Loss reduction planning in electric distribution networks of IRAN until 2025

Ali Arefi*, Mahmood-reza Haghifam**, Akbar Yavartalab***, Javad Olamaei* and Hessam Keshtkar**** *Islamic Azad University – South tehran branch, a_arefi@azad.ac.ir

Tarbiat Modares University – Department of electrical and computer engineering, haghifam@modares.ac.ir *TAVANIR Co. – Department of distribution engineering, yavartalab@tavanir.org.ir

****Amirkabir University of Technology– Department of electrical engineering, hesam.keshtkar@aut.ac.ir

Abstract: In this paper, a loss reduction planning in electric distribution networks is presented based on the successful experiences in distribution utilities of IRAN and some developed countries. The necessary technical and economical parameters of planning are calculated from related projects in IRAN. Cost, time, and benefits of every sub-program including seven loss reduction approaches are determined. Finally, the loss reduction program, the benefit per cost, and the return of investment in optimistic and pessimistic conditions are introduced.

Keywords: Loss reduction, Energy loss, distribution networks, planning, 2025.

1. Introduction

In recent decades, different planning and efforts have been carried out in order to increase the efficiency of electric devices and power distribution networks. The generation and delivery of electric power, the electric loss in distribution networks, and loss reduction projects are costly acts. Therefore, loss reduction is an economic approach whose benefits are related to electric devices, cost rate of loss reduction, and other economic parameters.

In this paper, the increase of energy loss in Iran's distribution networks is investigated and estimated until 2025. Then, loss reduction planning and its components are introduced. Furthermore, loss reduction approaches applicable in specific period are clarified. This part includes seven loss reduction approaches and their cost and benefits. Finally, the total cost, benefits, and return of investment are calculated and analyzed. As the policy of the country is organized in order to reach 9% loss for distribution and transmission in 2025, and on the other hand, there is about 75% to 80% of total loss in distribution networks, the goal of planning is considers as 7% energy loss rate at 2025.

2. Loss reduction in Electric Distribution Networks of IRAN

In recent years, energy loss rate has considerably increased in electric distribution networks of IRAN. In Table 1, energy loss in different years, its growth and the prediction until 2025 are presented. The average increase of the energy loss rate, from 2001 to 2009, is equal to 1.4%. The energy loss rate in 2025 is linearly predictable that it would be 20.05% in 2025.

TABLE I: Energy	loss rate, increasing rate,	and predicted amount in
	2025	

year	Loss (%)	Loss growth (%)	Average of Loss growth
2025	20.05		1.4
2009	16.05	-8.3	1.4
2008	17.50	-2.2	3.1
2007	17.90	-0.6	4.0
2006	19.01	-0.2	5.0
2005	18.10	8.9	6.3
2004	16.60	3.1	5.0
2003	16.10	7.5	5.8
2002	14.97	3.8	3.8
2001	14.42		

It should be considered that the predicted energy loss is optimistic due to the real rate of loss growth. In fact, this amount of loss would increase every year due to the below reasons:

- 1. Demand growth: if the distribution network were not expanded, the loss growth would be almost two times of demand growth.
- Depreciation of distribution network: according to the financial documents in Tavanir, longevity of distribution networks is almost 20 years. The loss of devices in the networks is increased because of the exhaustion due to their longevity.

As it is presented, the energy loss would be almost 20% in 2025 which is approximately one fifth of delivery power to the distribution companies. This amount is assumed to reach 7% in 2025. Considering this

assumption, deviation of loss in different years is presented in Fig.1. The curve is based on proposed loss reduction planning.

Fig. 1: Loss deviation in different years until 2025.

Based on studies in IRAN [6] and USA [1], different component of energy loss for distribution networks is shown in Table 2, assuming of 7% for total cost.

TABLE 2: Components of energy loss in distribution network.

System area	Loss per total input power
MV lines and regulators	1.2
Distribution transformers	2.8
LV lines and service cables	3.0
Total distribution network	7.0

3. Loss Reduction Approaches

After loss determination, loss reduction projects are prioritized based on their effectiveness, economic calculation, and return of investment. Since the loss scheduled in distribution network is equal to 7 % and this amount was 16.05 % in the beginning year, loss reduction approaches should reduced losses almost 56%. Loss reduction and peak shaving can be assumed to be the same in per cent. So approaches should be selected in order to make 56% reduction in load peak.

