
INTRODUCTION

As data complexity is growing the need
for a uniform, efficient, and persistent way to store
data is becoming increasingly important. Using a
Real-time Database System (RTDBS) as a tightly
integrated part of SOA system has the potential to
solve many of the problems that application
designers have to consider with respect to data
management, SOA system can reduce
development costs, result in higher quality of the
design of the systems, and consequently yield
higher reliability (Mike et al., 2008). In this work, we
propose SOA as a new approach to building RTDBS
that allows businesses to leverage existing assets
and easily enable the inevitable changes required
to support the business. One of the most important
aspects of SOA is that it is a business, a
technological as well as methodological approach
(Judith et al., 2007). SOA enables businesses to
make business decisions supported by technology
instead of making business decisions determined

Oriental Journal of Computer Science & Technology Vol. 3(1), 171-184 (2010)

SOA-RTDBS: A service oriented architecture (SOA)
supporting real time database systems

OLUSEGUN FOLORUNSO¹*, LATEEF O. YUSUF¹ and JULIUS O. OKESOLA²

¹Department of Computer Science, University of Agriculture, Abeokuta, (Nigeria).
²Departments of Computer and Information Science, Tai Solarin University of Education,

Ijebu-Ode, (Nigeria).

(Received: April 21, 2010; Accepted: June 18, 2010)

ABSTRACT

With the increase of complexity in Real-time Database Systems (RTDBS), the amount of data
that needs to be managed has also increased. Adoption of a RTDBS as a tightly integrated part of the
SOA development process can give significant benefits with respect to data management. However,
the variability of data management requirements in different systems, and its heterogeneity may require
a distinct database configuration. We addressed the challenges that face RTDB managers who intend
to adopt RTDBS in SOA market; we also introduce a service oriented approach to RTDBS analytics
and describe how this is used to measure and to monitor the security system. A SOA approach for
generating RTDBS configurations suitable for resource-constrained real-time systems using Service
Oriented Architecture tools to assist developers with design and analysis of services of developed or
new systems was also explored.

Keywords: Service Oriented Architecture, Real time database systems.

by or constrained by technology. And with SOA, the
folks in RTDBMS finally get to say “yes” more often
than they say “no.” One of the biggest deals in the
SOA world is the idea that things are not thrown
away, the best of software assets used every day is
packaged in a way that allow for use, reuse and
keep on reusing it securely in the knowledge that
future changes will be simple, straightforward, safe,
and fast. This makes system less complicated and
less expensive to maintain. Mike et al. (2008)
described SOA as the careful balance and blending
of the big picture and the immediate requirements
to the practical application of theory to meet a set
of goals in the present and in the future.

According to Krithi et al. (2004), a real-
time system consists of a controlling system and a
controlled system. In an automated factory for
example, the controlled system is the factory floor
with its robots, assembling stations, and the
assembled parts, while the controlling system is the
computer and human interfaces that manage and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/154230347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

172 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

coordinate the activities on the factory floor. Timely
monitoring of the environment as well as timely
processing of the sensed information is necessary.
In addition to the timing constraints that arise from
the need to continuously track the environment,
timing correctness requirements in a real-time
database system also arise because of the need to
make data available to the controlling system for its
decision making activities. Besides robotics,
applications such as medical patient monitoring,
programmed stock trading, commerce, electronic
banking, telecommunications and military command
and control systems like submarine contact tracking
require timely actions as well as the ability to access
and store complex data that reflects the state of
the application’s environment. That is, data in these
applications must be valid, or fresh, when it is
accessed in order that the application performs
correctly. A RTDB is composed of real-time objects
which are updated by periodic sensor transactions.
An object in the database models in a real world
entity, for example, the position of an aircraft. A real-
time object is one whose state may become invalid
with the passage of time. Associated with the state
is a temporal validity interval. To monitor the states
of objects faithfully, a real-time object must be
refreshed by a sensor transaction before it becomes
invalid, that is, before its temporal validity interval
expires. The actual length of the temporal validity
interval of a real-time object is application
dependent.

It is worth mentioning the challenges faced
by RTDBS managers in SOA markets. The most
important challenges are the lack of knowledge
about terms and aspects related to it (LaPlante,
2005). Most of the software engineering courses
offered in our faculties is only based on traditional
methodologies such as Object-Oriented
Programming (OOP) with some related topics such
as Unified modelling Language (UML). Object-
Oriented Analysis and Design (OOAD), and Object
Oriented Languages. To solve this problem,
curriculums offered by our faculties should be
extended to contain different aspects of RTDBS in
SOA market including definition and type of
services, approaches and strategies, enabler tools
and technologies, the role that RTDBS in SOA
market can play in integrating different systems and
missing points in current SOA-RTDBS models. This

will in no doubt play a great role in yielding a new
generation of software engineering specialists that
can meet new market needs.

