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Abstract 

 
The study of post-transcriptional gene regulation requires in-depth knowledge of multiple 

molecular processes acting on RNA, from its nuclear processing to translation and decay in the 

cytoplasm. With the advent of RNA-seq technologies we can now follow each of these steps 

with high throughput and resolution. 

 

Ribosome profiling (Ribo-seq) is a popular RNA-seq technique, which aims at monitoring the 

precise positions of millions of translating ribosomes, proving to be an essential tool in studying 

gene regulation. However, the interpretation of Ribo-seq profiles over the transcriptome is 

challenging, due to noisy data and to our incomplete knowledge of the translated transcriptome. 

 

In this Thesis, I present a strategy to detect translated regions from Ribo-seq data, using a 

spectral analysis approach aimed at detecting ribosomal translocation over the translated 

regions. The high sensitivity and specificity of our approach enabled us to draw a 

comprehensive map of translation over the human and Arabidopsis thaliana transcriptomes, 

uncovering the presence of known and novel translated regions. Evolutionary conservation 

analysis, together with large-scale proteomics evidence, provided insights on their functions, 

between the synthesis of previously unknown proteins to other possible regulatory roles. 

Moreover, quantification of Ribo-seq signal over annotated transcript structures exposed 

translation of multiple transcripts per gene, revealing the link between translation and RNA-

surveillance mechanisms. Together with a comparison of different Ribo-seq datasets in human 

cells and in Arabidopsis thaliana, this work comprises a set of analysis strategies for Ribo-seq 

data, as a window into the manifold functions of the expressed transcriptome. 

  

Keywords: Ribo-seq, translation, transcriptomics, proteomics, bioinformatics, spectral analysis.  
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Zusammenfassung 

 
Die Untersuchung der posttranskriptionellen Genregulation erfordert eine eingehende Kenntnis 

vieler molekularer Prozesse, die auf RNA wirken, von der Prozessierung im Nukleus bis zur 

Translation und der Degradation im Zytoplasma. Mit dem Aufkommen von RNA-seq-

Technologien können wir nun jeden dieser Schritte mit hohem Durchsatz und Auflösung 

verfolgen. 

 

Ribosome Profiling (Ribo-seq) ist eine RNA-seq-Technik, die darauf abzielt, die präzise 

Position von Millionen translatierender Ribosomen zu detektieren, was sich als ein 

wesentliches Instrument für die Untersuchung der Genregulation erweist. Allerdings ist die 

Interpretation von Ribo-seq-Profilen über das Transkriptom aufgrund der verrauschten Daten 

und unserer unvollständigen Kenntnis des translatierten Transkriptoms eine Herausforderung. 

 

In dieser Arbeit präsentiere ich eine Methode, um translatierte Regionen in Ribo-seq-Daten zu 

erkennen, wobei ein Spektralanalyse verwendet wird, die darauf abzielt, die ribosomale 

Translokation über die übersetzten Regionen zu erkennen. Die hohe Sensibilität und Spezifität 

unseres Ansatzes ermöglichten es uns, eine umfassende Darstellung der Translation über das 

menschlichen und pflanzlichen (Arabidopsis thaliana) Transkriptom zu zeichnen und die 

Anwesenheit bekannter und neu-identifizierter translatierter Regionen aufzudecken. 

Evolutionäre Konservierungsanalysen zusammen mit Hinweisen auf Proteinebene lieferten 

Einblicke in ihre Funktionen, von der Synthese von bisher unbekannter Proteinen einerseits, zu 

möglichen regulatorischen Rollen andererseits. Darüber hinaus zeigte die Quantifizierung des 

Ribo-seq-Signals über annotierte Genemodelle die Translation mehrerer Transkripte pro Gen, 

was die Verbindung zwischen Translations- und RNA-Überwachungsmechanismen offenbarte. 

Zusammen mit einem Vergleich verschiedener Ribo-seq-Datensätze in menschlichen und 

planzlichen Zellen umfasst diese Arbeit eine Reihe von Analysestrategien für Ribo-seq-Daten 

als Fenster in die vielfältigen Funktionen des exprimierten Transkriptoms. 

 

 

Schlüsselwörter: Ribo-seq, Translation, Transkriptomik, Proteomik, Bioinformatik, 

Spektralanalyse. 
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1 Introduction 
 

 

All the processes that occur inside a cell are the result of millions of interactions between 

different molecular complexes. Gene expression regulation ensures that such interactions 

happen in a precise and timely manner, modulating the flow of genetic information at distinct 

steps. 

Gene expression is a cascade of different steps, where genes are first transcribed into RNA 

molecules in the nucleus. RNAs represent a class of highly heterogeneous molecules, with high 

diversity even when transcribed from a single gene. The functions of RNAs are many, but 

perhaps their most important one is enable the production of proteins in the cytoplasm, during 

a process named translation. The functions of RNAs are mostly predicted from their sequences, 

e.g. whether they seem to encode a protein product or not. Such predictions alone are often used 

to infer whether RNAs in the cell undergo translation into proteins. However, the actual 

translation status of thousands of RNAs is difficult to monitor, and, in many cases, the protein-

coding abilities of thousands of RNAs are unknown. 

Next Generation Sequencing technologies allows for detection and quantification of nucleic 

acids like DNA and RNA, allowing us to fill the gap between gene sequences and their 

biological functions. By employing RNA isolation coupled to sequencing (RNA-seq), it is 

possible to interrogate different aspects of the RNA life cycle, from transcription to post-

transcriptional aspects of gene expression.  

Computational analysis of RNA-seq data provides identification and quantification of RNAs in 

our samples, allowing us to investigate their biological functions and their dynamics in different 

conditions. As many variations of the RNA-seq protocol exist, tailored analysis strategies must 

be applied to extract meaningful information from the data, with a variety of analysis tools 

being developed for different experimental protocols. 

Thanks to the development of a new protocol, named Ribosome Profiling, we can now monitor 

translation at high resolution for thousands of RNA molecules, potentially revealing the protein-

coding ability of entire transcriptomes. Understanding the technology and the analysis 

strategies required is thus key to extrapolate meaningful results on a genome-wide scale. 

Moreover, precise information about the translation status of different RNAs can complement 

the information coming from other RNA-seq protocols, allowing for integration of multiple 

data sources for a more complete understanding of the expressed transcriptome. 
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1.1 Thesis outline 
 

In Section 2.1 I will give a brief introduction to the molecular basis of RNA biology, 

highlighting the main steps in the gene regulatory cascade, with an emphasis on translation. A 

survey on the main methods used to interrogate the translation status of the transcriptome is 

presented in Section 2.2, with a detailed analysis on the analysis strategies in Section 2.3. 

Emphasis on the Ribo-seq protocol and data analysis is presented in these two sections. 

Section 3.1 describes our interdisciplinary approach to detect translation in Ribo-seq data, while 

its application on new data from a human cell line appears in Section 3.2. Section 3.3 deals with 

the application of our strategy in new data coming from the plant Arabidopsis Thaliana, 

together with a comparison with different available Ribo-seq datasets. Work in progress is 

described in Section 3.4, where we extend our strategy to detect and quantify translation for 

different RNAs coming from a single gene. Finally, our results are discussed in Section 4, 

accompanied by a list of references in Section 5 and few additional material in the Appendix 

sections. 
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2 Background 

 

2.1 The Molecular Biology of RNA processing 

 

2.1.1 Life and the central dogma 

 

 

Distinguishing living organisms from inanimate matter is a non-trivial task, especially when 

thinking about a pathogenic virus, or a robot able to learn from the environment. However, 

when zooming at the molecular and cellular level, we can appreciate some common aspects of 

living organisms. For instance, structural characteristics (the presence of a cell membrane), or 

phenomenological behaviors (metabolism, cell division) are common in all the life kingdoms, 

and thus enable us to define some fundamental properties which can aid us defining a living 

entity[1]:  

 

1) Compartmentalization, the definition of boundaries between the organism and the 

environment 

2) Autopoiesis, the ability to self-sustain 

3) Reproduction, the capacity to produce new living organisms 

 

The first property derives from the definition of a minimal unit, the cell, as the universal 

building block of all life. The second encompasses a plethora of different metabolic processes 

and their regulation, which enables cell growth and adaption to environmental stimuli. 

Reproduction provides new living entities of the same organisms (the offspring), which also 

inherit the ability to reproduce themselves. As the ability to reproduce is inheritable, life 

safeguards its continuity, and allows for the emergence of more complex processes in time, like 

adaptation of a population of organisms to changes in the environment. 

While compartmentalization might be achieved via spontaneous aggregation of lipid molecules 

(which can be provided by the environment[2]), autopoiesis and reproduction are the result of 

the complex interactions of molecular entities within the cell. The ability to internally 

synthesize some of the necessary molecules needed for different biological processes defines 

the cell as a semi-independent entity. However, for a specific biosynthetic reaction to occur, 

cells require the presence of a template containing all the necessary information (called genetic 
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information), and a machinery able to read and put into action the information within. This 

concept can be extended from cells to entire organisms: for example, during organismal 

development in vertebrates, a single fertilized embryo can give rise to a complex organism, 

with many specialized cells and tissues. All the information and the molecules who can read 

this information and translate it into dynamic molecular interactions are present into a single 

cell, and must be inherited by the offspring to continue the cycle of life. 

 

With the first observations of chromosomal structure made of DNA and proteins inside cells, 

biologists started investigating whether DNA is a suitable carrier of heritable information. In 

the 1940s, experiments carried on different Streptococcus strains showed how DNA is the only 

molecule able to transform different strain of bacteria into each other, thus conferring cell 

identity, while molecules like proteins or other metabolites could not[3]. The main blocks 

defining the network flow of genetic information was then defined: DNA was found to produce 

an analog molecule, RNA, during a process called Transcription, while RNAs (or transcripts) 

are used to synthesize proteins, during the Translation process.  

Thanks to the discovery of the double helix structure from Watson and Crick[4], DNA 

properties were being discovered, pointing at its ability to carry genetic information but also at 

its replicative nature, which can ensure the hereditary nature of life. As the chemistry of 

nucleotides (building blocks of DNA and RNA) and amino acids (the building blocks of 

proteins) had already been characterized before the 1950s, theories linking the genetic 

information in DNA and the composition of synthesized proteins were being suggested. One 

theory described how a triplet of nucleotides (a codon) can specify one amino acid, hinting at 

the presence of a genetic code linking a DNA sequence to an aminoacidic sequence[5]. In a 

famous publication in 1961 by Crick et al, [6], a bacteriophage T4 DNA sequence was mutated 

in different positions, and the authors observed how deletion or insertion of nucleotides in the 

DNA sequence were disrupting the coding information, as they resulted in a non-functional 

protein product; deletions or insertions of 3 bases in DNA were not causing the production of 

an aberrant protein, confirming the triplet-nucleotide pattern in the genetic code. In parallel, it 

was shown by Nierenberg and Matthaei how a RNA molecule with a poly-U sequence would 

produce a phenylalanine polypeptide, suggesting that UUU is the codon encoding for 

phenylalanine[7]. 

Additional experiments then completed the map of the genetic code (Figure 1), assigning to 

each codon its corresponding amino acid. Following studies then helped understanding how 

this information is parsed during the Translation process, also thanks to the discovery of the 
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tRNA structure by Holley[8]. As shown in Figure 1, the genetic code is degenerate, as multiple 

(synonymous) codons correspond to the same amino-acid. Synonymous codons only differ in 

the third codon position: this phenomenon is linked to the physical interaction between each 

codon and its corresponding tRNA sequence (the anticodon) during the elongation process 

(Section 2.1.5), where the third position (also called the wobble position) has a lower interaction 

energy, and thus lower importance in defining the genetic code.  

 

 

Figure 1: The genetic code. Starting from the center, a triplet of nucleotides specifies an amino acid or a stop codon. Author: 

J. Alves, Creative Commons Zero 1.0 License. 

 

 

 

The presence of a genetic code to translate RNA sequences into protein proved to be a property 

present in all organisms in the different kingdoms of life, with minor differences between 

different organisms. The universal nature of these discoveries led to the formulation of the so-
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called Central Dogma of molecular Biology by Crick [9], [10], which states the directional flow 

of information from DNA to Protein (Figure 2). 

 

Figure 2: The central dogma and its main molecular actors. From DNA, the genetic information is replicated (via the 

DNA polymerase), or transferred to RNA (during transcription with RNA Polymerase) and proteins (during translation with 

the Ribosome). Source=http://en.wikipedia.org/wiki/File:Central_Dogma_of_Molecular_Biochemistry_with_Enzymes.jpg , 

GPL license 1.2+, Author=Dhorspool. 

 

 

The formulation of the Central Dogma posed the molecular basis to understand the link between 

the information encoded in the DNA (the genotype) and its biological manifestation (the 

phenotype). As shown in Figure 2, multiple steps are required to de-code the information 

present in the complete set of DNA sequences (the genome) to produce RNA and proteins. The 

study of the regulation happening at each one of these steps represents a wide area of active 

research. However, to approach the study of gene regulation in a human cell we must first 

appreciate the complexity of the human genome and the staggering diversity of its molecular 

product. 

 

 

 

2.1.2 A multitude of RNA species 

  

Genomes may wildly differ between organisms, both in terms of size and composition. A 

common feature of mammalian genomes is the low percentage of DNA sequence containing 



Background | The Molecular Biology of RNA processing | A multitude of RNA species 

 
 Section 2.1.2 - page 14 

 

coding genes, defined as DNA loci encoding for functional proteins. It is estimated that half or 

more of the human genome is made of repetitive sequences, which mostly do not code for 

protein[11]. Only around 1% of the human genome (which is ~3.5 billion base pairs) is made 

of coding sequences, and ~20.000 human genes encode for distinct protein product (estimates 

from GENCODE annotation, version 19). However, despite their great diversity and 

importance in all cell types known, protein coding genes represent only a fraction of the total 

number of human genes. An increasing number of non-coding genes with many different 

functions permeates the human genome. Of those, many exert well studied regulatory functions 

via their short RNA products (>200 nt, Figure 3), while others are currently being investigated 

by the research community. Genes can be divided in different categories, mostly based on the 

function of their RNA product (Figure 3, definitions the GENCODE[12] annotation, version 

19): 

 

Protein-coding – encode for proteins; 

rRNAs – ribosomal RNA, component of the ribosome; 

tRNAs – transfer RNA, involved in protein synthesis (see Section 2.1.5); 

snRNAs – small nuclear RNA, involved in pre-mRNA splicing; 

snoRNAs – small nucleolar RNA, involved in rRNA, tRNA and snRNA processing; 

miRNAs – microRNAs, small RNAs involved in regulating RNA stability and translation; 

lincRNAs – long (>200 bp) intergenic non-coding RNAs, involved in many regulatory 

processes (unknown for most of them); 

processed transcripts – non-coding RNAs who do not contain an ORF; 

antisense RNAs – RNAs overlapping with protein-coding genes but on the opposite genomic 

strand; 

pseudogenes – transcripts with strong sequence similarity to other known genes but often with 

a disrupted coding sequence; can be derived from gene duplication or mature RNA retro-

transposition (processed pseudogenes); 

 

Other less characterized classes may be defined for other RNAs based on their genomic position 

(e.g. sense intronic RNA, 3’overlapping RNA), or not well understood structural properties (e.g. 

vault RNA), or involvement in small RNA metabolism (e.g. scaRNA).  

 

According to the GENCODE annotation, in >87% of the cases, the transcription of human genes 

creates an RNA product whose final form contains only some section of the original transcript. 
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From the full-length transcribed RNA (the pre-mRNA), short sequences called exons are joined 

to form a mature transcript, while longer sequences between exons (the introns) are removed, 

during a process named splicing. Splicing can happen for any transcribed gene, but mostly 

happens in protein-coding genes, as >94% of coding transcripts are spliced. For mature protein 

coding transcripts, three distinct elements can be further defined based on their coding 

capability: the first element is a 5’UTR (Untranslated Region), then a CDS (Coding Sequence, 

which contains the translated RNA sequence, known as the ORF, or Open Reading Frame), and 

a 3’UTR. The length of these regions varies from transcript to transcript. Overall, 5’UTR are 

around 300 nt long, while CDS and 3’UTR are longer (Figure 3). 

As specified above, splicing joins exonic sequences from a pre-mRNA molecule. However, 

splicing can join different exons combinations from the same pre-mRNA molecule, taking the 

definition of alternative splicing. Different transcripts (or isoforms) coming from a single gene 

can undergo different processing fates (Section 2.1.4): transcript isoforms can code for different 

proteins, or represent non-coding variants of a protein coding transcript, and be subjected to 

different localization, translation, or decay processes. As expected, the number of possible 

mature transcript structures grows exponentially with the number of exons, thus greatly 

increasing the complexity of the human transcriptome. The number of exons varies for different 

transcripts, with 4 being the median of exons per transcripts; some genes, like the TTN gene, 

contain transcripts formed by more than 350 exons. 
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Figure 3: An overview of the human transcriptome. a) Different gene biotypes assigned to the known genes. Only protein-

coding genes have annotated CDS. b) Length distribution of introns and gene lengths, for coding and non-coding genes. c) 

Length distribution of UTRs and CDS in protein-coding genes, compared to exon lengths. d) Number of exons per annotated 

coding transcripts. e) Different transcript biotypes in protein-coding genes. All presented data comes from GENCODE 

annotation, version 19. 

 

 

Such complexity created by genes and transcript diversity enables the specification of multiple 

cells and tissues. In fact, in a given cell, only a subset of genes is actively expressed. Some 

genes (named housekeeping genes) are constitutively expressed across different tissues, as they 

encode for proteins fundamental to the basal cell metabolism. Moreover, genes are expressed 

at different quantitative levels in different cell types: genes encoding for a skeletal muscle 

protein, such as the Dystrophin, is highly expressed (together with its regulators) in skeletal 

muscle cells, while a gene encoding a synaptic protein is highly expressed in neurons. Different 
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biological conditions, such as oxidative stress conditions or a differentiation process, can 

display specific gene expression profiles. Moreover, additional specificity is granted by the 

specific expression of different RNA isoforms[13], which further increases the level of 

specification achieved by gene expression regulatory mechanisms. 

The incredible RNA diversity from both coding and non-coding genes is mirrored by their 

complex molecular life, from biogenesis to translation and decay, where different categories 

can undergo different processing steps, from the nucleus to the cytoplasm. 

 

 

 

2.1.3 Nuclear processing 

 

The DNA molecule is bound by DNA binding proteins in a complex called chromatin. For 

DNA to be transcribed, the chromatin complex must be opened, allowing the RNA polymerase 

(together with different cofactors) to start pre-mRNA synthesis. The exact position where the 

RNA polymerase starts transcribing (the Transcription Start Site, or TSS) can also vary, 

creating different possible 5’ ends of a transcript[14]. The different molecular reactions 

involved in chromatin remodeling and transcription are tightly regulated, and their regulation 

(Transcriptional regulation) is a wide area of intensive study. 
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Figure 4: mRNA nuclear processing. Exons and introns of a gene are shown. After transcription, a pre-mRNA molecule is 

produced; intronic sequences are removed during splicing; after the addition of a cap and a poly-A tail, the mature transcript 

is exported to the cytoplasm. 

 

 

Already during its synthesis, a nascent RNA molecule is bound by RNA-binding proteins 

(RBPs) who regulate subsequent processing steps, outlined in Figure 4. A 7-methyl-guanosine 

(7mG) “cap” at the 5’end of a transcript is added, which will facilitate translation in the 

cytoplasm and protect RNA from degradation (Section 2.1.4). During splicing, which also 

occurs largely co-transcriptionally[15], RBPs bind to exonic and intronic sequences and splice 

introns out of the pre-mRNA molecule, regulating the production of different exons 

combinations from the same original transcript. Subsequently, at the 3’ end of the transcript, a 

stretch of Adenosines (poly-A tail) is added, which is also important in the regulation of 

transcript stability and translation[16]. The exact position where the poly-A tail is added also 

varies among tissues and condition, representing another regulatory step which creates different 

transcripts with different functions[17]. A nuclear RNA-surveillance pathway (the exosome) 

degrades erroneous RNA products, ensuring that transcripts are correctly processed. The 

kinetics of the above steps are very important, as different transcripts can processed with 

different efficiencies[18]. For instance, many RNA molecules can be selectively retained in the 

nucleus, thus limiting their export in the cytoplasm and promoting their interaction with the 
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nuclear apparatus[19]. All the processing steps here briefly mentioned are extremely important, 

as they can have an impact on the downstream steps of mature RNA metabolism, in the 

cytoplasm. 

 

 

2.1.4 The cytoplasmic fates of an RNA molecule 

 

 

As the RNA, together with bound RBPs, is exported in the cytoplasm, it interacts with different 

protein complexes which determine its function (Figure 5). 

 

Figure 5: Different RNA cytoplasmic fates. Transcripts can be localized to different compartment (top), translated and thus 

form a polysome structure (middle), or degraded by different complexes like the Nonsense-Mediated Decay machinery 

(bottom). Both localization and degradation are linked to the translation status of a transcript (see text). Originally adapted 

from: http://www.hhmi.org/research/rna-processing-and-ribonucleoprotein-complexes 

 

RNAs can be localized in different sub-cellular compartments, as the endoplasmic reticulum[20] 

(ER) or other locations in the cellular periphery. Based on the cell morphology and function, 

RNA localization can be crucial to ensure local processing of RNAs in specialized cellular 
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compartments, like pre- or post-synaptic compartments in neuronal cell types[21]. In the oocyte 

in Drosophila melanogaster, specific RNA transcripts are recognized (also thanks to their 

secondary structures) and localized along the anterior-posterior and dorsal-ventral axes, where 

they contribute to the correct spatial patterning of the developing embryo[22]. 

RNA turnover in the cytoplasm represents an important layer of regulation of gene expression: 

many RBPs are involved in triggering transcript degradation or in promoting its stability[23]. 

RNA degradation can occur in specialized cytoplasmic foci, like in processing bodies (P bodies) 

[24]. Alterations in the RBP binding and function can promote malfunctions at the level of RNA 

stability, and participate in the onset of several diseases[25]. RBP binding can occur on different 

regions of the transcript and depend on the transcript translation state (Section 2.1.7). 5’->3’ 

exonucleases can degrade “decapped” RNAs from the 5’end, while 3’->5’ exonucleases act on 

de-adenylated RNAs, where the poly-A tail has been previously removed. For this specific 

degradation events to occur, the m7G cap or the poly-A tail must usually be removed from the 

transcript molecule, and this is often triggered by binding of miRNAs or other RBPs, often in 

the 3’UTRs of target transcripts[26]. Another important mode of RNA degradation is 

represented by the RNA-surveillance pathway, which will be examined further in Section 2.1.7. 

The primary function of RNA is to engage with the ribosomal machinery to synthesize protein, 

and this process will require a more in-depth explanation about its single molecular steps and 

its relevance in the gene expression cascade. 

 

 

2.1.5 The Translation process 

 

Translation is an ancient biological process, present throughout all the three kingdoms of life. 

The high degree of similarity among organisms is reflected by the presence of a common 

catalytic machine, the ribosome. The eukaryotic ribosome is a ribozyme, as its catalytic function 

is carried by small RNAs and dozens of proteins, and can be divided in 2 subunits: a small 

subunit, also known as the 40S subunit (S stands for Svedberg, a coefficients measuring its 

sedimentation time during centrifugation), and a large 60S subunit, while the fully assembled 

complex is known as 80S. Three additional structures can be identified inside the ribosome, 

named Aminoacyl-site (A-site), Peptidyl-site (P-site), and the Exit site (E-site). These different 

sub-ribosomal structures are binding pockets for tRNAs, small non-coding RNA molecules able 
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to carry amino acids, which play a fundamental role in the different steps of translation (Figure 

6). 

 

Figure 6: The main steps of the translation process. 1) Cap recognition: the pre-initiation complex binds to the cap. 2) 80S 

Assembly: As the start codon is recognized the 80S is assembled. Elongation begins and a loaded tRNA binds in the A-site. 

3) Elongation: a peptide bond is formed on the nascent chain in the A-site, and the ribosome moves one codon towards the 

3’end. As the ribosome translocates, the empty tRNA goes in the E-site, the tRNA with the nascent peptide moves to the P-

site, and a vacant A-site can accept a new loaded tRNA. 4) Termination: when the ribosome hits a stop codon, a release 

factor binds in the A-site. The polypeptide chain is released, the empty tRNA moves on the E-site and 5) the 80S 

disassembles. Adapted from https://en.wikipedia.org/wiki/File:Protein_synthesis.svg, Author: Kelvinsong, License Creative 

Commons Attribution 3.0 Unported. 

 

During translation initiation, a complex of initiation factors, GTP and a special methionine-

tRNA (called initiator tRNA) binds to the 40S ribosomal subunit, in what will become the P-

site compartment. This pre-initiation complex is now able to recognize the cap on a transcript 

(favored by the presence of a poly-A tail) and start scanning the 5’UTR, looking for a start 

codon. Alternatively, cap-independent mechanisms of translation initiation can also occur 

(Section 2.1.6). If a start codon is detected in a non-favorable sequence context, the small 
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subunit will keep scanning to the next start codon candidate, in a process known as “leaky 

scanning”[27]. At this point, the pre-initiation complex undergoes a conformational change, 

initiation factors dissociate, and the large subunit joins to form the 80S fully assembled 

ribosome, keeping the initiator tRNA in the P-site compartment. 

