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I 

Zusammenfassung 
Die infantile Zerebralparese (IZP) ist das Resultat einer frühkindlichen Hirnschädigung. Die meisten 

Betroffenen entwickeln eine spastische Parese, was zu Schwäche, erhöhtem Muskel-
Dehnungswiderstand und Kontrakturen führt. Muskel-Sehnen Eigenschaften sind daher wohl deutlich 
verändert und skelettale Deformitäten sind die Folge. Der Spitzfuß ist eines der häufigsten Defizite und 
wird oft durch Intervention am Gastrocnemius behandelt. Das übergeordnete Ziel dieser Arbeit war 
es, nicht-invasive Behandlungsstrategien für diese Pathologie näher zu untersuchen. Außerdem sollten 
die Zusammenhänge zwischen Muskelstruktur und Funktion beleuchtet werden. 

In der ersten Studie wurden die Effekte einer Unterschenkel-Lagerungsorthese auf die 
Muskelmorphometrie des spastischen Gastrocnemius unter zu Hilfenahme von Ultraschall und 3D 
Bewegungsanalyse untersucht. Zeitgleich wurde eine gesunde Referenzgruppe ohne Behandlung 
eingeschlossen. Vor der Behandlung war die Muskel-Sehnen Einheit bei IZP Kindern im Vergleich zur 
Norm weniger dehnbar, der Muskelbauch und seine Faszikel (~Faserbündel) kürzer, wohingegen die 
Sehnen deutlich länger erschienen. Durch die Unterschenkelorthesen verbesserte sich die passive 
Dorsalextension vor allem mit gebeugten Knien. Die Gastrocnemius Muskelbauch- und Sehnenlänge 
blieben aber relativ unbeeinflusst, wohingegen die Muskeldicke und die Länge der Faszikel weiter 
abnahmen. Beim Gehen verbesserte sich dennoch die Fußhebung und außerdem wählten die Kinder 
eine höhere Ganggeschwindigkeit. Lagerungsorthesen können also das Gangbild verbessern, führen 
gleichzeitig aber zu Atrophie und ggf. zu einem Verlust von seriellen Sarkomeren. Dies lässt sich am 
ehesten durch die Immobilisierung im Rahmen der Behandlung erklären. 

Um eine alternative Therapieform zu finden, wurde in der zweiten Studie die kontraktile Aktivität 
des Gastrocnemius mittels Ultraschall, Bewegungsanalyse und EMG während des Gehens, Vorwärts-
Bergauf, bzw. Rückwärts-Bergab, sowie in der Ebene untersucht. Die Werte von IZP Kinder wurden 
ebenfalls mit einer Kontrollgruppe verglichen. Das Bergaufgehen steigerte die konzentrische Exkursion 
der Faszikel, wohingegen das Rückwärts-Bergabgehen zu vermehrter Exzentrik führte. Da sich 
exzentrisches Training gesunder Muskeln in der Vergangenheit positiv auf Faszikellängenwachstum 
auswirkte, schlussfolgerten wir, dass Rückwärts-Bergabgehen ggf. auch für Kinder mit IZP vorteilhaft 
wäre. Während des Gehens in der Ebene zeigte sich zudem, dass Kinder mit IZP nicht nur per-se kürzere 
Gastrocnemius Faszikel haben, sondern ebenfalls auf verkürzten, relativen Faszikellängen arbeiteten. 
Da Kinder mit IZP besonders lange Sarkomere haben, könnte die geringe relative Faszikellänge beim 
Gehen eine nützliche Anpassung sein, um ausreichend aktive Kraft produzieren zu können.  

In der dritten Studie wurde daher das Rückwärts-Bergabgehen auf dem Laufband mit statischem 
Dehnen als traditionelle Therapieform verglichen. Ultraschall, Bewegungsanalyse und handgesteuerte 
Dynamometrie wurden verwendet, um die Plantarflexorenkraft, die passive 
Sprunggelenksbeweglichkeit, die Gastrocnemius Morphometrie sowie die Steifigkeit und Dehnbarkeit 
auf Muskel-Sehnen und Gelenkebene zu untersuchen. Es wurde davon ausgegangen, dass nur das 
exzentrische Training Muskelwachstum anregt, die Kraft steigert und das Gangbild verbessert. Im 
direkten Vergleich beider Behandlungen führte das Rückwärts-Bergabgehen zu  schnelleren 
Gehgeschwindigkeiten und mehr Dorsalfexion in der Standphase. Nach dem Dehnen verschlechterte 
sich die Kniebeugung in der Schwungphase. Dehnen zeigte keinerlei Benefits gegenüber dem 
Laufbandtraining. Manuell statischem Dehnen sollte daher kein besonderer therapeutischer 
Stellenwert bei frei-gefähfigen IZP Kindern eingeräumt werden. Rückwärts-Bergabgehen ist dagegen 
ein effektives Gangtraining. Es setzt vermutlich neuronale und koordinative Reize. Eine Steigerung der 
Intensität könnte allerdings notwendig sein, um morphologische Muskel-Sehnen Anpassung zu 
stimulieren. 

In der Zusammenschau aller Ergebnisse scheinen positive Änderungen im Gangbild bei IZP Kindern 
sowohl durch Unterschenkelorthesen, als auch durch Rückwärts-Bergabgehen erreichbar zu sein. 
Beides führt aber nicht zu Muskelwachstum. Funktionelle Verbesserungen scheinen daher auch stark 
von neuronal, koordinativen Aspekten abhängig zu sein. 



 

II 

Abstract 
Cerebral Palsy (CP) results from an early brain damage. Most children develop spastic paresis, which 

leads to a lack of muscle force, pathophysiologically increased stretch-resistance and joint 
contractures. Muscle-tendon properties are considerably altered and promote skeletal deformities. 
The gastrocnemius muscle is frequently targeted to alleviate a common deficiency known as equinus. 
The overall objective of this thesis was to investigate several non-invasive treatment strategies for this 
muscle pathology. In addition, this thesis strived to promote the understanding about gastrocnemius 
structure-function relationships in CP. 

The first study investigated the effects of ankle foot orthotics on spastic gastrocnemius 
morphometrics as well as on gait by using ultrasound and motion capturing. Untreated controls served 
as reference. Prior to bracing, the gastrocnemius muscle-tendon unit was less extensible, while the 
muscle belly and fascicles were shorter and the tendon longer. Bracing increased passive dorsiflexion 
primarily with the knees flexed. Muscle belly and tendon length showed little change, but fascicle 
length as well as muscle thickness declined. Nevertheless, children walked faster and foot lift 
improved. We concluded that braces improved function but may also lead to atrophy and to a loss of 
serial sarcomeres probably related to the immobilization. 

During the second study, we searched for a readily available, substituting therapeutic stimulus and 
compared the contractile activity of the gastrocnemius on treadmills, namely during flat-forward, 
forward-uphill and backward-downhill gait using ultrasound, motion capturing and EMG. Results of 
children with CP were compared to healthy peers. Uphill gait promoted concentric fascicle action, 
while backward-downhill gait increased eccentric fascicle action. Since eccentric training had been 
previously shown to increase fascicle length in controls, backward-downhill walking could have been 
a potentially effective training for the gastrocnemius in CP, too. In addition, apart from having innately 
shorter fascicles, fascicles of CP children also worked at a shorter relative length. Due to findings of 
much longer sarcomeres, limited relative fascicle length could hence be an adjustment to produce 
enough active forces during gait. 

 During the third study, we compared backward-downhill walking versus static, manual stretching. 
Ultrasound, motion analysis and handheld dynamometry were used to test plantarflexor strength, 
passive ankle joint flexibility, as well as gastrocnemius morphometrics, stiffness and strain on muscle-
tendon and joint level. We hypothesized that only eccentric exercise was capable of inducing muscle 
growth, promoting strength and improving overground gait. When comparing both treatments, 
backward-downhill walking led to larger single stance dorsiflexion and faster achievable walking 
velocities while stretching aggravated knee flexion in swing. Strength, joint flexibility, as well as 
stiffness on muscle-tendon and joint level were not altered. Manual static plantarflexor stretching may 
thus not be emphasized in CP children with high ambulatory function. Backward-downhill walking can 
be an effective gait treatment, probably improving coordination or reducing dynamic stretch 
sensitivity. Nevertheless, more intense training might be necessary to further alter muscle-tendon 
properties.  

In sum, backward-downhill walking and bracing increased function without promoting or even by 
harming muscle growth. Thus, movement patterns in CP could strongly depend on habitual or 
coordinative aspects. Future research could focus on the interplay between muscle-tendon properties 
and neural coordination. 
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1. Introduction and literature review 

The following introduction gives an overview about children with Cerebral Palsy (CP) and their 

major impairments with an emphasis on their plantarflexor muscles and the related equinus pathology 

(1.1.-1.4). Subsequently, the author would like to review previous findings concerning micro- and 

macroscopical alterations of muscle tendon tissue in CP ranging from cell to organ level (1.5). In the 

last part of this section (1.6), a summary about previously documented muscle structure-function 

relationships in CP and previously detected effects of highly common treatments will be presented. All 

these aspects may assist the reader in understanding the purpose of this thesis (2) and in interpreting 

the findings of the three conducted studies which are presented later (3-5). 

1.1. Cerebral Palsy - Incidence and etiology 

 

Fig. 1-1 Common brain injuries associated with CP in premature and full-term infants. 

Extracted from Silbereis et al., 2010, Disease Models & Mechanisms 3, 678-688, p. 679. 

With permission from the Company of Biologists.  

Cerebral Palsy (CP) is the consequence of brain defects (abnormalities or lesions) before or after 

birth (Fig. 1-1). It affects 2 to 3 children per 1000 birth in Western Europe and is referred to as the most 

common neuromuscular disability in childhood (Surveillance of Cerebral Palsy in Europe, 2000). 
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Considering that the German birth statistics (Statistisches Bundesamt, 2017) showed ~738.000 

newborns in 2015, around 1500-2200 children were affected by CP only in that year. Worldwide a total 

prevalence of 17 million people has been reported (Graham et al., 2016).   

Eighty percent of the brain insults occur in utero, 10% around the time of delivery and 10% in the 

post-neonatal period up to 2 years (Wimalasundera and Stevenson, 2016). A particular risk factor is a 

low gestational age (< 28 weeks) which raises the prevalence to 10 per 1000 (Hoon, 2005). Depending 

on the period of the insults and the brain development, different regions are typically affected 

(Krägeloh-Mann and Horber, 2007; Wimalasundera and Stevenson, 2016) (Fig. 1-1). The injury often 

results from a lack of oxygen supply, infection, stroke or hypotension, with a subsequent inflammatory 

response (Wimalasundera and Stevenson, 2016). Imaging techniques may help to clarify the nature of 

the insult, but ~14% of the children have no abnormal magnetic resonance scans (Krägeloh-Mann and 

Horber, 2007; Reid et al., 2014). 

Sixty percent of brain deficiencies affect the periventricular white matter, 20% are grey matter 

lesions and 10% are brain malformations (Krägeloh-Mann and Horber, 2007). Periventricular white 

matter is directly next to the two ventricles (the cavities containing the cerebrospinal fluid). It is 

composed of connecting nerve fibres and myelin. Grey matter is composed of nerve cell bodies. A 

common reason for white matter damage is periventricular leukomalacia (softening and decay of the 

white matter) following intraventricular hemorrhage (Fig. 1-1 A) with decreased blood or oxygen 

supply (Krägeloh-Mann and Horber, 2007). By definition the brain injury itself is non-reversible but 

non-progressive (Bax et al., 2005). Promisingly, neuroplasticity research also focusses on whether the 

brain’s adaptive potential can be shaped during neuro-rehabilitation in CP patients to provide coping 

mechanisms (Reid et al., 2015a). Contrarily, the consequences of CP for movement, posture and the 

musculoskeletal usually deteriorate (Bax et al., 2005). 

 

Fig. 1-2 Topographical description in CP. Extracted from Graham et al., 2016, Nat 

Rev Dis Primers 7, 2:15082, p.4. With permission from Nature Publishing Group. 
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1.2. Classification schemes 

Overall, CP patients appear to be a rather heterogeneous group. A classification according to the 

topographic limb involvement: uni-, bilateral CP (Fig. 1-2), and the predominant movement disorder: 

spasticity, dyskinesia or ataxia (Fig. 1-3A), has been suggested (Surveillance of Cerebral Palsy in Europe, 

2000). Generally speaking, CP is categorized as  damage to the upper motor neuron (Rogers and 

Wrong, 2017) which means that the primary insult affects descending motor pathways (Fig.1-3 B) from 

the brain’s outer layer to the spinal cord (Purves, 2008).  

 

Fig. 1-3 Schematic description of affected brain parts and related disorders. A) Categorization according to 

affected brain regions and the predominant movement disorders. Note that also multiple areas of the brain 

might be affected at once. Extracted and adapted from https://www.gillettechildrens.org/get-involved/cerebral-

palsy-awareness gallery-infographics-6 (Accessed Jan 31, 2017). With permission from gillettechildrens specialty 

health care. B) Path of Upper and lower motor neuron. Extracted and adapted from Damjanov, I. 2000. Pathology 

for the health-related professions, Philadelphia; London, Saunders, p. 467. With permission from Elsevier. 

In the dyskinetic type, the dominant feature is the presence of involuntary movements whereas 

the ataxic type primarily displays shaky movements. The former is associated with lesions of the 

cerebellum (Fig. 1-3A) while the dyskinetic subtype is linked with lesions of the basal-ganglia (Albright, 

2009; Purves, 2008). Both brain regions work synergistically to regulate movements (Albright, 2009). 

The ataxic and dyskinetic disorders are referred to as the extrapyramidal types (Pakula et al., 2009). 

The third group, which affects 85% of the children with CP, is the spastic subgroup (Surveillance of 

Cerebral Palsy in Europe, 2000). It is a disorder of the pyramidal tract (~outside the basal-ganglia and 

cerebellum) which involves nerve fibres traveling through the medullary pyramid, a white matter 

structure at the brain stem (Purves, 2008). The approximate subtype distribution is 55% for bilateral 

https://www.revolvy.com/topic/White%20matter&item_type=topic
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spastic CP, 30% for unilateral spastic CP, 7% for dyskinetic, 4% for ataxic, with 4% being unknown 

(Surveillance of Cerebral Palsy in Europe, 2000). 

While patients typically also face disturbances of sensation, cognition, communication or 

perception (Rosenbaum et al., 2008), the primary pathology of CP is located at the motor system 

(Verschuren et al., 2011). Consequently, the hallmark is a deficit in motor control (Damiano, 2009). 

Thus children in all subgroups display delayed motor milestones, e.g. later than usual crawling, sitting 

or walking. If a child with CP does not walk by the age of 2 years, more than two-third of the children 

will not achieve the ability to walk with or without support by the age of 6 years (Wu et al., 2004). 

From age 6 years onwards, there is typically less than 10% further capacity for improvements in their 

motor potential (Rosenbaum et al., 2002). The gross motor function level is a rough categorization of 

the children’s ambulatory function and distinguishes 5 levels with gradually worse ambulatory skills 

and increased reliance on assistive devices (Palisano et al., 1997; Palisano et al., 2008). Registries show 

that around 60% of patients with CP can be classified in level I and II (Reid et al., 2011), so they are 

able to walk independently without mobility aids such as crutches, walkers or wheelchairs. 

Nevertheless, in comparison to typically developing peers, their ambulatory mobility as a teenager is 

reduced (Bjornson et al., 2007). Among other factors, this is likely influenced by increased energy 

demands (Kerr et al., 2008) or safety concerns, e.g. about stumbling and falling when walking in crowds 

or over uneven terrain (Palisano et al., 2009). 

Patients with CP will usually require life-long care from multiple disciplines, such as from 

occupational and physical therapists, specialized orthopedics or neurologic physicians and also from 

technicians producing adaptive equipment or orthotics. Particularly their musculoskeletal disorders 

affecting the lower limbs are focused on from infancy and beyond. One of the primary aims for therapy 

in ambulatory patients is to facilitate locomotion in order to increase the patient’s activity and enable 

them to participate in daily activities.  

1.3. Major impairments 

Calf muscles are thought to considerably contribute to the movement pathology and therefore they 

are often targeted by invasive and conservative approaches (see section 4). Before getting to their role 

in gait (section 1.4.), the author would like to provide a short summary about two major features of 

the movement disorder in CP: paresis and increased resistance of muscles to stretch. Both will be 

explained by referring to features of the plantarflexor muscles. Increased resistance of muscles to 

stretch can be neurally or non-neurally mediated which will be outlined in 1.3.2. It is acknowledged 

that further aspects, such as a lack of selective motor control, which is manifested as synergistic and 

involuntarily coupled movement patterns, can be considered disabling as well (Chruscikowski et al., 
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2016; Ostensjo et al., 2004). Yet, since these aspects are not specifically targeted during the current 

thesis, they will not be addressed in further detail. 

1.3.1. Paresis  

 

Muscle paresis in CP is caused by disrupted voluntary commands which, simply put, results in 

weakness. A lack of limb strength is generally detrimental since it is a significant negative predictor for 

declined motor function in CP (Ross and Engsberg, 2007). Plantarflexors are quite severely involved. 

During instrumented strength tests, plantarflexors of children with uni- or bilateral CP display about 

40-70% decreased concentric (Ross and Engsberg, 2002) or isometric strength levels (Downing et al., 

2009; Elder et al., 2003; Stackhouse et al., 2005; Wiley and Damiano, 1998) with respect to values of 

typically developing controls.   

From a morphological perspective, the plantarflexors’ active isometric force is proportional to their 

cross-sectional area (Fukunaga et al., 1996). Therefore, reduced size of spastic muscles in CP children 

(see 2.2.) could have a negative influence on strength. Fukunaga et al. (1996) also suggested that, in 

general, differences in fibre type play a role for torque production capacity, with slow muscles having 

a lower specific tension (force per unit area). Indeed, some studies in CP reported that the gastrocnemii 

(Ito et al., 1996) or that the general triceps surae muscles (Marbini et al., 2002) display a shift towards 

slower muscle fibre types (see 2.1.). Apart from that, an increased portion of the spastic plantarflexors 

seems to be taken up by intramuscular fat (Noble et al., 2014a) which reduces the actual amount of 

contractile tissue within a given muscle volume. 

Apart from these structural features, neural deficits promote paresis. When relating the maximal 

voluntary isometric torque of the plantarflexors in CP to the underlying cross-sectional area, the 

relative torque production capacity is limited (Elder et al., 2003). Since this was shown for affected and 

non-affected limbs (Hussain et al., 2014; Elder et al., 2003), recruitment deficits of central origin likely 

have an impact on muscle force production in CP as well. Hence, from a neuro-physiological 

perspective, children with CP have a reduced ability to fully activate their plantarflexors (Elder et al., 

2003; Rose and McGill, 2005; Stackhouse et al., 2005). It is therefore likely that only a reduced fraction 

of the muscle is voluntarily activated. Furthermore, Rose and McGill (2005) suggested that patients 

with CP are unable to recruit higher threshold motor units or drive lower threshold motor units to 

higher firing rates. In addition, increased antagonistic co-activation during maximal plantarflexor 

contractions has been noted (Elder et al., 2003; Stackhouse et al., 2005). This was thought to limit 

agonistic force production. Yet in adults with unilateral CP, antagonistic co-activation of tibialis anterior 

muscle was no negative predictor of plantarflexor torque production during strength tests (Hussain et 

al., 2014). 
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Moreover, Dietz and Sinkjaer (2007) argued that neural dysfunction, e.g. increased muscle tone, 

may also compensate for paresis although findings in CP are heterogeneous: While increased passive 

joint resistance seems not to be related to reduced plantarflexor strength (Ross and Engsberg, 2002), 

weaker children indeed display increased reflexes (Poon and Hui-Chan, 2009). Nevertheless, Poon and 

Hui-Chan (2009) also suggested that paresis and spasticity are separate dysfunctions of the motor 

system in CP. 

1.3.1.1. Assessments 

To evaluate the extent of paresis in orthopedic practice, maximal voluntary plantarflexor strength 

is typically manual evaluated and subjectively graded from 0 (~no contraction) to 5 (~normal strength) 

(Medical Research Council, 1981). Alternatively, the number of unilateral heel raise repetitions is 

counted (Dreher et al., 2012; McNee et al., 2009). For the heel raise test, age-dependent normative 

values exist (Lunsford and Perry, 1995; Maurer et al., 2007; Yocum et al., 2010), e.g. fewer than 13 

repetitions have been considered conspicuous for children (Maurer et al., 2007). Notably, heel raises 

may reflect primarily strength endurance. Although repeatability for heel raise tests in children with 

CP older than 6 years seems to be high (van Vulpen et al., 2013), the discriminatory power of such tests 

is limited since CP children may frequently not be able to perform a single heel raise. 

For a more objective analysis, portable hand-held dynamometric devices can be easily implemented 

in routine diagnostics. For maximal isometric plantarflexor strength tests, an acceptable standard error 

of the measurement of 2.7 Nm has been reported when averaging 3 repetitions from hand-held 

dynamometry (van Vulpen et al., 2013). The smallest detectable change was reported to be 25-39% 

(Taylor et al., 2004; van Vulpen et al., 2013). It is noteworthy to state that using an isokinetic 

dynamometer has been considered to be difficult in children with CP (Jung et al., 2013). Nevertheless, 

several studies successfully implemented them for plantarflexor strength diagnostics in children with 

CP (Brouwer et al., 1998; Stackhouse et al., 2005) and in young adults with CP (Barber et al., 2012). 

However, due to the associated costs, isokinetic devices are frequently not available in medical 

treatment centers which are dedicated to pediatric orthopedics. To the best of the author’s 

knowledge, no study directly compared the precision of isokinetic or hand-held devices for 

plantarflexor strength tests in children with CP. Considerable variability between tests may be 

attributable to the patients rather than to the equipment. 

In summary, active force production in plantarflexors of children with CP is considerably limited. 

Apart from reduced muscle size or altered compositions (see 2.1 and 2.2.), CP patients face difficulties 

to maximally activate their muscles. While routine clinical strength tests may have little discriminatory 

power, hand-held dynamometric devices may be a cost effective alternative for providing objective 

data on strength. 
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1.3.2. Pathologically increased muscle stretch-resistance  

The origin of the pathologically increased stretch-resistance in CP has been classified into neural and 

non-neural aspects (Fig. 1-4) (van den Noort et al., 2016). 

 

Fig. 1-4 Contributions to pathophysiologically increased muscle stretch-

resistance in CP. Extracted from van den Noort et al., 2016, Gait Posture. 49S, 112, 

p. 112. With permission from Elsevier. 

 

1.3.2.1. Neural origin of muscle stretch-resistance 

Spasticity is a ubiquitously used term in the context of CP often criticized for being non-specifically 

used to describe manually perceived resistance when examining passive joint mobility (Harlaar, 2016). 

Of note, spasticity should be considered a precise sign rather than a collection of different symptoms 

(Lin, 2011). It was initially defined as ‘a velocity-dependent increase in tonic stretch reflex’ (Lance, 

1980). Recently a consensus (Fig. 1-4) highlighted that spasticity itself can be one portion of the 

increased resistance that is felt externally at the joint level, with spasticity itself being velocity 

dependent hyperreflexia (van den Noort et al., 2016).  

Unlike hyperreflexia, there can also be some non-velocity dependent increase in activation of a 

muscle in CP, referred to as dystonia. It features sustained muscle activity at rest which may be further 

raised by slow stretch. Thus dystonia may be best placed under involuntary background muscle 

activation (Fig. 1-4). Consequently, dystonia is also defined as stretch-sensitive tonic muscle 

contraction (Gracies, 2005b). Dystonia is arousal dependent, e.g. it disappears during sleep, which is 

not the case for spasticity (Graham et al., 2016). Apart from affecting passive stretch, it can alter limb 

posturing and, during active motion, dystonia may cause repetitive, tremulous like movements. 

Dystonia is thus categorized as a disorder of posture and movement (Graham et al., 2016). 

http://dict.leo.org/ende/index_en.html#/search=ubiquitous&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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The third group of alterations that contributes to increased resistance against stretch is non-neural 

in origin (see 1.3.2.2.) and is most likely due to alterations in muscle-tendon dimensions and 

properties.  

The major consequence of spasticity is a lack of control over spinal reflexes (Mukherjee and 

Chakravarty, 2010). Both the input from brain to spinal cord, as well as the interaction between spinal 

cord and muscle-tendon complexes is altered (Bar-On et al., 2014b; Mukherjee and Chakravarty, 

2010). First, for the input from the brain to the spinal cord, 3 descending pathways are mainly 

responsible (Mukherjee and Chakravarty, 2010): the cortico-spinal, the reticulo-spinal, and the 

vestibulo-spinal tract. Concerning the cortico-spinal tract (from cortex onto motor neurons in the 

spinal cord), spasticity is only thought to be caused if the lesions include the premotor and 

supplementary motor areas (Mukherjee and Chakravarty, 2010). Peacock (2009) and Bar-On et al. 

(2014b) emphasized that spasticity appears to be a result of damage or abnormal input to the 

vestibular and reticular nuclei (network of a neurons) or their tracts. Both act to control muscle tone 

in the lower limbs. Damage of the reticulo-spinal tract decreases its inhibitory influence of spinal motor 

neurons, resulting in increased muscle tone. The vestibulo-spinal tract is involved in balance and anti-

gravity support stimulating extensors. It is connected to the cortex, which inhibits its activity. Thus 

damage of the vestibulo-spinal tract may lead to flexed limb postures (Bar-On et al., 2014b; Peacock, 

2009). 

Second, for the interaction between spinal cord and muscle-tendon complex, the main decreased 

inhibitory spinal mechanisms include decreased reciprocal inhibition (antagonist inhibition by 

contraction of the agonist) (Leonard et al., 2006) and decreased post activation depression (reflex 

amplitude depression upon recurrent stimulation) (Achache et al., 2010; Bar-On et al., 2014b). 

Concerning the plantarflexors, it was shown that with increasing levels of tibialis anterior 

contraction, the motor neuron inhibition of soleus (agonistic muscle) is impaired in patients with SCP 

(Leonard et al., 2006). Additionally, Achache et al. (2010) found impaired post-activation depression in 

the soleus in young adults with SCP and revealed additional reduced pre-synaptic inhibition of afferent 

inputs from the muscle spindles. Altered supraspinal drive from higher structures on presynaptic 

interneurons was thought to be responsible (Achache et al., 2010). A reduction in pre-synaptic 

inhibition will lead to an increased neurotransmitter release on the motor neuron and reduce the 

depression of reflexes. Further, missing inhibition from afferent input from golgi-tendon organs 

delivering information about tendon tension could play a role (Mukherjee and Chakravarty, 2010). 

 In addition to missing inhibitory spinal mechanisms, exaggerated reflexes might result from 

hyperactivity of gamma motor neurons (Dietz and Sinkjaer, 2007). They provide the excitation of 

muscle spindles and are supposed to regulate their tension. This helps provide sensory information 

about the degree of lengthening or shortening of skeletal muscle fibres (Hammerstad, 2007). A further 

http://www.sciencedirect.com/topics/page/Skeletal_muscle
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aggravating factor for increased reflexes in CP could be hyper-excitability of alpha moto neurons with 

an amplified and prolonged response to excitation which causes plateau potentials. This is probably 

related to altered membrane properties (Mukherjee and Chakravarty, 2010).  

1.3.2.2. Non-neural origin of muscle stretch-resistance 

The second group of alterations that contribute to increased resistance against stretch in children 

with CP (Fig. 1-4) is likely due to alterations in muscle or tendon dimensions and properties and thus 

are non-neural in origin.  

Firstly, several studies dealt with morphological and mechanical factors affecting passive ankle joint 

motion in healthy humans: Clearly, the length and compliance of a muscle belly and its tendon can be 

detrimental for joint flexibility during a stretch maneuver: In adult gastrocnemius muscles, 27-60% of 

the whole muscle-tendon unit elongation during passive stretch are due to elongation of the muscle 

fascicles (deMonte et al., 2006; Herbert et al., 2002; Hoang et al., 2007b). These variable percentage 

values may depend on methodological considerations during testing, e.g. if direct measurements or 

model-based estimations of the muscle tendon-unit length have been used to calculate tendinous 

tissue length. Despite being fairly stiff, the tendon (intra-muscular and extra-muscular part) may 

considerably contribute to the length change of the muscle-tendon unit, e.g. due to tautening of 

tendon slack and due to its much longer length compared to fascicles. Nevertheless, the relative 

lengthening demands on muscle fascicles, expressed as percentage change in length (~strain), are 

much greater than those on the tendon (deMonte et al., 2006; Hoang et al., 2007b). In a refined 

analysis including information about tendon curvature during dorsiflexing stretch, the actual passive 

resistive Achilles tendon strains are quite small (2-3%) (deMonte et al., 2006). Still, Kawakami et al. 

(2008) reported that stiffness of the medial gastrocnemius tendon is one of the limiting factors for 

ankle joint flexibility. The authors found a negative association between tendon and muscle belly 

elongations during passive stretch. They reasoned that stiffer tendons lead to larger lengthening of 

fascicles and may therefore also cause a more severe sensation of muscle stretch (Kawakami et al., 

2008).  

Apart from that, it is not exactly known to what extent muscle thickness contributes to passive joint 

flexibility (Weppler and Magnusson, 2010). In middle-aged to old adults, maximum passive dorsiflexion 

negatively correlates with calf muscle thickness, suggesting that thicker muscle bellies limit passive 

joint range of motion (Kawakami et al., 2003). Also for elbow-flexors (Chleboun et al., 1997) and 

hamstrings (Magnusson et al., 1997), negative relationships between measures of muscle size and joint 

flexibility have been reported in neurologically intact individuals. These associations might be also 

displayed during maturation. In typically developing children and youth, a decline in passive 

dorsiflexion is usually noted during maturation (Benard et al., 2011; Weide et al., 2015). Weide et al. 

(2015) argued that augmented contractile material in parallel could be responsible for the increased 
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plantarflexor resistance to stretch. Alternatively, since during maturation the gastrocnemius tendon 

stiffness also increases (Waugh et al., 2012), higher tendon stiffness might also have a negative impact 

on passive dorsiflexion.  

Considering that similar to muscle size, tendon stiffness is highly responsive to mechanical loadings 

(Bohm et al., 2015), larger muscle size and increased tendon stiffness may frequently occur in concert 

in trained subjects. Both factors may in principle limit passive dorsiflexion. In addition, intrinsic 

properties other than muscle mass per-se may be decisive for altered joint-stiffness, since passive 

plantarflexor muscle stiffness is higher in long distance runners than in untrained men, despite no 

difference in cross-sectional muscle area (Kubo et al., 2015). So, in typically developing children or in 

trained adults a decline in dorsiflexion could reflect a history of increased loading instead of 

degenerative processes. 

 

In patients with CP, however, degenerations due to disuse and immobilization are likely to be the 

cause of limited dorsiflexion and increased joint stiffness. Amongst others, alterations on 

microstructural muscle level (see 2.1), e.g. resting filamentary tension, different MHC isoforms, altered 

Titin or connective tissue properties may generally contribute to increased stretch resistance 

(Gajdosik, 2001).  Frequently cited models for non-neural stretch resistance in children with CP are 

animal studies with immobilizing interventions (Blanchard et al., 1985; Tardieu et al., 1977; Williams 

et al., 1988; Williams, 1990; Williams and Goldspink, 1978; Brown et al., 1999).  In principle, muscles 

adapt to a shortened or lengthened immobilization, such that the maximum of force exertion coincides 

with the immobilized position (Williams and Goldspink, 1978). So, in adult muscle-tendon units, 

immobilization under tension results in sarcomere addition in series (fibre length increase), while the 

immobilization in unstrained, shortened positions results in sarcomere loss (fibre length reduction). 

The latter may be analogous to chronically shortened muscles in CP patients. Obviously, next to length 

adaptations, cross-sectional atrophy occurs in response to immobilization, which is promoted if a 

muscle is kept on short length (Dupont Salter et al., 2003; Spector et al., 1982) and also intrinsic 

properties of muscles may change, e.g. more stiffness per gram of muscle tissue has been observed in 

immobilized animal muscle (Brown et al., 1999). 