As our society is becoming more
integrated with SOA concepts, information
processes through the client service consumer
paradigm is becoming inevitable, responds to
request by the service provider in real-time manner
with predictable and timely behaviour is highly
desirable, thus databases with the amalgamation
of real-time systems and the concepts of SOA give
bir th to our new concept of SOA-RTDBS
Interoperability. Interoperability of data and services
means that data and services can be defined and
used independently of the application, programming
language, operating system, or computing platform
which implements them. Interoperability has a long
history in computing. Major phases include:
Electronic Data Interchange, object models, virtual
machines, and web services. We are motivated by
the work of Joseph et al. (2008); they investigated
and improved on the activities of visanet by enforcing
interoperability through the SOA approach to
improve transactions between member banks that
own visa for transactions. They enforced error free,
extremely high system reliability in a real time
manner between member banks. They also ensured
that all data in visanet and all processes that
operated on data were always the same. This
guaranteed uniformity in the system environment.
A critical mass of widely-adopted technologies is
available to implement and use a web services-
based SOA, and more technologies, as well as tools
are on the way. A service-oriented architecture for
RTDBS is an information technology approach or
strategy for RTDBS in which RTDB applications
make use of (perhaps more accurately and in a
real time manner) rely on Data-based services
available in a network such as the World Wide Web.
Implementing a service-oriented architecture can
involve developing applications like RTDBS that use
services, making RTDBS applications available as
services so that other applications can use those
services or both.

Background and Related Work
Database systems in which time validity

intervals are associated with the data are discussed
in Kuo and Mok (1993, 2000) and Song and Liu

173Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

(1995). Such systems introduce the need to
maintain data temporal consistency in addition to
logical consistency. The performance of several
concurrency control algorithms for maintaining
temporal consistency are studied in Song and Liu
(1995). In the model introduced in Song and Liu
(1995), a real-time system consists of periodic tasks
which are either read-only, write-only or update
(read-write) transactions. Data objects are
temporally inconsistent when their ages or
dispersions are greater than the absolute or relative
thresholds allowed by the application. Studies of
two-phase locking and optimistic concurrency
control algorithms, as well as rate-monotonic and
earliest deadline first scheduling algorithms show
that the performances of the rate-monotonic and
earliest deadline first algorithms are close when the
load is low. At higher loads, earliest deadline first
outperforms rate-monotonic when maintaining
temporal consistency. They also observed that
optimistic concurrency control is generally worse
at maintaining temporal consistency of data than
lock based concurrency control, even though the
former allows more transactions to meet their
deadlines. It is pointed out in Song and Liu (1995)
that it is difficult to maintain the data and transaction
time constraints due to the following reasons:
- A transient overload may cause transactions

to miss their deadlines
- Data values may become out of date due to

delayed updates
- Priority based scheduling can cause pre-

emption which may cause the data read by
the transactions to become temporally
inconsistent by the time they are used.

- Traditional concurrency control ensures
logical data consistency, but may cause
temporal data inconsistency

Motivated by these problems, and taking
into account the fact that transactions process data
with validity constraints and such data will be
refreshed with sensor transactions, the notion of
data-deadline is introduced in Xiong et al. (2002). It
is coupled with data-deadline and used to improve
the performance of transaction scheduling. The
notion of similarity is used to adjust transaction
workload by Ho et al. (1997), and incorporated into
embedded applications (e,g., process control) in
Chen and Mok (1999).

Many real-time database applications are
inherently distributed in nature. These include the
intelligent network services database, telecom
databases, mobile telecommunication systems and
the 1-800 telephone service in the United State.
More recent applications include the directory, data
feed and electronic commerce services that have
become available on the World Wide Web. The
performance reliability and availability of such
applications can be significantly enhanced through
the replication of data on multiple sites of the
distributed network.

An algorithm for maintaining consistency
and improving the performance of replicated
DRTDBS is proposed in Son (1987). In this
algorithm, a multiversion technique is used to
increase the degree of concurrency. Replication
control algorithms that integrate real-time
scheduling and replication control are proposed in
Son and Kouloumbis (1993). In contrast to the
relaxed correctness assumed by the latter,
conventional one-copy serialzability support by the
algorithm called MIRROR reported in Xiong et al.
(2002).

Temporal consistency guarantees are also
studied in distributed real-time systems. In Zhou
and Jahanian (1998), Distance constrained
scheduling is used to provide temporal consistency
guarantees for real-time primary-backup replication
service. In Harista et al. (2000), its authors propose
and evaluate a commit protocol that is specifically
designed for the real-time domain without these
changes. PROMPT allows transactions to
optimistically borrow in a controlled manner, the
updated data of transactions currently in their
commit phase. This controlled borrowing reduces
the data inaccessibility and the priority inversion that
is inherent in distr ibuted real-time commit
processing. A simulation-based evaluation shows
PROMPT to be highly successful as compared to
the classical commit in minimizing the number of
missed transaction deadlines. In fact its
performance is close to the best on-line
performance that could be achieved using the SOA
approach.

Nizar et al., 2008 described real-time
databases as information with time-constrained data

174 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

and time-constrained transactions. They noted that
real-time database design requires the introduction
of new concepts to support both data structures
and dynamic behaviour of the database. They also
gave an overview about different aspects of real-
time databases and clarified requirements of their
modelling. A frame work for real-time databases was
described and their fundamental operation was
elaborated. Their study demonstrates the validity
of the structural model and illustrates SQL queries
and java code generated from the classes of the
model.