The ribosome complex can now enter the translation elongation steps, where it synthesizes 

proteins along the ORF on the transcript, fueled by GTP hydrolysis and helped by the action of 

different elongation factors. At the start codon, an aminoacyl-tRNA binds to the next codon in 

the A-site of the ribosome; the first peptide bond is formed, and the Methionine carried by the 

initiator tRNA is transferred to the tRNA in the A-site. At this point the ribosome moves 3 

nucleotides (1 codon) forward, shifting the empty initiator tRNA to the E-site, the tRNA with 

the nascent peptide to the P-site, and leaving the A-site empty (Figure 6). The empty tRNA exits 

from the ribosomal compartment, and a new aminoacyl-tRNA can bind to the A-site for a new 

cycle of elongation. At the end of the ORF, a release factor binds to the stop codon at the A-

site, and triggers the dissociation of the full-length peptide chain, allowing for the empty 

ribosome to detach from the mRNA. 

While translating, the ribosome machinery is tightly bound to the RNA, covering a portion of 

the mRNA molecule; estimates of the size of such ribosomal “footprint” were attempted in the 

late ‘60s using RNA fingerprinting assays[28]. The size of the ribosome footprint is usually 

around 29nt, but can slightly vary between organisms (and organelles[29]) and it is dependent 

on the precise ribosome conformation[30]. The relative position of the different ribosomal 

compartments can also be inferred from the footprint position[31] (Figure 7). Moreover, given 

the codon-by-codon movement of a translocating ribosome, it should be in theory possible to 

observe a 3nt shift in ribosomal protection on a translated mRNA, where the precise location 

of the footprint follows the translated frame. 
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Figure 7: Ribosomal translocation. Given the ribosomal footprint location and the mRNA sequence, it is possible to 

identify the codon processed by the different sub-ribosomal compartments (top). During each translocation step, the ribosome 

moves 3nt towards the 3’ end of the mRNA, and such movement is reflected in a shift of the footprint position (middle and 

bottom). 

 

Multiple spaced ribosomes (a polysome) can simultaneously translate on a single ORF, and as 

their number and efficiency in translating dictate the amount of protein synthesis, fine tuning 

of the multiple steps in the translation cycle represents an important step in regulating the gene 

expression cascade[32]. 

 

2.1.6 Translation regulation 

 

All the single steps of the translation cycle can be regulated in response to external stimuli, 

often through binding of regulators on the RNA molecule. Regulation at the level of initiation 

can happen thanks to the binding of RBPs and microRNAs[26]. In this case, RBPs can interact 

with other proteins who are in turn able to interact with the translation initiation complex, and 

thus trigger translational repression on the target mRNA[33]. The initiation rate can also be 

regulated by other signaling pathways: during stress conditions, the Integrated Stress Response 

pathway inhibits the formation of the pre-initiation complex[34], thus impeding translation 

initiation on thousands of transcripts. This mode of regulation can in turn promote alternative 
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translation initiation pathways, which can also recognize different start codons[35]. The 

canonical ORF is defined as starting with an AUG codon, which has been shown to induce the 

formation of the initiation complex with high efficiency[36]. However, few examples of 

efficient non-AUG start codons are known in the literature and have been experimentally 

identified. Thanks to high-throughput techniques (Section 2.2.3), thousands of non-AUG start 

codons were identified and proposed as bona-fide translational start sites[37]. However, a 

global confirmation of all these non-canonical start sites is still lacking. Little is known about 

how different regulators can influence start codon recognition. Many genes, including PTEN, a 

famous onco-suppressor[38], can use alternative translation initiation sites, producing N-

terminal extension or truncation of the original protein. Start codon recognition has important 

implications, as the N-terminal sequences are very important for protein localization and 

function[39]. 

Comparably little is known about regulation at the level of elongation. As shown in Section 

2.1.1, the specificity for each codon is mostly depending on its first two nucleotides, given the 

base-pairing between codons and anticodons. Given the same tRNA, differences in the 3rd 

nucleotide position can slightly alter the kinetics of tRNA recognition, and thus modulate the 

efficiency of translation elongation[40]. Similarly, the presence of rare codons (recognized by 

less abundant tRNAs) and stable mRNA secondary structures have been proposed as efficient 

mechanisms who can “stall” elongating ribosomes[40], sometimes with effects on the nascent 

protein folding and stability[41]. Additional RNA structures can also lead to ribosomal 

frameshifting during elongation, which lead to mRNA degradation via the Nonsense-Mediated 

Decay (NMD) pathway[42] (see Section 2.1.7). However, despite the extensive literature on 

codon-mediated regulation on both translation and RNA stability, the underlying molecular 

mechanisms are yet to be fully elucidated, and a quantitative estimate of its impact on 

translation is still lacking. 

Even less is known about regulation at the level of termination, despite some reports about rare 

events of ribosomal read-through as a possible way to modify the C-terminus of the encoded 

protein[43], which is also important for the protein localization and function. Interestingly, the 

UGA codon, normally a stop codon (Figure 1), can code for selenocysteine, an additional amino 

acid which is incorporated in few important mRNA, mostly coding for metabolic enzymes[44]. 

The importance of translation for cell survival, together with our knowledge about the structural 

differences between eukaryotic and prokaryotic ribosomes, allowed us to use efficient natural 

compounds as antibiotics against several bacterial species. Other translational inhibitors can act 

on eukaryotic translation, allowing us to block ribosomes at different stages of the translation 
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cycle: Cycloheximide, for instance, can bind to the E site of the elongating ribosome, blocking 

the exit of an empty tRNA and thus the translocation step[45]. Other inhibitors, such as 

Harringtonine or Lactimidomycin (Section 2.2.3), can “lock” the ribosome in the initiation 

complex formation step, allowing us to study translation initiation. 

In addition to trans-acting elements able to regulate translation, also cis-regulatory elements 

(present on the RNA transcript itself) can regulate translation. An example for cis-regulatory 

elements are small ORFs present in the 5’UTRs of transcripts, analyzed in many analyzed 

eukaryotic species[46]. Such upstream ORFs (uORFs) are believed to repress translation of the 

main ORF, as their translation reduces the number of available ribosomes for the main ORF 

translation[46], [47]. The putative short peptide encoded by the small uORF translation is 

thought to be a by-product of such regulatory event, despite some known contradictory 

examples[48]. It has been proposed that several thousand candidate uORFs exist and can 

regulate the main ORF translation in different species[46], but the actual usage of all these 

putative regulatory elements in different systems is still a matter of discussion. 

Additional elements in the 5’UTR, called Internal Ribosomal Entry Sites (IRES), are able to 

bind the small ribosomal subunit which can then start scanning and synthesizing proteins, thus 

bypassing the recognition of the cap at the 5’ of the transcript[49]. This is of great importance, 

especially when considering that during viral infection the cell undergoes stress, decreasing 

canonical cap-dependent translation and favoring the cap-independent translation of the IRES-

containing viral transcripts[50]. 

Another extremely interesting aspect to consider is ribosome heterogeneity: ribosomes can 

differ between cell types, and sub-populations of ribosomes can also be distinguished within 

the same cell, raising the possibility that translation regulation might be a much more 

heterogeneous process acting on specialized ribosomes[51], [52]. 

As mentioned before, the binding of RBPs and miRNAs can repress translation on the target 

mRNAs, but also trigger de-capping and poly-adenylation of the transcript, thus triggering 

susceptibility to exonucleases and thus degradation. Different studies, especially focusing on 

miRNA-mediated regulation, tried to disentangle the differences between these two modes of 

regulatory action (translational repression and RNA degradation), also considering the temporal 

kinetics of this two processes[53], [54]. Additional regulation over transcript stability is 

achieved via other mechanisms, which again act on the ribosome to achieve specificity. 
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2.1.7 Translation and RNA decay 

 

The connection between translation and RNA metabolism becomes even more intricate when 

studying the RNA surveillance pathway. Thought to be evolved to ensure the clearance of 

aberrant transcription and splicing events, the RNA surveillance pathway can trigger 

endonucleolytic cleavage and degradation on RNA molecules, and this process has been shown 

to be dependent on the translational status of the transcript[55], [56]. Of these pathways, the 

Nonsense-Mediated Decay (NMD) is one of the most studied. Several studies pointed out NMD 

acts when recognizing a Premature Termination Codon (PTC) as a sign of an aberrant transcript. 

The definition of a PTC usually includes the presence of an exon-exon junction downstream 

the stop codon, where specialized protein being part of the Exon Junction Complex (EJC) are 

binding to members of the NMD pathway (like the members of the UPF family) and can thus 

trigger transcript degradation. One of the proposed modes of action for NMD-mediated 

degradation[55] explains how the endonucleolytic cleavage (by the SMG6 protein) takes place 

close to the stop codon of the to-be-degraded transcript, and entails the interaction between 

several proteins and the terminating ribosome[55]. Additional decapping mechanisms can also 

be triggered, and 5’-3’ exonucleases can ultimately degrade the cleaved/decapped transcript[57]. 

Additional proposed mechanisms for NMD action can be independent of EJC binding, and 

involve the recognition of long 3’UTR sequences[58]. 

Additional RNA surveillance mechanisms, such as Non-stop Decay or No-Go Decay[55], also 

act on actively translated transcripts, pointing out again at the importance of translation in the 

entire cytoplasmic life of an RNA molecule. 

Given the importance of translation regulation, a specific, local concentration of RBPs can 

strongly influence the translational output. Thus, the coupling between RNA localization 

(Section 2.1.4) and local translation is an important process which can ensure additional 

specificity in the regulation of protein synthesis. Sub-cellular compartmentalization of 

translation regulation is of course relevant for specialized cell types like neurons, but arguably 

for any other cell type, as ribosomes can translate free in the cytoplasm or on the surface of the 

endoplasmic reticulum (ER) [20], [59], and a different molecular environment can modulate 

translation in very specific ways. 
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In the light of the numerous mechanisms of post-transcriptional gene regulation, and their 

crosstalks (Section 2.1.4), one can imagine the wide range of possible regulation happening at 

the level of individual RNAs, where elements like uORFs, PTCs, or other elements along the 

transcript structure shape individual regulatory programs. As outlined above (Section 2.1.2), 

alternative splicing adds an additional layer of heterogeneity, where transcripts differ between 

each other only in some elements, while sharing most of the sequence. It has been recently 

shown that alternative transcript isoforms are translated[60] and can display distinct 

translational outputs[61], [62]. The function of alternative splicing thus not only aims at 

increasing proteome diversity, but also at directing gene expression towards transcripts with 

possibly very different functions (Figure 8). 

 

 

Figure 8: Functional heterogeneity of the alternative transcriptome. From a single gene, alternative splicing can create 

transcripts coding for different proteins (top), transcripts which can be selectively degraded (middle), or transcripts translated 

at different levels (bottom). Image from Sterne-Weiler et al, ref. 61. Creative Commons License (Attribution-

NonCommercial 3.0 Unported). 

 

The ability to switch RNA processing programs towards non-translated transcripts enables the 

cell to regulate gene expression without the need to tune of the amount of pre-mRNA produced. 

For instance, during macrophage differentiation, a subset of highly expressed genes switches 

to the production of NMD-target transcript isoforms, thus down-regulating protein synthesis. 
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Such program, which is independent from nascent RNA production, is necessary to ensure the 

correct differentiation program, and confer macrophages their peculiar shape and function[63]. 

In a scenario where the exact structures of thousands of transcripts can vary, together with their 

functions, we need to gather transcriptome-wide information about the pool of RNAs present 

in our system of interest. A detailed understanding of modern technologies, together with their 

applications, promises and limitations, is thus required to query the functional status of entire 

transcriptomes. 
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2.2 Omics techniques to understand RNA biology 

 

 

2.2.1 Next-generation sequencing 

 

The detection of an RNA transcript in a cell can be accomplished by using reverse transcription 

(RT) coupled with PCR (RT-PCR). The obtained DNA product can then be visualized and 

quantified using agarose gel electrophoresis. This procedure can be run in parallel to detect 

dozens of transcripts, but it requires precise knowledge of their sequence (for the reverse 

transcription reaction), and lacks the sensitivity to detect lowly abundant products. Imaging 

techniques, such as single-molecule FISH can also help us identifying the presence of RNA 

molecules, together with their spatial location in the cell. Unfortunately, both imaging and RT-

PCR can only give us information about few transcripts at a time, while cells simultaneously 

transcribe and translate tens of thousands of RNAs. 

After the complete sequencing of the human genome, different companies started 

manufacturing microarrays, sets of thousands of DNA probes, who could selectively capture 

and quantify different DNA molecules. When used on a pool of retro-transcribed RNAs, 

microarrays could give us information about thousands of known RNA transcripts, representing 

a big step forward in the study of the entire set of transcripts (the transcriptome). In the 

meantime, a tremendous improvement in DNA sequencing techniques allowed the sequencing 

of large pools of DNA molecules (a library) with high precision, giving rise to Next-generation 

sequencing (NGS), revolutionizing genomics and all its applications[64]. One of the most 

successful sequencing chemistry is the one adapted by the Illumina company, which is the one 

employed for most of the data presented in this dissertation. 
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Figure 9: Illumina sequencing-by-synthesis approach. DNA with attached adapter sequences hybridize to the surface 

(top). The opposite end of the DNA fragment hybridizes to another proximal anchor (middle), thus forming a platform for 

DNA amplification with the help of polymerases, dNTPs and primers (not shown). After generating a cluster of identical 

DNA fragments, sequencing of one or two extremities of the fragments can be performed (here shown for only one strand). 

This sequencing reaction is carried using modified nucleotides which allow the polymerization of only one nucleotide. At 

each cycle, a labeled nucleotide is incorporated, and its attached fluorophore is detected, revealing the original sequence. The 

number of cycles determines the length of the sequences fragment. Taken from ref 64. Usage allowed by the “Fair Usage” 

description, as described by copyright laws adopted by the publisher. 

 

 

Special sequences, the adapters, are ligated at the two extremities of our DNA fragments. The 

DNA is then inserted in a flow cell of the sequencing machine. On each flow cell, millions of 

DNA fragments are spotted on a glass surface. As shown in Figure 9, these “anchor” fragments 

hybridize with one of the adapter sequences on our DNA molecules, thus immobilizing the 

DNA fragments. Fragments can be amplified, forming clusters of identical DNA 

oligonucleotides. Primers can now be used to specifically sequence one extremity (or two, see 

below) of our fragment. Using labeled nucleotides together with a fluorimeter, we can reveal 

the original DNA fragment sequence. The incorporation (and detection) of one nucleotide at a 
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time is performed at each step in parallel for all the DNA fragments, until reaching the desired 

length. At the end of this procedure, we have a sequence of intensities per fluorophore, which 

can be decoded to yield millions of nucleotide sequences, called reads, representing fixed-

length segments of the initial pool of input DNA fragments. This sequencing protocol produces, 

per flow cell (for a HiSeq 2000 machine), around 200 million reads (it can vary depending on 

the sequencer). This means we can achieve a substantial transcript coverage over a wide range 

of expression values, even when combining multiple samples per flow cell (multiplexing). 

However, the sequenced read length is around 100nt (for the HiSeq 2000), which would allow 

us to sequence only a tiny segment of each transcript. To overcome this limitation, the input 

DNA (after RT) can be fragmented to ensure a more uniform sequence coverage over different 

sub-segment of the original fragment. Alternatively, a modification of the protocol can 

sequence both ends of an anchored DNA fragment, producing two short sequences from the 

two different ends of the same molecule, going under the name of paired-end sequencing.  

Despite some technological limitations[65], [66], NGS methods allows us to sequence entire 

pools of retro-transcribed RNAs, in a process named RNA-seq, which resulted in a superior 

alternative for the study of entire transcriptomes[67], allowing us to quantify the presence of 

known and novel RNA molecules, and proving to be extremely versatile in studying different 

aspects of RNA biology. 

 

 

2.2.2 RNA-seq applications 

 

As described in Section 2.1.3 and 2.1.4, an RNA molecule undergoes multiple processing steps, 

both in the nucleus and in the cytoplasm. The ability to couple NGS technologies with the 

isolation of RNA molecules in different stages of the RNA life cycle resulted in a tremendous 

explosion of RNA-seq technologies, which are allowing us to greatly advance our 

understanding of the dynamics of gene expression regulation. 

A common RNA-seq protocol consists in isolating polyadenylated transcripts using oligo-dT 

beads, followed by reverse transcription, fractionation and sequencing. This procedure avoids 

the amplification of rRNA, which is by far the most abundant RNA in the cytoplasm, and at the 

same time it enriches for polyadenylated transcripts, which in most cases represent stable and 

translated RNA molecules (Section 2.1.5). A slightly different procedure consists in skipping 

the poly-A selection, and using different rRNA removal strategy, using beads (RiboZero[68]) 
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or oligo probes followed by selective degradation (RNAse H), followed by fragmentation and 

sequencing. The population of RNAs coming from this protocol consists of a more 

heterogenous transcriptome, including transcripts lacking a poly-A tail, and other unstable RNA 

products, like unspliced nuclear transcripts[69]. 

From the rRNA-depleted pool of RNAs, one can also isolate smaller RNA fragments using gel 

electrophoresis or alternative methods. We can thus enrich for small RNAs, like miRNAs, 

together with other small RNA fragments derived by other experimental protocols. To get a 

clearer picture of cytoplasmic and nuclear RNA abundance, the input RNA for the library 

preparation can also come from cellular fractionation, from either the nucleus or the 

cytoplasm[70]. Other subcellular fractionation method can give us a view over the localized 

transcriptome, in compartments like the endoplasmic reticulum[20] or neuronal projections[71]. 

RNA fragments can also be selected for the presence of the cap at the 5’end, and then subjected 

to sequencing, to have a global view on the capped transcriptome and on the position of the 

transcription start sites[72]. Similarly, it is possible to enrich for the 3’ends of an mRNA to gain 

knowledge about the exact cleavage and poly-adenylation sites[73], or even about the poly-A 

tail length and composition[74]. 

RNA-seq can also be coupled to immunoprecipitation (IP) to pinpoint the precise binding 

location of an RBP. Different protocols, such as PAR-CLIP (Photoactivatable Ribonucleoside-

enhanced Crosslinking and IP) [75] or eCLIP (enhanced Crosslink and IP) [76], introduce a 

cross-linking reaction followed by immunoprecipitation to isolate the bound pool of RNAs. 

RNA digestion followed by sequencing can pinpoint the exact binding site of an RBP, at single 

nucleotide resolution.  

In the PARS (Parallel Analysis of RNA Structure) protocol, RNA can be digested by enzymes 

which selectively cut double-stranded RNA or hairpin structures. The cleaved fragments from 

the two treatments can be isolated before sequencing, yielding a map of genome-wide RNA 

secondary structures[77]. 

Thanks to pulse-labeling of RNA molecules it is possible to extract nascent transcripts at 

different time points, and follow their dynamics of synthesis, splicing and decay, giving us an 

unprecedented view on the RNA life cycle over the entire transcriptome[78].  

As many RNA species can be degraded either in the nucleus or cytoplasm, it is possible to 

deplete members of the degradation machinery, to enrich for a pool of unstable RNAs, which 

can now be detected and sequences. This strategy enables us to zoom into unstable nuclear 

RNAs produced by the pervasive transcription of non-coding regions[79], or into unstable 

cytoplasmic transcripts degraded by the NMD machinery[57]. 
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Many modifications can be added to improve the quantification estimates of the sequenced 

RNA species. For instance, additional oligonucleotides with randomized ends can be added to 

the adapter sequences, which are ligated to the RNA fragments prior to the PCR amplification 

step. This way, possible biases introduced at the amplification step can be greatly reduced, by 

collapsing the sequences coming from the same fragment[80]. The use of such molecular labels 

(called unique molecular identifiers, or UMI) has been shown to greatly reduce the technical 

noise in sequencing data, thus improve quantification estimates, using RNA-seq or any other 

sequencing strategy.  

 

To investigate the translational status of different transcripts, researchers have historically made 

use of polysome profiling: after ultracentrifugation over a sucrose gradient, transcript will 

distribute over different fractions based on their association with polysomes. A sedimentation 

profile towards the heavier polysomes can be used as a proxy to define high rates of protein 

production, and shifts in the polysomal fractions can be used to monitor the different translation 

status of different transcripts across conditions. Very recently, this technique has been coupled 

to RNA-seq, obtaining a transcriptome-wide view of polysome association with different RNA 

species, showing differential translation output across different isoforms per gene[61], [62]. 

In 2009, a new technique, named Ribosome Profiling[31], was developed in the Weissman lab 

by Nicholas Ingolia, which revolutionized the field of functional transcriptomics, allowing us 

to map the position of millions of translating ribosomes over the entire transcriptome. 
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2.2.3 Ribosome Profiling 

 

The Ribosome Profiling (or Ribo-seq) technique aims at isolating the RNA fragments translated 

by the ribosomes, and it is comprised of several steps[81], [82], summarized here (Figure 10): 

 

Figure 10: The Ribo-seq protocol. Cells are lysed, and the recovered RNA is subjected to footprinting. Ribosome footprints 

are purified and subjected to sequencing, followed by computational analysis. Image from ref. 82, released under license. 
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1) Cell Lysis 

 

Cells are lysed using a lysis buffer containing Cycloheximide (CHX). Thanks to the 

action of Cycloheximide, we can block translation elongation, thus “freezing” 

ribosomes on their original position on the mRNA. The use of alternative translational 

inhibitor is possible, as outlined in the sections below. 

2) Nuclease Footprinting 

 

RNA digestion, using an endonuclease such as RNAse I, ensures that RNAs are 

uniformly cut, with exception to fragments protected by the ribosome. 

 

3) Purification of protected fragment 

 

Ribosome-protected fragments (RPFs) can be purified using a sucrose density gradient 

or sucrose cushion ultracentrifugation. Alternatively, RPFs can be recovered using size 

exclusion chromatography. 

 

4) rRNA depletion 

 

As we are purifying ribosomes together with their underlying RNA sequences, depletion 

of rRNA is crucial, and can be achieved by using different strategies, like the use of 

specific beads with the RiboZero method. 

 

5) Size selection 

 

The expected 28-30 nt RNA fragments coming from the protocol can be extracted using 

PAGE (poly-acrylamide gel electrophoresis). 

 

6) Library preparation and Sequencing 

 

The 3’ end of the fragments must be phosphorylated, in order to add adapter sequences 

for sequencing (Section 2.3.2). During this step, it is possible to use UMIs (Section 2.2.2) 

to obtain a more quantitative representation of the isolated pool of footprinted RNA. 
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Reverse transcription is then performed, with subsequent circularization and PCR 

amplification. The sample can now be sequenced. 

 

A major variant in the protocol consists in adding Harringtonine[37] or Lactimidomycin[83] 

(LTM) in step 1 instead of Cycloheximide. This way it is possible to enrich for initiating 

ribosomes and quantify the usage of different translation start sites under different conditions. 

To further enrich for initiating ribosomes, the QTI-seq protocol[84] introduces a Puromycin 

treatment after adding the LTM. After puromycin treatment, elongating ribosomes stop 

elongating and fall off, thus allowing us to further enrich for initiation complexes. 

Modification of this protocol allows for isolation of mitochondrial ribosomes[29], or ribosomes 

translating in subcellular compartments[59]. Very recently, a modified protocol able to isolate 

scanning ribosomes in the 5’UTR has been established in yeast, yielding a detailed picture of 

different ribosomal states during translation[85]. 

To yield a comprehensive view of the translatome, the Ribo-seq protocol needs a high amount 

of RNA material, usually in the µg range, usually corresponding to tens of millions of cells. A 

recent modification to the protocol consists in skipping the adapter ligation step by employing 

a polyadenylation strategy coupled to purification with oligo-dT beads, enabling sequencing of 

ribosome footprints from a much lower amount of input RNA material[86]. 

Despite the high amount of input required and a lengthy protocol (>4 days), Ribo-seq has been 

established in a different number of organisms, from bacteria to a whole range of eukaryotic 

organisms. However, differences in the choice of nuclease[87] and different drug treatments[88] 

heavily impact the obtained translational profiles in different published experiments, resulting 

in an overall poor standardization of the method[89], accompanied by a lack of uniform analysis 

strategies (Section 2.3.6). 

 

 

2.2.4 Proteomics approaches 

 

Together with the advancement in DNA sequencing, proteomics approaches also evolved from 

low throughput techniques (e.g. western blotting) to methods able to simultaneously detect 

thousands of proteins, leveraging on the unique biochemical properties of proteins. 2D gel 

electrophoresis is a technique used to separate and identify proteins by running a 

polyacrylamide gel on 2 dimensions, where one separates proteins based on the mass, and the 
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other based on their charge. However, the dynamic range of the method is very limited (it is 

impossible to detect small proteins or big complexes) and it is very difficult to fully separate 

proteins with similar mass and charge properties. 

