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Abstract 
Reliable single directional frequency data transfer is a method of electronic communication that is a 

potential alternative to a bi-directional or wired method. It is intended to determine whether or not single 

directional data transfer can be designed to perform at the same reliability level as other methods of data 

transmission. The reason for researching this is to see whether, two-way communication is necessary. Upon 

finding results to this question it will be determined if single directional frequency data transfer can be as 

power efficient as bi directional data transfer. It will also look into the overall performance of the method 

and how it can deal with inhibiting factors that will be introduced to simulate real world external variations 

in the signal. 

How reliable single directional frequency transfer is, will be determined through experiments that are 

tasked at finding the maximum transmission rate of the devices made and the distance that data 

transmission can be conducted over. 

 The investigation will require the design of an experimental apparatus that will allow results to be found in 

the maximum possible transmission rate and distance transmission can cover. 

 The experimental apparatus will consist of two possessors, one for encoding a message, the other for 

decoding a message. The apparatus will also require an integrated radio frequency transmitter circuit as 

well as a receiver radio frequency integrated circuit. The processors will need to be coded with a new 

protocol that will allow the incorporation of three forward error correction techniques. This is so that a 

basic, intermediate and advanced method of forward error correction can be compared when gathering 

results. 

 Throughout this research consideration into all aspects that can possibly improve the energy efficiency of 

the electrical apparatus will be addressed an implemented. By creating an experimental apparatus that is 

competitive against other data transmission methods in terms of energy efficiency. With an energy efficient 

experimental apparatus, then results found could be a close representation of the likely outcomes if single 

directional data transmission was to be implemented on a larger scale. 
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1.0 Introduction 

This research report will focus on frequency data transmission. The main research question is; 

 

 ‘Is it beneficial to use forward error correction as an alternative to bi-directional communication? ‘ 

 

There are three objectives that will lend supporting evidence to the underlying question of the research 

project should they be validated or proven through either experimentation or research. The hypothesis 

being that a system with forward error correction benefits over an alternative system due to the 

hypothesised decreases in power consumption and cost in apparatus to setup this form of frequency 

communication. This will be validated by conducting experiments, which look into the economic overheads 

created by forward error correction. As well as providing quantitative data to distinguish whether one-way 

communication with forward error correction performs better than a communication system that 

communicates bi-directionally. 

These quantitative figures will be used as comparisons between the two methods of communication 

comparing transmission rate with minimal errors, the max distance between the receiver and transmitter in 

order for the system to work and the required signal strength between the two methods. The purpose of 

this research is to provide data which can be used as a reference for determining if a unidirectional 

transmission system will be capable of performing to the same reliable standard that a bi-directional 

communication system would.  

Prior to conducting research into this field it is expected that a frequency communication system which 

communicates only one way will have the capability to add further software coding which can vary in 

complexity which will allow the system to perform to either an equal or higher standard than bi-directional 

communication. To simulate this a smaller scale version of a frequency communication system will be built 

using two Arduino’s to process the signal and a radio frequency integrated circuit board transmitter and 

receiver. One Arduino will be built to simulate a message encoder the other will be used to simulate a 
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message decoder. The encoding and decoding software will be written in Arduino’s IDE software and will be 

designed based on further research of line coding methods. This apparatus can then be used to carry out 

the experiments mentioned herewith.  
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2.0 Literature Review 
 
Key features to help define the objectives of the experiments to be conducted to confirm reliable data 

transmission are, transmission types, protocol structure, methods of error checking and simplex versus 

duplex communication setups.  

Each of these features was researched in order to further develop an understanding and to assist in the 

procedure taken to determine if the all-encompassing hypothesis of the report is valid. 

2.1 Transmission Types 

Transmission types, was an important factor to look into due to the focus being frequency transmitted 

data. There are many ways of transmitting data using a radio frequency. A few that you would come across 

in day to day activities could be frequency modulated, otherwise known as FM transmission, which you 

would come across when listening to the radio similarly Amplitude modulation known as AM transmission 

also can be heard on the radio [1]. There are also a few types of wireless technologies that use a frequency 

transmission type known as digital modulation (DM). Digital modulation is a common technique used in 

wireless computer networks, 3G, 4G and LTE mobile phone networks [2]. There is also digital modulation 

used in communication methods such as Bluetooth. 
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2.1.1 AM Transmission 

‘AM’ transmission is an analogue form of transmission where to represent data a continuous analogue 

signal is imposed on carrier wave [3]. The carrier wave will scale its amplitude to represent the carrier 

wave. In Figure 1 the amplitude is high when the signal wave is positive and the amplitude is low when the 

signal wave is negative. 

 

 

Figure 1 - AM Modulation Diagram 

2.1.2 FM Transmission 

‘FM’ transmission is another analogue form of frequency data transmission. In this method the same as in 

the ‘AM’ transmission form the message is scales so that the message is represented by the carrier waves 

frequency. This works by having a high frequency to symbolise the signal is high. If the signal is low so will 

be the frequency of the carrier wave [3]. This can be seen in Figure 2 where it is evident that the Frequency 

modulated wave looks more bundled when the signal wave is positive. 

 

 

Figure 2 - FM Modulation Diagram 
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2.2 DM Transmission 

Digital Transmission is another common transmission method. This form of frequency transmission is most 

commonly used in televisions, mobile phones, game console controllers, portable Bluetooth speakers and 

some computer components. Digital modulation can then be broken down further into subcategories 

known as, Frequency Shift Keying (FSK), Phase Shift Keying (PSK) and Amplitude Shift Keying (ASK) [2]. 

Digital Modulation is a technique that uses discrete signals to modulate a carrier wave in a particular 

bandwidth [2] [4]. 

 

2.2.1 Frequency Shift Keying (FSK) 

 
This method is closely related to Frequency modulation. The only difference being the signal shown using 

the carrier wave is of a discrete type in nature. This method works by breaking down the signal into its 

binary form so that it can be represented as ones and zeros. FM frequency works by changing the period of 

the carrier wave to represent the ones and zeros within the data message being sent. Usually a smaller 

period represents a one and a longer period represents a zero [4]. 

 

 

Figure 3 - FSK Modulation Diagram 

 

2.2.2 Amplitude Shift Keying (ASK) 

Similar to AM modulation Shift keying refers to the data type of the signal. In shift keying, the signal is of a 

discrete type in nature. For ASK modulation to work data is broken down into a binary form that can be 

represented as ones and zeros. This message is then sent with a wireless signal at a chosen frequency, 
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where a change the amplitude modulation can represent either a one or a zero. Typically a high amplitude 

represents a one and a lower amplitude represents a zero [4]. 

 

 

Figure 4 - ASK Modulation Diagram 

 

2.2.3 Phase Shift Keying (PSK) 

The third method, Phase Shift Keying, is how the name describes, a method where the phase angle at the 

start of each period changes depending on if the data being sent is a one or zero [4]. This method can also 

be done as an analogue transmission method although it requires more processing to decode this type of 

transmission. 

 

 

Figure 5 - Phase Shift Keying Diagram 

 

2.3 Frequency Transmission History 

 In looking at the history of frequency data transmission, which for AM modulation started back in the late 

1800’s where the idea to vary the signal strength (Amplitude) to encode data for wireless communication 

was proposed. Several invertors and engineers worked on this concept. It was not until 1900 when a 

Canadian engineer and researcher, Reginald Fessenden made the first known Amplitude modulated 
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transmission [5]. Between the invention of AM transmission and FM transmission in 1928 many 

investigations into the capabilities of FM transmission were looked into due to the effect static noise would 

have on AM transmission. AM transmission works by varying the amplitude, the receiver for an AM radio 

would receive the signal as well as any static noise making the transmission difficult to decode. An 

American engineer, Edward Howard Armstrong conducted experiments that first uncovered the capabilities 

of FM modulation, which then led to the development of wide band FM transmission. This was less 

susceptible to noise in comparison to Amplitude Modulation [6]. 

These experiments highlighted that FM transmission will be less susceptible to static noise then AM making 

FM transmission the favourable method of transmission. Therefore this will be incorporated into the design 

of the experiment that will be later used as validation of the Report Question, being, is single directional 

frequency data transfer a reliable method for transmitting data.  

Also upon investigating the methods of frequency transmission the methods that are of the type, which 

involves frequency modulation, are FM and FSK. These two methods as earlier explained both use a varying 

frequency the different in the two is the type of data being represented by the carrier wave [4]. Out of the 

two methods FM transmission and frequency shift keying Transmission the option that would best suit the 

research is the frequent shift keying method. Due to the ability to determine how effective a transmission 

was becomes a lot more obvious with a discrete signal in comparison to an analogue signal. With the 

discrete signal there are two possibilities that the transmission could be sending this is either a one or a 

zero. Where as in an analogue method there is a range of possibilities that could be sent within the 

accuracy level of the transmitter. 
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2.4 Line Coding Method 
 
Once there is a transmission method for data then a method for how the decoder and encoder of the signal 

waves are required. This is known as line coding. Line coding can be done in numerous ways. As part of this 

research report line coding methods were compared against each another to distinguish which method 

would be the best method to incorporate into our experiment.  

 

2.4.1 Line Coding History 

 
Line coding has been researched in a number of different ways in order to create a method to suit a 

particular purpose. For example, a line coding method that is good for regulating clock speed so the 

decoder can stay in sync with the encoder’s message [7]. A line coding method that achieves this is 

Manchester line coding. This line coding method was developed at the University of Manchester. It is a 

method that was created for the Manchester Mark 1 computer, which was one of the earliest stored 

program computers [8]. This is a method where the transmitter will send with a high or low depending on 

which version of Manchester line coding a one will be represent by a high pulse and at the middle of each 

period the signal will change to the opposite direction [8]. For example, if a one was being represented as a 

high half way through the clock cycle this would be represented as a low and vice versa if a zero was being 

represented on the line. The change in the slope half way through the period of the binary value being sent 

can be used to recalibrate the processors clock cycle so it stays in sync with the encoder [8]. There are 

other methods of line coding such as return to zero when simply a one represents a high and a zero 

represents a low. Return to Zero however, unlike the Manchester method doesn’t offer the ability to the 

decoder to resynchronise its clock cycle. For instance if there is multiple ones the signal will stay high for 

the period of the ones being sent with no slope in between for the decoder to use as a time sync. It was 

favourable to use a method such as Manchester where there is the advantage that allows the 

communication equipment to stay in sync making it more accurate when reading a signal [7] [9]. 

Some of the methods researched in this report are Manchester line coding and various forms of the Return 

to Zero line coding method. Independent research was completed as part of the validation to determine 
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the best line coding method to incorporate with the experiment conducted as part of this report. This 

research will be discussed in further detail in the later stages of this report. 

2.5 Error Correction Techniques 
 
Error correction techniques are decoding techniques that allow a signal to be deciphered correctly even in 

the event where part of a message is affected by noise and is received incorrectly. Error correction can be 

as simple as having a checksum as part of the message string or as complex as having binary code words 

added to the ends of message strings as parity bits. 

Some of the methods looked into at the early stages were adding simple checksums to each byte. Other 

methods were 2D matrix error correction, a simple version of Reed Solomon error correction and a more 

sophisticated version of Reed Solomon. Error correction techniques will be used in later experiments that 

aim to investigate the question that the research in this report is based around. The investigation requires 

tests to be done to validate the claim that frequency data transfer being used in a single directional 

communication setup is a reliable form of data transfer. 

2.5.1 Error Correction History 
 
In 1947 Richard W Hamming first documented and developed error correction in computer science [9]. 

Where a piece of error correcting code, which he had developed, appeared in a mathematical theory 

textbook [9]. 

There are two forms of error correction these are, automatic repeat request (ARQ) [9], were simply the 

message is re sent and the receiving end will decipher the message based on multiple messages received. 

