic of being closed under uniform substitution. Thus, if we insist that
a logic should be closed under uniform substitution, it is reasonable to identify logical
truth in L with Kripke’s notion of universal validity. Hence, regardless of whether the
intended model is a maximal model or not, we may reasonably conclude that the logic
of alethic necessity is the set of all QS5=-valid sentences. By this line of reasoning, we
come to the conclusion that regardless of whether we interpret ! as standing for logical
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or metaphysical necessity, the logic of ! will be the same.18

Kripke versus Quine. In 1959 Kripke wrote:

It is noteworthy that the theorems of this paper can be formalized in a met-
alanguage (such as Zermelo set theory) which is “extensional,” both in the
sense of possessing set-theoretic axioms of extensionality and in the sense of
postulating no sentential connectives other than the truth-functions. Thus it
is seen that at least a certain non-trivial portion of the semantics of modality
is available to an extensionalist logician.

Perhaps, Kripke meant that he had refuted Quine’s scepticism about quantified modal
logic. Had he not after all done for quantified modal logic what Tarski and others
had done for non-modal predicate logic: provided it with an extensional set-theoretic
semantics? In addition he had axiomatised the logic and proved it complete for the given
semantics. What else could one require of the interpretation of a logic?

Quine, however, was not satisfied. In 1972 he writes in a review of Kripke’s paper
‘Identity and Necessity’ [96]:

The notion of possible world did indeed contribute to the semantics of modal
logic, and it behoves us to recognize the nature of its contribution: it led to
Kripke’s precocious and significant theory of models of modal logic. Models
afford consistency proofs; also they have heuristic value; but they do not
constitute explication. Models, however clear in themselves, may leave us
still at a loss for the primary, intended interpretation.

Whatever was his aim in 1959 or 1963, in his later work Kripke’s project is not to give
an explanation of modal concepts in non-modal terms. In the Preface to Naming and
Necessity, 1980 he writes:

I do not think of ‘possible worlds’ as providing a reductive analysis in any
philosophically significant sense, that is, as uncovering the ultimate nature,
from either an epistemological or a metaphysical point of view, of modal
operators, propositions, etc., or as ‘explicating’ them.

Clearly, Kripke’s essentialist concept of necessity (“metaphysical necessity”) simply can-
not be reductively explained in non-modal terms.

Among other modellings for predicate modal logic, David Lewis’s counterpart theory
should be mentioned.19 According to the Kripke paradigm, an individual may exist in
more than one possible world (with respect to our formal modelling, it is possible that
Eu and Ev should overlap, even if u ̸= v). For Lewis, however, each individual inhabits
only its own possible world; but it may have counterparts in other possible worlds. This
approach has also been influential, both in philosophical and in mathematical quarters.

1.5 General intensional logic

1.5.1 Carnap-Montague’s Intensional Logic

Frege’s theory of Sinn (sense) and Bedeutung (denotation, reference), which was outlined
in the article ‘Über Sinn und Bedeutung’ [32] has great intuitive appeal. In particular,

18Cf. [15].
19Cf. [75, 37].
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it seems to provide elegant and intuitively appealing solutions to the familiar difficulties
concerning:

(i) the cognitive significance of identity statements: how can ‘a = b’ if true, be an
informative statement differing in cognitive significance from ‘a = a’?

(ii) the problem of oblique or non-extensional contexts: how can two meaningful ex-
pressions with the same denotation (extension) ever fail to be interchangeable salva
veritate?

(iii) the problem of providing an adequate truth-conditional semantics for propositional
attitude reports.

Fregean solutions to these problems essentially involve the distinction between sense
and denotation. The appearance of oblique contexts in natural languages was interpreted
by Frege as indicating a certain kind of systematic ambiguity rather than a failure of
extensionality. According to Frege’s doctrine of indirect denotation, expressions denote
in (unembedded) oblique contexts what is ordinarily their sense. Frege’s extensional
point of view has been advocated and developed in the 20th century by Alonzo Church
[19, 20, 21] in his Logic of Sense and Denotation.20

Carnap [17], although still working within the Fregean tradition, saw the occurrence
of oblique contexts in natural languages as genuine counterexamples to the principle of
extensionality, according to which the denotation of a meaningful expression is always a
function of the denotations of its semantically relevant parts.

