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Abstract

For change-point analysis of high dimensional time series, we consider a semiparametric model with
dynamic structural break factors. The observations are described by a few low dimensional factors
with time-invariate loading functions of covariates. The unknown structural break in time models
the regime switching effects introduced by exogenous shocks. In particular, the factors are assumed
to be nonstationary and follow a Vector Autoregression (VAR) process with a structural break. In
addition, to account for the known spatial discrepancies, we introduce discrete loading functions. We
study the theoretical properties of the estimates of the loading functions and the factors. Moreover,
we provide both the consistency and the asymptotic convergence results for making inference on the
common breakpoint in time. The estimation precision is evaluated via a simulation study. Finally we
present two empirical illustrations on modeling the dynamics of the minimum wage policy in China
and analyzing a limit order book dataset.
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1 Introduction

Emerging situations of big data call for statistical tools to learn the intrinsic complex structure. Modeling
the structural break for high dimensional time series is our object to study. A very popular approach is
to consider high dimensional time series with factor structures, see for example ( ) and
( ). In this paper, we consider a characteristic-based factor model, which is used to
describe the common movement of time series with nonparametric functions of covariates as loadings. The
model is known as the dynamic semiparametric factor model (DSFM), and has been studied in
( ) for time varying covariates. Emphatically, ( ) and ( ) also consider
a similar model majorly applied in asset pricing, and the only difference is that the covariates are set to
be time-invariant. In addition, a sizable literature has shown the applicability of such type of models as
it takes full advantage of the information provided by large cross-section and time-series dimensions. For
example, DSFM has been applied by ( ) in modeling and forecasting the limit order book
dynamics, ( ) in describing implied volatility surface dynamics, ( )
in discovering the risk patterns and brain activities, ( ) in yield curving modeling,

( ) in modeling and forecasting electricity spot prices, etc.

Although the DSFM successfully reduces the dimensionality of the data and disentangles the spatial
and temporal effects, the common factors are prone to exhibit structural changes over a long time span.
Many applications in economics and finance need a methodology on detecting and modeling structure
breaks. For example, to evaluate the heterogeneity of the minimum wage policy in China, a cross sectional
data set on the minimum wage is collected over many years. One would like to see how the overall policy

changes over time, and how much heterogeneity is there for different regions.

Nevertheless, there is a vast literature on detecting structural breaks in various statistical models other
than a high dimensional semiparametric modeling framework. For example, ( ) and

( ) on complex regression models; ( ) and ( ) on the second-order

characteristics of a time series; ( ) on a new formulation of a change point hypothesis

testing. Furthermore, ( ) consider inference for trend stationary processes, and



( ) propose new tests for change point analysis in time series. Regarding high dimensional time
series change point analysis, ( ) provides a framework to test the mean change using CUSUM
statistics. Notably for factor models, there are also many recent articles on estimating loading changes,
such as ( ) using shrinkage methods and ( ) focusing on establishing the

asymptotic distribution of the LS estimator for a structural break.

However, there is no literature to our knowledge on conducting change-point analysis in a semiparamet-
ric high dimensional time series modeling framework. For the latent dynamic factors, instead of estimating
breaks in the loading parameters, we target at fitting a structural break VAR process. This brings both
new theoretical and empirical perspectives in change-point analysis in semiparametric time series models.
Importantly, we establish the asymptotic distribution of our break point by allowing for general temporal
and cross-sectional dependence in the error terms. For example, an application is regarding limit order
book data modeling, where one is interested in understanding the quantities of the asset traded in the
financial market. The loading functions are functions of price levels and may not be continuous from the
ask side to the bid side. Moreover, the underlying driving factors may change their dependency structure

over time.

Our model is thus named as a structural break DSFM (SBDSFM), as we assume that factors follow
a structural break vector autoregression model (SBVAR). SBVAR is applied to change-point analysis for
low dimensional time series. For example, ( ) uses it for modeling policy change effects and
predicting recessions. Moreover, to incorporate the cross-sectional effect, the discontinuity in the cross
sectional dimension is modeled as a partition estimator of the loading functions. To be more specific, the
nonparametric loading functions are constructed by partitioning the support of the covariates into disjoint
cells, which does not become smaller with the sample size, and within each cell the unknown regression
function is approximated by a basis expansion using a fixed-order B spline basis. Using SBDSFM allows
us therefore to account for the structural breaks in time and cross-section dimension. We show that the
model is helpful for detecting and making inference on the latent structural change for high dimensional

time series.

We contribute the literature in three aspects. Firstly, we propose a SBDSFM model with an embedded



break structure, and we also study its identification scheme and estimation method. Secondly, we show
the consistency of the semiparametric estimates. And for the latent factors, a consistency and distribution
theorem allow us to make inference on the breakpoint. Thirdly, we illustrate the good empirical perfor-
mance of our SBDSFM model via simulations and empirical examples. Our paper is organized as follows,
see Section 2 for the model description and estimation, Section 3 for the relevant theorems and discussions.
Simulations results are shown in Section 4. Section 5 consists of two applications. The technical details

are delegated to the Appendix.

2 Model

In this section, we lay down the general model setup. First of all we list the necessary math notation used
throughout the paper. For matrix A, denote |A|p(resp. |Al2, |A]s, |A|1) as the matrix Frobenius norm(resp.
spectral norm, oo norm, 1-norm). For k > 0 and vector v = (vy,...,v4)T € R? let |ul, = (320, [oi|*)V/*
and |v|e = max;<q|v;]. For two positive sequences of numbers (a,) and (b,), denote a, = O(b,) or
a, < by(resp. a, < b,) if there exists a positive constant C' such that a, /b, < C(resp. 1/C < a,/b, < C)
for all large n, and denote a,, = o(b,) or a, < b, (resp. a, ~ by,), if a,,/b, — 0 (resp. a,/b, — 1). For two
sequences of random variables (X,,) and (Y;,), write X,, = op(Yy,), if X,,/Y,, — 0 in probability. Let X;(-)

be the ith largest eigenvalue, Apin(+) and Apax(-) be the minimum and maximum eigenvalues respectively.

2.1. Dynamic Semiparametric factor models (DSFMs). Let e, = (e11,€12, . eer) , t =1,2,...,T, be

a sequence of random vectors and the model we consider is (N, T — o)

L
Yij=mo(Xeg) + > Zmu(Xeg) + gy j=1,...,N. (2.1)

=1
Here Z; = (Zi1, Z12,+++ , Z1,)| can be understood as the common factors, the term mq(X; ;) can be inter-

preted as the conditional expectation of the individual specific effects and m;(X;;),l > 1, are taken to be

generalized nonparametric loading functions. Similar models are adopted in many papers in the literature,

see, ( )7 ( )? ( )7 ( )7

( ), ete.



To incorporate both temporal and spatial dependencies, we shall consider the commonly used moving

average (MA) process for the noise sequence g; = (g1, ..., &rn) |,

=Y B, (2.2)

k>0

where 7, = (Ne1, M2y Mep) | With 1,4, ¢, 7 € Z, being independent and identically distributed (i.i.d.)
random variables with zero mean and unit variance, and (By)r>o are matrices in RP*? such that ¢; is a
proper random vector. If By = 0 for all £ > 1, then the noise sequences are temporally independent, and if
matrices By, are diagonal, then the sequences are spatially independent. In the latter case (g ;)7_; becomes
a MA sequence which is independently distributed with respect to different j. The MA(co) process is very
widely used in practice and it includes many important time series models such as vector autoregressive

moving averages (VARMA)

p p q
(I — Z OBYX, = X, — Z 01X = Z ErNi—k
=1 =1 p

where ©; and Zj, are real matrices such that det(I — >V, ©,2') is not zero for all |z] < 1.

2.2. Temporal and cross-sectional breaks. 'To incorporate the temporal break, consider a time break
point 7°. Let €, = (€1, €12, ....€:1), t = 1,..., T, be i.i.d. random vectors. For A = (A, A, ..., Apr), denote

B(A) = A\B' + A% + ...+ Ay BM | where B is the backward shift operator. Assume the factors Z; satisfy

Zt = B(E)Ztltgq—o + B(E)Zt1t>7—<> + €, t Z 1, (23)

and Zy, Z_1,..., Z_p41 are any vectors in RE, where E = (Ey, By, ..., Ey), E = (El,E’g,...,EM) and 7°
is an unknown constant. Here the lags for the two regimes, denoted as M; and M,, can be different or

unknown by letting M large enough and E; = 0, Ej =0 for i > My, j > M.

REMARK 1. [Comparison with ( )] Our settings in (2.1) are different from ( )
in two major aspects: firstly, Z;s follow a nonstationary SBVAR process, namely the coefficients of VAR
changes after an unknown break point, while ( ) assumes that Z; follows a stationary and

strong mixing process. Assuming the SBVAR model allows for a change point analysis, and the assumption



leads to new issues of identification and estimation, secondly, ( ) assumes ¢;; to be i.i.d.
and the distribution to be sub-Gaussian, while we have general assumptions allowing for spatial temporal

dependence and we impose only moment assumptions on the distribution of ¢, ;. a

It should be noted that the number of factors stays the same throughout the model. The spatial
discontinuity can be handled by taking into account discontinuous bases for my(-), and my(-) can be
approximated by 377_, a;.¢x(-), where ¢ (-) is taken to be 1;(-)1.cg, where R,s form the space of C' in
the whole support of X;;. ;(-) are tensor product B- spline basis, and i,r corresponds to the index
k. For example, R, can be used to model the presence of discontinuities of regional minimum wage
policies in China. Define the matrix of coefficients A def (ar)ix (for every factor we have chosen the

same number J of basis {¢x}). Denote matrix ®(X;) = (¢(Xi1), d(Xi2), .., 9(Xyn))" € R/ where
$(z) = (¢1(x), $2(2), .., p5(2)) . Let m(x) = (mo(x),mu(),..., me(z))".

2.1 Estimation

With the model 2.1 on hand we can estimate A and the dynamics of Z; according to the following steps.

Step 1. We obtain a group of A, Z,,1 < t < T, by minimizing h(A4, 21, 2y, ..., 21) = S Yi—®(X,) AL, )73
(A, Z,1<t<T)= argmin 4, y<<ph(A4, 21, 22, ..., 27). (2.4)

It is not hard to see that the minimum point is not unique. More specifically, for any minimum point
(AO, Zto, 1<t<T),let fl(l) and Ag be the first and 2 : (L 4 1)th columns of matrix A° respectively.
Then for any invertible matrix D € RE*L, (A%, AYD), D~1Z,,1 <t < T) is also a solution. However
for 20 = (Z?, ZS, s Z%), the product 121820 is unique. Finding min h(A, z1, 22, ..., zr) is non-trivial,
since it involves a fourth-order problem. In practice, one may follow a Newton-Raphson method

proposed in ( ).