There is also Forward Error Correction (FEC) [9] where information is sent with the message that can help 

determine whether or not the message received was actually the intended message. Since this report 

focuses on a single direction communication style automatic repeat request does not fit the criteria. The 

decoder will not have transmitting capabilities so the ARQ will not be an appropriate error correction type. 
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Forward error correction as an alternative allows the receiver to interpret the message being sent without 

the need to ask for the message to be resent. 

2.5.2 Forward Error Correction 
 
Forward error correction works by sending as well as the message a set number of parity bits that are 

calculated based on the message being sent [9]. This makes the parity bits being sent unique to the 

message that in theory helps to allow the receiver to decipher the message. 

 

2.5.2.1 2D Matrix Error Correction 

 
Matrix error correction works by representing the data being sent in a matrix from [9]. For each row and 

each column a parity bit is added. This allows a decoder to locate any errors in a message by identifying 

where the vertical parity and horizontal parity overlap showing the exact bit or byte incorrectly sent during 

transmission [9]. Experiments have been conducted and confirmed this method as having the ability to 

identify up to three errors for every byte sent and is able to correct up to two of those errors. 

Improvements to this method were made at a later stage for all three of the identified errors to be 

corrected. This was achieved by adding diagonal parity bits. Although once this improvement is 

incorporated the method becomes uneconomic in the way that more parity bits begin to be sent in 

comparison to message bits [9]. 

 

An example of how this works on a simplified level, a matrix is created with the data you wish to send. The 

encoder first does an odd or even parity bit for each row. It then does the same for each column. This 

message is then sent to the decoder where it will do its own check to see if the parity bits line up with what 

was received. If the parity lines up with what was sent then generally no error was received. When a parity 

bit does not line up with what was received then there is usually a parity that doesn’t line up in both the 

rows and columns. In this case the incorrect bit to be fixed will be the section where the two circles as 

shown in Figure 6 overlap [9]. Both cases are shown in the figure below, the first case where the message 
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was received correctly and the second case where the message was received with errors. This example has 

been shown as a two by two matrix so that the methodology would become more evident. 

 

 

Figure 6 - Matrix forward error correction encoding 

The diagram above shows how the message is structured before being sent to the decoder, which is also 

shown in Figure 7. 

 

 

Figure 7 - Matrix forward error correction decoding 

 

2.5.2.2 Reed Solomon Error Correction 

 
Reed Solomon Coding is the name given to algebraic formulas designed to detect and correct errors in 

transmitted signals [10]. Reed Solomon is an amalgamation of both the inventors’ names. The two 

mathematicians who were also electrical engineers who brought about this form of error correction were 

Irving S. Reed and Gustave Solomon. The Reed Solomon Error checking technique is widely used in modern 

technology. Areas where this error checking has been implemented are in data storage, 2 dimensional bar 
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codes data transmission and space transmission [10]. The fundamentals of this form of error checking are 

quite complex to code from scratch. A sample of Reed Solomon Code was used then adapted to fit the 

purpose of the investigation. How this works on a simplified level is by making the message to be sent into 

matrix form. This matrix is then multiplied by the identity matrix with added parity rows. The amount of 

parity rows depends on the amount of errors that you want to be able to detect and correct [10] [11].  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑖𝑡𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 × 2 

 

For this example we wish to correct 1 transmission error, therefore two parity rows are added to the 

identity matrix. Figure 8 below shows the data message in a matrix format and the identity matrix with 

parity that the data message will eventually be multiplied by. 

 

 

Figure 8 - Reed Solomon forward error correction sent data  

 

Matrix B is a result of multiplying matrix A and the identity matrix together. Matrix B in our example will be 

the matrix of data that is to be sent to the decoder. Once matrix B is transmitted to the decoder the data is 

broken up so that it can be used in the following format illustrated by Figure 9. 
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Figure 9 - Reed Solomon forward error correction decode equation 

 

The decoder from this point is where you take any three rows from the Identity Matrix and multiply it with 

the same corresponding rows in matrix B. The result of this multiplication is the original message if no 

errors were sent. This example shows the method of this process of the Reed Solomon method in a case 

where no error was transmitted [10]. 

 

 

Figure 10 - Reed Solomon forward error correction decoding the code word 

 
In a case where an error was transmitted to the decoder further multiplications of three different rows in 

matrix B and the Inverse of matrix I would need to be carried out. An example is if the decoder received an 

error in row two, column two, of matrix B. The decoder does not yet know this that there was an error, 

although after iterations of the Reed Solomon forward error correction method it is able to be determined 

whether or not the data was correct. The process is as follows, the decoder would perform the calculation 
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with 3 rows not necessarily order specific. The equation would be performed again using a different set of 

three rows. This process is repeated until all combinations of three rows for a five-row Matrix B. The total 

number of combinations that can be made is found the using formula below. 

 
𝑛!

𝑅! (𝑛 − 𝑅)!
= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 

 
This formula uses the number of rows in matrix B as the ‘R’ value and the number of rows in the resultant 

matrix as the ‘n’ value. For the example being explained ‘n’ would be five and ‘R’ would be three. 

For simplicity Figure 11 & Figure 12 below show only two different combinations of rows and the resultant 

matrix [10]. 

 
Figure 11-Reed Solomon workings 1 

 
Figure 12-Reed Solomon workings 2 
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The results from Figure 10, Figure 11 & Figure 12 show it can be seen in the data sent for two of the figures that the 

decoded message is correct, and in one of the figures the decoded message is wrong. Once all combinations of rows 

have been calculated the processor will then determine the message based on what the majority of the equations 

ended up decoding the message to be [10] [12].  
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3.0 Methodology 
 
Throughout the beginning of this report it was stated that in order to gather quantitative data to determine 

reliable frequency data transfer an experiment would be conducted using a miniaturised version of the 

communication equipment you could potentially find in real world applications.  

As well as building an experimental apparatus a literature review was conducted to determine the best 

methods / ideologies to incorporate into the experimental apparatus. This was necessary because, in order 

to gain the most accurate results the experimental setup needs to include the best techniques in order to 

achieve the greatest efficiency. The method to designing the experimental setup was first to design a 

physical apparatus capable of performing the required task. Followed by the software techniques being 

coded onto the encoder and decoder. Once the hardware and software was addressed, the experiments 

that allowed results for the reliable performance were conducted. These experiments are going to give an 

indication into how reliable our communications setup would be, were based on discussions in which it was 

determined that transmission speed, effectiveness over gradual increase in distance and signal strength to 

error ratio. 

3.1 Experimental Apparatus Hardware Design 

3.1.1 Radio Frequency Spectrum  

 
 The design had to have a legal radio frequency transmitter and receiver. In order for a radio frequency 

module to be legal it must operate in a given bandwidth set out by the governing bodies of the area that 

you wish to operate in [12]. These restrictions are part of the frequency spectrum and there are 

international and national declarations that ensure certain frequency bands are not used without a license 

[12]. An example of an international frequency band, that is limited to who can operate within this band is, 

the Industrial Scientific and Medical Band (ISM) [12]. The limitations into which band within the frequency 

spectrum that you can operate in made it important that the RF components that would be incorporated in 

the design of the apparatus operated within a non-licenced frequency band. Generally it is assumed that if 

you are to buy a RF module from a third party retail store, that third party retail store would be required to 

ensure that the RF modules they are selling be within a non-licenced range. The RF modules acquired for 
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the experimental apparatus were the Z6905 (Receiver) and the Z6900 (Transmitter), the datasheets for 

these two components can be found in Appendix (A). The datasheets for these two RF modules state that 

the operating frequency of these two modules is 433.92MHz which is within a non-licenced armature 

frequency band. This was confirmed using the Australian Radio Frequency Spectrum Allocations Chart, 

which can also be found in Appendix (B). 

After confirming that the two RF modules would meet the requirements of the hardware the micro 

controller was then selected to control the RF Module. 

3.1.2 Micro Controllers 

 
Micro controllers were a necessary part towards building the experimental apparatus because the data 

being sent across the frequency channel between the two RF modules needed to be processed so that it 

was represented in binary form and included relevant parity bytes which would be required at later stages 

of the experimental apparatus design. Two micro controllers were needed to control the RF modules and 

also process the information to send and receive from the RF modules. Due to a limited time frame and 

budget the option that provided the needed functionality at a low price was the Arduino Uno. This micro 

controller was the best option due to its script coding style as opposed to other methods such as ladder 

logic or function block diagrams. Another advantage that suited the task was it had a high enough 

processing speed to make it possible for a decoder to take readings quick enough so the RF modules could 

be used at their highest possible bit rate (BPS). The Arduino has a possible bit rate of 4Mhz and the RF 

modules have a possible bit rate of 4.8kHz. The Arduino’s cycle rate being much faster made it possible to 

implement a line coding and line decoding method at the highest rate possible for the RF modules. An 

added benefit of an Arduino is that it is a low powered device, which demonstrates single directional 

frequency transmission being achieved on a low energy cost device.  

3.1.3 TFT Arduino Screen Shield 

 
The experiments to be conducted would require repeat testing in order to achieve the best results. There 

was a need for repeat testing so a TFT Arduino Screen shield was used so the data can be displayed on both 
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the decoder and encoder. This makes it more efficient to distinguish if the data was transferred between 

the encoder and decoder correctly. 

3.1.4 User Interface 
The experimental Apparatus needed to have controllability so the test could be conducted quickly and by 

one person in some cases. This required the use of pushbuttons for inputs that could be used on the 

Arduino. These pushbuttons were used in the initialisation of the two Arduino processors. They allowed 

features such as selecting the amount of parity bits to include and the overall transmission speed to 

operate at, as well as when to start transmitting. This made it possible to initialise the decoder so that it 

started waiting for the transmission from the encoder while an operator walked over to the encoder to 

start the transmission.  

 

3.2 Software Design 

3.2.1 Transmission Line Coding Method  
To distinguish the best line coding method it would need to be able to meet the criteria of being reliable. 

For this experiment to be as reliable as possible it needs to have a long life span where the apparatus can 

operate over a long period of time continuously. The apparatus having low power consumption would 

achieve this. A lower average power consumption will decrease the frequency that the power source needs 

to be replaced or replenished. To find the lowest power consumption research was conducted into the 

most energy efficient method of line coding. Multiple different types of line coding were looked at, of these 

different methods the average power consumption varied. In order to find out on a theoretical level which 

method would be the best option, a table of data showing the results on the average power consumption 

of each line coding method was created. This table showed calculations of the longest on time for each 

method using each different combination of a byte. For an eight-bit byte there are 256 different 

combinations of that byte that exist. For each of the 256 combinations, it was calculated how long a voltage 

signal would have to stay high for on average using the different line coding types. Of the different line 

coding types the method that showed the best results was the Return to Zero method. Return to Zero had 

an average high voltage on time of 25%. This 25% shows that for each data transmission, the signal would 
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be high for 25% of the time during transmission. The results of the research conducted in this area can be 

found in Appendix (C). Return to Zero line coding was the most efficient after testing and works by sending 

a high voltage for half of the bit rate time period when sending a 1 and it stays low for the entire bit rate 

period when sending a zero (Figure 13).  

 

Figure 13 - Return to Zero Line Coding Method 

3.2.2 Encoding Process with 2D Matrix Error Checking 

 
The encoding process outlines how Returns to Zero line coding was incorporated into the Arduino so that 

data could be transmitted. By first generating a random bit pattern using an in built random function. The 

reason for this is so that the transmission success rate could be truly tested due to a different message 

being sent each time. Once a random bit pattern was generated this pattern was stored in an array. The 

array was eight positions long to represent a byte that was being sent. A new array was created with length 

equal to the byte plus the amount of parity bits. The new array was then rebuilt so the bits being sent to 

the receiver were in the correct order for 2D matrix error checking. The order of each individual bit being 

sent is shown in Figure 14. 

 

Figure 14 - Encoding for 2D Matrix Error Checking 
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The breakdown of the array in a single line is how the code is literally processed in theoretical form the 2d 

matrix for this method is as shown in Figure 15. 