In children with CP, the degree of chronic plantarflexor shortening, termed contracture, usually 

deteriorates with increasing age (Hägglund and Wagner, 2011). Yet few studies specifically 

documented the ‘untreated’ progression: McNee et al. (2007) reported a decline of around -2.5° in 

maximum passive dorsiflexion in 12 weeks. Maas et al. (2014) observed a reduction of -3.8° in 6 weeks.  

In spastic paretic disorders that do not involve intrauterine development (e.g. stroke or spinal cord 

injury), degenerative and trophic muscle changes seem to be a rather immediate response after a 

central lesion while the muscles’ inability to relax usually becomes more prominent later on (Gracies, 
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2005b). Less is known about the temporal cascade in CP but various general pathways for contracture 

formation have been suggested:  The primary speculation in CP children is that muscle length is not 

able to keep up with bone growth and thus muscle-tendon units are too short and restrict passive joint 

excursion (Dayanidhi and Lieber, 2014; Graham et al., 2016). This is referred to as the neurogenic 

hypothesis of inhibited growth (Hof, 2001). Hof (2001) further distinguished muscle length adaptation 

due to hypertonia. Here it was explained that chronic muscle activity is thought to keep muscle-tendon 

units in a shortened position which may induce length dependent muscle atrophy (Mathevon et al., 

2015). This will supposedly be aggravated by disuse and immobilization (Gracies, 2005a). Generally, CP 

has been viewed as a mixture between unloading due to disuse or immobilization and chronic 

overloading due to spasticity (Lieber, 2010, p. 271ff). Notably, in most mildly affected children, the 

chronic tension due to resting muscle activity will presumably be of rather low load which may argue 

against overloading. Finally, as reasoned by Gracies (2005b), there could be a kind of viscous cycle 

between atrophy and stretch sensitivity. For a shorter muscle, any external pull may lead to a greater 

rate of length change and thus a more direct transmission to muscle spindles (Maier et al., 1972). This 

may in turn lead to avoidance of such stretch ranges and promote short length immobilization in 

children with CP. 

1.3.2.3. Assessments 

During pediatric orthopedic practice, the extent of triceps-surae contracture is traditionally 

manually examined by ruler-based goniometry. Distinctions are usually based on evaluations with 

flexed and extended knees, the latter seeming to be more reliable in typically developing children 

(Evans and Scutter, 2006). For repeated measurements in children with CP, Fosang et al. (2003) 

reported a standard error of the measurement of ~ 4–6° for maximum passive dorsiflexion within the 

same examiner. 

Next, as with the manual strength tests, a grading of the resistance throughout a manually applied 

stretch is part of the clinical routine. This is mostly done by using the (modified) Ashworth (Bohannon 

and Smith, 1987) or (modified) Tardieu Scale (Boyd and Graham, 1999), for example. Both tests rank 

the resistance on ordinal scales, are rather subjective, and lack reproducibility (Fosang et al., 2003; 

Mutlu et al., 2008; Yam and Leung, 2006). They have also been criticized for measuring different 

concepts of muscle stretch resistance: Scholtes et al. (2006) reasoned that Ashworth-Scales grade 

muscle tone per-se, while Tardieu-Scales grades its velocity dependent increase. The latter appears to 

be more in-line with the initial definition of spasticity by Lance (1980). Still, neither modified Ashworth 

scores (de Gooijer-van de Groep et al., 2013; Willerslev-Olsen et al., 2013), nor Tardieu scores (de 

Gooijer-van de Groep et al., 2013), nor other manual spasticity scorings (Poon and Hui-Chan, 2009) 

seem to be associated with the instrumentally determined reflexive torque or passive ankle torque 

measurements during dorsiflexion stretches (Fig. 1-5).  
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Fig. 1-5 Passive ankle joint moment-angle relationship in CP. Assessments were performed with an isokinetic 

test device in young adult patients with spastic Cerebral Palsy (SCP) and in typically developing controls (TD) 

during slow dorsiflexion stretches at 20°/sec. Note the steeper slope of the curve as well as the reduced range 

of motion in patients with SCP. Extracted from Barber et al., 2011, J Biomech 44, 2496-2500, p. 2499. With 

permission from Elsevier.  

Thus, using instrumented tests, more precise information about the amount and source of 

increased joint resistance can be gathered. Since fast muscle stretches provoke reflex activity, this was 

used to study the neural stiffness in plantarflexors in children with CP. Several studies thereby showed 

that the resistive torque rises abnormally sharply with increasing speed of ankle joint rotation (de 

Gooijer-van de Groep et al., 2013; Poon and Hui-Chan, 2009; Sloot et al., 2015b; Willerslev-Olsen et 

al., 2013). Thresholds for reflex excitation of the spastic soleus muscle were reported to be surpassed 

at median angular speeds of 36°/s, while in typically developing children the reflex response was 

induced at a median of 101°/s (Willerslev-Olsen et al., 2013). Although velocity-dependent gain of 

muscle activation is a frequent alteration in CP, increased stretch reflexes only contribute to increased 

plantarflexor stiffness in about every fifth child (Willerslev-Olsen et al., 2013). On the other hand, 

nearly every third CP child displays slight position dependent plantarflexor activity during slow 

dorsiflexion stretches, indicating larger neural sensitivity to increased muscle length (Bar-On et al., 

2014a).  

Apart from these neural sources, increased joint stiffness during slow and fast stretching in CP 

patients has been primarily attributed to higher tissue stiffness (Willerslev-Olsen et al., 2013; de 

Gooijer-van de Groep et al., 2013; Sloot et al., 2015b). During slow stretch maneuvers, the pathological 

increase in ankle joint stiffness with respect to controls varies from +135 to +340% (Alhusaini et al., 

2010; Barber et al., 2011a; de Gooijer-van de Groep et al., 2013; Peng et al., 2011; Ross et al., 2011). 

Motor-driven isokinetic devices have been frequently used in CP patients for the assessment of such 

resistive stiffness values (Barber et al., 2011a; de Gooijer-van de Groep et al., 2013; Ross et al., 2011; 

Willerslev-Olsen et al., 2013). While such set-ups may be considered most standardized, they have 

been considered impractical in pediatric populations due to limited compliance (Bar-On et al., 2014b). 
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Therefore, manually geared machines (Peng et al., 2011) or handheld-devices (Alhusaini et al., 2010; 

Bar-On et al., 2013; Boiteau et al., 1995) have been implemented during the assessment of ankle joint 

stiffness in CP. These manual instruments have been shown to deliver fairly reproducible measures, 

e.g. the resistive force encountered at a given ankle angle during slow stretch movements showed an 

ICC of 0.79 and a coefficient of variation of 13.9% (Boiteau et al., 1995).  

 

In summary, spasticity is a rather loosely used terminology in CP which is often utilized to describe 

all sources of the perceived resistance during manual muscle stretching. At fast stretch velocities, there 

is an abnormal gain of muscle activation in children with CP. Instrumented tests further revealed that 

CP children also display higher resistive torques during very slow stretches. So, largely independent of 

muscle activation, altered muscle-tendon dimension or properties (see 2.1 and 2.2) are thought to 

have a negative impact on joint flexibility. 

Increased joint resistance and limited dorsiflexion range of motion is usually seen as the 

pathological representation of contracture formation due to chronic plantarflexor muscle-tendon unit 

shortening. Although the cascade leading to contracture in CP is not clear, animal experiments suggest 

that immobilization at short muscle-tendon unit length may promote muscle wasting. Hence this 

model is also used to explain maladaptations within spastic calf muscles. 

 

1.4. Causes and consequences of equinus gait 

The function of plantarflexors during walking is to control tibia advancement, supply propulsion 

and, in the case of gastrocnemius, accelerate the forward swinging leg (Arnold et al., 2005; Neptune 

et al., 2001). Further, plantarflexors also contribute to a more upright gait, e.g. the soleus controls tibia 

advancement and indirectly affects knee extension (Arnold et al., 2005) while both the soleus and the 

gastrocnemius were shown to provide vertical center of mass accelerations (Steele et al., 2013).  

Children with SCP often walk in equinus which means that they contact the ground with the fore- 

or midfoot and lack dorsiflexion excursion. Experts assume that the gastrocnemius is generally more 

involved in equinus pathologies (Sees and Miller, 2013). Equinus gait affects 63-64% of the children 

classified in Gross Motor Function Classification System (GMFCS) Level I and II (Rethlefsen et al., 2016). 

The lack of dorsiflexion in swing supposedly increases the risk of tripping while the limited base of 

support during stance may impair balance (Goldstein and Harper, 2001). The consequences are not 

locally limited to the ankle joint: Concerning the knee, excessive flexion (48-61% prevalence) or 

hyperextension in stance may be related (20% prevalence). During swing, 41-60% display an additional 

lack of kneeflexion (Rethlefsen et al., 2016). Additionally, children with equinus are at risk for 
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developing complex bony foot deformities and 5-24% of children in GMFCS I-II develop valgus feet with 

a sagged midfoot (Rethlefsen et al., 2016).  

Equinus gait usually gets less prominent in older children with CP since young tip-toe walkers, 

primarily children classified in GMFCS I (Rethlefsen et al., 2016) and bilaterally affected children (Wren 

et al., 2005) seem to be prone to walk with increased knee flexion later in life (Rethlefsen et al., 2016; 

Sees and Miller, 2013). Thus, a reduced equinus posture during gait may not indicate that the 

underlying muscle dysfunction or contracture of the calf has been resolved. Quite the contrary, a 

progressive reduction of passive dorsiflexion is often over time related to more knee flexion during 

gait (Maas et al., 2015). This is presumably caused by structural shortness of the bi-articular 

gastrocnemius. On the other hand, despite a loss in passive dorsiflexion, some CP children can also 

maintain adequate knee flexion during gait (Bell et al., 2002). Whether children sort of vertically 

collapse during gait is probably influenced by others factors such as plantarflexor weakness. Notably, 

also patients with idiopathic gastrocnemius tightness compensate their deficits either at the knee or 

at the ankle during walking (Chimera et al., 2012; You et al., 2009).  

As stated at the beginning of this section, plantarflexors provide propulsion and thus reduced 

isometric plantarflexor strength of children with CP is associated with less ankle joint power generation 

while walking (Dallmeijer et al., 2011; Eek et al., 2011). In addition, it had been shown that both 

reduced ankle range of motion during gait and decreased ankle joint propulsion increases the energy 

expenditure index (relationship between heart rate and walking speed) during gait of CP children 

(Pouliot-Laforte et al., 2014).   

Searching for the causes of equinus gait, it is assumed that an accentuated strength imbalance 

between hypertonic plantar- and weak dorsiflexors favors walking in equinus (Hof, 2001). However, 

the majority of studies report that on average the relative weakness in dorsiflexors is somewhat less 

pronounced than that of plantarflexors (Downing et al., 2009; Elder et al., 2003; Ross and Engsberg, 

2002; Wiley and Damiano, 1998; Hussain et al., 2014) vs. (Poon and Hui-Chan, 2009).  

In fact, it appears debatable whether equinus posturing during gait is a cause for functional 

weakness or an adaptive strategy. On the one hand, computer simulations suggest that toe walking 

requires more neural muscle activity due to non-optimal conditions concerning the plantarflexors’ 

muscle force-length relationship (Neptune et al., 2007). This may lead to premature fatigue.  

Experiments on gait of typically developing children also suggest that there is a negative impact of 

equinus posture on plantarflexor force production: When artificially restricting dorsiflexion during gait 

(Houx et al., 2013) or when voluntarily walking in equinus (Davids et al., 1999), kinetic measures of 

ankle joint propulsion decline. On the other hand, instrumented strength tests show that the maximal 

plantarflexor force generating capacity of CP patients is shifted towards plantarflexion angles (Barber 

et al., 2012; Brouwer et al., 1998). Therefore equinus posturing during gait could be an adaptive 
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strategy to provide adequate force output. Eventually, since ankle moments during walking exceed 

active moment generation during strength tests in children with CP (Dallmeijer et al., 2011; Eek et al., 

2011), it was speculated that the loss in passive joint motion should be regarded as an adaptive 

mechanism in order to rely on passive structures to substitute for missing active strength. 

Another cause for equinus gait could be neural dysfunction of spastic plantarflexors. This is quite a 

controversial topic: Prolonged or abnormally timed plantarflexor activity, as well as co-contraction 

with dorsiflexors are frequently considered attributes of disturbed neural control. Since young CP 

patients, often have more pronounced equinus posturing while walking than upon clinical 

examination, the dysfunction is thought to be dominated by disturbed neural control and not by 

contracture (Goldstein and Harper, 2001). This is also described as ‘dynamic equinus’ (Goldstein and 

Harper, 2001). Yet, this terminology is rather confusing: To distinguish dynamic from fixed equinus, 

typically a cut-off for passive dorsiflexion is chosen, e.g. max. 5° (Zwick et al., 2004) or neutral ankle 

alignment (Wren et al., 2010). This may ultimately need to be verified with the patient under 

anesthesia (Dreher et al., 2012). However the degree of contracture formation is probably difficult to 

judge. Since CP children show a lack of volumetric muscle growth of the gastrocnemius at a very early 

age (Barber et al., 2011b) (see 2.2.1) and since dorsiflexion seems to be progressively lost during 

maturation (Hägglund and Wagner, 2011), a continuum of pathological muscle structural changes 

appears more reasonable. 

Furthermore, mimicry studies pointed out that EMG features during gait, such as premature 

gastrocnemius activity at the transitions from swing to stance phase, or co-activation of the tibialis 

anterior and gastrocnemius are representative for toe-walking per-se and not unique to equinus in CP 

(Davids et al., 1999). Besides, both children with CP and children who walk on their toes for non-

neurological reasons display rather similarly altered timing of gastrocnemius and tibialis anterior 

activity during gait (Rose et al., 1999). Apart from timing issue, there is little knowledge about the role 

of exaggerated reflexes, however they are thought to be of minor disabling effect (Dietz and Sinkjaer, 

2007). For example, concerning children with unilateral CP, Willerslev-Olsen et al. (2014a) showed that 

exaggerated soleus reflexes did not impede foot lift and further concluded that a reduced central drive 

to dorsiflexors might have a stronger effect on the landing pattern of the foot. –Still, neural dysfunction 

of plantarflexors might also be disabling since, for example, increased firing frequencies in the EMG 

signal of calf muscles of children with CP were reported (Lam et al., 2005; van Gestel et al., 2012). Also, 

there is preliminary evidence that this reflects muscle weakness (van Gestel et al., 2012). How this 

relates to equinus posturing is yet unknown. 
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In summary, a lack of passive dorsiflexion seems to have a detrimental influence on ankle and knee 

function during gait of children with CP, predisposes for developing foot disorders, and may contribute 

to a slower and inefficient gait pattern. Apart from structural shortening of the plantarflexor muscle-

tendon units, the primary neurological dysfunction seems to be an impaired central drive for force 

production. Hyper excitability of plantarflexor reflexes during gait has not been directly proven to be 

dysfunctional. It appears plausible that equinus posturing may be predominantly a consequence of the 

biomechanical restrictions imposed by the musculoskeletal system and to a lesser extent affected by 

abnormal muscle activity. 

 

1.5. Pathology on muscle-tendon level in Cerebral Palsy 

 
In the following section, findings from the literature about micro- and macroscopic alterations in 

muscles of patients with CP will be examined. Findings will be organized from a whole organ level to 

the cellular level of skeletal muscle tissue (Fig. 1-6 and 1-7). 

A 

 

 

                                B 

 

Fig. 1-6 Structural hierarchy of skeletal muscle. A) From whole organ to myofibrils. Note that the connective 

tissue is organized around groups of myofibres in the perimysium, the structure surrounding single myofibres is 

referred to as endomysium and the tissue surrounding whole muscle is reflected as epimysium. Extracted from 

Gillies and Lieber, 2011, Muscle Nerve 44, 318-331, p. 19. With permission from John, Wiley and Sons.                                    

B) Sarcomere structure with contractile filaments: actin, myosin, as well as the anchoring protein titin. Extracted 

from Leonard and Herzog, 2010, Am J Physiol Cell Physiol 299, C14-20, p. 15. With permission from the American 

Physiological Society. 
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1.5.1. Microscopic alteration  

The presented findings on microstructural alterations are derived invasively from biopsies and may 

assist in interpreting results on higher structural levels (section 2.2.). To structure this section, findings 

will be organized from discoveries on smallest to largest scales. 

1.5.1.1. Satellite cells  

Satellite cells are muscle stem cells located alongside myofibres (Fig. 1-7). They can renew 

themselves, proliferate and fuse with myofibres to form new muscle tissue and are thereby thought 

to participate in muscle growth (Dayanidhi and Lieber, 2014).  

 

 
 

Fig. 1-7 Schematic representation of microscopic changes in muscles of CP children. Left side: Typically 

developed muscle (a,c).  Right side: Alterations with Cerebral Palsy and the consequences on reduced joint range 

of motion during growth. Longer sarcomere lengths and less sarcomeres in series (b), reduced satellite cell 

content and decreased fibre cross-sectional area (d). As the bone grows, muscles are probably not able to keep 

up and joint range of motion decreases. Extracted and adapted from Graham et al., 2016, Nat Rev Dis Primers 7, 

2:15082, p.8. With permission from Nature Publishing Group. 

Children with CP have a reduced number of satellite cells, as shown for gracilis and semitendinosus 

muscles (Dayanidhi et al., 2015; Smith et al., 2013). Usually, one presumed factor involved in activation 

of satellite cells is mechanical muscle stretch. In a recent animal experiment, Kinney et al. (2016) 

studied chronic stretch casting in a mouse model with artificially reduced satellite cell content (similar 

to children with CP). The mouse soleus displayed an uncompromised serial sarcomere addition but 

fibrotic extra-cellular matrix changes and reduction in fibre cross-sectional area were noted. A reduced 

satellite cell pool in CP muscle may thus in principle not impede adaptations in fascicle length via serial 

sarcomere addition. 

 

In summary, satellite cell content appears to be reduced in muscles of children with CP which may 

limit their adaptive potential to grow in size in response to external stimuli.   
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1.5.1.2. Titin  

Titin has been primarily studied in animals (Leonard and Herzog, 2010; Prado et al., 2005). Within 

sarcomeres, this anchoring protein connects myosin to z-disks (Fig. 1-6) and is involved in both active 

and passive force production (Leonard and Herzog, 2010). In absence of titin, no passive forces can be 

produced. Notably, according to Leonard and Herzog (2010), the active forces produced in myofibrils 

beyond filamental overlap are also based on titin-actin binding which causes shortening of the titin 

spring length, a mechanism that might protect against stretch-induced muscle injuries. Prado et al. 

(2005) showed that increased passive fibre stiffness is usually associated with smaller titin mass. 

Several studies noted differences concerning titin in children with CP. In general, shifts in titin isoforms 

may compensate for overstretched sarcomeres, potentially making them more compliant (Larkin-

Kaiser et al., 2015). For the gracilis muscle, Larkin-Kaiser et al. (2015) found that larger molecular 

weight of titin was associated with increased sarcomere length. This would be in-line with results of 

Mathewson et al (2014) showing that titin molecular weight is increased in the triceps surae of CP 

children. Concerning the gracilis and semitendinosus of children with CP, the titin mass was reported 

to increase as well (Smith et al., 2011). However, no significant correlation was found between titin 

weight and passive stiffness of the muscle fibres in CP children (Mathewson et al., 2014).  

 

In summary, there is evidence that titin mass is increased in spastic muscles which is thought to 

compensate for increased sarcomere length and counteract decreased compliance of muscle tissue. 

 

1.5.1.3. Muscle fibre types 

Fibre types can be mainly distinguished according to their dominant myosin-heavy chain content in 

slow fibres (type I), fast oxidative fibres (type IIa) or fast glycolytic fibres (type IIb), with type IIx 

distinguished in between sharing intermediate properties of IIa and b (Pette and Staron, 2000). This 

determines their fatigue resistance and force production capacity, e.g. by means of the contraction 

velocity. Simply spoken, type I fibres are more enduring, while type II fibres favor a higher strength and 

power output. As a general rule, increased neuromuscular activity and mechanical loading is supposed 

to induce shifts from fast-to-slow fibre types, whereas reduced activity and unloading induces changes 

in the opposite direction (Pette and Staron, 2000).  

Concerning the lower extremity of young healthy adults, the gastrocnemius usually contains about 

half-and-half type I and type II fibres, while the soleus shows a clear dominance for type I fibres 

(Johnson et al., 1973; Trappe et al., 2001). For children with CP, Ito et al. (1996) reported type-I fibre 

predominance and a lack of type-IIb fibres in the gastrocnemius. Marbini et al. (2002) also reported 

increased proportion of type I fibres in the triceps surae. Both groups speculated that a continuous 

http://dict.leo.org/german-english/half
http://dict.leo.org/german-english/half
http://dict.leo.org/german-english/and
http://dict.leo.org/german-english/and
http://dict.leo.org/german-english/half
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background stimulation in muscle of CP patients causes a shift towards type I fibresAn increase in slow 

myosin expression was also found for the gracilis and semitendinosus (Smith et al., 2011). By contrast, 

when referencing to an adult control group (age difference between groups > 35 years), Mathewson 

et al. (2014) found shifts from slow to fast fibre types in the gastrocnemius and soleus of CP children. 

The authors speculated that the typical change from fast to slow fibre types seen during aging might 

have biased their assessment. Rose et al. (1994) were also unable to provide a clear picture for the 

gastrocnemius in CP children reporting either a predominance of type I or type II fibres among their 

subjects.  

Concerning the upper extremity, Gantelius et al. (2012) found a higher proportion of MHC IIx and a 

lower proportion of MHC IIa in spastic wrist flexors. Lower type I fibre rates were only found for wrist 

extensors. Ponten and Stal (2007) found that the brachi-radialis of young adult SCP patients had more 

MHC IIx and lower type IIa or type I fibre proportions. When the isoforms of flexor carpi ulnaris of 

children with CP were compared to adult controls, no differences in fibre type were found (Bruin et 

al., 2014). Yet a lower proportion of type I fibres in CP children with increasing age was reported (Bruin 

et al., 2014). Lieber et al. (2003) also observed no difference in myosin composition for several upper 

limb muscles.   

 

In summary, it is not clear whether MHC isoforms are shifted in a specific fashion in muscles of CP 

patients. In view of the diversity of findings, it is unclear if CP represents an increased or decreased 

use model of fibre type adaptations (Lieber, 2010, p. 274 ff.; Graham et al., 2016). Furthermore, no 

relation between fibre types and function has been established in CP patients 

 

1.5.1.4. Sarcomeres  

 Sarcomeres are the functional sub-units for muscle contraction and contain thin (actin) and thick 

(myosin) filaments (Lieber, 2010). According to the sliding filament theory, the degree of filamental 

overlap (~connected cross-bridges) determines the sarcomere’s active force potential (Gordon et al., 

1966). Additionally, its passive forces increase with increasing length. Sarcomeres are arranged in 

parallel and in series and thus they influence the amount fibre force for a given length as well as their 

shortening distance with respect to time. The latter will affect the force-velocity relationship of skeletal 

muscle (Hill, 1938). In addition, the serial sarcomere number may also be an indicator of a muscle’s 

passive excursion ability.  
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Fig. 1-8 Length tension properties of sarcomeres taken from plantarflexors of CP children. Left side: Passive 

sarcomere length vs. stress for fibres taken from gastrocnemius muscles. Asterisks show in vivo sarcomere 

lengths for typically developing controls (TD) and for children with Cerebral Palsy (CP). Extracted and adapted 

from Mathewson et al., 2014, J Orthop Res 32, 1667-1674. p. 1670. With permission from John, Wiley and Sons. 

Right side: Theoretical active force production for calf muscles according to a muscle length-tension curve 

showing that in-vivo sarcomeres of children with CP presumably operate on the descending limb while 

sarcomeres of TD may operate around the plateau region. Extracted and adapted from Mathewson et al., 2015, 

J Orthop Res 33, 33-39, p. 34. With permission from John, Wiley and Sons. 

 

In lower limb muscles of children with CP, over-stretched in vivo sarcomeres are considered the 

most unprecedented change (Graham et al., 2016; Martin Lorenzo et al., 2015). Considerably increased 

sarcomere length have been found for the gastrocnemius (Mathewson et al., 2014), soleus 

(Mathewson et al., 2014 and 2015), gracilis (Larkin-Kaiser et al., 2015; Smith et al., 2011) and 

semitendinosus muscle (Smith et al., 2011). However, there seems to be no difference in actin filament 

length of sarcomeres in CP (Mathewson et al., 2015). This in an important notion, since actin filament 

length is generally a major determinant of sarcomere length (Gokhin et al., 2014). Yet interestingly, 

Gokhin et al. (2014) showed that usually during post-natal growth, actin filament length is considerably 

reduced for gastrocnemius muscles of mice. In humans, it is traditionally assumed that thin and thick 

filaments are fixed in length during childhood (van Praagh, 1997). Hence, sarcomeres may not be 

longer in muscle of children with CP per se but they likely need to operate with little overlap in 

filamental proteins (Fig. 1-8). As a results of this, they have little potential for active force generation 

but create high passive forces upon stretch (Fig. 1-8). Further, serial sarcomere number seems to be 

reduced in muscles of children with CP (Mathewson et al., 2015). Concerning the soleus, a reduction 

of 40% has been calculated by relating fascicle length measured via brightness mode ultrasonography 

to sarcomere length measured by laser diffraction (Mathewson et al., 2015). 

Two concerns about sarcomere length estimates in CP children worth noting are the lack of aged-

matched controls and the degree of joint configuration during biopsies. First, due to ethical issues, 

adult control muscles are often used as a reference (Bruin et al., 2014; Mathewson et al., 2014). 

Second, to match the degree of joint configuration between CP children and controls, sarcomere 
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length may also need to be predicted for more extended joint positions (Smith et al., 2011). 

Nevertheless, the large deviations from control muscles were considered to be extremely unlikely due 

to methodological issues (Mathewson et al., 2015). Concerning the functional significance of such 

findings, more severely limited CP children, e.g. with a higher GMFCS-Level, larger restriction in 

popliteal angles (Smith et al., 2011) or with more severe hip joint displacement (Larkin-Kaiser et al., 

2015) were shown to have larger sarcomere length of hamstrings and adductor muscles. For the 

plantarflexors, no such functional associations had been reported so far (Mathewson et al., 2014; 

Mathewson et al., 2015).  

Notably, the increase in sarcomere length in CP could also be different between the upper and 

lower limbs, since similar sarcomere length to controls were found in the upper limb (Bruin et al., 

2014). Next, it has also been claimed that sarcomeres of spastic upper limb muscles do not provide 

insufficient filamental overlap. This is because in maximal extended joint positions, active force 

generation upon stimulation still appeared to be quite high (Smeulders et al., 2004). Notably, in 

isolated fibres of spastic upper limb muscles, the completely unloaded resting sarcomere length in 

children with CP was also found to be lower than in typically developed adult muscles (Friden and 

Lieber, 2003; Lieber et al., 2003). Still the tensile forces upon sarcomere stretch were much higher and 

alterations in titin or collagen were thought to be responsible for this (Friden and Lieber, 2003). 

Moreover, for spastic muscles of the upper extremity, it could be shown that sarcomere slack length 

was significantly different between fibre and fibre bundle level. Significantly longer sarcomere length 

were found in fibre bundles (Lieber et al., 2003). Hence, one hypothesis for the overstretched 

sarcomeres within muscles of children with CP could be that extracellular components (collagen 

networks) may hold sarcomeres at high in vivo length (Friden and Lieber, 2003).  

 

In summary, increased sarcomere length seems to be involved in the formation of muscle 

contracture of children with CP. This reduces the serial sarcomere number and therefore also limits 

the passive muscle extensibility. Increased sarcomere length seems more apparent for the lower limb 

than for the upper limb and accumulation and altered quality of extra-cellular matrix may be the cause. 

 

1.5.1.5. Muscle fibre size  

 
Measures of a muscle fibre’s cross-sectional diameter or cross-sectional area have been used as 

descriptors of muscle hypertrophy or atrophy. They are supposed to reflect sarcomere arrangement 

in parallel (Lieber, 2010, p. 183 ff., Edgerton et al., 2002). During immobilization and retraining, there 

is a direct relation between a muscle’s fibre size and its maximal force potential which was shown in 

animals (Lieber et al., 1997) as well as in humans (Hortobagyi et al., 2000). 
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For CP patients, Smith et al. (2011) found a decreased fibre size concerning the gracilis and 

semitendinosus muscle (Fig. 1-9) and Mathewson et al. (2014) also reported that gastrocnemius and 

soleus fibres tended to be slightly smaller with disorganized fibre shapes 

 

 
 

Fig. 1-9 Stained muscle fibre cross sections taken from muscle biopsies. Left side: hamstring muscle of a control 

child and right side: hamstring muscle of child with CP. Note the disorganized, smaller fibre shapes with more 

connective tissue stained in red in the muscle of the CP child. Extracted and adapted from Smith et al., 2011, J 

Physiol, 589, 2625-2639, p.2634. With permission from John Wiley & Sons. 

For arm and shoulder muscles, fibres of CP patients were reported to be only one-third the size of 

normal fibres taken from adult healthy controls (Lieber et al., 2003). Yet some reports show no 

significant difference in fibre size concerning the flexor carpi-radialis in healthy adults and adult 

patients with CP (Bruin et al., 2014). These discrepancies might be affected by a high variability in fibre 

size, as reported for the gastrocnemius, iliacus and hamstring muscles (Rose et al., 1994). This 

presumably reflects tissue degeneration or modulations in myosin-heavy chain. In addition to that, 

increased variability in fibre size had been associated with increased energy expenditure during gait 

and thus increases disability (Rose et al., 1994). 

  

In summary, muscle fibre cross-sections in the lower limb of patients with CP seem to be reduced 

and fibres feature increased variability in size and shape. 

 

 

1.5.1.6. Muscle fibre and fibre bundle properties 

Few studies examined the passive length tension properties of isolated muscle fibres or fibre 

bundles in CP. In isolated fibres, increased passive forces at shorter fibre length may reflect less 

sarcomeres in series or increased sarcomere resting length which causes the sarcomeres to reach their 

limits of extensibility earlier.  

First off, all studies on passive fibre or fibre bundles mechanics in CP suffer from a lack of age 

matched controls. The closest age match was provided by Smith et al. (2011). They showed that 

isolated semitendinosus and gracilis fibres of children with CP were not stiffer than control fibres, 
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whereas fibre bundle stiffness was pathologically increased. This was thought to be related to higher 

extra-cellular matrix stiffness (Smith et al., 2011). By comparison, Mathewson et al. (2014) also 

reported increased isolated fibre stiffness for the gastrocnemius and soleus. Moreover, CP children 

with decreased ambulatory function, classified in GMFCS III-IV, showed greater triceps surae fibre 

stiffness than children in GMFCS I-II (Mathewson et al., 2014). Contrary to the results of Smith et al. 

(2011), Mathewson et al. (2014) further showed that fibres and fibre bundles had similar stiffness in 

CP patients. Hence, Mathewson et al. (2014) speculated that extracellular matrix alterations may differ 

among different muscle groups. Still, when stretching the muscle tissue to the in-vivo sarcomere 

length, the stiffness of both fibres and fibre bundles was significantly augmented in children with CP 

which in turn suggests that increased sarcomere length may play a major role for increased tissue 

stiffness (Mathewson et al., 2014).  

Concerning the upper extremity, Lieber et al. (2003) investigated several arm and shoulder muscles 

showing that fibres in CP subjects were stiffer than control fibres, while Bruin et al. (2014) found no 

increase in fibre or fibre bundle stiffness of the flexor carpi ulnaris. 

 

In summary, no clear conclusion about fibre and fibre bundle stiffness can be drawn. Preliminary 

evidence for the triceps-surae suggests that larger fibre stiffness is related to a decrease in ambulatory 

function. 

 
 

 

1.5.1.7. Connective tissue  

Muscles and their composing cells are embedded and connected with extracellular matrix. It has 

been argued that the extent and quality of a muscle’s connective tissue determines its passive 

extensibility (Gillies and Lieber, 2011; Herbert, 1988).  

