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Developing new compound distributions which are more flexible than the existing distributions have become the new trend
in distribution theory. In this present study, the Lomax distribution was extended using the Gompertz family of distribution,
its resulting densities and statistical properties were carefully derived, and the method of maximum likelihood estimation was
proposed in estimating the model parameters. A simulation study to assess the performance of the parameters of Gompertz Lomax
distribution was provided and an application to real life data was provided to assess the potentials of the newly derived distribution.
Excerpt from the analysis indicates that the Gompertz Lomax distribution performed better than the Beta Lomax distribution,
Weibull Lomax distribution, and Kumaraswamy Lomax distribution.

1. Introduction

The Lomax distribution can also be called Pareto Type II dis-
tribution and its application can be found in many fields like
actuarial science, economics, and so on [1]. The distribution
was defined by Lomax [2] and it is a heavy-tailed distribution.
It has also been considered to be useful in reliability and life
testing problems in engineering and in survival analysis as an
alternative distribution [3, 4].

Modified and extended versions of the Lomax distribu-
tion have been studied; examples include theweighted Lomax
distribution [4], exponential Lomax distribution [5], expo-
nentiated Lomaxdistribution [6], gammaLomaxdistribution
[7], transmuted Lomax distribution [8], Poisson Lomax dis-
tribution [9], McDonald Lomax distribution [10], Weibull
Lomax distribution [11], and power Lomax distribution [12].
Besides, estimation of the parameters of Lomax distribution
under general progressive censoring has also been considered
by Al-Zahrani and Al-Sobhi [1].

In addition to the generalized families of distributions
mentioned earlier, there are several other generalized families
of distributions in the literature and these are contained in
Owoloko et al. [13], Oguntunde et al. [14], Cordeiro et al.
[15], and Alizadeh et al. [16]. Meanwhile, of interest to us in
this research is to extend the Lomax distribution using the
Gompertz generalized family of distributions due toAlizadeh
et al. [16] because it is relatively new; it has not yet been
rigorously explored, and it has some potentials which would
be revealed in the later part of this article.

The rest of this article is therefore organized as follows: in
Section 2, the densities of the Gompertz Lomax distribution
(henceforth, it is referred to as GoLom distribution) are
derived; its statistical properties are established including
estimation of the unknown parameters; in Section 3, a
simulation study was provided to investigate the perfor-
mances of the unknown parameters; then an application to
a real life data was provided, followed by a concluding re-
mark.
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Figure 1: Plot for the pdf of GoLom distribution.

2. The Gompertz Lomax Distribution

To start with, the cumulative distribution function (cdf) and
probability density function (pdf) of the Lomax distribution
with parameters 𝛼 and 𝛽 are given by

𝐺 (𝑥) = [1 − (1 + 𝛽𝑥)−𝛼] ; 𝛼 > 0, 𝛽 > 0, (1)

𝑔 (𝑥) = 𝛼𝛽 (1 + 𝛽𝑥)−(𝛼+1) ; 𝛼 > 0, 𝛽 > 0, (2)

respectively, where 𝛼 and 𝛽 are the shape and scale parame-
ters, respectively.

According to Alizadeh et al. [16], the cdf and pdf of the
Gompertz generalized family of distribution are given by

𝐹 (𝑥) = 1 − 𝑒(𝜃/𝛾){1−[1−𝐺(𝑥)]−𝛾}; 𝜃 > 0, 𝛾 > 0, (3)

𝑓 (𝑥) = 𝜃𝑔 (𝑥) [1 − 𝐺 (𝑥)]−𝛾−1 𝑒(𝜃/𝛾){1−[1−𝐺(𝑥)]−𝛾};
𝜃 > 0, 𝛾 > 0, (4)

where 𝜃 and 𝛾 are additional shape parameters and their role
is to vary tail weights.

𝐺(𝑥) and 𝑔(𝑥) are the cdf and pdf of the parent (or
baseline) distribution, respectively.

Now, if the density in (1) in inserted into (3), then the cdf
of the GoLom distribution is given by

𝐹 (𝑥) = 1 − 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾};
𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0. (5)

Its associated pdf is derived by inserting the densities in (1)
and (2) into (4) as follows:

𝑓 (𝑥) = 𝜃𝛼𝛽 (1 + 𝛽𝑥)𝛼𝛾−1 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾};
𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0, (6)

where 𝛼, 𝜃, and 𝛾 are shape parameters; 𝛽 is the scale param-
eter.