 
Figure 15 - 2D Matrix Representation 

Once the data was reconstructed into this correct format it was put into a loop where each iteration of the 

loop increased a counter variable. The counter variable was then used as a reference for a nested “if 

statement” to check whether the element in the array at position ‘x’ which was specified by the counter 

was a one or zero. If the ‘if statement’ read a one, a digital output connected to the transmitters data input 

pin would be sent high. If the statement didn’t read a one then the digital pin would not send any signal to 

the transmitter. This loop continued until all values in the data send array were transmitted. Before the 

data sent array is sent a simple handshake where the transmitter outputs a High, Low, High, Low is sent so 

the decoder knows when to start taking readings from the receiver RF module. 

3.2.3 Decoding Process with 2D Matrix Error Checking 
The decoder coding required more processing to incorporate the error checking method. The code begins 

with a while loop that will not be entered until the handshake is detected. Once a High, Low, High, Low 

handshake has been detected, then the while loop will be entered. This is where the decoder will take a 

reading from the data pin of the receiver RF module every bit period that is specified upon downloading 

the code to the processor. The Arduino waits for the first rise in the signal then waits for a third of the bit 

period before taking a measurement to ensure that the reading taken was in actual fact the signal being 

transmitted and not just an impulse caused by noise. Each reading is stored in an array until the receiver 

has made 19 readings that account for the start bits, the message and the parity bits. Once all readings are 

taken the decoder then has the necessary array of values needed to perform the forward error correction 

method. The processor first looks at the first 4 bits in the data sent array and determines whether an odd 
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or even bit number was sent. This process is continued for the 2D matrix rows and columns. Once the 

process has calculated whether the rows and columns are even or odd it compares its computed value to 

the parity bit value sent with the transmission. If the comparison of the two numbers do not match, then 

the decoder knows there was an error in the corresponding row or column. The rest of the forward error 

process is carried out as explain in section 2.5.2.1 of this report. 

3.2.4 Encoding Process with Reed Solomon Error Checking Method 
The encoding process for the Reed Solomon error checking method was the advanced form of error 

checking to be implemented into the experiments. This followed the same basic structure in how the ones 

and zeros would be sent to the decoder. The majority of the difference in the coding involved in this section 

was to do with creating the initial array that would be later sent. Due to the complicated mathematical 

theory involved in this error checking method a piece of sample code written by Henry Minsky was used as 

a basis. The sample code utilised the Reed Solomon error checking form and its more advanced 

implementation of using Galois Theory. The sample code by Henry Minsky would take a string of letters, 

convert it to binary form then add the appropriate code words before sending it to be decoded. This code 

was split in two so the encoding could be done completely separate from the decoding. The decoding part 

of the code was implemented on the decoding Arduino. The exact alterations to Henry Minsky’s code are 

shown in Appendix (D). 

3.3 Hardware Design Issues 

3.3.1 Switch Mode Voltage Regulator 
One of the hardware issues to come out of the test of the initial design was to replace the laptop with 

batteries to power the apparatus. This meant the apparatus would be more portable. The issue was AA 

batteries have a nominal voltage level of 1.5 volts and the apparatus required a 5 volt signal for the RF 

module. Available from an electronic retailer are battery holders that allow batteries to be placed in series 

so the combined voltage output could then be increased. Required was a battery holder big enough for four 

batteries that gave a total nominal voltage of 6 volts. if a battery holder with 3 slots was used the nominal 

voltage would only be 4.5 volts which would be under the level required for the apparatus. With the four 

slot battery holder being above the nominal voltage level required a voltage regulator was used to regulate 
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the voltage to stick within 0.2 volts of the nominal 5 volts. It was not noticed until after implementing this 

method the voltage regulator was of a switch mode type. This works by switching the power transistor on 

and off so that it is cutting the energy flow between the input and output. When the energy flow is cut the 

output is powered using energy storage devices such as inductors to buffer the energy [13]. This constant 

switch creates an electromagnetic change to the field around the regulator that impeded the RF signal 

during experimentation with the apparatus [13]. The power supply was causing the signal to become too 

noisy and non-controllable. The attempt to make the apparatus more portable by including an on-board 

power supply was unsuccessful due to the fact it would impede the results from testing. An alternative 

method in the end was to redesign the apparatus so a battery bank could power it. The battery bank had a 

nominal voltage output of 5 volts thus alleviating the need for the switch mode voltage regulator. 

3.3.2 Adding a Comparator to Filter out Noise 
During testing of the data transmission it became clear the RF signals were affected by an external 

environmental factors. This meant the receiver would be receiving random noise impulses that would jump 

up to a voltage of 2.5 volts. Due to the digital input from the Arduino being between the voltages of zero 

and five the threshold for a digital input to detect a high signal was at 2.5 volts. This was causing incorrect 

readings of the voltage signal to be made because the Arduino processor would see these pulses from, the 

noise and interpret it as a high voltage. This issue was corrected by incorporating a filter into the design. 

The filter was an operational amplifier that was wired up to act as a comparator for two voltages. A 

comparator works by comparing a signal voltage to a reference voltage, which in the case at hand 3 volts 

was used as the reference voltage [13]. If the signal voltage goes above the reference voltage the 

comparator outputs its positive high voltage. Alternatively if the signal voltage is below the reference 

voltage the comparator will output the negative low voltage [13]. By implementing this device into the 

experimental design the random noise pulses that were causing false readings are filtered out due to the 

reference voltage on the comparator being higher that then magnitude of the noise. Figure 16 below shows 

the wiring setup of the comparator. 
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Figure 16 - Comparator Filter 

3.3.3 Plug and Play Style Apparatus 
A lot of the electrical components being used in the experimental apparatus are not manufactured to be 

able to tolerate vigorous testing. It was found that the RF modules became temperamental over time with 

multiple tests and long running times. This does not affect the result because the RF modules used were to 

provide results into how reliable frequency transfer is, not how reliable low cost components are. It was 

found that after multiple tests where the RF modules were running for extensive periods of time and also 

not enclosed in a box to protect them from physical damage, the RF modules would eventually become 

unusable in the experiments. Due to the nature of this project requiring multiple experiments and testing 

to collect data the experiment apparatus was designed so that RF modules could be plugged into pre 

soldered female pin connectors making the system able to cope with plug and play functionality. This is a 

term used to describe a system that doesn’t need to be stopped or turned off in order to make changes, 

also called hot swappable. 

 

3.4 Software Design Issues 

3.4.1 Processor Timing  
The experimental apparatus required precise timing in order to achieve communication. Initially the 

processor coding was done so the pre-existing delay function in the Arduino language could be used. The 

delay function can be in milliseconds or microseconds, which was a high enough resolution to meet the 
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requirements for the project [14]. The Transmitter and Receiver were going to be run at 4500 Hz which sets 

the time period per bit being sent at 222 microseconds. The intention of using this function was to time the 

length an output pin was high and low for. On the other processor this timing would be used to determine 

when the processor should take readings. When this was first implemented the synchronisation between 

the encoder and decoder would become out of sync by around 1 millisecond per time period of data being 

sent. This effect can be seen in Figure 17 which shows how the decoder in the beginning was taking 

readings which were in sync only to become out of sync by the end of the message. 

 

Figure 17- Out of Sync Timing 

It was expected to see a reading from the decoder to be made in the middle of each rise in the data sent 

signal. What ended up happening was the readings started off being made in the middle of each rise in the 

signal then the readings began to shift to the right of the middle due to the timing obscurity which 

eventually ended up in a reading being made after a rise in the signal. The reason for this process becoming 

out of sync was due to the delay function being a software timer it was not able to take into account when 

delaying the processor the time it took for the code to process. This means that once the function is 

entered by the program the program will only process the wait function for the exact time it was intended. 

In some cases this was not a favoured approach because the delay function was used after the processing 

of the ‘if loops’ which determined if a one or zero was to be sent. These ‘if loops’ took a very small amount 

of time to process in the scale of microseconds which was adding on to the time that it took for the delay 
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function to execute. The result is shown in Figure 17 a build-up of processing time adding onto the delay 

time making the delay time greater than expected. To correct this timing issue the Arduino’s timer 

interrupt was used as a way to incorporate the process timing in the delay [14]. The timer interrupt is a 

hardware timer on the Arduino board that starts timing from the time the board starts running the code 

downloaded to it. For the hardware microsecond timer this returns an unsigned long in relation to the 

amount of time it has been running. This unsigned long will overflow (go back to zero) after approximately 

70 minutes of running. The way this hardware timer is used is to store its value in a variable then add on 

the time delay it is required for. Then use that variable as a condition for a while loop. This while loop will 

then run for the amount of time you added onto the variable taking into account any processing time from 

when the hardware timer was first stored in a variable (See Figure 18). 

 

Figure 18 Hardware Timer Loop 

This new hardware timer method once incorporated the synchronisation of the two processors did improve 

to a point where the code would now be correctly interpreted due to the data readings being taken in the 

correct position. The fall back was the encoder and decoder relied on both processors staying at a pre-

determined rate. This improved the accuracy of the processors but not the individual RF components. The 

RF component for the receiver did not always rise exactly when the transmitter would rise. The reason 

being the time it takes for the electromagnetic signal to travel between the transmitter and receiver. This 

caused the signal itself to be in intervals that were not exactly the specified time period. The effect caused 
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the two systems to become out of sync, not to the same magnitude as before the timers were corrected 

but enough to affect results gathered later in the investigation (see Figure 19). 

 

Figure 19 - Timer Improved Accuracy Data Readings 

 

 To change the code so it could account for this required a resynchronisation as often as possible. Initially 

the code would search for the handshake, as soon as the handshake was determined the decoder would 

take a number of readings at set intervals. This was changed so that that decoder would resynchronisation 

upon every rise in the signal. This was done by creating code which looked for a rising edge which 

represented the start of a bit period to reset the timer when voltage went from Low to High. This scenario 

is depicted in Figure 20. 

 

Figure 20 - Diagram Showing Rising Edge Resynchronisation 
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3.4.2 Reed Solomon Error Checking Code Footprint 
The Reed Solomon coding example that was used and adapted to fit the criteria for the investigations into 

reliable single direction frequency transfer ran into issues with the size of the example code file. The 

sample code was initially written in C++ and was then converted to the Arduino IDE language to make it 

compatible with the Arduino processors in the experimental apparatus. When trying to download this 

adapted code to the processors it became evident that the file size was too big for the on-board memory of 

the Arduino. The reason being the sample code used lookup tables in order to speed up processing of the 

Galois field calculations. The Arduino Uno (ATmega328P) was the initial specked processor with an on-

board memory of 1kB Electronically Erasable Programmable Read Only Memory (EEPROM), 2kB Static 

Random Access Memory (SRAM) and 32KB of Flash Memory. In order for the Reed Solomon code lookup 

tables to be used as lookup tables, the SRAM needs enough storage space to save these lookup tables. The 

storage space required for these lookup tables was around 3.7kB which was 2 times bigger than the 

available SRAM space. An attempt was made to optimise this code and make the overall footprint of the 

code fit within the Arduino Uno without much success. The code was only able to be optimized to 2.2kB 

which was still too large. To overcome this issue an upgrade in the processor was made and the Arduino 

Uno was replaced with an Arduino Mega which had 8kB in SRAM with the ability to cater for the advanced 

error checking code. 

3.5 Experimental Design 
The final layout for the experimental apparatus was finalised after incorporating the necessary changes to 

account for the issues became evident along the way. The final experimental apparatus was mounted 

inside a pelican box so the circuitry could be protected. There were 2 versions of the experimental 

apparatus before the end result the first being the implementation with the Arduino Uno’s and the second 

being the implementation with the two Arduino Mega’s.  The other noticeable difference was the HMI for 

the different versions of the electrical apparatus as the investigation went further and the experiments 

required more functionality from the apparatus the user interface was developed. Diagrams of the 

apparatus and the wiring schematic are shown in Appendix (E). 
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Figure 21 - Final Transmitter Experimental Apparatus 

 

 

Figure 22 - Final Receiver Experimental Apparatus 
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Figure 23 - Experimental Apparatus Enclosure 

4.0 Results 
The results of the investigation are aligned with what was earlier determined as reliable data transmission. 