According to Ed (2005), Electronic Data
Interchange (EDI) introduced a standard syntax and
a standard set of messages for various common
business transactions. EDI began by introducing
standard formats for purchase orders, invoices, and
bills of lading so that these could be processed
without human intervention. In other words, EDI
approached interoperability by requir ing all
applications using purchase orders to use a
standard structured format. Each different business
document had its own structured format. With the
introduction of Object Models, interfaces for both
data and methods became formalized. A wide
variety of object models have been introduced,
including Microsoft’s COM and DCOM, Sun
Microsystems Java Beans and Enterprise Java
Beans, and the Object Management Group’s (OMG)
Object and Component Models. OMG’s Common
Object Request Broker Architecture or CORBA is
an architecture providing interoperability for objects
across different languages, operating systems, and
platforms (Aniruddha et al, 2003). Virtual Machines
was popularized by Java, the idea of supporting
interoperability by mapping a language to an
intermediate format (byte code) which could be
executed on any machine which had an interpreter
for byte code (virtual machine). In this way, the
same code could be executed on different operating
systems and platforms. The limitation is that the

same language (Java) must be used. More recently,
web services and service oriented architectures
have popularized the use of XML to define data
and message formats. In particular the Web
Services Description Language or WSDL provides
a way to define services that can be bound to
different programming languages (e.g. Java, Perl,
C/C++) and protocols (http, smtp, etc.). Our
approach to data interoperability is based upon a
service oriented architecture that is specifically
designed to support statistical and other analytical
models, as well as various services employing them.

Services are at the core of SOA. A service
in SOA is. Just like the definition of SOA, defining
the term service is not an easy task (Perrey and
Lycett, 2003). The simplest idea is that a service
performs a (reusable) function. This function can
be anything from simple retrieval of data to
performing a whole business process (Papazoglou,
2003) and Papazoglou and van, 2007). The services
in SOA always have a business aspect to them
instead of a more technical aspect. An example of
a service is get customer profile, opposed to upload
file, which is not a business service (Krafzig et al.,
2004). A service is defined by (OASIS, 2006) as
“the performance of work (a function) by one for
another”. This definition is related to the following
ideas:
- capability to perform work for another
- specification of the work offered for another
- offer to perform work for another

SOA-RTDBS Architecture and Methodology
Creating service oriented architecture for

RTDB takes thought, patience, planning, and time.
It is a journey, and depending on the size and scope
of an organization, it may be a journey of years or
even a decade. But we can start seeing returns on
our RTDBS in SOA market investment very quickly,
without having to rewrite all our software. Figure 1
is a simple software architecture related to RTDB

Fig. 1: A simple software architecture (Adapted from Service Oriented Architecture for
Dummies by Judith et al., 2007).

175Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

This is how it works:
The Browser is a program located on a

user’s device (PC, laptop, PDA, or cell phone) that
accesses the business application through a Web
site. Many users can access the DB application or
any other applications at the same time; so many
browsers will typically link to the Web server. The
primary job of the browser is to display information
and accept input from the user.

The Web Server manages when and how
the many Web pages are sent to the browsers of
the users who access the business application.
(Web servers may do other things as well, but we
are concentrating on its primary service.)

The Order-Processing Application carries
out the business process that is being executed,
which in this case means carrying out the necessary
steps to accept the order and fulfill the customer’s
request, if possible. This component embodies the
company’s business practices for interacting with
customers.

The Database Server is computer software
that reads data from a database in a real-time
manner and sends the data where it is needed.

The Database is where the definitions of
the business data and the data itself are stored.

Information passes from the browser to
the Web server to the order-processing application,
which decides what to do next. The order-processing
application might pass data to the database server
to write to disk, or it may request data from the
database, or it may simply send information back
to the browser through the Web server. What the
order-processing application does depends upon
the information and commands passed to it by the
user via the browser.

The diagram in Figure 1 can also be
referred to as a business service which means in
simple terms, the wrappings up of everything we
have to do to make a particular business function
happen.

In Figure 2, a credit-checking component
is added to our business diagram. Its service is
called on when new customers place an order to
determine whether they are credit worthy; this must
be done in a real-time manner as not to frustrate
the customer. In the figure, we don’t show or even
care about how the credit checking is done. For the
sake of simplicity, it is assumed that the credit-
checking software component is a database run by
an external company and simply provides a service
in a real time manner. The company using this credit-
checking software is confident that the service
conducts a credit check in the right way.

Fig. 2: Adding a service oriented component (Adapted from
Service Oriented Architecture for Dummies by Judith et al., 2007).

The order-processing application simply
requests the credit-checking service and passes
along the necessary information (a person’s name
and Social Security number). The credit-checking
component consults its information sources, does
some calculations, and passes back a credit rating.

The credit checking component may connect with
many computers, consult many different data
sources, and use a very sophisticated algorithm to
calculate the credit rating, but this is of no concern
to the order-processing application so far the
information is received in a timely manner. As far

176 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

as the order-processing application is concerned,
credit checking is just a black box. Also, we need to
emphasize that the credit-checking component does
only credit checking. It doesn’t offer a wide range
of services. It is precisely because the components
have a narrowly defined scope — that is, they do
“just one thing” — that they can be used and reused
as building blocks. SOA’s use and reuse of
components makes it easier to build new
applications as well as change existing applications.
Using well-proven, tested components makes
testing new applications more efficient.

