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A B S T R A C T

In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity
and gene expression changes underlying these effects were investigated. Rats were orally administered three
doses (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver
excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes
associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reac-
tion. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospho-
lipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) down-
regulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively.
A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both
respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1
in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing
genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart
disease.

1. Introduction

Aflatoxins are secondary metabolites synthesized by Aspergillus
fungi particularly Aspergillus flavus and Aspergillus parasiticus [1,2].
They contaminate food and feedstuff most especially grains and nuts
during pre - or post-harvest conditions in tropical regions specifically
sub-Saharan Africa and Southeast Asia [1,3]. Among the naturally oc-
curring aflatoxins that contaminate food significantly (aflatoxin B1,
aflatoxin B2, aflatoxin G1, aflatoxin G2), aflatoxin B1 (AFB1) is the
most common and most toxic, and the liver is its key target organ [4–6].
In the liver, AFB1 is biotransformed by microsomal cytochrome P450 to
a highly reactive intermediate, AFB1-8, 9-epoxide which binds to nu-
cleic acids to form adducts [4,7,8]. These adducts could block tran-
scription and translation, thereby affecting the regulation of functional
gene expression and ultimately causing hepatotoxicity [5]. AFB1-in-
duced hepatotoxicity also results from accumulation of reactive oxygen
species, which are precursors of hydroxyl radicals that interact with

DNA and lead to mutations [9,10]. AFB1 also induces apoptosis, cyto-
toxicity and genotoxicity in human hepatocytes (HepG2 cells) [11,12].

Acute aflatoxicosis resulting from exposure to high doses of AFB1
through the diet over a short period causes hepatotoxicity while chronic
aflatoxicosis resulting from exposure to low doses of AFB1 through the
diet over a long period of time has been implicated in hepatocellular
carcinoma [1,13]. Although acute aflatoxicosis is less common com-
pared with chronic aflatoxicosis it occurs occasionally and such out-
breaks have been reported in Kenya [14–16]. In an attempt to search
for potential biomarkers- using transcriptomics and metabolomics- for
earlier detection of AFB1 induced acute hepatotoxicity, Lu et al. [17]
reported that gluconeogenesis and lipid metabolism disorders are major
metabolic effects following acute AFB1 exposure.

Lipids are molecules that play key roles in metabolic pathways and
the lipids of clinical and physiological significance are fatty acids, tri-
glycerides, cholesterol and phospholipids [18]. These lipids are trans-
ported in the blood as lipoproteins which are made of a hydrophobic
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core surrounded by a hydrophilic layer [18,19]. Disturbances in the
homeostasis of these lipids and lipoproteins resulting in dyslipidemia
characterized by hypertriglyceridemia, low HDL-cholesterol and ele-
vated LDL- cholesterol are associated with various diseases including
cardiovascular disease [20–25]. Specifically abnormalities in lipopro-
tein levels and oxidation of LDL have been found to play a role in the
development of cardiovascular diseases in humans [26,27].

AFB1 has been reported to cause alterations in plasma and liver
lipid levels [2,4,17]. However, the doses at which these effects occur
and the mechanisms underlying these alterations need further ex-
ploration. Lu et al. [17] reported that gene expression analysis and
metabolite profiling are more sensitive than general toxicity studies for
the detection of earlier hepatotoxicity induced by AFB1. The LD50 of
AFB1 has been reported to be 2.71 mg/kg and the authors reported that
no mortality was observed in rats treated with 1.0 mg/kg AFB1 [28].
Therefore, this study investigated the effects of acute oral exposure to
three doses (0.25, 0.5 and 1.0 mg/kg) of AFB1, the doses were selected
to ensure there was no death during the experimental period, on lipid
and lipoprotein metabolism in rats and assessed expression of genes in
pathways relevant to lipid metabolism.

2. Materials and methods

2.1. Chemicals

AFB1 was a product of Sigma-Aldrich (St. Louis, MO). Reagent di-
agnostic kits were products of BioSino Biotechnology & Science Inc.
(Beijing, China). RNAlater® and RNA extraction spin column kit were
products of Aidlab Biotechnologies Co. Ltd (Beijing, China) while
TransGen EasyScript® one-step RT-PCR kit was a product of TransGen
Biotech Co. Ltd (Beijing, China). All other chemicals used in this study,
unless otherwise stated, were products of Sigma-Aldrich (St. Louis,
MO).

2.2. Animals

Twenty 10-week old inbred male albino rats weighing between 100
and 150 g were used for this research. The rats were housed in clean
cages, subjected to standard 12-h light and dark cycles and had access
to feed and clean tap water ad libitum. The animals were allowed to
acclimatize to their environment for one week before the experiment
started. The experiment was conducted, and animals cared for in ac-
cordance with the declaration of Helsinki.

2.3. Treatment protocol and tissue collection

The rats were randomly distributed into four treatment groups of
five rats each and treated with 0, 0.25, 0.5 or 1.0 mg/kg body weight
AFB1. AFB1 in olive oil was administered by oral gavage for seven days
while the control rats received equal volume of olive oil alone. The rats
were sacrificed on the eighth day, after an overnight fast, under an-
esthesia and blood collected by cardiac puncture. Blood and liver were
processed as previously described by Rotimi et al. [29] while a portion
of the left lobe was preserved in RNAlater® and another portion kept in
10% formalin for histological studies. Plasma was obtained from whole
blood by centrifugation at 3000 rpm for 15 min.