Identifying and detecting the entire proteome in a cell can be extremely difficult, and this lead 

to the development of techniques able to focus on the detection of peptides coming from 

fragmented proteins, followed by computational reconstruction of the full-length proteins the 

peptides come from. This shotgun proteomics approach proved to be very successful in 

identifying thousands of proteins in a sample, giving rise to a revolution in the study of the 

proteome[90]. 

In a shotgun proteomics experiment proteins are isolated from a sample, and then digested using 

a proteolytic enzyme to produce a mixture of small peptides belonging to different proteins; 

trypsin is an ideal candidate to digest proteins as it is able to cut very often on a protein sequence 

with high specificity, and it creates charged peptides which are easier to detect; peptides are 

then isolated using high-performance liquid chromatography (HPLC) and analyzed using 

tandem mass spectrometry (or MS/MS). 

 

 

Figure 11: Shotgun proteomics example workflow. A peptide sample, previously digested with proteases like trypsin, is 

ionized, using techniques like ESI coupled to liquid chromatography, or MALDI when using a solid matrix. Ions are 

separated based on their mass and charge, and each ion (Precursor ion) is subjected to fragmentation, using collision-induced 

dissociation (CID). Fragments are subsequently separated based on their mass and charged and their intensity is detected on a 

membrane. Taken from: https://commons.wikimedia.org/wiki/File:TandemMS.svg, Author: Hannes Röst and M. Steiner. 

Creative Commons Attribution-Share Alike 3.0 Unported License. 

 

A mass spectrometer consists of three different parts: an ion source, a mass analyzer and a 

detector membrane. In MS/MS peptides have to be first ionized (Figure 11). A common method 

is electrospray ionization, which ionizes peptides as they are being eluted by the HPLC column. 

As the peptides are eluted and ionized (here called precursor ions), they are sent to a collision 

chamber where they undergo a second fragmentation step. The fragmented ions are now sent 

to a detector which records the absolute mass-to-charge ratio (m/z) for each fragment. At the 

end, a spectrum of m/z values per each peptide is produced by the MS/MS procedure. This 
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peptide-centric approach enables the detections of thousands of peptides which are then used 

to infer the presence and abundance of the cellular proteome. 

To infer accurate quantification in different conditions, proteins can be labeled using labeling 

compounds[91], [92], or labeled amino acids which can be added to the culture medium, as in 

the SILAC (Stable Isotope Labeling with Amino acids in Cell culture) approach[93]. The 

labeling can also be performed at different time points in a pulse-and-chase fashion (like in 

pSILAC[94]), to infer the dynamics of protein synthesis and degradation rates over the detected 

proteins[32].  
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2.3 Computational analysis of -omics data 

 

2.3.1 Genomes and transcriptomes 

 

The end result of a sequencing experiment is to extract signal from the experiment over genomic 

regions. The human genome comprises ~3.5 x 109 base pairs, and to perform analysis on such 

a large space standard data formats must be defined and understood. 

A genome is represented by a sequence of nucleotides divided by chromosome, in a .fasta 

format, where each sequence has a name, a header. The ensemble of known functional gene 

structures in a genome (the gene annotation) is provided by a gtf file, which contains the 

genomic coordinates of different genomic features (Figure 12). 

 

 

Figure 12: Example from the GENCODE 19 GTF file. Column 3 identifies the feature (exon, CDS, ...), columns 1,4,5,7 

denote its genomic coordinates, while column 9 contains additional information about the gene and the transcript the feature 

belongs to. 

 

For each element, a transcript_id and a gene_id column map the element to a specific transcript 

and gene, and a gene_type column reports the annotation category, or biotype (Section 2.1.2). 

Additional columns can be useful for cross-reference with other databases (like for the CCDS 

database, for Consensus Coding Sequences[95]), or to filter high-quality transcript structures 

(e.g. defined by the APPRIS system[96]), using tags like ccdsid or appris. The choice of 

annotation is an important step in a genomics workflow. The RefSeq database[97] offers a 

catalog of curated, non-redundant transcripts, while the GENCODE consortium, an integrated 

effort between ENSEMBL and HAVANA, contains a more comprehensive set of 

transcript/gene variants[12]. 

A set of transcript sequences can also be used for analysis, without any information about the 

exonic structures in the genome. This strategy can be successful when estimating transcript 

abundances[98] or when a genome assembly is not available[99]. 
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2.3.2 NGS data pre-processing & mapping 

 

The output of an NGS experiment in a sample is a sequence of intensities for each of the four 

reading channels (Section 2.2.1, Figure 9). Those intensities can be converted, for each position, 

into a nucleotide, forming a sequence of nucleotides (a sequence read, or simply a read) for 

each sequenced fragment. Depending on the number of cycles used in our sequencing reaction, 

we will obtain a longer or shorter sequence length (or read length). The sequence for each read 

is provided in a fasta file. When also a quality score is present for each position, the more 

common fastq format is used. The quality of our sequences is encoded in a phred score, which 

represents a probability for each position to have an erroneous intensity-to-nucleotide 

conversion. The phred score can be used to verify the overall quality of our sequencing results. 

During library preparation adapter sequences are added at the ends of our RNA fragments. 

Adapters must then be “trimmed” from our reads, using tools like cutadapt[100] or others. 

Depending on the length of the original RNA fragment, this might represent a crucial step in 

our analysis workflow (Section 2.3.6). 

The obtained reads can now be mapped to extract the signal coming from the RNA-seq 

experiment. Mapping reads to a reference genome can be performed using software like Bowtie. 

Mapping algorithms can efficiently map millions of short sequences by building an index of 

our reference sequence using techniques like the burrows-wheeler-transform[101], suffix 

arrays[102], or the FM index[103]. Due to the action of splicing (Section 2.1.2), RNA-seq reads 

contain also transcript sequences mapping to sections of distant exons, which further complicate 

the mapping procedure. To solve this problem, different aligners were developed to be able to 

map reads spanning exon-exon junctions with high efficiency. TopHat[104] and STAR[102] 

are two of the most popular tools able to map RNA-seq reads also on exon-exons junctions, 

which use modified indexing strategies that include sequences formed by splicing. RNA-seq 

reads can also be mapped to transcript sequences instead of a genome sequence, and it is the 

starting point of many popular RNA-seq workflows[98], [105], [106].  

To maximize the mapping performance, it is possible to allow some nucleotides to not map to 

the reference perfectly (mismatches): numerous Single Nucleotide Polymorphisms (SNPs) and 

the presence of sequencing errors favor the use of mismatches when mapping NGS data. A 

single sequence can also map to multiple positions in the genome, due to the pervasive presence 

of repetitive elements in the human genome. Of importance is the presence of thousands of 

annotated pseudogenes, which can be derived from gene duplications and subsequent 
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inactivation, or by retro-transposition on a full mature transcript in the genome (processed 

pseudogene). Depending on the read length and sequencing strategy (single- or paired-end), 

different regions of the genome cannot be mapped uniquely. Therefore, the choice of 

parameters for read mapping must be adapted to the RNA-seq protocol used. 

After the mapping is complete, we get the alignments reported in a BAM file, containing the 

genomic position(s) where our reads mapped, together with their mapping statistics (presence 

of mismatches, multimapping statistics, etc…). The BAM file can be now parsed to extract 

gene- or region- level signal statistics. 

 

 

2.3.3 Quantification and normalization strategies 

 

In an RNA-seq experiment, the number of reads mapping to a genomic locus (e.g. a gene) is 

proportional to the steady-state expression of that locus. Most of the RNA-seq (and NGS in 

general) analysis focuses on the analysis of read counts (or simply counts) per genomic position. 

Counts can be extracted from alignment files using the genomic coordinates of the regions of 

interest. Gene coordinates can be downloaded from different databases, or extracted from a 

GTF file. Genomic coordinates are usually stored in a BED file. Using tools like different 

Bioconductor packages[107] or bedtools[108] it is possible to count the number of reads 

mapping to each gene/region. 

After extracting the counts per gene, different normalization steps must be applied, as the 

number of counts per gene will be proportional to the length of the gene. Moreover, the overall 

sequencing depth will influence the total number of counts. To give an unbiased estimation of 

steady-state expression for different genes and different samples, the RPKM[67] (Reads Per 

Kilobase of exon per Million reads) metric was introduced, with the following formula for the 

gene 𝑔 (Equation 1): 

 

𝑅𝑃𝐾𝑀𝑔 =
𝐶𝑔

𝐷/106
∗  

103

𝐿𝑔
 (1) 

 

 

The RPKM value normalizes the counts per gene 𝐶𝑔 based on the gene length 𝐿𝑔 and on the 

library depth 𝐷, representing one of the most used metrics to estimate relative gene expression. 
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However, the RPKM metric might not be suitable when comparing different experiments, as 

the sum of RPKM values is different in different samples, making comparisons unreliable. To 

overcome the issue, the TPM (Transcript Per Million, Equation 2) metric was introduced[98]: 

𝑇𝑃𝑀𝑔 =
𝐶𝑔

𝐿𝑔/103
∗

106

∑
𝐶𝑔

𝐿𝑔/103
#𝑔
𝑔

  (2) 

 

In the TPM calculation the normalization by length comes first, and the normalized values are 

scaled to a total sum of 1 million, making TPM values more reliable when trying to compare 

gene expression in different samples. However, those measures can give us relative 

quantification estimates, e.g. how much one gene is expressed compared to others. To obtain 

absolute quantification estimates (e.g. RNA molecules per cell), internal RNA standards with 

known concentration (spike-ins) can be introduced in the sample and their RNA-seq coverage 

can be used to scale values for the endogenous genes[109]. 

Despite the proven quantitative nature of sequencing data, multiple sources of variability can 

introduce artifacts in quantification estimates. This introduces a series of artefacts when trying 

to assess differential expression between different biological conditions. To overcome these 

issues, many computational methods have been developed to model the distribution of counts 

per region using replicated data and different statistical models. The use of the negative 

binomial distribution as a model for count data allows the estimation of a technical component 

of variability and a variability induced by the experimental condition, which enables for 

identification of high-confidence differentially expressed genes (with tools like DESeq, 

DESeq2 or edgeR [110]–[113]). A similar strategy can be used to detect differential usage of 

single exons, where read counts on exonic regions are used to estimate condition-specific exon 

usage (as in the DEXSeq strategy [114]). 

After initial attempts to quantify transcript expression from RNA-seq counts[115], more 

accurate quantification estimates were obtained by more complete statistical models of RNA-

seq coverage, with tools like RSEM[98], which proved to be one of the most accurate 

expression quantification method for RNA-seq experiments[116], [117]. In the RSEM strategy, 

reads are first mapped directly to the transcriptome using Bowtie, allowing for multiple 

mapping position. Next, a directed graphical model is derived to calculate, for each sequenced 

RNA fragment, a maximum-likelihood estimate of its originating transcript[98]. The modeling 

consists of sets of different random variables, which correspond to the fragment length, 

mapping position in the transcript and position-specific quality scores of the sequence. The 
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parameters for this model are estimated using the Expectation-Maximization (EM) algorithm, 

where the estimates are calculated and updated at each cycle. At convergence, the EM gives a 

vector of parameter estimates which are converted into transcript fractions for each fragment. 

The cyclic nature of the EM procedure ensures a better estimation of expression values for 

repetitive sequences, which represents a major advantage over other approaches. 

Mapping to the transcriptome dramatically reduces the search space when compared to a full 

genome, but on the other hand makes it impossible to capture signal coming from introns or 

intergenic regions. Having a set of transcript sequences as a reference might be an advantageous 

solution, for example when the quality of the genome assembly is not satisfactory. A new wave 

of RNA-seq quantification methods also uses a transcriptome reference for RNA-seq 

quantification. Tools like Kallisto[105] or Salmon[106] employ a k-mer alignment strategy 

using k-mer hash built from transcript sequences. The advantage of such approach consists in 

a severe reduction of computational time and resources, with a minimal loss of accuracy when 

compared to tools like RSEM. However, any spatial information about transcript coverage is 

lost, making these approaches extremely useful when the sole purpose of the analysis is to 

estimate expression levels. 

 

 

2.3.4 Beyond count-based methods 

 

Aggregating the number of counts per gene gives us a quantitative representation of RNA 

expression, but it can also represent a simplification of the multiple steps of RNA processing 

happening during the RNA life cycle. Moreover, the analysis of RNA-seq signal along different 

transcript positions can reveal specific biases in our protocol, and help us improving our 

quantification estimates. 

A known positive bias towards GC-rich sequences is present during PCR amplification in the 

library preparation for any NGS technique. Only recently, computational methods are trying to 

correct for it when quantifying gene expression[106]. Analysis of poly-A RNA-seq (Section 

2.2.2) data revealed a bias towards the 3’end of transcripts, as the protocol selectively enriches 

for transcripts (or possible other fragmented products[118], [119]) with a poly-A tail. Very 

recently, it has been shown how poly-A RNA-seq, but also total RNA-seq after RiboZero 

treatment (Section 2.2.2) contain specific biases towards different sequences along the internal 

exonic sequences[120]. 
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In addition to protocol-specific technical biases, the analysis of RNA-seq signal along the 

transcript space can also help us interpret interesting biological aspects hidden in the data. As 

an example, the RNA-seq coverage over a genomic region represents a mixture of signals, 

which are the results of the expression of different transcript isoforms. To solve these issues, 

algorithms like Hidden Markov Models (HMMs) became very popular in the study of genomic 

signals. In a nutshell, with HMMs we train a direct acyclic graphical model where each node 

corresponds to a different state in our signal. Each state corresponds to a different signal profile, 

and the result of the HMM is a sequence of states over our signal, which will enable us to 

distinguish between different patterns. Using RNA-seq and genomic sequence, HMMs have 

been used to solve the mixture of RNA-seq signal coming from different expressed transcript, 

and discover new splice isoforms[121]. 

However, the patterns in the coverage at the single nucleotide resolution must be carefully 

interpreted, as they might be the product of both technical biases and interesting biology. 

Different RNA-seq protocols will produce a signal profile which is dependent on the RNA pool 

we are isolating, creating the need for tailored analysis strategies. For example, in the PAR-

CLIP protocol (Section 2.2.2), reads harboring a T->C mutation reflect the binding of an RBP 

to the RNA; methods such as PARAlyzer use a Kernel Density Estimate (KDE) to estimate the 

signal coming from the T->C reads against a background signal, to infer precise binding 

events[122]. Other RNA-seq techniques, like PARS[77] are able to map RNA secondary 

structure, which follows a specific 3-nt cyclical pattern in CDS regions, caused by the wobbling 

of the 3rd codon position (Section 2.1.1). Cyclical (or periodic) patterns in NGS data can thus 

reveal fundamental mechanisms of biological mechanisms. To reveal the presence of periodic 

patterns in a signal, spectral analysis methods can be used, like the Fourier transform. 

 

2.3.5 The Fourier transform and the Multitaper method 

 

The main idea behind Fourier methods is the representation of a signal into a series of 

oscillatory components, which can be mathematically described by sines and cosines functions 

(or sinusoids). Sinusoids can be represented using complex notation thanks to the Euler’s 

formula (Equation 3): 

 

𝑒𝑖𝑥 = cos(𝑥) +  i sin (𝑥) (3) 
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Using this compact notation, we can now fully describe a signal with an infinite series of 

periodic components. The mapping between the original signal (in its time domain) and its 

representation in terms of periodic components (the frequency domain) is achieved by the 

Fourier transform, whose idea stemmed in the early 19th century by work of Joseph Fourier, 

building on previous work by Lagrange, Gauss and others. In mathematical terms (Equation 4): 

 

𝑓(𝑡) =  ∫ 𝐹(𝑠) 𝑒𝑖2𝜋𝑠𝑡𝑑𝑠
∞

−∞
 (4) 

 

a continuous signal 𝑓(𝑡) can be represented by an infinite series of sinusoids 𝑒𝑖2𝜋𝑠𝑡 multiplied 

by their coefficients 𝐹(𝑠), integrating over all the possible frequencies 𝑑𝑠. The same principle 

applies in the other direction, where we declare that (Equation 5): 

 

 

𝐹(𝑠) =  ∫ 𝑓(𝑡) 𝑒−𝑖2𝜋𝑠𝑡𝑑𝑡
∞

−∞
 (5) 

 

the coefficients 𝐹(𝑠) can be calculated by multiplying the original signal 𝑓(𝑡) to a series of 

periodic frequencies, this time integrating over time 𝑑𝑡. 

 

However, in many real-life applications, we want to apply our transformation to a discrete, 

finite signal. In this case, integrating over infinite frequencies or infinite time is impossible. The 

discrete version of the Fourier transform, now called Discrete Fourier transform (DFT), deals 

with finite signals and frequency bins, which depend on the resolution and length of our signal. 

The DFT formula now states (Equation 6): 

 

 

𝑥𝑛 =  ∑ 𝐵(𝑓0) 𝑒𝑖2𝜋𝑓0 𝑛/𝑁𝑁−1
𝑓0=0  (6) 

 

Each data point 𝑥𝑛 is obtained by the sum, per each frequency 𝑓0, of the contribution of the 

function 𝑒𝑖2𝜋𝑓0 𝑛/𝑁, which is given by its coefficient 𝐵(𝑓0). Inversely (Equation 7): 

 

𝐵̂(𝑓0) =  ∑ 𝑥𝑛 𝑒−𝑖2𝜋𝑓0 𝑛/𝑁𝑁−1
𝑛=0  (7) 
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The (estimated) coefficient 𝐵̂  for the frequency bin 𝑓0  is calculated summing up the 

contribution of each data point 𝑥𝑛 spinning at that frequency. As shown in Figure 13 the DFT 

enables us to switch between two different representations of the same signal, and to quantify 

the contribution of periodic components in our data. 

 

Figure 13: A schematic of the Fourier transform. In a) we can see our original signal, which can be explained by b) a 

series of sinusoids of different amplitudes (which can be also represented with Eq. 3). c) A vector of coefficients per each 

sinusoid is calculated from the original signal, thus enabling us d) to switch between the original signal representation (Time 

domain) and its spectral representation (Frequency domain). Adapted from: 

https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif Author: Lucas V. Barbosa, 

released to the Public Domain. 

 

Using the DFT to quantify the energy of each frequency component (the power spectral density, 

or PSD) in finite data is very challenging, representing an intense area of study in signal 

processing theory. The two main problems in PSD estimation are the presence of high levels of 

noise in the estimated spectrum, and the bias coming from the leakage of important frequencies. 

In presence of finite data, energy from some important frequencies can be detected (or leak) in 

other nearby portions of the spectrum, leading to incorrect estimates of the true PSD[123]. 

To reduce the noise in the estimated spectrum, one of the possible solutions is to lower the 

resolution of our spectral estimates, thus averaging estimates between nearby frequencies. 

Another possibility is to apply a window 𝒂 to the original signal, which can lower the variability 

of the obtained spectrum[123]. The modified formula (Equation 8) now reads:  

 

𝐵̂(𝑓0) =  ∑ 𝒂𝒏𝑥𝑛 𝑒−𝑖2𝜋𝑓0 𝑛/𝑁𝑁−1
𝑛=0  (8) 

 

 

Unfortunately, different windows have a big impact on the PSD estimation and can increase 

spectral leakage (Figure 14), posing the additional problem of choosing between the dozens of 

window functions known to date. 

 

https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif


Background | Computational analysis of -omics data | The Fourier transform and the Multitaper method 

 
 Section 2.3.5 - page 48 

 

 

Figure 14: Different window functions and their spectral leakage. In a) the Blackman-Harris window is shown, together 

with its DFT. In the DFT plot, zero represents the period of the window. Ideally, the signal should be concentrated only 

around 0. As pointed by the blue arrow, the signal leaks over adjacent frequencies. In b) the Tukey window is shown, which 

displays a different spectral leakage pattern. Adapted from: https://en.wikipedia.org/wiki/Window_function 

 

 

Trying to minimize noise and leakage in the power spectrum, the multitaper method was 

proposed by David Thomson[124]. The main idea behind the multitaper is the use of multiple 

windows (or tapers)  

applied to the same signal, and average the periodogram over different windowed signals to 

reduce noise (Equation 9). 

𝐵̂(𝑓0) =
𝟏

𝑲
∑ ∑ 𝑎𝒌𝑛𝑥𝑛 𝑒−𝑖2𝜋𝑓0 𝑛/𝑁𝑁−1

𝑛=0
𝐾
𝑘=1  (9) 

 

By applying multiple windows, the multitaper method proved to be very efficient in reducing 

the variability in the frequency spectrum, as also shown in Figure 15. 

 

Figure 15: Example of multitaper PSD estimation. In a) we can observe the true signal and the periodogram obtained by 

the DFT. In b) the same true signal plotted together with its multitaper spectral estimate. It is possible to observe both a 

reduction in the noise and a reduced spectral leakage (signal does not “leak” to higher frequencies as in the raw DFT). Taken 

from: http://nipy.sourceforge.net/nitime/examples/multi_taper_spectral_estimation.html 

The tapers used in the multitaper analysis are orthogonal window functions called Slepian 

sequences[125], initially studied by David Slepian, which allow the multitaper method to 

https://en.wikipedia.org/wiki/Window_function
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reduce noise, also providing additional useful properties. As stated earlier, a known problem in 

spectral estimation is caused by the presence of spectral leakage, which causes the spread of 

amplitude from one frequency over the neighboring sections of the spectrum (Figure 14). The 

multitaper method proves also to be efficient in reducing spectral leakage, as it maximizes the 

energy around a specific frequency resolution[124], [126] (Figure 16). 

 

 

Figure 16: Example of Slepian sequences. a) Three slepian sequences depicted over a signal of 100 samples. b) The DFT of 

the 3 slepian sequences in a). Despite the presence of leakage, the energy is maximized around a desired frequency 

resolution. Taken from ref. 126. Usage granted by the journal’s policy. 

 

 

Additionally, the orthogonal nature of Slepian sequences allows us to derive an estimation of 

statistical confidence over the presence of frequency components in our signal[124], [127], 

representing a unique tool for the analysis of discrete signals. 

With its unique ability to reduce both noise and leakage in the spectrum, the multitaper method 

represents an extremely valid analysis approach[128], and was successfully implemented in 

different programming languages[129]. Given its relevance to this work, a more complete 

explanation of the multitaper strategy and its mathematical formulation is presented in the 

Appendix A. 
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2.3.6 Ribosome profiling data analysis 

 

The Ribo-seq protocol produces a set of short RNA sequences which were protected by 

translating ribosomes (Section 2.2.3). These sequences (also called RPFs) are very short, and 

adapter sequences need to be stripped from the read sequences, to obtain the exact footprinted 

RNA fragment. Depending on the efficiency of the rRNA removal step (Section 2.2.3), a strong 

percentage of reads consists of rRNA. It is advisable to remove those, as their massive presence 

can skew subsequent quantification estimates. tRNAs and snoRNAs can also take up a 

significant percentage of the obtained reads, and they should be filtered out. 

As we start from a pool of RNA molecules, reads will also map to exon-exon junction sequences, 

thus a split-aware alignment like STAR[102] can be used. The mapping strategy must also take 

into account the short nature of RPFs, as many regions in the genome cannot be mapped 

uniquely when using a ~30 nt long sequence. To limit the effect of multimapping reads, which 

can take around ~20% of the total mapped reads, only the primary alignment (which can be 

extracted from the FLAG in the BAM file) per each read can be considered. 

In a good Ribo-seq library, reads mostly map to CDS regions (usually >80%) and 5’UTR (~5-

10%), and very little to 3’UTRs. Signal coming from introns and intergenic regions are usually 

the results of multi-mapping fragments. 

A distinct read length distribution is observed in Ribo-seq libraries, which usually peaks at 29nt, 

as a result of the physical occupancy of a translating ribosome on the RNA[28]. A broader 

distribution of reads has been observed in variants of the protocol, for example using MNase 

instead of RNAse I as the nuclease used in the footprinting step[87] (Section 2.2.3), but usually 

followed by a loss of resolution in individual translation profiles. Different read lengths might 

also represent signal coming from distinct ribosomes, or different ribosome “states”: it has been 

shown in yeast[30] that a shorter footprint of ~20nt is visible when performing Ribo-seq in 

absence of CHX. This shorter footprint represents an alternative state of the elongating 

ribosome in a different conformation, which exposes a smaller surface towards the RNA, thus 

producing a shorter protected fragment. Distinct read length distributions can also be found in 

ribosomes belonging to different compartments. Mitochondrial ribosomes have been shown to 

display a bimodal distribution of read lengths, peaking at 27 and 33 nt, thus showing a clear 

difference when compared to cytoplasmic-derived RPFs[29]. 

The Ribo-seq signal over the translated ORF is dependent on the kinetics of the translation 

process: as the formation of the initiation complex (Section 2.1.5) is a relatively slow process, 
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an accumulation of signal around the start codon can be observed in Ribo-seq data. In most 

datasets, an additional accumulation can be visualized at the last codon of the ORF, representing 

the ribosome in its termination state. When plotting only the 5’ends of the RPFs over the known 

start codons, it is possible to appreciate the single nucleotide resolution of Ribo-seq data, 

especially in more recent datasets[130], [131] (Figure 17). Such aggregate profiles over start and 

stop codons might greatly differ for different read lengths, so it is always advisable to 

investigate each read lengths and separate mitochondrial/chloroplast RPFs from the analysis. 