Folorunso et al., (2008) described Real
Time Database System (RTDBS) as the
mainstream of computer operations which aptly
described as a system that produces result in a
timely and consistent fashion. They observed that
the RTDBS designers are interested in seeing how
their algorithms behaved, they proposed an
extendable framework using Model-View-Controller
paradigm which was adopted for our SOA
architecture. In a real-time database system
(RTDBS) transaction travel through various
components until their termination. We present in
Figure 3 how the database server uses the services
of RTDB system model to respond to the client in a
real time manner.

Fig. 3: Adding RTDBS with an embedded visualization output tool (RT-DANGO).

In Figure 4, we introduce the idea of a
business layer and a plumbing layer, and in doing
so, we introduce the idea of specific services. (For
simplicity’s sake, we’ve left out the Web server and
the browser.) It works like this:

The Business Service Layer consists of
our RTDBS tools and other software components
which provide and carry out specific business
functions. Another way to say this is that they deliver
specific business services.

The Plumbing Layer consists of
components that support the abovementioned
business services by marshalling and managing
actual computer resources. Here are two such
components:

• Presentation Service: The Web server called by a
different name, for example Internet Explorer,
Mozilla Firefox, Netscape, safari etc.
• Data Service: The database server called by a
different name.

177Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

By splitting the architecture diagram into
two layers, we divide the software that is of direct
relevance to the business — because it carries out
business

In Figure 5 we include in our own little way
the graphical depiction of the SOA supervisor (The
SOA supervisor acts like a traffic cop and helps
prevent SOA accidents) to our overall SOA model.
We have also made the computer network and the
Internet visible, for two reasons:

To depicts how software components
including RTDBS services actually connect with
each other across a computer network. In most

cases, applications run on separate server
machines that connect via the network or possibly
over the Internet. The SOA supervisor needs to
connect to every other component within the SOA
in order to do its job. If we drew each of the
connections in, the diagram would get very busy
very quickly.

The SOA supervisor manages the end-to-
end computer process created by connecting all
the other software components together. In our
illustration, applications are divided between
external components (components outside the
corporate network) and internal components
(components inside the corporate network). The

Fig. 4: A service oriented view
(Adapted from Service Oriented Architecture for Dummies by Judith et al., 2007).

Fig. 5: The SOA supervisor
(Adapted from Service Oriented Architecture for Dummies by Judith et al., 2007).

178 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

credit checking component, for example, is an
external component that is connected through the
Internet.

One of the SOA-RTDBS supervisor’s
responsibilities is to monitor the various components
within the SOA-RTDBS. The SOA-RTDBS
supervisor directly monitors only things in its
purview. However it can also monitor results and
responses from services provided from the outside.

We may not be able to do much if an
external service suddenly fails or goes very slowly.
However, with internal components, the SOA
supervisor not only monitors the whole service that
a component provides but may also initiate
corrective activity if things start to go wrong.

SOA-RTDBS security
RTDB professionals have always viewed

security as a network perimeter issue (Josuttis,
2007). Protecting the RTDB system consisted of
deploying firewalls and access control mechanisms.
SOA systems are integrated with RTDBS. The edge
of the RTDBS is not where the security ends.
Another major problem is how to implement access
control for a large number of different identities, who
are outside the RTDB system security realm (Yuan
and Tong, 2005). In the traditional security realm
users are known beforehand, and this is not always
possible with RTDBS in SOA market. In addition,
since applications and application logic can be
addressed through services, more data is exposed.
This increase in data exposure can increase
potential damage since very single service can be
seen as a potential attacking point (Pajevski, 2004).
We provide below an overview of threats of RTDBS
in a SOA security market that can be found in the
literature.

Threats to RTDBS services
RTDBS services provide the means to

interact with (legacy) applications and/or systems.
Each RTDBS service can in fact be seen as a
possible point of attack. Security requirements of
these systems can be different from the service
client, it can also provide more functionalities. A
RTDBS service can for instance give access to
desktop applications and custom applications that
would normally not be accessible to a client.

Providing authorization for standalone applications
can be hard to manage (Peterson, 2006). If
authorization is not managed correctly, access could
be granted (or denied) to service clients that should
not have access, thereby possibly accessing
sensitive information. Differently from an application
inside an organization, RTDBS in SOA market
(services) can also extend beyond the perimeters
of the organization. Traditionally authorization is
performed on the front-end of a system / application.
In a basic SOA, a loosely coupled service does not
have a coordinating service that provides security
features. Moreover, the loose coupling predicts that
none of the services is aware of its context. A
resource that a service provides could require
authentication/authorization. The RTDBS service
client must then provide the required information to
authorize for that specific service. Because of the
loose coupling of services, securing the
confidentiality and integrity of the message could
pose a problem. Traditionally transport level
protocols (such as SSL/TLS) were used between
two endpoints to maintain confidentiality and
integrity. Since RTDBS services are also location
transparent, it is not possible to predict where the
endpoints are and if they can be trusted. Therefore,
instead of using transport-level security, message-
level security should be employed (Erl, 2005).