2.4. Biochemical analysis

2.4.1. Plasma lipid profiles
Total cholesterol and triglyceride concentrations in the plasma were

determined using commercially available kits according to the manu-
facturer’s instructions. Total HDL and HDL3 were recovered from the
plasma using dextran sulfate-MgCl2 precipitation at the final con-
centration of 10 mg/mL dextran sulfate, 0.5 M MgCl2, 0.05% NaN3 and
19.1 mg/mL dextran sulfate, 1.95 M MgCl2, 0.05% NaN3, respectively

[30,31]. The supernatant, containing the lipoprotein, was recovered
after centrifugation at 1500 g for 30 min. Cholesterol and triglyceride
concentrations were determined in this supernatant with the same
commercial kits used for total cholesterol and triglyceride.

Plasma phospholipids were determined as described by Rifai et al.
[30], using 1-amino-2-naptho-4-sulphonic acid reagent, while free fatty
acids (FFA) were determined spectrophotometrically at 620 nm as de-
scribed by Rotimi et al. [32].

2.4.2. Liver lipid profiles
Lipids were extracted from the liver according to the method of

Folch et al. [33] and aliquots of the extract was used for determining
cholesterol, triglycerides and phospholipids as earlier described by
Rotimi et al. [34].

2.5. RNA extraction

RNA was extracted from RNAlater® – stabilized liver using the
Aidlab spin column RNA extraction kit according to the instructions of
the manufacturer. Concentration and purity of extracted RNA was de-
termined at 260 nm and 280 nm using a NanoDrop® 2000 spectro-
photometer (Thermo Scientific). RNA samples were kept at −80 °C
until gene expression analysis.

2.6. Expression of lipid metabolizing genes

The levels of expression of some lipid metabolizing genes were as-
sessed in the liver using semi-quantitative reverse transcriptase poly-
merase chain reaction (RT-PCR) as previously described by Rotimi et al.
[35]. Briefly, the RT-PCR was carried out with 500 ng RNA template
using TranGen EasyScript one-step RT-PCR kit according to manu-
facturer’s instructions. The RNA samples were subjected to an initial
30 min incubation at 45 °C for cDNA synthesis after which PCR am-
plification was carried out, using gene specific primers (GSP) (Table 1),
at 94 °C for 5 min followed by 40 cycles of 94 °C for 30 s, 5 min at the
annealing temperature of GSP, and 1 min at 72 °C. All amplifications
were carried out in C1000 Touch™ Thermal Cycler (Bio-Rad Labora-
tories, Hercules, CA). After PCR, amplicons were visualized on 1.2%
agarose gel in 1X Tris Borate EDTA buffer using UVP BioDoc-It™ Ima-
ging system (Upland, CA, USA). The intensity of the bands were ana-
lyzed using Image J software [36]. Results were presented as relative
expression (ratio of intensity of each gene to that of β-actin, Actb) of
each gene in comparison with a housekeeping (β-actin, Actb) gene.
There were no changes in the expression of the housekeeping gene
across the treatment groups.

2.7. Histopathology

A portion of liver samples were fixed in 10% formalin immediately
after harvesting. The tissues were processed by cutting pieces in tissue

Table 1
Sequences of gene – specific primers.

Gene Sequence (5′–3′) Template

Ahr Forward: GGGCCAAGAGCTTCTTTGATG NM_001308255.1
Reverse: GCAAGTCCTGCCAGTCTCTGA

Lipc Forward: GAGCCCAGTCCCCCTTCA NM_012597.2
Reverse: ATGTCATTCTTTGCTGCGTCTC

Scarb1 Forward: GGCAAATTTGGCCTGTTCGT NM_031541.1
Reverse: CCACAGCAATGGCAGGACTA

Lcat Forward: AACTGGCTGTGCTACCGAAA NM_017024.2
Reverse: TAGGTCTTGCCAAAGCCAGG

Cpt1a Forward: AAGTCAACGGCAGAGCAGAG NM_031559.2
Reverse: ACGCCCAAGTATTCACAGGG

Actb Forward: GTCAGGTCATCACTATCGGCAAT NM_031144.3
Reverse: AGAGGTCTTTACGGATGTCAACGT
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cassettes with an automated tissue processor. They were then em-
bedded in paraffin and thereafter were sectioned with microtome. The
slides were then stained with haematoxylin and eosin.

2.8. Statistical analysis

Data were expressed as Mean ± SEM of five replicates. Analysis of
variance (ANOVA) was carried out to test for level of homogeneity at
p< 0.05 among the groups while Duncan multiple range test was used
to separate the heterogeneous groups. The ANOVA results was sub-
jected to contrast analysis to determine the linear dose-response (trend
analysis) among the groups using linear polynomial.