Some of the loss reduction approaches are shown in Table 3 based on studies carried out in IRAN, USA, and CANADA [1]-[6].

It is assumed that the longevity of the loss reduction approaches is about 20 years. The cost of loss is calculated in a 20 years period, converted to present value. Assuming interest and inflation rate at 15% and 10% respectively, profitability coefficient is calculated as:

TABLE 3: selected loss reduction approaches and their effectiveness.

Loss reduction	Average of power or energy loss	Average of reduction	Profitability coefficient		
11	oacn energy loss in loss reduction cost		minimum	maximum	
Phase load balance	2	1.6	5	10	
Reactive power compensation	4	3.2	6	20	
Conductor sizing	11	15	4	14	
Distribution Transformers Locating and Sizing	2	4.1	2	10	
High-efficient Transformers	12	15	2	7	
Reconfiguration of Distribution Networks	10	8	7	25	
Increasing MV and Decreasing LV Networks	15	15	5	10	
Total	56	61.9			

4. Determination of Loss Reduction Approaches Cost and benefits

In this section, according to the benefits stated in Table 3 for each of the approaches, the estimated activity of them is determined.

4.1 Phase Load Balance

In this section, it is assumed that low voltage feeders are in balance. Since phase load balancing is a short-term approach, it should be carried out in short period [7]. Here, the maximum five years, until 2015, for phase load balancing is considered. In addition, it is assumed that 80 per cents of low voltage feeders are needed to be balanced. It is notable that the balanced and constructed feeders should stay in balance state due to prepared instructions, appropriate design and continuous monitoring. The cost of these activities is stated in Table 4. According to stated coefficient in Table 3, the benefits of this planning are summarized in Table 5.

4.2 Reactive Power Compensation

In this section, reactive power compensation is carried out with capacitor placement due to its better effectiveness than MV compensation and its side effects [8]. Assumptions of this strategy are as follows:

- Length of LV feeders is selected based on reactive power consumption with capacitor placement of 80% of total feeders.
- The average amount of reactive compensation for each feeder is estimated as 25 kVar.
- 80% of constructed feeders are needed to have compensator capacitors in 5 years. In other words, based on new standards, there is no need for capacitor placement in LV feeders until 2015.

Given the assumption, Table 6 represents cost resulting from this action. According to stated coefficient in Table 3, the benefits of this strategy are summarized in Table 7.

4.3 Conductor sizing

Conductor sizing should be done in both LV and MV levels [9]. In order to estimate the cost and benefits of this action, below assumptions are considered.

• The size of 95% of total MV feeders should be modified until 2025.

- The size of 100% of total LV feeders should be modified until 2025.
- Constructed feeders from 2011 until 2025 do not need to be modified due to their appropriate design.

Cost of this action is stated in Table 8, considering the aforementioned assumption. According to the coefficient stated in Table 3, the benefits of this project are summarized in Table 9.

TABLE 4:	Cost	of load	balancing	in LV	feeders
----------	------	---------	-----------	-------	---------

Loss reduction approach	Length of LV distribution feeders in 2009 (km)	Feeders considering for balancing (%)	Balancing cost for every kilometer of LV feeder in 2009 (tomans ¹)	LV feeders considering for balancing until 2015	Recent cost of balancing (million (tomans)
Phase load balance	287,708	80	500,000	230,166	115,083

TABLE 5: Benefits of load balancing in LV feeders

Loss reduction approach	Profitabili	ty coefficient	Loss reduction cost due to imbalance during 20 years (million tomans)		
	minimum	maximum	minimum	maximum	
Phase load balance	5.0	10.0	575,416	1,150,832	

TABLE 6: Cost of reactive power compensation with capacitor placement in LV feeders