Service registration / deregistration
The service repository (which can be either

within the Database Service (DBS) security domain
or outside) can be susceptible to replay attacks. An
adversary could capture the registration or
deregistration of a RTDBS service and perform a
replay attack. This replay attack could result in some
sort of denial of RTDBS service attack or registration
of an (insecure) older RTDBS service. An adversary
could also perform an enumeration attack which
allows the adversary to create an inventory of
available RTDBS services (Beznosov et al. (2005))
and (Schushel and Weske, 2004). To prevent these
attacks authentication, authorization, integrity and
confidentiality must be maintained during
registration and deregistration (Beznosov et al.
(2005).

Use of RTDBS standards
Since RTDBS in SOA market relies on

standards, it is imperative that standards have an

179Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

emphasize security. Standards used in RTDBS in
SOA market (mostly web services standards such
as XML, SOAP, UDDI) do not emphasize security
(Josuttis, 2007). Some protocols enable security
within these standards, such as SSL for HTTP and
encryption for XML. An example where usage of
standards can lead to problems is with firewalls.
Most companies use firewalls that control all traffic
from the external organization to the internal
organization. When RTDBS in SOA market is
implemented using web services, HTTP and SSL
are normally used. These protocols use TCP ports
80 and 443 that usually can pass-through the firewall
(Pulier and taylor, 2006) and Pajevski, 2004).
Therefore, additional security features have to be
implemented to prevent possible threats. RTDBS
Services require a description language to describe
what the service offers and what it requires. (One
of these description languages commonly used in
SOA is the Web services description language
WSDL). Description languages should use open
standards to have full compatibility with potential
service consumers. The open standards also allow
a possible adversary to scan for vulnerabilities in
the service. Using standards alone does not provide
a secure SOA (IBM and Uwe, 2006) and (Paterson,
2006).

In order to have a secure RTDBS in SOA
market assuming that the basic security principles:
confidentiality, integrity, availability (CIA) holds. In
addition, security principles such as authentication,
authorization, auditing and non-repudiation are
available. We tried to create a set of elements from
the literature that will satisfy these principles.

Secure interaction
Interaction between a service client and

service provider in a RTDBS should be secure to
prevent threats. Secure in this case means
confidentiality, integrity, non-repudiation and
authentication of messages between a service
provider and service consumer (Nezhad et al.,
2006). One way to have secure interaction is to set
up a private connection between service client and
service provider. Commonly this process is known
as transport level security (TLS). However, using
TLS in SOA will not be a viable option when there
are intermediaries (such as ESB, or service
providers) involved. TLS encrypts everything, not

just the data that is important, that way it can
increase the load on systems that need to encrypt
messages. Also important is that it cannot be routed
easily (Rahaman et al., 2006) and (Nezhad et al.,
2006). If there is some sort of intermediary, the
security context only from service consumer to
intermediary and from intermediary to service
provider, not from service consumer to service
provider. A message is therefore encrypted at the
service consumer, send to the intermediary who
decrypts and encrypts the message again, before
it finally arrives at the service provider (or vice
versa). This means that the intermediary can read
all the data, which is not always allowed or preferred.
Message-level security can be a solution. Message
level security ensures a message is protected
throughout communication of the message
(Pajevski, 2004) and this was also buttress by SOA
software (http://www.soasoftpressroom.com/
SOASoft_Security_Issues_in_SOA_Whitepaper.pdf).
This means that confidentiality and integrity of the
message is protected all the way from message
sender to message receiver. Another interaction that
should be secure is that of registration and
deregistration of a RTDBS service provider in a
service registry. Only authorized services should
be able to register with the service repository. During
registration, the integrity of the RTDBS service and
confidentiality of the service repository should be
maintained.
Responses of a service provider to a service client
in a RTDBS should always be confidential, to prevent
an adversary from building a list of services and
their responses. The interaction between a service
and a service client should have mutual
authentication. Another important part of secure
interaction is to maintain the integrity of the service
provider and service registry. If the service client
interacts with either of these, it has to be sure that
the service has not been compromised, and is the
service that the client was expecting.

Distributed identities
The basis of both authentication and

authorization are (distributed) identities. Access to
resources can differ greatly from identity to identity.
For instance, discovery of RTDBS services
published in the service registry should be limited
to specific service clients (this can be both an issue
of Quality of service and security). For instance

180 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

some RTDBS services should not be accessible to
the marketing department, and should not be
discovered (Papazoglou et al., 2006) and (Rahaman
et al., 2006). Services can be built upon (legacy)
applications. These applications can have their own
authentication and authorization processes.
Managing identities across all the applications can
be a difficult task. Therefore, the SOA security model
should have distributed identities that can be used
across all of the services and applications.
Federated Identity Management (FIM) is a solution
for the management for identities (Pajevski, 2004).
Achieving single sign-on is the goal that distributed
identities hopes to achieve. This means that a
service client only has to establish its identity once.
With this identity, it will be authenticated and
authorized to several sources without re-establishing
its identity again. Distributed identities are not only
assigned to the service client, but also to the service
registry and RTDBS service provider. This identity
can be used to maintain the integrity of the service
registry and RTDBS service provider. There can be
a difference between identity of a service and
service client. The service itself is not required to
have an identity because it can impersonate
(propagate) the identity of a client. The service client
must always have an identity (presuming
anonymous access is never allowed).