3. Results

3.1. Histology results

A comparison of the sections of the liver of control and AFB1 treated
animals showed that 0.25 mg/kg AFB1 resulted in minimal congestion
of hepatic lobules and microvesicular degeneration with few macro-
vesicles. Meanwhile the liver of rats treated with 0.50 mg/kg AFB1
indicated additional damages like infiltration by inflammatory cells
around the porta triad as well as congestion of the sinusoid and the
vessels. Further damage to the liver was observed at 1.0 mg/kg AFB1
treatment which included central vein (porto-central) inflammation,
numerous macrovesicles with inflammatory infiltrates on the portal
triad extending and reaching the contiguous portal triad (porto-porto),
and associated proliferation of the bile ductules (Fig. 1).

3.2. Lipid profiles

Acute exposure to AFB1 significantly (p < 0.05) increased plasma
triglyceride (Fig. 2A) and FFA (Fig. 2B) in a dose dependent manner
with a significant (p < 0.001) linear trend. While only the highest

dose (1.0 mg/kg) significantly (p < 0.05) increased plasma total
cholesterol compared to the control group, there was a significant
(p = 0.006) trend for a dose-dependent increase across groups. How-
ever, plasma phospholipid was significantly decreased in the groups
exposed to 0.5 mg/kg and 1.0 mg/kg AFB1. Plasma phospholipid of the
group that received the lowest dose was not significantly (p > 0.05)
different from the control group. A significant decrease in HDL3 cho-
lesterol was observed in groups exposed to 0.5 mg/kg and 1.0 mg, there
was a significant (p = 0.004) trend for a dose-dependent decrease
across groups. However, there was no significant difference in HDL
cholesterol (Fig. 3A), HDL-triglyceride (Fig. 3B) and HDL3-triglyceride
(Fig. 3D) among all the groups. The levels of hepatic cholesterol
(Fig. 4A), triglycerides (Fig. 4B) and phospholipids (Fig. 4C) were sig-
nificantly (p < 0.05) increased by all the doses of AFB1. However,
only the increase in liver triglycerides was dose dependent, with a
significant (p = 0.036) linear trend.

3.3. Relative expression of lipid metabolizing genes

The expression of five genes was assessed in liver samples from all
treatment groups. The relative expression of aryl hydrocarbon receptor
(Ahr) was significantly (p < 0.05) decreased by only 0.5 mg/kg and
1.0 mg/kg AFB1 (Fig. 5A). All three doses used in this experiment
significantly (p < 0.05) decreased, compared to control, the relative
expression of carnitine palmitoyl transferase 1A (Cpt1a) (Fig. 5B).
0.5 mg/kg AFB1 significantly increased the relative expression of le-
cithin – cholesterol acyltransferase (Lcat) whereas 1.0 mg/kg AFB1
significantly decreased the relative expression of Lcat compared with
the control (Fig. 5C). The relative expression of hepatic lipoprotein li-
pase (Lipc) was significantly (p < 0.05) decreased in only the group
given 1.0 mg/kg AFB1 (Fig. 5D). However, 0.25, 0.5 and 1.0 mg/kg
AFB1 resulted in 15.8, 63.2, and 84.2% increases respectively in the
relative expression of scavenger receptor class B member 1 (Scarb1)
(Fig. 5E).

Fig. 1. Photomicrograph of liver tissues after afla-
toxin B1 treatments with hematoxylin and eosin
staining. Representative slides are shown for each of
the four exposure groups: (A) control showing: (1)
portal triad and (2) central vein (B) 0.25 mg/kg
AFB1 showing: (1) microvesicles, (2) macrovesicles
and (3) portal triad (C) 0.50 mg/kg AFB1 showing:
(1) inflammatory cells, (2) portal triad, (3) central
vein and (4) microvesicles and (D) 1.0 mg/kg AFB1
showing (1) inflammatory cells, (2) hepatic artery,
(3) portal vein and (4) bile duct. Compared to the
control group, pathology of the 0.25 mg/kg was
minimal. In the 0.5 mg/kg group, sinusoid conges-
tion was evident along with inflammatory infiltra-
tion around the portal triad. In the highest dose
group, inflammation extended to the central vein
and the portal triad along with profileration of the
bile ductules.
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4. Discussion

The results of this study confirm several hallmarks of AFB1-induced
hepatotoxicity occur in a dose-dependent manner in a rat model testing
three sub-lethal doses and provide new insight into potential mechan-
isms underlying these effects. The results demonstrate that AFB1 in-
duced hepatic damage with concomitant dyslipidemia, and this may
occur in part through the alteration of expression of lipid and lipo-
protein metabolising genes. The various degrees of histological damage
to the liver include infiltration of inflammatory cells around the portal
triad and bile duct proliferation which is consistent with other studies
[4,5,17]. Plasma dyslipidemia was characterized by increased con-
centrations of cholesterol, triglyceride and free fatty acids, and de-
creased concentrations of phospholipids and HDL3–cholesterol while
hepatic dyslipidemia was characterized by increased concentrations of

cholesterol, triglyceride and phospholipids. Expression of all five lipid-
related genes significantly changed by AFB1 exposure. The doses of
AFB1 used in this study have been previously shown to induce acute
aflatoxicosis in rats without causing mortality [17,28].