Loss reduction approach	Length of LV distribution feeders in 2015 (km)	Percentage of feeders for reactive power compensation (%)	Reactive power compensation per km (kVAR)	Cost of 1 kVAR capacitor in 2009 (tomans)	Length of LV feeders for capacitor placement (km)	Recent cost of reactive compensation (million tomans)
Reactive power compensation	403,525	80	25	6,000	1,091,111	163,667

TABLE 7: Benefits of reactive power compensation with capacitor placement in LV feeders

Loss reduction Profitability coefficient		Loss reduction cost due to reactive compensation during 20 years (million tomans)		
approach	minimum	maximum	minimum	maximum
Reactive power compensation	6.0	20.0	982,000	3,273,332

TABLE 8: cost of conductor sizing in LV and MV

Loss reduction approach	Length of MV distribution feeders in 2009 (km)	Length of LV distributio n feeders in 2009 (km)	Percentage of MV for sizing until 2025 (%)	Percentage of LV for sizing until 2025 (%)	Average cost of the 1 km of MV sizing in 2009 (tomans)	Average cost of the 1 km of LV sizing in 2009 (tomans)	Length of MV for sizing until 2025 (km)	Length of LV for sizing until 2025 (km)	Recent cost of conductor sizing (million tomans)
Conductor sizing	350,583	287,708	90	100	18,000,000	20,000,000	315,525	287,708	11,433,605

 1 1 US\$ = 1000 tomans

Loss reduction approach	Profitabili	ty coefficient	Loss reduction cost due to conductor sizing during 20 years (million tomans)		
	minimum	maximum	minimum	maximum	
Conductor sizing	4.0	14.0	45,734,418	160,070,464	

TABLE 9: benefits of conductor sizing in LV and MV

4.4 Distribution Transformers Locating and Sizing

For this purpose, it is assumed that 20% of distribution transformers should be replaced [10, 11]. Therefore, the cost of this approach is presented in Table 10. According to the coefficient stated in Table 3, the benefits of this project are summarized in Table 11. Remaining transformers are considered to be used in new or profitable designs or to be converted to smaller transformers (expanding LV and MV network approach) which all of the new transformers have high efficiency. It is notable that the cost of discarding devices is considered in this case.

4.5 High-efficient Transformers

It is assumed in this project, that 100% of distribution transformers have become high-efficient [12]. The cost of this strategy is presented in Table 12. It is assumed that all of the existed transformers in the network would be high-efficient after 2011. According to the coefficient stated in Table 3, the benefits of this project are summarized in Table 13.

4.6 Reconfiguration of Distribution Networks

The reconfiguration should be done in both LV and MV networks. In order to estimate the cost and the benefits of the strategy, below assumptions are considered [13]. Reconfiguration is employed to 90% of total MV feeders and 70% of LV feeders. The networks constructed after 2011 do not need extra cost for reconfiguration of distribution networks due to appropriate design and continuous monitoring. Table 14 states the cost of this strategy. According to the coefficient stated in Table 3, the benefits of this project are summarized in Table 15.

4.7 Increasing MV and Decreasing LV Networks

In 2009, the ratio of MV network size to LV has been equal to 1.22. Based on economic studies, this ratio should be equal to 2.0 until 2025 [14]. Therefore, the length of 30% of LV feeders should be reduced. According to these assumptions, the cost of this approach is presented in Table 16. It is assumed that the constructed networks should be in a way that the size of LV network should be less than the half of MV in average after 2011. According to the coefficient stated in Table 3, the benefits of this project are summarized in Table 17.

	THESE TO. COST OF DISTINGUISTIC HUBBETHESE DECAMING and SIZING						
Loss reduction approach	Number of distribution transformers in 2009	Number of distribution transformers for locating and sizing (%)	Cost of one distribution transformer sizing in 2009 (tomans)	Number of distribution transformers for locating and sizing	Recent cost of transformers locating and sizing (million tomans)		
Distribution Transformers Locating and Sizing	445,521	20	1,000,000	89,104	89,104		

TABLE 10 C	ost of Distribution	Transformers	Locating	and Sizing
IADLE IU. C	Jost of Distribution	Transformers	Locating	and Sizing