Since collagen content of the vastus lateralis in CP children correlates with knee extensor muscle 

tone, it was suggested that thickening of endomysium increases passive muscle stiffness in CP  patients 

(Booth et al., 2001). The semitendinosus was also shown to have significantly increased intramuscular 

connective concentrations in children with CP (Smith et al., 2011). This was associated with significantly 

increased fibre bundle stiffness, suggesting a stiffer than normal extra-cellular matrix (Smith et al., 

2011). By contrast, Mathewson et al. (2014) showed that the collagen content within the triceps surae 

was not significantly different between typically developing muscle and spastic muscle tissue and, 

since fibre bundles were not stiffer than isolated fibres, their results suggested a decreased stiffness 

of the extra-cellular matrix in CP (Mathewson et al., 2014). However, as previously mentioned, their 

control samples were more than 4 times older. Thus age could have provided a strong bias since 

properties of the extra-cellular matrix might be altered during natural aging. 
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Concerning arm muscles, Bruin et al. (2014) investigated the flexor carpi ulnaris muscle of children 

with CP. They found that the thickness of the tertiary perimysium (connections of intra- and extra-

muscular elements of neural, venous, arterial and lymphatic tissues) in spastic muscles was three times 

larger than that of a control muscle. They concluded that enhanced myofascial loads may contribute 

to increased passive stretch resistance and to movement limitations. Similarly, using biopsies of upper 

limb muscles, Lieber et al. (2003) showed that morphologically, the extra-cellular matrix in muscles of 

CP children appears disorganized and less dense. Notably, Meza and Lieber (2016) recently suspected 

that the collagen structure and not the content may be the key to increased stiffness. 

 

In summary, connective tissue accumulations are plausibly involved in contracture formation. 

However, the evidence concerning the triceps surae is sparse. In addition, it needs to be determined 

in detail to which extent the mechanical properties of the extra-cellular matrix are different in muscles 

of CP children. 

1.5.2. Macroscopic alterations 

In contrast to the aforementioned investigations, the following findings were derived with non-

invasive techniques. They have been used quite extensively to study muscle-tendon architecture and 

properties in CP in the past.  Primarily magnet resonance imaging or brightness mode ultrasonography 

has been applied. Overall, brightness-mode ultrasonography might be more readily available than 

magnet resonance imaging in treatment centers for children with CP and seems to be easier to use for 

measuring muscle size on young patients due to reduced acquisition times, reduced financial costs and 

an absent burden of spatial constrains inside a scanner for the child. However, superficial muscles 

might be more accurately measured with ultrasound which could also be a reason why the soleus 

muscle attracted far less attention than the gastrocnemius muscle in patients with CP.  

1.5.2.1. Fascicle properties  

A 

 

B 

 

Fig. 1-10 Section of a cadaver medial gastrocnemius and in-vivo ultrasound picture. A) Anatomical section of a 

cadaver muscle belly. Extracted from Bernard et al., 2009, Muscle Nerve 39, 652-665, p.657. With permission 

from John, Wiley and Sons. B) 2D in-vivo ultrasound scan of the medial gastrocnemius muscle belly. Ultrasound 

picture with schematic drawings of a fascicle and its pennation angle from own measurements. Scale unit=1cm. 

The associated graphic of the shank was extracted and adapted from Kawakami and Fukunaga, 2006, Exerc Sport 

Sci Rev, 34, 16-21, p. 17. With permission of Wolters Kluwer Health, Inc.  
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Numerous studies used ultrasonography to evaluate muscle structure by making use of the fact 

that connective tissue can be discriminated from active muscle tissue (Cronin and Lichtward, 2013). 

Amongst others, fascicle (~fibre bundle) length and their orientation can be determined (Fig. 1-10). 

Since muscle fibres may not span the entire width or length of muscles, it had been suggested that 

fascicle and fibre should not be used as synonyms. Since most fibres seem to be serially connected, 

fascicles are considered the ‘functional unit’ for representing fibres (Kumagai et al., 2000). In terms of 

gastrocnemius fascicles, cadaveric studies suggest that the error between actual fibre bundle length 

(Fig. 1-10) and fascicle length from 2D ultrasound can be minimized by following specific protocols for 

ultrasound probe orientation (Benard et al., 2011). In terms of validity, the anatomical accuracy of 

measurements of fascicle lengths and pennation angles revealed a standard error of 8.7–9.7% (Kwah 

et al., 2013). Concerning brightness-mode ultrasonography of the medial gastrocnemius, acceptable 

reproducibility during passive assessments has been established in children with CP (Mohagheghi et 

al., 2007), as well as in typically developing children (Legerlotz et al., 2010). In CP children, ICC values 

of 0.81-0.91, 0.85-0.88 and 0.93-0.94 have been established for fascicle length, pennation angle and 

muscle belly thickness, respectively (Mohagheghi et al., 2007). The average difference between 

repeated measures was ≤8.1% for fascicle length and ≤8% for muscle belly thickness while it was 2-3° 

for pennation angles. For healthy controls, Legerlotz et al. (2010) found somewhat larger ICC values 

and lower coefficients of variation: <6.3% for fascicle length and <3.1% for muscle belly thickness. 

 

As depicted in Fig. 1-11, longer muscle fascicles (with more sarcomeres in series) can be beneficial 

for various reasons: They may extend the range for active force production (O'Brien, 2016), they are 

able to produce higher shortening velocities (Blazevich and Sharp, 2005) and they exert higher forces 

closer to their maximum across a wider range (O'Brien, 2016). Since relative shortening is less, relative 

contractile velocity is lower in long fascicles and this enables the production of larger forces. Moreover, 

additional sarcomeres in series may also increase passive muscle extensibility (Butterfield, 2010). They 

may speculatively also have a protective effect for the muscle by shifting its optimum length to avoid 

eccentric contractions beyond optimum (Morgan and Proske, 2004). On the other hand, there might 

also be a tradeoff since longer fascicles can increase the cost for generating force, since more 

sarcomeres need to be activated (Lichtwark and Wilson, 2008). 
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Fig. 1-11 Benefits of larger PCSA and longer muscle fibres on force-length and force-velocity relationship. 

Schematic illustration. Extracted and adapted from Lieber and Fridén, 2000, Muscle Nerve 23, 1647-1666, p.1659 

and p.1660. With permission from John Wiley & Sons. 

In healthy adults, longer gastrocnemius fascicles have been positively associated with sprinters and 

their performance (Abe et al., 2000; Kumagai et al., 2000). Furthermore, Hauraix et al. (2015) 

experimentally confirmed that, in vivo, the maximum concentric gastrocnemius fascicle force in 

humans is a function of its shortening velocity. 

Contrarily, bed-rest immobilization (Boer et al., 2008), aging (Narici et al., 2003; Stenroth et al., 

2012; Thom et al., 2007) as well as neurological insults, e.g. stroke (Gao et al., 2009) have been 

reported to negatively affect gastrocnemius architecture and reduce fascicle length. Interestingly, in 

older aged individuals, decreased fascicle length accounts for half of the age related decline of maximal 

muscle shortening velocity (Thom et al., 2007). In adult stroke survivors, associations between reduced 

gastrocnemius fascicle length and restrictions in passive joint motion, as well as increased joint 

stiffness have been found (Gao et al., 2009). 

In patients with CP, Barrett and Lichtwark (2010) concluded that there was no consistent evidence 

that plantarflexor fascicle length is reduced. Lack of standardization may provide a potential bias since 

most studies did not exactly standardize the joint configurations or the applied ankle moment during 

their assessments. Since Barrett and Lichtwark’s Review (2010), these discrepancies seemed to 

continue. Concerning the gastrocnemius, two further novel studies in CP children beyond 6 years of 

age confirm the notion that there is no difference in fascicle length (Barber et al., 2011b; Herskind et 

al., 2016). Yet, more standardized studies in older children (average age 11-13 years) found that within 

a common passive ankle range of motion, gastrocnemius fascicles of children with CP are considerably 
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reduced (-20% to -43%) with respect to typically developing peers (Gao et al., 2011; Kalkman et al., 

2016; Matthiasdottir et al., 2014). A plausible explanation for the shorter fascicles may be a loss of 

serial sarcomeres as speculated by Matthiasdottir et al. (2014). Absolute passive extensibility (~strain) 

of the gastrocnemius fascicles was reported to be lower in children with CP (Barber et al., 2011a; 

Kalkman et al., 2016). To the contrary, when considered over a common range of joint motion, the 

fascicles of CP children according to Matthiasdottir et al. (2014) undergo a bigger relative excursion as 

they are inherently shorter. Thus the authors speculated that each sarcomere within the 

gastrocnemius fascicles of children with CP is exposed to a greater mechanical demand upon stretch. 

 

In summary, there is emerging evidence that fascicle length in the gastrocnemius of more mature 

children and adolescents with CP is reduced.  

 

1.5.2.2. Pennation angle 

The angle of the fascicles with respect to line of pull of a muscle is referred to as pennation angle 

(Fig. 1-10) In the medial gastrocnemius muscle of healthy adults (Kubo et al., 2003; Narici et al., 2003) 

and in patients with CP (Lee et al., 2015), in-vivo assessed muscle belly thickness or anatomical cross-

sectional area and pennation angle of the gastrocnemius share a mild to moderate positive 

relationship. This shows that greater pennation angles might be indicative of larger muscle size. 

According to Blazevich and Sharp (2005), a larger pennation angle allows more fascicles (more 

contractile tissue) to be arranged in parallel. 

Accordingly, in healthy subjects, increased pennation angles following training are supposed to 

reflect radial fibre hypertrophy while muscle atrophy is typically associated with a decreased 

pennation angles (Blazevich and Sharp, 2005; Franchi et al., 2016). Specifically for the gastrocnemius, 

resistance trained subjects have thicker muscle bellies in combination with larger pennation angles 

(Fukutani and Kurihara, 2015). Furthermore, heavy load resistance training of the plantarflexors causes 

increases in pennation angle (Duclay et al., 2009). Yet in older adults, for example, gains in strength 

and walking function after resistance training were not linked to increases in gastrocnemius muscle 

thickness or pennation angle (Raj et al., 2012).  

Based upon these results and the atrophic changes in calf muscles of children with CP, it seems 

logical that pennation angles in the gastrocnemius of children with CP would decrease in comparison 

to healthy muscle tissue. Yet, Barrett and Lichtwark (2010) summarized that there was no consistent 

evidence for that. Up to now, decreased pennation angles (Barber et al., 2011b; Malaiya et al., 2007; 

Shortland et al., 2004), similar pennation angles (Gao et al., 2011; Shortland et al., 2002) or increased 

pennation angles (Kruse et al., 2016a) have been reported for the gastrocnemius muscle. Notably, 
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results of Wren et al. (2010) and Shortland et al. (2004) would suggest that in CP patients who had 

previously been operated on, increases in pennation angle occur in concert with shorter muscle bellies 

or fascicles, which contrast the hypertrophic changes of heathy muscles seen with training. 

 

In summary, it remains unclear if the pennation angle of the gastrocnemius muscle of children with 

CP is decreased, as may be suspected from findings on strength loss and atrophy in healthy controls 

 

1.5.2.3. Muscle volumes and size  

Overall a muscle’s volume is among the determinants of its maximal active force. Concerning the 

plantarflexors of healthy adults, muscle volumes explain about 32-57% of the variance in isometric 

strength (Bamman et al., 2000; Baxter and Piazza, 2014; Trappe et al., 2001). Still, measures of the 

cross-sectional area of the triceps surae are more directly related to isometric force (Bamman et al., 

2000). When excluding the effects of different moment arms, 85% of the variance in force at the 

Achilles tendon is determined by the physiological cross-sectional area of the triceps surae (Fukunaga 

et al., 1996). When considering the anatomical cross-sectional area (not perpendicular to the fibre 

direction), the explained variance ceases to 56% (Fukunaga et al., 1996).   

For patients with CP, Barrett and Lichtwark (2010) concluded that there is consistent evidence that 

muscle volumes, cross-sectional areas and thickness are reduced in comparison to control subjects. 

For the gastrocnemius of patients with CP, several newer studies confirm this (Barber et al., 2012; 

Barber et al., 2016; Noble et al., 2014b; Oberhofer et al., 2010). In addition, when compared to values 

of healthy controls, magnetic resonance imaging revealed volumetric atrophy even in high functioning 

CP children, classified in GMFCS I and II (Noble et al., 2014b). In addition to that, a proximal to distal 

gradient in volume loss within the lower limbs was found (Noble et al., 2014b). Strikingly, when 

assessing multiple muscle of the lower limb by means of magnet resonance imaging, the 

gastrocnemius was one of the most atrophied muscles (Noble et al., 2014b; Oberhofer et al., 2010). 

Although 2D ultrasound has been extensively applied to measure muscle architecture in CP 

patients, in principle, using sequential 2D ultrasound scans, 3D muscle volumes can be reconstructed 

as well (Barber et al., 2011a; Benard et al., 2011; Barber et al., 2016). Nevertheless, 2D measures may 

to some extent also serve as proxy for muscle volumes, e.g. gastrocnemius muscle thickness derived 

from ultrasonography is considerably related to muscle volume from magnet resonance imaging (59-

65% of explained variance) (Park et al., 2010).  
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In summary, there is consistent evidence that volumes and measures of muscle size, e.g. the cross 

sectional area, are reduced in lower limb muscles of children with CP and the gastrocnemius seems to 

be quite severely atrophied. 

 

 

1.5.2.4. Connective tissue and fat 

As is the case on a microscopic level, non-contractile tissue infiltration into muscles of CP patients 

can be also documented on macroscopic scales. Similar findings have been exposed in older people 

(Hasson et al., 2011) and were interpreted as signs of declined muscle quality and physical inactivity 

(Marcus et al., 2010). 

In CP children, brightness-mode ultrasonography was also used to assess the muscle composition 

of the gastrocnemius. Pitcher et al. (2015) showed that connective tissue content was generally 

augmented in CP children and tended to increase with lower mobility status (from GMFCS I to III). It 

has been further speculated that these findings may reflect intramuscular fat and fibrotic tissue 

(Pitcher et al., 2015). Using magnetic resonance imaging, Noble et al. (2014a) confirmed that a 

considerable portion of lower limb muscle volume in CP is taken up by intramuscular fat. Within the 

spastic gastrocnemius, about twice as much fat as in control muscle was found. Johnson et al. (2009) 

also observed that fat tissue infiltration in thigh muscles in children with CP is negatively related to the 

children’s physical activity which confirms that sedentary behavior promotes degenerative processes. 

 

In summary, a considerable portion of muscles in CP patients is taken up by connective tissue and 

fat which seems to get worse with lower mobility status. 

 

1.5.2.5. Tendon properties 

Tendons transmit contractile forces by storing and returning strain energy which is also used during 

ambulation (Alexander, 1991). Increasing plantarflexor muscle power output during gait, for example, 

requires stiff Achilles tendons to produce optimal efficiency and efficiency is in turn maximized when 

the required muscle volume for a task can be minimized (Lichtwark and Wilson, 2008). These aspects 

were partly derived from simulations. Apart from that, magnetic resonance imaging, ultrasonography 

and dynamometry are frequently applied to study tendon dimensions and properties in humans 

(Seynnes et al., 2015). Such techniques revealed that tendons can specifically adapt to their loading 

history. Tendon stiffness may increase following enhanced tendon loadings during training (Arampatzis 

et al., 2010; Reeves et al., 2003). This may likely help maintain physiological ranges of strain loadings. 

Sprinters, for example, have stiffer Achilles tendons than endurance runners (Arampatzis et al., 2007b). 
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Oppositely, with disuse, e.g. after spinal cord injury (Reeves et al., 2003) or with aging (Narici et al., 

2005), tendons get more compliant. In the case of the plantarflexors of older subjects, this in turn also 

alters the excursion of muscle fascicles during walking (Mian et al., 2007).  

In patients with CP, multiple studies showed that the gastrocnemius tendon length during rest is 

longer than usual, e.g. when normalized to the shank length (Theis et al., 2016; Wren et al., 2010), 

when set in proportion to the whole muscle-tendon unit (Kruse et al., 2016a) or when considered in 

absolute units (Barber et al., 2012). When focusing on the sole Achilles tendon only, Gao et al. (2011) 

also found an increased length in CP patients. Gao et al. (2011) hypothesized that longer tendons could 

be an adaptation to the decreased muscle fascicle length and increased fascicle stiffness of the 

plantarflexors in CP patients. From a theoretical perspective, Lieber (2010, p.102) reasoned that longer 

tendons shift the active force length relationship of a short muscle belly to a longer length.  More 

complaint tendons supposedly also broaden the active force length relationship of a muscle-tendon 

unit. Both could be reasonable adaptive mechanisms in CP patients. Interestingly, in disabled athletes 

with CP, the gastrocnemius tendon length was reported to be similar to control subjects (Hussain et 

al., 2013). This may reveal a preserved adaptive potential for tendons in CP. Concerning the Achilles 

tendon cross-sectional area in CP children, Kruse et al. (2016a), Gao et al. (2011) and Theis et al. (2016) 

found smaller cross-sectional areas with large statistical effect sizes with respect to values of controls. 

A smaller cross-sectional tendon area may supposedly lead to larger tissue stress in CP patients when 

counteracting external loads. On the other hand, active force production by the plantarflexor muscles 

is also reduced in children with CP (Downing et al., 2009; Elder et al., 2003; Ross and Engsberg, 2002; 

Stackhouse et al., 2005; Wiley and Damiano, 1998) and the tissue stress on tendons may thus be lower 

than in healthy controls. 

The stiffness of the gastrocnemius tendon in patients with CP has been assessed during active 

(Barber et al., 2012) and passive conditions (Theis et al., 2016; Kruse et al., 2016a). Barber et al. (2012) 

found no change in tendon stiffness during isometric strength tests in adults with CP. Theis et al. (2016) 

assessed the passive resistive stiffness during dorsiflexion stretches in children classified in GMFCS III-

IV. They found that tendon stiffness appears to be similar to controls, while Kruse et al. (2016b) 

reported a decrease in passive resistive stiffness of the gastrocnemius tendon. Notably, both Kruse et 

al. (2016b) and Theis et al. (2016) reported higher muscle belly than tendon stiffness of the 

gastrocnemius. Furthermore, both research groups showed that the elastic modulus of the tendon was 

not significantly altered from control values. Based on these preliminary findings, it seems that 

material properties of the gastrocnemius tendon are probably not altered in individuals with CP. 

However, the somewhat variable levels for active plantarflexor force production may complicate and 

bias this indirect assessment of tendon material properties. 
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In contrast to that, histological and bio-chemical analysis of hamstrings tendon grafts revealed a 

tendinopathic-like state in CP patients (Gagliano et al., 2013).  It was speculated that increased muscle 

tone induces persisting strain below injury thresholds. No such tendon biopsies have been reported 

for the plantarflexors. The findings of increased tendon length do not seem to be unique to 

plantarflexor muscles since patellar-tendons also seem to be elongated in patients with CP. This was 

proposed to be related to viscoelastic tendon behavior under chronic load (Seidl et al., 2016), e.g. due 

to a walking pattern with severely flexed knees. 

 

In summary, CP patients typically have longer and slimmer tendons. Apart from that, no definite 

conclusion about the mechanical or material properties can be drawn so far. 

 

1.6. Muscle-tendon properties and function in 

 Cerebral Palsy 

 

1.6.1. Relationship to impairments  

To stay within the scope of this thesis, this section focusses exclusively on patients with CP. 

Information about the relationship of muscle-tendon properties and function has been primarily 

gathered on muscles while tendon properties attracted less attention. As outlined below, measures of 

muscle size and geometry could be related to impairments on body structure and function level (e.g. 

during strength or walking tests) and to impairments on activity level (e.g. to mobility), as classified 

according to the World Health Organization (2001).  

First, several studies revealed associations between muscle size and strength in individuals with CP 

(Bland et al., 2011; Moreau et al., 2010; Moreau et al., 2012; Reid et al., 2015b). Among others, muscle 

volumes of knee flexors and extensors were related to torque generating capacity during isometric 

and/or isokinetic strength tests (Reid et al., 2015b). Notably, the associations between muscle volume 

and strength in CP patients were weaker than in controls, indicating that neural factors (e.g. 

incomplete muscle activation) may also limit force production. In addition, ultrasound based measures 

of the vastus lateralis muscle thickness were associated with peak isometric knee extensor torques 

(Moreau et al., 2010) and the rate of torque development (Moreau et al., 2012). Moreover, for the 

tibialis anterior, muscle thickness, cross-sectional area, and fascicle length were significantly related 

to larger isometric strength in CP patients (Bland et al., 2011).  

Second, concerning walking or gross motor function tests, a thicker gastrocnemius muscle was 

associated with lower Timed up and go test times (Yun et al., 2016) and a larger gastrocnemius 
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pennation angle could be associated with improved gross motor function scores (Lee et al., 2015). 

Additionally, in children with unilateral CP, interlimb volume ratios of the plantarflexors were 

correlated with differences in kinetic ankle joint work during push-off derived from 3D gait analysis 

(Riad et al., 2012). This suggests that larger plantarflexor muscle volume in CP is beneficial for 

propulsion. Concerning knee extensors, a thicker vastus lateralis and rectus femoris muscle could be 

linked to faster walking (Yun et al., 2016). Also for the tibialis anterior, larger muscle thickness, cross-

sectional area and larger fascicle length were significantly related to faster walking (Bland et al., 2011). 

Also, a larger cross-sectional area of the tibialis anterior was related to more dorsiflexion during swing-

phase of gait (Bland et al., 2011).  

Third, concerning activity based measures, the gastrocnemius muscle volume was significantly 

associated with the children’s gross motor function showing that CP children in GFMCS III, without 

independent walking skills, display smaller muscles than children in level I or II (Herskind et al., 2016). 

Moreover, larger muscle thickness of the quadriceps femoris derived from brightness-mode 

ultrasonography was related to better mobility indices (Ohata et al., 2008). Moreau et al. (2010) 

further showed that rectus femoris fascicle length was significantly positively correlated with indices 

about sportive and physical functioning. A larger pennation angle of the vastus lateralis was 

significantly correlated with superior indices for transfers, mobility and general activity. 

 

In summary, several studies reported associations between muscle architectural parameters and 

measures of function and activity in patients with CP. In particular larger muscle size (e.g. thicker 

muscles) seemed to be beneficial. 

 

1.6.2. Treatment effects 

In the following section, five of the most common treatments for children with CP, namely 

botulinum neurotoxin injections, orthopedic surgery, orthotics and casts, as well as stretching and 

resistance training will be discussed. Although many more invasive and non-invasive therapeutic or 

drug related strategies are in use (Novak et al., 2013; Novak, 2014), they do not primarily target or 

directly affect muscle-tendon properties. In addition, the author of this thesis also wishes to focus on 

approaches that have been previously shown to alter muscle-tendon properties in CP. Except for 

botulinum neurotoxin, which targets neural aspects of spasticity, all other selected treatments either 

mainly aim to manage contracture or aim to improve strength (Novak et al., 2013). Orthotics and casts 

have been combined in this section since both rely on prolonged stretch-immobilization as a treatment 

stimulus. Stretching has been included since it is one of the most frequently applied treatments during 

physical therapy in CP (Wiart et al., 2008). Yet, in contrast to the other approaches included, manual 
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stretching has been considered to be rather ineffective from a functional perspective (Novak et al., 

2013; Novak, 2014).  

The following paragraphs will focus on the background, rationale and work mechanisms of these 

selected treatments and subsequently will present the already documented consequences on muscle-

tendon or joint properties in patients with CP while emphasising the plantarflexors muscles and the 

ankle joint 

 

1.6.2.1. Botulinum neurotoxin (BoNT)  

BoNT is intramuscularly injected and inhibits the release of acetylcholine at the neuromuscular 

junction. It thus partially paralyzes the muscle (Foran et al., 2003). Within 1 month, the motoneuron 

begins with co-lateral sprouting, leading to re-innervation (Foran et al., 2003) and 6 weeks is typically 

seen as the chemically active period (Alhusaini et al., 2011). Finally, within 3 months, the effects should 

have worn off (Jankovic, 2004). The objective is to decrease neuromuscular reflex activity and 

hypertonia (Mathevon et al., 2015) and thereby to open a window to increase joint flexibility, e.g. by 

additional serial casts or orthotics. 

The concept assumes that muscles (fibres) in CP children are too short and BoNT will allow them to 

be stretched out (Gough et al., 2005; Heinen et al., 2010). Yet, it is commonly accepted that the 

injected muscle will atrophy and it has been feared that this was not completely reversible (Mathevon 

et al., 2015). Consequently, Barber et al. (2013), for example, speculated that any benefits could be 

offset by long term weakening. Eventually, due to neutralizing antibodies, the effects may wear-off 

after multiple injections (Linder-Lucht et al., 2006).  

 

Effects on muscle-tendon and joint properties in CP 

All of the following studies included, but were not limited to, gastrocnemius muscle injections in 

children with CP. They either used multiple injections sides in several lower limb muscles (Eek and 

Himmelmann, 2016; Williams et al., 2013a; Williams et al., 2013b), exclusive gastrocnemius injections 

(Park et al., 2014) or combined gastrocnemius-soleus injections (Alhusaini et al., 2011; Barber et al., 

2013).  

Williams et al. (2013b) reported that the gastrocnemius muscle belly loses 4.5% of its volume within 

3-6 weeks of injections, while the non-injected soleus muscle, perhaps compensatory, increased its 

volume by 4%. The children’s walking mobility or isometric strength did not significantly change. No 

reports regarding concomitant therapies were made. Notably the treated children were not naïve to 

BoNT treatments, since they already got BoNT in the past. This might have somewhat lowered the 

atrophic effect. After 3 months, Park et al. (2014) showed that BoNT-injections into the gastrocnemius 
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led to 11-13% atrophy of the muscle belly thickness and to a -5° decrease in pennation angle while the 

resting fascicle length increased by 16%. Additionally, Park et al. (2014) observed about a 7-10° gain in 

maximal passive dorsiflexion. In addition to BoNT treatments, ankle-foot orthotics were recommended 

as long as possible during the day. Apart from that, Williams et al. (2013a) compared sole BoNT 

treatments with BoNT and additional strength training. Also the group with sole BoNT treatment 

displayed increases in plantarflexor muscle volume and gained isometric strength. This shows that 

BoNT does not necessarily lead to atrophy. However, the total pre-post period was 6 months, making 

inference about direct consequences of BoNT difficult. Furthermore, in young CP-children allocated to 

1 or to 3 calf muscle injections per year combined with orthotic and physiotherapeutic treatment, no 

gastrocnemius atrophy with respect to baseline was observed and no effect of injection frequency 

could be shown at 12 months (Barber et al., 2013). Overall, there was a 20% increase in gastrocnemius 

muscle volume, 7% increase in fascicle length and 11% increase in the physiological cross-sectional 

area of the medial gastrocnemius muscle in that year. Still, the increase in muscle volume was about 

two-thirds lower than in aged-matched healthy children. Again, children were recommended to wear 

additional ankle foot orthotic for 6–8 h per day. Finally, regardless of the effects on the muscle, Barber 

et al., (2013) found no significant improvement in maximum passive dorsiflexion.  

Apart from these studies focusing on the effects of BoNT on muscle morphometrics, a recent 

investigation found that at 6 months post-injection, plantarflexor strength was able to increase by 9% 

(Eek and Himmelmann, 2016). This shows that long term weakening with BoNT probably is not a 

reasonable concern. Still, ankle kinematics during gait were not improved and passive end-range 

dorsiflexion was not increased (Eek and Himmelmann, 2016). Focusing on passive resistive ankle joint 

properties, Alhusaini et al., (2011) found that the injection of BoNT did not significantly change joint 

stiffness or endrange dorsiflexion at 6 weeks. 

Taken together, in-line with current recommendations (Heinen et al., 2010), BoNT-treatments were 

often accompanied by further therapies, e.g. orthotics (Barber et al., 2013; Park et al., 2014) which 

makes the interpretation of the findings difficult. On the other hand, concomitant treatments are not 

always specifically reported (Alhusaini et al., 2011; Eek and Himmelmann, 2016). Still, even multiple 

injections per year may not lead to growth arrest of calf muscles (Barber et al., 2013) and the 

plantarflexor strength also seems to recover (Eek and Himmelmann, 2016). The fact that passive ankle 

joint stiffness appeared to be unaltered may reveal that BoNT primarily modulates neural aspects and 

does not change intrinsic stiffness of the muscle (Alhusaini et al., 2011). Concerning passive joint 

flexibility, only Park et al. (2014) reported increases in passive dorsiflexion, while no increase joint 

flexibility was found by some other groups (Alhusaini et al., 2011; Barber et al., 2013; Eek and 

Himmelmann, 2016). 

 

http://dict.leo.org/ende/index_en.html#/search=accompanied&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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In summary, BoNT most likely induces muscle atrophy on short-time spans of up to 3 months which 

is within and shortly above the chemically active period. Nevertheless, the calf muscles of children with 

CP seem to recover afterwards. However, increases in passive joint flexibility probably largely depend 

on concomitant treatments.  

 

1.6.2.2. Orthopedic surgery 

Lengthening surgeries for plantarflexors are considered an ultima ratio in CP children (Sees and 

Miller, 2013). Numerous procedures for the triceps-surae can be distinguished (Shore et al., 2010). 

They are topographically categorized from proximal to distal, ranging from gastrocnemius muscle belly 

to Achilles tendon lengthenings.  

Several insights on such surgeries have been derived from plantarflexors of animals: Transverse 

sectioning of the rat gastrocnemius aponeurosis, for example, leads to acute rupturing of the 

intramuscular tissue alongside the section and eventually causes a drop in muscle optimum force, an 

increase in slack length and lowers the passive resistive forces (Jaspers et al., 1999). Logically, tendon 

releases also immediately decrease the active muscle force (Jamali et al., 2000). They also drop the 

tension on the muscle belly which reduces sarcomere length within the gastrocnemius (Baker and Hall-

Craggs, 1980). Tenotomies of the triceps surae also lead to marked increases in intra-muscular 

connective tissue within a few weeks which is probably due to disuse (Jozsa et al., 1990).  

Concerning CP children, two general risk factors of surgeries are recurrent equinus and 

overcorrection, the latter leading to a walking pattern with excessive dorsi- and kneeflexion (Shore et 

al., 2010). Younger children with CP generally suffer from higher recurrence rates and lengthenings of 

the Achilles tendon seem to be rather critical for overcorrections (Shore et al., 2010). Hence, early 

aggressive interventions should be avoided. In addition, plantarflexor surgeries are frequently done in 

combination with other bony or soft-tissue surgeries. Although remarkable long-term benefits of such 

procedures on ankle kinematics during gait have been reported (Dreher et al., 2012), they may require 

extensive post-operative immobilization and retraining (Shore et al., 2010).  

 

Effects on muscle-tendon and joint properties in CP 

In a cross-sectional study, CP children who underwent prior gastrocnemius recession or Achilles 

tendon lengthenings had 7-16% longer distal gastrocnemius tendons and tended to have 30-36% 

shorter muscle fascicles than CP children who did not receive prior surgeries (Wren et al., 2010). Two 

further longitudinal studies evaluated the effects of surgeries on calf muscle morphometrics (Fry et al., 

2007; Shortland et al., 2004): Both showed remarkably increased passive dorsiflexion after the 

intervention. This implies that the total length or extensibility of the plantarflexors muscle-tendon 
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units might have considerably increased. Apart from that, Shortland et al. (2004) reported a 28-32% 

decrease in fascicle length after surgery. The pennation angle increased at both maximum dorsiflexion 

and at the resting ankle angle by a mean of 21% and 28%, respectively. The follow-up time was rather 

variable ranging from 51-610 days. Fry et al. (2007) investigated the Vulpius procedure. During this 

procedure, the external aponeurosis of the gastrocnemius and usually also the superficial aponeurosis 

of soleus are sectioned. One year post-op, Fry et al. (2007) observed a reduction in normalized 

gastrocnemius muscle belly length, however, the absolute muscle volume on average showed a 17% 

increase, indicating that patients’ muscles were able to recover. To the best of the author’s knowledge, 

no study thus far has explored the intramuscular healing process after surgeries. This leaves room for 

speculations about excessive post-operative scare tissue formation in CP, as shown in animal 

experiments (Jozsa et al., 1990). As can be seen from the presented findings, surgeries on 

plantarflexors of children with CP primarily aim to restore dorsiflexion and not to normalize muscle–

tendon architecture (Sees and Miller, 2013).   