Alterations in lipids and lipoproteins may play a role in the patho-
genesis of coronary heart diseases (CHD) [32,37,38]. Although, total
HDL-cholesterol has been known as “good” cholesterol which protects
from these diseases because of its ability to remove cholesterol from
peripheral tissues, other studies have indicated the importance of
studying the distinct subclasses of this lipoprotein because they remove
cholesterol from cells by different mechanisms [39–41]. Kim and col-
leagues [42] discovered in their study, that HDL3-cholesterol may be
superior to total HDL-cholesterol and HDL2-cholesterol in predicting
the risk of coronary heart diseases. The findings of our study, which
showed that AFB1 decreased HDL3-cholesterol, coroborates this

Fig. 2. Effects of Aflatoxin B1 on (A) plasma cho-
lesterol (B) plasma triglycerides (C) plasma free fatty
acids and (D) plasma phospholipid concentrations.
Bars represent the means ± SEM (n = 5). Bars with
different alphabets are significantly (p < 0.05) dif-
ferent from each other.

Fig. 3. Effects of aflatoxin B1 on (A) HDL choles-
terol, (B) HDL triglycerides, (C) HDL3 cholesterol and
(D) HDL3 triglycerides concentrations.
Bars represent the means ± SEM (n = 5). Bars with
different alphabets are significantly (p < 0.05) dif-
ferent from each other.
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Fig. 4. Effects of Aflatoxin B1 on (A) hepatic cho-
lesterol, (B) hepatic triglycerides and (C) hepatic
phospholipids.
Bars represent the means ± SEM (n = 5). Bars with
different alphabets are significantly (p < 0.05) dif-
ferent from each other.

Fig. 5. Effects of Aflatoxin B1 on the relative ex-
pression of hepatic lipid metabolizing genes: (A) Ahr;
(B) Cpt1a; (C) Lcat; (D) Lipc; (E) Scarb1.
Bars represent the means ± SEM (n = 3). Relative
expression is ratio of intensity of each gene to that of
housekeeping gene (β-actin, Actb). Bars with dif-
ferent alphabets are significantly (p < 0.05) dif-
ferent from each other.
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discovery.
A major finding of this study was that AFB1 increased free fatty

acids in a dose dependent manner. This is in agreement with Lu et al.
[17] who reported increased concentrations of long chain fatty acids;
9,12-octadecadienoic acid, trans-9-octadecanoic acid and octadecanoic
acid, after AFB1 administration. These findings could have resulted
from the down-regulation of Cpt1, an enzyme that facilitates the
transportation of long chain fatty acids into the mitochondria for β-
oxidation and subsequently formation of ATP [43,44]. Yarru et al. [44]
also observed down regulation of Cpt1 in chicks while Chen et al. [43]
reported that the reduction in Cpt1 observed in ducklings were not
statistically significant. They however attributed this observation to the
low dose of AFB1 given to the ducklings, which indicates that down-
regulation of Cpt1 by AFB1 is dose dependent. On the other hand,
Zhang et al. [5] reported the upregulation of genes associated with
promoting fatty acid synthesis and elongation in ducklings. This study
confirmed a AFB1 dose-dependent increase in FFA synthesis and su-
pression of Cpt1, which may be a mechanism underlying changes in
FFA. The excess FFA could be taken up by the liver and esterified to
form triglycerides or be mobilized for the synthesis of phospholipids.
The accumulation of phospholipid in tissue has been reported to be
induced by several xenobiotics [45]. This xenobiotic-induced phos-
pholipidosis has been reported to be due to enhanced FFA availability
and/or increased cholesterogenesis [46]. These two mechanisms might
be involved in the elevated level of liver phospholipid observed in this
study.

The AFB1-induced increase in both plasma and liver triglycerides
observed in this study is consistent with that of El-Nekeety et al. [2].
Over the years, hypertriglyceridemia have been reported to increase the
risk of CHD [47] and one enzyme involved in the regulation of plasma
triglyceride is hepatic lipase. Hepatic lipase is a lipolytic enzyme syn-
thesized by the hepatocytes [48], and found in the liver, adrenal glands
and ovaries [49]. Hepatic lipase, encoded by the gene Lipc, plays a
multifunctional role in lipoprotein metabolism, it regulates the pho-
pholipid, triglyceride and cholesterol content of lipoproteins because of
its role as a phospholipase and triglyceride lipase [47,49]. The role of
Lipc in atherosclerosis is unclear with some studies suggesting it is pro-
atherogenic and others anti-atherogenic [47–50]. This may be due to
complex responses of Lipc to various endogenous and exogenous fac-
tors. Our results showed that only the highest dose of AFB1 significantly
decreased the expression of Lipc, suggesting other genes are involved in
lipoprotein metabolism changes observed in the lower AFB1 doses.

The present investigation shows that AFB1 increased the expression
of Scarb1 in a dose dependent manner. Scarb1 is a lipoprotein receptor,
belonging to the class B family of receptor, which regulates the selective
uptake of HDL-cholesterol esters (HDL-CE) [51–53]. Apart from this
major role, it appears to play a role in cholesterol metabolism, bi-di-
rectional cholesterol shuttling and could act as an anti-atherogenic
agent [53]. During reverse cholesterol transport, nascent HDL matures
into spherical HDL when HDL-free cholesterol is converted to HDL-CE
by Lcat [54]. The mature HDL delivers its CE, through a process
mediated by Scarb1, to the liver where it is hydrolyzed and excreated as
bilary cholesterol [54,55]. Although, the lowest dose of AFB1 upregu-
lated Lcat, the highest dose caused a down regulation. The increase in
the expression of Lcat observed could be as a result of increased need for
reverse cholesterol transport. However the highest AFB1 dose could
have overwhelmed this need. It is noteworthy that the group adminis-
tered the lowest dose (0.25 mg/kg) of AFB1 had the highest con-
centration of cholesterol in the liver as well as the highest expression of
Lcat, this could mean that AFB1 might have repressed the reverse
cholesterol transport. Scarb1 has been reported to perform the role of a
‘lipid trader’, therefore when the demand for HDL-cholesterol exceeds
its supply (due to downregulation of Lcat observed at the highest dose),
the trader actively seeks lipids [51]. Therefore, the upregulation of
Scarb1 observed in this study could be a response to change in lipid
homeostasis as well as protection against atherosclerosis [53].