Distributed policies in RTDBS
These policies define the rules that

authorize a RTDBS service client to access a
service provider. These policies should be able to
take into account a specific context and the identity

of a RTDBS service client (Peterson, 2006). The
policy defines what an authenticated identity is
authorized to do. In addition, policies can be created
that define when a service provider can no longer
handle any more RTDBS service clients. This aids
in maintaining the availability of the service provider.
Other policies that can be created are trust polices.
Trust policies help manage the security in. A service
client can be from any specific domain. A domain
can for instance be an organization or a department
of the organization. Incorporating “all” domains is
unmanageable. Therefore, a service provider could
use trust relationships with other service providers
to trust other service clients. For instance service
provider A has a trust relationship with service
provider B. Service B trusts service client C. Service
A can therefore choose to also trust C. Trust policies
can however be hard to implement since trust
relationships between interdepartmental and inter-
organizational can differ. Distributed policies can
only authorize a service client if it provides an
(distributed) identity.

Model for the secure SOA-RTDBMS
We add the security elements to the Basic

SOA in Figure 1. This produces the model in Figure
6 (adapted from (CSI/FBI Computer Crime, 2006)
and (seduhkin, 2003) for a secure RTDBS in SOA.
This is not a model for an implementation of a
RTDBS-SOA. When implementing RTDBS in SOA,
one should implement a security system that takes
care of all the policies, manages the identities and
provides secure interaction.

Figure 6 Model for secure SOA-RTDBMS

181Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

The security threats of RTDBS in SOA
market include threats to services in general.
RTDBS services can provide functionalities to users
that were not available before the service was in
place. In addition, RTDBS services can exist beyond
the organization’s security perimeter. Since RTDBS
services use standards, a possible adversary can
use flaws in these standards to attack the RTDBS
service. These threats prevented by introducing
security principles into the RTDBS-SOA model.
These principles include secure interaction,
distributed identities and distributed policies. Secure
interaction provides confidentiality and integrity of
messages between service providers, service

registry and the service client. Distributed identities
are used as the basis to provide authentication,
authorization, integrity and non-repudiation.
Distributed policies are used for authorization and
availability. A service client can be authorized to
access a service provider, or can be authorized
access the service registry. For authentication and
authorization, we usually need an identity claim
(which can be user ID and password or certificated
etc.). Encryption and digital signatures on the other
hand are used for confidentiality and integrity. Table
1 shows which security principles can be addressed
with a specific security standard.

Table 1 Standards in Secure SOA model (Adapted from SOA Security by Jamie (2007)).

Why SOA is a Better Business and Better IT for
RTDB managers

SOA make it easier and faster to build and
deploy systems for database and other application
in real-time which directly serve the goals of RTDB
managers and designer. Contemporary RTDB
manager is completely reliant on its IT, and never
have business and IT needed to be more aligned.
The very survival of a business hinges on its ability
to adapt its IT to meet ever-changing business
challenges. SOA integrates business and RTDB into
a framework that simultaneously leverages existing
systems and enables business change. A SOA
enables the RTDB managers to keep their focus
on business and allows IT to evolve and keep pace
in a dynamically changing world. RTDB managers
need not understand the intricacies of the plumbing

layer and everything it contains. If we cover up the
plumbing layer, we are left with a diagram that shows
all the business services that software applications
provide, both inside our organization and to others
that interact (technologically speaking) from outside,
like our customers, business partners, and suppliers.
Looking at our organization’s software resources in
this way, we may be able to think about ways to
improve or better exploit the software assets we
have. Likewise, if we cover up all the business
functionality in our SOA diagram, we are left with a
set of plumbing services that our IT department is
responsible for providing. We know that many of
our “legacy” applications also have a good deal of
plumbing in them, and the plumbing layer does not
replace that. However, SOA enables an IT
department to choose how it will evolve toward

182 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

providing a “service oriented architecture” and in
time may obviate a good deal of lousy plumbing.

RTDBS in a SOA market may not initially
guarantee a happier, healthier life, free from
business concerns. However, movement toward
SOA by the RTDB managers will be a movement
toward technical freedom and business flexibility and
bodes well for the performance and profitability of
an organization and for the sanity of the people
managing the business. In SOA, the intention is not
to throw away the real system that has been in use
over many years, all the existing business
applications including our database can be reused.
An entire application can be treated as a service,
or codes can be amended out of an application and
the code make into a service. If the order-processing
application is placed on the Internet, customers can
use their browsers as the standard user interface
to place an order, make a payment, and enter other
needed information such as name, billing address,
shipping address, and so on. To “put” the order-
processing application on the Web requires the use
of standard Web services interfaces. After that’s
done, browsers can talk to the order-processing
application, and everyone can live happily ever after.
Earlier efforts to promote software reuse required
everyone to use the same computer language or
operating system or foundation classes, but the
entire industry could never be pinned down to use
the same programming language. Web services
made it possible for the universal acceptance of
the underlying standards of the Internet. After every
browser could talk to any Web site, it became
possible for any computer program to talk to any
other program, as long as they both had some path
to the Internet. If every function of the order-
processing application is a Web service, other
programs can use those functions instead of
reinventing the wheel.