The key performance indicators that were determined earlier in this report are, error rate due to 

transmission speed, error rate due to distance and error rate due to an inhibited signal.  

Of the performance indicators the three different types of forward error correction were tested. The three 

types being check sum, 2D matrix error Correction and Reed Solomon error correction. The intent of these 

experiments was to show how effective a frequency transmission could be, if supported by a method of 

forward error correction. As well as individually testing the performance KPI’s, experiments were 

conducted were multiple KPI’s were varied. An example of this could be, gradually increasing speed and 

decreasing signal strength. Another example was an experiment where the signal strength was decreased 

and the distance was increased. The multiple experiments were performed to try and record as many of the 

factors affecting frequency transmission and the significance of these factors both individually and when 

paired with other factors. The experiments carried out have been depicted in graph format to aid in the 

analysis of results. Where it was not clear to show a graphical representation of the results these were 

recorded in tables. Whilst conducting the following experiments a pass mark for what would be accepted 
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and what wouldn’t be accepted was noted at one error on average per transmission. This meant that if in 

any of the experiments an average of over one error was transmitted this would represent the point in 

which the transmission was intolerable and would need to be improved in order for reliable frequency 

transmission. The aim of this being, to find the saturation point where the transmission could no longer 

handle different inhibiting variables.  
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5.0 Interpretation 

5.1 Experiment One Distance Vs Errors 
The results gathered and shown in the figures below represent the maximum distance that the 

experimental apparatus was able to perform before failing the acceptance test of having less than one 

error average per transmission. The three graphs depict how each forward error correction method 

performed under test standards. 

 

Figure 24 - Experiment One Check Sum Vs Error Rate 

The first experiment was set in place so a baseline performance could be determined. The checksum 

method was not able to correct any errors but was able to detect if there was errors transmitted. The result 

shown in Figure 24 demonstrates that with no forward error correction the apparatus was able to perform 

to an acceptable standard up to approximately 7 meters. 
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Figure 25 - Experiment One 2D Matrix Distance Vs Error Rate 

The second experiment incorporated the 2D matrix error correction method. This method is able to detect 

up to three errors but can only correct two. The results of this second experiment show the 2D matrix error 

correction was able to improve the performance of the experimental apparatus, which allowed it to 

perform to an acceptable standard for a further 6 meters in comparison to the first experiment. With a 

total distance of approximately 13 meters achieved. 
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Figure 26 - Experiment One Reed Solomon Distance Vs Error Rate 

The third experiment where distance was the variable being measured incorporated the advanced forward 

error checking technique. This method saw a significant improvement in the performance of the apparatus 

that clearly outlined the added benefit of having an advanced forward error correction method. The 

acceptable distance achieved was more than doubled that of the 2D matrix error checking method. The 

distance achieved as seen in Figure 26 was approximately 30 meters. The limitation to this experiment was 

that the distance had increased substantially and it was difficult to find a clear 30 meters unimpeded by 

external factors that would replicate the same conditions as the first two tests that were conducted 

indoors. 
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5.2 Experiment Two Transmission Rate Vs Errors 

 

Figure 27 - Experiment Two Check Sum Transmission Rate Vs Errors 

The second experiment conducted involved the transmission speed. The first test establishes a base line 

standard for how well the apparatus performs before any forward error correction is implemented. The 

baseline for the transmission speed was the maximum transmission speed that was attainable before 

failing the acceptance test of less than one error average was 2800Hz. This figure was founded by gradually 

decreasing the time delay in the code until the transmission speed resulted in more errors than what can 

be catered for in single direction communication. 
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Figure 28 - Experiment Two 2D Matrix Error Correction Transmission Speed Vs Errors 

The second transmission experiment with the 2D matrix error correction technique managed to operate at 

3800Hz before failing the acceptance test. 

 

Figure 29 - Experiment Two Reed Solomon Error Correction Transmission Speed Vs Errors 
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The third test with Reed Solomon error correction achieved a better result than the 2D matrix error 

correction. What was noticeable though was since the first experiment where distance was tested the Reed 

Solomon method doubled the achieved distance that 2D matrix error checking achieved. In the second 

experiment Reed Solomon still performed better but the magnitude between the different types of forward 

error checking techniques was much more clustered when compared to experiment one. This suggests that 

the error correction technique can improve the achievable transmission rate of the signal but not by an 

amount of any significance. The assumed reasoning for this would be the RF devices were nearing on their 

maximum transmitting capacity were beyond the RF modules maximum transmitting speed the data 

saturates leaving the transmission leaving it no longer correctable. The final transmission speed achievable 

by Reed Solomon error correction was approximately 4500Hz. 

 

5.3 Experiment Three Signal Strength Vs Errors 
 

 

Figure 30 - Experiment Three Check Sum Signal Strength Vs Error Rate 

The third experiment was a combination of inhibiting factors that were used to dampen the signal so that 

the effect of multiple external variables on the apparatus could be investigated. The first step to 

investigating this was to find the maximum amount of dampening possible that would allow transmission 

Signal Strength Impedance (%)  
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to still occur. This would mean finding a percentage lower than 100 % inhibited. It was established that the 

most that the signal could be inhibited before becoming no longer transmittable was, with the voltage 

lowered to 3.3volts, the antenna being cut to a total length of 5cm, a transmission speed of 4288Hz and 

with 5 meters between the transmitter and receiver. Using this information a table was formed indicating 

different percentages of impression to the signal. Where each percentage increase shows an increase in the 

external variable relative to the maximum inhibited values previously found. 

 

Table 1 - Table showing the breakdown of the Impeding variables and their percentage for experiment three 

 

 

 

Figure 31 - Experiment Three 2D Matrix Signal Strength Vs Error Rate 
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Figure 31 shows the performance of 2D matrix error correction under varying percentages of signal 

impedance. This form of frequency communication was able to tolerate 60% signal strength Impeded 

before not meeting the 1 error minimum per transmission requirement. The data found represents an 

exponential relationship where once 60% on the x-axis has been reached the error rate then saturates to 

an uncontrollable level. From the data shown it is an improvement from the checksum test with an overall 

acceptance at 60% which more than doubles the initial testing. This shows promising results towards 

determining if single direction frequency data transmission is reliable. 

 

 
Figure 32 - Experiment Three Reed Solomon Signal Strength Vs Error Rate 

 
The final experiment conducted with results shown in Figure 32. Using the advanced error correction 

method showed again an improvement how well it performed under different dampening effects to the 

transmission signal.  The trend of this data also follows an exponential curve showing that the Reed 

Solomon method was able to maintain an acceptable level of communication even with 70% of the signal 

being impeded. This final experiment followed the trends of the experimental data that preceded by 

showing that more advance methods of forward error correction improved the performance of the 

Experimental apparatus. From this data is that a single directional communication method can be effective 
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at data transfer even when under poor signal condition. The experiments were able to provide a clear 

demonstration of an effective frequency data transfer apparatus, which addressed the majority of the 

research criteria.  

Some limitations to the experiments were that there wasn’t always a clear cut quantitative way to 

represent data. An attempt was made to control each of these variables in order to achieve the most 

accurate results possible. Variables that could not be controlled throughout the experiments were 

temperature and the operability of the RF modules. 

6.0 Economic Comparison 
As well as carrying out investigations into the performance of the experimental apparatus consideration 

towards the final cost of this implementation was compared. For a single direction frequency data transfer 

to be reliable it not only has to perform reliably it also needs to be an economically viable option. If the 

economic cost of this option outweighed a proven data transmission method by a great deal then the 

benefit of this investigated data transmission method would be superseded by a cheaper already 

established method for data transmission. The major difference in cost between bi-directional 

communication and single directional communication is that in single directional communication the cost is 

cut in half due two only one side of the transmission requiring a transmitter and a receiver on the opposite 

side, as opposed to bi-directional which requires both a transmitter and receiver. The other benefit is 

forward error correction allows the transmitter to send the message plus a given amount of parity rather 

than if the receiver requested a retransmit upon unsuccessful transmission. The outcome means that single 

directional transmission also has a lower overhead cost in energy consumption. Similarly if a comparison 

was to be between wired transmission and wireless transmission the wired transmission would not need 

the RF modules to send and transmit data. This is because the Arduino processors output pins can be 

directly used without the need for an external module. The added cost for a wired setup would be the price 

of the cable between the transmitter and receiver and potentially signal repeaters if the transmission is 
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occurring over a long distance. Below is a basic cost breakdown of the equipment required for single 

directional frequency transmission, bi-directional frequency transmission and wired transmission. 

 

 

Figure 33 - Economic comparison cost breakdown of single direction wireless transmission. 

 

Figure 34 - Economic comparison cost breakdown of bi directional wireless transmission. 

 

Figure 35 - Economic comparison cost breakdown of bi directional wired transmission. 

As seen in Figure 33, Figure 34 & Figure 35 the cost comparison between the different options shows 

single directional transmission as the cheaper option between frequency transmission methods.  

 

Single Direction Wireless Transmission 
 

1. X1 Transmitter  $9.95 
2. X1 Receiver   $10.95 
3. X2 Arduino Mega  $32.95 
4. X2 Antenna   $2 
 
Total    $90.80 

Bi Directional Transmission Wireless 

1. X2 Transmitter  $9.95 
2. X2 Receiver   $10.95 
3. X2 Arduino Mega  $32.95 
4. X2 Antenna   $2 

Total    $111.70 

 

Bi Directional Wired Transmission 

1. 50m of 0.5mm2 cable  $22 
2. X2 Arduino Mega       $32.95 

Total    $87.90 
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7.0 Future Works 
To further the research conducted in this report experiments could be conducted into the specific 

bandwidth that the RF modules are operating in. specifically looking into if the frequency of the carrier 

wave has any affect on the transmission of data.  The reason it was not looked at up until this point was 

due to the required license to operate in alternative frequency bands. It would be beneficial to determine 

whether this would have any significant impact on the experimental apparatus. 

Another area that could be improved upon is the Reed Solomon sample code footprint. The sample code 

had a large footprint and required a processor with more memory. If this code can be condensed then the 

processor would no longer need to be upgraded. This creates a positive economic argument that single 

direction frequency data transmission does not require a processor of advanced capabilities. Instead it 

improves the economic cost making the communication style more viable to implement. 

With the experimental apparatus the components incorporated were limited to basic models due to a small 

budget. To have the ability to find results, which can stand up to more industrial methods, would require 

more advanced RF modules. It is for this reason that a possible future implementation for this project could 

be to trial more advanced hardware components to identify the difference in performance that advanced 

components will have on basic components. 

Finally an experimental apparatus which incorporates bi directional communication and a wired 

experiment apparatus could be built so that long term power consumption studies can be conducted to 

provide definitive results on which method is the most power efficient.  
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8.0 Conclusions 
After the studies conducted throughout, the results recorded showed a favourable lean towards single 

directional frequency data transmission, as being a reliable method of electrical communication. In the 

experiments carried out the results show an improvement in the systems capability in the three areas, 

which were set as KPI’s at the beginning of the report. The transmission method was able to perform when 

deliberate inhibiting factors were introduced simulating external environmental factors. Based on the 

results currently gathered single directional frequency transmission is a reliable data transmission method. 