 

Figure 17: Sub-codon resolution in Ribo-seq data. The 5’ends of Ribo-seq reads are plotted over annotated start and stop 

codons. A peak of distance at 12nt from the annotated AUG can be observed, together with a clear 3nt periodicity along the 

translated frame, until the stop codon. 10 samples are plotted for each nucleotide, showing high consistency across samples. 

Adapted from ref. 131. Creative Commons Attribution 4.0 International License. 

 

As shown in Figure 17, the 5’ends of RPFs pile-up at a distance of 12nt from the annotated start 

codons. Ribosomes initiate translation by locking the initiator tRNA in the P-site compartment 

(Section 2.1.5). This means that by adding 12nt from the 5’end of 29nt RPFs we can map the 

positions of the P-site ribosomal compartment for each RPF. Together with a clear peak of 

distance from the AUG, it is possible to observe a clear preference for the 5’ends to map on the 

translated frame, with little signal coming from the other 2 frames. This phenomenon clearly 

allows us to monitor the active movement of the elongating ribosomes, 1 codon (3nt) at a time 

(as drawn in Figure 7). 

Using the multiple sources of information provided by Ribo-seq (RPF abundance, sharp read 

length distribution etc…), diverse analysis strategies have been proposed to extract biologically 

meaningful results from Ribo-seq data analysis, here summarized: 

 

Quantifying translation over transcript levels: 

 

The Translation Efficiency measure (TE) was introduced in the original Ribo-seq 

publication[31]. The TE metric tries to yield a quantitative measure of translation per transcript, 

dividing the Ribo-seq signal by the RNA-seq signal. Despite its usage in vast number of 
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publications, the consistency of the TE measure in indicating translation has been discussed by 

following studies[132], [133], and a few alternatives have been proposed when trying to 

understand how translation changes in a differential analysis setting (Section 2.3.3). Tools like 

Xtail use the generalized linear model strategy of DESeq2[113] to model the Ribo-seq and 

RNA-seq read counts and obtain distributions of fold changes between conditions. Modeling 

the two distributions enables the significance testing for genes to belong to a concordant vs. 

discordant mode of regulation (on the translation or expression level) in the assayed conditions. 

Different approaches can be applied to the analysis of the distribution of RNA-seq and Ribo-

seq fold changes, and models representing different modes of regulations can be subsequently 

tested against each other to distinguish between differences at the level of steady-state transcript 

abundance or differences at the level of translation[131]. 

 

 

Identifying translated regions: 

 

By mapping the positions of ribosomes, Ribo-seq represents the most suitable technique for the 

annotation of CDS region. However, due to the intrinsic noise of NGS data and the complexity 

of the transcriptome/translatome (Section 2.1.2), the identification of high-confidence 

translated regions from Ribo-seq data is far from trivial. Especially in the early papers[31], [37], 

coverage plots of interesting transcript regions were showing how the Ribo-seq signal can be 

used to detect the presence of uORFs, non-canonical start codons or translation on non-coding 

RNA. As the sequencing of transcriptomes unraveled the presence of thousands of long non-

coding RNAs (lncRNAs), different metrics were developed trying to detect differences of 

ribosome binding in lncRNAs with respect to known coding genes. 

 

TE (publication date: 12.02.2009) 

 

Many works initially took advantage of the TE metric to define actively translated 

transcripts[134], [135], but subsequent studies pointed out how ribosome abundance (even 

when normalized by transcript expression) cannot be used as a good proxy to define bona-fide 

translated regions without including a large number of false positive, both in ncRNAs and 

3’UTRs[136]. A number of additional strategies were then employed to improve on the 

identification of the translated transcriptome. 
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RRS (publication date: 03.07.2013) 

 

The Ribosome Release Score[136], distinguishes translated from non-translated regions by 

exploiting  the release of translating ribosomes at the stop codon. This phenomenon creates a 

sharp decrease in coverage in Ribo-seq data at the end of the CDS. The RRS score is calculated 

as the ratio (normalized by RNA-seq reads) of RPFs in the CDS with RPFs in the 3’UTR. At 

the global scale, the RRS score successfully retains many coding regions and discards known 

ncRNA regions. However, only when combined with the TE metric the RRS shows a clear 

separation between CDS and non-coding regions of then transcriptome (e.g. 3’UTRs). 

Moreover, the definition of a CDS and a 3’UTR is challenged by the presence of multiple 

translated ORFs per transcript (e.g. uORFs), and the performance of the RRS score in such, 

very common, cases has never been explored. Additionally, an evaluation of the RRS score 

sensitivity and specificity in detecting translated regions (e.g. over different expression regimes, 

using simulations, negative data) has never been tackled. The RRS score lacks a proper 

documentation and its computational requirements and running time are unknown. 

 

TOC (publication date: 11.07.2013) 

 

The idea of using multiple metrics to detect high-confidence translated regions is the basis of 

the Translation ORF Classifier (TOC), proposed by Chew et al[137]. Four different features 

are extracted from the Ribo-seq coverage on different regions: the TE metric, for quantification 

of translation; Inside vs Outside, a metric containing the number of nt covered by Ribo-seq 

inside and outside the ORF; Fraction Length, representing the size of the ORF over the 

transcript length; the Disengagement Score, which is the same as the RRS score but without the 

RNA-seq normalization. A random forest classifier is trained on the 4 different features to 

understand whether Ribo-seq signal over lincRNAs resembles translation over known protein-

coding genes. The output of the classifier is a label per each locus, which distinguishes between 

coding-like, trailer-like (3’UTR, no reads) and leader-like (5’UTR) loci. The majority of 

lincRNAs with Ribo-seq signal were assigned a leader-like label, thus presenting features not 

resembling bona-fide protein coding active translation, but still leaving the functional relevance 

of their translation unanswered. Given the high sequencing depth of the Ribo-seq datasets used 

(>300 Million mapped reads), the classifier showed good performance also on lowly expressed 

transcripts, but its performance on other datasets is unknown. It was not never released as a 

software tool for the community. 
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FLOSS (publication date: 11.09.2014) 

 

During the Ribo-seq protocol, a size around 29nt is cut after PAGE (Section 2.2.3), to isolate 

the RPFs. In addition, different contaminants such as rRNA, snoRNA and other structured RNA 

fragments can survive the next purification steps and thus be sequenced. The idea behind the 

FLOSS score[138] is to learn a distribution of Ribo-seq fragment lengths on protein-coding 

region, which represent actively translating ribosomes. Fragment length distribution over each 

region in the transcriptome is then compared to the reference one, to derive a similarity score 

indicative of its coding-like validity, taking into account the total Ribo-seq coverage. As 

expected, the FLOSS scores globally distinguish coding versus non-coding genes. However, 

even for some predominantly nuclear lincRNAs like MALAT1[139], short elements along the 

transcript might exhibit a coding-like behavior, thus being masked by the total signal over the 

transcript. Despite multiple lines of evidence showing the sensitivity of the FLOSS score in 

detecting new bona-fide translation events, an in-depth analysis of the FLOSS score 

performance was not tackled. The method, available as a set of annotated scripts in a 

supplementary file, was applied to a very deep Ribo-seq dataset in a mouse cell-line (>250 

Million mapped reads). 

 

ORF-Rater (publication date: 03.12.2015) 

 

In the ORF-Rater strategy[140], aggregate profiles over start and stop codons are used to 

identify translated regions. As these profiles become prominent in Harringtonine or LTM-

treated Ribo-seq datasets, the usage of multiple Ribo-seq protocols over the same biological 

samples produces distinct profiles for many translated ORFs. The core of the ORF-Rater 

method is a regression fit of the Ribo-seq coverage (coming from the multiple Ribo-seq 

protocols) along the transcript against its expected coverage given the presence of one (or 

multiple) translated ORFs. The presence of ORF translation is indicated by a positive regression 

coefficient of the fit. To evaluate the statistical confidence of the ORFs translation, a random 

forest classifier is trained on regression results coming from known ORFs and used to score the 

regression fits for the ORFs candidates, yielding a high-quality set of translated ORFs, covering 

known and novel genomic regions.   

Leveraging on expected profiles at start and stop codons, the ORF-Rater method is able to 

identify ORF truncations/extension, out-of-frame ORFs and very small ORFs (>20 codons), 
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bypassing some of the limitation imposed by other approaches (see Discussion). However, 

despite the high quality of the detected candidates, it is not clear whether the high requirements 

of the method are met by the entire set of translated ORFs in the transcriptome. Different 

kinetics of initiation and termination might produce coverage profiles different from the 

expected ones, especially in lowly expressed genes. The general applicability of the method is 

also challenged by the high data requirements, as the omission of some of the Ribo-seq variants 

can dramatically reduce the algorithm performance[140]. On a very deep Ribo-seq dataset in a 

mouse cell-line (~150 Million reads per each of the 4 Ribo-seq variants) the method was run 

on a high-computing cluster using 256 Gigabytes of RAM and multiple processors, with a 

runtime of a couple of days. The method is implemented as a software freely available on a 

Github repository, with documented scripts and detailed usage description. 

 

riboHMM (publication date: 27.05.2016) 

 

Despite the presence of a different modeling framework, the riboHMM[141] strategy to detect 

translated ORFs uses a similar idea to ORF-Rater. An Hidden Markov Model (HMM) is trained 

to recognize distinct Ribo-seq profiles over different ORFs positions, leveraging on the distinct 

pattern of Ribo-seq over start and stop codon, and inside the translated CDS. The model also 

explicitly models the contribution of each Ribo-seq read length, and sums them over to increase 

sensitivity. The trained HMM is used to parse the Ribo-seq signal transcriptome-wide, yielding 

predictions for ORF translation. Using a very deep Ribo-seq dataset in human (580 Million 

reads) and stringent filtering, riboHMM identified ~36K translated transcripts, covering ORF 

annotation for 7801 annotated protein-coding genes and thousands of novel candidate ORFs. 

At lower library depths, the algorithms showed to be robust in terms of False Positive Rate, 

despite a marked decrease in sensitivity. Runtime information and computational requirement 

are not provided. The method is available as a software free to use for the community and it is 

well documented. 

 

ORFscore (publication date: 04.04.2014) & similar studies 

 

As the protocol became more popular, also the overall data quality increased. In 2014, Bazzini 

et al,[130] produced a massive Ribo-seq dataset with precise sub-codon resolution following 

the Zebrafish early development. Having precise information about the translated frame, they 

scored different ORFs based on the number of reads falling on the translated frame, compared 
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to a uniform distribution of signal over the three frames. This scoring method, named ORFscore, 

allowed them to identify a set of translated small ORFs (<100 aa) which were overlooked by 

automatic annotation pipelines. Despite its high sensitivity on a deep Ribo-seq dataset in 

Zebrafish (~200 Million reads), the specificy of ORFscore and its performance on different 

datasets is unknown. 

Similarly, two other studies in yeast used the sub-codon resolution of Ribo-seq reads to identify 

translated ORFs[142], [143]. In one of the two studies, a False Discovery Rate on the ORF 

identification was calculated using a randomized distribution of P-sites over the three 

frames[143], drawing from the same assumption behind the ORFscore. None of these 

approaches were originally implemented in a software available for the community. 

 

RibORF (publication date: 19.12.2015) 

 

RibORF[144] is a method which builds on the ability of the sub-codon resolution of Ribo-seq 

reads to identify translation. In addition to the amount of Ribo-seq reads in frame, the method 

uses the Percentage Maximum Entropy (PME) metric to ensure a more uniform coverage of 

reads along the ORF. The percentage of reads in frame and the PME metric are calculated for 

each ORF in the transcriptome, and a Support Vector Machine classifier is used to separate 

good ORF predictions from unreliable results. Around 10.000 translated genes were detected 

applying RibORF to two average Ribo-seq datasets in human cell-lines (~40 Million reads). 

The tool is implemented in a software free to use for the community, including essential usage 

instructions. 

 

RiboTaper (publication date: 14.12.2015, Section 3.1) 

 

Also in the RiboTaper method[145], the sub-codon resolution is key to identify translation. The 

method identifies regions where Ribo-seq reads display a 3nt periodic behavior consistent with 

ribosomal translocation, using the statistical test from the multitaper method, a known spectral 

analysis method. ~12.000 genes are detected using RiboTaper on an average depth HEK293 

datasets (~30 Million reads). The algorithm was run on datasets of different quality and from 

different organisms. Its runtime is ~1 day. Documentation and usage guide are available. 
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Spectre (publication date: 25.12.2016) 

 

In the Spectre[146] method, spectral coherence (which measures the correlation between two 

different frequency spectra) is used to indicate whether the periodic components in the P-sites 

profile match an ideal profile where reads map only to the translated frame. Using quantification 

estimates from Cufflinks[115] to normalize the P-sites tracks, the algorithm uses coherence 

values to classify individual transcripts into translated or not translated. Sensitivity and 

specificity are addressed at different degrees of expression levels. The code is made available 

and well documented. Runtime is expected to be less than 1 day. 

 

Rb-Bp (publication date: 25.01.2017) 

 

The Rb-Bp[147] strategy uses a probabilistic graphical model to predict translation from P-sites 

profiles. The model is trained to recognize a pattern where a clear enrichment over one 

translated frame is observed, and it scores ORFs whether they resemble such pattern or a null 

uniform model. As with RiboTaper, the algorithm’s predictions were validated with proteomics 

support and QTI-seq data. The algorithm was run on different datasets of modes depth. An 

evaluation of the method specificity or sensitivity was not extensively presented. 

Documentation is available and the runtime is expected to be less than 1 day. 

 

Given the scarcity (until recently) of solid analysis methods, several Ribo-seq studies attempted 

to identify translated ORFs using custom analysis pipelines, from read mapping to ORF 

identification and variant calling. For example, in the PROTEOFORMER[148] pipeline, 

translation is identified by looking at Ribo-seq counts over ORF boundaries in CHX and 

Harringtonine/LTM-treated samples, also taking into account the presence of sequence variants. 

Of particular note is a study in murine myoblast differentiation where the entire analysis 

workflow is freely available online[149]. 

 

Detecting alternative translation events 

 

Different features of Ribo-seq signals along the translated frames have also been used to 

identify the presence of alternative translation events. Using a change-point algorithm, Zupanic 

et al [150] detected sharp changes in the Ribo-seq coverage to identify novel initiation sites, 

premature stop codon usage and novel splice junctions. Despite the presence of new interesting 
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events, it is not clear how the thousands of change-point events all reflect the presence of true 

alternative translation events, especially considering the high non-uniformity of Ribo-seq signal. 

Leveraging on the sub-codon resolution of Ribo-seq reads, Michel et al,[151] developed a 

strategy to identify regions where translation occurs on multiple frames. The authors identified 

~100 candidates where the ribosomal coverage switches between two different frames along a 

single transcript. Among the candidates there are two genes with known ribosomal 

frameshifting sites, >40 of overlapping small ORFs (mostly uORFs), regions where a mixture 

of signals from multiple RNA isoforms occurs, 13 unexplained cases and 33 (manually verified) 

false positives. After careful removal of false positive results, the authors could show how these 

regions are indeed coding in two frames, using evolutionary conservation over the dual coding 

regions. 

 

As the Ribo-seq protocol became more popular, different datasets have been published, and 

slight variation in the protocol were observed to have an impact on the obtained signal profile. 

Together with a plethora of exiting discoveries, also different surveys about possible biases 

present in Ribo-seq data began to appear, highlighting the need of protocol standardization and 

more careful approaches in the data interpretation. The kinetics of CHX intake, for instance, 

can distort the Ribo-seq coverage profile, creating artefactual, but reproducible, patterns. A low 

concentration of CHX can produce an enrichment of signal around the start codon[88], created 

by a slower drug intake by the elongating ribosomes. 

The choice of nuclease for the footprinting step has a marked effect on the overall resolution of 

the data. Micrococcal Nuclease (MNase) has been shown to have strong sequence biases, while 

RNAse I can disrupt the native monosome structure, possibly creating biases in the footprint 

recovery[87]. It has been recently proposed that a mix of different nucleases might represent a 

good compromise between high resolution and footprint integrity[87], but its validity over 

different species remains to be tested.  

Other variables in the experimental protocol have an impact over the Ribo-seq signal over 

different transcripts. The CircLigase A, often used during the library preparation step, has a 

bias towards A-starting footprints, thus enriching for specific RNA fragments and creating 

stronger signals at specific transcript positions. Softwares like RUST[89] have been recently 

developed to quantify the presence of bias in different Ribo-seq libraries, allowing the 

community to improve over the published protocol and the interpretation of the obtained data. 

However, non-uniformity in the Ribo-seq signal also derives from the biology of the translation 

process. As seen before, enrichment of signal over start and stop codons derives from the slow 
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kinetics of translation initiation and termination. During translation elongation, Proline codons 

can stall elongating ribosomes, due to its inefficient incorporation during the peptide bond 

formation[152]. Additional codon pairs also seem to efficiently stall elongating ribosomes[153]. 

Co-translational folding of the nascent protein is also a determinant of ribosome movement 

along the ORF, and it is possible to observe different ribosomal speed whether the nascent 

peptide sequence folds into a coiled-coil structure or an alpha helix[154]. However, such results 

are very recent and a clear confirmation of the possible mechanisms at the molecular level is 

still lacking. 

In a summary, a high degree of variability is introduced both by variables intrinsic in the 

experimental protocol and by the yet unresolved molecular mechanisms of translation. The 

unmet assumption of uniformity of Ribo-seq signal can thus greatly impact the validity of the 

obtained results, and multiple lines of evidence from different sources must be presented to gain 

confidence in the analysis of Ribo-seq data. 

 

2.3.7 Evolutionary signatures on genomic regions 

 

To gain insights on the possible functional role(s) of genomic elements, the analysis of 

evolutionary conservation patterns over different species proved to be a very successful 

approach[155]. With the increasing number of sequences and entire genomes available from 

different species, statistical methods of nucleotide substitutions allowed the possibility of 

defining phylogenetic trees across multiple species. The alignment of sequences and entire 

genomes between different species enabled the detection of elements which remained relatively 

“unchanged” during evolution in different organisms. The presence of evolutionary constraints 

over a sequence can be used as an indicator of molecular functionality, allowing the detection 

of important transcriptional enhancers, miRNA binding sites[156] or unannotated small 

proteins[157]. The idea behind the popular PhastCons[158] program is the use of a two-states 

HMM, which parses through a multiple species alignment and uses a phylogenetic tree to 

recognize the sequences as conserved or non-conserved. For each nucleotide, the phastCons 

model emits a probability for that nucleotide to belong to a conserved element. These 

probabilities (which represent the posterior probabilities of the HMM), are the popular 

phastCons scores widely used in genomics to evaluate the conservation of nucleotide sequences 

(Figure 18). 
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Figure 18: Evolutionary signatures of genomic regions. Different genomic regions (top) can exhibit high level of 

nucleotide conservation. However, they might drastically differ in terms of codon substitution rates, where coding regions 

(left) retain the aminoacidic sequence, thus being enriched for neutral or synonymous substitutions, while non-coding regions 

(as the intron on the right) present high rates of non-synonymous substitutions. Adapted from ref. 159, released under license. 

 

Evolutionary constraints on the nucleotide sequence might reflect a conserved binding activity 

from a regulator, which might be important in the regulation of transcription or cytoplasmic 

processing. To understand whether the encoded protein sequence (or parts of it) is under 

selective pressure, additional methods were introduced in the analysis of evolutionary 

conservation of nucleotide sequences, as selection on the protein sequence poses constraints on 

the composition of its coding sequence. 

The PhyloCSF[159] approach calculates, for each nucleotide triplet (codon) in protein-coding 

and non-coding genes, two separate codon substitution models from multiple sequence 

alignments. For a genomic sequence, the likelihood ratio between the two codon substitution 

models can be used to understand whether the sequence belongs to a conserved coding locus or 

not (Figure 18). As seen in Section 2.1.1, the degeneracy of the genetic code allows for the 

presence multiple codons per amino acid. Positive selection for mutations which do not disrupt 

the encoded amino acid sequence (synonymous mutations) is observed in conserved protein-

coding sequences, when compared to disrupting mutations (non-synonymous). The ratio 

between synonymous versus non-synonymous mutation (Ka/Ks), has been used to identify 

protein-coding sequences using evolutionary sequence alignments[160], [161]. Sequence 

variation (as single nucleotide polymorphisms, or SNPs) in the population also show a similar 

pattern (ratio named dN/dS), as synonymous mutations (dS) are higher in coding than in non-

coding genes. 

Additional approaches use the sequence composition of known coding and non-coding genes 

to derive a set of sequence features. Without the use of sequence alignments, a classifier is then 

trained on those features to distinguish between coding and non-coding genes, showing good 

performance when compared to alternative approaches[162]. 
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2.3.8 Shotgun proteomics data analysis 

 

In an MS/MS experiment (Section 2.2.4), we obtain an ensemble of spectra containing m/z 

values for each detected ion. The spectra of values will result from the elution of one peptide, 

whose identity is unknown. To resolve the initial mixture of peptides in our sample, we can 

map the obtained MS/MS spectra to proteome-wide theoretical spectra calculated from a 

sequence database[163]. In this approach, annotated proteins in a sequence database are in silico 

digested, and theoretical spectra are calculated. Different methods have been implemented to 

derive a meaningful matching between theoretical and real spectra: one of the most popular 

algorithms is represented by the Andromeda engine[164] (part of the popular MaxQuant 

software[165]), or by MS-GF+ [166], only to name a few. While the different algorithms have 

marked differences in their scoring systems, they use a similar strategy to evaluate the quality 

of the Peptide-Spectrum-Match (PSM); a decoy database is built on the original one (usually 

by reverting the protein sequences), and a measure of statistical significance (usually FDR-

based) can be calculated from the match between the experimental data and the two (real and 

decoy) databases[167] (Figure 19). To further increase confidence in the identification, a recent 

approach combines the possible strengths and weaknesses of different search engine in a unified 

platform to identify the detectable proteome[168]. 
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Figure 19: Analysis workflow for MS/MS data. Acquired spectra are compared with a scoring function to theoretical 

spectra, obtained from a sequence database which also contains decoy sequences (top). The scores from target and decoy 

matches are analyzed, and a measure of False Discovery Rate is derived by the hits on target vs. decoy sequences. Different 

cutoffs on the scores will determine the FDR. Adapted from ref. 163, released under license. 

Important parameters to set in the database search step can depend on the experimental 

conditions: a variable amount of mass tolerance must be specified in order to correctly match 

the spectra; such values are technology-specific, depending on the mass spectrometer or on the 

resolution of the HPLC column in LC-based methods. Post-translational modification (PTMs) 

on peptides will produce different spectra, and the addition (or omission[169]) of multiple 

possible PTMs can have a great impact on the identification results. Similarly, the use of an 

incorrect database will also bias the identification results[170], making database search a 

fundamental step in proteomics data analysis. Analysis of Ribo-seq datasets can allow the 
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identification of novel peptides (Section 3.2.3), despite its limited contribution in providing 

novel, identifiable proteins in recent efforts[148]. 

A large amount of unidentified spectra is present in a mass-spec experiment, and more tolerant 

searches might help enriching the catalog of identified peptides in a single experiment[171]. 

However, as public databases become increasingly richer and easier to use[172], and different 

technologies combine the power of targeted proteomics with high-throughput discovery[173], 

[174], the combination of different proteomics approaches will help us defining the functions 

of the cellular proteome [175], [176]. 

Quantitative estimates of protein abundance can be obtained from MS/MS data, for instance by 

measuring the number of spectra mapping to a specific protein, as in the NSAF (Normalized 

Spectral Abundance Factor) approach[177]. Another approach sums, for each protein, its 

peptides intensities obtained in the first MS run, and normalizes such value by the number of 

theoretical peptides mapping to such protein[32]. Such approach, named iBAQ (intensity-

Based Absolute Quantification), became very popular for label-free quantification of MS/MS 

data, and its calculation is included in the MaxQuant package[165]. However, especially when 

comparing different biological conditions, the use of labeling techniques and internal 

standards[178], [179] might represent a superior alternative when trying to quantify protein 

expression. 
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3 Results 

 

3.1 A novel approach to Ribo-seq data analysis 

 

Contribution Statement: 

Lorenzo Calviello performed all the sequencing data analysis, tested the multitaper 

performance and implemented the RiboTaper strategy, supervised by Uwe Ohler. Material 

appearing in this Section has been copied or adapted from our publication[145]. 

 

3.1.1 Spectral analysis of P-sites profiles 

  

To obtain a comprehensive view on the detectable translatome, Ribo-seq was performed in 

HEK293 cells (Appendix B.1), yielding ~30 Million sequences reads. After removing adapters 

and rRNA reads, we mapped reads to genome using STAR (See Section 2.3.2) supplied with 

the GENCODE 19 annotation (Appendix B.2). Additionally, we analyzed previously published 

RNA-seq and Ribo-seq data from different sources, highlighted in Table 1. 