According to Carnap [17], each well-formed expression of a language has both an
extension (corresponding to Frege’s denotation) and an intension (roughly corresponding
to Frege’s sense). Intuitively, the intension of a sentence is the proposition that the
sentence expresses and the extension is the truth-value (true or false) of the sentence. A
proposition partitions the set of all possible worlds in two cells: (i) the set of all worlds
in which the proposition is true; and (ii) the set of all worlds in which the proposition is
false. Carnap, therefore, proposed to identify a proposition p with the function fp from
the set W of all possible worlds to truth-values which for every possible world w has
the value fp(w) = the truth-value of p in the world w. Thus, propositions are identified
with functions from possible worlds (or in Carnap’s case, from state descriptions, or
set-theoretical models, that are taken to represent possible worlds) to truth-values. The
intension of a sentence is the proposition it expresses and its extension in a possible
world w is the truth-value in w of the proposition it expresses.

The intension of a predicate expression is intuitively the property (or relation-in-
intension) that the predicate expresses. A property of individuals determines for every
possible world w, the set of individuals that has the property in that world. Hence, a
property P , can according to Carnap and Montague be identified with a function fP from
the set W of all possible worlds to sets of individuals, which for every possible world w

20As emphasised by Church [22] and Kaplan [60], the Fregean tradition in intensional logic should
be distinguished from the quite different tradition stemming from Russell where the sense/denotation
distinction is avoided. Russellian semantics, in contrast to Fregean semantics, assigns only one kind
of semantic value, most naturally thought of as a kind of denotation, to the well-formed expressions
of a language. In Russellian semantics, (logically) proper names refer (directly) to objects, sentences
designate Russellian propositions, i.e. complexes of properties and objects, and predicates stand for
propositional functions. Modern so-called theories of direct reference belong to the Russellian tradition
(cf., for instance, [98]).
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has the value fP (w) = the set of all entities that in the world w has the property P .
For instance, the property of being red, is identified with the function form possible
worlds to individuals that associates with every possible world the set of red objects in
that world. Similarly, an n-ary relation-in-intension R is identified with a function from
possible worlds to sets of ordered n-tuples. The intension of a predicate expression is the
property or relation-in-intension it expresses and its extension in a possible world w is
the set or relation-in-extension that is the value of that intension in the world w.

Finally, singular terms have individuals as their extensions and their intensions are
what Carnap calls individual concepts, i.e., functions from possible worlds to individuals.
The singular term ‘the Greek philosopher that taught Alexander the Great’ has in the
actual world Aristotle as its extension. In another possible world, the extension may
be Plato. In possible worlds where there is no unique Greek philosopher that taught
Alexander, the singular term might be assigned an arbitrary conventional extension, the
null extension. Since proper names, presumably, are rigid designators (cf. [71]) they have
the same extension in every possible world (or at least in every possible world where the
bearer of the name exists). Hence, the intension of a proper name is a constant function
picking out the same object in every possible world (or at least this is the case for rigid
designators of objects that exist necessarily, for instance, the numerals designating the
natural numbers). On Kripke’s view, co-referring proper names have the same intension.
As a result, if a and b are co-referring proper names, then ‘a = a’ and ‘a = b’ have
the same intension. Thus, it seems that difference in cognitive significance cannot be
explained by difference in intension.

Kripke’s [66, 67, 68] major innovation was his use — within each model structure — of
a set of abstract points (indices, “possible worlds”) to represent the space of possibilities.
This innovation made it possible for Montague [84] — building on ideas from Carnap
[17] — to represent intensional entities (senses, intensions) by set-theoretic functions from
points (representing possible worlds) to extensions. Every kind of meaningful expression
has according to Carnap-Montague semantics a suitable intension, i.e., a function from
possible worlds to appropriate extensions. If E is an expression with intension Int(E),
and w is a possible world, then Int(E)(w), i.e., the result of applying the intension of
E to the possible world w, is the extension of E in the world w (in symbols Extw(E)).
The extension of E, Ext(E), is the extension of E in the actual world.

Following Carnap [17] we distinguish between different kind of constructions (or con-
texts) Φ:

(i) Φ is extensional iff there exists a function fΦ such that for every possible world w,
and all (appropriate) expressions E1, . . . , En, Extw(Φ(E1, . . . , En)) = fΦ(Extw(E1),
. . ., Extw(En)). An extensional language is a language where every grammatical
construction is extensional. An extensional language satisfies the principle of exten-
sionality, i.e., the principle that the extension of a complex expression is always a
function of the extensions of its semantically meaningful constituents.