Step 2. Let H = (Hy, Hy, ..., Hy), F = (Fy, Fa, ..., F)y) be the coefficient matrices, 7 be the change point.



Consider

’7' H F Z ’Zt Zt]-tST — B(F)ZAt]_t>7- 2

"

(2.5)

A

Let (%,f], F) be the minimizer for S(T, H,F) as the estimates of the parameters. Denote V, =
ming p S(7, H, F). Then 7 = argmin_V;, and (H, F) = argminHFS(%,H, F).

REMARK 2. The detailed numerical implementation and the selection of the number of factors will be

discussed in Section /.

3 Theoretical Results

In this section, we provide consistency results for the parameters of interest, in addition the distribu-
tion theory is provided to facilitate making inference on the breakpoints. We consider min(N,7T") — oo

asymptotically. The relative rate of N, T is discussed in Remark 5. First we list a few assumptions.

3.1 Assumptions

ASSUMPTION 3.1. (Properties of ;) Assume that the noise vectors in our SBDSFM e;, 1 <t < T,
satisfy the MA(oco) model in (2.2) with the innovation sequence (1, ;) and coefficient matrices (B;).

Moment. Let (n;;) be i.i.d. random wvariables with zero mean and finite gth moment, ¢ > 4, i.e.

m1lly = E( N4 < 0o, Denote ju, = Inillrs for any r < q.

Dependence strength. Assume for some constants cg > 0, Bp > 1+ 1/q, we have |By|y < cp(kV 1)7P8

where recall that | - |2 represents the spectral norm of a matriz, k > 0.

ASSUMPTION 3.2. (Basis function) For 1 < t < T, assume X;;, i = 1,..,N are i.i.d random

variables, independent of €, and ;. Assume that basis functions ¢;, 7 = 1,...,J, are bounded in absolute



value by cy < 0o, and

lqﬁ S Amin(E¢<Xt,l)¢(Xt71)T) S )\max(EQS(Xt,l)QS(Xt,l)T) S Uqﬁa
where ly, uy > 0 are some finite constants, and recall that ¢(Xy1) is a J x 1 vector of basis function values.

ASSUMPTION 3.3. (Properties of € (innovations of Z;)) Assume €,t € Z, are i.i.d random vectors
in RY with zero mean and maxi<i<y, ||€0illy < oo, for some ¢ > 4. And (&) are independent of (g;). For

the covariance matriz ¥, = E(egey ), assume lo = Amin(Xc) > 0.

Note when ¢;; are i.i.d for different 1 < i < L, with zero mean and variance ¢, then ¥, = 021, and

l. = o2

ASSUMPTION 3.4. Assume for some 0 < ¢ < 1/2; both 7°/T and (T — 7°)/T are greater than c.
ASSUMPTION 3.5. (AR coefficients of Z;)  Assume there exists some invertible matriz H such that
for coefficients E = (Ey, By, ..., Ey), E = (Ey, Es, ..., Eyy),

(i) Zi‘il |HE;H™|,, sz\i1 |HE’iH_1|2 < 7. < 1, for some constant v, > 0.

(ii) 6. = |E — E|y > 0 and 6, T"/* — .

Under Assumption 3.5 (i), both I — B(E) and I — B(E) are invertible. Let
Z0 = (1 -BE) g, 2" =U-B(E)) ¢ and Z, = 21,00 + 271 (3.1)
t t) t t t t t<7° t t>T7¢. .

Thus Z{” (resp. Z\") is stationary and satisfies the iteration Z\" = B(E)Z{" +¢ (resp. Z\" = B(E)Z{" +
Et).
Assumption 3.5 (ii) assures the patterns of the time series before and after the change point are different

and 0, represents the magnitude of the difference. We allow . to go to 0, when there is no structural break

and the model boils down to the stationary DSFM. Denote covariance matrices

T
Wi =E2{20", W, =E2{"Z"" and Wy = T™' Y EZ,2] = Wir°/T + Wo(T — °)/T.  (3.2)

t=1



For RYM vectors

l nHT nT nT r r)T r)T r)T
gt() = (Zt(—)l 7Zt(—)2 ) "-7Z§2M)T> gt( ) = (Zt(—)l 7Zt(—)2 7"')Zt(7)M)T7

define the REMXLM matrices
2O = Egg"" and 0 = BgVeT (3.3)
which capture the autocovariance of Z; up to Mth lag, beyond that the covariance is 0.

REMARK 3. It is worth noting that under Assumption 3.3 and 3.5 (i), we have the positive definiteness of
Wy, ¥ and 20,
(i) for matrix Wy defined in (3.2),

Amin(VI/O) Z lev (34)
(ii) for matrices ) and £ defined in (3.3),

Amin (2D, Amin (2T > 0.

Proof of Remark 3. Part (i) is due to the fact that both Ay, (W) and Ay (Ws) are greater than I..
Note (I — B(E))™' =1+ fiB' + foB? + ..., where f;s are matrices depending on F;. Since ¢; are i.i.d.,
EZOzOT = ¥+ D it [iEcfT and thus Apin(W1) > Amin(Ze) > .. Same arguments can be applied for
Ws.

For part (i), let x = (z], 24 ,...,2},) ", with x; € RF and |z|3 = 1. Denote i* as the largest i such that
x; # 0. Since Zi(l) =€+ Ek21 Crér—i, some matrices C, we have

M
220y = ]E(Z :16?224([))2 = E(IE,TQ + H)?,
i=1
where H = Zf‘il Zkzl xiTHkq*,k, for some matrices Hj, which are independent of €. Hence "Wz >

2 > 0. Same argument can be applied to X and we complete the proof. n

le |.T7;*

9



ASSUMPTION 3.6. (Loadings) Assume J < ¢;N®, some ay < 1/2. For any j > L, there exists
A* € R™E and By > 0, such that,

(i) 65 = sup,epy [m(z) " — @(x) T Ao = O(J ).
(11) For A} being the (2: (L + 1)) columns of A*, assume
0 < la < Amin(A3 A7) < Amax(A57 A7) < g,
where l,, u, are some finite constants.

(iii) Assume that A3WoA3" has L non-zero distinct eigenvalues and gap; (AsWoA3T) > I, > 0, where
function gapy(A) := mini<;<x(Ai(A) — Air1(A)).

This condition states that the factor loadings can be better approximated by basis functions ¢(x) as
the number of basis functions J increases. Quantity ¢ ; specifies the approximation speed, which is of some
polynomial order and it is also considered as the order of bias for our semiparametric estimation. We also
require that the decomposition is genuine in the sense that A3 always has full column rank by restricting

the minimum eigenvalue of A" A3 to be greater than some positive number.

ASSUMPTION 3.7. (Identification condition) Without loss of generality, let Wy = I, and A3" A} be a

diagonal matrix with distinct diagonal entities.

We shall show that the above conditions can be obtained under Assumptions 3.1-3.6. By assump-
tion 3.6 (iii), there exists an orthogonal matrix Q such that QT W, / 2AsT AW, 2Q is diagonal with dis-
tinct diagonal entities. By Remark 3, W, is invertible. Denote D = QTWO_I/ ?. For Z] = DZ; and
(M4 (), mh (), ..., m5 () = (ma(-),ma(-),...,mp(-))D", A5 = A5D~" and (2.3) becomes

Z! = B(E"Z <o + B(EZ11spe + €, t>1,

where €, = De;,, B! = DE;D~! and E' = DE;D~'. Then Assumptions 3.1 and 3.2 are unchanged, As-

)

sumption 3.3 holds in view of ¥/ = E(ele,") = DX, D" and Ayin(DX D) > 0. Note for H' = HD™!,

10



SSM |H'E!H'~'|; < 1 and thus we have Assumption 3.5. For Aj = A3D™", since Ay (D) > 0, Assumption
3.6 holds. By (3.2), W), = DWoD~! = I, and we have A} T A5 = D=T AT A;D~' = QW2 A5T AsW,/2Q,

which is diagonal, hence Assumption 3.7 holds.

3.2 Estimation Consistency

Next we show theorems regarding parameter consistency. Theorem 1 is concerning the consistency results
of the estimated parameters of SBDSFM, and Theorem 2 is on the consistency of the breakpoint estimate.
We show that the identified object A*(1, Z,")" can be consistently estimated. Moreover both the coefficient

matrix A3 and the factors Z; can be estimated consistently up to an invertible matrix.

THEOREM 1. (Consistency of A and Zt) Under Assumptions 3.1-3.7.
Denote p* = (T + J)(TN)~1=2/Dlog(TN) and assume p — 0. Then

() T2 AL ZN)T = AL, Z])T 3 = Op(p® + 67).

(ii) There exists a matriz Dy such that |Dr — D*|p = Op(T~Y/?), where D* is some diagonal matriz with

diagonal entities either —1 or 1, and

T
|AsD — Aglp = Op(p+6,) and T "|DrZy — Zyf5 = Op(p® + 63).
t=1

REMARK 4. The rate of Theorem 1 is similar to Theorem 2 in ( ). It can be seen that
moment Assumption 3.1 on the innovations n; ; plays a role in the rate of convergence in Theorem 1. In
particular, a larger value of ¢ means a stronger moment assumption and thus a slower rate of convergence.

O

For the estimation of the break point, we have the following assumption.
ASSUMPTION 3.8. Assume p*+ 62 = o(T71).

REMARK 5. Let N < T". Then under Assumption 3.6 (i), Assumption 3.8 holds if

r > max{1/(2a,8;), (¢ +2)/(¢ = 2),2/(¢ = 2 — asq)}.

11



Recall that J = O(N®7) and 6; = N~%%/. This condition assumes a larger rate of N than T, as r > 1.
Also the rate of N interplays with ¢ regarding the moment assumption, the number of basis functions and

the bias 9. a

Next we provide a theorem on the consistency of the change point estimate.

THEOREM 2. (Consistency of 7) Under Assumptions 3.1-3.8. For 8, fived or 5. — 0 and T2, — oo, we
have |7 — 7°| = Op(0,?).