There are future works stated in this report which may provide constrictions to this statement such as 

single directional frequency transmission is only reliable in a given bandwidth or single directional 

frequency data transfer is reliable if accompanied by a more advanced processor. The findings also show 

that the more advanced the forward error correction method the better the performance of the overall 

system. After an economic comparison single directional frequency data transfer is also an option that can 

be justified in terms of cost due to its nature in not requiring a doubling up of transmitting and receiving 

components. 
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10.0 Appendix (A) – RF Module Data Sheets 
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11.0 Appendix (B) – Frequency Spectrum 
 
Below is the Australian Radiofrequency Spectrum used at the time the research was conducted, this 
document was produced by the Australian Communications and Media Authority under the freedom of 
information act and can be found at https://www.acma.gov.au/-/media/Spectrum-Transformation-and-
Government/Publication/pdf/spectrum_chart2013-pdf.pdf 
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12.0 Appendix (C) – Line Coding Style Comparison 
The table below shows every possible 8-bit combination and then calculates the various parameters for 
each of the coding styles researched. 

  Data Possibility NRTZ-L NRTZ-L NRTZ-M NRTZ-M RTZ RTZ 
Diff 
Man 

Diff 
Man 

Length 
On/Off 

Length 
On/Off   

  B1 B2 B3 B4 B5 B6 B7 B8 

longest 
On 

Time 
Ave On 
Time % 

longest 
On 

Time  
Ave On 
Time % 

longest 
On 

Time 
Ave On 
Time % 

longest 
On 

Time 
Ave On 
Time % 

longest 
On 

Time 
Ave On 
Time %   

  1 1 1 1 1 1 1 1 8 100 1 40 0.5 50 0.5 50 6.4 80   
  1 1 0 1 1 1 1 0 7 75 1 50 0.5 37.5 1 50 5.9 67.5   
  1 1 1 1 1 1 0 1 6 88 1 40 0.5 44 1 50 5.4 74   
  1 1 1 1 1 1 0 0 6 75 1 30 0.5 37.5 1 50 5.4 67.5   
  1 1 1 1 1 0 1 1 5 88 1 50 0.5 44 1 50 4.9 74   
  1 1 1 1 1 0 1 0 5 75 2 40 0.5 37.5 1 50 4.9 67.5   
  1 1 1 1 1 0 0 1 5 75 3 50 0.5 37.5 1 50 4.9 67.5   
  1 1 1 1 1 0 0 0 5 62 4 60 0.5 31 1 50 4.9 61   
  1 1 1 1 0 1 1 1 4 88 1 40 0.5 44 1 50 4.4 74   
  1 1 1 1 0 1 1 0 4 75 1 30 0.5 37.5 1 50 4.4 67.5   
  1 1 1 1 0 1 0 1 4 75 3 40 0.5 37.5 1 50 4.4 67.5   
  1 1 1 1 0 1 0 0 4 62 3 50 0.5 31 1 50 4.4 61   
  1 1 1 1 0 0 1 1 4 75 1 30 0.5 37.5 1 50 4.4 67.5   
  1 1 1 1 0 0 1 0 4 62 2 40 0.5 31 1 50 4.4 61   
  1 1 1 1 0 0 0 1 4 62 1 30 0.5 31 1 50 4.4 61   
  1 1 1 1 0 0 0 0 4 50 1 20 0.5 25 1 50 4.4 55   
  1 1 1 0 1 1 1 1 4 88 2 50 0.5 44 1 50 4.4 74   
  1 1 1 0 1 1 1 0 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  1 1 1 0 1 1 0 1 3 75 2 50 0.5 37.5 1 50 3.9 67.5   
  1 1 1 0 1 1 0 0 3 62 3 60 0.5 31 1 50 3.9 61   
  1 1 1 0 1 0 1 1 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  1 1 1 0 1 0 1 0 3 62 2 50 0.5 31 1 50 3.9 61   
  1 1 1 0 1 0 0 1 3 62 2 40 0.5 31 1 50 3.9 61   
  1 1 1 0 1 0 0 0 3 50 2 30 0.5 25 1 50 3.9 55   
  1 1 1 0 0 1 1 1 3 75 3 50 0.5 37.5 1 50 3.9 67.5   
  1 1 1 0 0 1 1 0 3 62 3 60 0.5 31 1 50 3.9 61   
  1 1 1 0 0 1 0 1 3 62 3 50 0.5 31 1 50 3.9 61   
  1 1 1 0 0 1 0 0 3 50 3 40 0.5 25 1 50 3.9 55   
  1 1 1 0 0 0 1 1 3 62 4 60 0.5 31 1 50 3.9 61   
  1 1 1 0 0 0 1 0 3 50 4 50 0.5 25 1 50 3.9 55   
  1 1 1 0 0 0 0 1 3 50 5 60 0.5 25 1 50 3.9 55   
  1 1 1 0 0 0 0 0 3 38 6 70 0.5 19 1 50 3.9 49   
  1 1 0 1 1 1 1 1 5 88 1 40 0.5 44 1 50 4.9 74   
  1 1 0 1 1 1 1 0 4 75 1 30 0.5 37.5 1 50 4.4 67.5   
  1 1 0 1 1 1 0 1 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  1 1 0 1 1 1 0 0 3 62 3 50 0.5 31 1 50 3.9 61   
  1 1 0 1 1 0 1 1 2 75 1 30 0.5 37.5 1 50 3.4 67.5   
  1 1 0 1 1 0 1 0 2 62 2 40 0.5 31 1 50 3.4 61   
  1 1 0 1 1 0 0 1 2 62 1 30 0.5 31 1 50 3.4 61   
  1 1 0 1 1 0 0 0 2 50 1 20 0.5 25 1 50 3.4 55   
  1 1 0 1 0 1 1 1 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  1 1 0 1 0 1 1 0 2 62 2 50 0.5 31 1 50 3.4 61   
  1 1 0 1 0 1 0 1 2 62 2 40 0.5 31 1 50 3.4 61   
  1 1 0 1 0 1 0 0 2 50 2 30 0.5 25 1 50 3.4 55   
  1 1 0 1 0 0 1 1 2 62 3 50 0.5 31 1 50 3.4 61   
  1 1 0 1 0 0 1 0 2 50 3 40 0.5 25 1 50 3.4 55   
  1 1 0 1 0 0 0 1 2 50 4 50 0.5 25 1 50 3.4 55   
  1 1 0 1 0 0 0 0 2 38 5 60 0.5 19 1 50 3.4 49   
  1 1 0 0 1 1 1 1 4 75 1 30 0.5 37.5 1 50 4.4 67.5   
  1 1 0 0 1 1 1 0 3 62 2 40 0.5 31 1 50 3.9 61   
  1 1 0 0 1 1 0 1 2 62 1 30 0.5 31 1 50 3.4 61   
  1 1 0 0 1 1 0 0 2 50 1 20 0.5 25 1 50 3.4 55   
  1 1 0 0 1 0 1 1 2 62 2 40 0.5 31 1 50 3.4 61   
  1 1 0 0 1 0 1 0 2 50 2 30 0.5 25 1 50 3.4 55   
  1 1 0 0 1 0 0 1 2 50 3 40 0.5 25 1 50 3.4 55   
  1 1 0 0 1 0 0 0 2 38 4 50 0.5 19 1 50 3.4 49   
  1 1 0 0 0 1 1 1 2 62 1 30 0.5 31 1 50 3.4 61   
  1 1 0 0 0 1 1 0 2 50 1 20 0.5 25 1 50 3.4 55   
  1 1 0 0 0 1 0 1 2 50 2 30 0.5 25 1 50 3.4 55   
  1 1 0 0 0 1 0 0 2 38 3 40 0.5 19 1 50 3.4 49   
  1 1 0 0 0 0 1 1 2 50 1 20 0.5 25 1 50 3.4 55   
  1 1 0 0 0 0 1 0 2 38 2 30 0.5 19 1 50 3.4 49   
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  1 1 0 0 0 0 0 1 2 38 1 20 0.5 19 1 50 3.4 49   
  1 1 0 0 0 0 0 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  1 0 1 1 1 1 1 1 1 88 2 50 0.5 44 1 50 2.9 74   

  1 0 1 1 1 1 1 0 1 75 2 40 0.5 37.5 1 50 2.9 67.5   
  1 0 1 1 1 1 0 1 4 75 2 50 0.5 37.5 1 50 4.4 67.5   
  1 0 1 1 1 1 0 0 4 62 3 60 0.5 31 1 50 4.4 61   
  1 0 1 1 1 0 1 1 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  1 0 1 1 1 0 1 0 3 62 2 50 0.5 31 1 50 3.9 61   
  1 0 1 1 1 0 0 1 3 62 2 40 0.5 31 1 50 3.9 61   
  1 0 1 1 1 0 0 0 3 50 2 30 0.5 25 1 50 3.9 55   
  1 0 1 1 0 1 1 1 2 75 2 50 0.5 37.5 1 50 3.4 67.5   
  1 0 1 1 0 1 1 0 2 62 2 60 0.5 31 1 50 3.4 61   
  1 0 1 1 0 1 0 1 2 62 2 50 0.5 31 1 50 3.4 61   
  1 0 1 1 0 1 0 0 2 50 2 40 0.5 25 1 50 3.4 55   
  1 0 1 1 0 0 1 1 2 62 3 60 0.5 31 1 50 3.4 61   
  1 0 1 1 0 0 1 0 2 50 3 50 0.5 25 1 50 3.4 55   
  1 0 1 1 0 0 0 1 2 50 4 60 0.5 25 1 50 3.4 55   
  1 0 1 1 0 0 0 0 2 38 5 70 0.5 19 1 50 3.4 49   
  1 0 1 0 1 1 1 1 1 75 2 40 0.5 37.5 1 50 2.9 67.5   
  1 0 1 0 1 1 1 0 1 62 2 50 0.5 31 1 50 2.9 61   
  1 0 1 0 1 1 0 1 2 62 2 40 0.5 31 1 50 3.4 61   
  1 0 1 0 1 1 0 0 2 50 2 30 0.5 25 1 50 3.4 55   
  1 0 1 0 1 0 1 1 1 62 2 50 0.5 31 1 50 2.9 61   
  1 0 1 0 1 0 1 0 1 50 2 40 0.5 25 1 50 2.9 55   
  1 0 1 0 1 0 0 1 1 50 3 50 0.5 25 1 50 2.9 55   
  1 0 1 0 1 0 0 0 1 38 4 60 0.5 19 1 50 2.9 49   
  1 0 1 0 0 1 1 1 1 62 2 40 0.5 31 1 50 2.9 61   
  1 0 1 0 0 1 1 0 1 50 2 30 0.5 25 1 50 2.9 55   
  1 0 1 0 0 1 0 1 1 50 2 40 0.5 25 1 50 2.9 55   
  1 0 1 0 0 1 0 0 1 38 3 50 0.5 19 1 50 2.9 49   
  1 0 1 0 0 0 1 1 1 50 2 30 0.5 25 1 50 2.9 55   
  1 0 1 0 0 0 1 0 1 38 2 40 0.5 19 1 50 2.9 49   
  1 0 1 0 0 0 0 1 1 38 2 30 0.5 19 1 50 2.9 49   
  1 0 1 0 0 0 0 0 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  1 0 0 1 1 1 1 1 1 75 3 50 0.5 37.5 1 50 2.9 67.5   
  1 0 0 1 1 1 1 0 1 62 3 60 0.5 31 1 50 2.9 61   
  1 0 0 1 1 1 0 1 3 62 3 50 0.5 31 1 50 3.9 61   
  1 0 0 1 1 1 0 0 3 50 3 40 0.5 25 1 50 3.9 55   
  1 0 0 1 1 0 1 1 2 62 3 60 0.5 31 1 50 3.4 61   
  1 0 0 1 1 0 1 0 2 50 3 50 0.5 25 1 50 3.4 55   
  1 0 0 1 1 0 0 1 2 50 3 60 0.5 25 1 50 3.4 55   
  1 0 0 1 1 0 0 0 2 38 4 70 0.5 19 1 50 3.4 49   
  1 0 0 1 0 1 1 1 3 62 4 50 0.5 31 1 50 3.9 61   
  1 0 0 1 0 1 1 0 2 50 3 40 0.5 25 1 50 3.4 55   
  1 0 0 1 0 1 0 1 1 50 3 50 0.5 25 1 50 2.9 55   
  1 0 0 1 0 1 0 0 1 38 3 60 0.5 19 1 50 2.9 49   
  1 0 0 1 0 0 1 1 2 50 3 40 0.5 25 1 50 3.4 55   
  1 0 0 1 0 0 1 0 1 38 3 50 0.5 19 1 50 2.9 49   
  1 0 0 1 0 0 0 1 1 38 3 40 0.5 19 1 50 2.9 49   
  1 0 0 1 0 0 0 0 1 25 3 30 0.5 12.5 1 50 2.9 42.5   
  1 0 0 0 1 1 1 1 4 62 4 60 0.5 31 1 50 4.4 61   
  1 0 0 0 1 1 1 0 3 50 4 50 0.5 25 1 50 3.9 55   
  1 0 0 0 1 1 0 1 2 50 4 60 0.5 25 1 50 3.4 55   
  1 0 0 0 1 1 0 0 2 38 4 70 0.5 19 1 50 3.4 49   
  1 0 0 0 1 0 1 1 2 50 4 50 0.5 25 1 50 3.4 55   
  1 0 0 0 1 0 1 0 1 38 4 60 0.5 19 1 50 2.9 49   
  1 0 0 0 1 0 0 1 1 38 4 50 0.5 19 1 50 2.9 49   
  1 0 0 0 1 0 0 0 1 25 4 40 0.5 12.5 1 50 2.9 42.5   
  1 0 0 0 0 1 1 1 3 50 5 60 0.5 25 1 50 3.9 55   
  1 0 0 0 0 1 1 0 2 38 5 70 0.5 19 1 50 3.4 49   
  1 0 0 0 0 1 0 1 1 38 5 60 0.5 19 1 50 2.9 49   
  1 0 0 0 0 1 0 0 1 25 5 50 0.5 12.5 1 50 2.9 42.5   
  1 0 0 0 0 0 1 1 2 38 6 70 0.5 19 1 50 3.4 49   
  1 0 0 0 0 0 1 0 1 25 6 60 0.5 12.5 1 50 2.9 42.5   
  1 0 0 0 0 0 0 1 1 25 7 70 0.5 12.5 1 50 2.9 42.5   
  1 0 0 0 0 0 0 0 1 12 8 80 0.5 6 1 50 2.9 36   
  0 1 1 1 1 1 1 1 7 88 1 40 0.5 44 1 50 5.9 74   
  0 1 1 1 1 1 1 0 6 75 1 30 0.5 37.5 1 50 5.4 67.5   
  0 1 1 1 1 1 0 1 5 75 2 40 0.5 37.5 1 50 4.9 67.5   
  0 1 1 1 1 1 0 0 5 62 3 50 0.5 31 1 50 4.9 61   
  0 1 1 1 1 0 1 1 4 75 1 30 0.5 37.5 1 50 4.4 67.5   