(ii) Φ is intensional iff there exists a function FΦ such that for all (appropriate) expres-
sions E1, . . . , En, Int(Φ(E1, . . . , En)) = FΦ(Int(E1), . . ., Int(En)). An intensional
language is a language in which every grammatical construction is intensional. In-
tensional languages satisfy the principle if intensionality, i.e., the principle that
the intension of a complex expression is always a function of the intensions of its
semantically meaningful constituents.
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The principles of extensionality and intensionality are special cases of the principle of
compositionality, i.e., the principle that the meaning of a complex expression is deter-
mined by its structure and the meaning of its constituents (cf., [104]).

The classical Boolean connectives are, of course, paradigm examples of extensional
constructions. By modifying the above definitions slightly, in order to take variable
binding operators into account, the classical quantifiers ∀ and ∃ are naturally construed
as extensional operators as well. The modal operators ! and ♦, on the other hand, are
examples of constructions that are intensional but not extensional. Carnap also consid-
ered propositional attitude constructions like ‘John believes that . . . ’, that in his opinion
were not even intensional. Such constructions for which the principle of intensionality
fails, may be called ultraintensional.

In order to give a semantic analysis of belief contexts, Carnap introduced the notion
of intensional isomorphism [17, §14]. Roughly speaking, two expressions are intension-
ally isomorphic iff they are built up from atomic expressions with the same intensions
in the same way. Intensionally isomorphic expressions were said to have the same in-
tensional structure. The intensional structure of an expression can thus be identified
with the equivalence class of all expressions of the given language that are intension-
ally isomorphic with it. Intensional isomorphism and intensional structure was Carnap’s
explications of the intuitive notions of synonymy and meaning, respectively.21 The inten-
sional structures that correspond to sentences may be viewed as structured propositions
in contrast to Carnapian propositions (functions from possible worlds to truth-values)
that lack syntactical structure.22 Carnap suggested that belief and other propositional
attitudes be operators on such structured propositions rather than on intensions. If so,
then intensionally isomorphic expressions are substitutable salva veritate in propositional
attitude contexts. This seems fairly reasonable since one might argue that synonymous
expressions are substitutable in such contexts.

Montague’s intensional logic IL is a typed λ-calculus.23 There are two basic types e
and t of (possible) individuals and truth-values (true and false), respectively. Then, there
is for every two types α and β, a type (αβ) of functions from entities of type α to entities
of type β. Finally, for every type α, there is a type (sα) of senses appropriate for entities
of type α. Montague identifies the senses with Carnapian intensions, i.e., the members
of (sα) are functions from possible worlds to entities of type α. All the domains of the
various types are constant from one world to another. In particular, there is one domain
of individuals that is common to all possible worlds. Thus, the domain of individuals is
best thought of as the domain of all possible individuals.

For every type α, the language of IL contains variables and non-logical constants of
type α. It also contains the logical constants: = (identity), λ (lambda-abstraction), ˆ
(intensional abstraction), ˇ (intensional application), and brackets [, ]. The sentential
connectives, quantifiers ∀, ∃, and modal operators !,♦, are definable in terms of =, λ,
ˆ, and ˇ (Gallin [33, 15-16]). For each type α, one can quantify in IL over all the entities
of type α. In particular, one can quantify over the collection of all possible individuals.

21This theme is developed further in Lewis [76].
22See King [63] for an overview of more recent work on structured propositions and references to the

relevant literature (including work by David Kaplan, Nathan Salmon, Scott Soames, Jeff King, and
others within the “direct reference”-tradition on so-called “Russellian propositions”).

23See Montague [84], and especially Gallin [33] for a thorough model-theoretic study of Montague’s
intensional logic. In particular, Gallin presents an axiomatisation of Montague’s intensional logic and
proves that it is strongly complete with respect to general Henkin-type models.
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In other words, IL is committed to an ontology of possible individuals.
Complex terms of IL are built up from atomic terms (variables and constants as

follows): (i) If A is a term of type (αβ) and B is a term of type α, then [AB ] is a term
of type β; (ii) If A is a term of type β and x is a variable of type α then λxA is a term
of type (αβ): (iii) If A, B are terms of the same type, then [A = B] is a term of type t;
(iv) If A is a term of type α, then ˆA is a term of type (sα); (v) If A is a term of type
(sα), then ˇA is a term of type α. Terms of type t are called formulæ.