 

accession condition 

Non-rRNA 

trimmed reads 

Aligned 

reads 

Uniquely 

aligned 

read_length 

for P-sites 

calculation 

Offsets 

For P-sites 

calculation 

N of 

P-sites/RNA_sites 

This_study Ribo-seq 29,299,392 25,268,289 20,014,470 26,28,29 9,12,12 15,893,765 

GSE49831 RNA-seq 33,701,799 27,688,698 26,289,844 NA 25 27,688,698 

SRA160745 ribo_control 10,487,124 6,809,992 5,001,513 26,27,28,29 12,12,12,12 5,047,204 

SRA160745 RNA_control 39,548,815 33,154,640 28,365,630 NA 25 33,154,640 

GSE53693 ribo_5hPF_1 141,503,942 106,667,995 72,011,863 28,29 12,12 26,047,445 

GSE53693 RNA_5hPF_1 114,116,421 71,834,250 52,766,644 NA 25 71,834,225 

Table 1: Summary statistics for Ribo-seq and RNA-seq data in HEK293 cells and Danio rerio. 

 

A critical aspect of Ribo-seq analysis involves the analysis of aggregate profiles over start and 

stop codons. As shown in Section 2.3.6, some read lengths display a distinct bias towards one 

of the translated frames, together with a clear peak of distance from annotated start codons 

(usually around 12 nt for 29 nt footprints, see Discussion), thus revealing the P-site position 

within each ribosomal footprint (Figure 7 and Figure 17). We investigated this pattern in our 

data, generating aggregate profiles over annotated start and stop codon positions (Figure 20, 

Supplementary Figure 1). 
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Figure 20: Metagene analysis of 29 nt Ribo-seq reads in HEK293. 5’ends of reads are aligned to annotated start codon 

position. Reads are colored based on the 3 possible coding frames. A clear peak at 12nt offset from the the start codon is 

visible. The barplot shows the fraction of reads mapping to the different frames. 

 

Aggregate profiles were visually inspected, to infer millions of single-nucleotide P-sites 

positions which were used to determine the translated frames (Table 1, Supplementary Figure 

1). When using P-sites positions to define the coding frame of each CCDS exon, ~90% or more 

of the exonic frames agreed with the annotation, suggesting high precision in the frame 

definition.  

 

As this sub-codon resolution is caused by subsequent 3 nt steps during translation elongation 

(Figure 7), we decided to apply spectral analysis methods to confidently identify this pattern 

over the transcriptome. As seen in Figure 21, CDS regions displayed a clear peak of power at a 

frequency of 3nt after applying the raw Fourier transform (Section 2.3.5). This first observation 

confirmed the applicability of spectral analysis methods to the identification of 3nt periodicity 

in P-sites profiles, but also presented us with other challenges. Non CDS regions can exhibit a 

much noisier periodogram than others, or high coefficients at frequencies other than 3 nt. 

The choice of a window function (Section 2.3.5) or of a cutoff over the spectral coefficient is 

necessary to distinguish regions were ribosomes are translating from non-translated regions. 

Unfortunately, as with many other score-based approaches, such cutoffs are strictly data-

dependent, and can greatly vary for different datasets. A more general and statistically 

principled approach to detect the 3nt pattern in P-sites profiles was represented by the multitaper 

method (Section 2.3.5). The main advantage of the multitaper method is its statistical test for 

significance of frequency components, which clearly identified the presence of 3nt periodicity 

in CCDS profiles, despite a marked distortion of the frequency spectrum due to windowing. 
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Inspired by these early results, we decided to globally investigate the performance of the 

multitaper method in identifying translation. 

 

 

Figure 21: Spectral analysis of individual exonic P-sites profiles. P-sites profiles are shown on the left, the output of the 

raw DFT is shown in the middle left, the spectrum obtained by the multitaper in the middle right, while the F-value for each 

frequency bin is shown on the right. Dashed vertical lines around 3nt frequency. For the F-test plot, dashed horizontal lines 

represent p-values of 0.05 and 0.01. 
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3.1.2 On sensitivity and specificity 

 

As discussed in Section 2.3.5, the multitaper analysis requires 2 parameters, the number of 

tapers to use and a time/frequency resolution parameter. To understand the influence of these 

two parameters we applied the multitaper method on P-sites profiles of CCDS exons, for 

different length and coverage values. To further test the validity of the multitaper-derived p-

values, we ran the tests on randomly shuffled P-sites profiles from the same CCDS exons 

(Appendix B.4). As shown in Figure 22, little to no sensitivity improvements were observed by 

using more than 24 tapers, in all the length/coverage categories. Most importantly, at a p-value 

cutoff of 5%, exactly 5% of the shuffled P-sites profiles exhibited a significant 3nt component 

in all categories and tests (Figure 22), confirming the validity of the significance values reported 

by the multitaper test. 

 

Figure 22: Sensitivity and specificity of the multitaper method. In a) a sensitivity analysis (left) is shown: using different 

tapers, the fraction of 3nt-periodic exons (p-value at 3nt <0.05) is shown for different CCDS exonic lengths, and for different 

coverage values. A similar plot is shown for specificity (right), where the y-axis indicates the fraction of simulated non-

periodic CCDS exons (p-value at 3nt >0.05). Simulated profiles were obtained randomly shuffling the P-sites positions in 

each exon. As an additional proof for specificity, in b) the histogram of p-value for RNA-seq profiles in CCDS exons is 

shown, for the multitaper test (left) and Chi-squared test (right). The red bar highlights the fraction of p-values <0.05. 
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As shown in Figure 22, the multitaper test achieved very good sensitivity on CCDS exonic 

profiles of different length and coverage values, even for exons spanning from 75 to 97 nt of 

length. This analysis can also point out the level of resolution that we can achieve when trying 

to identify translation on small regions, such as uORFs or other short ORF categories (Section 

2.3.6). The high sensitivity of the multitaper led us to investigate whether our False Positive 

Rate on real sequencing data would be misinterpreted when looking at our shuffled profiles. A 

uniform distribution of signal, as the one obtained by randomly shuffling P-sites positions, does 

not represent an ideal case to test the specificity of our approach. Sequencing data is far from 

uniform in any assay, where sequencing artefacts and protocol-specific biases result in non-

uniformity of the coverage signal[120]. To further confirm the specificity of the multitaper 

method in detecting 3nt periodicity in Ribo-seq data, we decided to apply it to profiles derived 

from RNA-seq. For comparison, we used a Chi-squared test for frame preference, which tests 

against the assumption of uniformity of signal in the 3 frames, the same assumption behind the 

proposed ORFScore method[130] (Section 2.3.6). A strong skew in the p-values distribution 

for the Chi-squared test on RNA-seq profiles shows how the assumption of uniformity of signal 

is not adequate when dealing with sequencing data and would lead to a high number of false 

positive calls. On the other hand, the distribution of p-values for the multitaper test shows a 

desirable uniformity, showing again excellent specificity in detecting 3nt periodicity. 

 

To further investigate the advantages of using a significance metric (the multitaper p-value) 

derived from spectral analysis, we compared the multitaper test with other Fourier transform 

coefficients, estimated with and without the use of different windows (see Section 2.3.5). We 

applied these different metrics on P-sites profiles and RNA-seq profiles (as a negative control) 

of CCDS exons of different length and coverage, and derived accuracy metrics to evaluate their 

performance in identifying translation (Figure 23). We calculated the Area Under the Curve 

(AUC, measuring overall performance) and sensitivity at 5% False Positive Rate for the 

different approaches. Once again, the p-values from the multitaper test could efficiently 

separate RNA-seq profiles from P-sites profiles, outperforming other metrics, including the 

spectral coefficients calculated by the multitaper method itself, which are distinct from the 

significance values (Appendix A). 
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Figure 23: Comparison between the multitaper method and other windowing approaches. To estimate sensitivity and 

specificity, exonic RNA-seq profiles were treated as negative control, and exonic P-sites profiles as positive. At varying DFT 

coefficient (or p-value) cutoffs, the number of RNA-seq profiles and P-sites profiles retained was used to calculate 

performance metrics, using different approaches. In the top panel AUC values are shown, while in the bottom panel 

sensitivity values at 5% False Positive Rate are depicted. For all length categories, the p-value from the multitaper test (in 

dark green) outperforms other metrics. bartlett: Bartlett window; blackman: Blackman window; pval_multit: p-value at 3nt 

using the multitaper method (24 tapers); raw_fft: Raw DFT coefficient; spec_multit: Coefficient of the multitaper method (24 

tapers); tukey: Tukey Window. For the Tukey window, two values of the alpha parameters were used (0.6 and 0.1). Different 

exonic lengths and RPKM values (x-axis) are shown. 

 

Due to the excellent sensitivity and specificity of the multitaper in detecting 3nt periodicity, we 

decided to use it to identify the ensemble of translated ORFs in the transcriptome.  

 

 

3.1.3 The RiboTaper strategy to identify translated ORFs 

 

As shown in Figure 24, the first step in our analysis pipeline (named RiboTaper) is about 

parsing a genome fasta file and a GTF file (Section 2.3.1) to create sequence tracks and BED 

files for different  

exonic regions, differentiating between coding exons (CDS regions), non-coding exons in 

coding genes (e.g. UTRs), and exons in non-coding genes. Importantly, we decided to use only 

transcripts annotated as part of the CCDS[95] annotation and part of the APPRIS[96] set of 
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annotated transcripts, to limit the analysis only on well annotated transcript structures (Section 

2.3.1). 

 

Figure 24: The RiboTaper workflow. From input files to output files, dependencies between steps are depicted, together 

with the analysis scripts involved. 

 

Ribo-seq and RNA-seq alignment files are filtered to contain only the primary alignment per 

each read, to limit possible artefacts derived from multi-mapping reads (Section 2.3.2). The 

Ribo-seq and RNA-seq filtered alignments are then intersected with the annotation files to 

create data tracks needed for the next analysis steps. Of utmost importance is the definition of 

which Ribo-seq read lengths must be used to infer P-sites positions, together with their 

corresponding distance cutoffs from the 5’ ends (Figure 20, Table 1, Supplementary Fig. 1). A 

separate program (create_metaplots.bash) is also provided to produce such aggregate profiles 

for different read lengths. The exonic data tracks are then analyzed with the multitaper method 

to evaluate sensitivity on different exonic length and coverage values, and the P-sites positions 

are compared to the annotated frames to measure the precision of the P-sites frame definition. 

Additional statistics, as the number of total reads, and frame precision on different genomic 

regions are also provided in this step. Subsequently, exonic tracks are merged according to the 

annotated transcript structures to create transcript tracks.  
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Figure 25: RiboTaper de novo ORF-finding strategy. For the shown transcript, the ORF structure in the middle is chosen, 

as its AUG preserves P-sites in frame when compared to the first ORF. The ORF in the bottom is discarded, as its AUG does 

not contain additional P-sites in frame (<50%). All the depicted ORFs show overall frame preference (>50%) and 3nt 

periodicity (on the right, red bar corresponding to p-value 0.05). 

 

For each transcript, each pair of consecutive AUG-stop codon (ORF) is tested for its 3nt 

periodic pattern using the multitaper method, in all the three possible frames (p-value for 

multitaper test at 3nt periodicity <0.05). ORFs with less than 50% of in-frame P-sites are then 

excluded. In case of multiple possible start codons, we choose the most upstream in-frame AUG 

with more than 5 P-sites positions (>50% in-frame) between it and its closest neighbor AUG 

(Figure 25). In case of multiple transcript isoforms harboring the same ORF, the transcript with 

the highest number of RNA-seq reads was chosen.  

 

ORFs are then annotated based on their transcript position and overlap with known CDS regions 

(Figure 26): 

 

ORFs_ccds -> ORFs in CCDS genes, overlapping known CDS regions  

non-CCDS coding ORFs -> ORFs in non-CCDS genes, overlapping known CDS regions 

uORFs -> ORFs in CCDS genes, not overlapping with any CDS exon, upstream the annotated 

ORF 

dORFs -> ORFs in CCDS genes, not overlapping with any CDS exon, downstream the 

annotated ORF 

ncORFs -> ORFs in non-CCDS genes, not overlapping with any CDS exon 
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Figure 26: Schematics of RiboTaper ORFs annotation. In a) a "uORF" is defined as upstream the annotated start codon 

and non-overlapping any coding exon, while different "ORFs_ccds" are overlapping annotated coding exons. A "dORF" is 

defined as downstream the stop codon and not overlapping any coding exon. Shown also a lincRNA ORF overlapping a 

coding exon, therefore annotated as "nonccds_coding_ORF". In b) a "nonccds_coding_ORF" in a non-CCDS protein coding 

gene, defined as overlapping a coding exon. A "nonccds_coding_ORF" in a processed transcript gene is also present. A 

ncORF is defined as an ORF in a non-CCDS gene not overlapping any coding exon, here in an antisense gene. In c) a ncORF 

in a lincRNA gene. 

 

Furthermore, to limit the effect due to multi-mapping alignments, a filtered set of ORFs was 

created including ORFs with <30% of the Ribo-seq coverage supported by multi-mapping reads 

only.  

 

Note: 

All the analyses in this manuscript are performed on the filtered set of RiboTaper-identified 

ORFs. Filtering was disabled only for the creation of the custom protein database. 

 

Summary tables containing ORF positions, number of P-sites and RNA-seq reads per ORF are 

then created, together with BED files for the detected ORFs and in-silico translated protein 
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sequence per each ORF. Using the RiboTaper method, we sought to detect translated ORFs in 

new and published Ribo-seq datasets. 

3.2 Identification of actively translated ORFs in a human cell line 

 

Contribution Statement: 

Ribo-seq in HEK293 was performed by Neelanjan Mukherjee, Emanuel Wyler and Antje 

Hirsekorn, supervised by Markus Landthaler. Conservation analysis was performed by 

Benedikt Obermayer and Lorenzo Calviello. Mass-spec data analysis was performed by Henrik 

Zauber and Lorenzo Calviello, supervised by Matthias Selbach. Lorenzo Calviello ran the 

RiboTaper method and performed the rest of the data analysis, supervised by Uwe Ohler. 

Material appearing in this Section has been copied or adapted from our publication[145]. 

 

3.2.1 Known and novel ORFs across a wide expression range. 

 

We ran RiboTaper on our HEK293 dataset, using the GENCODE 19 GTF with the CCDS and 

APPRIS tags. 

We identified a total of ~21,000 ORFs spread over ~14,000 genes, over a wide range of 

expression levels. Such detected ORFs display 3nt periodicity, and multiple ORFs can be 

present in one single transcript (Figure 27).  

 

Figure 27: RiboTaper-detected ORFs in HEK293, across gene biotypes and expression values. In a) an example of two 

ORFs in a protein-coding transcript: 3nt periodicity (top) is capture by the multitaper test; the P-sites profile is shown in the 

middle, while the ensemble of all possible ORFs (dark colors) is shown at the bottom. In b) a gene-level summary of 

RiboTaper-detected ORFs: genes are divided based on containing a translated ORF or not; TPM values for RNA-seq, 

indicating steady-state gene expression, are depicted on the x-axis. The distribution of expression values for each gene 

biotype is shown. TPM values were calculated using RSEM. 
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Results were analyzed by aggregating ORFs by gene, as RiboTaper was not designed to resolve 

the mixture coming from different RNA isoforms per gene. As expected, the vast majority of 

detected ORFs belonged to transcripts from protein-coding genes, which showed a wide 

distribution across expression values, again confirming the excellent sensitivity of our approach. 

Few non-coding biotypes also contained translated ORFs, despite representing a minor fraction 

of the detected translatome (Figure 28). 

Most of ORFs in protein-coding genes overlapped known CCDS coding regions, belonging 

to >11,000 CCDS protein-coding genes; 369 non-CCDS protein-coding genes were identified 

as harboring translated ORFs. We detected >600 genes with translated upstream ORFs (uORFs, 

Figure 27) and 54 genes with downstream ORFs (dORFs). We also identified ORFs in 504 non-

coding genes (ncORFs), mainly belonging to pseudogene, antisense and long intergenic non-

coding RNA (lincRNA) biotypes. 

The detected ORFs categories showed different length and coverage profiles, with ORFs_ccds 

being the longest ORFs and the most covered by P-sites positions, and uORFs representing the 

shortest ORF category (median = 78 nucleotides). While the normalized coverage was similar 

for different ORFs in protein coding genes, the few detected dORFs displayed the lowest Ribo-

seq signal. Antisense and lincRNA ncORFs showed a similar pattern with respect to both length 

and coverage values, while pseudogenes and processed transcripts ncORFs showed a similar 

pattern to protein coding genes, with more sustained coverage and longer ORFs. 

 

Figure 28: ORFs categories identified by RiboTaper. Shown at the top left corner is the number of protein-coding genes 

harboring different ORF categories. On the right, length and coverage values (expressed in P-sites per codon) are plotted for 

the different ORF categories. At the bottom left, statistics about ncORFs gene biotypes (bottom left) are shown, while at the 

bottom right length and coverage statistics 
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To validate our ORF detection strategy for our HEK293 data, we compared the genomic 

coordinates of our detected ORFs with AUG translation initiation sites defined by QTI-seq[84] 

(Section 2.2.3, Appendix B.5), also performed in HEK293 cells, or the annotated start codons 

(Figure 29). By plotting the distance between RiboTaper or QTI-seq start sites and the reference 

annotation, we could evaluate the agreement between the two sets. Compared with the reference, 

149 upstream initiation sites were detected by both QTI-seq and RiboTaper, mostly 

corresponding to uORF start codons (Figure 29). 52 internal starts were identified by both QTI-

seq and our method. However, approximately 1,000 QTI-seq AUG start codon candidates did 

not overlap with either annotated or RiboTaper-defined start codons (see Discussion). As a 

measure of between-lab reproducibility, we applied RiboTaper to CHX-treated Ribo-seq data 

from the same study, and we observed that more than 99% of RiboTaper-identified CCDS genes 

were also found in our data. Agreement dropped to 68% for lincRNAs/antisense genes with 

ncORFs and 47% for uORF-containing genes, possibly due to their relatively short length, but 

also low expression levels.  

 

 

Figure 29: QTI-seq comparison ad between-samples reproducibility. a) Scatterplot (top) of the distance between reported 

QTI-seq AUG peaks and annotated start codons (x-axis) vs distance between RiboTaper ORFs starts and the annotation (y-

axis). Each dot represents the start codon of one ORF. Barplot (bottom) of the number of start positions identified by both 

QTI-seq and RiboTaper with respect to the annotated translation initiation site (aTIS). b) Overlap (top) and coverage 

(bottom) of ORFs identified in the Gao et al, data set compared to our data set, split by ORF category. 

 

As an additional confirmation of protein-coding-like behavior of the Ribo-seq signal in the 

detected ORFs, we calculated FLOSS scores[138] (Section 2.3.6) for all our ORF categories 

and compared them to known protein-coding regions. In all ORF categories, FLOSS scores 

confirmed the bona fide coding capacity of our detected ORFs (Figure 30). 
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Figure 30: FLOSS scores for ORFs identified by RiboTaper. Shown are (top) FLOSS scores with their cumulative 

distributions for CCDS genes and ORFs ccds (left), 5'UTRs and uORFs (middle left), 3'UTRs and dORFs (middle right), 

non-coding genes and different ncORFs categories (right). Cumulative density function (CDF) plots for the same values are 

shown in the bottom. FLOSS values and cutoffs were calculated as in Ingolia et al, 2014. Low FLOSS scores indicate a 

protein-coding-like fragment length distribution. 

 

Of 110 human genes with entries in the manually curated uORFdb[180] database, 63 were 

detected in our dataset. 12 of our predicted uORFs-containing genes mapped to these entries, 

which referred to 20 different studies that reported on the possible roles for these uORFs, as a 

regulatory translation event or via the encoded small peptide product[48]. 

 

Moreover, to demonstrate the general applicability of RiboTaper, we applied it to Ribo-seq data 

coming from experiments in the zebrafish embryo[130]. We identified thousands of coding 

ORFs and few dozens of ncORFs (Table 2). Among the identified ncORFs was the recently 

discovered ORF in the lincRNA toddler[181], which encodes a small polypeptide morphogen 

essential for zebrafish embryonic development (Supplementary Figure 2). 
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3.2.2 Distinct evolutionary conservation patterns in different ORF categories  

 

As pointed out in Section 2.3.7, coding sequences are by far the most conserved element in the 

genome, as they define the amino acidic sequence, and thus the function, of proteins. Given the 

distinct features we observed for the different ORF categories and biotypes described in Section 

3.2.1, we decided to investigate their evolutionary signatures.  

 

Figure 31: Nucleotide conservation at ORF boundaries. Shown are PhastCons values for ORFs in protein-coding genes 

(top) and for ncORFs (bottom). 

 

When looking at the nucleotide-level conservation defined by PhastCons[158] (Section 2.3.7) 

in a 50nt window around start and stop codons, we observed distinct patterns for the different 

ORF categories/biotypes (Figure 31): ORFs overlapping known CDS regions displayed a peak 

of conservation around start and stop codons, together with high nucleotides conservation inside 

their coding sequence. uORFs, on the other hand, displayed a high conservation values around 

start and stop codons, but low conservation inside the putative CDS, thus showing evolutionary 
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selection on the genomic positions rather than on the encoded protein product. ncORFs 

categories showed overall low levels of nucleotide conservation. High nucleotide conservation 

for pseudogenes ncORFs might represent a “mirror effect” (due to difficulties in the mapping) 

from their protein-coding parent genes. Although much weaker, an enrichment of nucleotide 

conservation at the start codon can also be observed for some ncORFs categories, like lincRNAs 

and processed transcripts. The latter also showed protein-coding-like high nucleotide 

conservation, in line with their protein-coding like features for length and Ribo-seq coverage 

(Section 3.2.1). 

 

 

To investigate the presence of selection on the encoded protein sequence of the identified ORFs, 

we examined the coding potential of different ORF categories by means of hexamer frequencies 

(CPAT) [162], codon substitution frequencies (PhyloCSF) [159] and dN/dS ratio[157], [160] 

(Figure 32, Appendix B.8). To limit the influence of sequence length or nucleotide conservation 

in our estimation of coding potential, we included, as a control for each ORF category, a set of 

ORFs (only defined on their sequence) from the non-coding transcriptome (UTRs and non-

coding transcripts) with matching length and nucleotide conservation[157]. 
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Figure 32: Coding potential of different ORF categories. In a) phastCons scores (left) and length (right) are shown for 

RiboTaper-identified ORFs (dark colors) and controls (dim colors). No significant difference in terms of length and 

nucleotide conservation (PhastCons) was found between detected ORFs and controls. In b) are shown the scores from CPAT 

(left) and PhyloCSF (right, used in the -mle mode). * = p-value below 0.05; **= p-value below 0.01; ***= p-value below 

0.001, Wilcoxon-Mann-Whitney test. ORFs_ccds and nonccds coding ORFs were selected if shorter than 300 nucleotides, to 

match negative controls ORFs. 

 

For ORFs overlapping known CDS regions, as well as for processed transcript ncORFs, 

nucleotide conservation was accompanied by high hexamer scores and a depletion of non-

synonymous SNPs (dN/dS), indicating selection on the encoded protein sequence. In line with 

the nucleotide conservation analysis, uORFs showed low hexamer scores and no significant 

enrichment of synonymous substitutions (dN/dS). Additional ncORFs categories showed a 

positive trend for hexamer scores, but no depletion for non-synonymous SNPs, revealing a 

positive coding potential when compared to controls, but no detectable selection in the human 

population (Figure 33). 
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Figure 33: Positive selection for different ORFs in the human population. Shown is the dN/dS ratio for each ORF 

category and controls. Low values indicate positive selection of the encoded peptide sequence. Controls are shown in dim 

colors. **P < 0.01, ***P < 0.001 by chi-squared test, using as expected frequencies the values from the ORF control set (See 

Appendix B.8). CCDS ORFs and non-CCDS coding ORFs <300 nt long were used in this analysis, to match negative-control 

ORFs. 

 

Taken together, ORFs detected by RiboTaper do not necessarily entail strong selection on the 

amino acidic sequence; however, selection on the genomic positions of some ORF categories 

suggests their possible regulatory roles. 

 

3.2.3 The de novo identified translatome as a proxy for the cellular proteome. 

 

The ORFs identified by RiboTaper covered annotation over more than 10,000 genes, and over 

a wide range of expression values (Figure 27), to an extent that it might be used as an effective 

proxy to define the ensemble of proteins present in a cell. To evaluate this, we created a custom 

database from our set of identified ORFs to match the spectra of a recent HEK293 tandem mass 

spectrometry dataset[182] (Appendix B.9).  

 

Figure 34: Proteome-wide detection of translated ORFs. Overlap between the protein databases derived from Uniprot or 

RiboTaper ORFs. All possible peptide sequences (left), detected peptide sequences and detected genes (middle) are shown. 

Gene expression levels (Ribo-seq and RNA-seq) for genes showing peptide support in the two search strategies (right, 

RiboTaper vs Uniprot). 