 

 51 

  0 1 1 1 1 0 1 0 4 62 2 40 0.5 31 1 50 4.4 61   
  0 1 1 1 1 0 0 1 4 62 1 30 0.5 31 1 50 4.4 61   
  0 1 1 1 1 0 0 0 4 50 1 20 0.5 25 1 50 4.4 55   

  0 1 1 1 0 1 1 1 3 75 2 40 0.5 37.5 1 50 3.9 67.5   
  0 1 1 1 0 1 1 0 3 62 2 50 0.5 31 1 50 3.9 61   
  0 1 1 1 0 1 0 1 3 62 2 40 0.5 31 1 50 3.9 61   
  0 1 1 1 0 1 0 0 3 50 2 30 0.5 25 1 50 3.9 55   
  0 1 1 1 0 0 1 1 3 62 3 50 0.5 31 1 50 3.9 61   
  0 1 1 1 0 0 1 0 3 50 3 40 0.5 25 1 50 3.9 55   
  0 1 1 1 0 0 0 1 3 50 4 50 0.5 25 1 50 3.9 55   
  0 1 1 1 0 0 0 0 3 38 5 60 0.5 19 1 50 3.9 49   
  0 1 1 0 1 1 1 1 4 75 1 30 0.5 37.5 1 50 4.4 67.5   
  0 1 1 0 1 1 1 0 3 62 2 40 0.5 31 1 50 3.9 61   
  0 1 1 0 1 1 0 1 2 62 1 30 0.5 31 1 50 3.4 61   
  0 1 1 0 1 1 0 0 2 50 1 20 0.5 25 1 50 3.4 55   
  0 1 1 0 1 0 1 1 2 62 2 40 0.5 31 1 50 3.4 61   
  0 1 1 0 1 0 1 0 2 50 2 30 0.5 25 1 50 3.4 55   
  0 1 1 0 1 0 0 1 2 50 3 40 0.5 25 1 50 3.4 55   
  0 1 1 0 1 0 0 0 2 38 4 50 0.5 19 1 50 3.4 49   
  0 1 1 0 0 1 1 1 3 62 1 30 0.5 31 1 50 3.9 61   
  0 1 1 0 0 1 1 0 2 50 1 20 0.5 25 1 50 3.4 55   
  0 1 1 0 0 1 0 1 2 50 2 30 0.5 25 1 50 3.4 55   
  0 1 1 0 0 1 0 0 2 38 3 40 0.5 19 1 50 3.4 49   
  0 1 1 0 0 0 1 1 2 50 1 20 0.5 25 1 50 3.4 55   
  0 1 1 0 0 0 1 0 2 38 2 30 0.5 19 1 50 3.4 49   
  0 1 1 0 0 0 0 1 2 38 1 20 0.5 19 1 50 3.4 49   
  0 1 1 0 0 0 0 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 1 0 1 1 1 1 1 5 75 2 40 0.5 37.5 1 50 4.9 67.5   
  0 1 0 1 1 1 1 0 4 62 2 50 0.5 31 1 50 4.4 61   
  0 1 0 1 1 1 0 1 3 62 2 40 0.5 31 1 50 3.9 61   
  0 1 0 1 1 1 0 0 3 50 2 30 0.5 25 1 50 3.9 55   
  0 1 0 1 1 0 1 1 2 62 2 50 0.5 31 1 50 3.4 61   
  0 1 0 1 1 0 1 0 2 50 2 40 0.5 25 1 50 3.4 55   
  0 1 0 1 1 0 0 1 2 50 3 50 0.5 25 1 50 3.4 55   
  0 1 0 1 1 0 0 0 2 38 4 60 0.5 19 1 50 3.4 49   
  0 1 0 1 0 1 1 1 3 62 2 40 0.5 31 1 50 3.9 61   
  0 1 0 1 0 1 1 0 2 50 2 30 0.5 25 1 50 3.4 55   
  0 1 0 1 0 1 0 1 1 50 2 40 0.5 25 1 50 2.9 55   
  0 1 0 1 0 1 0 0 1 38 3 50 0.5 19 1 50 2.9 49   
  0 1 0 1 0 0 1 1 2 50 2 30 0.5 25 1 50 3.4 55   
  0 1 0 1 0 0 1 0 1 38 2 40 0.5 19 1 50 2.9 49   
  0 1 0 1 0 0 0 1 1 38 2 30 0.5 19 1 50 2.9 49   
  0 1 0 1 0 0 0 0 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  0 1 0 0 1 1 1 1 4 62 3 50 0.5 31 1 50 4.4 61   
  0 1 0 0 1 1 1 0 3 50 3 40 0.5 25 1 50 3.9 55   
  0 1 0 0 1 1 0 1 2 50 3 50 0.5 25 1 50 3.4 55   
  0 1 0 0 1 1 0 0 2 38 3 60 0.5 19 1 50 3.4 49   
  0 1 0 0 1 0 1 1 2 50 3 40 0.5 25 1 50 3.4 55   
  0 1 0 0 1 0 1 0 1 38 3 50 0.5 19 1 50 2.9 49   
  0 1 0 0 1 0 0 1 1 38 3 40 0.5 19 1 50 2.9 49   
  0 1 0 0 1 0 0 0 1 25 3 30 0.5 12.5 1 50 2.9 42.5   
  0 1 0 0 0 1 1 1 3 50 4 50 0.5 25 1 50 3.9 55   
  0 1 0 0 0 1 1 0 2 38 4 60 0.5 19 1 50 3.4 49   
  0 1 0 0 0 1 0 1 1 38 4 50 0.5 19 1 50 2.9 49   
  0 1 0 0 0 1 0 0 1 25 4 40 0.5 12.5 1 50 2.9 42.5   
  0 1 0 0 0 0 1 1 2 38 5 60 0.5 19 1 50 3.4 49   
  0 1 0 0 0 0 1 0 1 25 5 50 0.5 12.5 1 50 2.9 42.5   
  0 1 0 0 0 0 0 1 1 25 6 60 0.5 12.5 1 50 2.9 42.5   
  0 1 0 0 0 0 0 0 1 12 7 70 0.5 6 1 50 2.9 36   
  0 0 1 1 1 1 1 1 6 75 1 30 0.5 37.5 1 50 5.4 67.5   
  0 0 1 1 1 1 1 0 5 62 2 40 0.5 31 1 50 4.9 61   
  0 0 1 1 1 1 0 1 4 62 1 30 0.5 31 1 50 4.4 61   
  0 0 1 1 1 1 0 0 4 50 1 20 0.5 25 1 50 4.4 55   
  0 0 1 1 1 0 1 1 3 62 2 40 0.5 31 1 50 3.9 61   
  0 0 1 1 1 0 1 0 3 50 2 30 0.5 25 1 50 3.9 55   
  0 0 1 1 1 0 0 1 3 50 3 40 0.5 25 1 50 3.9 55   
  0 0 1 1 1 0 0 0 3 38 4 50 0.5 19 1 50 3.9 49   
  0 0 1 1 0 1 1 1 3 62 1 30 0.5 31 1 50 3.9 61   
  0 0 1 1 0 1 1 0 2 50 1 20 0.5 25 1 50 3.4 55   
  0 0 1 1 0 1 0 1 2 50 2 30 0.5 25 1 50 3.4 55   
  0 0 1 1 0 1 0 0 2 38 3 40 0.5 19 1 50 3.4 49   
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  0 0 1 1 0 0 1 1 2 50 1 20 0.5 25 1 50 3.4 55   
  0 0 1 1 0 0 1 0 2 38 2 30 0.5 19 1 50 3.4 49   
  0 0 1 1 0 0 0 1 2 38 1 20 0.5 19 1 50 3.4 49   