Plots for the pdf of the GoLom distribution at various
selected values are displayed in Figure 1.

Remark 1. It is clear in Figure 1 that the shape of the GoLom
distribution could be decreasing or inverted bathtub (de-
pending on the value of the parameters). Also, it could be
positively skewed or negatively skewed. Studying the tail
behaviour of the GoLom distribution, it can be deduced that
the distribution is heavy-tailed.

2.1. Expansion for the Densities of GoLom Distribution. Fol-
lowing Alizadeh et al. [16], the density of the GoLom distri-
bution in (5) can be expanded as follows:

𝐹 (𝑥) = 1 −
∞

∑
𝑖=0

𝑖

∑
𝑗=0

∞

∑
𝑘=0

𝑤𝑖,𝑗,𝑘𝐻𝑘 (𝑥) = 1 −
∞

∑
𝑘=0

𝑎𝑘𝐻𝑘 (𝑥) , (7)

where 𝑤𝑖,𝑗,𝑘 = ((−1)𝑖+𝑘/𝑖!) ( 𝑖𝑗 ) ( −𝑗𝛾𝑘 ) (𝜃/𝛾)𝑖, 𝑎𝑘 =
∑∞𝑖=0∑𝑖𝑗=0 𝑤𝑖,𝑗,𝑘, and 𝐻𝑘(𝑥) is the cdf of the exponentiated
Lomax distribution with power 𝑘 > 0.

The associated pdf can be expressed as a linear mixture of
the exponentiated Lomax function as follows:

𝑓 (𝑥) =
∞

∑
𝑘=0

𝑏𝑘+1ℎ𝑘+1 (𝑥) , (8)

where ℎ𝑘+1 = (𝑘 + 1)𝑔(𝑥)𝐺(𝑥)𝑘 and 𝑏𝑘 = −𝑎𝑘 and 𝐺(𝑥) and𝑔(𝑥) are the cdf and pdf of the Lomax distribution as defined
in (1) and (2), respectively.

2.2. Reliability Analysis. The expressions for the reliability
function, hazard function (or failure rate), reversed hazard
function, and odds function are all derived and established
in this subsection.

Reliability Function. Reliability or survival function can be
obtained from

𝑆 (𝑥) = 1 − 𝐹 (𝑥) . (9)

Therefore, the reliability function of the GoLom distribution
is given by

𝑆 (𝑥) = 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾};
𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0. (10)

It is good to note that the shape of the reliability function of
GoLom distribution would be a constant when the value of
parameter 𝛽 = 0 and 𝛼 = 𝜃 = 𝛾 = 1. An illustration to this is
as shown in Figure 2.

Hazard Function. Hazard function can be obtained from

ℎ (𝑥) = 𝑓 (𝑥)
𝑆 (𝑥) . (11)

Therefore, the hazard function of the GoLom distribution is
given by

ℎ (𝑥) = 𝜃𝛼𝛽 (1 + 𝛽𝑥)𝛼𝛾−1 ;
𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0. (12)

Plots for the hazard function of the GoLom distribution at
various selected values are displayed in Figure 3.
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Figure 2: Survival function of GoLom distribution at 𝛽 = 0 and
𝛼 = 𝜃 = 𝛾 = 1.
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Figure 3: Plot for the hazard function of GoLom distribution.

Remark 2. It can be deduced from Figure 3 that the shape
of the hazard function of the GoLom distribution could be
constant, increasing, or decreasing (depending on the value
of the parameters).

Reversed Hazard Function. Reversed hazard function can be
derived from

𝑟 (𝑥) = 𝑓 (𝑥)
𝐹 (𝑥) . (13)

Therefore, the reversed hazard function for the GoLom dis-
tribution is given by

𝑟 (𝑥) = 𝜃𝛼𝛽 (1 + 𝛽𝑥)𝛼𝛾−1 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}
1 − 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾} ;

𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0.
(14)

Odds Function. Odds function can be derived from

𝑂 (𝑥) = 𝐹 (𝑥)
𝑆 (𝑥) . (15)

Therefore, the odds function for the GoLom distribution is
given by

𝑂 (𝑥) = 1 − 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}
𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾} ;

𝜃 > 0, 𝛾 > 0, 𝛼 > 0, 𝛽 > 0.
(16)

2.3. Quantile Function andMedian. Quantile function can be
derived from

𝑄 (𝑢) = 𝐹−1 (𝑢) . (17)

Therefore, the quantile function of the GoLom distribution is
given by

𝑄 (𝑢) = 𝛽−1 {[1 − 𝛾
𝜃 log (1 − 𝑢)]1/𝛼𝛾 − 1} , (18)

where 𝑢 ∼ Uniform(0, 1).
Random numbers can be generated from the GoLom

distribution using

𝑥 = 𝛽−1 {[1 − 𝛾
𝜃 log (1 − 𝑢)]1/𝛼𝛾 − 1} . (19)

The median of the GoLom distribution can be derived by
substituting 𝑢 = 0.5 into (18) as follows:

Median = 𝛽−1 {[1 − 𝛾
𝜃 log (0.5)]1/𝛼𝛾 − 1} . (20)

Other quartiles can also be derived from (18) by substituting
the appropriate value of “𝑢.”
2.4. Distribution of Order Statistics. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be a
random sample from a cdf and pdf of a Gompertz Lomax
distribution as defined in (5) and (6), respectively; the pdf of
the 𝑗th order statistics of the GoLom distribution is obtained
from

𝑓𝑗:𝑛 (𝑥)
= 𝑛!
(𝑗 − 1)! (𝑛 − 𝑗)!𝑓 (𝑥) 𝐹 (𝑥)

𝑗−1 [1 − 𝐹 (𝑥)]𝑛−𝑗 . (21)

Then, the pdf of 𝑗th order statistics for the GoLom distribu-
tion is

𝑓𝑗:𝑛 (𝑥) = 𝑛!
(𝑗 − 1)! (𝑛 − 𝑗)!𝜃𝛼𝛽 (1 + 𝛽𝑥)

𝛼𝛾−1

⋅ 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾} [1 − 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}]𝑗−1

⋅ [𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}]𝑛−𝑗 .

(22)

Therefore, the distribution of minimum andmaximum order
statistics for the GoLom distribution is given by

𝑓1:𝑛 (𝑥) = 𝑛𝜃𝛼𝛽 (1 + 𝛽𝑥)𝛼𝛾−1

⋅ 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾} [𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}]𝑛−1 ,
𝑓𝑛:𝑛 (𝑥) = 𝑛𝜃𝛼𝛽 (1 + 𝛽𝑥)𝛼𝛾−1

⋅ 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾} [1 − 𝑒(𝜃/𝛾){1−[1+𝛽𝑥]𝛼𝛾}]𝑛−1 .

(23)
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2.5. Parameter Estimation. The parameters of the GoLom
distribution can be estimated using the method of maximum
likelihood (MLE) as follows: let 𝑥1, 𝑥2, . . . , 𝑥𝑛 denote random
samples each having the pdf of the GoLom distribution; then
the likelihood function is given by

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝛼, 𝛽, 𝛾, 𝜃)

=
𝑛

∏
𝑖=1

[𝜃𝛼𝛽 (1 + 𝛽𝑥𝑖)𝛼𝛾−1 𝑒(𝜃/𝛾){1−[1+𝛽𝑥𝑖]𝛼𝛾}] .
(24)

Let 𝑙 denote the log-likelihood function; that is, let 𝑙 =
log𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝛼, 𝛽, 𝛾, 𝜃); then

𝑙 = 𝑛 log (𝜃) + 𝑛 log (𝛼) + 𝑛 log (𝛽)

+ (𝛼𝛾 − 1)
𝑛

∑
𝑖=1

log (1 + 𝛽𝑥𝑖)

+ 𝜃
𝛾
𝑛

∑
𝑖=1

{1 − (1 + 𝛽𝑥𝑖)𝛼𝛾} .
(25)

Solving 𝑑𝑙/𝑑𝛼 = 0, 𝑑𝑙/𝑑𝛽 = 0, 𝑑𝑙/𝑑𝛾 = 0, and 𝑑𝑙/𝑑𝜃 = 0
simultaneously gives the maximum likelihood estimates of
parameters 𝛼, 𝛽, 𝛾, and 𝜃. Meanwhile, the solution cannot
be gotten analytically except numerically when data sets are
available. Software like R, MATLAB, MAPLE, and so on
could be used to get the estimates.