Recommendation
Despite the strong trend in SOA, some in

the IT community don’t feel that the web services
underpinning for an SOA is mature enough for their
enterprise to consider migration to a service-
oriented architecture. We therefore believe that
software vendors will have to change their
applications to come into line with the industry
movement or risk their own extinction. They will also

have to change their licenses to cover the use of
their applications as a set of modular components
that can be linked together with Web services.

CONCLUSIONS

There is a great potential in RTDBS in SOA
market. As a web service-based, it will speed up
the application development process and response
system time. It is also a way to build database
application systems that is more adaptable, more
agile in responding to changing business needs.
RTDBMS in SOA market clearly is the wave of the
future; soon RTDBS in SOA market will be a
prevailing software engineering practice for RTDB
managers which will end the 40year domination of
monolithic software architecture.

The field of real-time database research
has evolved a great deal over the relatively short
time of its existence. In the early 1980s, much of
the research concentrated on examining how to add
real-time support to traditional databases in a
monolithic environment. Much of this work involved
developing new scheduling and concurrency control
techniques that extended existing techniques to
allow RTDBs to provide timely transactions and
temporally valid data. This has included techniques
to relax traditional ACID properties of databases,
and managing QoS provided by the database in
order to allow for timing constraints to be met in a
SOA setting. The future of RTDB research will
depend on this continuing evolution. Research in
this field should continue to follow cutting edge
applications and apply existing techniques to them,
as well as developing new ones when needed. It is
also important that researchers keep up with new
technology in traditional database research. As new
approaches to solving database issues are
developed, it is important to investigate how such
innovations can apply to real-time applications in a
SOA setting. On a more practical note, it is important
that RTDB research be widely applicable. Many
academic papers mention various applications like
programmed stock trading, medical patient
monitoring, etc., to which their technologies will
apply. However, there are very few real-time
databases in use in such applications and few
applied it to web services while none thought of
enhancing their application using SOA paradigm.

183Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

In order for this research to continue, it must be
shown to be practical and useful in real applications.

We encourage RTDB managers to begin
SOA now for their own benefit. Ultimately, SOA will
render a business more flexible and RTDBS more
reliable, sustainable, extensible, manageable, and

accountable. We believe SOA is the most important
mandate facing business and RTDB managers
today. And because SOA is a joint venture between
business managers and RTDB managers, we
present the basics necessary for everyone to come
to the table with a good grounding from a conceptual
level.

1. Aniruddha Gokhale, Bharat Kumar, Arnaud
Sahuguet (2003): Reinventing the Wheel?
CORBA vs. Web Services, The Eleventh
International World Wide Web Conference,
retrieved from http://www2002.org/CDROM/
alternate/395/

2. Beznosov, K. and Flinn, D.J. and Kawamoto,
S. and Hartman, B. (2005): Introduction to
Web services and their security. Information
Security Technical Report 10, 2-14, Elsevier
Ltd.

3. Chen, D., and Mok, A.K. : SRDE-application
of data similarity to process control. In the
20th IEEE real-Time Systems Symposium.
Phoenix, Arizona, December (1999).

4. CSI/FBI computer crime and security survey
(2006): http://www.cse.msu.edu/~cse429/
readings/FBI2006.pdf

5. Ed Ort : Service-Oriented Architecture and
Web Services: Concepts, Technologies, and
Tools, Sun Microsystems, Inc (2005).

6. Erl, T. : Service-Oriented Architecture
Prentice Hall PTR ISBN 0-13-185858-0
(2005).

a. Establishing Information Quality Baselines for
Complex, Distributed Systems, 10th

7. Folorunso Olusegun, Longe H. O. D., and
Akinwale A. T. Visualizing Concurrency
Control Algorithms for Real-Time Database
Systems. Data Science Journal, 7, 20 (2008).

8. Haritsa, J., Ramamritham, K., and Gupta,
R. : The Prompt real-time commit protocol.
IEEE transactions on parallel and distributed
systems 1192); 160-181 (2000).

9. Ho, S., Kuo, T., and Mok, A.K. : Similarity-
based load adjustment for static real-time
transaction systems. In proceedings of the
18th Real-Time system symposium (1997).

REFERENCES

10. IBM, Uwe Kissmann : SOA Security, http://
www.ibm.com/ru/events/presentations/
bf2006/soa_security.pdf a. International
Conference on Information Quality (ICIQ)
(2006).

11. Jamie Fiere : SOA Security. A Msc thesis for
degree of master of Information Science,
Faculty of Science Vrije Universiteit
Amsterdam. (2007).

12. Joseph Bugajski, Robert Grossman, Eric
Sumner, Tao Zhang: A Methodology (2005).

13. Josuttis, N.M. : SOA in Practice, 1st edition,
O’Reilly Media Inc. (2007).

14. Judith Hurwitz, Robin Bloor, Carol Baroudi
and Marcia Kaufman : Service Oriented
Architecture for Dummies; Wiley Publishing
Inc. (2007).

15. Krafzig, Dirk, Banke, Karl, Slama, Durk :
Enterprise SOA, Service Oriented
Architecture Best practices. Prentice Hall,
November 2004. ISBN 0-13-146575-9
(2004).