  0 0 1 1 0 0 0 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 0 1 0 1 1 1 1 4 62 2 40 0.5 31 1 50 4.4 61   
  0 0 1 0 1 1 1 0 3 50 2 30 0.5 25 1 50 3.9 55   
  0 0 1 0 1 1 0 1 2 50 2 40 0.5 25 1 50 3.4 55   
  0 0 1 0 1 1 0 0 2 38 3 50 0.5 19 1 50 3.4 49   
  0 0 1 0 1 0 1 1 2 50 2 30 0.5 25 1 50 3.4 55   
  0 0 1 0 1 0 1 0 1 38 2 40 0.5 19 1 50 2.9 49   
  0 0 1 0 1 0 0 1 1 38 2 30 0.5 19 1 50 2.9 49   
  0 0 1 0 1 0 0 0 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  0 0 1 0 0 1 1 1 3 50 3 40 0.5 25 1 50 3.9 55   
  0 0 1 0 0 1 1 0 2 38 3 50 0.5 19 1 50 3.4 49   
  0 0 1 0 0 1 0 1 1 38 3 40 0.5 19 1 50 2.9 49   
  0 0 1 0 0 1 0 0 1 25 3 30 0.5 12.5 1 50 2.9 42.5   
  0 0 1 0 0 0 1 1 2 38 4 50 0.5 19 1 50 3.4 49   
  0 0 1 0 0 0 1 0 1 25 4 40 0.5 12.5 1 50 2.9 42.5   
  0 0 1 0 0 0 0 1 1 25 5 50 0.5 12.5 1 50 2.9 42.5   
  0 0 1 0 0 0 0 0 1 12 6 60 0.5 6 1 50 2.9 36   
  0 0 0 1 1 1 1 1 5 62 1 30 0.5 31 1 50 4.9 61   
  0 0 0 1 1 1 1 0 4 50 1 20 0.5 25 1 50 4.4 55   
  0 0 0 1 1 1 0 1 3 50 2 30 0.5 25 1 50 3.9 55   
  0 0 0 1 1 1 0 0 3 38 3 40 0.5 19 1 50 3.9 49   
  0 0 0 1 1 0 1 1 2 50 1 20 0.5 25 1 50 3.4 55   
  0 0 0 1 1 0 1 0 2 38 2 30 0.5 19 1 50 3.4 49   
  0 0 0 1 1 0 0 1 2 38 1 20 0.5 19 1 50 3.4 49   
  0 0 0 1 1 0 0 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 0 0 1 0 1 1 1 3 50 2 30 0.5 25 1 50 3.9 55   
  0 0 0 1 0 1 1 0 2 38 2 40 0.5 19 1 50 3.4 49   
  0 0 0 1 0 1 0 1 1 38 2 30 0.5 19 1 50 2.9 49   
  0 0 0 1 0 1 0 0 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  0 0 0 1 0 0 1 1 2 38 3 40 0.5 19 1 50 3.4 49   
  0 0 0 1 0 0 1 0 1 25 3 30 0.5 12.5 1 50 2.9 42.5   
  0 0 0 1 0 0 0 1 1 25 4 40 0.5 12.5 1 50 2.9 42.5   
  0 0 0 1 0 0 0 0 1 12 5 50 0.5 6 1 50 2.9 36   
  0 0 0 0 1 1 1 1 4 50 1 20 0.5 25 1 50 4.4 55   
  0 0 0 0 1 1 1 0 3 38 2 30 0.5 19 1 50 3.9 49   
  0 0 0 0 1 1 0 1 2 38 1 20 0.5 19 1 50 3.4 49   
  0 0 0 0 1 1 0 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 0 0 0 1 0 1 1 2 38 2 30 0.5 19 1 50 3.4 49   
  0 0 0 0 1 0 1 0 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  0 0 0 0 1 0 0 1 1 25 3 30 0.5 12.5 1 50 2.9 42.5   
  0 0 0 0 1 0 0 0 1 12 4 40 0.5 6 1 50 2.9 36   
  0 0 0 0 0 1 1 1 3 38 1 20 0.5 19 1 50 3.9 49   
  0 0 0 0 0 1 1 0 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 0 0 0 0 1 0 1 1 25 2 20 0.5 12.5 1 50 2.9 42.5   
  0 0 0 0 0 1 0 0 1 12 3 30 0.5 6 1 50 2.9 36   
  0 0 0 0 0 0 1 1 2 25 1 10 0.5 12.5 1 50 3.4 42.5   
  0 0 0 0 0 0 1 0 1 12 2 20 0.5 6 1 50 2.9 36   
  0 0 0 0 0 0 0 1 1 12 1 10 0.5 6 1 50 2.9 36   
  0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 50 2.4 30   

  Averages 2 50 3 40 0.5 25 1 50 4 55   
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13.0 Appendix (D) – Code Alterations 
* Copyright Henry Minsky (hqm@alum.mit.edu) 1991-2009 
 * 
 * This software library is licensed under terms of the GNU GENERAL 
 * PUBLIC LICENSE 
 * 
 
 
unsigned int byte_number = 0; 
unsigned char msg[] = "ENG470 Murdoch Uni"; 
 
unsigned char codeword[128]; 
char sbuf[128]; 
int count = sizeof(msg+NPAR); 
 
 
int Sending = 13; 
int delay1  = 80; 
unsigned int wait; 
 
void setup () { 
int erasures; 
  int nerasures = 0; 
 
  /* Initialization the ECC library */ 
  
  initialize_ecc (); 
  
  /* ************** */ 
  
  /* Encode data into codeword, adding NPAR parity bytes */ 
  encode_data(msg, sizeof(msg), codeword); 
//---------------------------------------------------------------------------------------------- 
 
  /* Add one error and two erasures */ 
  //byte_err(0x23, 1, codeword); 
  //byte_err(0x34, 7, codeword); 
  //byte_err(0x45, 14, codeword); 
  //byte_err(0x50, 5, codeword); 
  //byte_err(0x56, 9, codeword); 
//--------------------------------------------------------------------------------------------- 
 
unsigned char codeword1[sizeof(msg)+NPAR]; 
  sprintf(sbuf, "Encoded data is: \"%s\"\n", codeword); 
  Serial.print(sbuf); 
  for(int i =0; i< 50; i++){  codeword1[i+1] = codeword[i];} 
#define ML (sizeof (msg) + NPAR) 
  sprintf(sbuf, "with some errors: \"%s\"\n", codeword); 
  Serial.print(sbuf);  
 
  /* we need to indicate the position of the erasures.  Erasure 
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     Positions are indexed (1 based) from the end of the message... */ 
  //erasures[nerasures++] = ML-24; 
  //erasures[nerasures++] = ML-29; 
 
  /* Now decode -- encoded codeword size must be passed */ 
  //decode_data(codeword, ML); 
 
  /* check if syndrome is all zeros */ 
  //if (check_syndrome () != 0) { 
    //correct_errors_erasures (codeword,  
          // ML, 
          // nerasures,  
          // erasures); 
  
    sprintf(sbuf, "Corrected codeword: \"%s\"\n", codeword); 
    Serial.print(sbuf); 
  //} 

 
#include <stdio.h> 
#include <stdlib.h> 
#include "ecc.h" 
//---------------------------------------------------------------------------------------------- 
#include <Adafruit_GFX.h> // Hardware-specific library 
#include <MCUFRIEND_kbv.h> 
MCUFRIEND_kbv tft; 
#include <stdint.h> 
 

Alterations Made to the Above Code 
The above code was changed from the original so that it was able to send on one Arduino and Receive on 

another. The changes made to the transmitting coder were; 

1. Change the data sent to a string that could be input but the user. In the code above the string being 

sent is Murdoch Uni ENG 470. 

2. The next change was this string was saved into an array and put through Henry Minsky’s Function 

to add the Reed Solomon Code words. 

3. Once the array had the code words added to it was this array was converted to a binary array. This 

Binary Array was sent to the Transmission Loop Code So that it could then be sent. 

 

1. The receiving code used the exact same code except the data being transferred in binary form was 

saved in an array from the least significant bit to the most significant bit. 
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2. This array was then converted to character data type so that the code Henry Minsky wrote could 

apply the Galois theory to error detect and correct the data in the received array. 

3. This data was then printed on the LCD screen using a ‘for’ loop to print each character in each 

position of the array. 

 
Brandon Butler wrote the following code, it is the code used in the transmitting apparatus. 
 
#define YP A2  // must be an analog pin, use "An" notation! 
#define XM A3  // must be an analog pin, use "An" notation! 
#define YM 8   // can be a digital pin 
#define XP 9   // can be a digital pin 
 
#define BLACK  0x0000 
#define BLUE    0x001F 
#define RED     0xF800 
#define GREEN   0x07E0 
#define CYAN    0x07FF 
#define MAGENTA 0xF81F 
#define YELLOW  0xFFE0 
#define WHITE   0xFFFF 
#define ORANGE 0xFD20  
#define GREENISH 0xFFE0 
 
//---------------------------------------------------------------------------------------------- 
int TransmissionSetup = 0; 
int menu = 0; 
int Enter = 0; 
int Parity = 0; 
int Error = 0; 
int counter3 = 0; 
//---------------------------------------------------------------------------------------------- 
 
unsigned int byte_number = 0; 
unsigned char msg[] = "ENG470 Murdoch Uni"; 
 
unsigned char codeword[128]; 
char sbuf[128]; 
int count = sizeof(msg+NPAR); 
 
/* Some debugging routines to introduce errors or erasures 
   into a codeword.  
   */ 
/* Introduce a byte error at LOC */ 
void byte_err (int err, int loc, unsigned char *dst) 
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{ 
  sprintf(sbuf, "Adding Error at loc %d, data %#x\n", loc, dst[loc-1]); 
  Serial.print(sbuf); 
  dst[loc-1] ^= err; 
} 
 
/* Pass in location of error (first byte position is 
   labeled starting at 1, not 0), and the codeword. 
*/ 
void byte_erasure (int loc, unsigned char dst[], int cwsize, int erasures[])  
{ 
  sprintf(sbuf, "Erasure at loc %d, data %#x\n", loc, dst[loc-1]); 
  Serial.print(sbuf); 
  dst[loc-1] = 0; 
} 
///////////////////////////////////////////////////////////////////////////////////////////////////////
///// 
 
int Sending = 13; 
int delay1  = 80; 
unsigned int wait; 
 
void setup() { 
Serial.begin(9600);// open the serial port at 9600 bps: 
///////////////////////////////////////////////////////////// 
   Serial.begin(9600);                // 
   tft.reset();                       // 
   uint16_t id = tft.readID();        // 
   tft.begin(id);                     // 
   tft.setRotation (3);               //   Screen (LCD) settings 
   tft.fillScreen(BLACK);             // 
   tft.setTextColor(GREEN, BLACK);    // 
   tft.setCursor(40,0);               // 
   tft.setTextSize(2);                // 
//////////////////////////////////////////////////////////// 
pinMode(12,INPUT); 
pinMode(11,INPUT); 
///////////////////////////////////////////////////////////////////////////////////////////////////////
///// 
int erasures[16]; 
  int nerasures = 0; 
 
  /* Initialization the ECC library */ 
  
  initialize_ecc (); 
  
  /* ************** */ 
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  /* Encode data into codeword, adding NPAR parity bytes */ 
  encode_data(msg, sizeof(msg), codeword); 
 
//---------------------------------------------------------------------------------------------- 
 
  /* Add one error and two erasures */ 
  //byte_err(0x23, 1, codeword); 
  //byte_err(0x34, 7, codeword); 
  //byte_err(0x45, 14, codeword); 
  //byte_err(0x50, 5, codeword); 
  //byte_err(0x56, 9, codeword); 
 
//--------------------------------------------------------------------------------------------- 
 
unsigned char codeword1[sizeof(msg)+NPAR]; 
 
  sprintf(sbuf, "Encoded data is: \"%s\"\n", codeword); 
  Serial.print(sbuf); 
  for(int i =0; i< 50; i++){  codeword1[i+1] = codeword[i];} 
 
   
#define ML (sizeof (msg) + NPAR) 
Serial.print(ML); 
 
  sprintf(sbuf, "with some errors: \"%s\"\n", codeword); 
  Serial.print(sbuf); 
  for(int i=0; i<50; i++){Serial.print(char(codeword[i]));} 
  Serial.println(""); 
 
  /* We need to indicate the position of the erasures.  Eraseure 
     positions are indexed (1 based) from the end of the message... */ 
 
  //erasures[nerasures++] = ML-24; 
  //erasures[nerasures++] = ML-29; 
 
  
  /* Now decode -- encoded codeword size must be passed */ 
  //decode_data(codeword, ML); 
 