In the semantics, every (closed) term A of type α is assigned an extension Extw(A) of
type α relative to w, for each possible world w. The intension Int(A) of A is then the
function from worlds to extensions such that for each w, Int(A)(w) = Extw(A). For each
term A, ˆA is a name of the intension of A. And, for each term A denoting an intension
F , ˇA is a term which at every world w, refers to the value of F at w. Hence, (A =ˇˆA)
will always hold. The semantics of IL satisfies the principle of intensionality and ˆ is
the only primitive non-extensional construction of IL. The modal operator ! is defined
in IL as follows:

!ϕ =df. [ˆϕ = ˆT ],

that is, ϕ is necessarily true iff the intension of ϕ equals the intension of any tautology
T . ! is an S5-operator and the Barcan formulæ and their converses are valid in the
semantics.

Montague’s intensional logic admits quantifying into intensional constructions. Ac-
cording to Montague’s intended interpretation, the individual quantifiers range over pos-
sible individuals. Quantification over actual individuals can be analysed by means of the
introduction of an existence predicate. However, Montague’s use of quantifiers ranging
over possibilia is of course an abomination in the eyes of Quine and likeminded philoso-
phers who favour an actualist metaphysics.

1.5.2 Church’s logic of sense and denotation

The expressions of natural language are according to the Fregean view systematically
ambiguous: both the sense and the denotation of an expression vary with the linguistic
context in which it occurs. This systematic ambiguity is the basis for Church’s program
[19, 20, 21] of representing natural language discourse involving oblique contexts within
a formal language the logic of which is completely extensional, that is, in which the
ordinary principles of substitutivity of classical logic are valid. His fundamental idea is
to let each expression A of the natural language be represented by different expressions
A0, A1, A2,. . . of the formal language depending on the context in which A occurs. Sup-
pose, for instance, that the sentence “Tom is married”, when it occurs in a non-oblique
context, is translated as Married(Tom). Then, the sentence (1), where the verb phrase
“suspects that” gives rise to an oblique context, may be represented as:

(2) Suspects(Mary, Married1(Tom1)),

where Married1 and Tom1 are atomic expressions that denote the (ordinary) senses of
Married and Tom, respectively. Analogously,

(3) George knows that Mary suspects that Tom is married

may be represented as
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(4) Knows(George, Suspects1(Mary1, Married2(Tom2))).

Using Church’s terminology, we may say that Tom1 and Tom2 denote the concept
of being Tom and the concept of being the concept of being Tom, respectively. In this
way ambiguity is avoided in the representing language and the classical principles of
substitutivity as well as all other principles of classical logic are preserved.

Church’s logic of sense and denotation is a simple type theory that has much in
common with Montague’s intensional logic IL but which differs from IL in not violating
the principle of extensionality. In Montague’s language there is, as we recall, only one
non-extensional operator ˆ which transforms a term A into a term ˆA that denotes the
intension of A. Since A occurs in ˆA, ˆ is non-extensional. Church’s logic of sense and
denotation, on the other hand, is fully extensional. For each denoting expression A, there
is in Church’s language another expression ⟨A⟩, denoting the sense of A. Since ⟨A⟩ does
not contain A as a syntactic part, the occurrence of A in the language does not violate
extensionality. ⟨A⟩ replaces A in oblique contexts. For instance, the indirect discourse
construction: ‘John believes that ϕ’ is replaced by the direct discourse version: ‘John
believes ⟨ϕ⟩’, where ⟨ϕ⟩ is a name of the proposition expressed by the sentence ϕ. The
construction ‘John believes ⟨ϕ⟩’ differs from ‘John believes ˆϕ’ in being fully extensional.

In Church [18] and [19], three alternative principles of individuation for senses were
proposed referred to as Alternatives (0), (1) and (2). The alternative that individuates
senses most coarsely is Alternative (2), according to which two expressions have the
same sense iff they are logically equivalent. Roughly speaking, Alternative (2) amounts
to identifying Fregean senses with Carnapian intensions, i.e., with functions from possible
worlds (or models or state descriptions representing possible worlds) to denotations (or
extensions). Thus, Alternative (2) is the alternative which is closest to modern possible
worlds semantics.