The statement implies that 7|7 — 7°| — 0 in probability. The rate of consistency is determined by

the magnitude of the change ..

3.3 Asymptotic Distribution

In this subsection, we show the distribution theory of the estimated coefficient matrix within regime and
the change point estimate. For matrix A € R™" denote vect(A) = (A}, A;,...,Al)T, where 4; =
(Ai1, Aio, .oy Ain) T is the ith row of matrix A.

Define the block matrix Dy = Iy ® Dy where ® is denoted as the Kronecker product between two
matrices. Define the true coefficient matrix scaled by Dy and DT as H® = DTED;I, e = DTEDZFI.
Define that ¥ ; is the 7, j th entry of £, in Assumption 3.3, and ¥ is defined in (3.3). The asymptotic

normality of the estimated coefficient matrices is shown below.

THEOREM 3 (Central limit theorem for within regime parameters). Under Assumptions 3.1-3.8. Let
00 = (N cijer where N € REMAIM yith N = 5, ;501 and let ©0) = (N

i,9 2

N7 =%;;50-1. Then

)i<ij<r with

Y 2pect(DF(H — H®)Dy) = N(0,00)

and

A

(T — 7°)?vect(D;(F — F°)Dy) = N(0,0).

12



REMARK 6. The rate of convergence depends on the number of observations available within each regime,
and the asymptotic efficiency of the estimation is related to the auto-covariance structure of the process

Zy. ]

Then we provide a theorem on the asymptotic distribution of the change point estimate 7. Considering
the type of contiguous asymptotics, where 6, tends to zero in the limit. We show that the loss function for

estimating the change point can be approximated by a two-sided Brownian motion with a triangular drift.
THEOREM 4. (Asymptotic distribution of 7) Under Assumptions 3.1-3.8 and additionally 6. — 0. Let
Qb =§2(E - E)YSW(E - E)T and QW) = 6-2(E — E)XU)(E — E)T. Then

7 —7° = argmin H (s),

—tr(Q®)s 4+ 2tr'/2(QUE W, (—s), if s <0,
where H(s) = (%) ( W)
tr(Q)s + 2tr'/2(QMX, ) Wy (s), if s> 0,
where W1(+) and Wy(-) are independent standard Wiener processes.

REMARK 7. For the change point detection in a univariate regression model, ( ) provides a similar
type of consistency and asymptotic normality results. In our setup, we consider a VAR model with a

structural break, and Z; is with generated error from our semiparametric estimation. O

From the above theorem, with estimates of tr(Q®), tr'/2(QWX,), tr(Q")) and tr'/2(QMY,), we can

construct a 100(1 — «)% confidence interval for 7:

7 = lG1aja) = 1,7 + ldasz) + 1], (3.5)

where ¢1_a/2 (¢as2) is 1 — a/2 (o/2)th quantile of argminH (s), and a/2(G1—a/2) is a estimate.

Denote q = tr(QW), o; = 2tr'/2(QWX,), ¢, = tr(QM) and o, = 2tr'/2(QMX,). Let 6, = q/o
(q./o,) for t<0(t>0)and by =q.0,/0% (go,/c?) for t <0 (t>0). Denote
F(s,01,05) = (2m)7Y220,5Y2exp(—6%5/2) — (20%x + [0 + 262 + 260,65]/[02(61 + 605)]) D(—6,5/?)
+<01(91 + 292))/(92(91 + 92))6Xp{292(91 + 92)8}@(—(‘91 + 262>Sl/2>.

13



Then according to ( ), the distribution function of argmin H (s) is of the following form.
F(s)=—F(|s|,01,02), s<0,

F(S):1+F(’8‘701,62>, s> 0.

4 Simulation

In this section, we run simulations under different settings to evaluate our model performance. Firstly, we

suggest an algorithm for our estimation:

Initial Value Selection Z° and A°. Denote ¥, % (my(Xi4))1<i<ni<i<r- The initial estimation of

Z(T x L) and A(J x L) can be obtained as follows.
Step 1 We estimate firstly I'; & A(1,27)T and let T9 = argmingS(T) = |V;—®(X,)T|2 = |V;—®(X,)A(1, Z[)T|2 =
{7 (X,)®(X,)} 1T (X,)Y;. Define I = (19,19, -+, T9) s

Step 2 Denote the condensed svD of T as T0 = UOA'V T where A° = diag(A?, A, ..., \%) (The first L

largest singular values.) and A0 > XJ > .. > A0 Set 20 = A°VOT and A° = U°.
Step 3 Select the number of factors according to a BIC or AIC criteria.
The initial step is a projection based approach. The number of factors is prefixed by the initial selection

stage. We focus on the cases of having the minimum fixed number of factors following the parsimonious

principle (taking the minimum of BIC and AIC).

Iteration and Change Point Next, we show that given Z% and 1210, we can further obtain an estimate

as follows.

14



def

Step 1 Given the estimates A% and Z°, one can iterate between the estimation of A and Z = (Z1,Zoy -+, Zr)
following the loss:
argmin,y , » |V, — ®(X,)A(1, Z1) 5. (4.1)
t
Step 2 A gives us estimates of factors loadings ().
Step 3 Assuming Z;s follows a SBVAR process in (2.3), plug in (4.1).
Step 4 Apply a binary segmentation algorithm as in ( ) for estimating the single break
7, namely by minimizing
argmin, g pS1.-(H) + Sz 1)m(F). (4.2)
To set up the simulation, the following data generating processes are taken,
Yie =mo(Xop) + Y Zigmy(Xiy) + oz, (4.3)
!

N, T have the following cases T' = 50, 100, 200, 250, N = 50, 100, 200, 300. Each element of X, is taken
to be uniformly distributed over [—3,3]. Let mg(xy, x2) = 0. The my(-,-)s are taken to be

my(r1,15) = 1(w < ay,ze < ap){(9.45((z1 — 0.5)* + (x5 — 0.5)%) — 1.6)/30}
+ 1(zy > a1, 75 > a){(2.45((x; — 0.5) + (x5 — 0.5)%) — 1.6)/30},
m2($1,$2) = 3sin(0.57rx2)1(x1 < bl,l’g < bg)

+sin(0.77m:‘2)1(91:1 Z bl,.CCQ 2 bg),
where a1, as, b1, by are taken to be either 0.5 or 0.7.

The time series {Z,;} is taken to be a SBVAR process as in (2.3),
with £ = [0.5,—0.2,0;0,0.8,0.1;0.1,0,0.6], and E = [0.5,—0.2,0;0,0.8,0.1;0.1,0,0.6]. And eys are either
ii.d. normal random variables with standard deviation 0.001 before the break and 0.01 after the break
or variables following t location scale distributions with mean zero and the same variances (5 degree of

freedom). The true break point 7 is taken to be [T'/2] or [T'/4]. In addition, ;s are set to be i) independent
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standard normal noise processes N(0,0.1), ii) independent ARMA(1,1) processes, ;; = 0.5¢;4—1) + 1 +

0.57;(4—1), where 7;; and 7;;—1) are normal random variables of N (0, 0.1).

The simulation setup is to account for different types of signal to noise ratios for different values of o, in
particular o; = 0.1 or 03 = 0.01. In addition, we allow for the serial correlations for the error processes ;s
by case ii). Figure 1 presents the my(-, ) function under the case of "= 200, N = 200, a; = 0.5, as = 0.5,
b1 = 0.5, by = 0.5. Figure 2 shows the plots of the simulated two factors and the estimated confidence

intervals, with a change point at 100, one can observe a switching of the variances of the factors.

For the estimation of basis functions we consider the tensored quadratic B splines keeping to be the same
within the regions defined according to a;, as, by and by. By Theorem 1, the covariance structure of Zt is
identified up to an invertible matrix Dr. Denote the centered ZAt’c as Zt,c = Zt —T71! Zthl Z, the estimated
Dy can be the solution to minimize > |Zt,c — DrZ; |3, which is Dy = >, ZLCZJC)”(Zt Ztchm). We
work with the transformed estimate Z;, = D;lz}. We define a measure of the scale differences between the

estimated covariance matrix and the true one.
A T
s == (Z=2)2~2)" = (%= 2)(Z — 2) }s (4.4)
\/T t=1 t=1
For evaluating the accuracy of the estimation, the confidence intervals of the estimated change point

as in (3.5) is implemented and Table 1 reports the estimated coverage probabilities over 1000 samples in

different simulation scenarios. Also Table 2 presents the explained variances of fitted model and ey.

The estimation errors appear to be moderate across different estimation cases. In particular, they are
robust against different error distributions, innovations processes and signal to noise ratios. Moreover, we
have also shown good recovery rates of the break point over time. When the sample size increases, one

sees a tendency of an overall better performance.
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Figure 1: Plot of true loading functions with T" = 200, N = 200, a; = 0.5, as = 0.5, by = 0.5, by = 0.5.

0 20 40 60 80 100 120 140 160 180 200
Time

Figure 2: Plot of simulated normalized true factors with "= 200, N = 200, break point 7 = 100(cyan).
Estimated break point 7 = 103(black), and estimated confidence region [99, 107](dotted grey).

17



Table 1: The coverage probability is x10%, G' denotes normal innovations and 7' denotes t location scale
distributions (with 5 degree of freedom) innovations, 7 = [1'/2] or [T'/4]. Average over 1000 samples.
a = 0.05. 50,100 means N = 50,7 = 100, and the same for others.

50,100 | 100,50 | 200,200 | 300,250
) ooy G[T/2]| 601| 64.2 76.3 77.8
/4| 621| 633 73.3 78.2

T([T/2)| 587| 619 74.7 74.8

[T/4] | 643| 655 71.4 76.8

oy GI[T/2]| 723| 746 84.2 87.8
[T/4]| 692| 682 83.1 84.6

TI[T/2]| 66.1| 621 75.7 85.5

[T/4] | 67.1| 69.2 75.1 84.6

i) o G[T/2]| 596 64.0 75.8 75.2
[T/4]| 593| 618 74.2 73.8

T[T/2]| 583| 562 74.8 77.8

[T/4 | 59.9| 59.2 75.5 78.8

oy G[T/2]| 69.1] 725 83.3 85.8
[T/4 | 69.3| 686 79.2 84.2

T(T/2]| 651| 642 73.9 83.1

[T/4 | 563| 63.1 77.3 82.6
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5 Application

5.1 Minimum Wage Dataset for China

We consider a Chinese minimum wage dataset. It is collected from 1992 to 2012 for 346 counties over China
and the corresponding Chinese regional economic statistics. The data source is the ministry of Human
Resources and Social Security, and the China academy of Labor and Social Security. For more detailed
descriptions, please refer to ( ). The minimum wage is set upon by the local government
and the levels of the minimum wage may vary within a province. It is also known that it seems that after
2003, some changes has been made for the minimum wage adjustment policy. The dataset is matched
with another one measuring a regional economic situation, namely Chinese Statistical Year Book of China

National Knowledge Infrastructure.