  /* check if syndrome is all zeros */ 
  //if (check_syndrome () != 0) { 
    //correct_errors_erasures (codeword,  
          // ML, 
          // nerasures,  
          // erasures); 
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    sprintf(sbuf, "Corrected codeword: \"%s\"\n", codeword); 
    Serial.print(sbuf); 
  //} 
///////////////////////////////////////////////////////////////////////////////////////////////////////
///// 
while(TransmissionSetup < 1){ 
 
if(menu <1){ 
tft.setCursor(0,0); 
tft.print("Frequency Test With"); 
tft.println("       Reed Soloman Error        correction"); 
tft.println(""); 
tft.println("Press the Red Button To   Cycle Through 1 to 5"); 
tft.println(""); 
tft.print("Press the Black Button To Enter"); 
menu=menu+1;}  
 
 if(digitalRead(11)==HIGH && Enter <= 1){ 
  tft.setCursor(10,40); 
  delay(200); 
  Enter= Enter +1;   
  } 
 
while(Enter ==1){ 
  if(Enter ==1 && counter3 < 1){tft.fillScreen(BLACK);  
  tft.setCursor(50,80); 
  tft.print("Number of Parity   "); 
  counter3 = counter3 + 1;} 
   
  if(digitalRead(12)==HIGH){ 
  tft.fillScreen(BLACK); 
  tft.setCursor(50,80); 
  delay(800); 
  Parity=Parity+1; 
  tft.print("Number of Parity   "); 
  tft.print(Parity); 
  delay(3000); 
  if(Parity==5){Parity = 0;} 
  } 
   
  if(digitalRead(11)==HIGH && Parity >=1 && Enter < 2){ 
  tft.fillScreen(BLACK); 
  tft.setCursor(10,40); 
  Enter= 2;  
  delay(300);  
  }} 
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  while (Enter == 2){ 
  if(Enter == 2 && counter3 < 3){ tft.setCursor(0,80); 
  tft.print("Number of Artificial Error             ");  
  counter3 = counter3 + 1; 
  } 
   
  if(digitalRead(12)==HIGH && Enter ==2){ 
  tft.fillScreen(BLACK); 
  tft.setCursor(0,80); 
  delay(800); 
  Error=Error+1; 
  tft.println("Number of Artificial Error                "); 
  tft.setCursor(170,120); 
  tft.println(Error); 
  delay(3000); 
  if(Error==5){Error = 0;} 
  } 
    if(digitalRead(11)==HIGH && Error >=1 && Enter <3 ){ 
  tft.fillScreen(BLACK); 
  tft.setCursor(10,40); 
  Enter= Enter +1;   
  delay(300); 
  Enter=3; 
  } 
  } 
  if(Enter == 3 && counter3 <= 4){ 
    tft.fillScreen(BLACK); 
    tft.setCursor(10,40); 
    tft.print("Transmitting"); 
    counter3 = 4; 
    } 
if(counter3 == 4){TransmissionSetup = 1;} 
  } 
//------------------------------------------------------------------------------------------------ 
 
if(TransmissionSetup == 1){ 
 
   
 
pinMode(Sending,OUTPUT); 
digitalWrite(Sending,LOW); 
delay(10000); 
 
  
   
 String message = "i love macca's "; //------------------Your message to send 
   byte bytes [message.length()]; //------------------Builds array to store message 
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  message.getBytes(bytes, message.length());//--------Stores message in byte format into array 
message 
 
    wait = millis()+delay1/5; 
     digitalWrite(Sending,HIGH);   //------------------HandShake HIGH, LOW, HIGH, LOW,  
       while(millis() <= wait){} 
     digitalWrite(Sending,LOW); 
    wait = millis()+(delay1*0.8); 
       while(millis() <= wait){} 
        
    wait = millis()+delay1; 
     digitalWrite(Sending,LOW); 
       while(millis() <= wait){} 
    wait = millis()+delay1/5; 
     
     digitalWrite(Sending,HIGH);       
       while(millis() <= wait){} 
     digitalWrite(Sending,LOW); 
    wait = millis()+(delay1*0.8); 
       while(millis() <= wait){} 
        
       wait = millis()+delay1; 
     digitalWrite(Sending,LOW); 
       while(millis() <= wait){} 
     wait = millis()+delay1; 
 
 codeword1[0]=int(sizeof(msg)+NPAR);    
      
for (int i = 0; i < sizeof (codeword1); i++){//-------Loops around x amount of times equal to the 
number of bytes in message 
     
   int bitvalue = (codeword1[i]);//-----------------Stores byte temporarily in bitvalue so bits can be 
determined by later loop 
   
   for(int j=0; j<8; j++){            //-----------------Loop to 8 so the following steps address each bit in 
each byte 
   
     
    if (bitvalue & byte(1)){   
     Serial.print("1"); 
   wait = millis()+delay1/5; 
       digitalWrite(Sending,HIGH);       
       while(millis() <= wait){} 
       digitalWrite(Sending,LOW); 
    wait = millis()+(delay1*0.8); 
       while(millis() <= wait){}; 
                                } 
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             else{ 
              wait = millis()+delay1; 
             Serial.print("0"); 
             digitalWrite(Sending,LOW); 
             while(millis()<=wait){} 
             digitalWrite(Sending,LOW); 
                                      } 
 
             
            bitvalue = bitvalue >> 1;//-----------------shifts bits left one  
            wait = millis()+delay1; 
 
                 
                           } 
 
                            
  Serial.print(")");              //-----------------Used to test coding function 
}} 
 
Brandon Butler wrote the following code, it is the code used in the reciveing apparatus. 
 
int Recieving = 12; 
int delay1    = 82; 
int delay2    = delay1/10000; 
unsigned int wait;  
int x = 0; 
int pos = 0; 
byte message[40]; 
byte a = 0; 
byte b = 1; 
int handshake_accepted =1; 
int c = 40; 
int counter1=0; 
int set=0; 
int counter3 = 0; 
//--------------------------------------------------------------------------------------------- 
int erasures[16]; 
int nerasures = 0; 
 
#include <stdio.h> 
#include <stdlib.h> 
#include "ecc.h" 
 
unsigned char msg[] = "Nervously I loaded the twin ducks aboard the revolving platform."; 
unsigned char codeword[256]; 
char sbuf[128]; 
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/* Some debugging routines to introduce errors or erasures 
   into a codeword.  
   */ 
 
/* Introduce a byte error at LOC */ 
void byte_err (int err, int loc, unsigned char *dst) 
{ 
  sprintf(sbuf, "Adding Error at loc %d, data %#x\n", loc, dst[loc-1]); 
  Serial.print(sbuf); 
  dst[loc-1] ^= err; 
} 
 
/* Pass in location of error (first byte position is 
   labeled starting at 1, not 0), and the codeword. 
*/ 
void byte_erasure (int loc, unsigned char dst[], int cwsize, int erasures[])  
{ 
  sprintf(sbuf, "Erasure at loc %d, data %#x\n", loc, dst[loc-1]); 
  Serial.print(sbuf); 
  dst[loc-1] = 0; 
} 
 
 
//--------------------------------------------------------------------------------------------- 
   
void setup() { 
 
pinMode(Recieving,INPUT); 
pinMode(13,OUTPUT); 
pinMode(11,INPUT); 
Serial.begin(9600);// open the serial port at 9600 bps: 
            
            for(int i = 0; i < 8; i++){ 
            bitClear(a,i);   
            } 
             
///////////////////////////////////////////////////////////// 
   Serial.begin(9600);                // 
   tft.reset();                       // 
   uint16_t id = tft.readID();        // 
   tft.begin(id);                     // 
   tft.setRotation (3);               //   Screen (LCD) settings 
   tft.fillScreen(BLACK);             // 
   tft.setTextColor(GREEN, BLACK);    // 
   tft.setCursor(40,0);               // 
   tft.setTextSize(2);                // 
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//////////////////////////////////////////////////////////// 
 
tft.setCursor(0,0); 
tft.print("Frequency Test With"); 
tft.println("       Reed Soloman Error        correction"); 
tft.println(""); 
tft.println(""); 
tft.println(""); 
 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
 
if(counter3 < 1 && digitalRead(11) == HIGH){ 
tft.fillScreen(BLACK); 
tft.setCursor(0,0); 
tft.print("waiting for respone"); 
delay(5000); 
tft.fillScreen(BLACK); 
tft.setCursor(0,0); 
counter3= counter3 +2; } 
 
if(x<1){    
if(digitalRead(Recieving)==HIGH){ 
  wait = millis()+delay1+delay2; 
  digitalWrite(13,HIGH); 
  delay(2); 
  digitalWrite(13,LOW); 
  while(millis()<=wait){} 
      if(digitalRead(Recieving)==LOW){ 
      wait = millis()+delay1; 
      digitalWrite(13,HIGH); 
      delay(2); 
      digitalWrite(13,LOW); 
      while(millis()<=wait){} 
         if(digitalRead(Recieving)==HIGH){ 
         wait = millis()+delay1; 
         digitalWrite(13,HIGH); 
         delay(2); 
         digitalWrite(13,LOW); 
         while(millis()<=wait){} 
            if(digitalRead(Recieving)==LOW){ 
            wait = millis()+delay1-20; 
            while(millis()<=wait){} 
x=x+1; 
handshake_accepted=handshake_accepted+1; 
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//..................................................................... 
while(handshake_accepted > 0 && pos <= c ){ 
  b=a; 
  for(int i = 0; i<=7; i++){ 
      wait = millis()+delay1; 
      //digitalWrite(13,HIGH); 
           //delay(2); 
           //digitalWrite(13,LOW); 
      while(millis()<wait){ 
           if(digitalRead(Recieving)==HIGH &&set==0){ 
           set = 5; 
           Serial.print("1"); 
           } 
           if(digitalRead(Recieving)==LOW && set ==5){ 
           set = 1; 
           //Serial.print("0"); 
           digitalWrite(13,HIGH); 
           delay(2); 
           digitalWrite(13,LOW); 
           delay(1); 
           wait=wait-3; 
           }    
          
      }//--------------------------- 
     //digitalWrite(13,HIGH); 
           //delay(2); 
           //digitalWrite(13,LOW); 
           //delay(1); 
            
           if(set==1){bitSet(b,i);} 
           else{bitClear(b,i);} 
           set = 0; 
            
   } 
Serial.println("  "); 
Serial.println(char(b)); 
Serial.print("  "); 
message[pos] = char(b); 
pos = pos + 1; 
c = message[0]; 
} 
 
 
 
byte b= 0; 
 
while(handshake_accepted > 0 && pos <= c ){ 
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      b = a; // stores a zero in all 8 bits of b during the initialze stage; 
            for(int i = 0; i <= 7; i++){  
               
                      if(digitalRead(Recieving)==HIGH){ 
                         bitSet(b,i); 
                         Serial.print("1");   
                         } 
                         else{ Serial.print("0"); 
                         bitClear(b,i); 
                         } 
                wait = millis()+delay1; 
                while(millis()<=wait){}    
            } 
            Serial.print("  "); 
            Serial.println(char(b)); 
            Serial.print("  "); 
            message[pos] = char(b); 
            pos = pos + 1; 
            int(c)=int(message[0]); 
            
}// while loop close Bracket 
 
Serial.print(c); 
Serial.println(""); 
 
byte message1[c]; 
 
for(int i=0; i < c; i++){ 
  message1[i]=message[i+1]; 
  Serial.print(char(message[i]));} 
  Serial.println(""); 
  Serial.println(""); 
 
//--------------------------------------------------------------------------------------------- 
  /* Initialization the ECC library */ 
  
  initialize_ecc (); 
  #define ML (c) 
 
  tft.setCursor(0,0); 
 
  sprintf(sbuf, "with some errors: \"%s\"\n", message1); 
  tft.print(sbuf); 
 
  decode_data(message1, ML); 
 
  /* check if syndrome is all zeros */ 
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  if (check_syndrome () != 0) { 
    correct_errors_erasures (message1, ML, nerasures, erasures); 
  
    sprintf(sbuf, "Corrected Message: \"%s\"\n", message1); 
     
    tft.print(sbuf); 
  } 
//--------------------------------------------------------------------------------------------- 
}}}}}// handshake brakets 
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14.0 Appendix (E) – Apparatus Diagrams and Wiring Schematic 
The following diagrams show the wiring and physical apparatus that was built. During the experimental 
testing. 
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