 

In summary, pathological alterations in muscle-tendon properties, e.g. the mismatch between 

gastrocnemius muscle belly and tendon length, as well as the reductions in muscle fascicle length 

might be aggravated by surgeries despite achieving marked increases in ankle joint flexibility. 

 

 

1.6.2.3. Orthotics and Casts 

The major difference between an orthotic and a cast for the lower limb of children with CP is that 

a cast is not removable on demand and offers little to no flexibility. For equinus deformities, casting 

usually involves serial cast reapplication at intervals between 2 and 14 days (McNee et al., 2007). In 

contrast to that, orthotics are constructed from thermoplastic or carbon fibre composites, with or 

without hinge constructions and are mainly prescribed for 3 purposes: to protect the outcome of 

surgeries, to prevent musculoskeletal deformities and to improve gait (Davids et al., 2007). Large scale 

registries show that 4 out of 10 children at least partly wear ankle-foot foot orthotics for maintenance 

or increase in joint range of motion (Wingstrand et al., 2014). 

 Orthotics can typically be categorized according to the joints they span. Concerning the lower 

extremity, orthotics are most frequently grouped into foot orthotics, ankle-foot foot orthotics or knee-

ankle-foot orthotics (Specht et al., 2008, p.5). About every second child with CP is treated with ankle 

foot orthotics (Wingstrand et al., 2014). They are frequently also used as a splint to counteract 

contractures by applying tensile forces on muscle-tendon units, which is done for several hours a day 

(Cusick, 1988; McClure et al., 1994). Moreover, overnight use in children with CP is recommended to 

prevent or delay contractures (National Collaborating Centre for Women's and Children's Health (UK), 
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2012).  Maas et al. (2012) argued to use the term ‘orthotic management in rest’ instead of splinting, 

but orthotics for counteracting contracture are frequently also worn during ambulation.  

Orthotics and casts intend to increase joint range of motion and basically rely on two stimuli, 

progressive tensile stress and immobilization. The concept is that immobilization of a muscle in a 

lengthened position will lead to gains in muscle length with a reduction in equinus posturing. The 

mechanism is supposed to encompass either biological remodeling of connective tissue or structural 

muscle growth from addition of sarcomeres in series (McClure et al., 1994). The rationale for this is 

derived from animal studies. In adult animals, muscle immobilization in a lengthened position led to 

sarcomerogenesis within muscle fibres (Williams and Goldspink, 1978). Notably though, tendons of 

growing animals seem to respond more readily than muscles (Blanchard et al., 1985; Tardieu et al., 

1977). Thus, when the soleus of young animals is immobilized under tensile stress, growth of tendon 

length seems to be stimulated first and muscle fibre length actually decreases (Blanchard et al., 1985; 

Tardieu et al., 1977) since the muscle belly is somewhat kept off-tension. In fact, also for CP children, 

experts doubt that orthotics or casts will increase the plantarflexors’ muscle length. It had been feared 

that they could actually exacerbate altered morphology by promoting atrophy due to immobilization 

(Gough, 2007; Miller, 2007). 

 

Effects on muscle-tendon and joint properties in CP 

To the best the author’s knowledge, no study has provided results about the effects of casts or 

orthotics on muscle-tendon properties in children with CP without any additional primary treatment. 

Apart from that, McNee et al. (2007) found that after 12 weeks of full-time below knee serial casting 

the only significant improvement was an increase in passive dorsiflexion when the knee was flexed 

while there was no-benefit during gait. Furthermore, Blackmore et al. (2007) concluded that there is 

little evidence that casting is superior to no casting for treating equinus posturing. In terms of force 

production, Brouwer et al. (1998) observed a rightward shift in the active plantarflexor length-tension 

relationships after 3 weeks of continuous below knee casting, indicating that CP children generated 

more force further into dorsiflexion. Further, the passive end-range dorsiflexion increased. Since all 

the assessments by Brouwer et al. (1998) were performed with the knee held in flexion, this may 

provide indirect evidence for biological remodeling within the soleus muscle. 

 

In summary, despite its popularity, the effects of prolonged stretch immobilization by orthotics or 

casts on muscle-tendon properties of children with CP have not been investigated so far. 

Notwithstanding the counter-arguments derived from animal studies, the rationale for increased 

plantarflexor muscle length after treatment with orthotics or casts cannot be definitely disproved. 
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1.6.2.4. Stretching 

Stretching is probably one of the most frequently applied treatments during physical therapy of 

patients with CP and takes up about 25% of a therapists’ time (Wiart et al., 2008). Although various 

stretching techniques can be discriminated, unless stated otherwise, this section focusses on static 

stretching. During static stretching, a joint’s end-range position is gradually adopted and held for a 

certain time. This technique seems to be most commonly used in CP children. The major rationale may 

be considered fairly similar to orthotics and casts, namely to maintain or increase joint range of motion 

(Wiart et al., 2008). The proposed pathways for gains in passive joint range of motion after stretching 

generally vary from an increase in muscle length to modified sensations (Weppler and Magnusson, 

2010).   

When healthy controls statically stretch their plantarflexors, the reported gains on endrange 

dorsiflexion ranged from about 3-8° after stretching 5-7 days per week for 3-6 weeks. (Blazevich et al., 

2014; Gajdosik et al., 2007; Konrad and Tilp, 2014; Mahieu et al., 2007; Nakamura et al., 2012). Findings 

for alterations in passive ankle joint torque-angle properties are controversial: Some studies linked the 

increase in joint range of motion to larger tolerated passive moments (Blazevich et al., 2014; Gajdosik 

et al., 2007), while Gajdosik et al. (2007) reported a general increase in passive joint torques following 

stretching and Nakamura et al. (2012) and Kubo et al. (2002) reported a decrease in passive joint 

torques at predesignated ankle joint angles. Finally, Mahieu et al. (2007) reported a decreased joint 

torque at end-range. Concerning the slope of the passive resistive torque-angle relationships, Blazevich 

et al. (2014), Konrad and Tilp (2014) and Kubo et al (2002) reported no changes. Hence no definite 

conclusion can be drawn if and how plantarflexor stretching alters ankle joint stiffness. In terms of 

active voluntary strength, no significant effects of plantarflexor stretching have been found (Blazevich 

et al., 2014; Konrad and Tilp, 2014; Kubo et al., 2002).  

Concerning muscle-tendon properties of healthy controls, no significant changes in gastrocnemius 

fascicle length were reported following stretching (Blazevich et al., 2014; Konrad and Tilp, 2014; 

Nakamura et al., 2012). Nevertheless, Nakamura et al. (2012) and Blazevich et al. (2014) observed 

increased muscle belly elongation following passive static stretching. Both argued for a decrease in 

muscle belly stiffness due to alterations in connective tissue properties following stretching. Further, 

Blazevich et al. (2014) speculated about microscopic changes, e.g. myofilamental or titin alterations. 

By contrast, Konrad and Tilp (2014) suggested that stretching does not change passive resistive muscle 

belly stiffness. Concerning the gastrocnemius tendon, active (Blazevich et al., 2014; Kubo et al., 2002; 

Mahieu et al., 2007) or passive resistive stiffness (Konrad and Tilp, 2014) does not seem to be affected. 

Eventually, altered stretch tolerance was thought to be a main effect of stretching (Blazevich et al., 

2014; Konrad and Tilp, 2014). This might be perhaps caused by different pain perception after 

treatments. 
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In immobilization experiments on animals, half an hour of static stretch of the immobilized muscle-

tendon unit can be enough to prevent the loss of serial sarcomeres and maintain the joint range of 

motion (Williams, 1990) while 15 minutes of stretch every other day may help to prevent collagen 

increases in the muscle typically seen with immobilization (Williams et al., 1988). Therefore, manual 

stretching may potentially also be beneficial in CP children. 

 

Effects on muscle-tendon and joint properties in CP 

Until recently, the overall effectiveness of stretching in CP patients has been strongly doubted 

(Katalinic et al., 2011; Novak et al., 2013; Pin et al., 2006; Wiart et al., 2008). Katalinic et al. (2011) 

concluded that stretching may at best have an immediate effect on passive joint range of motion and 

is not sufficient to induce longitudinal tissue remodeling. Recommendations vary from prescribing 

alternatives, e.g. orthotics (Pin et al., 2006), allowing the children to stretch and move (Wiart et al., 

2008) or cancelling manual stretching during treatment (Novak et al., 2013). 

More recently, two groups of researchers specifically focused on the effects of plantarflexor 

stretching on muscle tendon and joint properties in CP. Firstly, Theis et al. (2015) investigated passive, 

static stretching (4 x per wk. for 6 wks.) and found a ~31% reduction in passive ankle joint stiffness and 

a 12% reduction in passive gastrocnemius muscle belly stiffness. In addition, an increase in muscle belly 

(+23%) and fascicle strain (+13%) was found but fascicle resting length and passive resistive tendon 

stiffness was not altered. 

Secondly, apart from static stretching, a custom-made interactive robotic apparatus was evaluated 

(Chen et al., 2016; Wu et al., 2011; Zhao et al., 2011) whereby children with CP were treated with a 

combination of passive cyclic stretching and active-movement training. The active part consisted of 

voluntarily dorsi- and plantarflexion to play computer games. Zhao et al. (2011) pointed out that after 

6 weeks (3 x wk.), fascicle length increased at neutral ankle position for both the soleus (+9%) and 

gastrocnemius (+3%), with an additional decrease of the pennation angle of -10% and -4%, 

respectively. Also the length of the Achilles tendon decreased by -6% which appears positive when 

taking into account the elongated tendons of CP patients (Barber et al., 2012; Kruse et al., 2016a; Theis 

et al., 2016; Wren et al., 2010). Using this stretching apparatus, Zhao et al. (2011) showed that the 

stiffness of the gastrocnemius fascicles decreased by 21%, while the tendon stiffness increased by 31%. 

Two later studies reported increased isometric dorsi- (Chen et al., 2016; Wu et al., 2011) and 

plantarflexor strength (Chen et al., 2016), decreased passive joint stiffness and increased maximum 

passive dorsiflexion (Chen et al., 2016; Wu et al., 2011) when training with the same machine. Also 

functional gains, e.g. an increased walking distance as well as improved balance was reported (Chen 

et al., 2016; Wu et al., 2011). Obviously, these studies did not solely include stretching as a training 

stimulus, and the gains in strength were probably attributable to the active exercises. Remarkably, in 
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contrast to Zhao et al. (2011), who used this robotic stretch trainer, no increases in fascicle length were 

noted after manual stretching (Theis et al., 2015). This may indicate that, apart from stretching, 

concomitant strengthening exercises are necessary for inducing changes in fascicle length in CP 

children.  

In summary, there is limited positive evidence that stretching interventions can increase passive 

dorsiflexion in CP children within 6 weeks and 3-4 weekly sessions. This may also decrease stiffness of 

the gastrocnemius on the level of the muscle belly and its fascicles.  

 

1.6.2.5. Resistance training  

According to the American Academy of Pediatrics, resistance and strength training are used 

synonymously. They primarily aim to increase force production and may include free weights, weight 

machines, elastic tubing, or a child’s own body weight (McCambridge and Stricker, 2008). Amongst 

others, the training is specified by frequency, type of resistance, intensity and duration. 

Recommendations for recreational or athletic purposes in healthy children include progressive training 

for 2-3 times per week for at least 8 weeks. Usually 2 to 3 sets with 8-15 repetitions are recommended. 

Although various contraction modes can be distinguished (e.g. concentric, isometric, eccentric, 

plyometric or isokinetic), no specific recommendation for pediatric training has been made 

(McCambridge and Stricker, 2008).  

For children and adolescence with CP, resistance training is strongly recommended (Verschuren et 

al., 2016). However, few studies focused on the effects of resistance training on muscle-morphometric. 

No specific recommendations similar to those stated above for healthy children have been established 

for CP children. Preliminary evidence suggests that strength training leads to muscle hypertrophy in 

CP patients (Gillett et al., 2016). Through biochemical interactions, larger muscles may probably also 

prevent cardio-metabolic health risks later in life (Peterson et al., 2012). More immediately, during 

childhood, Ross and Engsberg (2007) pointed out that larger lower limb strength in patients with CP is 

associated with better gross motor function and faster walking speed. So, gains in strength of CP 

children are supposed to have a positive impact on mobility. Novak et al. (2013) reviewed that strength 

training was low to moderately effective for improving lower leg strength in CP. Nevertheless, in the 

past, strength training was also considered contraindicated in CP children due to concerns about 

increased muscle stiffness and spasticity (Verschuren et al., 2016). These concerns could yet be 

disproved (Morton et al., 2005; Scholtes et al., 2012).  As to the deficits in muscle-tendon properties 

in CP (2.1. and 2.2.), gains in plantarflexor muscle size appear to be a reasonable target during strength 

training of CP patients.  
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Effects on muscle-tendon and joint properties in CP 

Several studies focused on the effects of resistance training in children and adolescents with CP. 

Nonetheless, up to now, only Moreau et al. (2013) specifically investigated the effects on muscle 

fascicle length: They compared high velocity concentric resistance training versus conventional, slow 

training on knee extensor muscle morphometrics (24 sessions over 9 wks.). Training at high velocities 

increased rectus femoris fascicle length by 16%. Strikingly, there was also a 7% decline after training 

at lower contractile velocities. Moreover, both trainings similarly increased the rectus femoris cross-

sectional area, while there was only a significant increase in muscle thickness of the vastus lateralis 

after slow velocity training. The isometric knee extensor torque increased after the slow training while 

the peak power increased only after fast velocity training. From a functional point of view, only the 

training at high velocities led to faster walking speeds. So, muscle strength adaptions and functional 

gains in CP seem to strongly depend on the provided contractile stimulus during training. 

Stackhouse et al. (2007) investigated volitional strength training vs. electrically stimulated training 

via percutaneous implants to produce supramaximal force levels of the quadriceps femoris and triceps 

surae. The exercise was composed of isometric leg presses (3 x per wk. for 12 wks). The stimulated 

group showed superior gains of the quadriceps femoris cross sectional area muscle (+11% vs. +4 %) 

but neither group showed hypertrophy concerning the triceps surae. The authors speculated that the 

use of orthotics might have blunted any hypertrophic effect of the training on the triceps surae. 

Moreover, only the stimulated group increased their walking speed by ~20%.  

Lee et al. (2015) compared neurodevelopmental therapy only with neurodevelopmental therapy 

and additional progressive resistance training (3x per wk. for 6 wks.). The resistance training was 

composed of sit-to-stand exercises, step-ups and knee rises. They found a significant increase in 

gastrocnemius muscle thickness (+43%), which was not yet significantly more than neuro-

developmental therapy alone (+25%). In addition, the fascicle angle of the gastrocnemius increased by 

20% after resistance training, while a decline was noted after neuro-developmental therapy (-12%). 

For the rectus femoris, the cross-sectional area increased more in the resistance training group (+75% 

vs. -6%). These morphometric benefits were also reflected by larger self-perceived mobility.  

Eventually, McNee et al. (2009) reported a 23% increase in gastrocnemius muscle volume in 

children with CP after progressive heel raise or theraband training (4 x per wk. for 10 wks.) but no 

changes in ankle dorsiflexion during gait, walking speed or in walking related performance scores were 

noted.  

In addition to the aforementioned studies, two further randomized controlled trials highlight the 

difficulty in promoting plantarflexor strength in CP patients with conventional exercises: Dodd et al. 

(2003) investigated a home-based resistance training protocol (3 x wk. for 6 wks.) using functional 
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multi-joint body weight exercises and Scholtes et al. (2010) performed a school based group circuit 

training (3 x wk. for 12 wks.). In both studies no gains in isometric plantarflexor strength were noted. 

Moreoever, potential strength gains in the lower limbs of patients with CP are often not 

transferred to functional improvements. Despite knee extensor and hip abductor strength gains, 

Scholtes et al. (2012), for example, found no improvement in walking speed or during functional 

walking tests. In another study, exercises on conventional training machines (2 x wk. for 12 wks.) 

improved leg press strength in CP patients but no changes in gross motor function, kinematic gait 

quality, walking speed or functional walking tests were found (Taylor et al., 2013). 

Taken together, there is fairly limited evidence that potential gains in muscle strength or 

architecture will translate to improved function in CP.  This ineffectiveness has been quite a matter of 

controversy. Amongst others, this led to the drastic conclusion that resistance training in CP has no 

worthwhile functional benefits (Scianni et al., 2009). On the other hand, it was reasoned that, in order 

to improve walking, specific walking exercises should be incorporated into the training (Boyd and 

Graham, 1999; Romeiser Logan, 2013). This was supported by a recent review showing that gait 

training was the most effective intervention to improve walking speed in ambulatory CP children while 

there was no proof for the efficacy of sole strength exercises on walking speed (Moreau et al., 2016).  

 

1.6.2.6. Rationale for implementing eccentric training  

 As a general rule of thumb, it had been suggested that the preferential muscle response to training 

in healthy controls depends on the contraction mode: concentric loadings cause addition of 

sarcomeres in parallel and eccentric training induces an increase of fascicle length through the addition 

of sarcomeres in series (Franchi et al., 2016). Concerning the lack of sarcomeres in series and the 

reductions in fascicle length in children with CP, it seems that eccentric muscle contractions in 

particular could be beneficial. Proske and Morgan (2001) also reasoned that eccentric training is 

beneficial for the plantarflexors of patients with equinus gait. 

Fundamentals on muscle adaptions to eccentric training have been examined in animals. First, 

eccentric training appears to be beneficial for growth of muscle fibre length via sarcomerogenesis 

(Butterfield et al., 2005; Lynn and Morgan, 1994). It thereby induces a rightward shift in the length 

tension properties of muscle fibres (Butterfield and Herzog, 2006; Lynn et al., 1998). Thus, eccentric 

training over time enables more force production at larger muscle length. Second, these adaptations 

are thought to be under control of fibre (or sarcomere dynamics) and only when sarcomeres are 

trained beyond optimum length during contraction (Morgan and Proske, 2004), eccentric training 

leads a perturbation in fibre mechanics (Fig. 1-12). 
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Fig. 1-12 Myofibrillar remodeling following eccentric exercise. Microscopic damage 7-8 days after eccentric 

exercise while running downstairs. Disrupted sarcomere structure in surgical biopsies of the human soleus 

muscle. Red stripes mark z-discs (boundaries of sarcomeres) and dark areas mark regions for action and myosin. 

Extracted and adapted from Carlsson et al., 2007, Neuromuscul Disord., 17, 61-68, p. 64. With permission from 

Elsevier. 

 

Evidence on the effects of eccentric plantarflexor resistance training in humans is primarily limited 

to healthy adults (Duclay et al., 2009; Foure et al., 2013; Mahieu et al., 2008). Among others, Duclay et 

al. (2009) showed that high-intensity eccentric plantarflexor training on conventional strength training 

machines is able to increase gastrocnemius fascicle length (+7.6%), pennation angle (+6.8%) and 

actively tested tendon stiffness. In contrast to this, Foure et al (2013) reported no increase in 

gastrocnemius fascicle length or pennation angle after eccentric plantarflexor training. In contrast to 

the weight training of Duclay et al. (2009), Foure et al. (2013) and Mahieu et al. (2008) performed 

eccentric heel drops relying on their participants’ own body weight. Although Foure et al. (2013) 

observed an increase in passive resistive tendon stiffness, they did not observe increases in active 

strength or muscle size. The Achilles tendon stiffness during isometric muscle contractions also did not 

change. Notably, Mahieu et al. (2008) reported a decrease in maximal passive resistive ankle torques 

and an increase in maximum passive dorsiflexion. This indicated that eccentric plantarflexor training 

could be able to promote joint flexibility which is in-line with findings on the hamstrings (Nelson and 

Bandy, 2004). The disparity of these results on eccentric plantarflexor training might be partly 

explained by different training protocols. Whereas Foure et al. (2013) seem to rely on the number of 

repetitions to increase the training load, Duclay et al. (2009) primarily increased the intensity 

throughout their training by using larger weights. In addition, the training of Foure et al., (2013) also 

contained jumping tasks, which might not have provided a sufficiently large eccentric stimulus on the 

gastrocnemius fascicles. 
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Next to these fairly conventional exercises, walking backward-downhill has been used in healthy 

controls to induce eccentric calf muscle loadings (Hoang et al., 2007a; Hoffman et al., 2014; Nottle and 

Nosaka, 2005a, 2005b). Such gait training induces repeated eccentric strains of gastrocnemius fascicles 

during the landing phase (Hoffman et al., 2014). It could be shown that after a single bout of prolonged 

backward downhill walking, blood markers for muscle damage are also upregulated (Nottle and 

Nosaka, 2005a). In addition, passive resistive tension of the gastrocnemius muscle-tendon unit seems 

to increase for up to 1-2 days following the training and muscle soreness occurs (Hoang et al., 2007a). 

An attenuated blood response following the next bout of training may reveal protection from further 

muscle damage. This is referred to as the repeated-bout effect, a characteristic of eccentric training 

(Nottle and Nosaka, 2005a). To the best of the author’s knowledge, no such training has been 

evaluated in a longitudinal fashion for CP children. 

Eventually, apart from Moreau et al. (2013), training studies in CP children seem to have barely 

focused on the modalities of muscle contraction and eccentric exercise has not been explored in detail 

in CP. Only Reid et al. (2010) studied eccentric exercise (3 x wk. for 6 wks.) for elbow flexors of CP 

children, revealing benefits for concentric and eccentric strength as well as a larger range for active 

torque exertions after the intervention. 

 

In summary, lower limb muscles of children with CP can grow in response to resistance training 

within the period of 6-12 weeks and 3-4 weekly sessions. However, gains in strength or in muscle 

architecture are not necessarily reflected by improved gait. Therefore incorporating walking exercises 

into training has been advocated. As noted in animals and in healthy controls, differential adaptations 

within the muscles of patients with CP may depend on the contraction mode during training. Eccentric 

training in particular may provide a beneficial stimulus for sarcomerogenesis. 
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2. Purpose of the thesis  
As outlined in the previous sections, equinus deformity and the related plantarflexor muscle-

tendon pathology of children with CP is neuro-orthopedically targeted with various invasive and non-

invasive approaches. One of the final aims of such interventions in ambulatory patients is to improve 

walking skills in order to increase the children’s mobility. Since invasive approaches inherently include 

much higher risks and can provide enormous psycho-social burdens to the children and their 

caregivers, avoiding or postponing them should be considered very worthwhile. Thus, the overall 

objective of this thesis is to focus on non-invasive strategies for calf muscles of children with CP and to 

gain knowledge about the responsiveness of the related muscle pathology by using ultrasonography. 

The author would also like to promote our understanding of muscle structure-function relationships 

during gait. 

On the one hand, despite its widespread use in pediatric orthopedics, there is a gap of knowledge 

about the effects of two highly common treatments on muscle-tendon properties in equinus 

pathology, namely manual stretching or stretch immobilization with orthotics. Taking into account 

some findings about promoted muscle atrophy in animals following stretch immobilization, there is a 

need for investigating possible adverse effects of stretch immobilization on the muscle and on the 

mobility in CP patients. Manual stretching also has fairly limited scientific evidence and lots of 

reasonable doubts. On the other hand, it is commonly accepted that ‘form follows function’ in 

biological tissue and therefore muscle-tendon pathology in CP may be shaped and alleviated when 

applying adequate training stimuli. With regard to the current topic, it needs to be shown if and how 

atrophied plantarflexor muscles and ankle joint contracture in the state of a chronic, neurological 

disease are able to adapt to exercise and whether this eventually also translates to improved function. 

Since differential muscle adaptations to training in healthy populations likely depend on the 

contraction mode, eccentric exercise could provide beneficial stimuli for the plantarflexors causing 

growth in fascicle length via sarcomerogenesis. Incorporating specific walking exercises into training 

also seems reasonable. Further, getting deeper insights on plantarflexor working mechanisms during 

ambulation in CP children will promote our understanding about the link between their muscle 

pathology and gait patterns. Therefore this thesis was split into three major studies: 

The purpose of the first study was to longitudinally investigate the effects of ankle foot orthotics 

on gastrocnemius muscle morphometrics during passive manual examination, as well as during gait by 

using 2D ultrasound and 3D motion capturing in children with CP and equinus deformity while 

referencing to untreated typically developing controls. We thought that after the orthotic treatment, 

the gastrocnemius muscle-tendon unit would lengthen and passive ankle joint excursion would 

increase, thus getting closer to reference values form healthy controls. Additionally we wanted to 
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quantify any atrophic effect on the muscle belly due to immobilization. We expected positive effects 

of the treatment on gait showing a reduction in equinus posturing. 

In order to find an alternative, conservative training stimulus for the calf muscles of children with 

CP, the second study compared the contractile activity of the medial gastrocnemius on sloped surfaces, 

namely during forward uphill and backward downhill gait while walking on a treadmill. We used 2D 

ultrasonography, 3D motion capturing and EMG to explore altered working mechanisms of spastic 

muscles directly during gait and compared the findings of children with CP to those of typically 

developing peers. We expected that also during flat forward gait, gastrocnemius fascicles of children 

with CP would show altered contractile activity and backward downhill gait would be able to induce 

eccentric fascicle strains in children with CP. 

During the third study, we compared eccentric exercise by means of a novel training stimulus, 

namely backward-downhill gait versus a widely used conventional approach, namely passive and active 

manual static stretching. 2D ultrasonography, 3D motion capturing, EMG and hand-held dynamometry 

were used to test plantarflexor strength, passive ankle joint flexibility, as well as gastrocnemius muscle 

morphometrics, stiffness and strain on muscle-tendon and joint level. We hypothesized that eccentric 

exercise by backward-downhill treadmill training would be superior to stretching and was capable to 

improve plantarflexor strength as well as gait. In particular, we aimed to induce gastrocnemius muscle 

growth with backward-downhill gait. On the other hand, we expected stretching to be an insufficient 

stimulus for effecting muscle-tendon properties and being incapable of improving walking.  
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3.1. Abstract 

 
Purpose  

In children with cerebral palsy (CP), braces are used to counteract progressive joint and muscle contracture and 

improve function. We examined the effects of positional ankle-foot braces on contracture of the medial 

gastrocnemius (MG) and gait in children with CP while referencing to typically developing children.  

 

Methods 

Seventeen independently ambulant children with CP and calf muscle contracture (age: 10.4±3.0y) and 17 

untreated typically developing peers (age: 9.5±2.6y) participated. Children with CP were analyzed before and 

16±4 weeks after ankle-foot bracing. MG muscle belly length and thickness, tendon and fascicle length, as well 

as their extensibility were captured by 2D ultrasound and 3D motion capturing during passive, manually applied 

stretches. In addition, 3D gait analysis was conducted. 

 

Results 

Prior to bracing, the MG muscle-tendon unit in children with CP was 22% less extensible. At matched amounts 

of muscle-tendon unit stretch, the muscle belly and fascicles in CP were 7% and 14% shorter while the tendon 

was 11% longer. Spastic fascicles displayed 32% less extensibility than controls. Brace wear increased passive 

dorsiflexion primarily with the knees flexed. During gait, children walked faster and foot lift in swing improved.  

MG muscle belly and tendon length showed little change, but fascicles further shortened (-11%) and muscle 

thickness (-8%) decreased.  

 

Conclusions  

Use of ankle-foot braces improves function but may lead to a loss of sarcomeres in series which could explain 

the shortened fascicles. To potentially induce gastrocnemius muscle growth, braces may also need to extend the 

knee or complementary training may be necessary to offset the immobilizing effects of braces. 

 

Keywords: Cerebral Palsy; ankle-foot bracing; ultrasound; gastrocnemius; muscle contracture 

 
 

Abbreviations: 
CP: Cerebral palsy 
MG: Medial Gastrocnemius 
TD: Typically developing peers 
MTU: Muscle-tendon unit 
MAS: Modified Ashworth Scale 
MTJ: Muscle-tendon junction 
FA: Fascicle angle 
LMTU: Muscle-tendon unit length 
LFASC: Fascicle length 

 

LMB: Muscle belly length 
LTEND: Tendon length 
GMFCS: Gross Motor Function Classification System 
PRoM: Passive Range of Motion 
3DGA: 3D gait analysis 
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3.2. Introduction  

 
Symptomology of spastic Cerebral Palsy (CP) includes, but is not limited to, muscular weakness, 

overactivity and contracture [1]. Muscular contractures are thought to some degree reflect muscle 

tissue that fails to keep up with bone growth [2]. Plantarflexors are typically seriously affected. Apart 

from altered neural control, they are intrinsically very stiff [3] resulting in equinus, the most common 

musculoskeletal impairment in CP [4]. Equinus gait compromises balance and is fatiguing, since it 

requires more activity of the triceps surae [5]. During childhood the loss in passive dorsiflexion is 

progressive [6]. Thus, also muscle contracture of the triceps surae seems to deteriorate. On a long 

term painful bony foot deformities can result. Temporary immobilization of the stretched calf using 

casts or braces with or without botulinum toxin injections is a popular treatment [7,8]. Braces are 

commonly applied in non-rigid deformities. By holding the joint near its end-range, progressive 

contracture should be counteracted and spastic muscles are assumed to untighten and grow at a more 

equal rate to the bone. Eventually, also the gait pattern should improve. Yet, it is unclear how bracing 

actually affects the muscle morphometrics in spastic equinus deformity.  

 

Muscle morphometrics in CP 

Ultrasound scans provide a non-invasive means to gain information about a muscle’s architecture. 

It could already be shown that plantarflexor morphometrics in CP are altered with respect to typically 

developing peers (TD) [9-14]. In case of the medial gastrocnemius (MG), one of the spastic leg muscles 

displaying largest volumetric atrophy [15], there is evidence for reduced muscle belly length (LMB), 

cross-sectional area and muscle belly thickness (MT) [9]. However, Achilles tendon length (LTEND) 

appears to be longer [10] while MG fascicle (bundle of skeletal muscle fibres) length (LFASC) seems 

shorter than in TD [11, 12]. Concerning the latter, LFASC, some inconsistencies have been reported [13, 

14]. These discrepancies may be partly explained by difficulties in standardizing the musculoskeletal 

conditions, e.g. the degree of muscle stretch, during the assessment. On a microscopic level, spastic 

muscle fibres were also found to contain very long sarcomeres which was interpreted as an inability 

to add sarcomeres in series with growth [16,17]. 

 

Potential response to bracing 

Casts and orthotics are currently favourable for contracture management [18]. They should keep 

the plantarflexor’s muscle-tendon units [MTU] in a stretched position. This is assumed to over-time 

increase LMB with a concomittant reduction in pathological equinus posture. Manual stretching of 

spastic MG can indeed transiently increase its LMB, LFASC, as well as LTEND [19], but the long-term 

effectiveness of manual stretch remains doubtful [18]. Cyclic stretches by an external, machine-driven 
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device in combination with active training stimulated the MG fascicles to grow longer and become less 

stiff [20] positively demonstrating the MG’s adaptive potential. By contrast, most braces induce static, 

low load stretch over prolonged periods and also immobilize the muscle. Knowledge about the 

morphometric effects of chronic muscle stretch is primarily derived from healthy animals. When 

muscle from adult animal is immobilized in a lengthened position, sarcomeres have been shown to be 

added in series [21]. Muscle fibres in CP may thus grow longer in response to bracing. Yet, the fibres’ 

cross-section could also atrophy because of the immobilizing effect [22]. In juvenile, developing 

animals, experiments point out that primarily the tendon and not the muscle fibres lengthens in 

response to stretched immobilization [21,23,24]. Stimulated tendon growths could in fact reduce the 

stretch effects on muscle fibres and eventually induce sarcomere loss [23]. Such a scenario could 

theoretically decrease the MG muscle belly thickness [MT]. Because of cross-sectional atrophy and the 

pinnated fibre arrangement, also the LMB could decrease. In fact, it has been doubted that stretch-

immobilization can promote muscle growth in children with CP [25]. 