The interesting question is to check the geographic heterogeneity of the minimum wages policy. Espe-
cially for the economics developed counties around the Pearl River Delta to the Yangtze River Delta, the
minimum wage would considerably be different from the other regions. Thus one would also be interested
in modeling the location difference for the regions populated with minorities, such as Xinjiang or Tibet.
It is in general a difficult task to jointly analyze the time changing policy effect and the geographical

discrepancy.

Therefore we apply our estimation procedure as in Section 4. Y;; is taken to be the minimum wage over
year. Xi;; is taken to be the difference of the countywise gross value added which measures the regional
economics indicator, and Xy, is taken to be scaled regional postal code. Figure 3 is from
( ), showing snapshots of geographical distribution of minimum wage over years. One sees that there
are time changes and location discrepancies for the minimum wage policy in China. Figure 4 presents the
estimated location loading functions on the left panel. And the fitted time varying factors with estimated
breakspoints, and confidence intervals. The estimated structural changes for the two factors are closed to

the year 2003.
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Figure 3: Graphical distribution of the minimum wage in China.
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Figure 4: Plot of estimated my(-) functions and estimated Z;, Y: minimum wage on X1: first difference of
county level gross value added and X2: city code. Break point 7 = 2005, and its confidence interval (dashed
grey). Regional cutoff to isolate regions populated with ethnic minorities, Tibet, Xinjiang, Qinghai and

Gansu and the economics developed regions.
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5.2 Limit Order Book Volume Dataset

In this subsection, we illustrate our methodology using a limit order book dataset. For a specific stock,
the limit order book is about the volume of pending buying or selling orders at certain price levels. Prices
for the asset under consideration reflects a snapshot of the stock’s demand and supply curves. The data
are collected at the NASDAQ stock market, and are collected at a 60 seconds frequency. The data source
is from LOBSTER (lobsterdata.com), see ( ) and ( ) for more details on the
data.

We consider a 60-second frequency over day. Normal trading activities take place continuously on all
stocks between 9:30 a.m. and 4:00 p.m from Monday to Friday in NASDAQ with totally 390 observations.
For illustration, we take one-day trading price as an example for four companies, namely, Amazon, Face-
book (on Sep 9th, 2016) AT&T and Tesla on (June 1st, 2016). To show the data structure, the number
of shares for the four stocks at time 10:00 am and 10:30 am are plotted in Figure 5. In each minute, five
price levels are collected both from the bid and the ask side, with the first one being the lowest sell price
and the last one being the highest sell price. As an example, at 10:00am and 216.78 USD(second best ask
price), the trading volume is 1798 on June 1st, 2016 for Tesla.

Our Y; is the trading volume at ¢th minute and jth price level, and X;; is the ordered relative price
level. As we measure the spread in relative terms, on the bid side, the price levels X;; is divided by the
highest bid price while on the ask side, the price levels X;; are divided by the lowest price on the ask side.
As we work with relative prices levels, we do not consider to model the relative shift of the level of the

curve. The connection point of the bid and ask curve are thus at a fixed point.

In Figure 7 and 8, we show the 7y(+)s (I = 1,2) estimated with and without discontinuity. Note that
the relative price level is considered and therefore the break point for /m functions is always set to 0. m(+)
represents the average level of trading volume in relationship to the relative to the price level, and my(-)
corresponds more to the higher order structure of the curves. And we also notice that the estimates with
embedded discontinuity in 0 are quite different from the estimation without it. In Figure 6, the estimated

two factors are plotted. We also plot the estimated breakpoint and the confidence interval built around it.
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Figure 5: Plot of raw data for different companies at 10:00am (solid line), 10:30 am(dotted line), on the
bid side

23



(a) AT& T (b) Tesla

0.5

041

0.3r

0.21

0.1-

0.1

g I I I I I I I
"o 50 100 150 200 250 300 350 400

(c) Facebook (d) Amazon

Figure 6: Plot of two factors and their estimated break points(black lines), and their confidence intervals.

It is worth noting that the change-point happens at different time point for different stocks, and the width
of the confidence interval also varies. This is due to stock specific latent trading dynamics. For AT&T, the
change-point is detected at 14 : 40, with a interval of 42 minutes; Tesla switches its latent trading pattern
at 10 : 40, with a small 4— minute interval; for facebook, a change happens at late 15 : 35 with a 10—
minute length of confidence interval; a change-point is detected for Amazon at 12 : 26 with a 18—minute

interval.
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Figure 7: Plot of estimated loading functions m(-) (left) and rmy(-) (right, no break point)
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Figure 8: Plot of estimated loading functions 7, (-) (left) and (with break point)
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6 Conclusion and Further Work

In this paper we propose a dynamic semiparametric factor model with a common structural break. This
approach contributes to the literature on change-point analysis in high dimensional time series. We show
good empirical performance in simulations and applications. We provide results on parameter consistency
and we establish the asymptotic distribution of the estimated change point. Regarding future work,
extending the current model to study multiple change points is a very interesting topic. Besides, considering

the selection of the number of factors using a [ — 1 regularization is another interesting direction to pursue.

7 Appendix

Notation. For two matrices G = (G;,), H = (H;;) € RN*T | define

N
(G, H)=(TN)" Y > GiH;, and |G| =(G,G).
t=1 i=1

Let €;,t > 1, be an i.i.d. copy of ¢,t > 1. Let

/
.Ft = (Et, €1, ) and ft,{t—k} = (Et, vy €kt 15 €4y Et—k—1, )

For any random variable & = H(F;), denote & sy = H(Fiqt-ry)- Let 1, ¢, ... be constants that do not
depend on T, N, J, which may change from lemma to lemma. We adopt the functional dependence measure

introduced by ( ), ie. [|& — & qoyllq, which measures the effect of €y on the observation .

7.1 Some useful lemmas
LEMMA 1 (Weyl’s inequality). Assume symmetric matrices 3,3/, A € REXL with ¥ = ¥/ + A, eigenvalues
M>X > 22X N2> >N, and dy > dy > ... > dy, respectively. Then
No+dp <N <N +ds.
As a result |A\; — N| < |Als.
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LEMMA 2 (Davis-Kahan’s sin 6 theorem). Let X, ¥ be symmetric matrices in RE*E with eigenvalues
A > Ao > o> Ap and Ny > Ny > 0> N respectively. Let v; and v} be the corresponding eigenvectors
for Xj and X; respectively. If v;v} >0, then

21/2|2_E/|F
min{|A; = Xj [, A = A}

[vj — Vi]p <

LEMMA 3 (Theorem 1 in ( )). Denote Y; = f(F;), where f is some measurable
function. Let S, = Y71, Vi, and 6,4 = ||Yi = Yioyllg- If E(Xi) = 0, X0,500iq < 00, some q¢ > 2, and
02 :=[E(S?) — oo, then

o, 1S, = N(0,1).
LEMMA 4. Followings are some useful properties for Z; and Z,. Assume conditions 5.5, 3.5 and 3.7. Then

(i) For some constant c; > 0, |||Z; — Zi]a]ly < cyi™ < 7°, and 1Z: — Zilally < ey T s o

Hence -,y |2 = Zilally < 00 and [[|Zilslly < ¢5, where ¢y = e1 + ||| 21]a]lg + 12741 |2l < o0.

(ii) Let 6 = 12 = 20y blly and 67 = 127 = 2y lally. then 6" < exy™ and 677 < exe™,
some constant c3 > 0.
(#i) Recall Wy = I,. Then
\ZZT )T — I|p = Op(TV?). (7.1)
Proof. Part (i). First assume S M |Eil2 < 7. < 1. Then for t < 7°
NZe = Zelally < e, max  |Zs = Zsl2lly- (7.2)
Let C' = max{|||Zs — Zs|2|l¢, s = 0, —1, ..., —M +1}. We prove the argument by induction, if for any s < k,

we have ||| Z, — Zi|a|ly < C7&™, then for s = k, by (7.2) we have ||| Z; — Zilally < Crend ™M = /M.

Hence [||Z; — 2|2y < C~Y™ . Similar argument can be applied for ¢ > 7°. By assumption 3.5, there exists
a matrix H, such that Zf\il |HE;H Yy <~.and HZ, = B(HEH *)H Z;+ He;. Hence by above argument,
I|HZ, — HZ oy < C’yé/M. Since |H !y is finite and |Z; — Zi|o < |HY|o|HZ; — HZ|o, we complete the

proof.
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Part (ii). Note z"

l
t{0} — B(E)Zt(,go} + €,{0)- Hence

0 - W 4> D _ leq — e ol
0, _,yetfj\/rlr%%}g{tflé ,t>1, and 9, llleo — €gl2llq - (7.3)

Then same argument as in Part (i), we have 5t(l) < cwé/ M

5t(r) < C:ﬂé/ M

, where ¢3 = 2|||€o|2]|¢ < oco. Similarly we have

Part (iii). Define Z = [Zy,--- , Zr]. Note ZZT = Zt 2T+ o1 Z1Z) =:1; +1,. Thus by Part (i),

=) 22|, =0p(1) and |1, — Z 22|, = 0p(1). (7.4)
t=1 t=7°+1

For any 1 <14,7 < L, we have
1Po(ZtiZej)llqr2 < N Zeillgll 2o — Zejqorlle + 1120 — Zeigoylla [ 21l -

Hence Lemma 3 implies 7°~V/2 Y7 (2,,2,; — Wi,;) = N(0,1). Thus | Y7 (2,2 — W1)|p = Op(r¢'/2).
Similarly we have | ZtT:TOH(ZtZtT — Wa)|r = Op((T — 7)'/?). Let Z be Z with Z, replaced by Z;. Since
°=<Tand T —7° < T, for Wy = 7°/TW, + (T — 7°)/TW,,

|ZZT)T — Wy|p = Op(T~"?).
Together with (7.4), we complete the proof. O

LEMMA 5. For some constants ay,ar > 0, assume J = O(N*/), T'= O(NT) and Assumption 3.2, then

with probability 1 — exp(—cN'72%7), some ¢ > 0, we have

I 1
l,/2 < W Juin Amin (P(Xe) T0(X,)) < e Amax (P(Xp) '@ (Xy)) < 2uy. (7.5)