 

Compared to the human entries in the Uniprot database (rel. October 2014), the RiboTaper 

dataset included ~59% of the possible tryptic peptides (Figure 34). Moreover, our set included 
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around 2% of additional peptides not present in Uniprot. When matching spectra from MS/MS 

to peptide sequences, we confirmed >90,000 RiboTaper peptide sequences, belonging to >8,000 

genes, similar to the results of the full Uniprot search. Over 3,900 peptide sequences were found 

only by our custom search but not using the Uniprot database (1% FDR, Figure 34, Appendix 

B.9). The RiboTaper-only peptides matched more spectra than UniProt-only peptides, despite 

being shorter and with lower matching scores (Supplementary Figure 3). On the other hand, our 

custom search missed >3,600 peptides matched by Uniprot sequences. However, we found little 

evidence for expression or translation for most of the genes encoding for Uniprot-only peptides, 

suggesting that those identifications may derive from erroneous spectral matching, or very 

stable peptides derived from genes which are no longer active. 

 

 

Figure 35: Translated ORFs with peptide evidence. The number of genes containing at least one RiboTaper identified 

ORF with peptide evidence, divided by ORF category (left). Genes containing at least one RiboTaper identified ORF with 

novel peptide evidence (not found in Uniprot, human entries, rel. October 2014) using the RiboTaper database (middle; 191 

ORFs in 189 genes) or a database of the union of RiboTaper and Uniprot entries to exclude potential cross-matches (right; 

157 novel peptides mapping to 129 ORFs in 127 genes). Red numbers indicate evidence from uniquely assigned peptides. 

 

The RiboTaper ORFs with peptide support mapped mostly to known protein-coding genes, with 

very few exceptions (Figure 35). Pseudogene ncORFs represented the biggest class of ncORFs 

with unique peptide evidence, an observation which probably needs additional confirmation 

(See Discussion). Among the novel matches, we identified 2 peptides belonging to a uORF in 

the MIEF1 gene, previously reported as a novel ORF with high coding potential[183]. 

Additional ORFs with peptide evidence encompassed 3 dORFs and some ncORFs, located in 

conserved and non-conserved genomic regions of the genome. In total, 228 identified peptide 

sequences were not annotated in Uniprot. In most cases, the novel identified peptides mapped 

uniquely to their respective ORFs, even when merging the Uniprot and RiboTaper databases 

(Figure 35). 

Taken together, these results show how Ribo-seq data can be used as an effective proxy to 

define the cellular proteome. 
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3.3 ORF detection with an improved protocol in Arabidopsis thaliana 

 

Contribution Statement: 

Ribo-seq in Arabidopis thaliana and western blot validations for novel peptides was performed 

by Polly Yingshan Hsu, supervised by Philip N. Benfey. Conservation analysis was performed 

by Fay-Wei Li and Carl J. Rothfels. Ribo-seq data analysis was performed by Lorenzo Calviello, 

supervised by Polly Yingshan Hsu, Uwe Ohler and Philip N. Benfey. Material appearing in this 

Section has been copied or adapted from our publication[184]. 

 

3.3.1 Analysis of an improved, high-resolution Ribo-seq protocol 

 

A modified Ribo-seq protocol (Appendix B.11) has been developed by Polly Yingshan Hsu to 

investigate translation in roots and shoots of Arabidopsis thaliana. Inspired by early studies 

describing the importance of the composition of extraction buffer during the Ribo-seq 

protocol[81], four buffers at different ionic strengths were tested in their ability to produce high-

quality ribosomal footprints. Despite showing very similar counts per gene and similar read 

lengths distributions, the four buffers produced footprints at different levels of sub-codon 

resolution (Figure 36). 

 

Figure 36: An improved Ribo-seq protocol. In a) the 4 tested conditions for the polysome/lysis buffer in the Ribo-seq 

protocol. In b) the polysome profiles using the 4 different buffers. In c) read length distributions for the different buffers, 

while in d) the percentage of reads in frame is shown. In e) correlation between the different buffers using Ribo-seq counts on 

protein-coding genes. 
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To evaluate the ability of this modified protocol in capturing translation at high resolution, 

Ribo-seq was performed again with optimized conditions (using buffer D) in roots and shoots, 

and results were compared to other published Ribo-seq datasets in Arabidopsis thaliana[185]–

[187] (Appendix B.11).  

 

 

Figure 37: Comparisons of different Ribo-seq protocols. a) Length distribution of ribosome footprints among the current 

study (Hsu_root and Hsu_shoot), and three other published datasets. b) Percentage of Ribo-seq reads in the coding reading 

frame. Data were extracted from the meta-gene analysis using 28nt footprints in which most of the datasets display the best 

3nt periodicity. The gray line marks 33%, which is the percentage of reads expected if there is no enrichment in any frame. In 

c) mapping statistics for the different datasets, across different genomic features. 

 

 

The different datasets showed profound differences when looking at read length distribution 

and mapping statistics on different genomic regions (Figure 37): the Hsu dataset showed a very 

narrow read length distribution, peaking at 28nt, while the other datasets consisted of longer 

read lengths and broader read length distributions, especially for the Juntawong dataset. When 
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looking at mapping statistics, we observed >95% of the Hsu libraries mapping to known CDS 

regions, similar to the Liu libraries, and a lower proportion (~85%) for the Merchante and 

Juntawong datasets. When looking at different genomic regions, the Juntawong data showed a 

substantial number of reads mapping to introns and UTR regions, higher than the other datasets. 

The Merchante libraries showed an enrichment of reads mapping to intergenic regions. 

When looking at the sub-codon resolution of the different datasets, we again observed marked 

differences: most of the read lengths in the Hsu dataset showed a clear initiation peak followed 

by a substantial frame precision, with >95% reads mapping to the translated frame. The 

Merchante and Liu datasets showed moderate frame preference, with ~60% reads in frame, 

followed by the Juntawong dataset, which showed very little frame preference despite the 

preference of a clear initiation peak, at the exact 5’end of each read length (Figure 38). 

 

 

Figure 38: Sub-codon resolution of different Ribo-seq datasets. Aggregate profiles are shown around annotated start (left) 

and stop (right) codons, for the different datasets. 

 



Results | ORF detection with an improved protocol in Arabidopsis thaliana | Analysis of an improved, high-

resolution Ribo-seq protocol 

 
 Section 3.3.1 - page 85 

 

To investigate how such marked differences in the libraries would impact the detected 

translatome, we applied RiboTaper (Section 3.1). Using the Hsu data, we could confidently 

identify translation in >15,000 protein-coding genes, also at moderate sequencing depths (25M 

mapped reads). The Liu and Merchante datasets enabled the identification of 12,000 and 10,000 

genes, while we could identify translated ORFs for less than 1,000 genes using the Juntawong 

dataset. Results were similar when checking the number of genes with translated ORFs against 

their expression values measured by RNA-seq (Figure 39): at an expression cutoff of 1 TPM 

(Section 2.3.3), we detected translation for >90% of expressed genes using the Hsu data, with 

percentages dropping for the other datasets. A similar trend is visible when looking at the 

detected ORF lengths compared to the annotation (Figure 39). The quality of the different 

datasets also influenced the detected ORF length. Using the Hsu data, we could capture (on 

average) >90% of the annotated ORFs lengths, even at low sequencing depths which compared 

favorably to the other datasets. Taken together, these results show how the new protocol 

compares favorably to other datasets and greatly improves ORF detection with RiboTaper. 

 

Figure 39: ORF detection with RiboTaper across datasets. In a) the number of protein-coding genes harboring translated 

ORF(s), as a function of sequencing depth, for the different datasets. In b) the percentage of genes harboring translated ORFs 

as a function of their steady-state RNA expression (25 Million reads were used for each dataset). In c) the average of 

annotated ORFs length (in percentages) captured by RiboTaper in the different datasets. Low numbers indicate short, 

truncated ORFs. 
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3.3.2 New, ultra-conserved ORFs in non-coding genes 

 

More than 18,000 protein-coding genes harbored a translated ORF, including 187 uORFs and 

10 dORFs. 44% of the detected uORFs overlapped with annotated CPuORFs, which are 

conserved uORFs thought to encode for functional peptides[188]. Moreover, we could detect 

~100 ncORFs, divided in non-coding RNAs (ncRNAs), pseudogenes and transposable elements 

(Table 2). 

 uORFs ORFs_ccds dORFs ncRNAs Pseudogenes Transposable 

elements 

Root 136 16,657 2 23 27 31 

Shoot 87 16,107 8 14 14 40 

Total 187 18,153 10 27 37 57 

Table 2: RiboTaper-detected ORFs in Arabidopsis thaliana. Shown are the genes harboring translated ORFs, divided by ORF 

category/biotype. There are 27,416 protein-coding genes, 394 ncRNAs, 924 pseudogenes, and 3,903 transposable element 

genes annotated in TAIR10. The 89 known CPuORFs are annotated as protein-coding genes, and they were grouped with 

uORFs here. 

 

Inspired by the high quality of our data, we decided to test whether these new coding elements 

produce stable peptides. 

To investigate whether the detected novel ORFs code for stable small proteins in planta, we 

picked 4 candidates to be experimentally verified (Figure 40). 

 

Figure 40: Experimental validation of ORF candidates. a)-c) RNA-seq and P-sites in ribosome footprints in root for three 

ORFs identified within annotated ncRNAs. The predicted CDS and 5’ UTR are depicted as black and gray boxes, 

respectively. 3’ UTR is represented by a white arrow. In d) a schematic diagram of HA-tagged constructs and western blot 

analysis of novel proteins produced by the three annotated ncRNAs in panels a)-c). Total protein in control plants (Col-0) and 

transgenic plants expressing individual HA-tagged proteins were isolated and analyzed with either anti-HA or anti-UGPase 

antibodies (loading control). 
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ORF candidates were cloned (including their UTRs) into a construct with a HA (hemagglutinin) 

tag at the end of their CDS, and subsequently transformed in Arabidopsis. Using western blots 

against the HA tag we could confirm the presence of 3 out of 4 candidates tested, and thus the 

high fidelity of our novel ORF candidates.  

 

The experimental confirmation of stable peptides coming from the novel ORFs detected by 

RiboTaper led us to the investigation of whether these peptides may have an important function 

in Arabidopsis, or even in additional plant species. We surveyed 15 different plant genomes, 

including sequences from plant species very distant from Arabidopsis in the phylogenetic tree 

(Appendix B.14). Of the 19 single-exon ORFs in annotated ncRNA genes, 15 showed at least 

one homolog in other plant genomes, (Figure 41). We found a homologous sequence only in 

the genome of Arabidopsis lyrata for one candidate, while all the other ORFs had homologous 

genes throughout the Brassicaceae family. For six ORFs we found homologous sequences in 

other Eudicot or even Monocot species, with one ORF being conserved even in Selaginella, a 

plant genus diverged >400 million years ago from Arabidopsis[189]. 
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Figure 41: Evolutionary conservation of novel ORFs. In a) multiple species alignment of 3 novel ORFs identified in 

annotated ncRNAs. Amino acids with the same functional groups are shown in similar colors. In b) amino acid sequence 

identities between novel ORFs within annotated ncRNAs in Arabidopsis thaliana and their corresponding homologs in other 

15 plant species. A phylogenetic tree showing evolutionary divergence is on the left. ORFs were grouped based on their 

homologs identified in other species (I to VI). 
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3.4 Annotating and quantifying the translated transcriptome 

 

Contribution Statement: 

Except for the Mass-spec database search, performed by Henrik Zauber and Matthias Selbach, 

all the analyses in this chapter were performed by Lorenzo Calviello, supervised by Uwe Ohler. 

All the results in this section are unpublished material. 

 

3.4.1 The SaTAnn strategy 

 

As shown in Section 3.1, we can use active ribosome elongation from Ribo-seq data to 

confidently identify translation. However, the complexity of the eukaryotic transcriptome poses 

a great challenge in understanding the full ensemble of synthesized proteins in a cell. RNA-seq 

techniques have uncovered the presence of multiple transcripts per gene, but the contribution 

of alternative splicing to protein diversity has remained elusive.  

When attempting isoform-level quantification with Ribo-seq and RNA-seq, it is possible to 

observe many inconsistencies, with many transcripts exhibiting no expression but sustained 

level of ribosome occupancy, or vice versa (Figure 42). Many genomic loci will present a rich 

ensemble of possible transcript structures, thus resulting in difficulties in resolving the mixture 

of isoforms. Moreover, ribosomes do not map to 3’UTR regions, making the comparison 

between isoform-specific quantification estimates very challenging. 
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Figure 42: Example of transcript-level quantification on the GUK1 gene. RSEM transcript-level quantification on the 

GUK1 gene. Shown are the percentages of total gene expression (using RNA-seq or Ribo-seq) for each isoform (only a 

subset of isoforms is shown). 

 

We then decided to extend our ORF finding strategy to identify and quantify the ensemble of 

translated transcript isoforms in a cell, again using Ribo-seq data.  

Our strategy, named Splice-aware Translatome Annotation (SaTAnn), is comprised of multiple 

steps, which consist in quantifying ORF usage in a subset of the annotated transcripts using 

Ribo-seq signal over their transcript positions (Figure 43). 
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Figure 43: The SaTAnn workflow. Multiple steps are depicted, from the assignment of Ribo-seq signal to transcript regions 

until ORF quantification. 

 

 

A detailed explanation of the single steps is outlined below, together with our validation scheme 

which integrates multiple data sources from different technologies. 

 

Transcript Filtering: 

 

For each gene, transcripts are divided into different features (exonic regions and splice 

junctions), which can be unique or shared between different transcripts. A transcript feature can 

or cannot contain evidence from Ribo-seq. Spliced reads are used to extract evidence for splice 

junctions, while P-sites positions indicate evidence over exonic bins. Exonic bins are defined 

as in the DEXSeq strategy, by flattening the transcript structures and delineate common and 

shared regions[114]. 

Our strategy aims at selecting a small number of transcripts which contain all the features with 

Ribo-seq evidence, minimizing the number of structures with no evidence in their putative CDS. 

As transcripts are selected, we keep track of the explained features, which will be used to further 

select or filter transcripts. As we parse the list of annotated transcript structures, the following 

rules are employed for each transcript 𝑇𝑥𝑖: 
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1) 𝑇𝑥𝑖 contains a new feature with evidence: 

𝑇𝑥𝑖 is selected and each previously selected 𝑇𝑥𝑗  is re-analyzed: 

i) If all the features with evidence of 𝑇𝑥𝑗  are in 𝑇𝑥𝑖, transcript j is filtered, 

ii) If 𝑇𝑥𝑗  contains the same features with evidence of 𝑇𝑥𝑖, but more internal features 

with no Ribo-seq evidence, it is filtered. 

2) 𝑇𝑥𝑖 does not contain a new feature with evidence: 

𝑇𝑥𝑖 is not immediately selected, but it competes with each previously selected structure 

𝑇𝑥𝑗. 

If all the features with evidence of 𝑇𝑥𝑗  are in 𝑇𝑥𝑖, but 𝑇𝑥𝑖 has less internal features with 

no Ribo-seq evidence, 𝑇𝑥𝑖 is selected and 𝑇𝑥𝑗  is filtered out. 

 

Internal features are defined as the features contained between the first and the last feature with 

at least 1 Ribo-seq read, which should represent the translated exons. As Ribo-seq maps on 

5’UTRs and within the coding regions, this approach cannot distinguish between 3’UTR 

isoforms (see Discussion). 

As they lack Ribo-seq evidence, we hypothesized that the discarded transcript structures do not 

represent mature mRNA structures in HEK293. To validate our approach, we calculated 

expression values of selected and non-selected transcripts using deep, paired-end, strand-

specific RNA-seq data, using RSEM[98] (Section 2.3.3) to calculate transcript-specific 

expression levels. 
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Figure 44: Transcript filtering. In a) an example gene (GUK1) with depicted discarded (top, in gray) and selected (orange) 

transcripts structures, together with tracks of nuclear (gray) and cytoplasmic (light blue) RNA-seq. Shown are also P-sites 

positions and junctions from Ribo-seq (dark blue). In gray boxes examples of exonic bins of discarded structures, while in 

orange an exonic bin of a selected structure. In b) isoform-specific expression values from RNA-seq (in % of total gene 

expression) for different transcript (txs) categories (all txs, discarded txs, selected txs, selected txs without a translated ORF, 

selected txs with a translated ORF). Outliers are not shown. In c) the distribution of nuclear vs. cytoplasmic localization of 

exonic bins of different transcripts categories. Negative numbers indicate cytoplasmic localization. 

 

As shown in Figure 44, roughly 2/3 of the annotated transcript structures were discarded by our 

strategy, and showed little to no expression in RNA-seq data (median RNA-seq counts = 0), 

while the small subset of selected transcripts (n ~ 51,000) showed appreciable expression levels, 

confirming the validity of our selection strategy. An additional separation can be made between 

selected transcripts whether they harbor a translated ORF or not (discussed in next section), as 

translated transcripts show more sustained level of steady-state expression. 

As translation is a cytoplasmic process, the selected transcript structures should represent bona 

fide cytoplasmic transcripts. Conversely, discarded transcript structures can represent RNA-

processing intermediates which can be detected in the nucleus, but not in the cytoplasm. To test 

this hypothesis, we performed a differential exon usage analysis with DEXSeq (Section 2.3.3), 

using RNA-seq data from nuclear and cytoplasmic extracts, in HEK293 cells[70]. As shown in 

Figure 44, the differentially expressed exons show a bimodal distribution in their localization 
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pattern. One distribution peaks at a moderate enrichment in the cytoplasm (log2FC<0), while 

many exons show a marked enrichment in the nucleus (log2FC>0). Such skewed pattern is 

expected, as the nuclear RNA-seq represents a mixture of signal coming from nascent pre-

mRNA, splicing intermediates and mature RNAs, while cytoplasmic RNA-seq exhibits 

coverage only mature RNAs. Exons uniquely belonging to discarded transcript structures show 

a clear nuclear localization, while selected transcripts are more enriched in the cytoplasm. 

Again, a further separation can be made between selected transcripts, where non-translated 

selected transcript structures also show an enrichment in the nuclear fraction. Taken together, 

our analysis shows how it is possible to select for mature cytoplasmic transcript structures using 

Ribo-seq only. 

 

ORF Finding: 

 

As in the RiboTaper strategy (Section 3.1), the nucleotide sequence is used to determine the 

ORF position. The multitaper method is then employed to ensure the P-sites 3nt periodicity 

(thus active translation elongation) over the ORF. 

 

ORF selection and Quantification: 

 

We select ORFs using the same rules used for transcript filtering, this time using ORF bins and 

splice junctions derived from the ORF structures. ORF quantification is subsequently 

performed, using the length-normalized Ribo-seq coverage 𝐶𝑜𝑣 on the ORF features. 

 

𝐶𝑜𝑣 =
#𝑟𝑒𝑎𝑑𝑠

𝑙𝑒𝑛𝑔𝑡ℎ
 (10) 

 

P-sites positions are used for exonic regions, while spliced reads for exon-exon junctions. For 

splice junctions, the length is set to 60, according to the possible nucleotide space covered by a 

spliced read of ~30nt.  

A feature 𝐹 can be unique to one ORF or shared between multiple ORFs (Figure 44). For unique 

features 𝐹𝑢 we can calculate the average coverage 𝐴𝑣𝐶𝑜𝑣𝑈𝑛, using the coverage 𝐶𝑜𝑣𝐹𝑢  on 

each of the #𝐹𝑢 unique features (Equation 11). 
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𝐴𝑣𝐶𝑜𝑣𝑈𝑛 =
∑ 𝐶𝑜𝑣𝐹𝑢

#𝐹𝑢
𝐹𝑢

#𝐹𝑢
 (11) 

 

The same can be applied to all features 𝐹𝑎𝑙𝑙 mapping to the ORF (Equation 12) 

 

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙 =
∑ 𝐶𝑜𝑣𝐹𝑎𝑙𝑙

#𝐹𝑎𝑙𝑙
𝐹𝑎𝑙𝑙

#𝐹𝑎𝑙𝑙
 (12) 

 

A scaling factor 𝐶𝑂𝑅𝐹  is calculated, for each ORF, using the ratio between 𝐴𝑣𝐶𝑜𝑣𝑈𝑛  and 

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙  (Equation 13). Such scaling factor represents the portion of signal that can be 

attributed to one ORF. 

 

𝐶𝑂𝑅𝐹 =  
𝐴𝑣𝐶𝑜𝑣𝑈𝑛

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙
 (13) 

 

The maximum value for 𝐶𝑂𝑅𝐹 is set to 1. When no unique region is present in one ORF (all 

regions are shared with other ORFs), the coverage  𝐶𝑜𝑣𝐹𝑎𝑑𝑗 on each feature 𝐹𝑎𝑑𝑗 attributed to 

that ORF is calculated subtracting the expected signal coming from other 𝑂𝑅𝐹𝐹𝑎𝑑𝑗 mapping to 

the feature, using the scaling factors calculated in the Equations 10-13. In such cases, the 

calculation of the adjusted coverage for each feature 𝐹𝑎𝑑𝑗 is as follows (Equations 14-16): 

 

𝐶𝑜𝑣𝐹𝑎𝑑𝑗 =
#𝑟𝑒𝑎𝑑𝑠𝐹𝑎𝑑𝑗

𝑙𝑒𝑛𝑔𝑡ℎ𝐹𝑎𝑑𝑗
−

#𝑟𝑒𝑎𝑑𝑠𝐹𝑎𝑑𝑗

𝑙𝑒𝑛𝑔𝑡ℎ𝐹𝑎𝑑𝑗
∗  ∑ 𝐶𝑂𝑅𝐹𝐹𝑎𝑑𝑗

#𝑂𝑅𝐹𝑎𝑑𝑗
𝑂𝑅𝐹𝐹𝑎𝑑𝑗

 (14) 

 

𝐴𝑣𝐶𝑜𝑣𝐴𝑑𝑗 =
∑ 𝐶𝑜𝑣𝐹𝑎𝑑𝑗

#𝐹𝑎𝑑𝑗
𝐹𝑎𝑑𝑗

#𝐹𝑎𝑑𝑗
 (15) 

 

𝐶𝑂𝑅𝐹 =  
𝐴𝑣𝐶𝑜𝑣𝐴𝑑𝑗

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙
 (16) 

If no unique region is present in any detected ORF in the gene (all regions are shared among 

ORFs), the scaling factor is calculated assuming uniform Ribo-seq coverage on each ORF. 

Coverage 𝐶𝑜𝑣𝐹𝑠ℎ  is simply divided by the number of 𝑂𝑅𝐹𝐹𝑠ℎ  mapping to the feature 𝐹𝑠ℎ. 

(Equation 17-19). 
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𝐶𝑜𝑣𝐹𝑠ℎ =
#𝑟𝑒𝑎𝑑𝑠𝐹𝑠ℎ

𝑙𝑒𝑛𝑔𝑡ℎ𝐹𝑠ℎ
#𝑂𝑅𝐹𝐹𝑠ℎ⁄  (17) 

 

𝐴𝑣𝐶𝑜𝑣𝑆ℎ =
∑ 𝐶𝑜𝑣𝐹𝑠ℎ

#𝐹𝑠ℎ
𝐹𝑠ℎ

#𝐹𝑠ℎ
 (18) 

 

𝐶𝑂𝑅𝐹 =  
𝐴𝑣𝐶𝑜𝑣𝑆ℎ

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙
 (19) 

 

 

After the calculation of 𝐶𝑂𝑅𝐹, the adjusted number of P-sites for each ORF (𝑃𝑂𝑅𝐹) is calculated 

using the raw number of P-sites mapping to the ORF multiplied by the scaling factor, to obtain 

ORF-specific quantification estimates (Equation 20). 

 

𝑃𝑂𝑅𝐹 = 𝑃𝑠𝑖𝑡𝑒𝑠 ∗ 𝐶𝑂𝑅𝐹  (20) 

 

For each ORF of length 𝐿𝑂𝑅𝐹, the scaled numbers of P-sites 𝑃𝑂𝑅𝐹 is normalized over the entire 

set of detected ORFs 𝑂𝑅𝐹𝑁, to obtain TPM-like values (see Equation 2), named P-sites per 

Nucleotide per Million (P_sites_pNpM), using this formula (Equation 21).:  

 

P_sites_pNpM𝑂𝑅𝐹 =
𝑃𝑂𝑅𝐹

𝐿𝑂𝑅𝐹
∗

106

∑
𝑃𝑂𝑅𝐹
𝐿𝑂𝑅𝐹

#𝑂𝑅𝐹
𝑂𝑅𝐹

  (21) 

 

 

Moreover, we calculated the contribution of each ORF to the overall translation output of a 

single gene. Such metric, named Iso_P_sites (or percentage of gene translation), is calculated 

dividing 𝑃𝑂𝑅𝐹 by the sum of 𝑃𝑂𝑅𝐹 of all ORFs (#𝑂𝑅𝐹𝑔) detected in a gene (Equation 22). 

 

𝐼𝑠𝑜_𝑃_𝑠𝑖𝑡𝑒𝑠𝑂𝑅𝐹 =
𝑃𝑂𝑅𝐹

∑ 𝑃𝑂𝑅𝐹
#𝑂𝑅𝐹𝑔
𝑂𝑅𝐹

 (22) 
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Normalization by length is here not applied, as this metric wants to quantify the amount of 

translation per gene coming from each ORF. To filter out lowly translated ORFs, we retained 

ORFs until reaching 99% of the overall gene translation. 