The main aim of this study therefore was to longitudinally re-evaluate MG morphometrics in 

children with CP after a period of ankle-foot bracing. To define the status quo prior to bracing, LMB, MT, 

LFASC and fascicle angle [FA] as well as LTEND in children with CP was contrasted with TD using ultrasound 

during passive, manually applied stretches. However, total extensibility (~strain) of the muscle, fascicle 

and tendon was compared as well. We hypothesized that children with CP and equinus have shorter 

and thinner MG muscle bellies, shorter LFASC but longer LTEND than TD and that extensibility of the MTU 

and its components is reduced. After ankle-foot bracing, we expected that passive dorsiflexion would 

improve, LMB, LFASC and LT of the spastic MG will be lengthened and extensibility of the MTU and its 

components will increase. Our second aim was to compare the functional effects of bracing using 3D 

gait analysis. We expected dorsiflexion to improve during stance and swing, positively affecting foot 

positioning at ground contact. Thereby walking speed and step length should be increased. 

 

3.3. Methods 

3.3.1. Participants 

 

To be included children with CP had to be classified as GMFCS I or II and display non-rigid equinus. 

Non-rigid equinus was defined as tone on modified Ashworth Scale (MAS) <4 [26] and a passive range 

of motion (PRoM) lack smaller than -10° dorsiflexion (with flexed or extended knees). Further exclusion 

criteria were passive PRoM lack greater than a -10° of knee flexion from neutral, crouch gait, leg length 

discrepancies more than 2cm, any previous surgery to the leg, botulinum toxin injections within 1 year 

or bracing within 3 months. We thereby consecutively included 17 (9/8 male and female; 9/8 uni- and 

bilaterally involved, 7/10 GMFCS I and II) children with CP (age range: 5y 11mo–15y 6mo) from our 
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outpatient department. As a reference group, 17 TD were included (6/11 male and female, age range: 

6y 0mo–15y 4mo). Only the (more) involved side was analyzed in children with CP based on passive 

dorsiflexion. For TD one leg was randomly chosen. Institutional ethics approval was granted and all 

subjects and their parents gave informed written consent. 

3.3.2. Bracing  

An articulated ankle-foot orthotic brace was individually manufactured out of glass and carbon fibre 

reinforced plastics (Fig.3-1). The lower leg shell is an S-type calf-construction with condylar support. It 

is fixed below the tibial tuberosity with a Velcro strap. The foot shell is a circular foot support. Both 

parts are linked by a constraint metal ankle hinge aligned in max. passive dorsiflexion while keeping 

the knee extended without perceiving intolerable discomfort. The subtalar joint was locked by a 

circular frame, the heel was fixed with a removable heel cap. 

Plantarflexion movement was blocked, the dorsiflexion RoM was 5-10°. Every 4-6 weeks the brace 

was reviewed and the metal ankle hinge was realigned if possible. If plantigrade position could be 

achieved and if tolerated, gas springs (~ 2-3 Nm) were integrated to provide a constant dorsiflexion 

push during night-wear (7 of 17 children). This resistance could be voluntary attenuated upon mild 

plantarflexor contraction and all 17 children were intended to wear this brace during sleep. If passive 

dorsiflexion was less than -5° from plantigrade, they were additionally prescribed day-time use to 

extent duration of brace wear. 12 of 17 children met the criteria for day-time use. 3 of those were not 

compliant with day wear, so that a total of 9 (of 17) wore the brace during day and night. 8 of 17 wore 

the brace only at night and foot-orthotics during the day intended to prevent foot deformities due to 

mid-foot or subtalar instability. 
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Fig. 3-1 Medial and lateral view of the ankle–foot brace with removable heel cap fixation, subtalar circular 

locking mechanism and optional posterior gas-spring for further dorsiflexion push. 

 

3.3.3. Set-up and data collection  

 

All children with CP were analyzed before and after bracing. Measurements were performed in the 

movement laboratory on the day of their outpatient appointments. TD were analysed on a single 

occasion. Apart from ultrasound scans, all participants were clinically manually examined by the same 

evaluator and underwent an instrumented 3D gait analysis (3DGA). PRoM for knee extension, popliteal 

angle (opposite hip flexed) and dorsiflexion with the knee flexed were measured using ruler-based 

goniometry. Plantarflexor tone was graded on modified Ashworth Scale (MAS) [26]. Passive 

dorsiflexion with the knee extended was instrumentally measured using motion capture data during 

MG ultrasound scans.  

For 3DGA, a Vicon Nexus system with 8 MX-Cameras was used to capture barefoot gait at self-

selected speed along a 12 m walkway. Markers were placed according a modified Plug-In gait Model 

[27]. Marker data were sampled at 200 Hz and force plate at 1000 Hz via two force plates (AMTI). Gait 

analysis was repeated until 5 clean strikes on the force plates from each foot could be obtained. 

For the ultrasound scans, children were comfortably seated (hip semi-flexed) in a chair (Fig.3-2). Retro-

reflective markers of the 3D motion capture system remained on the leg (Fig.3-2) to track knee 

alignment and ankle motion during the scan. A 7.5 MHz, 8 cm width, linear array probe (Sonoline 

Adara; Siemens, Munich, Germany) was attached with a carbon cast which was equipped with a cluster 

of four markers. The probe was attached at two locations: over the muscle-tendon junction (MTJ) and 
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over the mid-belly (halfway between popliteal crease and MTJ). The image plane was aligned with the 

fascicles according to a standardized protocol [28]. The leg was passively lifted and the knee extended 

as feasible. The same examiner manually moved the ankle slowly and continuously from flexion to 

extension and back. Prior to data collection the ankle was preconditioned with three cycles. Then, 

three to five dorsiflexion stretches were captured while the children could view the ultrasound screen 

and were encouraged to relax. If muscle contraction was manually sensed as sudden resistance, or 

whenever contraction was visually apparent, trials were repeated. 

 

 

Fig. 3-2 Experimental setup. Left side: Child positioning with custom made carbon cast for probe fixation and 

markers of the motion capture system. Right side: Superimposed ultrasound scans of the medial gastrocnemius 

muscle-tendon junction (MTJ) and (B) its midbelly portion with representation of morphometric assessment. 

LFASC: fascicle length, FA: fascicle angle, MT: muscle thickness. 

3.3.4. Data analysis   

 

To compare spatio-temporal gait, velocity and step length were extracted and normalized as 

described by [29] to account for growth. Besides, peak values for ankle dorsiflexion during stance and 

swing and knee extension during stance were analyzed. The foot landing pattern was characterized by 

the foot to floor angle at ground contact. To quantify ankle kinetics, the peak moments during the 1st 

and 2nd half of stance were selected, as well as the peak power during push-off.  

For the ultrasound scans, the position of the markers and the ultrasound movies were continuously 

captured using Vicon Nexus software (Vicon, Oxford, UK) on 8 cameras with a sampling rate of 200 and 

25 Hz, respectively. Subsequent analysis was done in MatLab software (MathWorks, Natick, USA). The 

MTJ in the Ultrasound movies was manually framewise located (Fig. 2).  Concerning the fascicles, 3-5 

different mid-belly fascicles were separately localized (straight-line between upper and deeper 

aponeurosis along hyperechoic [bright] collagenous tissue) and an automated tracking algorithm was 

used to continuously track their elongation during stretch [30]. MT was measured at min und max 

stretch, only. MT was defined as the distance between the upper and deeper aponeurosis, 

perpendicular to the deep aponeurosis [10], located halfway between popliteal crease and MTJ. FA 

http://en.wikipedia.org/wiki/MathWorks
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was calculated as: α=arcsin(MT/LFASC). The distal LTEND was defined as a straight-line from the heel 

marker to the MTJ. Since the entire Gastrocnemius MTU could not be tracked directly, LMTU was 

calculated using previously established equations relying on motion capture data concerning tibia 

length, knee and ankle angles, as well as on individual anthropometrics [31].  LMB was calculated as 

LMB=LMTU-LTEND. [10]. LFASC was represented by the average of all fascicles. For each trial, MTU stretches 

(from minimum to maximum length) were separated. To represent the average LFASC, LMB and LTEND 

lengthening across the LMTU stretch for each individual, data of each stretch was split into 10 equally 

spaced steps. Finally, the averages at these query points were taken before a third-order polynomial 

was fitted. For LMTU, LMB, LFASC and LTEND, minimum and maximum values were extracted. Besides, LMB, 

LFASC and LTEND were analyzed at similar degrees of MTU stretch. Since there was no common overlap 

in LMTU between all participants, the midrange LMTU (halfway between minimum and maximum stretch) 

was calculated first for each individual with CP before bracing. To standardize comparisons, the 

average midrange LMTU from children with CP was used for TD. To compare morphometrics before and 

after bracing midrange LMTU could be individually exactly matched. All parameters were normalized to 

shank length as defined from the malleolus to the knee marker. Their extensibility was calculated as % 

change between minimum and maximum length. 

 

3.3.5. Statistics 

Shapiro-Wilk tests were used to test normality. At baseline, children with CP were compared with 

TD. Statistical group differences were evaluated with independent t-tests. To compare children with 

CP before and after bracing, paired t-test were performed. Mean differences and 95% confidence 

intervals were calculated. Alpha-level was set two-sided at 0.05. Standardized effect sizes were 

expressed as Cohen’s d. Threshold values were 0.2, 0.5 and 0.8 for small, medium and large effects. 

Unless indicated differently, values are presented as mean (±1 SD). 

 
 
 

3.4. Results 

 

3.4.1. Participant characteristics and clinical exam  

Values for TD and CP and the test statistics are summarized in Table 3-1. There were no significant 

differences in age, height, shank length or mass (p>0.279). Children with CP demonstrated significantly 

shorter popliteal angles (p<0.001). Average passive dorsiflexion in CP with knees flexed (8° [11°]) and 

extended (2° [10°]) was considerably reduced with respect to (TD 29° [8°] and 15° [5°]), all p<0.01. At 
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Follow-up, on average 16 (4) weeks (range: 12-24 weeks) apart, children with CP significantly grew and 

gained in mass, height and shank length. During clinical examination passive dorsiflexion improved 

with the knees in flexion (6° [11°], p=0.048) and extension (4°[8°], p=0.076), while significance was only 

noted with flexed knees. 

 

Table 3-1 Anthropometrics , clinical exam  and parameters of gait of typically developing (TD) and children with 

cerebral palsy (CP) before and change (post-pre) after bracing. 

 

PRoM: Passive range of motion, MAS: muscle tone on Modified Asworth Scale, SD: Standard Deviation, ES: Effect 

Size (Cohen’s d), CI: Confidence Interval. *Significant differences between TD and CP with p< 0.05 (** p< 0.01). 

†Significant differences between pre and post bracing in CP with p< 0.05 (†† p< 0.01). 

 

3.4.2. Morphometrics 

In children with CP, mean knee flexion angle during scans was 9° (5°) in CP vs. 5° (4°) in TD (p=0.015). 

Thus similar LMTU were reached at different ankle angles due to altered knee alignments (Fig.3). The 

midrange LMTU from CP (109.4% shank length) corresponded to 23° (8°) and 25° (6°) plantarflexion in 

CP and TD. 

Average LMTU-LFASC, LMTU-LTEND and LMTU-LMB relationships are plotted in Fig. 3-3. Detailed statistics 

can be found in Table 3-2. Prior to bracing, the total MTU extensibility in CP with respect to controls 

was reduced by 22% (p=0.002). As illustrated in Fig. 3-4, this was accompanied by less fascicle (-32%) 

and tendon (-34%) extensibility (both p≤0.014). LMB and LFASC were significantly shorter throughout the 

stretch (all p0.035). LTEND was significantly longer at minimum and midrange LMTU stretch (both 

p≤0.039). At midrange, LMB and LFASC were 7% (p=0.016) and 14% (p=0.032) shorter while LTEND was 

  TD  CP     CP post bracing  

  Mean (SD)  Mean (SD)  ES   Mean Δ CI ES 

Anthropometrics            

Age (months)  114 (31)  125 (36)  0.2   3.7†† [3.2, 4.2] 2.3 

Height (cm)  137.7 (15.3)  140.0 (17.8)  0.1   1.5†† [1.0, 2.0] 1.6 

Shank length (cm)  33.4 (4.5)  33.4(4.8)  0.0   0.6† [0.0, 1.2] 0.5 

Mass (kg)  32.7 (13.0)  38.6 (18.1)  0.4   1.3†† [0.6, 2.0] 1.0 

 
PRoM (°) 

           

Popliteal angle  8 (10)  36 (10)**  2.3   -4 [-1, 10] 0.4 

Knee extension  6 (4)  3 (6)  0.6   0 [-2, 2] 0.1 

Dorsiflexion (knees flexed)  29 (8)  8 (11)**  2.3   6† [0, 11] 0.5 

Dorsiflexion (knees extended )  15 (5)  2 (10)**  1.7   4 [0, 8] 0.5 

Plantarflexion (knees extended)  39 (5)  42 (8)  0.4   1 [-1, 4] 0.3 

 
MAS (0-4) 

           

Plantarflexor tone (knees flexed)  0.0(0.0)  1.7 (0.9)**  2.7   0.1 [-0.3, 0.5] 0.2 

Plantarflexor tone (knees extended)  0.0(0.0)  2.3 (1.1)**  3.1   0.2 [-0.6, 0.2] 0.2 
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11% (p=0.013) longer. MT was thinner, most pronounced (12%) during min MTU stretch (p=0.027) and 

FA appeared to be comparable between TD and CP children.  

After bracing, the LMTU, LMB and LTEND did not significantly change (all p≥0.272) but LFASC was 

significantly shorter throughout the stretch (all p≤0.035). At matched midrange LMTU stretch, 11% of 

LFASC were lost with respect to baseline. Simultaneously, MT decreased by 8%, reaching significance at 

max MTU stretch (p=0.018), while FA showed minor change. No significant changes in fascicle and 

muscle extensibility were noted (p>0.104), whereas tendon extensibility increased by 20% (p=0.017). 

 

 

 
 
Fig. 3-3 Normalized muscle morphometrics during stretch. Data are group mean (1 SEM). *Significant 

differences between TD and CP with p<0.05 (**p<0.01) and †significant differences between pre and post 

bracing in CP with p<0.05 (†† p<0.01) tested at minimum (Min), matched midrange (Mid) and maximum (Max) 

muscle-tendon unit length. 
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Fig. 3-4 Extensibility of the muscle belly, fascicle and tendon. Data are group mean (1 SD). * Significant 

differences between TD and CP with p< 0.05 (**p< 0.01). †Significant differences between pre and post bracing 

in CP with p< 0.05. 

 
 

Table 3-2 Normalized muscle morphometrics of typically developing (TD) and children with spastic cerebral palsy 

(CP), as well as changes after bracing (post-pre) in CP 

   TD  CP   CP post bracing   

 
degree of 

MTU stretch 
 

Mean (SD)  Mean (SD) ES 
 

mean  Δ 95% CI ES 

MTU length min  106.1 (1.2)  104.9 (2.1) * 0.7  -0.2 [-1.6, 1.2] 0.1 

[% shank] matched mid  109.4 (0.0)  109.4 (2.3) -  - - - 

 max  117.8 (1.8)  114.0(3.1)** 1.6  0.2 [-1.7, 2.0] 0.2 

           

Muscle belly length min  63.8 (5.2)  58.4 (5.8)** 1.0  0.7 [-0.7, 2.0] 0.3 

[% shank] matched mid  65.2 (5.5)  60.4 (5.5)* 0.9  0.5 [-0.7, 1.7] 0.2 

   max  69.1 (5.4)  63.0 (4.9)** 1.2  0.1 [-1.4, -1.4] 0.0 

           

Muscle belly thickness min  4.4 (0.5)  3.9(0.8) * 0.8  -0.3 [-0.6, 0.0] 0.5 

[% shank] max  4.2 (0.5)  3.7(0.8)  0.7  -0.3† [-0.6, -0.1] 0.6 

           

Fascicle length min  10.8 (1.6)  9.4 (2.1)* 0.7  -1.0† [-2.0, -0.1] 0.6 

[% shank] matched mid  11.3 (1.6)  9.8 (2.3)* 0.7  -1.1† [-2.2, -0.1] 0.6 

 max  12.9 (1.9)  10.7 (2.7)** 0.8  -1.5† [-2.5, -0.2] 0.6 

           

Fascicle angle [°] min  24.3 (4.1)  25.0 (4.9) 0.2  1.0 [-1.5, 3.6] 0.2 

 max  19.2(3.2)  21.4(5.7) 0.5  0.7 [-2.0, 3.3] 0.1 

           

Tendon length min  42.4 (5.7)  46.4 (5.0)* 0.7  -0.9 [-2.5, 0.8] 0.3 

[% shank] matched mid  44.2 (5.5)  49.0 (5.2)* 0.9  -0.5 [-1.7, 0.7] 0.2 

 max  49.0 (5.4)  51.3 (5.1) 0.4  0.1 [-1.8, 1.9] 0.0 

           
SD: Standard Deviation, ES: Effect Size (Cohen’s d), CI: Confidence Interval, matched mid: parameters at midrange 

MTU length that refers to 50% MTU stretch in CP. * Significant differences between TD and CP at p< 0.05 (** p< 

0.01). †Significant differences between pre and post bracing in CP at p< 0.05 (†† p< 0.01). 
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3.4.3. 3D gait analysis 

Results are shown in Table 3-3. Before bracing, children with CP walked 16% slower while taking 

13% shorter steps than TD and landed with a significantly steeper foot contact (all p≤0.001). Average 

constraints in knee extension (-3°) and dorsiflexion (-4°) in stance did not reach significance (p≥0.102). 

Obstructions in dorsiflexion were more pronounced during swing (-5°, p=0.004). Ankle moments in 

early stance were pathologically increased, whereas ankle moments and power used for propulsion 

were considerably diminished (all p≤0.002). After bracing, walking speed significantly increased by 8% 

(p=0.014) while children tend to take longer steps (3%, p=0.068). Children landed with a significantly 

better foot to floor angle (p=0.006) and the average pattern changed towards heel-toe gait. 

Dorsiflexion gains in stance failed to reach significance (+2°, p= 0.073) but showed significant increases 

in swing (+2°, p=0.045). The pathologically increased ankle moment during early stance develops 

towards reference values (p<0.001). While propulsive ankle moments were reduced (p=0.013), power 

was not significantly changed (p=0.550). 

 

Table 3-3 Results of 3DGA of typically developing (TD) and children with cerebral palsy (CP) before and change 

(post-pre) after bracing. 

  TD  CP     CP post bracing  

3DGA Mean (SD)  Mean (SD)  ES   Mean Δ CI ES 

 vel (non. dim.) 0.47 (0.06)  0.40(0.08)**  1.1   0.03† [0.01,0.06] 0.5 

 step length (non. dim.) 82.2 (7.3)  71.2(11.5)**  1.1   2.2† [-0.2, 4.5] 0.4 

 landing angle (°) - foot to floor 11(6)  1(7)**  1.5   2† [1, 4] 0.6 

 knee flexion (°)  – midstance 6(4)  9(9)  0.5   1 [-1, 3] 0.1 

 dorsiflexion (°) – late stance 12 (4)  8(8)  0.5   2 [0, 4] 0.4 

 dorsiflexion (°) – swing 6(3)  1(6)**  0.9   2† [0, 4] 0.4 

 ankle moment (Nm/kg) – early stance 0.6 (0.1)  0.9(0.2)**  1.3   -0.1†† [-0.2, -0.1] 0.8 

 ankle moment (Nm/kg) – late stance 1.3 (0.2)  1.1(0.2)**  1.0   -0.1† [-0.2, 0.0] 0.5 

 ankle power (W/kg) – late stance 3.9 (0.9)  2.0(0.7)**  2.4   0.1 [-0.1, 0.2] 0.1 

 

 

3.5. Discussion 

This study set out to provide information about gastrocnemius muscle morphometrics in children 

with CP before and after a period of ankle foot bracing while referencing to untreated typically 

developing (TD) peers. Our assumption was that the spastic medial gastrocnemius (MG) would change 

towards TD and lengthen after a period of ankle-foot bracing. However, no significant gains of muscle 

belly  (LMB) or tendon (LTEND) length occurred and fascicle length (LFASC) further shortened while muscle 

bulk decreased. Nonetheless, on a joint level, significant increases in passive dorsiflexion were noted. 
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This primarily affected dorsiflexion with knees flexed but the majority of the children also gained 

dorsiflexion when assessed with extended knees. During gait, children walked faster and in particular 

dorsiflexion during swing, as well as the foot landing pattern improved. 

 

Muscle morphometrics prior to bracing 

Before bracing, shortening of the spastic MG LMB and LFASC was pronounced in CP and maximum 

values during stretch only approached minimum values of TD. This displays considerable atrophy 

among relatively high functioning, independently ambulant children and youth (GMFCS I and II) with 

CP. As described before, muscle thickness (MT) was less [9] and fascicle angle (FA) appeared to be 

similar [13,14]. Shorter LFASC and LMB also agree with recent investigations [11,12]. Besides, our data 

confirms that MG fascicles are less extensible than usual [32]. Therefore, it appears reasonable to 

assume that spastic MG fibres may lack sarcomeres in series or that they might contain longer, already 

drawn-out sarcomeres, as had been shown for forearm or hamstring muscle [16,17]. Potentially, more 

connective tissue could also impede the actual extensibility of the fibres [17]. Whether these 

alterations are caused by altered muscle growth or result as consequence of decreased loading and 

reduced physical activity remains a subject of controversy [33]. In contrast to LMB and LFASC, at midrange 

stretch LTEND was longer than usual [10]. Even though LTEND at similar degrees of muscle-tendon unit 

(MTU) stretch was longer, its total extensibility seemed to be compromised. In summary, if clinicians 

or therapists want to improve MG muscle pathology in children with CP, growth of muscle belly in 

length and thickness, as well as longer LFASC appear to be desirable goals. Longer LFASC with more 

sarcomeres in series could in principle promote function by increasing the muscle’s contractile velocity 

and enable a muscle to exert force over a larger joint RoM [34]. 

 

Muscle morphometrics after bracing 

Conversely, after bracing, additional 11% in LFASC were lost at matched amounts of MTU stretch and 

MT decreased by 8%. This is the first study to provide information about spastic calf morphometrics 

after brace wear. Previous investigations on the longitudinal change of calf muscle morphometrics 

were also done on invasive treatments with worse outcome: Despite improving passive dorsiflexion, 

gastrocnemius recessions induced shortening of LMB [35] and 32% shortening of LFASC [36]. Botulinum 

toxin injections caused reductions in MT of ~12% [37]. While we observed shorter LFASC, the LMB 

modifications seemed negligible. Due to its pinnated fibre arrangement, loss in LFASC may not be 

reflected by loss in LMB, if, as observed, the MT reduces, too. Although we did not instrumentally assess 

the force producing capability of the MG, these architectural deteriorations suggest that the muscle 

would have gotten weaker.  
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Potential causes for morphometric changes 

A potential cause for shorter LFASC, and thus progressive muscle contracture, could be that muscle 

tissue indeed failed to keep up with bone growth [2]. For normalization, LFASC was set in relation to the 

shank length [11]. In TD children MG LFASC usually grows in proportion with the tibia [38]. During the 

current intervention, the shank of children with CP grew by 1.8%, while unscaled LFASC dropped by 

0.3cm. Hence, these atrophic changes do not solely expose a lack of scaling to bone growth.   

Another reason for shorter LFASC could be adaptations of the tendon. Although no significant 

changes in fascicle and muscle extensibility were noted, the extensibility of the tendon increased. Still, 

we did not observe changes in LTEND defined as a straight-line from the heel marker to the MTJ. 

However, in absence of instrumented measures for the applied tension during passive stretch, this 

measure ignores slack. Consequently, we generally underestimate LTEND at small degrees of MTU 

stretch and overestimate its extensibility. Slack is usually surpassed shortly beyond neutral ankle 

alignment in TD [32]. In our data, only 2-3% of tendon extensibility in TD children would be noted 

above that point which confirms previous reports about intrinsic tendon tissue strain [39]. Moreover, 

during max MTU stretch, when all slack is taken up, no changes in LTEND of children with CP were noted 

which could suggest that no major changes in LTEND occurred. Assuming that the tendon could have 

initially gotten more compliant during bracing, such as observed in growing animals [23,24], the spastic 

fascicles were unstrained which can trigger loss of sarcomeres [21,22] and would fit the reductions in 

LFASC. Although intrinsic tendon properties are cumbersome to measure more detailed information is 

necessary to clarify this.  

Worth mentioning, the MG tendon also integrates the run-out from the deep MG aponeurosis and 

the Achilles tendon to which both gastrocnemius and soleus merge. With the soleus fascicles also 

attaching distal to the MG’s muscle-tendon junction (MTJ) the increase in MG tendon extensibility 

could as well reflect a more compliant soleus. This also explains the significant increase of passive 

dorsiflexion with the knee held in flexion. Most ultrasound research in CP is currently done on 

gastrocnemius morphometrics probably owed to its superficial position. Clearly, more information 

about the soleus architecture in equinus needs be gathered.    

Eventually, the current outcome could be attributed to the bracing regime. Overall, the MG is highly 

susceptible to disuse atrophy [40]. Since ankle motion in the brace was also largely restricted, a 

possible reason for the loss in LFASC and decreased MT could be decreased muscle ecxcursion which is 

important in regulating sarcomere number in growing animals [41]. Besides, as all children likely slept 

with bent knees, the ankle-foot brace may have not provided sufficient stretch on the bi-articular 

gastrocnemius. Surely, a knee-ankle-foot brace would be logic to target gastrocnemius contracture. 

Sees and Miller [42] recently emphasized this, elsewise suspecting contracture of the gastrocnemius 

to worsen. Our results reinforce this. As a final point, considering that prior to bracing, average 
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dorsiflexion with knees extended in the current study group was 2°, use of augmented force into 

further dorsiflexion seemed critical. Such an extensive bracing treatment is very demanding and may 

cause insufficient compliance. That may be one reason why below knee casting or night time AFOs are 

often being used [7,8]. 

 

Functional benefits of bracing 

Next to improving passive dorsiflexion with flexed knees, this ‘positional’ bracing also prevented 

deterioration in passive dorsiflexion with the knee in extension in 76% of the children (13 of 17). The 

average dorsiflexion gain of 4° with extended knees marginally failed to reach significance. In the past, 

also below knee serial casts have been shown to only increase passive dorsiflexion with flexed knees 

[8]. Based on the progressive loss of passive dorsiflexion during CP childhood [6], these results appear 

to be a beneficial outcome for children with CP! More importantly, from a functional perspective, the 

children walked faster and their ankle kinematics improved primarily in swing. Positioning the foot 

better for landing can be vital to avoid tripping and to prevent mid-foot break deformities. Reduced 

ankle moments during early stance further may also display less pathological dynamic joint stiffness 

after bracing. However, the reduced moments for push-off may be a side-effect but are in accordance 

with reduced muscle thickness. 

We think that these functional gains outweigh the atrophic effects on muscle morphometrics. 

Restoring dorsiflexion and normalizing muscle morphometrics may not necessarily occur in concert. 

By concurrently improving morphometrics a larger or potentially more sustainable change in function 

may be achieved. Coordinative (neural) aspects may of course also modulate the direct relations 

between morphometrics and function. These aspects should be goals of future interventions. Most 

likely this may include activities, such as calf strength training [43] or instrumented cyclic stretching 

[20]. 

  

Considerations for ultrasound scans  

Ultrasound scans are frequently used to study muscle architecture in CP. To perform valid 

comparisons between TD and CP, morphometrics should be assessed at similar muscle states. Some 

studies extracted MG parameters at resting or neutral ankle position without detailed info on knee 

alignment or at PRoM limits only [13, 14, 37]. Recently, a common ankle angle was suggested [12]. 

Still, even at similar ankle alignment, our data shows that the MTU can be considerably shorter in CP. 

Albeit referencing to LMTU, we found no common overlap. Possibly, we could have done so when 

allowing for semi-flexed knees [12] but the MG would then be slightly off-tension. By using a 

calculation of the entire MTU path we accounted for different knee angles during testing, but the issue 

of standardization may depend on patient positioning. MG scans are mostly done when lying prone 
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[10, 11, 14, 20, 38], but also when lying supine [19] or when sitting [12]. The latter probably poses most 

difficulties to achieve straight knees in case of short hamstrings. With the current set-up, it seemed 

best choice to compare TD at the average midrange LMTU of the children with CP. 

 

3.6. Limitations 

First, we investigated a convenience sample and can only speculate about untreated natural 

progression of contracture. The treatment duration was somewhat variable depending on the 

childrens’ outpatient attendance and not every child received full-time bracing. Longer treatment 

duration explained 15% of the loss in LFASC assessed by simple linear regression (R2). Besides, effects on 

LFASC were not different between the bracing protocols (p=0.580). In future the separate impact of day 

and night-time orthotics should be quantified. Eventually, the applied tension during stretch was not 

instrumentally standardized. Nevertheless, it seems very unlikely that shorter LFASC after bracing could 

be attributed to consistently reduced manually applied tension, since LFASC was shorter during the 

entire MTU stretch. 

 

3.7. Conclusions 

To the best of our knowledge, this is the first study about calf morphometrics in CP after a non-

invasive orthotic treatment. Prior to bracing, the children with CP had shorter and thinner MG muscle 

bellies, shorter fascicles but longer distal tendons than controls. Positional ankle-foot braces 

significantly improved passive dorsiflexion with the knees flexed and improved the gait pattern of the 

children but failed to improve MG morphometrics. Further shortened fascicles and thinner muscle 

bellies are likely due to the fact that bracing potentially decreased the MG excursion or kept the bi-

articular muscle off-tension. Theoretically, braces may need to extend the knee if MG morphometric 

pathology should be targeted. Promoting dorsiflexion and normalizing muscle morphometrics seems 

difficult to be accomplished in concert using traditional orthopaedic means such as surgery, botulinum 

toxin injections or brace wear in isolation. Consequently, there is a need for concomitant treatments 

that promote muscle growth.  
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4.1. Abstract  

 
Background 

Plantarflexor tightness due to muscle degenerations has been frequently documented in children with spastic 

cerebral palsy but the contractile behavior of muscles during ambulation is largely unclear. Especially the 

adaptability of gastrocnemius muscle contraction on sloped surface could be relevant during therapy. 

 

Methods 

Medial gastrocnemius contractions were measured during flat-forward, uphill (+12% incline) and backward-

downhill (-12% decline) treadmill gait in 15 children with bilateral cerebral palsy, walking in crouch, and 17 

typically developing controls (age: 7-16 years) by means of ultrasound and motion analysis. Tracked fascicle and 

calculated series elastic element length during gait were normalized on seated rest length. Additionally 

electromyography of the medial gastrocnemius, soleus and tibialis anterior was collected.  

 

Findings 

During forward gait spastic gastrocnemii reached 10% shorter relative fascicle length, 5% shorter series elastic 

element length and showed 37% less concentric fascicle excursion than controls. No difference in eccentric 

fascicle excursion existed. Uphill gait increased concentric fascicle excursion in children with cerebral palsy and 

controls (by 23% and 41%) and tibialis anterior activity during swing (by 33% and 48%). Backward downhill gait 

more than doubled (+112%) eccentric fascicle excursion in cerebral palsy patients. 

 

Interpretation 

Apart from having innately shorter fascicles at rest, flat-forward walking showed that spastic gastrocnemius 

fascicles work at shorter relative length than those of controls. Uphill gait may be useful to concentrically train 

push-off skills and foot lift. During backward-downhill gait the gastrocnemius functions as a brake and displays 

more eccentric excursion which could potentially stimulate sarcomere-genesis in series with repeated training.  

 

Keywords: Cerebral palsy; Ultrasound; Gastrocnemius; Fascicles; Sloped walking; Muscle architecture 

 

Abbreviations: 
SCP  Spastic cerebral palsy 
TD  Typically developing 
SEE Series elastic element 
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4.2. Introduction 

Weak (Barber et al., 2012; Dallmeijer et al., 2011) and stiff plantarflexors (Barber et al., 2011) are 

major constraints in spastic cerebral palsy (SCP). Both can have neural origins since impaired voluntary 

drive reduces active strength (Stackhouse et al., 2005) and involuntary, velocity or posture dependent 

muscle activity increases passive stretch resistance (Bar-On et al., 2014). Apart from that, structural 

degenerations could have a negative impact because the triceps-surae shows large volumetric loss and 

increased intramuscular connective tissue (Noble et al., 2014; Pitcher et al., 2015). While 

gastrocnemius fascicles (bundles of fibres) seem to be shorter in SCP-patients than in typically 

developing (TD) (Hösl et al., 2015; Matthiasdottir et al., 2014; Barber et al., 2011), biopsies revealed 

longer sarcomeres (Mathewson et al., 2014). The shorter fascicles hence contain less sarcomeres in 

series and this may contribute to reduced passive fascicle extensibility (Hösl et al., 2015; Barber et al., 

2011) and a smaller range for active force exertion (Barber et al., 2012).  