TABLE IT. Denemits of Distribution Transformers Locating and Sizing

Loss reduction	Profitabili	ty coefficient	Loss reduction cost due to Distribution Transformers Locating and Sizing during 20 years (million tomans)		
approach	minimum	maximum	minimum	maximum	
Distribution Transformers Locating and Sizing	2.0	10.0	178,208	891,042	

TABLE 12: Cost of the usage of nigh-efficient transformers								
Loss reduction approach	Number of distribution transformers in 2009	Number of distribution transformers for being high-efficient (%)	Cost of changing to a high-efficient transformer (tomans)	Number of distribution transformers for changing to high efficient ones until 2025	Recent cost of the usage of high-efficient transformers			
usage of high- efficient transformers	445,521	100	2,500,000	445,521	1,113,803			

TABLE 12: Cost of the usage of high-efficient transformers

TABLE 13: Benefits of the usage of high-efficient transformers

Loss reduction approach	Profitabili	ty coefficient	Loss reduction cost due to high-efficient transformers during 20 years (million tomans)			
	minimum	maximum	minimum	maximum		
usage of high- efficient transformers	2.0	7.0	2,227,605	7,796,618		

TABLE 14: Cost of Reconfiguration of Distribution Networks

Loss reduction approach	Length of MV distribution feeders in 2009 (km)	Length of LV distribution feeders in 2009 (km)	Percentage of MV for reconfigurat ion until 2025 (%)	Percentage of LV for reconfigurat ion until 2025 (%)	Average cost of the 1 km of MV reconfiguration in 2009 (tomans)	Average cost of the 1 km of LV reconfiguration in 2009 (tomans)	Length of MV for reconfiguratio n until 2025 (km)	Length of LV for reconfigurat ion until 2025 (km)	Recent cost of reconfiguratio n (million tomans)
Reconfig uration of Networks	350,583	287,708	90	70	80,000	100,000	315,525	201,396	45,382

TABLE 15: Benefits of Reconfiguration of Distribution Networks

Loss reduction approach	Profitabili	ty coefficient	Loss reduction cost due to Reconfiguration of Distribution Networks during 20 years (million tomans)			
	minimum maximum		minimum	maximum		
Reconfiguration of Networks	7.0	25.0	317,671	1,134,538		

5. Summary of Proposed Loss Reduction Approaches

According to the previous sections, the cost and the benefits of proposed loss reduction approaches are summarized in Table 18.

As it is presented, in the pessimistic point of view, 3.93 times of the application cost of the approaches can be returned in 20 years. In other words, investment return of the approaches is about 5 years in this case. Furthermore, in the optimistic point of view, 13 times of this cost can be returned in 20 years and the investment return of loss reduction approaches is less than 2 years.

6. Conclusion

In this paper, planning on loss determination and reduction is scheduled based on successful experiences in IRN, USA, and CANADA. The application of 7 selected approaches of loss reduction is analyzed in 14 years, from 2011 to 2025. Cost and benefits of every stage and application of approaches is determined and presented. In a pessimistic condition, the benefits would be 3.93 times of the cost in 20 years and in an optimistic condition, it would be 13 times of the cost in this period.

TABLE 16: Cost of Increasing MV and Decreasing LV Networks							
Loss reduction approach	Length of LV distribution feeders in 2009 (km)	Percentage of LV feeder for decreasing (%)	Average converting cost of 1 km of LV to MV in 2009 (tomans)	Length of LV feeders for converting the voltage level until 2025	Recent cost of the LV to MV converting (million tomans)		
Increasing MV and Decreasing LV Networks	287,708	30	10,000,000	86,312	863,124		

TABLE 17:	Cost of	Increasing	MV	and	Decreasing	LV	Networks

Loss reduction	Profit coeff	ability icient	Loss reduction cost due to Increasing MV and Decreasing LV Networks during 20 years (million tomans)		
approach	minimum	maximum	minimum	maximum	
Increasing MV and Decreasing LV Networks	5.0	10.0	4,315,620	8,631,240	