Proof. We shall only show the first inequality, since the third one can be similarly derived. By Weyl’s

inequality (Lemma 1), we have

1
00, Ain (P(X0) (K1)

1 N
= min (5 D 6(X0)6(X0)T)

=1

> min Amm(Egb(th)gb(Xm) ~ max \—Z¢ (Xe)o(Xei) " — E(Xen)d(Xen) |, (7.6)
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Since |¢;| is bounded by ¢, by Hoeffding’s inequality
N

P(max |+ 0(X)0(X)T ~ES(X,0)0(X,1) ]|, > o)

-----
=1

!
<

Z Z ({ Z Gy (Xei) o (X)) — ]E¢j1(Xt2)¢]2<th)H > Nx/J)

N T
2
Assumption 3.2 assumes miny—1 5 7 EA(X,1)d(X,1)" > Ly. Hence by (7.6) and (7.7), the first inequality
of (7.5) holds with probability greater than exp{—LZ(8c}) ' N'7**7 +log(27J?)}, O

7.2 Proof of Theorem 1

Following notation will be used throughout this subsection. For 1 <t < T let
gt x) = o(x) AL, %),

and g*(t, x)(resp. §(t,x)) be g(t, ) with A, z replaced by A*, Z, (resp. A, Z,). Let
go(t,x) =m(z)" (1, Z)",

and thus Y;; = go(t, Xi;) + €1i. Denote N x T matrices My = (g(t, X1;))1<i<ni<i<r, and let g (resp. g%,

go) be the same as g with g(t, X;;) replaced by g(t, X:;) ((resp. g*(t, Xti), go(t, X:4)). For any R > 0,

denote the function class,

G(R) = {g(t,:z:) = o(x) T A(1, th)T A eR7E 4 e RY

<lg < R}.

Let the d-entropy of function class G(R) with respect to the norm |- |g be H(d, G(R)).

Proof of Part (i). Note that

2

T
2 _L A 7T\T g% TNT 2
NT; [P(XIACLZ))T - A1, 2])]

A,z — A1,z T2

AV
|
=j
IS
>/
=4
2
©
ks
*4
e*
E<
IIMH

30



We shall show in Lemma 5 and Lemma 4 that there exists € with P(€2) — 1, on which
TZ2ZT —Wolp =|T7'22Z" — I|p < T2, (7.8)
where ¢ > 0 some constant, and (7.5) hold.

From now on we shall only work on €. Then by (7.5) it suffices to show

|M§ - Mg*

2 = Op(” +03). (7.9)

h, thus h(A, Z,,1 <t < T) < h(A* Z;,1 < t < T), which can be rewritten as [M; — M|% < 2(, M, —
M) + [Mge — My, |3. Therefore

|M§ - Mg*

& < 2|My — Myl + 2| Mg — My, |2 < 4(e, My — M) + 4| My — My, |2. (7.10)

Since sup, |¢(x)TA* — m(2) | < 8,

T
My — Myolg < 67> 1L, Z1)T3/T = 851 +1213/T) = Op(53),

=1
where the last equality is due to (7.8). Hence, it suffices to consider the event (e, My—Mg+) > [Mg- — Mgy, |2,
¢ = Op(6%). Therefore by (7.10),

since otherwise |My — M-

‘Mé - Mg*

é < 8<5= Mé - Mg*>' (7.11)

We shall then use truncation technique to further deal with |M; — M-|g, specifically: recall g in

Assumption 3.1, for some m >0, 1/q < f < fp — 1, let
fe) =t ift <0,  f(t)=1, ift>0. (7.12)
Denote the truncated error 7y = (7.1, t.2, -, Te.n) With

i = (s Amf(£) V (=mf(t)). (7.13)
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Then for constant Cy = 2Y/%cp1o,

P(|My — My-|g > x) <P(|M; — M,

o> ,lelg < Co, _max |nii| < mf(t))

N
+P(elg > Co) + D P(Imal > mf(t)) =L+ I+

t<T i=1

By Lemma 6, I; = op(1) when = > p,, where
pm = 2(C12 NV 1)(TN) V(T + J)*mlog"*(TN). (7.14)

By Lemma 7, I, = O((T'N)™!). For I3, by Markov’s inequality,

T N
I <Y Pl =m) + 3> Pl = mlt)?) < (1+¢B(g8 — 1)~ T~ )T Nm ™y,
=0 i=1 t<0 i=1
Our results follow by choosing m = ¢(T'N)'/?, some constant ¢ large enough. O

LEMMA 6. Recall definitions of p,, in (7.14). Under assumptions in Theorem 1, we have Iy = op(1) when

T2 Pm.

Proof. We shall work on the event where (7.5) and (7.8) hold. When |e|g < Cj, by Cauchy’s inequality
and (7.11), [My — My-|g < 8Cy. Let S = min{s : 2°x > 8Cy} and &, be ¢, in (2.2) with 7, therein replaced
by 7 in (7.13). Then

S—1
I < ]P)(2Sx < |M§ - Mg* g < 25-{—11,7 |§|g < COat<%I}z<lX<N |nt,i| < mf(t))
s=0 S5
S—1
< IP( sup (&, M, — M) > 22732 |8|g < 00>, (7.15)

s=0 geg(25+1$)

where the last inequality is due to (7.11). In the following we shall show:

Step 1 : If there exists some constant c¢q > 0 independent of T, N, J, w, such that

R
VT Nw > commax{/

H'(u, G(R))du, R},
w/(8Cop)
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then we have

TNuw?
IP’( = M, — M) > w, |2 <C><’ (——) 7.16
sup 1My = Myl 20, g < o) < e~ i (7.16)
where ¢ is independent of T', N, J, m, w.
Step 2 : For some constant C; > 0 independent of y, N, T, .J, we have
H(6,G(y)) < C{(T + J)log(y/d)} (7.17)

Step 3 : Applying (7.16) and (7.17) to show that I; = op(1) when = > p,,.

Step 1: Since (7};;) are independent and Zthl v € = > k<t ZtT:w;c v, Bi_xk, by Hoeffding’s inequality,

T 2
w
P(|Y v &l >w) < Qexp{ - 7 } (7.18)
; 2m? ZkgT DIy BtT—k’Yth(k)Q
Notice
T T T
2
Z ’ Z BtT—kﬁyt} f(k)Q = Z P)/t—[< Z Btl*kB;—kf(ky)%fz < Z Jtl,t2’7t1’2|7t2’27
k<T t=1Vk t1,ta=1 k<t1Atg t1,t2=1

where 01, 1, = D ey iy | Bk l2| By —rl2f (k). For matrix @ = (04, 4,){, 1,—1, @ is symmetric with

T
@)1 = |w]e = 12%2&%%2 Z \Btrk|2|3trk\2f(k)2 < 000213,
t1=1 k<t1Ats

where constant ¢y only depends on 3, 5. Thus |@|y < (|@|1|@|e)? < cock. Hence for any vector v, € RY,

by (7.18)

r 2
~ Cgw
P13 al 2 w) s2e{ - s T} (719
2

2
t=1 m=Cg 2 ,1—1

where cg only depends on 8 and 8. Recall X;; and Z; are independent of &;, hence entities in M- is
independent of ;. Therefore result follows by (7.19) and Lemma 3.2 in ( ) with W, § and

e therein equal €/m, w/m and w/(2m).
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Step 2: By (7.5), G(y) is included in =3, |A(1,2])T — A*(1, Z)T|3 < 2y%/1,, and is further covered
by,

{(4,2): 141 - A3 <2 /ly, T\ sz — 43203 <2/l ). (7.20)
By (7.8), for all large T', recall that w, is defined in (ii) of Assumption 3.6,

)2 < T A5Z)5 < 2u,. (7.21)

Denote ¢; = min{20,2/(24%u,), v/2uq }.
If 2y%/l, > ¢y, then by (7.20) and (7.21),
T2 Agzlp < T V2A5Z| 0 + (297 /16)'? < cay,

where ¢y = (2/14)Y/?[\/2LuZ /c; + 1]. Denote the condensed svD T—1/2A4,2 = UAV . Then above indicates
|A|r < coy. Hence G(y) belongs to

{g(t,2) = o(x)"A(1, 2[)" + |AL = ATf3 < 29% /15, [Alp < cay} (7.22)

By (7.5), for M, equals M, with A;, Ao, z therein replaced by A}, A}, 2, and the condensed svD Afz" =
UNV'T

My — Mylg < 2ug(|Ar = A3 +|UAVT = U'AV'T[)
< 2ug[|Ar — A3+ 2(IA(V = V) T+ JA = N5 + (U = U)A')]. (7.23)

Therefore by (7.22) and (7.23), the § entropy for G(y) is of order O((J + T')log(y/§)).
If 2y%/l, < ¢1, then by (7.20) and (7.21)
T HAgzz" Ay — ASZZT AL |p < TV Az — A5Z|p(|Agzla + |A5Z]5) < 6(uq/ly) %y, (7.24)

which is less than /4 due to 2y%/ls < ¢1. By (7.8), |T 1 A5ZZ7 AT — AsWo AT | < O(T~Y/?). Hence for
T large, by (iii) of Assumption 3.6

gap, (TrA3ZZT A7) > 1/2 > 0. (7.25)
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By Weyl’s inequality, (7.24) and (7.25),

max |\ (T ' Agzz" A)) — N(TPASZZTAST)| < I /4.

1<i<L

Thus by Davis-Kahan sin # theorem, there exists a condensed SVD decomposition T-1/2A4,2 = UAV T and
T-YV2A37 = U*A*V*T, such that |U — U*|p = O(y). Similarly we have |V — V*| = O(y) and by Weyl’s
inequality |A — A*|r = O(y). Thus the 0 entropy for G(y) is of order O((J + T)log(y/9)).

Step 3: Let U(y) = my max{C)"*(T + J)log"/*(28Cy /y), 1}. Then
Yy

U(y) > mmax { /2/(280 | Hl/Q(U, G(y))du, y},
y 0

and W¥(y)/y? is a non-increasing on (0, 28Cy). For p,, in (7.14), VTN p?, > ¥(p,,), when TN > (28Cy)%".
Hence by (7.16), for any y > p,, and TN > (28C()?/7,

TNy2>

P( sup [(&, My — Mg)| > 2792, [é]g < CO) < ¢ exp(  dezm?