The relationship between muscle structure and ambulatory dysfunction in SCP are still largely 

unknown. Typically plantarflexor weakness is associated with less propulsion during gait (Dallmeijer et 

al., 2011). Concerning fascicles, less sarcomeres in series could compromise shortening excursion and 

velocity (Butterfield, 2010) and active force exertion may be shifted towards plantarflexion. As a 

consequence, short gastrocnemii may force to walk in equinus. However, the bi-articular gastrocnemii 

can also promote crouch gait (Maas et al., 2015). Besides it had been speculated that the spastic 

gastrocnemius was unable to resist tensile forces and experiences increased eccentric loadings (Fry et 

al., 2006). These loadings were vaguely supposed to harm fibre growth (Gough and Shortland, 2012) 

or promote fibrosis (Pitcher et al., 2015). 

Insights might be gained by monitoring gastrocnemius contractions during gait. So far, such 

approaches are based on simulations (Steele et al., 2013; Neptune et al., 2007) or on TD mimicking 

spastic gait (Fry et al., 2006). In toe-walking, the gastrocnemius seems to work isometrically to 

concentrically and operates on short-length (Fry et al., 2006; Neptune et al., 2007). Brightness-mode 

ultrasonography has been used as an acceptable methodology to directly assess the contractile 

behavior of the muscle-tendon unit (Aggeloussis et al., 2010), for example in adults (Ishikawa and 

Komi, 2008; Cronin and Finni, 2013), in children (Fry et al., 2006) or in elderly (Mian et al., 2007). It has 

been found that gastrocnemius’ fascicles and muscle-tendon unit do not necessarily lengthen or 

shorten simultaneously (Ishikawa and Komi, 2008). Consequently, inference about fascicle action from 

muscle-tendon unit length calculations appears inconclusive. Fascicle contraction changes in elderly 

(Mian et al., 2007), during running (Ishikawa and Komi, 2008) and is modified on inclines or declines 

(Lichtwark and Wilson, 2006; Hoffman et al., 2014). So contractile behavior depends on the 

investigated sub-group and is generally modifiable. 
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Such information could aid to understand pathological gait patterns in SCP. In addition, it might 

help to develop exercises against gastrocnemius deficits since different types of dynamic muscle 

contraction can cause particular muscle adaptations. In TD, eccentric training might be favorable to 

induce longitudinal growth of fascicles (Franchi et al., 2014). Treadmills are often used to practice level 

walking in SCP but modifications, e.g. concerning the slope or walking direction, may modulate the 

type and extent of the contractile activity and thereby target the muscular deficit: Forward-uphill 

training reduces passive stiffness of spastic plantarflexors (Willerslev-Olsen et al., 2014, 2015) but the 

mechanisms remain somewhat unclear while backward-downhill may provide eccentric calf loadings, 

as shown in TD (Hoffman et al., 2014, Hoang et al., 2007a). Investigating SCP-patients during these two 

tasks hence could be relevant for promoting non-invasive therapies.  

The main purpose of this study was to analyze the contraction of the medial gastrocnemius in SCP-

patients and TD during level, uphill and backward-downhill gait with ultrasound, motion analysis and 

EMG. Due to the shortened fascicles and the findings from mimicry and simulation studies, we 

expected that the spastic gastrocnemii show less fascicle lengthening than TD and that fascicles reach 

shorter length during level gait. Due to reports in healthy adults, we anticipated that uphill gait induces 

larger fascicle operating length and more concentric fascicle shortening in TD and SCP while backward-

downhill gait causes larger eccentric fascicle lengthening and a shift of the fascicle operating regions 

towards shorter length.  

 

4.3. Methods 

 

4.3.1. Participants 

Children with SCP had to be classified as GMFCS-Level I or II (Palisano et al., 1997) and display 

bilateral involvement. Exclusion criteria were any leg surgeries at all or botulinum toxin injections 

within 12 months. Only data of the more involved side (less passive dorsiflexion) was included. 15 

children with SCP (4 females) and 17 TD (8 females) between 7–16 years took part. 11 SCP children 

were classified as GMFCS I, 4 as GMFCS II. For TD the right leg was analyzed. Experiments received 

medical ethics approval by the Technische Universität München and informed written consent was 

obtained. 

4.3.2. Protocol 

Participants were physically examined and performed a 3D gait analysis on a treadmill (Atlantis, 

Heinz Kettler, Ense-Parsit, Germany). Subjects wore a harness (h/p/cosmos, Nussdorf-Traunstein, 

Germany) without weight support which was connected to a safety frame (Mobil Konzept Loadmaster 
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80, RMT RehaMed Technology, Dietzenbach, Germany). All trials were done barefoot on even surface 

(flat-forward), on +12% inclined surface (uphill) and on -12% declined surface (backward-downhill) (Fig. 

4-1).  

 

Fig. 4-1 Test conditions: A) seated rest measurement and ultrasound probe placement, B-D) treadmill walking 

for B) flat-forward, C) -12% backward-downhill slope and D) +12% uphill slope. 

This protocol was applied twice because probe fixation did not allow for simultaneous 

measurements of ultrasound and EMG. The order of the slopes was randomized and half of the 

participants started with EMG. During each condition data was captured during 10 sec., starting when 

the subjects felt comfortable. Prior to walking, a 5 sec. long seated rest measurement was done, with 

knees 90° flexed and ankles in neutral (Fig. 1A). On the treadmill, 5-10 min. habituation time was 

provided during which preferred forward speed was determined with the subject blinded to the panel 

(Dal et al., 2010). The investigator increased the speed in 0.1 km/h increments until the subject 

reported to walk comfortable. Then, 1-1.5 km/h was added, followed by a stepwise decrease of 0.1 

km/h to re-establish comfortable walking. This procedure was repeated three times and speeds were 

averaged. The uphill and backward-downhill speed was reduced to 85% and 50% of flat-forward speed 

to provide settings that should be also applicable for prolonged exercise. Values were chosen after 

studying the literature (Willerslev-Olsen et al, 2014; Joseph et al., 2016) and pilot testing. Since some 
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SCP-patients were not able to walk without handrail, all participants were constrained to touch a 

lateral rail. During backward-downhill walking subjects grasped a rail at chest height. 

 

4.3.3. Physical exam 

Passive range-of-motion for knee extension, dorsiflexion and popliteal angle were measured using 

ruler-based goniometry. Plantarflexor tone was graded on modified Ashworth Scale (Bohannon and 

Smith, 1987). Peak isometric plantarflexor force (N/kg bodyweight) was assessed by hand-held 

dynamometry using an uniaxial Force sensor (Mobi, Sakaimed, Tokyo, Japan) during 5 MVCs (3 sec. 

contraction, 1 min. rest). Subjects were seated (hips semi-flexed, knees extended). After discarding the 

lowest and highest value, 3 trials were averaged.  

4.3.4. Gait analysis  

A Nexus system (Vicon Inc., Oxford, UK) with 8 MX-Cameras was used to capture lower limb 

kinematics using a modified Plug-In gait Model (Stief et al., 2013) at 200 Hz. One additional marker was 

placed at the medial calcaneus, leveled with the heel marker. Gait events were derived as described 

by Zeni et al. (2008). All subsequent analysis was done in MatLab (MathWorks, Natick, USA). Non-

dimensional walking speed was calculated (Hof, 1996) and sagittal joint angles were determined. Ankle 

angles were calculated using the foot markers without the toe to avoid bias by midfoot-bending. Peak 

values for dorsi-, knee- and hip flexion in stance and swing were calculated. Furthermore the sole angle 

(foot to belt) and knee flexion at initial contact were extracted. 

4.3.5. Electromyography 

Activity of the medial gastrocnemius, soleus and tibialis anterior was captured wireless with a DTS 

System (Noraxon, Scottsdale, USA). Surface electrodes (Blue Sensor N, Ambu, Ballerup, Denmark) were 

placed on the muscle bellies and signals were sampled at 1000 Hz. All strides during the 10 sec. were 

analyzed separately. Signals were off-line filtered as described by Panizzolo et al. (2013) and mean rest 

activity was subtracted from walking signals before normalizing each signal on max. activity of all 

forward trials. For the medial gastrocnemius and soleus, mean activity during stance and for the tibialis 

anterior, mean activity from end of single stance to touch-down was calculated. 

4.3.6. Ultrasonography 

An Echoblaster 128 ultrasound (Telemed, Vilnius, Lithuania) was used to image medial 

gastrocnemius fascicles at 60·Hz with a linear probe at 8·MHz and a field of view of 60·mm. The probe 

was held in place with a plastic cast covered with neoprene (Fig. 1A). Measurements of fascicle length 

were made at a mid-belly position (half-way between muscle-tendon-junction and popliteal crease) 
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and the scanner was aligned according to Benard et al. (2009). The ultrasound was synchronized with 

the motion capture data via a pulse that was fed to the EMG System. Ultrasound videos of 6 strides 

were analyzed separately during gait and static measurements were performed during seated rest. 

Fascicle length was measured with a tracking algorithm (Gillett et al., 2013) and subsequent manual 

frame-wise inspection. Pennation angle (α) was determined with respect to the deep aponeurosis 

(Mian et al., 2007) and muscle-tendon unit (MTU) length was calculated from knee and ankle angles 

(Orendurff et al., 2002). The length of the series elastic element (SEE) was determined by LSEE = LMTU – 

LFASCICLE * cosα (Fukunaga et al., 2001). Thickness of the muscle belly during rest was measured, too 

(Hösl et al., 2015). During gait, all morphometric variables were normalized on resting length and all 

rest values were normalized on shank length. Gait data were interpolated to 100 points across each 

stride and an average for each participant and condition was determined. Outcome parameters were 

max. values during stance as well as the amount of lengthening (throughout loading response and 

single stance) and shortening excursions (throughout single stance and push-off) of fascicles and SEE.  

4.3.7. Statistics 

Participant characteristics, physical exam results and morphometrics during rest were compared 

with unpaired t-tests. Using the Shapiro-Wilk test, requirements for normality in some walking data 

sets were not achieved. So differences between conditions (flat-forward vs. uphill vs. backward-

downhill) were tested separately for SCP-children and TD with repeated measure or Friedman ANOVAs 

where indicated. Paired t- or Wilcoxon tests were used for post-hoc comparisons. Differences between 

groups (SCP vs. TD) on flat-forward walking were tested directly with unpaired t- or Mann–Whitney U 

test where appropriate. Alpha-level was set to 0.05 and effect sizes were expressed as Cohen’s d for 

significant results. 

4.4. Results 

 

4.4.1. Anthropometrics and physical exam 

There were no significant differences in age between groups (Table 4-1), but SCP-patients were 8% 

smaller in height, 18% lighter and had 10% and 8% shorter legs and shanks (all P≤0.031). They displayed 

significant reductions in passive dorsiflexion (-14°), as well as 23° of popliteal angle restrictions. Max. 

isometric plantarflexor force was 28% less in children with SCP (all P≤0.003). 

 

 
  

https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
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Table 4-1 Anthropometrics, physical exam and muscle morphometrics during rest 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAS: Modified Asworth Scale [1-4], SD: Standard Deviation, ES: Effect Size (Cohen’s d). TD (Typically Developing) 

and children with SCP (Spastic Cerebral Palsy) 

 

4.4.2. Morphometrics during rest 

During rest children with SCP had 17% shorter fascicles, 19% thinner muscle bellies (both P≤0.014, 

d≥0.9) and tended to have a 1.5% longer SEE (P=0.081). 

4.4.3. Walking speed  

Absolut flat-forward speed was lower in SCP-patients, 1.07 (0.16) m/s vs. 1.23 (0.08) m/s (P <0.001, 

d=1.2). Non-dimensional speed was also lower: 0.40 (0.06) in SCP vs. 0.44 (0.03) in TD, but differences 

were not significant (P=0.071). SCP children took shorter steps 0.53 (0.08) m vs. 0.65 (0.05) m (P<0.001, 

d=1.8) at a higher cadence 2.03 (0.18) steps/sec vs. 1.89 (0.15) steps/sec (P=0.031, d=0.8). Belt speed 

on slopes were preset but 2 (of 15) SCP-patients only managed to walk backward-downhill at 34% and 

38% of flat-forward speed.  

    
 

SCP 

 (n=15) 
 

TD  

(n=17) 
 

 
  Anthropometrics 

Anthropometrics 

Mean (SD)  Mean (SD) P ES 

   Age [years] 11.0 (2.8)  12.2 (2.3) 0.219 0.4 

   Height [cm] 142.6 (14.5)  154.6 (11.9) 0.016 0.9 

   Mass [kg] 35.8 (8.6)  43.9 (9.9) 0.019 0.9 

   BMI [kgm-2] 17.4 (2.1)  18.1 (2.0) 0.289 0.4 

   Leg length [cm] 73.7 (9.0)  81.8 (7.4) 0.009 1.0 

   Shank length [cm] 32.7 (3.9)  35.6 (3.4) 0.031 0.8 

          
 

  Physical exam      
 

   Passive knee extension [°] 4 (5)  6 (3) 0.077 0.6 

   Poplitealangle- (opposite hip flexed) [°] 34 (10)  11 (12) <0.001 2.1 

   Passive Dorsiflexion  - 0° knee flex. [°] 1 (8)  15 (4) <0.001 2.1 

   Passive Dorsiflexion - 90° knee flex. [°] 17 (11)  27 (5) 0.001 1.3 

   Instrumented Plantarflexor force [N/kg] 3.9 (1.4)  5.4 (1.1) 0.003 1.2 

   Plantarflexor tone - knees extended [MAS] 2.2 (0.8)  0.0 (0.0) <0.001 4.0 

           

  Medial Gastrocnemius morphometrics  (seated rest)       

   Fascicle length [mm] 27.4 (9.4)  36.8 (5.2) 0.001 1.3 

   Fascicle length [% shank] 8.5 (2.8)  10.3 (1.1) 0.014 0.9 

   Series elastic element length  [% shank] 89.1 (2.8)  87.8 (1.2) 0.081 0.6 

   Pennation angle [°] 26.0 (5.7)  24.9 (3.4) 0.504 0.2 

   Thickness [% shank] 3.5 (0.9)  4.3 (0.5) 0.003 1.1 
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4.4.4. Joint kinematics 

Group means (1 standard deviation) for all conditions are shown in Fig. 4-2. Raw values can be 

found in the table 4-2. For TD the ANOVA indicated significant difference between conditions for all 

parameters (P<0.001). For children with SCP significant main effects were found concerning the sole 

angle, dorsiflexion in stance, knee flexion at initial contact and hip flexion in stance and swing 

(P≤0.007). 

 

Fig. 4-2 Sagittal joint kinematics of the foot, ankle, knee and hip. FW: flat-forward; UP: uphill, BW: backward-

downhill, IC: Initial contact. * significant differences between TD (Typically Developing) and children with SCP 

(Spastic Cerebral Palsy) during FW; § significant differences between conditions for SCP; # significant differences 

between conditions for TD, p<0.05. 

Flat-forward walking 

During flat-forward gait, SCP-patients showed 10° more hip flexion in stance and swing (d=1.5 and 

1.3) and more knee flexion in stance (12° concerning min. knee flexion, d=1.9). They also landed with 

17° flatter sole angle (d=2.8). All corresponding tests showed P≤0.001. No group differences in 

dorsiflexion were noted in stance and swing (P≥0.518) or in knee flexion in swing (P=0.078).  

 

Uphill  walking 

With respect to flat-forward gait, both SCP and TD-children landed with 2° and 5° flatter sole angles 

(P=0.019, d=0.6 for SCP and P<0.001, d=1.6 for TD) and with 5° and 9° more knee flexion (both P<0.001. 

d=1.1 for SCP and d=1.0 for TD). The following tests remained at P≤0.001: Both groups increased their 
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dorsiflexion in stance (3°, d=1.4 and 4°, d=2.0) while TD also increased dorsiflexion in swing (2°, d=1.0). 

The hip of SCP and TD-children was more flexed in stance (3°, d=1.2 and 5°, d=1.6) and in swing (5°, 

d=1.5 and 9°, d=2.2). Only in TD, more knee flexion in stance (4°, d=1.4) and less knee flexion in swing 

(3°, d=1.6) was noted.  

 

Backward-downhill walking 

Both groups landed with toes first. With respect to uphill gait they further increased knee flexion 

at ground contact (10° in SCP and 15° in TD), as well as hip flexion in stance (16° in SCP and 11° in TD). 

The Cohen’s d was 0.8-2.0 (all P≤0.011). Only TD further increased dorsiflexion in swing (2° from uphill, 

P=0.003, d=0.9) while knee flexion in swing further decreased (12° from uphill, P<0.001, d=2.0). Similar 

to uphill walking, TD showed more knee flexion in stance than forward (P<0.001, d=1.2). But 

dorsiflexion of TD in stance decreased (P=0.003, d=0.9) and was similar to forward gait. 

 

4.4.5. Electromyography 

Fig. 4-3 shows the traces of muscle activity and morphometrics and Fig. 4-4 visualizes the outcome 

parameters. For TD the ANOVA indicated significant differences between conditions for all muscles (all 

P≤0.007). For SCP-children significant main effects were found for soleus and medial gastrocnemius 

activity (both P<0.001). 

 

Flat-forward walking 

During flat-forward gait, activity of the medial gastrocnemius (+31%), soleus (+32%) and tibialis 

anterior (+58%) was larger in SCP-children than in TD (all P≤0.031, d=0.9-1.3).  

 

Uphill walking 

Only in TD-children, medial gastrocnemius (+23%, d=1.2) and soleus activity (+29%, d=0.8) was 

significantly increased (both P<0.001), while in SCP-patients rather similar medial gastrocnemius and 

soleus activity was noted with respect to flat-forward gait (P>0.855). Tibialis anterior activity increased 

by 48% in TD (P=0.001, d=0.9) with respect to flat-forward gait. Despite the absent main effect, also 

33% more tibialis anterior activity in SCP had been found with respect to flat-forward walking (P=0.048, 

d=0.5).  

 

Backward-downhill walking 

The soleus and medial gastrocnemius activity dropped by 37% and 44% in SCP-children (both 

P<0.001, d=1.1 and 1.5) and by 31% (P=0.003, d=1.0) and 23% (P=0.038, d=0.8) in TD with respect to 
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flat-forward gait. Consequently, plantarflexor muscle activity was also significantly less than uphill. 

Tibialis anterior activity was not different from flat-forward or uphill in both groups (all P≥0.080). 

 

 

Fig. 4-3 Group average traces for shank muscle activity and medial gastrocnemius morphometrics across the 

gait cycle. Vertical dashed lines separate double from single support and vertical solid lines stance from swing. 

Shaded bands show group means ± 1 standard deviation. 
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Table 4-2 Overview of the outcome parameters concerning joint angles, muscle morphometrics and muscle 

activity 
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4.4.6. Morphometrics during gait 

In TD-children the ANOVA indicated significant differences between conditions for all parameters 

(all P<0.001) despite fascicle lengthening (P=0.351). For SCP-children, significant differences between 

conditions were found for fascicle lengthening (P=0.041), SEE lengthening and shortening (P=0.008 

and P<0.001) and for max. SEE length (P=0.028). 

 

 

Fig. 4-4 Fascicle and series-elastic element (SEE) lengthening and shortening excursions and maximal length 

during stance, as well as shank muscle activity. FW: flat-forward; UP: uphill; BW: backward-downhill. *significant 

differences between TD (Typically Developing) and children with SCP (Spastic Cerebral Palsy) during FW; § 

significant differences between conditions for SCP; # significant differences between conditions for TD, p<0.05. 

Flat-forward walking 

There was 37% less concentric fascicle (P=0.001, d=1.4) and 24% less concentric SEE excursion 

(P=0.002, d=1.1) in SCP-patients with respect to TD. Spastic fascicles (-10%, P=0.038, d=0.9) and SEE (-

5%, P=0.004, d=1.3) also reached significantly shorter max. length. No significant group differences in 

eccentric fascicle (P=0.571) or SEE excursion (P=0.345) were found. 

 

Uphill walking  

During uphill walking significantly more concentric fascicle excursion than during flat-forward gait 

was noted in TD (+40%, P<0.001, d=1.2). Also in SCP-children an increase of 23% (P=0.034, d=0.6) 
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occurred but the ANOVA failed to indicate a significant main effect. Only in SCP-children, this was 

accompanied by 19% increase in eccentric SEE excursion (P=0.001, d=1.0). The SEE reached 

significantly shorter max. length than in flat-forward gait in SCP-children (-1%, P=0.048, d=0.6) and in 

TD (-2%, P=0.038, d=0.5) . 

 

Backward-downhill walking 

Only in SCP-children, eccentric fascicle contraction increased with respect to flat-forward and uphill 

walking (+112% and +132%, both P≤0.017, d=0.7-0.9). In TD, fascicle shortening was significantly 

reduced with respect to flat-forward (-41%, P=0.002, d=0.9) and thus also from uphill gait. In TD max. 

fascicle length was shorter than forward (-5%, P=0.002, d=0.9) and uphill (-6%, P=0.001, d=1.0). In both 

groups this was accompanied by larger lengthening excursions of the SEE with respect to the flat-

forward condition, +42% in SCP (P=0.010, d=0.7) and +28% in TD-children (P=0.001, d=1.0). Only in TD 

this SEE lengthening was significantly larger than uphill (+18%, P=0.006, d=0.8). At the end of stance, 

SEE shortening was diminished in both groups with respect to the other conditions (Fig. 4-4). The max. 

SEE length in SCP-children was 3% shorter than forward (P=0.030, d=0.6). The reductions with respect 

to uphill-gait were not significant (P=0.156). In TD the max. SEE length was 3% shorter than uphill 

(P<0.001, d=1.2) and thus also shorter than forward. 

 

4.5. Discussion 

We analyzed SCP-children and TD with specific focus on adaptations of the medial gastrocnemius 

contractile behavior during flat-forward, uphill and backward-downhill gait. Apart from having innately 

shorter fascicles at rest, SCP-children also reached shorter relative fascicle length than TD during flat-

forward walking and showed less concentric excursion during push-off. Uphill gait increased concentric 

excursion of the fascicles in both groups while backward-downhill gait induced larger eccentric fascicle 

excursions in SCP-children. 

During flat-forward gait, participants with SCP walked with considerably flexed knees which is 

inefficient and puts great burden on knee extensors. Deterioration of passive dorsiflexion (assessed 

with extended knees) is a negative factor for such a crouch gait pattern (Maas et al., 2015). On the one 

hand, short and inextensible gastrocnemius fascicles could constrain knee extension to permit similar 

dorsiflexion during gait. When comparing the fascicle operating regions (Fig. 4-5), the spastic fascicles 

only somewhat reached the regions of healthy fascicles. On the other hand, healthy gastrocnemius 

fascicles usually work near the descending limb of their length-tension curve during gait (Hoffman et 

al., 2014) and since spastic fascicles worked at shorter length, they may be used more towards the 

ascending limb. In this region, fascicles are ordinarily able to produce less active force. 
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Fig. 4-5 Fascicle operating regions during stance phase of gait. Error bars indicate the standard error of the 

group mean minimum or maximum fascicle length. FW: flat-forward; UP: uphill, BW: backward-downhill. Vertical 

height of the bars is arbitrary. TD (Typically Developing) and children with SCP (Spastic Cerebral Palsy). 

So, limited relative fascicle length during gait may be a pathological sign. This assumption relies on 

a fascicle force length relationship that assumes equal inherent sarcomere length between groups. 

However, due to findings of much longer spastic sarcomeres (Mathewson et al., 2014), contractile 

filament overlap within sarcomeres may worsen at more extended fascicle length. Hence, limited 

relative fascicle length could be an adjustment to use spastic sarcomeres in a configuration where they 

are able to produce enough active forces, otherwise contractile filaments could be stretched apart 

beyond overlap. 

The observed lack of concentric fascicle shortening could be affected by less sarcomeres in series 

and may contribute to the typical reductions in ankle joint power (Dallmeijer et al., 2011). Reduced 

pull from muscle shortening contraction could in turn be the reason why the SEE reached shorter 

relative length in SCP-children. In addition, no difference in eccentric fascicle excursion between SCP-

patients and TD existed. Although such loads may not be responsible for the genesis of contracture or 

fibrosis (Pitcher et al., 2015), SCP-children with less isometric plantarflexor force experienced more 

fascicle lengthening excursion (Pearson’s r=-0.57, P=0.026) and therefore the gastrocnemius fascicles 

may indeed face difficulties to resist tensile forces (Fry et al., 2006).  

Since muscles can adapt to altered use, it appeared interesting to modulate the gastrocnemius 

contractile behavior with sloped treadmilll walking. In general, gait adaptations concerning joint angles 

and muscle activity appeared to be more diverse and more pronounced in TD. This could be due to 

coordinative or musculoskeletal restrictions in SCP-children. Nevertheless, uphill gait increased 

concentric excursion of the medial gastrocnemius fascicles but no significant change in max. fascicle 

length or eccentric fascicle excursion occurred. Decreased passive stiffness of spastic plantarflexors 

after uphill training (Willerslev-Olsen et al., 2015) could accordingly be a response to increased 
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concentric loads. Interestingly, uphill training also strengthens dorsiflexors and increases toe-clearance 

during flat-forward gait (Willerslev-Olsen et al., 2014). Even though tibialis anterior activity increased 

in our sample of SCP-children, the clearest kinematic adaptations during uphill walking happened in 

hip flexion (Fig. 2) and SCP-children faced difficulties to increase dorsiflexion in swing. This was possibly 

constrained by less voluntary tibialis anterior recruitment (~smaller EMG increase than in TD) or 

impeded by the plantarflexor contractures. Likewise the plantarflexor EMG in SCP-children did not 

increase in stance. Altogether SCP-patients may substantially rely on hipflexors during uphill training. 

 

Walking backward-downhill forced to strike the ground with the toes which appears 

counterintuitive in SCP-children. However, it couples knee extension with dorsiflexion motion during 

weight acceptance and thereby induced larger medial gastrocnemius fascicle lengthening excursions 

in SCP. This was not the case for TD who might have been able to provide more isometric force to 

withstand lengthening. Besides the eccentric excursion values were rather variable in TD. Although all 

subjects had experience in treadmill walking, backward-downhill gait may be less variable and stabilize 

with further training. 

Backward-flat gait has been successfully applied for coordinative gait training in SCP-children (Kim 

et al., 2013) but no effects of backward-downhill training on calf muscle pathology have been reported. 

Generally, effects of eccentric plantarflexor training appear to be promising: For TD- adults, eccentric 

training can increase passive ankle joint flexibility, plantarflexor strength (Mahieu et al., 2008), medial 

gastrocnemius fascicle length and tendon stiffness (Duclay et al., 2009). These benefits apparently 

contrast conceptions about the harmfulness of eccentric loads in SCP (Fry et al., 2006, Pitcher et al., 

2015, Gough and Shortland, 2012). When using backward-downhill gait during therapy, the medial 

gastrocnemius fascicles in SCP are unlikely to sustain macroscopic damage since they seem to be 

trained at moderate length (not significantly different from forward or uphill) and their eccentric 

excursion seems to be of low amplitude. As a precaution, such training should be gradually adjusted. 

It is difficult to deduce something about tendinous loads but neither backward-downhill, nor uphill 

gait induced larger max. SEE length in any group (Fig. 4). Taking into account that large contraction 

induced deformation is necessary for improving tendinous stiffness (Bohm et al., 2015), the potential 

benefits of sloped gait modifications may not target the gastrocnemius tendon.  

 

 

4.6. Limitations 

First off, the external validity of treadmill gait has been subject of controversy but no difference in 

medial gastrocnemius fascicle behavior between treadmill and overground gait had been observed in 
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TD-adults (Cronin and Finni, 2013). Still preferred treadmill speed is slower than overground (Dal et al., 

2010, van der Krogt et al., 2015). Additionally, for joint kinetics of SCP-children, a power-shift from the 

ankle to the hip has been noted on treadmills (van der Krogt et al., 2015). This could explain some 

general differences in concentric fascicle excursion between SCP-children and TD. Noteworthy, we 

deliberately reduced the speed on slopes and constrained all subjects to touch handrails since those 

settings appear realistic during regular treadmill walking therapy (Kim et al., 2013, Willerslev-Olsen et 

al., 2014, Chrysagis et al., 2012).  

Apart from that, a seated position was used for normalization of morphometrics. At this joint 

configuration, the gastrocnemius muscle has usually fallen slack (Hoang et al., 2007b). Despite the fact 

that fascicle operating regions of TD-children, expressed with respect to rest length (Fig. 4-5), appear 

comparable with data of TD-adults (Hoffman et al., 2014), slack length could be instrumentally 

assessed when investigating muscle-tendon behavior during gait in future studies.  

 

4.7. Conclusions 

Medial gastrocnemius fascicles appear to be used on very short relative length during spastic gait 

with similar eccentric and less concentric excursion compared to controls. Flexed knees in crouch gait 

could be related to structural shortness of gastrocnemius fascicles. Uphill gait increases concentric 

gastrocnemius fascicle action and tibialis anterior activity and may be useful to train push-off and foot 

lift. During backward-downhill gait, the medial gastrocnemius functioned as a brake and displayed 

more eccentric excursion in SCP-children which could potentially stimulate sarcomere-genesis in series 

with repeated training. Both training modes may offer advantages, but none of them may promote 

tendon stiffness since the SEE was longest during forward gait. 
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5.1. Abstract 

 

Background: 

Patients with spastic Cerebral Palsy are prone to equinus deformities, likely affected by short and inextensible 

plantarflexor muscles. Manual stretching is a popular treatment but its effectiveness concerning joint mobility, 

muscle-tendon morphometrics and walking function is debated. Eccentric exercise by backward-downhill 

treadmill training could be a therapeutic alternative. 

 

Methods:  

10 independent ambulators with spastic Cerebral Palsy (12 [SD 4] years old, 2 uni- and 8 bilaterally affected) 

participated in a randomized crossover-study. One group started with manual static stretching, the other one 

with backward-downhill treadmill training. Each treatment lasted 9 weeks (3 sessions per week). Pre and post 

treatments, 3D gait was assessed during comfortable and during fastest possible walking. Ultrasonography and 

dynamometry were used to test plantarflexor strength, passive joint flexibility, as well as Gastrocnemius 

morphometrics, stiffness and strain on muscle-tendon and joint level. 

  

Findings: 

When comparing both treatments, backward-downhill treadmill training lead to larger single stance dorsiflexion 

at comfortable walking speed (+2.9°, P=0.041) and faster maximally achievable walking velocities (+0.10 m/s, 

P=0.017). Stretching reduced knee flexion in swing, particularly at faster walking velocities (-5.4°, P=0.003). 

Strength, ankle joint flexibility, as well as stiffness on muscle-tendon and joint level were not altered, despite 

similar increases in passive muscle and fascicle strain with both treatments (P≤0.023).  

 

Interpretation: 

 Manual static plantarflexor stretching may not be emphasized in Cerebral Palsy patients with high ambulatory 

status. BDTT can be an effective gait treatment, probably improving coordination or reducing dynamic stretch 

sensitivity. More intense BDTT might be necessary to further alter muscle-tendon properties. 

 

 

Keywords: Cerebral Palsy; ankle-foot bracing; ultrasound; gastrocnemius; muscle contracture 
 
 
 
Abbreviations: 
SCP  Spastic cerebral palsy 
BDTT  Backward downhill treadmill training 
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5.2. Introduction 

Children with spastic Cerebral Palsy (SCP) are constrained by muscle weakness and prone to 

developing contractures and restricted joint mobility. The ankle-joint typically shows progressive loss 

in passive dorsiflexion during maturation (Hägglund and Wagner, 2011) and appears to be stiffer than 

in typically developing peers (Alhusaini et al., 2010; Barber et al., 2011). Next to a pathological gain of 

muscle activity (Bar-On et al., 2014a), one mechanism responsible for an increase in joint stiffness is 

the mechanical reduction of muscle extensibility. Therefore, reduced muscle belly length (Fry et al., 

2004; Malaiya et al., 2007), reduced fascicle length (Barber et al., 2011; Hösl et al., 2015; Matthiasdottir 

et al., 2014), increased in-vivo sarcomere length and a lack of sarcomeres in series (Mathewson et al., 

2014) or increased intramuscular connective tissue (Noble et al., 2014) may contribute to unusually 

high passive ankle joint stiffness. 