 

To check the validity of our quantification estimates, we ran our analysis on Ribo-seq from 

HEK293 (same dataset as in Section 3.2). We obtained ~27,000 ORFs, divided in ~14,000 

genes. More than half (55%) of the detected genes harbored only one translated transcript, with 

the distribution of translated transcripts per gene exhibiting a power-law-like behavior (Figure 

45). When looking at the quantification for the detected ORFs we observed a large amount 

(~30%) of lowly translated ORFs, harboring only between 0 and 5% of their host gene 

translation. This scenario outlined how more than 75% of genes have only 1 translated isoform 

representing >90% of gene translation. 

 

 

Figure 45: ORF-specific quantification of translation. In a) the quantification strategy is outlined: P-sites positions and 

splice junctions which are unique to an ORF structure (dark red or light red) are used to scale the total Ribo-seq coverage, 

allowing for the calculation of % of gene translation (used to color ORF structures of the lower track). In b) the distribution 

of translated transcripts per gene. In c) the percentage of gene translation across all the detected ORFs. 
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3.4.2 Validating translation quantification 

 

To validate our quantification estimates, we compared them with a deep polysome profiling 

dataset from the same cell line[62] (Appendix B.15). 

 

Figure 46: Polysome Profiling comparison. On the y-axis, the average log2 fold change over cytoplasmic abundance. On 

the x-axis, the different polysome fractions. Different lines indicate ORFs grouped by different translation levels 

(Iso_P_sites). Lowly translated ORFs do not migrate to heavy polysome fractions. 

 

When looking at differential exon usage (again using DEXSeq) across the polysome fractions, 

we observed how our quantitative estimates correspond to distinct polysome profiles (Figure 

46). Exons belonging to lowly translated ORFs migrate to low polysomes and are depleted in 

heavier polysomal fractions. Conversely, highly translated ORFs migrate also to the heavy 

polysomes. 

Despite the fundamental differences between polysome profiling and Ribo-seq in representing 

the translated transcriptome, the two techniques agreed in detecting quantitative differences in 

the translation of multiple isoforms per gene. 
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Intuitively, our quantification of translation should reflect the rate at which proteins are 

synthesized. As in Section 3.2.3, we decided to match a deep proteomics dataset from the same 

cell line to our set of identified ORFs. We observed a good correlation between our quantitative 

estimates and protein abundance (Figure 47). The correlation values are slightly higher when 

compared to transcript-level translation quantification using RSEM supplied with Ribo-seq, 

again validating our ORF detection and quantification strategy. 

 

 

Figure 47: Proteome-wide correlations with translation estimates. Steady-state protein abundance, represented by the 

iBAQ values (obtained from label-free quantification) are correlated with either TPM values from RSEM (left), or our 

P_sites_pNpM values (right). Shown in red are the coefficients from Pearson (R) and Spearman (rho) correlations. Proteins 

from genes with more than one detected protein (in the MS/MS) are shown in blue. When multiple transcripts coded for the 

same protein, their TPM values were summed up. 

 

 

Splice Features Annotation: 

 

For each ORF, the genomic position of its features was annotated with respect to the longest 

annotated CDS, to identify alternative splicing events such as alternative acceptor and donor 

sites. 

For genes with multiple translated transcripts, we built aggregate profiles over alternative splice 

sites, and we observed Ribo-seq coverage spanning alternative exons (Figure 48). As a control, 

we built the same profiles over region where the splice sites are shared between the isoforms. 

This analysis validated our ORF detection strategy, and confirmed the presence of a detectable 

mixture of signals coming from the translation of alternative RNA isoforms from a single gene. 
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Figure 48: Alternative splicing events in Ribo-seq. Events (shown in red in the gene models) such as upstream donors 

(top), downstream acceptors (middle) or upstream stop codons (down) are annotated with respect to the longest isoform 

(shown in white in the gene model snippet). Aggregate profiles of Ribo-seq coverage are shown, delineating the presence of 

multiple translated RNAs. On the right, aggregate profiles are built over canonical events (in dark grey), as a control. 

 

 

Taken together, multiple data sources validated the SaTAnn strategy to detect translation on 

multiple RNA isoforms, and allowed us to focus on interesting events at the interface between 

protein synthesis and RNA metabolism. 

 

3.4.3 Translation on degraded RNA isoforms 

 

The presence of numerous lowly translated transcripts (Figure 45) implies the presence of 

inefficient translation and/or very low steady-state abundance of the transcript. As translation 

and RNA degradation are intertwined in different RNA surveillance pathways (Section 2.1.7), 

we decided to investigate the different isoforms susceptibility to RNA decay mechanisms as a 

cause of low Ribo-seq signal. As a baseline, we investigated whether lowly translated 

transcripts were annotated as non-coding RNA isoforms. When focusing on genes with multiple 

translated transcript biotypes (Section 2.1.2), we observed how non-coding biotypes, such as 

nonsense-mediated decay and retained intron transcripts, were enriched in lowly translated 

transcripts (Supplementary Figure 4). This indicated that low levels of translation could be 

related to the transcript instability. 

To test this hypothesis, we investigated the position of the detected ORFs on different 

transcripts. An important factor which can trigger NMD is the presence of a premature stop 

codon (PTC, Section 2.1.7). In one of the NMD modes of action, a stop codon can be recognized 

as premature when a downstream Exon Junction Complex (EJC) is not displaced during 
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translation. To investigate the putative action of NMD on PTC-containing transcripts, we 

divided transcripts based on the presence of a splice site downstream of the detected stop codon. 

In theory, the presence of an EJC on the downstream splice site should trigger the recruitment 

of the NMD machinery, and thus cause RNA decay. We used data from a recent study in 

HEK293[57] (Appendix B.15), to map the cleavage events on NMD target transcripts. 

 

 

Figure 49: Degradation pattern over NMD target candidates. On the left, profiles of 5’ endonucleolytic cleavages are 

built around control ORFs. On the right, a higher coverage in the 5’ cleavages can be observed, accompanied by an 

enrichment when depleting the exonuclease XRN1 and a reduction when co-depleting members of the NMD pathway, like 

SMG6 or UPF1. 

 

 

When mapping the cleavage sites over the stop codons of PTC and non-PTC containing 

transcripts from the same genes, we observed a clear difference (Figure 49): transcripts where 

the EJC is displaced (no PTC) showed background-like signal, while transcripts harboring a 

PTC, enriched in non-coding transcripts biotypes, showed a degradation profile around their 

stop codon, as expected. The degradation signal was less pronounced when also SMG6 or UPF1 

were knocked-down, confirming the involvement of key elements of the NMD pathway in 

mediating translation-dependent isoform-specific RNA degradation. 

One of the candidates for isoform-specific translation-dependent degradation is represented in 

Figure 50, where a lowly translated ORF in the Diablo gene shows a PTC and displays a higher 

XRN1-dependent degradation profile. 
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Figure 50: Example of isoform-specific NMD action. Depicted is a section of the Diablo gene. Shown are the discarded 

(gray) and selected (orange) transcript structures. P-sites positions and Ribo-seq junctions (in blue) show the presence of 

translation on alternative spliced isoforms. Shown is also the cut profile after XRN1 depletion (green), together with the 

SaTAnn-derived ORF structures below. Translation quantification (percentage of gene translation) shown in red scale. In the 

green box, an isoform with a recognized PTC is shown. Plot generated using Gviz. 

 

To further explore the dependency of NMD action to the PTC location and the transcript type, 

we plotted the number of endonucleolytic cuts at the stop codon as a function of PTC distance 

to the exon-exon junction. As shown in Figure 51, for all the surveyed ORFs (including uORFs), 

we observed an increase in degradation with increasing distance from the exon-exon junction. 

As expected[57], ORFs in snoRNA-host genes showed the highest degradation profile, while 

other categories exhibited a lower amount of degradation, showing a wide dynamic range of 

isoform-specific RNA degradation. 
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Figure 51: NMD action in different ORF categories. Each dot represents the number of endonucleolytic cuts (y-axis) in a 

window of 50nt around a stop codon; on the x-axis, the distance (in transcript coordinates) between the stop codon and the 

last exon-exon junction. Positive values (on the x-axis) indicate a “canonical” ORF, while negative values indicate PTC 

candidates. In red, a distance of 50nt is shown. ORFs are divided based on the host transcript biotype (first 4 panels), their 

position in the transcript (Panel 5), or based on their gene host biotype (Panels 6-8). The blue lines represent a local 

polynomial fitting (“loess”) of degree 2 with default parameters. Gray shadings represent 95% confidence intervals. 
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4 Discussion 

 

 

Ribo-seq allows us to have an unprecedented look at a crucial step of gene regulation, where 

the genetic information is ultimately transferred to protein. At the same time, the translational 

status of a transcript influences its stability and its interaction with other cellular processes like 

intracellular trafficking, promoting the ribosome as a central hub for post-transcriptional gene 

regulation. Understanding the impressive wealth of information present in Ribo-seq data allows 

researchers to focus on such global aspects of gene expression regulation, uncovering the 

amount of control of translation[131]. At the same time, Ribo-seq provides a detailed 

description of the mechanisms of translation itself, thanks to its single-nucleotide 

resolution[190]. 

 

Such resolution provides a new angle for the computational analysis of Ribo-seq data, given 

the peculiar features of Ribo-seq data over translated regions (Section 2.3.6). The analysis of 

such features over the transcriptome allows us to identify the actively translated regions, 

resulting in an escalation of computational approaches which go beyond the collection of count-

based statistics, switching to analysis strategies inspired by concepts coming from signal 

processing theory (Section 2.3.6). However, one of the problems in detecting high-confidence 

translation using Ribo-seq is the lack of a proper negative control. As the protocol does not 

entail the sequencing of an “input-like” pool of RNAs, we are left with only “positive” signal. 

As most of the Ribo-seq signal comes from expressed protein-coding genes, researchers have 

immediately shown great excitement about the specificity of the technique, with great efforts 

in the community to confirm translation of other non-coding regions of the transcriptome, such 

as uORF and small ORF translation, in all the systems where Ribo-seq has been performed. 

However, the presence of ribosomal coverage on virtually any long transcript raised some 

criticism about the active translation of those regions, but also about the functional relevance 

of such translation events. Regarding the first aspect, many of the different proposed strategies 

leveraged on Ribo-seq coverage features observed in known coding regions, scoring ORFs 

transcriptome-wide and selecting high-scoring candidates[134], [138], [140]. It is unclear 

whether such approaches can determine the ensemble of translated regions with high specificity 

and sensitivity in different datasets. In fact, many of the proposed methods were applied to 

extremely deep Ribo-seq datasets, sometimes requiring multiple protocol variations[140], 
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challenging the feasibility of such approaches at average data depths. A proper evaluation of 

the different available methods, using both simulations and real experimental data, will 

highlight the strength and pitfalls of the available ORF finding methods. 

Thanks to the sub-codon resolution observed in Ribo-seq, we proposed a novel analysis strategy, 

which uses the multitaper method to identify translation on the basis of ribosomal elongation. 

The codon-by-codon movement of the elongating ribosomes is a universal feature of translation, 

which can be observed independent of the kinetics of initiation or termination, and allows for 

detection of translation over a wide range of expression levels (Figure 27). With its ability to 

combine statistical testing (Section 2.3.5 and Appendix A) with the spectral representation of a 

discrete signal, the multitaper proved to be a suitable tool to detect such pattern in noisy data 

such as NGS data. The high sensitivity of the multitaper method comes with its excellent 

specificity, as shown by simulations and by its performance on RNA-seq data (Section 3.1.1). 

The uniform distribution of multitaper-derived p-values on RNA-seq (Figure 22) showed the 

high specificity of the multitaper in identifying 3nt periodicity in Ribo-seq only, especially 

when compared with a simpler test for frame preference, which is the underlying engine of 

many early ORF-finding approaches[130], [142], [143]. Such extensive testing allowed us to 

confidently proceed to identify translation genome-wide. 

We decided to focus only on AUG-starting ORF, as the validity of non-AUGs as efficient start 

codons is a matter of debate[36], despite the presence of few well-documented cases [191]. The 

choice of using only features of ribosome elongation limits the need of additional Ribo-seq 

variants. However, translation initiation mapping can prove useful when specifically interested 

in 5’UTR translation given the widespread usage of non-AUG start codons[37]. Distinguishing 

between ribosome initiation/elongation and other translation events leading to high ribosome 

occupancy (such as abortive translation initiation events) can be extremely challenging when 

looking at 5’UTRs, especially when analyzing conditions such as stress, tumor onset, or 

differentiation, which have been reported to exhibit high ribosomal coverage in 5’UTRs, most 

likely as a result of low levels of canonical, cap-dependent mechanisms of translation[35], [183], 

[192]. The integration of Ribo-seq with CLIP data for different translation factors[193] might 

represent a successful strategy to understand the different mechanisms that shape the dynamics 

of translation initiation.  

Another limitation of our approach is its poor performance in detecting frameshifting events 

and multiple overlapping ORFs, which may require specialized analysis approaches[151]. 

Despite the limited presence of multi-frame translation in the human genome, such limitation 

can be crucial when studying translation of viral transcriptomes. Similarly, dedicated analyses 
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might be used for other organisms where non-canonical mechanisms of translation elongation 

and termination represents vital means of correct protein expression[194]. 

In addition, our excitement is challenged by the high variability of the Ribo-seq technique, 

calling for a need of standardization of both the experimental method and the analysis 

strategy[89]. The RiboTaper strategy proved successful when applied to data with precise sub-

codon resolution, while many published Ribo-seq datasets did not exhibit such high-resolution 

feature. Using Arabidopsis thaliana as a model, we investigated the performance of our 

computational approach when applied to Ribo-seq datasets from different labs, including a new 

dataset exhibiting an extremely accurate frame precision. As shown in Section 3.3.1, the 

datasets exhibiting the best sub-codon resolution also showed a better mapping over expected 

coding regions, and thus enabled accurate identification of coding genes also at moderate 

sequencing depths (Figure 39). Such differences in the protocol can thus have a big impact on 

our conclusion, depending on the level of resolution required by our research question. This 

aspect becomes crucial when analyzing events like translational pausing or determining codon-

specific translation rates, which are known to have an impact in cellular homeostasis and 

proteome integrity[41]. The scientific community should dedicate more efforts in describing 

the technical limitation one might encounter when interpreting Ribo-seq results, and understand 

the possible biases caused by translation inhibitors[88], nuclease digestion[87], or other steps 

in the protocol[89]. 

 

Regarding the functional interpretation of novel ORFs, what is clear from dozens of different 

studies is that Ribo-seq challenged our “naïve” view of the genome where 1 gene -> 1 protein, 

as hundreds of novel elements were shown to undergo active translation of one, or more, 

products. Our work (and dozens of other studies) highlighted the presence of novel translated 

elements, both in UTRs of coding genes and in non-coding genes. The presence of uORF 

translation was expected and known for many single cases, despite the difficulty in determining 

the actual usage of these element along the entire transcriptome[180]. As uORFs are very short, 

their active translation might be missed by many analysis methods, also considering that 0-

aminoacid ORFs (a start-stop codon pair) do exists and can exhibit high ribosome 

occupancy[137]. The low coding potential of uORFs (Section 3.2.2) suggests that translation 

from 5’UTR has roles beyond protein synthesis. In line with this hypothesis, we detected a clear 

enrichment of nucleotide conservation at the boundaries of uORFs (Figure 31). This again 

confirms a role of such elements which is linked to their precise genomic location. Such 

observations are in line with our understanding of uORF as translational repressors of the main 
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CDS[47], despite the presence of multiple, and yet unresolved, molecular mechanisms 

proposed[46], [195]. As it allows us to zoom in the entire process of scanning and initiation, 

TCP-seq data might prove crucial in our understanding of the regulatory importance of 5’UTR 

features such as uORFs and other sequence and structural elements. However, the detection of 

few peptides uniquely mapping to uORFs (as in other studies[192]) raises the question whether 

some of these elements might be coding for important protein products, an observation which 

can be extended to other non-coding section of the transcriptome. 

Translation of non-coding RNAs displays a similar pattern to 5’UTR translation[137]. For 

dozens of long non-coding transcripts, we could detect multiple translated short ORFs, as they 

displayed the 3nt periodicity typical of active translation. However, most ncORFs are lowly 

translated (Figure 28). The majority of novel candidate CDS did not show purifying selection 

at the codon level (Figure 32), and the same conclusion can be drawn from the analysis of 

genomic variation in the human population. As discussed before for uORFs, the overall low 

levels of translation and evolutionary conservation will surely mask the presence of few 

important regions. Whether multiple ORFs on a transcript might represent a way to regulate 

each other translation levels (as in uORFs) remains to be elucidated. More importantly, the 

presence of such elements must be connected to the precise transcript structures and thus other 

aspects of RNA metabolism (Section 3.4), as discussed below.  

Translation in 3’UTR is a very rare event, which has been mostly linked with stop codon 

readthroughs[196] or alterations in ribosomal recycling[197]. We observed few dozens of genes 

with translated dORFs (Section 3.2.1), but their translation levels are very low (Figure 28). 

Despite the detection of a couple of peptides uniquely mapping to dORFs, the putative 

biological function of such elements remains unclear. 

 

However, despite the analogy between our findings and the ones from similar studies[140], 

[141], [144], our conclusion might be affected by the choice of organism and protocol. Using 

an improved Ribo-seq protocol, the few novel CDS detected in Arabidopsis thaliana display 

homology even with distant plant species (Section 3.3.2), suggesting high coding potential 

(Figure 41). Such surprising results may also arise from a poorer annotation of coding loci in 

plant genomes. Another, perhaps more interesting, hypothesis is that the improved ability of 

the new protocol in isolating actively translating ribosomes enables the detection of high-

fidelity coding loci. The improvement might depend on the choice of polysomal buffer 

conditions (Section 3.3.1), which will influence the RNAse footprinting step. Such observation 

is in line with the difference in the footprints obtained by different polysomal fraction, which 
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can show marked differences: very recently, it has been shown how footprints obtained from 

the monosome fraction shows a clear enrichment of translated uORFs and NMD-sensitive 

transcripts[198], thus revealing a different subset of the translated transcriptome.  

 

The understanding of such variability in the protocol is crucial, as the Ribo-seq method 

represents a powerful link between transcriptomics and proteomics techniques. As shown in 

Sections 3.2.3 and 3.3.2, such link allows us to improve gene annotation and protein detection. 

However, a comparison between the two scenarios depicted by Ribo-seq and shotgun 

proteomics must carefully consider fundamental differences between the two approaches. 

The excellent sensitivity of Ribo-seq enables us to identify translation even for lowly expressed 

genes and small ORFs, which excited the research community in the recent years with many 

publications focused on the detection and characterization of small peptides. In our hands, we 

could show how such sensitivity enables us to further quantify the synthesis, for each gene, of 

multiple protein isoforms coming from distinct transcripts, showing again the tremendous 

potential of sequencing the ribosomal footprints to quantify the translational status of the entire 

transcriptome. 

On the other hand, proteomics methods rely on the precise detection of millions of fragmented 

peptide ions (Section 2.2.4). However, shotgun proteomics methods might suffer technological 

limitations when trying to detect and quantify entire proteomes, providing evidence only for a 

subset of the synthesized proteins (~9,000 in this study). Such limitation may result from the 

inefficient detection of the entire spectrum of tryptic peptides. Different biochemical properties 

of trypsinized peptides can influence the likelihood of their detection, calling for the need of 

additional care when comparing the two techniques. Another, perhaps more important, aspect 

to consider is the presence of nearly ~200 post-translational modification (PTMs) which can 

occur in multiple protein residues, resulting in an exponential increase of the possible obtained 

m/z spectra in any experiment. A bit more than a dozen PTMs are common in most organisms, 

and only a limited number of them can be allowed when matching experimental and theoretical 

m/z spectra. It has been recently shown how, depending on the experimental conditions, 

different PTMs can cause 20-50% of false peptide identification, producing modified spectra 

which can perfectly match to a different peptide sequence[169]. In a similar fashion, the choice 

of sequence database has a heavy impact on the obtained results, a well-documented and 

discussed phenomenon in the proteomics community[170]. 

In our hands, we could show how the sensitivity of our approach resulted in excellent coverage 

of the detectable proteome in a deep MS/MS dataset in a human cell line, again confirming the 



Discussion 

 
  page 109 

 

validity of our ORF detection strategy. The detection of most novel peptides was confirmed 

when merging our set of translated ORFs with the entire catalog of annotated proteins (Figure 

34). This strategy, consisting of multiple searches against our database and the Uniprot catalog, 

might also prove successful in the annotation of multiple tissues and different species, for which 

several mass spectrometry datasets are publicly available[176].Additional techniques, such as 

N-terminal COFRADIC, aim at isolating the N-termini of the synthesized proteins, aiding the 

quantification of different start codons usage[199], [200]. Unfortunately, the low throughput of 

shotgun-based proteomics techniques, limits our ability in deriving performance metrics for the 

identification of translation events together with their protein products. 

However, a more cautious attitude must be taken before undermining the potential of 

proteomics methods, as equating ribosomal density to the production of a stable functional 

protein product might represent an over-simplistic approach, which ignores the presence of 

poorly understood phenomena, such as co-translational protein folding and degradation. A more 

careful analysis of the output of the two techniques together will shed light on the long standing 

question about the importance of splicing in determining proteome complexity[201]–[203]. 

We observed good proteome-wide correlation between protein steady-state abundance 

estimates and our translation quantification estimates (Section 3.4.2, Figure 47). However, 

many factors must be carefully taken into account when performing such a correlative 

analysis[204]. Ribo-seq reflects the protein synthesis rates of different ORFs, which would 

ideally correspond to the estimates given by proteomics techniques such as pSILAC[94]. The 

integration of Ribo-seq with proteomics techniques will help our understanding of proteome 

dynamics of synthesis and decay. Fine tuning of protein turnover represents a powerful tool for 

gene expression control[32], and additional mechanisms of co-translation protein degradation 

and folding can be tackled when integrating and improving our understanding of the 

translatome and the proteome. 

 

As it represents one of the final steps of the RNA life cycle, Ribo-seq data characterizes the 

ultimate result of a mixture of biological processes, from RNA synthesis to selective 

degradation via several pathways (Section 2.1.7). Translation is a tightly regulated process, 

thanks to the presence of multiple mechanisms of translational control (Section 2.1.6), and to 

quantify the extent of such regulation, the overall RNA abundance must be considered. 

Quantitative modeling of translation regulation enables us to better understand gene expression, 

and Ribo-seq (when coupled to RNA-seq) can be used as a proxy to quantify translational 

control (Section 2.3.6). Expanding on this concept, the integration of Ribo-seq with data 
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representing different layers of RNA regulation enables us to appreciate functional differences 

between different gene products[205]. The relevance of such strategy comes with a better 

understanding of the functional role of many lincRNA genes, which seem to not code for 

conserved proteins, and whose diverse functions are currently being investigated by the 

research community[205].  

Such scenario becomes more complex when considering the plethora of alternatively spliced-

transcripts, as different products from the same gene can undergo drastically different 

processing steps[61], [62]. In the SaTAnn approach (Section 3.4.1), we aimed at quantifying 

translation on the detectable RNA isoforms, uncovering the presence of multiple translated 

ORFs per gene in >40% of the detected genes (Figure 45). Given the quantitative nature of our 

Ribo-seq data (thanks to the use of UMIs), we decided to quantify translation at each candidate 

ORF. With SaTAnn, our goal is to determine the impact of transcript heterogeneity on the 

translated regions, which might reflect important differences at the level of the cellular 

proteome[206]. Our transcript selection strategy drastically reduced the number of possible 

structures to analyze, and thus enabled us to exploit signal on unique exons and splice junctions 

to estimate translation in an isoform-specific fashion. Such strategy differs from already well-

established methods for transcript quantifications[98], [106], and one possible future 

development for our method can be the incorporation of an EM-like strategy to refine 

quantification estimates. 

The comparison with polysome profiling (Figure 46) and proteomics data (Figure 47) showed 

the consistency of our quantification strategy, showing how different techniques can detect 

quantitative differences in the translation of different coding sequences. Nevertheless, while 

Ribo-seq offers a detailed picture of ribosomal movement across the translated region, 

polysome profiling adds information about entire transcript structures, representing a superior 

alternative when studying the impact of different 3’UTR isoforms on the translational output. 

Despite such exiting scenario, we observed that thousands of translated RNA isoforms showed 

very low translation levels. A deeper look at the features of such low translated transcripts 

enabled us to uncover the presence of several NMD candidates (Figure 49), where the 

recognition of a PTC by the translating ribosomes is able to trigger RNA degradation[55]. Such 

information becomes crucial when investigating translation of long non-coding RNAs, which 

can exhibit high ribosomal coverage, but also high degradation levels, as shown for the snoRNA 

host genes (Figure 51). Isoform-level regulation of cytoplasmic RNA metabolism can thus be 

inferred using Ribo-seq data alone, enabling us to switch from detection to the functional 
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investigation of the cytoplasmic transcriptome, one of the most fundamental topics in RNA 

biology. 