16. Krithi Ramamritham, Sang H. Son and Liza
Cingiser Dipippo (2004): Real-Time
databases and Data Services; Kluwer
Academic Publisher, vol. 28, pp 179-215.

17. Kuo, T., and Mok, A.K.: SSP: a semantics-
based protocol for real-time data access.
IEEE 14th Real-Time System Symposium
(1993).

18. Kuo, T., and Mok, A.K. : Real-Time data
semantics and similarity based concurrency
control. IEEE Transactions on computers
49(11); 1241-1254 (2003).

19. LaPlante, A.: Education Key to SOA Success,
in SOApipeline.com, Nov. 21 (2005).

20. Mike Rosen, Boris Lublinsky, Kevin T. Smith
and Marc J. Balcer : Applied SOA: Service

184 Folorunso et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 171-184 (2010)

Oriented Architecture and Design Strategies;
Wiley Publishing, Inc. Indianapolis, Indiana
(2008).

21. Nezhad, H.R.M and Skogsrud, H. and
Benatallah, B. and Casati F. : Securing
Service-Based Interactions: Issues and
Directions. (2006) http://info.computer. org/
por tal/site/ dsonline/index.jsp?page
ID=dso_level1&path=dsonlin e/topics/was/
papers&file=motahari.xml&xsl=article.xsl

22. Nizar Idoudi, Nada Louati, Claude Duvallet,
Rafik Bouaziz, Bruno Sadeg and Faiez
Gargouri : A Framework to Model Real-Time
Databases; International Journal of
Computing & Information Sciences. Vol. 7,
No. 1, January 2009, On-Line (2008).

23. OASIS : Reference Model for service
oriented architecture 1.0, Committee
specification 1, 2 august 2006 (2006). http:/
/ w w w. o a s i s - o p e n . o r g / c o m m i t t e e s /
tc_home.php?wg_abbrev=soa-rm

24. Pajevski, M. J.: A Security Model for Service
Oriented Architectures (2004). http://
www.oasis- open.org/committees/
download.php/17573/06-04-00008.000.pdf

25. Papazoglou, P, M. : Service-oriented
computing: Concepts, Characteristics and
Directions. In: Proceedings of the Fourth
International Conference on Web Information
Systems Engineering (2003).

26. Papazoglou, P.M. and Traverso, P. and
Dustbar, S. and Leymann, F. : Service-
Oriented Computing Research Roadmap
(2006).

27. Papazoglou, P.M. and van den Heuvel, W. :
Service Oriented Architectures: Approaches,
Technologies and research Issues. The VLDB
Journal (2007).

28. Perrey, R. and Lycett, M. : Service-Oriented
Architecture. Symposium on Applications and
the Internet Workshops, 2003. Proceedings.
page(s): 116- 119 (2003).

29. Peterson, G., Lipson,H. (2006): Security
Concepts, Challenges, and Design
Considerations for Web Services Integration.
https://buildsecurityin.us-cert.gov/daisy/bsi/
articles/best- practices/assembly/639.html,
Carnegie Mellon University.

30. Pulier, E. and Taylor, H. (2006):
Understanding Enterprise SOA, Manning

Publications, ISBN 1-932394-59-1
31. Rahaman, M.A. and Schaad, A. and Rits, M.

: Towards Secure SOAP Message Exchange
in a SOA, Proceedings of the 3rd ACM
Workshop on Secure Web Services (2006).

32. Schuschel H. and Weske M. : Automated
Planning in a Service-Oriented Architecture.
Enabling Technologies: Infrastructure for
Collaborative Enterprises, WET ICE 2004
page(s): 75- 80 (2004).

33. Seduhkin, I.,: End-to-End Security for Web
Services and Service Oriented Architectures,
Computer Associates. (2003) http:/
/www.webservices.org/companies/ca/
end_to_end_security_for_web_services_and
services_oriented_architectures

34. SOA Software : Whitepaper Security issues
in the SOA. (2005). http://
www.soasoftpressroom.com /
S O A S o f t _ S e c u r i t y _
Issues_in_SOA_Whitepaper.pdf

35. Son. S.: Using replication for high
performance database support in distributed
Real-Time systems. In proceedings of the
8th IEEE Real-Time Systems symposium. Pp
7986 (1987).

36. Son. S., and Kouloumbis, S.: A real-time
synchronization scheme for replicated data
in distributed database systems. Information
Systems 1896); 79-86 (1993).

37. Song, X., and Liu, J.W.S.: Maintaining
temporal consistency. Pessimistic vs.
Optimistic concurrency control. IEEE
Transactions on Knowledge and Data
Engineering 7(5): 786-796 (1995).

38. Xiong, M., Ramamritham, K., Stankovic, J.A.,
Towsley, D., and Sivasankaran, R. :
Scheduling transactions with temporal
constraints exploiting data semantics. IEEE
transactions on knowledge and Data
Engineering. 14(5): 1155-1166 (2002).

39. Yuan, E. and Tong, J. : Attribute Based
Access Control (ABAC) for Web Services,
Proceeding of the IEEE International
Conference on Web Services (ICWS’05)
(2005).

40. Zhou, H., and Jahanian, F.: Real-time
primary-backup (RTPB) replication with
temporal consistency guarantees. In
proceedings of ICDCS (1998).