9€G(y)

some constant ¢z = C’ll/ ?¢) > 0. Inserting above into (7.15) with = = p,, implies

I, <exp{—TNp? /(4csm?)} = o(1).

LEMMA 7. Under assumptions of Theorem 1, we have
P(lelf > 2¢u3) < evpy (TN) ™,

where ¢; = max {,u4217 Var(nil)}-

Proof. Notice

T
1
’é‘@:ﬁ > 7711( > Bllet—m)??kQ-

k1,ko<T t=1Vk1Vka
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Since 7 j,t,j € Z are i.i.d. with zero mean and |B|% < N|B\§ for any matrix B € RV*V,

Elefg = (TN)'E(n7) ) Z | Bi-ilp < chita,

k<T t=1Vk
and
T 2
Var(|el}) <Ny 2 30| D Bl Biw| < ack/(TN),
k1<T ko<T t=1Vk1Vks
The desired result follows from Chebyshev’s inequality. m

Proof of Part (ii). From Part (i) and (7.8) we have
T YA ZZ AT — AZZTAT|p < T Y|A*Z|y + |AZ|2)|A*Z — AZ|p = Op(p + 6,). (7.26)

By Weyl'’s inequality with probability tending to 1, minj<jzj<p1 [N(T A5 ZZT AT = N(T Ay 22T AJ)| >
I /4. Recall T2 A,Z = UAVT. Denote the condensed svD of T-Y/245Z = U*A*V*T. Thus Davis-Kahan
sin 0 theorem implies if U U; > 0, then
U* = Uila < V2T YA ZZTAT — AZZTAT |5 /(1L ]4) = Op(p + 0),
where U and U; represent the ith columns of U* and U. That is by choosing the sign for U}, we have
U — U*% = Op(p* + 6%). By Weyl’s inequality and (7.26), we have |A — A*|%2 = Op(p? + 62). Thus
|A2 — U*A*|p = Op(p + 04) in view of Ay = UA. Hence
T2 = VT |p = (A Ap) T AT A2 — AV T)|p
< [(A] Ap) M Ao|o(|T V2 A2Z — U AV |p + [UTA” — As|p) = Op(p + 65).
Since T-'2A57 = U*A*V*", there exists an invertible matrix Dy, such that T-Y/2DyZ = V*T. S-
ince [T1ZZT — Ip| = Op(T~Y?), we have P(Auin(Dr) < 1/2) = Op(T~/?) and thus both |Dj Dy —
Ip| | Dy Dy—1I1|p equal Op(T~Y2). Since TP A5 ZZT A5T = U*A2U*T | | A3 AT —U*A2U*T | = Op(TV2).
Recall A3" A3 is diagonal with non-increasing diagonal entities. Hence by Weyl’s inequality, we have
|A5T A5 — A*2|p = Op(T~Y/?). Note we also have A3D;t = U*A*, then Dy AT Ay = Dy D] A*2 Dy, and there-
fore | Dy A3T A5 — A3T A5 Dy = Op(T~Y/?). By assumption 43" A} has distinct diagonal values. Therefore
|Dr — D*|p = Op(T~/?) where D* is a diagonal matrix with entities either —1 or 1.
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7.3 Proof of Theorem 2

We shall only show the case 7 < 7° since the other direction can be similarly dealt with. First let us

introduce some notation. For any k; < ko, let

Zkl_l Zk?l Zk‘z—l

f(Z,ky, ko) = Zii—2  Ligy—1 o Lky—2 € REMx(ka=h1+1)
LM Lgy—M41 - LhgM

and  h(Z, ki, ky) = [Zkl Ziisr - i, c RL*(k2—k1+1)

We will need to handle three segments to account for the deviation of our estimated break point and the
true break point 7°, namely 1 : 7, 7+ 1: 7% 7°+1:T. Denote I'y = f(Z,1,7), I'y = f(Z, 7+ 1,7°)
and I's = f(Z,7°+ 1,T). Let I';; be the tth column of I';, ¢ = 1,2,3, and I';;; be the [th coordinate
of ;4. Denote ¢ = h(Z,1,7), (o = h(Z,7 + 1,7°) and (3 = h(Z,7° + 1,T). Also let U, = h(e, 1,7),
U, = h(e,7+1,7°) and U, = h(e,7° + 1,T). It can be seen that (; = ET'y + U,,, (s = ET'y + U,,, and
(3= ETs + U,

Let

T T
S(r,H,F) =Y |DrZ,— B(H)DrZ/3+ > |DrZ, — B(F)DrZ]3.
t=1

t=17+1

Denote V. = infy p S(7,H,F) and 7 = argmin,,.;V;. Let (H;, F;) = argming pS(7, H, F') and
(H*, F*) = argming S(7%, H, F'). Then 7* is the ideal estimation of the break point with known factors

Z;, and H, and F;, are the parameters associated with 7.

Proof. Recall that the block matrix Dy = Iy ® Dp. Then for any fixed 7, we have the following solutions

H, = DpGU (D)) 7'DY and  F, = Dp(GTy + G ) (Dol + TsTy )DL (7.27)
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Note

o

Ve = |(B(H®) = B(H,))DrZ, + Drefs + Y |(B(H®) = B(F;))DrZ; + Drels
t=1 t=7+1
T
+ > [(B(F°) = B(F,))DrZ, + Dre3. (7.28)
t=7°+1

Then for d, = (B(H®) — B(H,))DrZ, t < 1;dy = (B(H®) — B(F,))DrZy, 7+ 1 <t <7° d, = (B(F°) —
B(F,))DrZy, t > 7 + 1, we have

T <>
V. — S(r°, H®, F°) > Z (Dre)) di+ > dif3 =: 21y + T, (7.29)

t=7+1
By Lemma 8, || = Op(1+0(7° — 7)"/2) + 0p (62 (r° — 7)), and by Lemma 9, I > ¢1(1 + 0p(1)) 2 (7° = 7),
some constant ¢; > 0. Since V.« < S(7°, H®, F*°), the left hand side of (7.29) should not be positive,

therefore —2I; should be larger than I, and thus we have |7* — 7°| = Op(d.2).

Now we prove that plugging in estimated Z; would not affect our estimation precision. Recall S (r,H,F)
is S(r, H, F) with DrZ, replaced by Z;. Let V, = ming g S(t,H,F) and (H,,F,) = argminH7F5'(T, H,F).
Denote
(I — B(H®))Z, = (I — B(H®))(Z; — D1 Z;) + Dre;,  if t<7°

¢ = (7.30)
(I — B(F))(Z, — Dy Z,) + Dre,, it > 7.

Let d; be d; with H, (resp. Fyr, DrZ;) replaced by H. (resp. E., Z) Then similar to (7.29) we have

<>

V. — S(r°, H®, F°) >QZ & di+ Y |di3 =21 + 1.

t=7+1

Let f‘z be I'; with Z; therein replaced by D;IZ and Uel. be U, with ¢; replaced by D;léi. By Theorem 1

and Lemma 4,

2 = op(1). (7.31)

3 T
S I =Tily = |D;'Z — Zi3 = 0p(1) and thus Z U.. —U..
i=1 t=1
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By (7.37), |Ts|p = Op(T}"?), where
T, =71 (resp. 7° — 71, T — 7°) for i = 1 (resp. i = 2, 3). (7.32)
Then we have

I, T — D0 e < (10| p + |Dilp)|Ts = Tilp = op(T?) and |UTT — U I | = Op(T}?). (7.33)

€1 €1

With above bounds, same order of bounds as in Lemmas 8 and 9 can be obtained for L and ig. Hence

by the same argument as for 7* case with Z; replaced by D;lzt and ¢ replaced by D;'é;, we have

# = 70| = 0p(5;2) in view of Vs < S(r°, H", F*). -

LEMMA 8. Under assumptions of Theorem 2, we have I = Op(1 + 6,(7° — 7)Y/2) + 0p(62(7° — 7)).

Proof. We shall first show the part 7°+1 <t < T. Recall H® = DTED;I, Fe = DTE[?;I and I's; is the
tth column of T's. Note ¢, = ET'y + U,, and (3 = ET's + U,,. Then for t € [t° + 1,T], by (7.27),

dy = Dr[E — ((Ty + (T )(Tol'y + T3l ) ™ Ts o
= —Dyp(U, ) + U, T3) (Do) + T35 ) gy _re + Dp(E — E)ToT (T + sl ) T30, (7.34)

Consequently

T
> (Dre))"dy = — tr{ Dp(U,Ty + U, )(Tal'y + Tsly ) ~'T3U,. Dy }

t=7°+1

+tr{Dp(E — E)IoTy (Dol + T3l ) 'T3U.L DL} = —Tiy + 1. (7.35)

let T; be T; with Z; replaced by Z; in (3.1). Note U,Tj = ZtT:TQH etf‘;t_To. Hence for any 1 <1i,j < L,
1 <1< M, by Lemma 4, ; := Hek,izkfl,j - Ek,iZkfl,j,{O}Hq’ = Hﬁk,i’|q/HZk4,j - Zkfl,j,{(]}Hq’ S ’Yf, k> 1, and

b0 := |l€0iZ-1; — €0iZ-1illy < 2lleollgl|Z-1;ll¢ S 1, where the constant in S is independent of T'. Hence

~Y

Y k>0 0k < 00 and
T

o? =E(( Y «@iZiy)) = (T —7°)E(,)E(Z7_,).

t=7°+1
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By the CLT in Lemma 3, o2 ZtT:TQH € 2i-1; = N(0,1). By Lemma 4, Ethl |2y — Z4|s = OP(ZtZO ),
hence |[|U,(T's = T3) T[rlly < 0y ekl 1120 — Zilally = O(1). Therefore

UeTs 1 Flly = Op((T = 7°)1/2). (7.36)

. T .
Since I'sTy =, o,  3y—rol'3, o, using the same argument as above leads to

03T BT < Y | Y (Tsimreilsirey — B3y o T4 o )| = O((T = 7°)1/2).
Q=1 t=ro+1
Since E(fg,tf;t> ¥ we have ET3Ty = (T—7°)2(). Again by Lemma 4, [TsT'y —TsT3 |2 < 27 (|1 Z,3+
|Z:13)|Z: — Zi|3 = Op(1). Therefore

sy — E(IsTg)|p = Os((T — 7°)Y%) and |[E(I'sI'g) — (T — )20 |p = Op(1). (7.37)

Since Amin(E2™) > ¢ > 0, [([303) 7' = Op((T — 7°)7'). Hence by a similar argument for I'2U, and
[,1y, we have I;; = Op(1). Recall \E~’ — FE|s = d.. By the same argument as in Ij;, we have Ij5 =

Op(6e(7° — 7)T7Y2) = 0p(62(7° — 7)).