The Aryl hydrocarbon receptor (Ahr) is a ligand- activated tran-
scription factor which plays a major role in xenobiotic metabolism [56]
and other biological processes including lipid metabolism [57–59].
Specifically, this receptor regulates fatty acid and cholesterol bio-
synthesis because its activation represses fatty acid synthesis and cho-
lesterol secretion in the liver [58,59]. In this study AFB1 repressed the
expression of Ahr which could account for the increase in lipids ob-
served in this study. Our results are consistent with that of Mary et al.
[60] who observed a decrease in the expression of Ahr mRNA levels in
spleen mononuclear cells of rats after 24 h of AFB1 treatment. Wada
et al. [57] reported upregulation of genes associated with lipogenesis in
high fat diet-induced hepatic steatosis using Ahr deficient mice, they
concluded that Ahr may also play a role in protecting the liver against
lipotoxicity.

5. Conclusion

Acute exposure to high doses of AFB1 for seven days, induced liver
damage and dysregulation of lipid and lipoprotein metabolism through
altered expression of Cpt1a, Lipc, Lcat Scarb1 and Ahr genes which are
associated with lipid and lipoprotein metabolism. Notably, Cpt1 and
Scarb1 may be more sensitive indicators of aflatoxicosis as dose-de-
pendent expression changes occurred in these genes starting with the
lowest dose. Overall, the changes observed in this study may be asso-
ciated with increased risk of CHD and may play a critical role in acute
aflatoxicosis.

Disclosure statement

The authors declare no conflict of interest.

Acknowledgement

The authors are grateful to Dr. Jaclyn Goodrich for reviewing and
editing this manuscript.

References

[1] Y.Y. Gong, S. Watson, M.N. Routledge, Aflatoxin exposure and associated human
health effects, a review of epidemiological studies, Food Saf. 4 (2016) 14–27.

[2] A.A. El-Nekeety, S.H. Abdel-Azeim, A.M. Hassan, N.S. Hassan, S.E. Aly, M.A. Abdel-
Wahhab, Quercetin inhibits the cytotoxicity and oxidative stress in liver of rats fed
aflatoxin-contaminated diet, Toxicol. Rep. 1 (2014) 319–329.

[3] C.P. Wild, Y.Y. Gong, Mycotoxins and human disease: a largely ignored global
health issue, Carcinogenesis 31 (2010) 71–82.

[4] L. Zhang, Y. Ye, Y. An, Y. Tian, Y. Wang, H. Tang, Systems responses of rats to
aflatoxin b1 exposure revealed with metabonomic changes in multiple biological
matrices, J. Proteome Res. 10 (2010) 614–623.

[5] N.-Y. Zhang, M. Qi, X. Gao, L. Zhao, J. Liu, C.-Q. Gu, W.-J. Song, C.S. Krumm, L.-
H. Sun, D.-S. Qi, Response of the hepatic transcriptome to aflatoxin b1 in ducklings,
Toxicon 111 (2016) 69–76.

[6] L.-H. Sun, M.-y. Lei, N.-Y. Zhang, X. Gao, C. Li, C.S. Krumm, D.-S. Qi, Individual and
combined cytotoxic effects of aflatoxin b1, zearalenone, deoxynivalenol and fu-
monisin b1 on brl 3a rat liver cells, Toxicon 95 (2015) 6–12.

[7] R.S. Iyer, B.F. Coles, K.D. Raney, R. Thier, F.P. Guengerich, T.M. Harris, DNA ad-
duction by the potent carcinogen aflatoxin b1: mechanistic studies, J. Am. Chem.
Soc. 116 (1994) 1603–1609.

[8] L.K. Kamdem, I. Meineke, U. Gödtel-Armbrust, J. Brockmöller, L. Wojnowski,
Dominant contribution of p450 3a4 to the hepatic carcinogenic activation of afla-
toxin b1, Chem. Res. Toxicol. 19 (2006) 577–586.

[9] G.K. Blankson, F.C. Mill-Robertson, Aflatoxin contamination and exposure in pro-
cessed cereal-based complementary foods for infants and young children in greater
accra, ghana, Food Control 64 (2016) 212–217.

[10] M.A. Abdel-Wahhab, A. Aljawish, A.A. El-Nekeety, S.H. Abdel-Aiezm,
H.A.M. Abdel-Kader, B.H. Rihn, O. Joubert, Chitosan nanoparticles and quercetin
modulate gene expression and prevent the genotoxicity of aflatoxin b1 in rat liver,
Toxicol. Rep. 2 (2015) 737–747.