Loss reduction	Average of peak shaving	Loss reduction cost from 2011 to 2025 (million	Profitabilit	y coefficient	Loss reduction cost during 20 years (million tomans)	
upprouon	(%)	tomans)	minimum	maximum	minimum	maximum
Phase load balance	2	115,083	5	10	575,416	1,150,832
Reactive power compensation	4	163,667	6	20	982,000	3,273,332
Conductor sizing	11	11,433,605	4	14	45,734,418	160,070,464
Distribution Transformers Locating and Sizing	2	89,104	2	10	178,208	891,042
usage of high- efficient transformers	12	1,113,803	2	7	2,227,605	7,796,618
Reconfiguration of Networks	10	45,382	7	25	317,671	1,134,538
Increasing MV and Decreasing LV Networks	15	863,124	5	10	4,315,620	8,631,240
Total	56	13,823,767			54,330,938	182,948,066
	Benefits per cos		3.93 : 1	13.23 : 1		

TABLE 18: Summary of proposed loss reduction approaches

References

- [1] Tennessee Valley Public Power Association, *Distribution System Loss Reduction Manual*, Alexander publication, 1994.
- [2] R.J. Sarfi, M.M.A. Salama, Y. Chikhani, "Practical aspects of performing a distribution system loss reduction study", *Canadian Conf. on Elec. and Comp. Eng.*, vol.1, pp. 164-167, 1995.
- [3] M.H. Amrollahi, A. Arefi, A. Yavartalab, and J. Olamaei, "Comprehensive model of the loss cost in distribution systems", 22th International Power System Conference (PSC2007), Tehran, Iran, 2007 (Persian).
- [4] O.M. Mikic, "Variance-based energy loss computation in low voltage distribution networks", *IEEE Trans. Power Systems, vol.* 22, no. 1, pp. 179-187, Feb. 2007.
- [5] C.A. Dortolina, R. Nadira, "The loss that is unknown is no loss at all: a top-down/bottom-up approach for estimating distribution losses", *IEEE Trans. Power Systems, vol. 20, no. 2, May 2005.*
- [6] Department of Electric Distribution Engineering, *National Project of Loss Reduction in Electric Distribution Networks*, Power Generation, Transmission, and Distribution Management Company (TAVANIR), 2009-2010.
- [7] A. von Jouanne, B. Banerjee, "Assessment of Voltage Unbalance", *IEEE Trans. Power Delivery*, vol. 16, no. 4, pp. 782-790, Oct. 2001.
- [8] M-R. Haghifam, O. P. Malik, "Genetic algorithm-based approach for fixed and switchable capacitors placement in distribution systems with uncertainty and time varying loads", *IET Gener Trans. Distrib.*, vol. 1, no. 2, pp. 244-252, March 2007.
- [9] S. Sivanagaraju, N. Sreenivasulu, M. Vijayakumar, T. Ramana, "Optimal conductor selection for radial distribution systems", *Electric Power Systems Research Journal*, vol. 63, pp. 95-103, 2002.
- [10] R.H. Fletcher, K. Strunz, "Optimal Distribution System Horizon Planning-Part I: Formulation," *IEEE Trans. Power Systems*, vol.22, no.2, pp.791-799, May 2007.
- [11] R.H. Fletcher, K. Strunz, "Optimal Distribution System Horizon Planning-Part II: Application," *IEEE Trans. Power Systems*, vol.22, no.2, pp.862-870, May 2007.

- [12] N.K. Haggerty, T.P. Malone, J. Crouse, "Applying high efficiency transformers," *Industry Applications Magazine, IEEE*, vol.4, no.6, pp.50-56, Nov/Dec 1998.
- [13] G.K. Viswanadha Raju, P.R. Bijwe, "Efficient reconfiguration of balanced and unbalanced distribution systems for loss minimization", *IET Gener. Transm. Distrib.*, vol. 2, no. 1, pp. 7– 12, 2008.
- [14] M. Gilvanejad, H. Ghadiri, M.R. Shariati, S. Farzalizadeh, A. Arefi, "A novel algorithm for distribution network planning using loss reduction approach", *Power Engineering Conference, Australasian Universities, pp. 1-7, AUPEC 2007.*