Together with the prevailing weakness, the lack in joint flexibility impairs walking. Reduced 

dorsiflexion decreases metabolic efficiency (Ballaz et al., 2010), while less plantarflexor strength may 

reduce propulsive joint power (Eek et al., 2011): Moreover, stretch reflex thresholds of the bi-articular 

Gastrocnemius during passive testing have been shown to impede stretch velocities of the muscle-

tendon unit during gait (Bar-On et al., 2014b). This could compromise maximal achievable walking 

velocities. 

Many interventions in SCP aim to decrease joint stiffness and increase joint excursion. Manual 

stretching is very popular but its effectiveness is debated (Novak et al., 2013; Wiart et al., 2008). 

Generally, its effects have been explained by a mechanical response of the muscle or a modification in 

a person’s sensation (Weppler and Magnusson, 2010). In healthy subjects, plantarflexor stretching can 

increase passive dorsiflexion (Blazevich et al., 2014; Konrad and Tilp, 2014; Nakamura et al., 2012) but 

gains in passive dorsiflexion are not necessarily reflected during gait (Johanson et al., 2009). In non-

independently ambulant SCP-children, manual stretching can increase passive dorsiflexion and 

decrease joint and muscle stiffness (Theis et al., 2015), but no effects on strength or on gait have been 

reported. 

To counteract weakness, resistance training has been recommended and there is preliminary 

evidence for positive effects on muscle growth and strength in SCP children (Gillett et al., 2016). 

However, strength gains may not necessarily improve gait (Scholtes et al., 2012). Therefore, combining 

strength and walking exercises appears promising. In addition, the muscles’ contractile modes during 

training may play a pivotal role in stimulating muscle growth: For healthy humans, in particular 

eccentric training increases fascicle length (Franchi et al., 2014) and seems capable to improve lower 

limb flexibility (O'Sullivan et al., 2012). More specifically, eccentric plantarflexor training can increase 

passive dorsiflexion, decrease resistive torques (Mahieu et al., 2008) and increase active isometric 

strength (Duclay et al., 2009). In SCP-patients, higher isometric plantarflexor strength is related to 
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larger ankle joint push-off power during gait (Eek et al., 2011). Recently, it has been found that 

backward-downhill treadmill training [BDTT] provides eccentric Gastrocnemius fascicle loadings in 

SCP-patients (Hösl et al., 2016). While flat-backward treadmill training in SCP-patients improves 

forward-walking speed (Kim et al., 2013), no longitudinal results of BDTT on gait, strength or ankle joint 

stiffness as well as on muscle morphometrics have been reported. 

In summary, eccentric exercise by backward-downhill treadmill training could be an alternative to 

stretching that may be also capable to improve strength and gait. Therefore we compared the effects 

both interventions. With respect to muscle joint-properties, we expected that BDTT will increase 

Gastrocnemius muscle and fascicle length, promote strength and joint extensibility and decrease 

passive joint stiffness. Stretching will increase passive dorsiflexion and decrease passive stiffness while 

showing no signs of muscle growth. In terms of gait, BDTT will enable subjects to walk faster, due to 

increased plantarflexor strength and increased ankle joint push-off power. We expected that gains in 

passive dorsiflexion with stretching will not translate to improved dorsiflexion during gait. 

5.3. Methods 

 

5.3.1. Participants 

 10 participants with SCP (1 female) could be included from a school for disabled children (4/6 

in GMFCS Level I/II). Two were uni- and 8 bilaterally involved. The mean age of the participants was 12 

(SD 4, range: 5-19) years, their body weight was 41 (SD 17) kg and their height was 142 (SD 17) cm. 

70% of participants walked with increased knee flexion (> 1SD from a control collective), 50% on tip-

toes and non-had recurvatum. None of them received any Botulinum Toxin injection within 24 months. 

Two subjects had bony surgeries to the femur more than 24 months apart. None had any surgery to 

the lower leg and no orthotics were worn during the study period. 

 

5.3.2. Design 

 

Fig. 5-1 Study design. 10 subjects were included in a randomized two-treatment, two-period 2x2 crossover-

design (AB/BA) with 9 week long treatment periods. 
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A two-treatment, two-period crossover-design (AB/BA) was used (Fig. 5-1). Participants were 

randomized to two groups (each N=5) with a component of minimization for age and GMFCS Level. 

One group started with stretching, the other one with BDTT. There were two 9 week treatment periods 

(3 sessions per week), preceded and intersected by a passive run-in and wash-out of 5 weeks. Each 

period started and ended with an assessment of 3D gait, muscle-joint biomechanics and functional 

ambulatory mobility. The protocol was ethically approved by the German Physiotherapy Association 

(2014-08) and children and parents gave informed written consent.  

 

 

Fig. 5-2 Treatment interventions: Exercises for manual static calf stretching (1-3 passively executed by therapist, 

4-7 actively executed with guidance). Landing phase during backward-downhill treadmill training (BDTT) on 

declined treadmill belt surface, arrows indicate direction of walking and limb motion. 10 subjects were included 

in a randomized two-treatment, two-period 2x2 crossover-design (AB/BA) with 9 week long treatment periods. 

 

5.3.3. Static calf stretching  

The program consisted of 7 exercises (Fig. 5-2, details in supplements) referring to a video kit 

(Morrel and Lau, 2009). Four exercises were self-initiated, 3 were passively executed. Despite the 

bilateral maneuvers (Fig. 5-2), exercises were alternately executed with 5 repetitions per leg and end-

range positions were held for 20 sec. (Theis et al., 2013).  In unilaterally affected children only the 

hemiparetic side was treated.  

5.3.4. Backward-downhill treadmill training [BDTT] 

An Atlantis treadmill (Heinz Kettler, Ense-Parsit, Germany) was used. Subjects were equipped with 

a ceiling-mounted safety harness (h/p/cosmos, Nussdorf-Traunstein, Germany) and wore their own 

sport shoes. During the first session, the belt was declined at -10.8% and comfortable backward 



Third study 

 91   

 

beltspeed was determined to be 0.47 (SD 0.11) m/s. To do so, the beltspeed was set to 50% of 

comfortable forward walking velocity and if necessary reduced. From week 2-6 beltspeed was weekly 

increased by ~10%. During week 4-6, the decline slope was weekly raised by -1.6%. During the last 2 

weeks, the participants had to carry weight belts of 5% and 10% bodyweight to increase the load on 

the calf during landing. The beltspeed during the final week was 0.64 (SD 0.25) m/s at a decline of -

15.6%. 23 min total walking time was set as a goal for each session, which could be split into 2-4 bouts 

of continuous walking (max. 11.5 min), interspersed by seated resting. Subjects were encouraged to 

take large steps, maintain an erected posture and limit hand-rail support.  

5.3.5. Assessments 

 

Fig. 5-3 Set-up for the assessment of muscle-joint properties with hand-held dynamometer and ultrasound 

probe within custom-made carbon cast for fixation. Lower part: Superimposed ultrasound scans of the medial 

Gastrocnemius (MG) with representation of morphometric assessments. MTJ: Muscle-tendon junction, LFASC: 

fascicle length, PA: Pennation angle, MT: muscle thickness. 

All tests were performed after 1 day of rest to exclude temporary tissue deformation. A Vicon 

system with 8 MX-Cameras (Vicon Inc., Oxford, UK) was used to capture overground barefoot walking 

at comfortable and at ‘as fast as possible’ speed. Markers were placed according to the Plug-In gait 

Model and sampled at 200 Hz. Force data was captured at 1000 Hz via two force plates (AMTI, 

Watertown, USA). Three to five clean strikes on the force plates could be obtained. All affected legs 

were investigated. To quantify ambulatory mobility a Timed Up-and-Go test (Williams et al., 2005), as 

well as the Gross-Motor-Function-Measure-66 D & E were used (Palisano et al., 2000). 

Due to time constrains, muscle and joint properties have been investigated only in the more 

affected leg (based on passive dorsiflexion). Children sat on a weight-bench at 60° hip flexion and 

extended knees (Fig. 5-3). Markers from gait analysis remained on the leg and one additional marker 

was attached at the lateral calcaneus to limit potential bias by midfoot-bending (Hösl et al., 2015). A 
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hand-held force sensor (Mobie, Sakaimed, Tokyo, Japan) was equipped with 3 markers and attached 

underneath the foot so that its tip was aligned with the metatarsal heads. A continues force signal and 

the surface EMG of the medial Gastrocnemius, Soleus and Tibialis anterior (Blue Sensor N electrodes, 

Ambu, Denmark) was captured with a DTS System (Noraxon, Scottsdale, USA). Analog signals were 

captured at 1000Hz, marker data at 200 Hz. To analyze morphometrics, a 7.5 MHz, 8 cm width, linear 

ultrasound probe (Sonoline Adara, Siemens, Munich, Germany) was attached with a carbon cast and a 

cluster of four markers. The probe was attached at two locations: once over the medial Gastrocnemius 

muscle-tendon junction (MTJ) and once over the mid-belly (Hösl et al., 2015) and testing was 

performed twice. Ultrasound videos were captured at 25Hz. To assess muscle-joint mechanics, the 

examiner manually moved the ankle slowly and continuously from flexion to maximal extension and 

back. Each stretch lasted a verbal 3 sec. count (Boiteau et al., 1995). The ankle was preconditioned 

with 3 stretches and then 10 oscillations were captured. For plantarflexor strength tests, 5 maximum 

voluntary contractions were carried out. Each time the ankle was positioned as close as possible to 

neutral as a starting point. The ‘make test’ was used, in which the child maximally pushed for 3 sec. (1 

min rest phase).  

 

5.3.6. Data analysis 

For gait analysis, walking velocity (m/s), step length (cm) and cadence (steps/min) were calculated. 

For gait kinematics, mean knee- and dorsiflexion during single stance (°), peak knee- and dorsiflexion 

(°) and mean toe clearance (cm) during swing phase and peak hip extension and flexion were chosen. 

For kinetics, positive peak ankle plantarflexion moment (Nm/kg) and power (W/kg) was extracted. 

Gastrocnemius muscle-tendon unit (MTU) length was calculated (cm) from shank segment length and 

proximal and distal MTU portions were calculated using regression equations (Orendurff et al., 2002). 

We calculated peak Gastrocnemius MTU stretch velocity during swing to determine the dynamic 

stretch tolerance. (Bar-On et al., 2014b).  

For instrumented muscle-joint biomechanical assessment, marker and force data were bi-

directionally low-pass filtered with a 3rd order Butterworth filter at 8Hz and 5Hz, respectively. The 

EMG was rectified and filtered bi-directionally with a 4th order 30Hz high- and 10 Hz low-pass 

Butterworth filter. Ankle angles were calculated with the foot represented by a line connecting the 

heel and the midpoint of the forefoot and calcaneus marker. The applied force was assumed to be 

directed perpendicular to the sole, located at the force sensor’s mid and the lever arm was taken as 

perpendicular distance to the bi-malleolar axis. The moment was gravity corrected for the foot. Inertial 

components were neglected. From each stretch, the moment-angle relations and the EMG signals 

were time-normalized to 100 points. The cumulative EMG integral of all muscles for each oscillation 

was summed up and from the 10 oscillations, the ensemble average of 3 stretches with minimal EMG 
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interference were used. Peak dorsiflexion and peak moment were extracted. Joint stiffness was 

calculated as the slope of the moment–angle curve, between 20-80% of the individual common torque 

range for all occasions (Theis et al., 2015). We also calculated the ankle angle at the end of that range. 

For active strength, the maximum value during a 250ms moving average window was used (Downing 

et al., 2009) and all trials were averaged. The coefficient of variation was 11.4%. 

For the ultrasound, 2D coordinates of the muscle-tendon junction (Fig.5-3) were manually digitized 

using tracker software (Open Source Physics Project, http://physlets.org/tracker/). Its 3D location 

within the laboratory was calculated by using the probe to cast marker location. Tendon length was 

defined as linear distance from the heel marker to the muscle-tendon junction, muscle belly length 

from muscle-tendon junction to the knee joint center. Fascicle length was measured with a tracking 

algorithm (Cronin et al., 2011) and tracks of 5 fascicles were averaged. Pennation angle (α) was 

determined with respect to the deep aponeurosis and extracted at rest. Resting lengths of the muscle 

and fascicles were defined at maximal plantarflexion (Theis et al., 2015). Tendon resting length was 

measured when the muscle-tendon junction started to move distally using a threshold of 0.5 mm which 

indicated force transmission through the tendon. Peak strain was calculated as %-change in length 

relative to rest. Midbelly thickness was defined perpendicular to the deep aponeurosis. For simplicity, 

the force (moment) was assumed to be homogeneous throughout the MTU. Resistive muscle and 

tendon stiffness were determined in the same range as joint stiffness as length change relative to joint 

torque (Nm/cm).  

 

5.3.7. Statistics 

For each treatment both intervention periods were pooled. To test the difference in treatment 

effects between stretching and BDTT for statistical significance, an analysis of covariance (ANCOVA) 

was applied (Metcalfe, 2010). The dependent variables were the post-values and the covariate were 

the baseline values with treatment as between-subjects factor. Significantly different treatment 

effects were expressed as baseline adjusted mean group differences and 95% confidence intervals 

within the text, effect sizes are displayed as partial η2. Subsequently, pre-post changes for each 

therapy were also separately tested for stretching and BDTT using paired t-test. Alpha was set to 0.05.  

 

5.4. Results 

Compliance for stretching and BDTT was 96.3% and 95.9%. No more than 2 of 27 sessions were 

missed by any subject. By comparing the pre-intervention values of each outcome between stretching 

and BDTT, no significant imbalance in any parameter was observed (P≥0.390). 
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5.4.1. Gait-analysis 

 

Comfortable walking condition 

Results are displayed in Figure 5-4 and Table 5-1. There was a significantly different treatment effect 

in dorsiflexion in single stance (2.9°, CI [0.1, 5.6], P=0.041) and in knee flexion in swing (3.4°, CI [0.2, 

6.7], P=0.041). In detail, no significant change in dorsiflexion (+1.3 [SD 4.7]°, P=0.262) or knee flexion 

were noted after BDTT (0.2 [SD 5.2]°, P=0.873) but stretching showed a decrease in dorsiflexion (-1.7 

[SD 3.7]°, P=0.064) in stance and knee flexion in swing (-3.0 [SD 5.0]°, P=0.021).  

 

Fastest possible walking condition 

The fastest possible velocity displayed a significantly different treatment effect (0.10 m/s, CI [0.02, 

0.19], P=0.017). Participants walked significantly faster after BDTT (+0.06 [SD 0.12] m/s, P=0.035) and 

no significant change was observed after stretching (-0.04 [SD 0.14] m/s, P=0.229). This was 

accompanied by a significantly different treatment effect in cadences (12.3 steps/min, CI [4.2, 20.3], 

P=0.004). We observed higher cadences after BDTT (+5.9 [SD 12.7] steps/min, P=0.064) and after 

stretching, a significant decline was noted (-7.4 [SD 11.0] steps/min, P=0.011). With respect to joint 

kinematics, there was a significantly different treatment effect concerning knee flexion in swing (5.4°, 

CI [2.0, 8.8], P=0.003). Knee flexion in swing was significantly less after stretching (-5.2 [SD 6.0]°, 

P=0.002) and after BDTT values remained unaltered (+0.5 [SD 5.7]°, P=0.701). Regarding 

Gastrocnemius MTU lengthening velocities in swing phase, a significantly different treatment effect 

was noted (4.1 cm/sec., CI [0.6, 7.6], P=0.023). Values on average decreased after stretching (-2.2 [SD 

5.2] cm/sec., P=0.091) and increased after BDTT (+2.1 [SD 5.0] cm/sec., P=0.096). Apart from that, 

separate pre-post comparisons showed that only after stretching knee flexion in stance was 

significantly less (-4.0 [SD 7.0]°, P=0.027). 
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Fig. 5-4 Ensemble group average traces for sagittal knee and ankle kinematics and calculated Gastrocnemius 

muscle-tendon unit velocity (vGAS MTU) before and after stretching as well as before and after backward-

downhill treadmill (BDTT) at comfortable and at as fast as possible speed. Error bars show 1 SD. Grey shaded 

areas show reference of typically developing mean and 1SD while walking at comfortable speed of 1.30 (SD 0.16) 

m/s from our lab. Vertical lines below x-axis in top row indicate single stance (SS) or separate stance from swing. 

 

5.4.2. Functional mobility assessment 

No significantly different treatment response occurred (all P≥0.138). As shown in Table 5-1, only 

after BDTT, Gross-Motor-Function Scores and Timed Up-and-Go time improvements reached 

significance (P=0.022-0.050). All changes after stretching were not significant (P≥0.335).  
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Table 5-1 Results of the 3D gait analysis and the functional ambulatory mobility tests. 

  Stretching 

 

 BDTT 

 

 ANCOVA 

Treatment 

differences 

 

 

Pre 

Mean(SD) 

Post 

Mean(SD)  

Pre 

Mean(SD) 

Post 

Mean(SD) 

 

P η2 

Comfortable walking speed 

 velocity [m/s] 1.10(0.17) 1.12 (0.20)  1.12(0.17) 1.15(0.17)  0.640 0.007 

 cadence [steps/min] 122(13) 121(15)  123(14) 126(15)*  0.051 0.111 

 step length [cm] 53.9(6.9) 55.5(7.0)  54.8(5.0) 55.0(5.9)  0.450 0.011 

 mean DF single stance [°] 8.4(9.4) 6.6(8.8)  7.5(7.3) 8.7(7.2)  0.041† 0.120 

 mean KF single stance [°] 22.3(9.6) 22.3(9.7)  22.7(8.9) 23.1(7.8)  0.747 0.003 

 min HF single stance [°] 2.2 (8.1) 3.4 (5.8)  2.0(6.6) 3.1(5.2)  0.889 0.001 

 peak DF swing [°] 2.3(9.5) 2.5(10.5)  3.6(7.1) 2.9(8.7)  0.338 0.028 

 peak KF swing [°] 59.7(7.0) 56.7(7.6)*  60.5(8.5) 60.7(7.2)  0.037† 0.125 

    peak HF swing [°] 46.5(8.8) 46.5(6.9)  45.8(7.6) 47.7 (7.5)  0.238 0.042 

 mean toe clearance [cm] 2.2(0.6) 2.4(0.8)  2.4 (0.8) 2.4 (0.7)  0.075 0.093 

 peak GAS vel. swing [cm/sec] 16.5(6.2) 16.7(6.7)  16.8(5.4) 18.1(6.8)  0.419 0.020 

 Peak PF moment [Nm/kg] 1.18(0.30) 1.20(0.27)  1.21(0.24) 1.22(0.26)  0.902 0.001 

 Peak PF Power [W/kg] 2.12(0.61) 2.29(0.73)  2.19(0.6) 2.35(0.8)  0.978 0.063 

  

Fastest possible walking speed  

 velocity [m/s] 1.45(0.20) 1.41(0.24)  1.44(0.21) 1.51(0.17)*  0.017† 0.160 

 cadence [steps/min] 150(12) 143(14)*  145(16) 151(18)  0.004†† 0.225 

 step length [cm] 57.9(7.4) 59.4(8.6)  59.7(7.3) 60.3(6.4)  0.651 0.006 

 mean DF single stance [°] 6.2(10.8) 6.2(9.7)  6.4(7.8) 6.9(7.3)  0.674 0.005 

 mean KF single stance [°] 25.4(11.6) 21.4(11.5)*  23.7(10.8) 23.6(9.6)  0.129 0.068 

 min HF single stance [°] 1.7(8.9) 2.7(6.9)  0.7(7.4) 3.4 (7.2)  0.360 0.025 

 peak DF swing [°] 3.5 (9.2) 3.4(10.5)  3.9(7.7) 4.2(8.0)  0.786 0.002 

 peak KF swing [°] 64.9(9.5) 59.6(8.6)**  63.8(10.6) 64.3(8.3)  0.003†† 0.243 

 peak HF swing [°] 49.3(8.5) 49.3(6.9)  48.8(7.6) 50.7(7.8)  0.200 0.049 

 mean toe clearance [cm] 2.8(0.7) 2.6(0.9)  2.8 (0.9) 2.9 (0.6)  0.191 0.051 

 peak GAS vel. swing [cm/sec] 22.4(7.2) 20.2(7.2)  20.7(7.6) 22.8(9.3)  0.023† 0.148 

 Peak PF moment [Nm/kg] 1.23(0.28) 1.23(0.25)  1.29(0.26) 1.26(0.29)  0.664 0.006 

 Peak PF Power [W/kg] 2.69(0.81) 2.76(0.87)  2.54(0.86) 2.84(0.92)  0.403 0.021 

  

Functional ambulatory mobility tests 

 GMFM D [Score 0-100] 88.2(8.9) 89.1(8.7)  87.4(9.2) 90.0(7.1)*  0.218 0.088 

 GMFM E [Score 0-100] 90.7(8.5) 91.0(7.0)  90.7(8.0) 92.6(6.2)*  0.138 0.125 

 Timed-Up-and-Go [sec] 7.9(1.9) 7.2(2.2)  8.1(1.6) 6.8(1.3)*  0.497 0.028 

 
BDTT: backward downhill treadmill training, DF: Dorsiflexion, PF: Plantarflexion, KF: Knee flexion, HF: Hipflexion.  
GAS vel.: calculated Gastrocnemius muscle-tendon unit velocity, *significant effects for the pre-post comparisons 
of each treatment *p<0.05 (** with <0.01), the ANCOVA p-value refers to the difference between treatments: 
the dependent variables were the post-values and the covariate were the pre-treatment values with treatment 
as between-subjects factor, † significant treatment differences †p<0.05 (††p<0.01), η2=partial effect size with 
benchmarks: η2 > 0.059 for medium and η2 > 0.138 for large effects. 
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5.4.3. Instrumented muscle-joint biomechanical assessment 

 

Table 5-2 Results of the muscle-joint biomechanical assessment. 

  Stretching 

 

 BDTT 

 

 ANCOVA 

Treatment 

difference 

 

 

Pre 

Mean(SD) 

Post 

Mean(SD)  

Pre 

Mean(SD) 

Post 

Mean(SD) 

 

P η2 

Active ankle-joint assessments  

 Peak moment [Nm] 13.8(5.0) 14.0(6.0)  15.0(7.9) 16.6(8.2)  0.470 0.041 

          

Passive ankle-joint assessments 

 Peak moment[Nm] 5.3(1.2) 7.0(2.5)*  5.1(0.8) 6.3(1.7)  0.532 0.023 

 Peak DF [°] -0.2(10.9) 1.7(8.1)  -0.3(9.3) 2.6(8.4)  0.710 0.008 

 DF at fixed moment [°]a -8.8(9.6) -10.0(9.6)  -9.3(8.0) -8.3(8.2)  0.344 0.053 

 Joint stiffness [Nm/°] 0.15(0.07) 0.14(0.04)  0.13(0.05) 0.14(0.04)  0.345 0.052 

          

Muscle-tendon properties 

Medial Gastrocnemius morphometrics [at rest] 

 Fascicle angle [°] 23.5(4.3) 24.5(4.0)  22.7(4.4) 23.5(3.6)  0.670 0.011 

 Thickness [cm] 1.5(0.4) 1.5(0.3)  1.5(0.4) 1.5(0.4)  0.788 0.004 

 Fascicle length [cm] 3.8(0.9) 3.7(0.9)*  3.9(0.9) 3.8(0.7)  0.893 0.001 

 Muscle length[cm] 19.9(2.7) 20.4(2.9)  20.0(2.6) 20.1(2.7)  0.543 0.022 

 Tendon length [cm] 15.1 (3.7) 15.1(4.4)  15.0(3.8) 15.1 (3.7)  0.725 0.008 

          

Total strain [resting length to max. length] 

 Fascicle [%]  21.2(7.1) 27.9(6.0)*  20.2(6.4) 26.8(6.6)*  0.792 0.004 

 Muscle belly[%]  3.8(1.8) 4.9(1.5)**  4.0(1.6) 5.4(1.7)**  0.460 0.033 

 Tendon [%]b 6.9(1.4) 6.1(1.6)  6.2(3.4) 8.0(3.9)  0.168 0.109 

          

Passive resistive stiffness [between 20-80% common passive joint moment] 

 Muscle belly [Nm/cm]c 5.9(2.7) 4.7 (1.2)  5.2 (2.1) 4.2 (1.9)  0.774 0.005 

 Tendon [Nm/cm] 
3.8 (1.5) 4.3(1.1) 

 
3.8 (1.6) 3.8 (1.1) 

 0.364 0.049 

 
BDTT: backward downhill treadmill training, DF: Dorsiflexion, a fixed moment refers to 80% common passive 
resistive moment, b tendon strain was calculated by a using straight line approximation for tendon length, c force 
(moment) was not partitioned within the triceps-surae muscles group; *significant effects for the pre-post 
comparisons of each treatment *p<0.05 (** with <0.01), the ANCOVA p-value refers to the difference between 
treatments: the dependent variables were the post-values and the covariate were the pre-treatment values with 
treatment as between-subjects factor ,† significant treatment differences †p<0.05 (††p<0.01). η2=partial effect 
size with benchmarks: η2 > 0.059 for medium and η2 > 0.138 for large effects. 
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Concerning plantarflexor strength, one subject was excluded due to problems in data acquisition. 

Treatments did not have significantly different effects on strength (P=0.470) and neither stretching nor 

BDTT caused any significant change (P≥0.204). During the passive rotational tests, EMG interference 

was not significantly different between pre and post in BDTT or stretching (all muscles P≥0.109). Mean 

knee alignment was 2-3 (SD 6-7)° with no difference between treatments (P=0.544). Rotational ankle 

speed (°/sec) during the passive motion was 13.9 (SD 2.4) and 9.3 (SD 2.4) pre and post stretching and 

16.1 (SD 8.8) and 9.8 (SD 3.7) pre and post BDTT. Both were significantly slower at post-assessments 

(P=0.005 and P=0.032) with no difference between treatments (P=0.915). Muscle morphometric traces 

are shown in Fig. 5-5. Test-statistics are shown in Table 5-2. Treatment effects on passive dorsiflexion 

were not significantly different concerning end range values or evaluations at matched torques 

(P=0.710 and P=0.344). The increases in peak dorsiflexion after stretching (+2.0 [SD 6.0]°, P=0.163) and 

after BDTT (+2.8 [SD 6.0]°, P=0.085), as well as the increases in peak resistive joint torque after 

stretching (+1.7 [SD 2.4] Nm, P=0.047) and after BDTT (+1.2 [SD 1.9] Nm, P=0.069) were not 

significantly different between treatments. Also no effects on ankle joint stiffness were noted 

(P=0.345).  

 

With respect to morphometrics, none of the parameters indicated a significantly different 

treatment response (all P≥0.543). Subsequent pre-post comparisons separated for each treatment 

showed that muscle or tendon rest length was not significantly altered (all P≥0.356). Yet, total passive 

strain of the muscle belly and fascicles was similarly, significantly increased after both treatments (29-

35%, all P=0.002-0.023). No significant changes in passive resistive stiffness of the muscle and tendon 

were observed (P≥0.082). In addition, after stretching and BDTT fascicle length at rest decreased by 

~3%, reaching significance after stretching (P=0.046) but not after BDTT (P=0.438). 
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Fig. 5-5 Ensemble group average traces for instrumented muscle-joint biomechanical stretch assessment 

concerning the passive ankle joint moment, the medial Gastrocnemius muscle morphometrics and shank muscle 

activity during passive dorsiflexion stretches. Left side: Traces before and after stretching, Right side: Traces 

before and after backward-downhill treadmill (BDTT). Error bars show 1 SEM. For clarity, error-bars of EMG 

values and Soleus EMG traces have been omitted from the lowest graphs. Soleus muscle activity was similarly 

low as the Tibialis anterior activity.  
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5.5. Discussion 

Focusing on stretching, passive dorsiflexion was not significantly increased and muscle stiffness was 

unaltered which contrasts findings in SCP-children that primarily relied on wheeled mobility (Theis et 

al., 2015). Yet, also in our sample larger peak resistive torques were tolerated, similar to studies in 

healthy adults (Blazevich et al., 2014). This may reflect altered tolerance to passive stretch but 

structural joint tightness could have impeded further joint flexibility. In comparison to Theis et al. 

(2015), each stretch was held shorter in our study (20 vs. 60 sec.) but the intervention volume was 

larger (+27%). However, we think that methodological aspects were of minor importance for the 

different outcome since our participants had a considerably higher ambulatory status (lower GMFCS-

level). They may actually use their plantarflexors on short length during full weight-bearing gait which 

may dominate their muscles’ response (Hösl et al., 2016). Therapeutic interventions in ambulatory 

SCP-children may therefore need to train aspects of gait to elicit positive changes during walking. On 

the other hand, normalizing muscle morphometrics and improving gait may not necessarily occur in 

concert since sustained stretch treatment with an ankle-foot orthotic improved walking velocity and 

foot lift despite inducing Gastrocnemius fascicle length decline (Hösl et al., 2015). As adverse outcome 

after stretching, knee flexion during swing declined. This may suggest worsened muscle function, since 

the Gastrocnemius usually initiates knee flexion into swing (Neptune et al., 2001). Yet, the reduced 

knee flexion did not negatively impact toe clearance and may disappear after 5 weeks since treatment 

baseline was similar in the group that started with stretching. Healthy adults also reduce knee flexion 

during swing phase as an acute response to intense static plantarflexor stretch which had been 

associated with transient plantarflexor weakness (Apti et al., 2016) but in our longitudinal study, SCP-

patients showed no such drop in strength. Therefore the stiff-knee gait of the SCP-patients seems not 

to be induced by plantarflexor weakness. However, other neural aspects might play a role. Some 

stretch exercises might have tensioned the sciatic nerve (Coppieters et al., 2006), since the children 

were positioned with straight knees and flexed hips. This may cause impaired neural drive to hamstring 

muscles during gait and limit swing phase knee flexion. While detailed mechanism need to be 

investigated, our findings show that manual, static plantarflexor stretching may not be emphasized in 

SCP-patients with a high ambulatory status. 

Although after BDTT deficits in passive dorsiflexion could not be substantially improved, gains in 

dorsiflexion during gait were significantly larger than after stretching. Moreover, participants were 

able to walk faster and increases in ambulatory mobility were found. In our study the higher walking 

velocity had been achieved by an increase in cadence. This faster reciprocal leg motion might reflect 

improved coordination. It had been previously also speculated that faster walking speed und improved 

postural balance after flat backward gait training (Hao and Chen, 2011; Kim et al., 2013) could be a 

sign of altered neuromuscular control and reorganization of muscle synergies. Higher cadences are 
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also a typical strategy in SCP (Abel and Damiano, 1996), which generally necessitate little change in 

ankle joint kinetics (Ardestani et al., 2016) and accordingly the increases in peak ankle joint power 

marginally failed to reach significance (+12%, P=0.054). We also found a treatment difference 

concerning faster Gastrocnemius MTU lengthening velocities in swing after BDTT. Previously, Bar-On 

et al. (2014b) showed that higher Gastrocnemius MTU lengthening velocities during gait are related to 

higher stretch reflex thresholds during passive examination, so, in comparison to stretching, dynamic 

stretch sensitivity might have been attenuated after BDTT. 

Concerning the muscle-joint properties, no increase in muscle length or thickness was found, 

strength was not increased and also the passive resistive stiffness of the tendon was not altered. 

Muscle-tendon loadings during BDTT were probably too low to provide a homeostatic perturbation: 

Generally, in able-bodied persons, large tendon deformation during training is necessary for increasing 

tendon stiffness (Arampatzis et al., 2007; Bohm et al., 2014) but our previous ultrasonographic analysis 

of the spastic calf during backward downhill walking showed that the tendinous tissue of the 

Gastrocnemius is used on rather short length (Hösl et al., 2016). Apart from that, our participants with 

SCP did not report about muscle soreness. Reasons for the lack of muscle soreness could be that we 

gradually adjusted our training or that duration and intensity (slope and beltspeed) was less than in 

studies on healthy adults (Hoang et al., 2007; Hoffman et al., 2014). However, in comparison to adults, 

susceptibility to eccentric exercise-induced muscle damage is considerably reduced in healthy children 

and adolescents, too (Chen et al., 2014) and also alterations in spastic muscle composition could be 

detrimental. 