[11] Y. Liu, M. Du, G. Zhang, Proapoptotic activity of aflatoxin b 1 and sterigmatocystin
in hepg2 cells, Toxicol. Rep. 1 (2014) 1076–1086.

[12] X. Yang, Y. Lv, K. Huang, Y. Luo, W. Xu, Zinc inhibits aflatoxin b1-induced cyto-
toxicity and genotoxicity in human hepatocytes (hepg2 cells), Food Chem. Toxicol.
92 (2016) 17–25.

[13] D.K. Ingawale, S.K. Mandlik, S.R. Naik, Models of hepatotoxicity and the underlying
cellular, biochemical and immunological mechanism(s): a critical discussion,

O.A. Rotimi et al. Toxicology Reports 4 (2017) 408–414

413

http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0005
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0005
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0010
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0010
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0010
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0015
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0015
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0020
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0020
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0020
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0025
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0025
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0025
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0030
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0030
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0030
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0035
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0035
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0035
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0040
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0040
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0040
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0045
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0045
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0045
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0050
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0050
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0050
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0050
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0055
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0055
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0060
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0060
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0060
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0065
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0065


Environ. Toxicol. Pharmacol. 37 (2014) 118–133.
[14] L. Lewis, M. Onsongo, H. Njapau, H. Schurz-Rogers, G. Luber, S. Kieszak,

J. Nyamongo, L. Backer, A.M. Dahiye, A. Misore, Aflatoxin contamination of
commercial maize products during an outbreak of acute aflatoxicosis in eastern and
central kenya, Environ. Health Perspect. (2005) 1763–1767.

[15] E. Azziz-Baumgartner, K. Lindblade, K. Gieseker, H.S. Rogers, S. Kieszak, H. Njapau,
R. Schleicher, L.F. McCoy, A. Misore, K. DeCock, Case-control study of an acute
aflatoxicosis outbreak, Kenya, Environ. Health Perspect. 2005 (2004) 1779–1783.

[16] A. Ngindu, P. Kenya, D. Ocheng, T. Omondi, W. Ngare, D. Gatei, B. Johnson,
J. Ngira, H. Nandwa, A. Jansen, et al., Originally published as volume 1, issue 8285
of acute hepatitis caused by aflatoxin poisoning in kenya, Lancet 319 (1982)
1346–1348.

[17] X. Lu, B. Hu, L. Shao, Y. Tian, T. Jin, Y. Jin, S. Ji, X. Fan, Integrated analysis of
transcriptomics and metabonomics profiles in aflatoxin b1-induced hepatotoxicity
in rat, Food Chem. Toxicol. 55 (2013) 444–455.

[18] A.E.H. Rolim, R. Henrique-Araújo, E.G. Ferraz, F.K. de Araújo Alves Dultra,
L.G. Fernandez, Lipidomics in the study of lipid metabolism: current perspectives in
the omic sciences, Gene 554 (2015) 131–139.

[19] C.-H. Lee, P. Olson, R.M. Evans, Minireview lipid metabolism, metabolic diseases,
and peroxisome proliferator-activated receptors, Endocrinology 144 (2003)
2201–2207.

[20] L. Wu, K.G. Parhofer, Diabetic dyslipidemia, Metabolism 63 (2014) 1469–1479.
[21] T. Kelesidis, J.S. Currier, Dyslipidemia and cardiovascular risk in human im-

munodeficiency virus infection, Endocrinol. Metab. Clin. North Am. 43 (2014)
665–684.

[22] N. Katsiki, D.P. Mikhailidis, C.S. Mantzoros, Non-alcoholic fatty liver disease and
dyslipidemia: an update, Metabolism 65 (2016) 1109–1123.

[23] R. Franssen, H. Monajemi, E.S.G. Stroes, J.J.P. Kastelein, Obesity and dyslipidemia,
Endocrinol. Metab. Clin. North Am. 37 (2008) 623–633.

[24] E. Diamanti-Kandarakis, A.G. Papavassiliou, S.A. Kandarakis, G.P. Chrousos,
Pathophysiology and types of dyslipidemia in pcos, Trends Endocrinol. Metab. 18
(2007) 280–285.

[25] S.M. Grundy, Metabolic syndrome update, Trends Cardiovasc. Med. 26 (2016)
364–373.

[26] A. Ungurianu, D. Margină, D. Grădinaru, C. Băcanu, M. Ilie, C. Tsitsimpikou,
K. Tsarouhas, D.A. Spandidos, A.M. Tsatsakis, Lipoprotein redox status evaluation
as a marker of cardiovascular disease risk in patients with inflammatory disease,
Mol. Med. Rep. 15 (2017) 256–262.

[27] B.A. Ference, H.N. Ginsberg, I. Graham, K.K. Ray, C.J. Packard, E. Bruckert,
R.A. Hegele, R.M. Krauss, F.J. Raal, H. Schunkert, Low-density lipoproteins cause
atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic,
and clinical studies. A consensus statement from the european atherosclerosis so-
ciety consensus panel, Eur. Heart J. (2017) ehx144.