The alternative that is closest to Frege’s own conception of sense is probably Alterna-
tive (0), according to which two terms A and B have the same sense, if and only if they
are intensionally isomorphic in the sense of Carnap [17]. In addition to alternatives (0)
and (2), Church also considered an intermediate alternative called Alternative (1), which
is fairly close to Alternative (0) but seems to have less intuitive motivation. According
to Alternative (1) expressions that are lambda-convertible to each other have the same
sense.

Church’s logic of sense and denotation is not directly concerned with linguistic ex-
pressions and their senses and denotations, but rather with the language-independent
so-called concept relation that holds between senses and the entities that they are senses
of. As Church points out in [21], the more finely senses are individuated, the more closely
will the abstract theory of senses and their objects resemble the more concrete theory of
names and their denotations, with the concept relation playing a role similar to the one
played by the denotation predicate of semantics. Consequently, antinomies analogous to
the semantic antinomies may arise for formulations of the logic of sense and denotation
along the lines of Alternative (0) or (1). Indeed, Myhill [85] points out that Church’s
Alternative (0) is threatened by the antinomy described by Russell in The Principles of
Mathematics, Appendix B, p. 527, the so-called Russell-Myhill paradox (cf. Anderson
[2]).

The development of a logic of sense and denotation along the lines of Alternative (0) —
taking Carnap’s intensional isomorphism, Church’s synonymous isomorphism, or some
related notion as a criterion for two expressions having the same sense — is of great
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theoretical interest. First of all, the fundamental principle of Alternative (0):

sense(FA) = sense(FB) → sense(A) = sense(B),

seems to be involved whenever a difference in sense between FA and FB is explained in
terms of a difference in sense between A and B. Secondly, any principle of individuation
for senses that is substantially less strict than Alternative (0) seems to be inadequate for
a Fregean treatment of the logic of propositional attitudes.

Unfortunately, however, the attempts so far to develop a logic of sense and denotation
along the lines of Alternative (0) have led either to inconsistency or to great complica-
tions, for instance, in the form of an infinite hierarchy of concept relations of different
orders. Furthermore, no entirely satisfactory explanation has so far been given of the
notion of sense involved in Alternative (0). Related to this is the lack of an intuitive
semantic theory for Alternative (0) and a corresponding notion of logical validity.

However, the pursuit of Church’s Alternative (2) has made considerable progress.
Thus, David Kaplan [58, 60] and Charles Parsons [88] have provided versions of Church’s
logic of sense and denotation with a possible worlds semantics of Carnap-Montague type.
Parsons [88] even shows that his version of Church’s logic of sense and denotation is
exactly equivalent to (intertranslatable with) Montague’s intensional logic. Moreover
he provides an axiomatisation of Church’s Alternative 2 that is equivalent to Gallin’s
axiomatisation of Montague’s intensional logic.

1.6 Logical and metaphysical necessity

We make a rough distinction between two types of intuitive interpretations of the oper-
ators ♦ and ! of alethic modal logic. First there is the metaphysical or counterfactual
interpretation:

♦ϕ: either ϕ, or it could have been the case that ϕ.
!ϕ: ϕ, and it could not have been the case that ¬ϕ.

Then, there is the logical or metalogical interpretation:

♦ϕ: it is not self-contradictory to assume that ϕ is the case.
!ϕ: it is self-contradictory to assume that ¬ϕ is the case.

From now on, we shall use Lϕ and Mϕ for the logical modalities and reserve ! and ♦
for the metaphysical ones.

According to the possible worlds analysis of metaphysical necessity:

!ϕ is true at a possible world w iff ϕ is true at every possible world.

There is an extensive and fast growing philosophical literature on the proper analysis of
the notion of a possible world (cf. [25, 87]). Roughly speaking, we are distinguishing
between the world as the (concrete) totality of everything there is and possible worlds as
total alternative ways the world could have been (cf. [71, pp. 15–20]). Characterised in
this way, possible worlds are abstract entities: total possible states of the world. This no-
tion of possible world should be contrasted with David Lewis’s notion of a possible world
as a concrete alternative universe (cf. [80]). Regardless of our ultimate understanding of
possible worlds, to say that a statement ϕ is true at a possible world w means, intuitively,
that ϕ, with its actual meaning, would have been true (simpliciter) had w obtained.
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A delicate question that now arises is how metaphysical necessity relates to logical
necessity. The answer, of course, depends on how precisely we characterise the notion
of logical necessity. Different semantic characterisations give rise to different answers.
Suppose that we define logical necessity in terms of a class K of (admissible) models
(or interpretations). Each model M is associated with a set UM of points (representing
“possible worlds”) of which one is the designated point @M (representing “the actual
world”). We write u #M ϕ for the sentence ϕ being true at the point u in the model M.
Truth in a model M is defined as truth at the designated point @M of the model M.
Logical truth, or validity, is defined as truth in every model in K. We assume that:

(i) u #M ¬ϕ iff not: u #M ϕ

(ii) u #M (ϕ→ ψ) iff either u ̸#M ϕ or u #M ψ.