From a methodological point of view, ~6-8% of passive tendon strain during assessments of muscle 

joint-properties was higher than previous values of ~2-3% in healthy adults (Csapo et al., 2013; Monte 

et al., 2006). Noteworthy, the tendon length defined here is approximated as a straight line and 

neglecting curvature leads to overestimation of strain values (Monte et al., 2006). Besides, this method 

integrates the Achilles tendon and the run-out from the deep MG aponeurosis. The absolute tendon 

strain values may therefore be interpreted with caution. To which extent these differences are affected 

by SCP pathology or age needs to be determined, too. 

For both stretching and BDTT, Gastrocnemius muscle and fascicle strain was significantly increased 

which could be the combined results of somewhat larger dorsiflexion and larger tolerated stretch-

moments. Conversely, even though it remains fairly speculative, we cannot totally refute conceptions 

about sarcomere remodeling. In the past, Gastrocnemius biopsis in SCP-patients showed that in-vivo 

sarcomeres are extremely long with pulled apart contractile proteins (Mathewson et al., 2014), 

probably due to difficulties in adding new sarcomeres. A change in the resting length of sarcomeres 

might have lowered the resting tension within myofibres and improved their potential to elongate 

during stretch. Consequently, the reduction in resting fascicle length, particularly after stretching, may 
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not necessarily reflect sarcomere loss. Investigating active fascicle force-length relationships (Barber 

et al., 2012) could give an indirect, non-invasive hint in future. Eventually, since the increase in muscle 

and fascicle strain with both interventions was similar but the effects during walking differed, it is 

debatable if the changes in passive muscle and fascicle strain are functionally decisive. 

Apart from the current treatments, alternative modes of stretching or treadmill training showed 

more promising outcomes in ambulatory SCP-patients. First, a combination of cyclic, robotic 

plantarflexor stretching with dorsiflexor strengthening could improve ambulatory function without 

including specific walking exercises (Wu et al., 2011). Second, opposed to BDTT, forward uphill training 

also increased the toe-lift during swing phase of gait (Willerslev-Olsen et al., 2015). Both of these 

alternatives increased dorsiflexor strength which could be very influential. Uphill walking also 

necessitates more concentric Gastrocnemius fascicle excursion in SCP-patients (Hösl et al., 2016). This 

may better train push-off, since gains after strength training may be specific in terms of contraction 

mode (Roig et al., 2009). The motoric transfer of a braking action during BDTT to increased propulsion 

may be too challenging. To offer plantar- and dorsiflexor training with varying coordinative and 

contractile demands, forward and backward-training on slopes may be combined.  

 

5.6. Limitations 

First, this study was limited to a rather small convenience sample which was subjected to a cross-

over study receiving both treatments and the interpretation may be impacted by the predominance 

of bilateral participants. More participants may be required to detect changes in muscle 

morphometrics and a larger scale RCT with parallel grouping may be preferable in future. Second, gains 

in passive dorsiflexion were fairly small and it remains unknown if both therapies can cope with any 

natural decline; ~2° in 3 months (Maas et al., 2014). Third, the testing is limited by the precision of the 

hand-held dynamometer. Fourth, the manually geared muscle-joint testing was executed slightly 

slower during post testings but a) no different EMG interference occurred and b) this change in angular 

velocity was not related to changes in stiffness on muscle, tendon or joint level (P=0.157-0.798). 

Nevertheless, motor-driven dynamometry would probably be more consistent. However, such tests 

were partly performed at similar velocities (10-20 °/sec) in SCP-patients (Theis et al., 2015,de Gooijer-

van de Groep et al., 2013, Barber et al., 2011) while some manually-geared tests were also performed 

faster (30-60°/sec) (Peng et al., 2011, Alhusaini et al., 2010). The EMG-data showed low position 

dependent activation during the slow stretch maneuvers (Fig. 4), in agreement with previous 

investigations (Bar-On et al., 2014a). Still, the angular rotations were below reported stretch reflex 

thresholds of 21–71°/s for spastic plantarflexors (Willerslev-Olsen et al., 2013) and the EMG 

interference is consistent with proposed thresholds (<10% MVC) in SCP for dynamometric dorsiflexion 
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tests (Maas et al., 2014). Fifth, although the time each leg was focused during therapy was similar, the 

training volumes differed: The total end-range duration per leg during stretching was ~304 min (910 

repetitions). On the treadmill, ~18.000 steps were performed. Since one eccentric contraction takes 

up ~20% of each step (Hösl et al., 2016), the eccentric contractions lasted ~60 min in total (~one step 

per sec.). 

 

5.7. Conclusion 

BDTT helps to achieve faster forward walking velocities compared to static stretching. Whether 

BDTT also altered neuromuscular control or reduced dynamic Gastrocnemius stretch sensitivity needs 

to be determined. No superiority of static stretching over BDTT was noted in any parameter. Passive 

ankle joint mobility was not increased after stretching or BDTT. Stretching particularly deteriorated 

knee flexion during swing and therefore we argue that, since manual static stretching is labor intensive 

and physically demanding to therapists, it may not be emphasized in high-functioning, independent 

ambulators with SCP. More intense BDTT, e.g. a steeper negative slope, or more frequent training 

might be necessary to alter muscle-tendon morphometrics and increase strength of spastic 

plantarflexors. 
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6. Main findings and conclusions  
 

The overall objective of this thesis was to investigate several non-invasive treatment strategies for 

calf muscle pathology of children with Cerebral Palsy (CP) and equinus deformity. More specifically, 

the aim was to gain knowledge about the responsiveness of their muscle-tendon structures by using 

brightness mode ultrasonography on the medial gastrocnemius. In addition, this thesis sought to 

promote the understanding of gastrocnemius structure-function relationship in children with CP. 

The first study focused on stretch-immobilization against equinus via ankle-foot bracing. A pre-post 

setting was applied. Additionally, the values of children with CP were compared to a group of untreated 

healthy controls. Prior to the treatment, the current findings supported previous results on 

gastrocnemius muscle-tendon pathology in children with CP. Children with CP displayed reduced 

muscle belly thickness, muscle belly length, fascicle length and increased tendon length of the 

gastrocnemius muscle with respect to the control participants. Furthermore, their fascicles were 

shown to be less extensible upon stretch. The treatment, which on average lasted for 4 months, 

showed that the gastrocnemius muscle belly atrophied. This was caused by a reduction in muscle belly 

thickness and fascicle length. Thus, muscle architecture seemed to further deteriorate. This was 

probably caused by disuse or decreased muscle excursion related with the orthotics. However, the 

extent of ankle joint contracture was alleviated and passive dorsiflexion increased. Still, passive 

dorsiflexion primarily increased when clinically assessed with flexed and not with extended knees. Very 

likely, morphological structures distal to the gastrocnemius muscle belly were targeted during bracing. 

In addition, the distal tendon extensibility seemed to increase after bracing. Yet, this might have been 

prone to methodological flaws, since we did not account for slack length of the tendon during testing. 

Assuming that, similar to findings in animal studies (Blanchard et al., 1985; Tardieu et al., 1977), the 

tendon adaptation could have been stimulated first and the tendon could have initially also gotten 

more compliant during stretch-immobilization, the fascicles of the gastrocnemius might have been 

unstrained during brace wear. This in turn could have triggered a loss of sarcomeres in series and would 

fit to the obsverved reductions in fascicle length.  

On the other hand, the children’s walking patterns improved. They selected a faster natural walking 

velocity, landed with a flatter foot to floor angle and increased dorsiflexion during the swing phase of 

gait. Nevertheless, decreased ankle plantarflexion moments during the first and second half of the 

stance phase were found. Since a large portion of these ankle moments is typically generated passively 

in CP children (Crosbie et al., 2012; Dallmeijer et al., 2011; Eek et al., 2011), the passive stretch 

resistance of the plantarflexor muscles probably reduced. Having said that, reduced ankle moments 

during push-off potentially also reflected weaker plantarflexor muscles. Both findings might be 

attributed to the decreased gastrocnemius muscle bulk after the treatment. Although the active 
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plantarflexor strength was not instrumentally assessed, the architectural deteriorations of the muscle 

suggest that the gastrocnemius’ capacity for force production reduced. But, worth noting is that the 

the gastrocnemius muscle belly atrophy might have also provided some benefits. It could have helped 

the dorsiflexing muscles to exert foot lift during walking, since the thinner gastrocnemius might have 

produced less antagonistic resistance during the swing phase. Arguably, these functional gains may 

somewhat outweigh the atrophic effects. To potentially also induce gastrocnemius muscle belly 

growth, orthotic braces may need to extend the knee to exert stretch on the whole gastrocnemius 

muscle-tendon unit or, next to bracing,  complementary training could be necessary. 

In the second study, the goal was to evaluate alternative training stimuli for the gastrocnemius of 

children with CP. In this cross-sectional investigation, the contractile activity of the medial 

gastrocnemius was measured while walking on sloped surfaces, namely during forward-uphill and 

backward-downhill gait, as well as during flat-forward walking. During flat-forward gait, the study 

revealed that, despite having shorter fascicles length at rest, children with CP also worked at shorter 

relative fascicle length than controls. This is an important finding. It suggests that muscles of children 

with CP could voluntary work on short fascicle length in order to compensate for their increased 

sarcomere length (Mathewson et al., 2014). This may enable the use of sarcomeres in a configuration 

where they are able to produce enough active forces and also avoid that contractile filaments are 

stretched beyond overlap (see section 1.5.1.4). In addition, no difference in eccentric fascicle excursion 

during the stance phase between CP patients and control subjects existed. In contrast to a frequent 

assumption (e.g. Pitcher et al., 2015), increased eccentric loadings may thus not be responsible for the 

genesis of contracture in children with CP. Still, those patients that were able to exert less isometric 

plantarflexor force during strength tests, experienced more eccentric fascicle excursion during gait. 

Therefore the gastrocnemius fascicles of children with CP may indeed face difficulties resisting tensile 

forces during the stance phase. 

When walking backward-downhill, the gastrocnemius functioned as a brake and displayed 

increased eccentric excursion during the landing phase. During the uphill-walking condition concentric 

fascicle action was increased throughout the push-off phase. It was concluded that both training 

modes could therefore offer benefits for children with CP. Yet, taking the positive outcomes of 

eccentric training on animal muscles (Butterfield et al., 2005; Lynn and Morgan, 1994) and on healthy 

human muscles (Duclay et al., 2009) into account, it was subsequently hypothesized that backward-

downhill gait could stimulate sarcomere-genesis in series and induce strength gains in children with 

CP. Both factors should help to alleviate the impact of equinus pathology. 

Consequently, during the third study, backward-downhill treadmill walking was evaluated. We 

compared its effectiveness against manual static calf stretching. Both treatments were administered 

over periods of 9 weeks in a cross-over study. Manual static calf stretching was applied as ‘control 
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treatment’. Stretching was considered to be representative for the standard physiotherapeutic 

management. After backward-downhill treadmill training the children achieved faster overground 

walking velocities and improved their functional ambulatory mobility, as revealed by Timed up and go 

tests, 10m walk tests and GMFM D and E assessments. Still, no significant gains in passive or active 

ankle dorsiflexion during gait were found. Since stretching tended to cause a decline in dorsiflexion 

during the single stance phase of gait, backward-downhill treadmill training was nevertheless 

statistically superior. 

 Contrary to our expectations, no signs of muscle growth (increases in fascicle length or muscle belly 

thickness) were found after backward-downhill training. Accordingly, no improvement in plantarflexor 

strength could be documented. Apart from that, the passive resistive stiffness of the tendon was also 

not altered. This is in contrast to Foure et al.’s (2013) findings on eccentric plantarflexor training in 

healthy adult controls. Notably, the second study of this thesis revealed that while walking backward-

downhill, the series elastic element (tendon+aponeurosis) of the gastrocnemius probably worked on 

rather short length. This might not have been sufficient to induce major tendon adaptations with the 

conducted training. In able-bodied persons, large deformation of tendons seems to be necessary for 

increasing their stiffness (Arampatzis et al., 2007a; Bohm et al., 2014). Hence, muscle-tendon loadings 

in the current study were probably too low to induce an adaptive response within the muscle-tendon 

complex of children with CP.  

Concerning the static stretching treatment, no superiority over backward-downhill walking was 

noted in any parameter of gait or with respect to the values on muscle morphometrics and joint 

contracture. Stretching even seemed to be counterproductive during walking because children 

displayed reduced knee flexion during the swing phase of gait. Some stretch exercises might have 

tensioned the sciatic nerve (Coppieters et al., 2006), since the children were positioned with straight 

knees and flexed hips during some exercises. This might have caused impaired neural drive to 

hamstring muscles during gait and thereby limited the swing phase knee flexion. 

 Similar to the effects of backward-downhill walking, passive dorsiflexion was not increased after 

stretching and muscle belly stiffness was also not significantly altered. This contradicts with another 

study on static stretching in CP children (Theis et al., 2015). The study of Theis et al. (2015), however, 

primarily included children that relied on wheeled mobility. The very mobile children who were 

included in the current study might have actually often used their gastrocnemii on short muscle-

tendon and fascicle length during gait. This loading regime probably dominated their muscular 

response and prevented increases in fascicle length. Thereby any major increase in passive ankle joint 

extensibility was probably prevented.  As expected, manual stretching was also not sufficient to induce 

muscle growth or change tendon properties. 
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Eventually, both treatments did not significantly change passive end-range dorsiflexion, as well as 

the resistive stiffness values on muscle-tendon and joint level. Nevertheless, an increase in passive 

muscle and fascicle strain after stretching and treadmill training was found. These larger passive strains 

could have been the combination of somewhat larger dorsiflexion and larger tolerated stretch-

moments during the tests. However, only the gains in passively tolerated moments after stretching 

surpassed statistical significance. In addition, even though we did not quantify the untreated 

progression of muscle pathology in CP children, it was concluded that manual, static plantarflexor 

stretching may not be emphasized in patients with a relatively high ambulatory status. Therapeutic 

interventions may most likely need to directly train aspects of gait to elicit positive changes during 

walking in patient populations with CP (Boyd and Graham, 1999; Moreau et al., 2016; Romeiser Logan, 

2013). When opting for backward-downhill gait as a treatment, more intense training, e.g. a steeper 

decline, or more frequent training sessions might be necessary. 

 

 

7. Implications for orthopedics and 
therapists 

 

First, ankle foot orthotics used as splints remain a valuable treatment option for children with CP. 

They were shown to be capable of improving gait. As had been already acknowledged by others 

(National Collaborating Centre for Women's and Children's Health (UK), 2012), muscle wasting and 

potential weakness resulting from immobilization with orthotics may need to be weighed against these 

benefits. Quite frequently, the major rationale for the use of orthotics in CP is to prevent progressive 

joint contracture. Considering results from Sweden, 62% of ankle-foot orthotic users among CP 

children also manage to maintain their level of passive dorsiflexion (Wingstrand et al., 2014). All 

treatments presented in this thesis (braces, manual stretching, as well as backward-downhill treadmill 

training) were able to statistically maintain passive dorsiflexion with extended knees. Thus, they also 

prevented disease progression. More specifically, with ankle foot bracing, 76% of the children 

increased their maximal passive dorsiflexion which seems to be a rather promising result. Notably, 

Wingstrand et al. (2014) reported that as little as 9% of CP children generally display major gains in 

passive dorsiflexion with orthotics. However, there is a clear need for alternative treatments. From age 

5-6 years onwards, the compliance with orthotics among children with CP seems to progressively 

decline (Wingstrand et al., 2014). 

Second, concerning manual static calf stretching, we could not provide any major evidence to 

support its widespread use. Our results even suggest that pathology partially progresses. Previous 
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recommendations from reviews on stretching in CP concluded to prescribe alternatives, e.g. orthotics 

(Pin et al., 2006), to allow children to stretch and move (Wiart et al., 2008) or to rather cancel stretching 

during therapy (Novak et al., 2013). The results of the current thesis may to some extent agree with all 

three of those statements. Manual stretching in ambulatory and very mobile children with CP should 

thus probably be replaced with more active training modalities. Resistance exercises and group 

workouts in combination with interactive gaming could likely be future avenues to be explored. 

Third, although backward-downhill gait was not able to improve plantarflexor strength or induce 

muscle growth, it was beneficial for gait and ambulatory mobility. It thus deserves its spot in pediatric 

physical therapy. Treadmills are already commonly applied in CP (Willoughby et al., 2009). They are 

often used to train gait quality by executing multiple movement repetitions with or without 

therapeutic guidance. Thereby, they aim to change motor behavior. While sophisticated treadmills 

with virtual realities (Sloot et al., 2015a; van der Krogt et al., 2014), partial body-weight support (Dodd 

and Foley, 2007) or robotic assistance (Meyer-Heim et al., 2009) are applied in CP patients, the latter 

options may yet be most suitable for more severely affected children. They also require bulky or 

expensive equipment. Modifications of the slope and walking direction can be easily implemented with 

low cost treadmills. This can be locally used in physiotherapeutic practices or home-settings, especially 

for children with a relatively high ambulatory status. Backward gait in particular seems to put high 

demands on coordinative skills (Hoogkamer et al., 2014). As a consequence, flat-backward (Abdel-

Aziem and El-Basatiny, 2017; Kim et al., 2013) or backward-uphill walking (Kim et al., 2016) strategies 

have been already explored in CP research as well. All these approaches may help to train motor 

control. In addition, eccentric training modalities also warrant further attention. Robotic exercise, e.g. 

by means of isokinetic devices (Moreau et al., 2013), could be used for the treatment of calf muscles 

in CP, too.  In hindsight, by training uphill walking we might have been able to reach higher contractions 

intensitiessince uphill walking necessitated more neural activity from the gastrocnemius than 

backward-downhill gait (see 4.4.5). Whether this would have also increased dorsiflexion during gait 

remains arguable. Willerslev-Olsen et al. (2014b) observed an increased toe to floor distance after 

uphill treadmill training in CP patients, but did not report changes in maximum dorsiflexion during 

swing phase of gait. Therefore, lifting the foot was probably achieved by hip flexion which is a major 

modulation of gait when walking uphill. The potential effects of uphill walking may thus also 

encompass habitual adaptations of gait which needs to be assessed.  

Finally, by overseeing the current results and the evidence from the scientific literature, further 

considerations for pediatric orthopedics may emerge: As with orthotics, other ‘conventional’ 

treatments seem to increase passive dorsiflexion at the expense of reducing plantarflexor muscle 

thickness, e.g. BoNT injections (Park et al., 2014) or surgeries (Shortland et al., 2004). Both aspects may 

be causally related which is a quite controversial aspect: In healthy subjects, thinner muscles were 
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associated with more joint range of motion in the past (Chleboun et al., 1997; Kawakami et al., 2003; 

Magnusson et al., 1997). Speculatively, augmented contractile material in parallel within calf muscles 

could be responsible for the natural decline in dorsiflexion with growths among typically developing 

subjects (Weide et al., 2015). Hence, gains in joint range of motion should not be prioritized per-se 

during treatment of children with CP. Remarkably, restrictions in dorsiflexion may even be 

energetically beneficial in neurologically healthy adults since there is an inverse relationship between 

locomotor economy and ankle joint flexibility in walking or running (Hunter et al., 2008, Craib et al., 

1996; Hunter et al., 2011). If little active strength is available, limited dorsiflexion may also help to 

augment ankle moments during walking (Mueller et al., 1995). Concerning passive dorsiflexion 

excursion, values greater than 10° were even associated with increased oxygen cost during locomotion 

(Gleim et al., 1990). On the other hand, equinus pathology in neurologically intact persons is negative 

because it overloads the foot and equinus probably emerges due to sedentary life styles or limited 

exposure to range of motion (Amis, 2014).  

Interestingly, in unilaterally affected children with CP, increased passive ankle joint stiffness seems 

to be positively associated with faster walking velocities (Crosbie et al., 2012). The stiff hemiparetic leg 

may be used as a passive spring (Fonseca et al., 2004). This would be in-line with a compensatory role 

of joint contracture during gait. Nevertheless, less available passive dorsiflexion was associated with 

slower velocities in unilaterally affected children (Crosbie et al., 2012). In bilaterally affected children, 

more ankle joint range of motion during gait seems to decrease energy expenditure (Pouliot-Laforte 

et al., 2014). It may be therefore speculated that gains in ankle joint range of motion in children with 

CP will functionally be most beneficial if joint stiffness can be preserved. Active stiffening of contractile 

tissue due to accurately timed muscle activity may either be energetically less efficient or could be too 

complex from a coordinative perspective. In the future, discriminating non-pathological from 

pathological joint stiffness seems to be an important task for research. Also the exact nature and 

consequence of limited joint range of motion in CP needs to be disentangled further. 

Finally, although the current finding of elongated gastrocnemius tendons in CP children relative to 

controls confirms previous studies (Wren et al., 2010), the terminology  ‘achillo-tendon shortening’ is 

frequently used in the context of equinus in CP. The author strongly recommends avoiding this. It may 

lead less experienced surgeons to target tendons in CP children too often. In addition, the judgement 

of such tendon alterations appears controversial. In healthy adults, longer Achilles tendons seemed to 

be efficient during locomotion (Craib et al., 1996; Hunter et al., 2011). Kovanen et al. (1984) reasoned 

that the longer the tendon relative to the whole muscle, the higher the proportion of elastic energy to 

be stored and released. It should hence be discussed whether longer tendons are pathological or 

represent an adaptive strategy of the musculoskeletal system in CP. It is noteworthy that the 

gastrocnemius’ tendon not only seems to be rather long, but also more compliant than its muscle belly 
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in CP children (Kruse et al., 2016b; Theis et al., 2016). This is a very atypical finding. Mechanical 

properties of tendons in CP therefore clearly warrant further attention. 

8. General limitations  
It needs to be taken into account that all experiments presented in this thesis were conducted on 

children classified in GMFCS Level I and II. They were able to walk without assistive devices. As can be 

suspected for manual static stretching, children that primarily rely on wheeled mobility might react in 

a different way (Theis et al., 2015). For the first and third study, both children with uni- and bilateral 

pathology were included. Yet, structure-function relationships may be different in both groups. It had 

been shown that more plantarflexor strength in the hemiparetic leg of unilaterally affected children 

seems not to be related to faster walking velocities (Crosbie et al., 2012) which generally contrasts 

findings in bilaterally affected children (Dallmeijer et al., 2011; Eek et al., 2011). Thus, more 

homogenous groups might have been preferable. Increasing the sample sizes would have also been a 

theoretical option, but this would have likely required a multi-center approach. 

Apart from that, the ankle-foot orthotics used in the first study reached below the knee and thus 

reasonably targeted the soleus. Due to the ultrasound technique in use, we were not able to precisely 

visualize the deeper lying soleus simultaneously with the gastrocnemius muscle. Previous research on 

below knee casting in CP children by Brouwer et al. (1998) revealed a rightward shift of the active ankle 

angle-force curve when measuring the plantarflexor strength of the subjects with flexed knees pre and 

post treatment. In principle, this could have been induced by serial sarcomere adaptations of the 

soleus muscle. Although ultrasound for fascicle tracking works best with superficial muscles (e.g. the 

gastrocnemius or the vastii), the soleus needs to be investigated in more detail in CP.  

 Concerning our third study, it may be argued that the frequency of the training (three sessions per 

week) was too little. Yet, three supervised sessions was the maximum that was feasible for 

organizational purposes. This was also in the range of other, more effective stretching or strength 

training interventions for children with CP (see section 1.6.1.5. and 1.6.1.6.). Moreover, it appears to 

be in accordance with general recommendations for strength training in children and adolescents 

(McCambridge and Stricker, 2008). Since children with CP require care from multiple disciplines, e.g. 

from occupational, speech or psycho-social therapists, further training sessions were difficult to 

integrate into everyday life. This emphasizes the importance of home-based interventions for children 

with CP in the future. Moreover, we might have not integrated sufficient time for acclimatization to 

the backward walking protocol. As Verschuren et al. (2016) stressed, interventions in children with CP 

frequently need more time for adaption to learn proper execution of the exercises. The effective time 

of training is thus reduced. Consequently, the treatment periods could have theoretically lasted longer. 
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9. Methodological considerations 
This thesis might be restricted by the accuracy of some measurement approaches. Concerning 2D 

ultrasonographic imaging of the gastrocnemius muscle, acceptable reproducibility has been 

established in typically developing children (Legerlotz et al., 2010), as well as in children with CP 

(Mohagheghi et al., 2007). Mohagheghi et al. (2007) reported that the difference between repeated 

measures during passive assessments was ≤8.1% for fascicle length and ≤8.0% for muscle belly 

thickness. The findings of the current thesis concerning the effects of ankle-foot bracing are outside 

these limits. However, care should be taken not to over-interpret the 3% reduction in fascicle length 

after manual stretching. Notwithstanding these accuracy limits, studies on healthy young adults on 

average also showed declines in resting gastrocnemius fascicle length of -5.1% (Nakamura et al., 2012) 

or -4.6% (Blazevich et al., 2014) after static plantarflexor stretching. Yet, in contrast to the current 

results, these findings did not reach significance. 

Due to the altered sarcomere length in children with CP, inference from fascicle length to the 

underlying cellular structures is complicated. By using brightness mode ultrasound, actually the white 

connective tissue between and alongside fascicles had been measured. Taken the increased passive 

gastrocnemius fascicle strains after stretching or backward downhill walking into account, alterations 

in stretch sensation could have likely played an important role. However, if this had been the sole 

reason for increased fascicle strains, it would have been fairly likely that children who underwent prior 

stretching treatments would have tolerated greater strains since the assessment set-up and the 

training stimulus was rather similar for stretching. Alternatively, it cannot be completely ruled out that 

the connective tissue properties changed. Such changes are yet difficult to capture non-invasively. 

Moreover, in contrast to the minor decline in fascicle length after manual stretching during the third 

study, the more pronounced reduction in fascicle length after bracing during the first study was on 

average accompanied by decreased passive strain values. Only the latter findings would be in-line with 

actual serial sarcomere-loss within the fascicles. 

Concerning the hand-held dynamometry used in the second and third study, the examiner held the 

device stationary, while the participant exerted force against it. Therefore the examiner may 

unconsciously provide a bias (Hebert et al., 2015). Also some other successful training interventions 

reported gains of ~28-30% in maximal plantarflexor strength in children with CP (Stackhouse et al., 

2007; Scholtes et al., 2012; Jung et al., 2013). This is close to the accuracy limits of hand-held 

dynamometry in children with CP (Taylor et al., 2004; van Vulpen et al., 2013) and smaller changes 

might be missed. However, since plantarflexor moments neither changed during strength tests nor 

during gait in the third study, the author is confident that neither stretching nor backward-downhill 

walking induced meaningful effects on strength. 
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Furthermore, the passive ankle moment-angle assessments were also manually geared and can 

hence be prone to inconsistencies. Still, intra-rater ICCs and the typical error (SEM) for 13 subjects with 

CP revealed acceptable reliability. ICC values ranged between 0.86-0.99 for peak passive moments 

(SEM: 0.77 Nm), peak dorsiflexion (SEM 1.1°), dorsiflexion at fixed moments (1.3°) or joint stiffness 

(0.03 Nm/°). Finally, fairly low muscle activity during manual examination was noted. The ankle motion 

was continuously guided during the tests. To achieve smaller EMG interference, stationary moment-

angle relationships would be an alternative (Benard et al., 2010). 

 

10. Future lines of research 
Several parameters of orthotics should be explored in more detail. First, it needs to be determined 

if the use of orthotics during ambulatory and resting periods, or during day and night time has similar 

effects on muscle morphometrics. Results in young CP children (≤ 4 years) showed that day-night and 

sole daytime use of ankle foot orthotics seems to have similar effects on passive dorsiflexion (Zhao et 

al., 2013). However, it is common practice to additionally subscribe ankle foot orthotics during the 

night. Mol et al. (2012) reasoned that this was more beneficial, since sleeping CP children are quite 

relaxed and night use may help to prolong the stretch stimulus. The children would probably elsewise 

sleep in pronounced equinus posture. Interestingly, there also seems to be no extra sleep disturbance 

caused by night orthotics in CP children (Mol et al., 2012). Second, to the best my knowledge, the 

impact of the wearing time of orthotics on muscle architecture has not been quantified. In the first 

study of this thesis, the recommendation was to wear the brace throughout the night. If additional day 

use was scheduled, only 1-2 hours should have been spent without the brace. In the past, it had been 

reported that at least 6 hours are necessary to prevent progressive contracture in CP (Tardieu et al., 

1988). Still, a study from Sweden reported that only 53% of children with CP regularly wear ankle-foot 

orthotics for more than 7 hours a day (Wingstrand et al., 2014). Consequently, our current protocol 

may be considered as a rather extensive approach. In the future, heat sensitive sensors may be 

implemented and actual wearing times can be documented. This can be used as co-variates when 

assessing treatment effects (Maas et al., 2014). Third, the effect of knee-ankle-foot orthotics and 

ankle-foot orthotics may be compared. Notably though, compliance with knee-ankle-foot orthotics 

was reported to be very limited due to severe discomfort (Maas et al., 2014). Recommending knee-

ankle-foot orthotics to target the gastrocnemius (Sees and Miller, 2013) may thus be a theoretical 

rather than a practical option. Fourth, the orthotics may be instrumentally combined with active 

movement training. This could be done by incorporating an external device that was able to give 

feedback to the patients (Zhao et al., 2011). Fifth, concerning the ankle-foot orthotic which was used 

in this thesis, the incorporated hinge blocked plantarflexion motion completely. This might have led to 
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learned non-use of the plantarflexors during gait. Therefore, the effectiveness of more dynamic hinge 

constructions with varying mechanical resistance may be explored.  

Apart from that, the use of ultrasound during gait may be capable may be capable of providing 

valuable information on other muscle pathologies in CP, e.g. for the tibialis anterior in children with 

foot drop or for the rectus femoris and vastii in children with crouch or stiff knee gait. Wireless 

ultrasound techniques will perhaps also enable visualization of muscles during uncompromised 

overground gait.  

Also tendons and their properties warrant further attention in CP. As previously described, 

elongated tendons are a quite typical finding in CP children and not limited to the calf muscles. 

Remarkably though, the Achilles tendon is typically lengthened during surgery (Dietz et al., 2006) while 

the patellar-tendon is shortened (Böhm et al., 2017) to improve walking. It appears reasonable that 

also patella-tendon properties should be explored in more detail in CP. Previous investigations in 

typically developing children (O'Brien et al., 2010) or in juvenile athletes (Mersmann et al., 2015) 

focused on the patella-tendon properties by combining ultrasound and dynamometry. This could be 

also done in CP children. Similar to cellular muscle tissue characteristics, also properties of tendon 

tissue are likely altered. It had been speculated that increased muscle tone creates persisting tendon 

strains below injury threshold and leads to a tendinopathic like state in CP children (Gagliano et al., 

2013). In their review on tendinopathies in otherwise healthy controls, O’Neill et al. (2015) speculated 

that muscle weakness and poor neuromuscular co‐ordination are related to tendinopathic states. Both 

of these risk factors are major constrains in CP children. Biopsis of tendon tissue during surgery could 

be informative. 

Eventually, according to a dynamical system driven theory, the abnormal movement patterns in CP 

may be somewhat optimal for a biomechanically and neurologically limited system (Holt et al., 1996). 

These movement patterns will persist as long as the stability of the system can be sufficiently 

‘perturbed’. The author of this thesis believes that the ‘perturbations’ induced by altered muscle-

tendon properties secondary to conservative interventions may often reach a magnitude that is too 

low to induce an actual change of the movement or gait pattern in CP children. Future research could 

focus on the interplay between muscle-tendon properties and neural coordination. It should explore 

concepts such as muscle synergies (Steele et al., 2015; Tang et al., 2015) in more detail. Hao and Chen 

(2011) and Kim et al. (2013), for example, speculated that the benefits of backward gait training are 

transmitted via altered neuromuscular control and reorganization of muscle synergies. 
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