[28] C. McKean, L. Tang, M. Tang, M. Billam, Z. Wang, C.W. Theodorakis, R.J. Kendall,
J.S. Wang, Comparative acute and combinative toxicity of aflatoxin b1 and fumo-
nisin b1 in animals and human cells, Food Chem. Toxicol. 44 (2006) 868–876.

[29] O.A. Rotimi, S.O. Rotimi, F. Oluwafemi, O. Ademuyiwa, E.A. Balogun, Coexistence
of aflatoxicosis with protein malnutrition worsens hepatic oxidative damage in rats,
J. Biochem. Mol. Toxicol. 30 (2016) 269–276.

[30] N. Rifai, G.R. Warnick, M.H. Dominiczak, Handbook of Lipoprotein Testing, Am.
Assoc. Clinical Chemistry, 2000.

[31] G.R. Warnick, J. Benderson, J.J. Albers, Dextran sulfate-mg2+ precipitation pro-
cedure for quantitation of high-density-lipoprotein cholesterol, Clin. Chem. 28
(1982) 1379–1388.

[32] S.O. Rotimi, D.A. Ojo, A.O. Talabi, E.A. Balogun, O. Ademuyiwa, Tissue dyslipi-
demia in salmonella-infected rats treated with amoxillin and pefloxacin, Lipids
Health Dis. 11 (2012).

[33] J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and
purification of total lipides from animal tissues, J. Biol. Chem. (1957) 226.

[34] O.A. Rotimi, I.O. Olayiwola, O. Ademuyiwa, E.A. Balogun, Effects of fibre-enriched
diets on tissue lipid profiles of msg obese rats, Food Chem. Toxicol. 50 (2012)
4062–4067.

[35] S.O. Rotimi, G.E. Bankole, I.B. Adelani, O.A. Rotimi, Hesperidin prevents lipopo-
lysaccharide-induced endotoxicity in rats, Immunopharmacol. Immunotoxicol.
(2016) 1–8.

[36] M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imagej,
Biophotonics Int. 11 (2004) 36–42.

[37] O. Ademuyiwa, R.N. Ugbaja, S.O. Rotimi, Plasma lipid profile, atherogenic and
coronary risk indices in some residents of abeokuta in south-western nigeria,
Biokemistri (2008) 20.

[38] Y. Hirakawa, T.-H. Lam, T. Welborn, H.C. Kim, S. Ho, X. Fang, H. Ueshima, I. Suh,
G. Giles, M. Woodward, The impact of body mass index on the associations of lipids
with the risk of coronary heart disease in the Asia Pacific region, Prev. Med. Rep. 3
(2016) 79–82.

[39] J. Buring, G. O'Connor, S. Goldhaber, B. Rosner, P. Herbert, C. Blum, J. Breslow,
C. Hennekens, Decreased hdl2 and hdl3 cholesterol, apo ai and apo a-ii, and in-
creased risk of myocardial infarction, Circulation 85 (1992) 22–29.

[40] P.M. Sweetnam, C.H. Bolton, J. Yarnell, D. Bainton, I.A. Baker, P.C. Elwood,
N.E. Miller, Associations of the hdl2 and hdl3 cholesterol subfractions with the
development of ischemic heart disease in British men. The caerphilly and speedwell
collaborative heart disease studies, Circulation 90 (1994) 769–774.

[41] A. Pirillo, P. Uboldi, G. Pappalardo, H. Kuhn, A.L. Catapano, Modification of hdl3
by mild oxidative stress increases atp-binding cassette transporter 1-mediated
cholesterol efflux, Cardiovasc. Res. 75 (2007) 566–574.

[42] D.S. Kim, A.A. Burt, E.A. Rosenthal, J.E. Ranchalis, J.F. Eintracht, T.S. Hatsukami,
C.E. Furlong, S. Marcovina, J.J. Albers, G.P. Jarvik, Hdl-3 is a superior predictor of
carotid artery disease in a case-control cohort of 1725 participants, J. Am. Heart
Assoc. 3 (2014) e000902.

[43] X. Chen, N. Horn, P. Cotter, T. Applegate, Growth, serum biochemistry, comple-
ment activity, and liver gene expression responses of pekin ducklings to graded
levels of cultured aflatoxin b1, Poult. Sci. 93 (2014) 2028–2036.

[44] L. Yarru, R. Settivari, E. Antoniou, D. Ledoux, G. Rottinghaus, Toxicological and
gene expression analysis of the impact of aflatoxin b1 on hepatic function of male
broiler chicks, Poult. Sci. 88 (2009) 360–371.

[45] S.O. Rotimi, D.A. Ojo, O.A. Talabi, R.N. Ugbaja, E.A. Balogun, O. Ademuyiwa,
Amoxillin- and pefloxacin-induced cholesterogenesis and phospholipidosis in rat
tissues, Lipids Health Dis. 14 (2015) 13.

[46] H. Sawada, K. Takami, S. Asahi, A toxicogenomic approach to drug-induced
phospholipidosis: analysis of its induction mechanism and establishment of a novel
in vitro screening system, Toxicol. Sci. 83 (2005).

[47] C. Chatterjee, D.L. Sparks, Hepatic lipase, high density lipoproteins, and hyper-
triglyceridemia, Am. J. Pathol. 178 (2011) 1429–1433.