3. Simulation

The behaviour of the parameters of the GoLom distribution
was investigated by conducting simulation studies with the
aid of R software. Data sets were generated from the GoLom
distribution with a replication number 𝑚 = 1000; random
samples of sizes 𝑛 = 25, 50, and 100 were further selected.The
simulation was conducted for three (3) different cases using
varying true parameter values. The selected true parameter
values are 𝛼 = 0.5, 𝛽 = 0.5, 𝛾 = 0.5, and 𝜃 = 0.5; 𝛼 = 1, 𝛽 = 1,
𝛾 = 1, and 𝜃 = 1; and 𝛼 = 2, 𝛽 = 2, 𝛾 = 2, and 𝜃 = 2 for the
first, second, and third cases, respectively.

The MLE of the true parameters were obtained including
the Bias and the Root Mean Square Error (RMSE).The result
for the simulation studies is as shown in Tables 1, 2, and 3.

Remark 3. It can be deduced from Tables 1, 2, and 3 that the
root mean square error (RMSE) reduces for all the selected
parameter values as the sample size increases. Also, the bias
posed by the estimates is closer to the true parameter values
and the absolute bias reduces as the sample size increases.
Hence, as sample size increases, the estimates tend towards
(or approaches) the true parameter values.

4. Application

To demonstrate the potentials of the GoLom distribution,
a comparison was made using the GoLom distribution
and some other compound distributions like Beta Lomax
distribution,Weibull Lomax distribution, andKumaraswamy

Table 1: Simulation study at 𝛼 = 0.5, 𝛽 = 0.5, 𝛾 = 0.5, and 𝜃 = 0.5.
𝑛 Parameters Means Bias RMSE

25

𝛼 = 0.5 0.4849 −0.0151 0.1974
𝛽 = 0.5 0.5379 0.0379 0.2012
𝛾 = 0.5 0.5469 0.0469 0.1134
𝜃 = 0.5 0.5552 0.0552 0.3301

50

𝛼 = 0.5 0.4913 −0.0087 0.1763
𝛽 = 0.5 0.5204 0.0204 0.1655
𝛾 = 0.5 0.5284 0.0284 0.0861
𝜃 = 0.5 0.5544 0.0544 0.2889

100

𝛼 = 0.5 0.5080 0.0080 0.1603
𝛽 = 0.5 0.5131 0.0131 0.1334
𝛾 = 0.5 0.5100 0.0100 0.0658
𝜃 = 0.5 0.5394 0.0394 0.2355

Table 2: Simulation study at 𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, and 𝜃 = 1.0.
𝑛 Parameters Means Bias RMSE

25

𝛼 = 1.0 0.8897 −0.1103 0.2947
𝛽 = 1.0 1.0938 0.0938 0.3420
𝛾 = 1.0 1.1110 0.1110 0.2602
𝜃 = 1.0 1.0330 0.0330 0.2509

50

𝛼 = 1.0 0.9189 −0.0811 0.2172
𝛽 = 1.0 1.0592 0.0592 0.2449
𝛾 = 1.0 1.0545 0.0545 0.1671
𝜃 = 1.0 1.0397 0.0397 0.2082

100

𝛼 = 1.0 0.9490 −0.0510 0.1593
𝛽 = 1.0 1.0465 0.0465 0.1733
𝛾 = 1.0 1.0096 0.0096 0.1137
𝜃 = 1.0 1.0470 0.0470 0.1514

Table 3: Simulation study at 𝛼 = 2.0, 𝛽 = 2.0, 𝛾 = 2.0, and 𝜃 = 2.0.
𝑛 Parameters Means Bias RMSE

25

𝛼 = 2.0 1.8415 −0.1585 0.7105
𝛽 = 2.0 2.1605 0.1605 0.7190
𝛾 = 2.0 2.2196 0.2196 0.4790
𝜃 = 2.0 2.0191 0.0191 0.3825

50

𝛼 = 2.0 1.9171 −0.0829 0.5363
𝛽 = 2.0 2.1175 0.1175 0.5653
𝛾 = 2.0 2.1155 0.1155 0.3550
𝜃 = 2.0 2.0055 0.0055 0.3407

100

𝛼 = 2.0 1.9881 −0.0119 0.3892
𝛽 = 2.0 2.0890 0.0890 0.4110
𝛾 = 2.0 2.0507 0.0507 0.2777
𝜃 = 2.0 1.9862 −0.0138 0.2962

Lomax distribution.The following criteria were used to select
the distribution with the best fit: Negative Log-Likelihood
(−LL) value, Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), Consistent Akaike Information
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Table 4: Performance rating of the GoLom distribution.