(iii) u #M Lϕ iff for every model N in K,@N #N ϕ.

(iv) u #M !ϕ iff for every point v ∈ UM, v #M ϕ.

Given this type of semantics, there is no guarantee that logical necessity implies meta-
physical necessity. Suppose, for example, that the language contains a logical constant
actually with the semantic clause:

(v) u #M actually (ϕ) iff @M #M ϕ,

i.e., actually (ϕ) is true at a point in a model iff ϕ is true at the designated point in the
model. Then, every instance of the following schema is valid:

(1) L(ϕ↔ actually (ϕ)),

although, the following schema fails (in both directions):

(2) !(ϕ↔ actually (ϕ)).

We can easily construct models M for a sentential language of the indicated kind for
which (2) fails.

Thus it appears, as Zalta [108] has argued, that logical necessity does not imply
metaphysical necessity. There are logical truths that are metaphysically contingent.
However, this claim is highly counterintuitive. There are various ways of avoiding the
conclusion that logical truth does not imply metaphysical necessity. One may, for one
reason or another, refuse constructions like actually, that make reference to special
worlds, the status of logical constants.

Another option is to modify the notion of logical truth. The notion of logical truth
that we have employed is the one we have called real-world validity. It is the notion
according to which a statement ϕ is logically true (valid) iff it is true at the actual world
in each model. As we have seen, however, there is an alternative notion, general validity,
according to which a statement is logically true iff it is true at each world in each model.

Let us write # and #∗ for real-world validity and general validity, respectively. The
two notions are related as follows: For any statement ϕ,

(1) # ϕ iff #∗ actually (ϕ).

(2) #∗ ϕ iff # !ϕ.
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The operator L was introduced by “reflecting” the meta-linguistic notion of real-world
validity into the object language. We can also introduce an operator L* corresponding
to the notion of general validity. The semantic clauses for L (real-world logical necessity)
and L* (general logical necessity) are:

(vi) u #M Lϕ iff for every model N in K,@N #N ϕ.

(vii) u #M L∗ϕ iff for every model N in K and every point v in N , v #N ϕ.

That is, L corresponds to truth at the actual world in each model and L∗ corresponds to
truth at every world in each model. The two notions of logical necessity are interdefinable:

(1) #∗ Lϕ↔ L∗actually(ϕ).

(2) #∗ L∗ϕ↔ L!ϕ.

Moreover, we have:

(3) #∗ L∗ϕ→ !ϕ,

although, as we have seen, the corresponding implication does not hold for real-world
logical necessity, i.e., for L.

Metaphysical necessity does not imply logical necessity. It does not appear self-
contradictory to think, as the Greeks did, that water is an element. But since water, as
it turned out, is a compound of oxygen and hydrogen, it could not have been an element.
There is, so to speak, no counterfactual situation, or possible world, where water is not
a compound. So even if it is not logically necessary, it is metaphysically necessary that
water is a compound. Hence, the statement:

(1) Water is a compound

is metaphysically necessary (assuming that “water”, is a rigid designator), but it is not
logically necessary. In conclusion, we can say that real-world logical necessity (L) neither
implies nor is implied by metaphysical necessity (!). General logical necessity (L∗) on
the other hand, implies metaphysical necessity, but is not implied by it.

The (epistemological) distinction between a priori and a posteriori also comes in here.
In Kripke’s theory, (1) exemplifies a statement that, although metaphysically necessary,
is nevertheless a posteriori. On the other hand, given certain assumptions, “The Paris
meter is one meter long” may be an example of a statement that is true a priori but is
not metaphysically necessary [71].

2 THE MODAL LOGIC OF BELIEF CHANGE

In this section, modal logic is brought to bear on an area which has already reached a
degree of maturity (although still in need of further development) and which has been
formulated with little or no regard to modal logic. By re-formulating the theory in terms
of modal logic, a degree of systematisation is gained, and — it is hoped! — the theoretical
understanding of the theory is enhanced.