[48] B. Perret, L. Mabile, L. Martinez, F. Tercé, R. Barbaras, X. Collet, Hepatic lipase
structure/function relationship, synthesis, and regulation, J. Lipid Res. 43 (2002)
1163–1169.

[49] H. Jansen, A.J. Verhoeven, E.J. Sijbrands, Hepatic lipase a pro-or anti-atherogenic
protein? J. Lipid Res. 43 (2002) 1352–1362.

[50] S. Santamarina-Fojo, H. González-Navarro, L. Freeman, E. Wagner, Z. Nong,
Hepatic lipase, lipoprotein metabolism, and atherogenesis, Arterioscler. Thromb.
Vasc. Biol. 24 (2004) 1750–1754.

[51] D. Rhainds, L. Brissette, The role of scavenger receptor class b type i (sr-bi) in lipid
trafficking: defining the rules for lipid traders, Int. J. Biochem. Cell Biol. 36 (2004)
39–77.

[52] P. Xin, H. Han, D. Gao, W. Cui, X. Yang, C. Ying, X. Sun, L. Hao, Alleviative effects
of resveratrol on nonalcoholic fatty liver disease are associated with up regulation
of hepatic low density lipoprotein receptor and scavenger receptor class b type i
gene expressions in rats, Food Chem. Toxicol. 52 (2013) 12–18.

[53] W.-J. Shen, J. Hu, Z. Hu, F.B. Kraemer, S. Azhar, Scavenger receptor class b type i
(sr-bi): A versatile receptor with multiple functions and actions, Metabolism 63
(2014) 875–886.

[54] S. Kunnen, M. Van Eck, Lecithin cholesterol acyltransferase: old friend or foe in
atherosclerosis? J. Lipid Res. 53 (2012) 1783–1799.

[55] S.C. Kaur, Biochemistry of Atherosclerosis 1 Springer Science & Business Media,
2006.

[56] C. Köhle, K.W. Bock, Coordinate regulation of phase i and ii xenobiotic metabolisms
by the ah receptor and nrf2, Biochem. Pharmacol. 73 (2007) 1853–1862.

[57] T. Wada, H. Sunaga, K. Miyata, H. Shirasaki, Y. Uchiyama, S. Shimba, Aryl hy-
drocarbon receptor plays protective roles against high fat diet (hfd)-induced hepatic
steatosis and the subsequent lipotoxicity via direct transcriptional regulation of
socs3 gene expression, J. Biol. Chem. 291 (2016) 7004–7016.

[58] R. Tanos, I.A. Murray, P.B. Smith, A. Patterson, G.H. Perdew, Role of the ah re-
ceptor in homeostatic control of fatty acid synthesis in the liver, Toxicol. Sci. 129
(2012) 372–379.

[59] R. Tanos, R.D. Patel, I.A. Murray, P.B. Smith, A.D. Patterson, G.H. Perdew, Aryl
hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin
response element-independent manner, Hepatology 55 (2012) 1994–2004.

[60] V.S. Mary, A. Valdehita, J.M. Navas, H.R. Rubinstein, M.L. Fernández-Cruz, Effects
of aflatoxin b1, fumonisin b1 and their mixture on the aryl hydrocarbon receptor
and cytochrome p450 1a induction, Food Chem. Toxicol. 75 (2015) 104–111.

O.A. Rotimi et al. Toxicology Reports 4 (2017) 408–414

414

http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0065
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0070
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0070
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0070
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0070
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0075
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0075
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0075
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0080
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0080
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0080
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0080
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0085
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0085
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0085
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0090
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0090
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0090
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0095
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0095
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0095
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0100
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0105
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0105
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0105
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0110
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0110
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0115
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0115
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0120
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0120
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0120
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0125
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0125
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0130
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0130
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0130
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0130
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0135
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0135
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0135
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0135
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0135
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0140
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0140
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0140
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0145
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0145
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0145
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0150
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0150
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0155
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0155
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0155
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0160
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0160
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0160
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0165
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0165
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0170
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0170
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0170
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0175
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0175
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0175
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0180
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0180
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0185
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0185
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0185
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0190
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0190
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0190
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0190
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0195
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0195
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0195
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0200
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0200
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0200
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0200
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0205
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0205
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0205
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0210
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0210
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0210
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0210
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0215
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0215
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0215
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0220
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0220
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0220
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0225
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0225
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0225
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0230
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0230
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0230
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0235
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0235
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0240
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0240
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0240
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0245
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0245
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0250
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0250
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0250
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0255
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0255
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0255
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0260
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0260
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0260
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0260
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0265
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0265
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0265
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0270
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0270
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0275
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0275
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0280
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0280
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0285
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0285
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0285
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0285
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0290
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0290
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0290
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0295
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0295
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0295
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0300
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0300
http://refhub.elsevier.com/S2214-7500(17)30049-5/sbref0300

	Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats
	Introduction
	Materials and methods
	Chemicals
	Animals
	Treatment protocol and tissue collection
	Biochemical analysis
	Plasma lipid profiles
	Liver lipid profiles

	RNA extraction
	Expression of lipid metabolizing genes
	Histopathology
	Statistical analysis

	Results
	Histology results
	Lipid profiles
	Relative expression of lipid metabolizing genes

	Discussion
	Conclusion
	Disclosure statement
	Acknowledgement
	References