Distributions Estimates −LL AIC CAIC BIC HQIC

Gompertz Lomax

𝛼̂ = 0.0046
14.5027 37.0055 37.6951 45.5780 40.3771𝛽 = 8.1791

𝛾 = 1.5158
𝜃 = 0.5069

Weibull Lomax

𝛼̂ = 6.0947
15.3399 38.6798 39.3695 47.2524 42.0514𝛽 = 0.1069

𝑎 = 1.0629
𝑏̂ = 0.0649

Beta Lomax

𝛼̂ = 18.1737
24.4034 56.8068 57.4964 65.3793 60.1784𝛽 = 26.7645

𝑎 = 10.8769
𝑏̂ = 0.0329

Kumaraswamy Lomax

𝛼̂ = 9.8352
18.1027 44.2055 44.8951 52.7779 47.5771𝛽 = 45.3107

𝑎 = 15.1182
𝑏̂ = 0.0483

Table 5: Table of test statistic.

Distributions KS 𝐴 𝑝 value
Gompertz Lomax 0.1542 0.9462 0.0998
Weibull Lomax 0.1517 1.3315 0.1100
Beta Lomax 0.2182 3.1986 0.0049
Kumaraswamy Lomax 0.1854 1.9915 0.0263

Criteria (CAIC), and Hannan and Quinn Information Cri-
teria (HQIC). The value for the Kolmogorov Smirnov (KS)
statistic, Anderson Darling (A) statistic, and the 𝑝 value are
also provided.

The data relating to the strengths of 1.5 cm glass fibres
which was obtained by workers at the UK National Physical
Laboratory was used. The data has previously been used by
Smith and Naylor [17], Bourguinon et al. [18], andMerovci et
al. [19]. The observations are as follows:

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30,
1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49,
1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61,
1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,
1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84,
1.84, 2.00, 2.01, 2.24.

The performances of the GoLom distribution with the
other competing distributions are shown in Table 4.

Remark 4. The distribution that corresponds to the lowest
−LL, AIC, CAIC, BIC, and HQIC is judged to be the best out
of the competing distributions.With this regard, the compet-
ing distributions can be ranked in the following order (best
to the least): Gompertz Lomax distribution, Weibull Lomax
distribution, Kumaraswamy Lomax distribution, and Beta
Lomax distribution.

The values for the Kolmogorov Smirnov statistic, Ander-
son Darling statistic, and the 𝑝 value are as shown in Table 5.

x

f
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)

0.5 1.0 1.5 2.0 2.5
0.0
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1.0
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WeL

BeL
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Figure 4: Plot showing the competing distributions with the
empirical histogram of the observed data.

A plot showing all the competing distributions against
the empirical histogram of the observed data is as shown in
Figure 4.

A plot for the empirical cdf of the competing distributions
with the empirical cdf of the observed data is as shown in
Figure 5.

The plots in Figures 4 and 5 affirm the results of the anal-
ysis that the Gompertz Lomax distribution is more suitable
for the data than the other competing distributions.

5. Conclusion

The Gompertz Lomax distribution has been successfully
derived; expressions for its basic statistical properties which
include the reliability function, hazard function, odds func-
tion, reversed hazard function, and quantile, median, and
distribution of order statistics have been successfully estab-
lished. The shape of the distribution could be decreasing or
inverted bathtub (depending on the value of the parameters).
Meanwhile, the shape of its hazard function could be con-
stant, increasing, or decreasing (depending on the value of the
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Figure 5: Plot for the empirical cdf of the competing distributions.

parameters). The simulation study that was conducted shows
that the parameters of the Gompertz Lomax distribution are
stable; though values for biasedness were generated, these
values are small, indicating that the maximum likelihood
estimates of the GoLom distribution are not too far from the
true parameter values; the absolute bias and the root mean
square values also decreases as the sample size increases.
An application to a real life data shows that the Gompertz
Lomax distribution is a strong and better competitor for the
Weibull Lomax distribution, Beta Lomax distribution, and
Kumaraswamy Lomax distribution.
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