Then we comment on the casesof 1 <t <7and 7+ 1<t <7° Note

> (Dre))"dy = —tr{ DU, T{ (T1I])"'T1U D} },

t=1
and

T°

> (Dre)Tdy = = tr{Dp(Us,Ty + Ug,Ts)(Toly +TsTg) "' T2l Dy }

t=7+1

+tr{Dy(E — E)I3T5 (Lol + T30 'ToU. DY

Hence similar argument as for 3., (Dre;) T d; part leads to 35, (Drer)Tdy = Op(1 + 8.(1° — 7)1/?)
and Y_;_ (Dre) Tdy = Op(1). O

LEMMA 9. Under assumptions of Theorem 2, we have Iy > ci1(1 + op(1))6%(7° — 7), where ¢; > 0 only

depending on the largest and smallest eigenvalues of XU, X and Dy
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Proof. Similar to d; in (7.34), for ¢ € [T + 1, 7°] we have
dy = Dp(E — E)TsT'y (ToT + 303 ) Ty + Dp(U, Ty + Ul,Td )(Toly + Dl )71y,
Hence

I, > tr{ Dp(E — B3T3 (Toly + D3T3 ) 'Toly (Toly + T3y )~ 'TsTy (E — E)" D7}
+tr{Dp(E — E)I3T (Do) + T30y ) 'l (Toly + 3T ) (U Iy + UL ) D b =1 Iy + Lo

Note for some constant ¢, C' > 0, Anin(2?), Anin(2T) > ¢ and Apax (2?), Anax(2)) < C. Hence by (7.37)
and a similar argument for ToT') , Apin(T2l'y ) > (¢ + 0p(1))(7¢ — 7) and Apin (T35 ) > (c+ op(1))(T — 7).
Since T'— 7° =< T,

Iy > ei(1+o0p(1)62(7° — 1),

where ¢; > 0 only depends on ¢, C' and A, (Dr). Same as Ij5 in the proof of Lemma 8, we have Iy =

op(02(T — 7). O

7.4 Proof of Theorem 3

Proof of Theorem 5. Recall definitions of H, and F in Subsection 7.3. We shall show the case 7 < 7° and

the other direction can be similarly dealt with.

For H: we will work on H- first, and then show the difference of H: and H is negligible. Let 7 = 7 in the

construction of I'; and U,,. Note
D;'(H; — H)Dy = U, T](T,T])~L. (7.38)

Same argument as (7.37), 77T, I'] — X in probability. For any matrix A € RE=M with |A|p = 1, we
have

vect(A) Twect(U,T] 201 = Zvect(A)Tvect(etFItZ(l)_l) =: Z&.
=1

t=1
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Let & ( resp. I'1) be & (resp. I'1) and with Z, replaced by Z; and 6, = ||Po&||,. Then

0 < |Alp|le(T]; = Traop) 07 p|

g S eelally 107 = Tregop lallg B0 e, ¢ > 1,
and 6 < [leo = eglally [T 12ll¢ |7 |p. By Lemma 4, 32, [[|12: = Zioplally = O(X1507E) = Os(1),
hence Y7, [||T1; — f‘lyt,{o}|2||q/ = Op(1) and >,°0; < co. By Lemma 3,

#712Y "6 = N(0,0%),
t=1

where 0% = 3, , E(6,&) = E(£2). Let © := E(vect(e,T'] ;O Mvect (e, , SO~ T), then 0 = vect(A) T Ovect(A)
Note © = (Ni,j)lgi,ng where Nl’] < RLMXLM with

Nig = E[(elvifilx(l)ilfﬁ,jfllE(l)fl = E(€1,i€1,j)2(l)71 = Ee,i,jz(l)’l.

Since 327, (116 — &llly < S0 [AlellelallollTae = Duelally [0 F = Op(1) and |7° — 7| = 0p(r°), we

have
7Y 2pect(U, I 071 = N(0,0).

By (7.38), |D7Y(H; — H)DJ|p < |U,TT(Dy0]) ™" — U, T (I10] )~ #, where I'; (resp. U.,) is T; ( resp.
U..) with Z, (resp. €) replaced by D7'Z; (resp. D7'é; defined in (7.30).) By (7.31), we have |D;!(H; —
H)DJ] |y = op(T~*/?) and thus the desired result follows.

For F: note

DN (Fs — F°)Dyp = (GI'g + (T3 ) (Dol +I5T) 7 — E
—(FE — E)Io D) (Do) + D5l + (UL + U, T3)(Tolg +T5Tg) =1, + L.

By (7.37), |Li|r = Op(6.(7° — 7)/T). Then Theorem 2 and 6,72 — oo imply |I;|r = Op(5;'1T7) =
OP(Til/z).

Decompose I into

(T — 7)1y = (T — )" Y20, D3 20~ 4 (T — 72)Y2U, 1) (Do) + T3l )7t
+ (T — ) V2U,T] (Dol + D3 YTyl + 5Ty — (T — )2 )xt)-1,
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By (7.36), |U,T'J|r = Op((1° — 7)Y/2). By (7.37), (T — 7°) "' (I'yI'y +T3I'J) — ™|z = 0p(1). By Weyl’s
inequality, with probability tending to 1, the smallest eigenvalue of (T — 7°)~}(To['y + '3 ) is lower

bounded by some ¢ > 0. Then we have
(T — 7)1y — (T — 7°)"V2U, T3 207 e = Op((7° — H)T7) + 0p(1).

By Theorem 2, 7° — 7 = O(4, %) and §°T — oo, hence right hand side of above equality is op(1). Same

argument as in H part, we have
(T — 7)Y vect(U,I's £ 1) = N(0,0),

where ©’ equals © with X replaced by ). Similar as the H part, we have | D7} (F; — F)Dy|p = op(T~1/?)

and we complete the proof. O

7.5 Proof of Theorem 4

Proof of Theorem /. By Theorem 2, |7 — 7°| = Op(d.?). Hence we shall work on set Q(m) := {7 : 0 <
7° — 1 < md;?}, some constant m > 0. The other direction 7 > 7° can be similarly dealt with. Recall that
QW = §2(E — E)SO(E — E)". Define a standard Wiener process on [0, 00) as W (s) for 1 < s < m. The
proof involves the following steps:

Step 1 Show sup, coqm) [Vr — Vee — tr{2(E — EYILUL + (10— 7)02Q0 Y| = op(1).

Step 2 For 7 = 7° — |4, 2%s], 0 < s < m, show

tr{(E — E)T.UL} = tr'/2{ QU JW (s).

~

Step 3 Show sup,cqqn) [Vr — Vz| = op(1).

Then combining above steps, the desired result follows.
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Step 1. Suppose that we know the true break point, and we denote (H*°, F*°) = argminy S(7°, H, F').
Let r{ = (B(H®) — B(H*®))DrZ; + Drey, if t < 7° 1) = (B(F°) — B(F**))DrZ; + Dre, if t > 7°. Then

T

Vie = Z )5

t=1
Recall definitions of F, and H, in Subsection 7.3. Let df = (B(H**) — B(H,))DrZ;, if 1 <t < 73
d° = (B(H*) — B(F,))DpZ,, if 7+ 1 < t < 1% d° = (B(F**) — B(F,))DrZ,, it 7° +1 < t < T. Then

Vi — Vyo = Z |d° + 79| — Z )2 = Z 2|2 + QZNCZO =1, + 2I,. (7.39)

t=1
Part I;. We shall first deal with 74+ 1 < ¢ < 7° part. Note

H* = Dy(G] + Gy (DI +Toly) "Dyt = Dy (E + (U Iy + U,y ) (T + FJ;)_I) D!
and

Fr = Dr(Gly + (T3 ) (Tl +Tsl3) 7 Dyt
= Dr(E+ (UuT3 + U] + (E — E)ToT3)(TaT] + T0f) ™) Dit,

Hence by similar argument as (7.36) and (7.37), we obtain bounds |I;I') | = Op(T5), |U,T) |2 = Op(Til/Q)
and |(T,0]) 7Yy = Op(T7Y), i € {1,2,3} and T; is defined in (7.32). Then

|H* — F, — Dp(E — E)D7|y = Op(TY2 + 6.(r° — 7)/T). (7.40)
Thus we have

Z |22 = tr{(H* — F.)DyTsTy D(H* — F,)"} = tr{Dp(E — E)I,I') (E — E)' D]} + op(1).

t=7+1

Same argument leads to Y- .|, p [df[3 = op(1) and Y7, |d7|3 = 0p(1). Since EI,I'y = (7°—7)50).
Similar to (7.37), we have [Tl — (7° — 7)X®|z = Op((7° — 7)1/2). Hence

> ;)3 = (7 = Tte{(E — E)S(E — E) ' D{ Dy} + op(1).
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Part I,. Note H*® — H® = Dp(U,I'| + U,Tg)(I1I'] + Tyl )" 'D;t. Hence |[H* — H°|, = Op(T~/?). By
(7.40),

3 nTd = tr{(H*<> — F,)DsTol] DE(H® — H*)T + (H* — F,)DsTyU D }

t=741

= tr{(E — E)[LU. D] Dy} + op(1).

Same argument leads to Y o, o075 df = op(1) and 33, 77"d; = op(1). Then desired result follows

by noting |DJ. Dy — Ip|r = Op(T~Y/?).

Step 2. Note

<

tr{(E— EYLU_} = Y &, where& =¢/(E—E)ly,.

t=7+1

Let fk be &, with Z; replaced by Zt(l). For 0, := ||Pofk||q/, since ||730|f27t_7|2||q/ < |||f27t_7 — f27t777{0}|2||q/,

we have
Ok < bellTon—r — Tosoroplollglllerlallys &> 1,

and 6 < 0c|||T2,—r |2/l ¢ |ll€0 — €hl2ll¢- By Lemma 4, 3o 112 — Ziqoyl2lly = O(1), hence 6713, - 6% < 0.
By Theorem 3 in ( ), the invariance principle holds as d, — 0,

TO

° Yoo &=W(s), (7.41)

o
t=7o—|0; 25|

where W (-) is a standard Wiener process on [0, c0) and
o? =E(&%) = tr{E(eroe))(E — E)E(Ty 0I5 o )(E—E)T} =tr{S(E - E)S(E - E)T}.