Zooming in the sub-cellular translation status of different transcripts[20], [59] will further 

increase our understanding of the eukaryotic cytoplasm, where the coordinated action of 

heterogeneous ribosomes[52] in different organelles[207], [208] shapes protein function and 

cellular homeostasis. 
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Appendix A: The Slepian Sequences and the multitaper F-test 

 

As seen in Section 2.3.5, in the multitaper method we average the effect of multiple windows 

on our original signal. The validity of this approach thus depends on the properties of the 

different window functions 𝑎 and their Fourier transform 𝐴. As mentioned in Section 2.3.5, we 

want to ensure that the tapers do not cause excessive spectral leakage. The ideal window 

function should concentrate the energy within a specific frequency width 𝑊, minimizing the 

leakage over the rest of the frequency spectrum. For a signal of length N, this concept can be 

formulated as follows (Equation 23): 

 

𝜆(𝑁, 𝑊) =
∫ |𝐴(𝑓)|2𝑑𝑓

𝑊

−𝑊

∫ |𝐴(𝑓)|2𝑑𝑓
1/2

−1/2

 (23) 

 

We want to maximize 𝜆, which means maximizing the energy of 𝐴 over the bandwidth 𝑊 

(numerator) with respect to the entire spectrum (denominator, ½ is the Nyquist frequency, 

assuming 1 as the sampling rate). Finding the window 𝑎  which maximizes 𝜆  leads to the 

definition of the following differential equation (Equation 24): 

𝜕𝜆

𝜕𝑎
= 0 (24) 

 

This can in turn be rewritten[124] as (Equation 25): 

  

𝐷 ∙ 𝑎 =  𝜆𝑎 (25) 

 

With D being a 𝑁𝑥𝑁 matrix with components (Equation 26): 

 

𝐷𝑥𝑦 =  
sin (2𝜋𝑊(𝑥−𝑦)

𝜋(𝑥−𝑦)
 (26) 

 

As D is a symmetric matrix, the solution to Equation 25 can be found using standard linear 

algebra methods, creating a set of N eigenvalues 𝜆 and N orthogonal eigenvectors 𝑣 (using the 

same principle behind PCA on the covariance matrix). The eigenvectors are used as window 

functions in the multitaper method, and they are known as Slepian sequences (or discrete 
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prolate spheroidal sequences, DPSS), studied by David Slepian and colleagues[125]. The N 

eigenvalues are used in the multitaper method as weights in the averaging procedure (Equation 

27): 

 

 

𝐵̂(𝑓0) =
1

𝐾
∑

∑ 𝒗𝑘𝑛𝑥𝑛 𝑒−𝑖2𝜋𝑓0 𝑛/𝑁𝑁−1
𝑛=0

𝝀𝑘

𝐾
𝑘=1  (27) 

 

 

However, the eigenvalues 𝜆𝑘  are usually used to derive a different set of weights, using an 

iterative process initialized by the first two 𝜆, known as adaptive weighting[124]. 

The use of the Slepian sequences lies at the core of the multitaper method, and determined its 

efficiency in both reducing noise in the PSD estimate and minimizing spectral leakage. Another 

useful feature of Slepian functions is their orthogonal nature: being uncorrelated, they can be 

used to provide independent realizations of the same original sample. This allows us to derive 

statistical confidence in the detection of different frequency components against the null 

hypotheses of random (or at least locally random) noise. 

Using a slightly different notation, we can explain the signal 𝑥𝑛 as a mixture of two components: 

one coming from the frequency 𝑓0 with its associated coefficient 𝐵 and a term 𝜂𝑛 representing 

energy from other frequencies and noise (Equation 28). 

 

𝑥𝑛 =  𝐵𝑒𝑖2𝜋𝑓0𝑛 +  𝜂𝑛  (28) 

 

We can estimate a mean 𝜇 for the coefficient 𝐵(𝑓0) using a least-squares fit in the frequency 

domain (Equation 29), using the DFT 𝐴 of the tapers functions 𝑎, where 𝐴𝑘0 represents the 

amplitude at the zero-frequency of  𝐴𝑘 (and can also be calculated using the total signal in 𝑎𝑘 

[209]): 

 

𝜇̂(𝑓0) =  
∑ 𝐴𝑘0𝐵𝑘(𝑓0)𝐾

𝑘=1

∑ 𝐴2
𝑘0

𝐾
𝑘=1

 (29) 

 



Appendix A: The Slepian Sequences and the multitaper F-test 

 
  page 135 

 

The estimate 𝜇̂(𝑓0) quantifies the variation captured by our estimates 𝐵(𝑓0) along the different 

tapers 𝐴𝑘 , thus representing how robust a frequency coefficient is in the different (and 

independent) tapered signals. 

This formula is analogous to the calculation of the slope of a simple regression 𝑦~𝑏𝑥 + 𝜀, 

where 𝑏 = 𝐶𝑜𝑣(𝑥, 𝑦)/𝑉𝑎𝑟(𝑥). 

 

We can now define the variance of the 𝐴 component as the sum of two terms (Equations 30 and 

31): 

 

1) The amount of variation captured by our estimate: 

 

𝜃(𝑓0) =  |𝜇̂(𝑓0)|2 ∑ 𝐴2
𝑘0

𝐾
𝑘=1  (30) 

 

2) The “unexplained” variance: 

 

 

𝜓(𝑓0) =  ∑ |𝐵𝑘(𝑓0) − 𝜇̂(𝑓0)𝐴𝑘0|2𝐾
𝑘=1  (31) 

 

 

Comparing the two estimated variance components enables to extract an F-test statistic [124], 

[127], [129], (Equation 32): 

 

𝐹(𝑓0) = (𝐾 − 1)
𝜃(𝑓0)

𝜓(𝑓0)
 (32) 

 

F-values for each frequency bin can be converted into p-values using a variance-ratio test with 

2 and 2K-2 degrees of freedom. 
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Appendix B: Supplementary Materials 

 

 

B.1: The Ribo-seq protocol in HEK293 
 

Ribosome profiling. We followed the original protocol[81] with minor modifications. For cell 

lysis, the cell medium was aspirated and cells were washed with ice-cold PBS containing 100 

μg/ml cycloheximide. No cycloheximide was added to the culture medium before the wash. 

After thorough removal of the PBS, the plates were immersed in liquid nitrogen and placed on 

dried ice. For cell lysis, we dripped 400 μl of mammalian polysome buffer (20 mM Tris-HCl, 

pH 7.4, 150 mM NaCl, 5 mM MgCl2, with 1 mM DTT and 100 μg/ml cycloheximide added 

freshly) supplemented with 1% (vol/vol) Triton X-100 and 25 U/ml Turbo DNase (Life 

Technologies, AM2238) onto the plates and then placed the plates on wet ice. We scraped the 

cells off to the lower portion of the dish so that they thawed in lysis buffer. After dispersal of 

the cells by pipetting, the lysate was triturated ten times through a 26-gauge needle, cleared by 

centrifugation at 20,000 g for 5 min, flash-frozen in liquid nitrogen and stored at −80 °C until 

further use. For isolation of ribosome-protected RNA fragments, 120 μl of the lysate were 

digested with 3 μl of RNase I (Life Technologies, AM2294) for 45 min at room temperature 

with rotation. Digestion was stopped by the addition of 4 μl of Superase-In (Life Technologies, 

AM2694). Meanwhile, MicroSpin S-400 HR columns (GE Healthcare, 27-5140-01) were 

equilibrated with 3 ml of mammalian polysome buffer by gravity flow and emptied by 

centrifugation at 600g for 4 min. We then immediately loaded 100 μl of the digested lysate on 

the column and eluted the column by centrifugation at 600g for 2 min. We extracted RNA from 

the flow-through (approximately 125 μl) using Trizol LS (Life Technologies, 10296-010). We 

then removed ribosomal RNA fragments using the RiboZero Kit (Illumina, MRZH11124) and 

separated them on a 17% denaturing urea-PAGE gel (National Diagnostics, EC-829). The size 

range from 27nt to 30nt, defined by loading with 20 pmol each of Marker-27 nt and Marker-30 

nt, was cut out, and the RNA fragments were subjected to library generation using 3’adaptor 

NN-RA3, 5’adaptor OR5-NN, RT primer RTP and PCR primers RP1 (forward primer) and 

RPI6-7 (reverse primer, containing barcodes). Libraries were sequenced on a HiSeq 2000 

device (Illumina). After initial quality control, we obtained ~29 Million raw reads by pooling 

the RPI6 and RPI7 samples. The following primers were used:  

Marker-27 nt, 5’-AUGUACACGGAGUCGAGCUCAACCCGC-P;  

Marker-30 nt, 5’-AUGUACACGGAGUCGAGCUCAACCCGCAAC-P; 



Appendix B: Supplementary Materials 

 
  page 137 

 

NN-RA3, 5’-P NNTGGAATTCTCGGGTGCCAAGG-InvdT;  

OR5-NN, 5’-GUUCAGAGUUCUACAGUCCGACGAUCNN;  

RTP, 5’-GCCTTGGCACCCGAGAATTCCA; 

RP1, 5’-AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA;  

RPI6,5’-

CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA; 

RPI7,5’-

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA. 

  

 

 

B.2: Ribo-seq and RNA-seq data processing. 
 

Ribo-seq reads were stripped of their adapters using cutadapt. Randomized UMI sequences 

were removed and reads were collapsed using custom perl scripts. Reads aligning to rRNA 

sequences were removed with Bowtie. Unaligned reads were then mapped with STAR using 

the hg19 genome and the GENCODE 19 annotation in GTF format. For zebrafish, transcript 

structures annotated in Ensembl (version 76) were used. For both RNA-seq and Ribo-seq, a 

maximum of four mismatches was allowed, and multimapping of to up to eight different 

positions was permitted. Alignments flagged as secondary alignments were filtered out, 

ensuring one genomic position per aligned read. RSEM was run using default parameters. The 

hg38 version of the human genome, supplied with GENCODE 25 annotation, was used for 

analyses in Section 3.4. 

 

B.3: Supplementary Figure 1: Metagene analysis for different Ribo-seq 

datasets 
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Supplementary Figure 1. Metagene analysis for different Ribo-seq datasets. Aggregate plots for different read lengths 

(from 25 to 30 nt) are shown, showing distance between 5’ends and annotated start and stop codons. Distinct profiles, in 

terms of both precision and coverage, emerge in the different datasets. a) HEK293, this study; b) HEK293, Gao et al; c) 

Zebrafish 5h post-fertilization, Bazzini et al, 2014 
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B.4: multitaper analysis 
 

The original multitaper algorithm from Thomson is implemented in R in the package 

“multitaper”[129]. For each track, we added a stretch of zeros to the input sample to reach a 

minimum length of 50 nt. We ran the multitaper with 24 tapers, with the time-window 

parameter set to 12. Moreover, sequences shorter than 500nt were zero-padded to 1,024 data 

points before the discrete Fourier transform was computed, to obtain adequate frequency 

resolution in the spectrum. We extracted F-values from the frequency bin closest to 3nt 

periodicity. Using the pf function, we calculated p-values from the F-statistic by using 2 and 

2k-2 degrees of freedom, where k is the number of tapers (24 in this study). ORFs and exons 

with fewer than six P-sites or shorter than 6nt were ignored. 

For the simulation tests, we sampled 1,000 CCDS exons from different read lengths and 

coverage as a positive set. For each exon, we randomly shuffled the P-site positions 1,000 times 

to obtain a negative set. 

 

B.5: QTI-seq analysis 
 

For every reported QTI-seq peak[84], we selected the closest ORF called by RiboTaper on the 

basis of the reported distance relative to the annotated start codon. Only AUG start codons were 

used. 

 

B.6: Supplementary Figure 2: The toddler ncORF 

 

Supplementary Figure 2: The toddler ncORF. Shown are P-sites positions, RNA-seq coverage and ORF position. Data 

from Bazzini et al, 2014 
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B.7: Supplementary Table 1: RiboTaper-detected ORFs in Danio rerio. 
 

 

Dataset uORFs ORFs_ccds dORFs lincRNA Pseudogenes Processed 

Transcript 

5h_pf_1 64 12624 9 17 2 59 

Supplementary Table 1: RiboTaper-detected ORFs in Danio rerio. Shown are the genes harboring translated ORFs, 

divided by ORF category/biotype. 

 

 

B.8: Evolutionary conservation analysis 
 

PhastCons scores were extracted as the average over the entire ORF or in 25nt windows around 

the start and stop codons. ORFs were then scored with PhyloCSF in the “mle” (default) mode, 

using the “29mammals” parameter set on the 46-vertebrate alignment to the human genome 

(hg19) after alignment filtering steps as described by Bazzini et al[130] . We additionally used 

the hexamer score from the CPAT tool to assess the coding potential of different ORFs, using 

the available trained model for the human genome. For each category, the scores were compared 

against a control set of ORFs matching the length and conservation of the category of interest. 

For CCDS ORFs and non-CCDS coding ORFs, we selected ORFs shorter than 300nt as 

meaningful matching controls. SNPs were downloaded as .gvf files from Ensembl (v75, 1000 

Genomes phase 1). We removed SNPs in reverse orientation, SNPs falling into genomic repeats 

(using the RepeatMasker track from the UCSC genome browser, March 22, 2015) and rare 

SNPs with a derived allele frequency of <1%. We then recorded for each ORF and its 

conceptual translation the number of synonymous and nonsynonymous SNPs compared to the 

human reference genome, as well as the number of synonymous and non-synonymous sites 

derived from the degeneracy of the genetic code. For every set of ORFs, we aggregated these 

numbers and calculated the dN/dS ratio, where dN is the number of non-synonymous SNPs per 

non-synonymous site and dS is the number of synonymous SNPs per synonymous site. For the 

CPAT and PhyloCSF scores, p-values were determined via Wilcoxon-Mann-Whitney tests. For 

dN/dS ratios, p-values were determined via χ2 test, using as expected frequencies the values 

from SNPs falling in synonymous and non-synonymous sites in the ORF control set, as 

described previously[157]. 
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B.9: Mass spectrometry preparation and data analysis. 
 

The proteomic data for HEK293 cells was published recently[182] (PRIDE accession 

PXD002389). Briefly, cells were grown in DMEM (Life Technologies). Lysis was performed 

in 50 mM ammonium bicarbonate buffer (pH 8.0) containing 2% SDS and 0.1 M DTT. 

Sulfhydryl groups were alkylated by iodoacetamide added to a final concentration of 0.25 M 

and incubated for 20 min. Proteins were precipitated; resuspended in 6 M urea, 2 M thiourea 

and 10 mM HEPES; and digested into peptides by LysC (3 h) and trypsin (overnight, diluted 

four times with 50 mM ammonium bicarbonate buffer). Peptides were desalted using StageTip 

purification and subsequently analyzed by online LC-MS/MS on a Q-Exactive instrument 

(Thermo Fisher) using nano-electrospray ionization. The resolution was set to 70,000 and 

17,500 for full and fragment scans, respectively. We identified peptides from MS/MS spectra 

by searching against the recent UniProt human database (2014-10) or the newly generated 

HEK293-specific database using ribosome profiling with MaxQuant[165] version 1.5.2.8. For 

all searches, carbamidomethylation (C) was set as a fixed modification, and oxidation (M), 

acetylation (protein N-term) and deamidation (NQ) were set as variable modifications. A 

maximum of two missed cleavages was allowed. The peptide FDR was set to 0.01, the minimal 

peptide length was set to 7 amino acids, and the main search peptide tolerance was set to 4.5 

ppm. 

We built custom peptide databases by using all the identified ORFs before filtering for 

multimapping reads. The FDR was calculated based on the ratio of hits in the positive and decoy 

databases. Counts and feature distribution (PEP, score, sequence length) from evidence files 

were compared on the basis of an FDR < 1%, excluding reverse hits and contaminants as well 

as unique sequence information. iBAQ values were calculated using MaxQuant. Non-UniProt 

peptide sequences were defined using PeptideMatch[210]. 
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B.10: Supplementary Figure 3: Additional statistics about Ribotaper- 

and Uniprot-only identified peptides. 

 

Supplementary Figure 3. Additional statistics about Ribotaper- and Uniprot-only identified peptides. a) Overlap of 

Peptide Spectrum Matches (PSMs) identified in the two strategies. b) False Discovery Rate (FDR) vs. PSMs counts for the 

two search strategies. c) Comparisons of RiboTaper-only identified peptides vs. Uniprot-only identified peptides 

(PEP=Posterior Error Probability). 

 

 

B.11: Ribo-seq data processing in Arabidopsis Thaliana 
 

After adapter removal, Ribo-seq reads were searched for expected contaminant RNA sequences 

in Arabidopsis, including rRNA, tRNA, and snoRNA sequences, using bowtie2 (parameter: –

L 20). The unaligned reads were then mapped to the Arabidopsis genome using TAIR10.29 

reference using STAR, version 2.5.1b, allowing up to three mismatches and a maximum of 20 

multimapping positions. The best position for multimapping reads was chosen by STAR with 

these options “–outSAMmultNmax 1 – outMultimapperOrder Random” which randomly 

selects one alignment over all of the possible best scoring alignments. Raw sequencing data 
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from Juntawong et al. (whole seedlings of 7-d-old nonstress plants; the GEO accession 

GSE50597, GSM1224475 and GSM1224476), Liu et al. (aerial part of 4-d-old etiolated 

seedlings exposed to light for 4 h; the GEO accession GSE43703), and Merchante et al. (72-h-

old etiolated seedlings with normal air; the SRA accession SRP056795) were downloaded and 

processed using the same procedures described above. The sequencing summary of each dataset 

is provided in Supplementary Table 2. Replicates of the same tissue in each dataset were pooled 

for analysis to achieve high coverage, unless otherwise specified. Several steps of analysis, 

including calculating correlation among the replicates, assigning reads to genomic features (5’-

UTR, CDS, 3’UTR, introns, and intergenic regions), meta-gene analysis over start/stop codons 

defined by TAIR10 protein-coding genes, and statistical presentation of the data were 

performed and plotted in R, version 3.2.3, using various R packages (Supplementary Material). 

Because not all of the datasets to which we compared our results used a strand-specific library 

construction method and some of the datasets were generated with different mRNA enrichment 

methods for RNA-seq, TPM values for RNA-seq data on protein-coding genes only were 

determined by RSEM[98], version 1.2.11, using a non-strand-specific parameter. For 

comparison with the same sequencing depth among the datasets, 25 million reads were 

randomly sampled from each Ribo-seq dataset using inhouse scripts. 

 

B.12: Supplementary Table 2: Mapping statistics for the different 

libraries analyzed in Arabidopsis thaliana. 
 

dataset library total_reads rRNA 

% 

snoRNA 

& 

tRNA % 

remaining reads mapped reads Uniquely 

mapping 

reads % 

Multi-

mapping 

reads % 

Hsu ribo_R1 149,405,767 49.7% 2.1% 72,030,234 52,354,522 91% 9% 

Hsu ribo_R2 143,897,003 38.5% 2.8% 84,385,394 48,625,232 91% 9% 

Hsu ribo_R3 154,597,025 50.6% 5.2% 68,401,924 54,810,821 88% 12% 

Hsu ribo_S1 136,655,109 22.5% 2.3% 102,835,491 32,608,135 85% 15% 

Hsu ribo_S2 169,463,792 36.6% 3.1% 102,050,409 78,838,023 91% 9% 

Hsu ribo_S3 121,836,865 41.3% 2.8% 68,127,544 51,613,460 91% 9% 

Hsu RNA_R1 40,251,993 2.0% 36.8% 24,643,106 22,652,994 74% 26% 

Hsu RNA_R2 49,692,907 1.9% 36.5% 30,610,968 28,350,800 75% 25% 

Hsu RNA_R3 52,556,216 2.0% 36.9% 32,082,943 29,788,222 74% 26% 

Hsu RNA_S1 35,587,149 0.8% 37.7% 21,885,720 20,133,715 71% 29% 

Hsu RNA_S2 56,545,985 0.8% 35.1% 36,272,859 33,576,115 72% 28% 

Hsu RNA_S3 59,009,561 0.8% 36.2% 37,159,151 34,615,016 71% 29% 

Juntawong ribo_noStress1 93452469 63.7% 2.9% 31,235,427 28,962,468 71% 29% 

Juntawong ribo_noStress2 89907795 49.4% 1.6% 44,075,153 37,771,475 64% 36% 

Juntawong RNA_noStress1 25,384,079 46.8% 0.1% 13,487,403 12,889,887 92% 8% 
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Juntawong RNA_noStress2 55,925,575 56.3% 0.1% 24,397,043 22,027,558 93% 7% 

Liu ribo_Light1 144,479,049 92.6% 0.9% 9,356,737 8,095,138 67% 33% 

Liu ribo_Light2 149,173,203 64.8% 1.2% 50,692,754 49,027,433 90% 10% 

Liu RNA_Light1 55,762,418 11.1% 0.1% 49,504,687 47,597,072 95% 5% 

Liu RNA_Light2 67,275,771 22.3% 0.0% 52,228,401 51,087,039 95% 5% 

Merchante ribo_Col_Air1 126,326,120 46.0% 0.3% 67,809,572 64,160,828 86% 14% 

Merchante ribo_Col_Air2 103,257,454 66.2% 0.7% 34,215,679 31,064,050 64% 36% 

Merchante RNA_Col_Air1 98,461,958 73.6% 0.5% 25,411,162 23,763,204 87% 13% 

Merchante RNA_Col_Air2 143,960,373 81.6% 0.4% 25,882,228 23,798,627 82% 18% 

Supplementary Table 2: Mapping statistics for the different libraries analyzed in Arabidopsis thaliana. 

 

B.13: Supplementary Table 3: Read lengths and cutoffs used to infer P-

sites position in Arabidopsis thaliana. 
 

 Footprint length Offset to P-site position 

This study 22,23,24,25,26,27,28 6,7,8,9,10,11,12 

Juntawong et al. 2014* 25,26,27,28,29,30,31,32,33,34 0,0,0,0,0,0,0,0,0,0 

Liu et al. 2013 28,29,32,33,34 12,13,13,14,14 

Merchante et al. 2015 23,24,25,28,30,31,32,33 6,7,8,12,13,14,14,14 

Supplementary Table 3: Read lengths and cutoffs used to infer P-sites position in Arabidopsis thaliana. 

 

B.14: Protein Alignments 
 

Whole-genome assemblies of 15 selected species were downloaded from Phytozome[211], 

version 11.0. To search for homologs in these genomes, we used tBLASTn[212] with the E-

value set to 0.1. Hits were retained if they met the following criteria: (i) the hit-query BLAST 

alignment must cover at least 30% of the query protein sequence; and (ii) a complete ORF, 

from start to stop codon, must be present and its length must not be longer than the query by 

120 aa. For each unannotated ORF and its homologs, we reconstructed multiple sequence 

alignments using MUSCLE[213] and visualized them in AliView[214] to manually validate the 

alignments. Pairwise sequence identities were calculated from the alignments by a custom 

Python script. All of the alignments and the Python script have been deposited in the Dryad 

Digital Repository (dx. doi.org/10.5061/dryad.m8jr7). 
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B.15: Polysome profiling, nuclear-cytoplasmic comparison and 5’end 

sequencing. 
 

Polysome profiling: 

 

DEXSeq was run to detect differential exon usage between each of the polysome fraction and 

the cytoplasmic abundance. Differential exons (FDR<0.01) were intersected with ORF 

coordinates and only exons uniquely mapping to one ORF group were retained. Only genes 

with multiple translated isoforms were used. 

 

Nuclear-cytoplasmic comparison: 

 

DEXSeq was run to detect differential exon usage between the nuclear and the cytoplasmic 

fraction. Differential exons (FDR<0.01) were intersected with transcript structures and only 

exons uniquely mapping to one of the transcript groups were selected. 

 

5’end of endonucleolytic cuts: 

 

Bigwig files for the different libraries were obtained from the GEO accession GSE57433. 

Coordinates were lifted to hg38 and overlapped with SaTAnn-identified stop codon positions, 

for both controls and NMD candidates. Stop codon regions of NMD candidates overlapping 

CDS regions were removed. 

 

B.16: Supplementary Figure 4: Translation quantification on different 

transcript biotypes. 

 

Supplementary Figure 4. Translation quantification on different transcript biotypes. Percentage of gene translation is 

shown for different transcript biotypes. Genes were selected when containing multiple translated transcript biotypes (numbers 

shown on top). Outliers are not shown. 
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Appendix C: List of main software used in this study. 

 

samtools 1.3.1 

bedtools 2.17 

cutadapt 1.8 

bowtie 1.1.2 

bowtie2 2.2.6 

STAR 2.5.1b 

RSEM 1.2.11 

MaxQuant 1.5.2.8 

PeptideMatch 1.0 

 

R packages: 

 

multitaper_1.0-12 

seqinr_3.3-0 

XNomial_1.0.4 

genomation_1.4.2 

ggplot2_2.1.0 

gplots_3.0.1 

corrplot_0.77 

doMC_1.3.4 

foreach_1.4.3 

GenomicAlignments_1.8.4 

 

 

Rsamtools_1.24.0 

SummarizedExperiment_1.2.3 

BSgenome_1.40.1 

rtracklayer_1.32.1 

Biostrings_2.40.2 

GenomicFeatures_1.24.4 

AnnotationDbi_1.34.4 

GenomicRanges_1.24.2 

GenomicAlignments_1.8.4 

Gviz_1.18.1 
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