Then ¢ /6, =< 1 in view of the largest and smallest eigenvalues of () and ¥, are bounded above and below
by some positive constants. Since |||(Ty — To)U.|plly < ZZ;H IT2e—r — Tourlollglll€c)2lly = O(1), and
5. — 0, (7.41) holds for & replaced by &,.

Step 3. Let (H°, F°) = argminH,FS’(TQ,H, F), then (H®,F°) is (H*, F*) with Z; and € replaced by
D;'Z; and D7'¢,. Let do and 79 be d° and r¢ with H**, F*°| DypZ, replaced by H®, F°, Z, respectively.
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Then by (7.39),
T T
Ve = Vel < DNl — 15151 +2 ) (rfT(d = d))| + () — 7)) T )).
t=1 t=1

Since by Cauchy-Schwartz inequality, Zthl 2|2 —|de 3| < (23:1 |d° — d§|§)1/2(ZtT:1(|d§| + |d?]5)?)Y/2. By
(7.33),

T T
Dol —dl3=o0p(1) and Y [ry —#7f5 = op(1).
t=1 t=1

Hence 30,_, ||d;[3 — [d7[3] = op(1). Similarly we have Y2, [rg"(df — &) < (3, [r{13)"* (X0 Id; —
d7[3)"? = 0p(1) and Yo, |(rf —79) Ty | < (32, 108 — 77 13) Y2 (2,1 1d515)* = op(1). 0

REFERENCES

Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point.

Econometrica: Journal of the Econometric Society, 821-856.

Bai, J. (1997). Estimation of a change point in multiple regression models. The Review of Economics and

Statistics 79(4), 551-563.

Bai, J., X. Han, and Y. Shi (2016). Estimation and inference of change points in high dimensional factor models.

Manuscript.

Bai, J. and S. Ng (2008). Recent developments in large dimensional factor analysis. Technical report, Working

Paper, Mimeo.

Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural changes. Econometrica,

47-78.

Briiggemann, R., W. Hérdle, J. Mungo, and C. Trenkler (2008). VAR modeling for dynamic loadings driving
volatility strings. Journal of Financial Econometrics 6(3), 361-381.

Cheng, X., Z. Liao, and F. Schorfheide (2016). Shrinkage estimation of high-dimensional factor models with
structural instabilities. The Review of Economic Studies 83(4), 1511-1543.

46



Connor, G., M. Hagmann, and O. Linton (2012). Efficient semiparametric estimation of the fama—french model

and extensions. Econometrica 80(2), 713-754.

Dette, H. and D. Wied (2016). Detecting relevant changes in time series models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 78(2), 371-394.

El Machkouri, M., D. Volny, and W. B. Wu (2013). A central limit theorem for stationary random fields. Stochastic
Process. Appl. 123(1), 1-14.

Fan, J., Y. Liao, and W. Wang (2016). Projected principal component analysis in factor models. Annals of
statistics 44 (1), 219.

Fengler, M. R., W. K. Hérdle, and E. Mammen (2007). A semiparametric factor model for implied volatility

surface dynamics. Journal of Financial Econometrics 5(2), 189-218.

Galvao, A. B. C. (2006). Structural break threshold VARs for predicting us recessions using the spread. Journal
of Applied Econometrics 21(4), 463—487.

Hérdle, W. K., N. Hautsch, and A. Mihoci (2012). Modelling and forecasting liquidity supply using semiparametric
factor dynamics. Journal of Empirical Finance 19(4), 610-625.

Hardle, W. K. and P. Majer (2016). Yield curve modeling and forecasting using semiparametric factor dynamics.

The European Journal of Finance 22(12), 1109-1129.

Huang, Y., P. Loungani, and G. Wang (2014). Minimum wages and firm employment: Evidence from china. IMF

working paper.
Jirak, M. (2015). Uniform change point tests in high dimension. The Annals of Statistics 43(6), 2451-2483.

Mihoci, A. (2017). Modelling limit order book volume covariance structures. In Advances in Statistical Method-

ologies and Their Application to Real Problems. InTech.

Park, B. U., E. Mammen, W. Hérdle, and S. Borak (2009). Time series modelling with semiparametric factor
dynamics. Journal of the American Statistical Association 104(485), 284-298.

Preuf}, P., R. Puchstein, and H. Dette (2015). Detection of multiple structural breaks in multivariate time series.

Journal of the American Statistical Association 110(510), 654-668.

47



Scott, A. J. and M. Knott (1974). A cluster analysis method for grouping means in the analysis of variance.

Biometrics, 507-512.

Shao, X. and X. Zhang (2010). Testing for change points in time series. Journal of the American Statistical
Association 105(491), 1228-1240.

Stock, J. H. and M. W. Watson (2011). Dynamic factor models. Ozford Handbook of Economic Forecasting 1,
35-59.

Stryhn, H. (1996). The location of the maximum of asymmetric two-sided brownian motion with triangular drift.

Statistics & Probability Letters 29(3), 279 — 284.

Triick, S., W. Hardle, and R. Weron (2014). The relationship between spot and futures CO2 emission allowance
prices in the EU-ETS.

van Bémmel, A.; S. Song, P. Majer, P. N. Mohr, H. R. Heekeren, and W. K. Hérdle (2014). Risk patterns and
correlated brain activities. multidimensional statistical analysis of fmri data in economic decision making study.

Psychometrika 79(3), 489-514.
van de Geer, S. (2000). Empirical Processes in M-estimation, Volume 6. Cambridge university press.

Wied, D., W. Krdamer, and H. Dehling (2012). Testing for a change in correlation at an unknown point in time

using an extended functional delta method. Econometric Theory 28(3), 570-589.

Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proceedings of the National Academy
of Sciences of the United States of America 102(40), 14150-14154.

Wu, W. B. (2011). Asymptotic theory for stationary processes. Stat. Interface 4(2), 207-226.

Wu, W. B. and Z. Zhao (2007). Inference of trends in time series. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 69(3), 391-410.

48



SFB 649 Discussion Paper Series 2017

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

"Fake Alpha" by Marcel Miller, Tobias Rosenberger and Marliese Uhrig-
Homburg, January 2017.

"Estimating location values of agricultural land" by Georg Helbing, Zhiwei
Shen, Martin Odening and Matthias Ritter, January 2017.

"FRM: a Financial Risk Meter based on penalizing tail events occurrence"
by Lining Yu, Wolfgang Karl Hardle, Lukas Borke and Thijs Benschop,
January 2017.

"Tail event driven networks of SIFIs" by Cathy Yi-Hsuan Chen, Wolfgang
Karl Hardle and Yarema Okhrin, January 2017.

"Dynamic Valuation of Weather Derivatives under Default Risk" by
Wolfgang Karl Hardle and Maria Osipenko, February 2017.
"RiskAnalytics: an R package for real time processing of Nasdaq and
Yahoo finance data and parallelized quantile lasso regression methods"
by Lukas Borke, February 2017.

"Testing Missing at Random using Instrumental Variables" by Christoph
Breunig, February 2017.

"GitHub API based QuantNet Mining infrastructure in R" by Lukas Borke
and Wolfgang K. Hardle, February 2017.

"The Economics of German Unification after Twenty-five Years: Lessons
for Korea" by Michael C. Burda and Mark Weder, April 2017.

"Data Science & Digital Society" by Cathy Yi-Hsuan Chen and Wolfgang
Karl Hardle, May 2017.

"The impact of news on US household inflation expectations" by Shih-
Kang Chao, Wolfgang Karl Hardle, Jeffrey Sheen, Stefan Triick and Ben
Zhe Wang, May 2017.

"Industry Interdependency Dynamics in a Network Context" by Ya Qian,
Wolfgang Karl Hardle and Cathy Yi-Hsuan Chen, May 2017.

"Adaptive weights clustering of research papers" by Larisa Adamyan,
Kirill Efimov, Cathy Yi-Hsuan Chen, Wolfgang K. Hardle, July 2017.
"Investing with cryptocurrencies - A liquidity constrained investment
approach" by Simon Trimborn, Mingyang Li and Wolfgang Karl Hardle,
July 2017.

"(Un)expected Monetary Policy Shocks and Term Premia" by Martin
Kliem and Alexander Meyer-Gohde, July 2017.

" Conditional moment restrictions and the role of density information in
estimated structural models" by Andreas Tryphonides, July 2017.
"Generalized Entropy and Model Uncertainty" by Alexander Meyer-
Gohde, August 2017.

"Social Security Contributions and the Business Cycle" by Anna
Almosova, Michael C. Burda and Simon Voigts, August 2017.
"Racial/Ethnic Differences In Non-Work At Work" by Daniel S.
Hamermesh, Katie R. Genadek and Michael C. Burda, August 2017.
"Pricing Green Financial Products" by Awdesch Melzer, Wolfgang K.
Hérdle and Brenda Lépez Cabrera, August 2017.

"The systemic risk of central SIFIs" by Cathy Yi-Hsuan Chen and Sergey
Nasekin, August 2017.

"Das deutsche Arbeitsmarktwunder: Eine Bilanz" by Michael C. Burda
and Stefanie Seele, August 2017.

SFB 649, Spandauer Stra3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".




SFB 649 Discussion Paper Series 2017

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

023

024

025

026

"Penalized Adaptive Method in Forecasting with Large Information Set
and Structure Change" by Xinjue Li, Lenka Zbonakova and Wolfgang Karl
Hardle, September 2017.

"Smooth Principal Component Analysis for High Dimensional Data" by
Yingxing Li, Wolfgang K. Hardle and Chen Huang, September 2017.
"Realized volatility of CO2 futures" by Thijs Benschop and Brenda Lépez
Cabrera, September 2017.

"Dynamic Semiparametric Factor Model with a Common Break" by Likai
Chen, Weining Wang and Wei Biao Wu, November 2017.

SFB 649, Spandauer Strae 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".




	AA_Frontpage
	chen_Wan_Wu_SBDSFM
	Introduction
	Model
	Estimation

	Theoretical Results
	Assumptions
	Estimation Consistency
	Asymptotic Distribution

	Simulation
	Application
	Minimum Wage Dataset for China
	Limit Order Book Volume Dataset

	Conclusion and Further Work
	Appendix
	Some useful lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4 


	ZZ_Endpage

