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ABSTRACT 

In arid regions, such as those in north-western Australia, plants survive under water deficit, high 

temperatures, intense solar radiation and nutrient-impoverished soils. They employ various morpho-

physiological and biochemical adaptations including interaction with microbial symbionts. Seed from 

thirty-two accessions of four Nicotiana species (N. benthamiana, N. occidentalis, N. simulans, and N. 

umbratica) collected from wild plants from northern Australia, were grown and used to assess their 

responses to water stress. The original wild host plants were selected because they grow in an 

extremely hot environment where water supply is often unpredictable, and because they share a close 

genetic relationship to the international model plant N. benthamiana research accession 4 (RA-4).  

Under moderate water stress conditions, shoot fresh weight, shoot dry weight, root fresh weight, root 

dry weight, root/shoot ratio, and relative water content of leaves was significantly affected. However, 

the degree to which the accessions were affected varied considerably. Some accessions of N. 

simulans, N. benthamiana and N. occidentalis were significantly more affected by water stress than 

others. There was significant inherent variation between accessions in leaf and shoot tip wilting times. 

Initial symptom expression (leaf wilting) was significantly delayed in two accessions of N. 

benthamiana and in one accession of N. umbratica. The least water stress tolerant lines, three 

accessions each of N. occidentalis and N. simulans exhibited advanced symptoms of water stress 

(shoot tip wilting) within 14-17 days of cessation of watering. This stage was significantly delayed in 

three accessions of N. benthamiana and two accessions each of N. occidentalis and N. simulans, 

which exhibited tip wilting after only 21-24 days. There were variations among the accessions of 

Nicotiana species on their tolerance to water stress. Plant responses to water stress could not be 

predicted from their phenotype under well-watered conditions.  

We evaluated identity, host and tissue association, and geographical distribution of fungal endophytes 

isolated from above and below-ground tissues of wild plants of three indigenous Australian Nicotiana 

species. Isolation frequency and α-diversity were significantly higher for root endophyte assemblages 

than those of stem and leaf tissues. We recorded no differences in endophyte species richness or 

diversity as a function of sampling location, but did detect differences among different host genotypes 

and plant tissues. There was a significant pattern of community similarity associated with host 

genotypes but no consistent pattern of fungal community structuring associated with sampling 

location and tissue type, regardless of the community similarity measurements used.  

We developed and evaluated two rapid screening methods to identify fungal endophytes that 

enhanced water deprivation stress tolerance in seedlings of N. benthamiana RA-4. Sixty-eight 

endophyte isolates taken from wild Nicotiana plants were co-cultivated with N. benthamiana RA-4 

seedlings on either damp filter paper or on an agar medium before being subjected to water 

deprivation.  The longevity of seedlings was compared under association with different fungal isolates 

and under the two screening methods. The filter paper method was faster and simpler than the agar-

based method. Based on results, 17 isolates were selected for further testing under water deprivation 

conditions while growing in washed river sand in a glasshouse. Only two fungal isolates, one 
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resembling Cladosporium cladosporioides (E-162) and a fungus not closely related to any described 

species (E-284), significantly enhanced seedling tolerance to moisture deprivation consistently in both 

in vitro and glasshouse-based tests. Although a strongly significant correlation was observed between 

any two screening methods, the results of the filter paper test was more strongly reflected (r = 0.757, 

p< 0.001) in results of the glasshouse-based test, indicating its relative suitability over the agar-based 

test. In another experiment, the same 17 isolates were inoculated to N. benthamiana plants growing in 

sand in a glasshouse under nutrient-limiting conditions to test their influence on growth promotion. 

Isolates resembling C. cladosporioides, Fusarium equiseti, and Thozetella sp. promoted seedling 

growth, evidenced by increased shoot length and higher biomass than non-inoculated control.  

The two promising fungal endophytes identified from wild Nicotiana plants, E-162 (C. 

cladosporioides) and E-284 (an unidentified species) were inoculated to plants of N. benthamiana 

RA-4 to examine their metabolic response to endophyte colonisation under adequate water and water 

deficit conditions. We examined leaf metabolites using gas chromatography-mass spectrometry (GC-

MS) to compare levels of sugars, sugar alcohols, amino acids and other metabolites at various stages 

of plant growth and stress application. Ninety-three metabolites were detected in leaves, including 20 

sugars, 13 sugar alcohols, 21 amino acids, 29 organic and fatty acids and ten other compounds. 

Endophyte colonization caused significant differential accumulation of 17-21 metabolites when the 

plants were grown under well-watered conditions. The presence of endophytes under water stress 

conditions caused differential accumulation of cytosine, diethylene glycol, galactinol, glycerol, 

heptadecanoate, mannose, oleic acid, proline, rhamnose, succinate, and urea. Accumulation of these 

metabolites suggests that fungal endophytes influence plants to accumulate certain metabolites under 

water-stress. Further, the two different endophytes tested caused slightly different accumulation 

patterns of some metabolites. 

We evaluated how these two fungal endophytes as well as yellowtail flower mild mottle virus (genus 

Tobamovirus), influenced water stress tolerance in N. benthamiana RA-4 plants.  The water stress 

tolerance of fungus-inoculated plants correlated with increased plant biomass, relative water content, 

soluble sugars, soluble proteins, proline content, increased activity of the antioxidant enzymes 

catalase, peroxidase and polyphenol oxidase, and decreased production of reactive oxygen species and 

electrical conductivity in plants under water stress. In addition, we found that there was significant 

differential upregulation of drought-related genes in the fungus-inoculated plants subjected to water 

stress. Plants inoculated with the virus exhibited a similar response to those plant inoculated with the 

fungi in terms of increasing plant osmolytes, antioxidant enzyme activity and gene expression. 

Although the fungus and virus infection similarly increased plant water stress tolerance by influencing 

plant physiology and gene expression, their presence together in the same plant did not have an 

additive effect, nor did they decrease water stress tolerance.  

These findings suggest that both fungi and virus influence plant physiology and gene expression 

under water stress, and it suggests that there is potential to use endophytic fungi, and perhaps virus, to 

induce greater tolerance to water stress in agricultural production systems.  
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Chapter 1 

Review of Literature 

(Note: A part of this chapter has been published as a book chapter. A copy of the book chapter has 

been attached in the Appendix-I. I did a systematic review on the effect of fungal endophyte on plants 

under stress using meta-analysis which will be submitted to ‘Scientific Reports’. A copy of this has 

been attached in the Appendix-II) 

  

1



 

 

1. Review of Literature 

1.1. Impact of water stress on plants 

Plants are exposed to environmental (abiotic) stresses, including shortage of water, extreme 

temperatures, salinity, and chemical toxicity, all of which bring serious consequences to plant 

production. Abiotic stress collectively causes up to 50% losses in the worldwide agricultural crop 

(Bray, 2000). In spite of our ability to predict onset of drought and to modify its impact, drought is 

still the single most crucial abiotic threat disrupting world crop productivity (Lambers et al., 2008; 

McWilliam, 1986). The most devastating losses of crop production due to droughts occur in 

developing countries, and the most vulnerable regions to drought are situated in Sub-Saharan Africa 

and Asia. The African continent has experienced severe episodes of major drought that caused huge 

losses in crop production (Anonymous, 1984; McWilliam, 1986). A minimum of 23 million hectares 

in Asia (20% of the total rice area) are prone to droughts of varying degrees (Pandey and Bhandari, 

2009). In 2004, many countries in South-east Asia suffered from severe drought that caused loss of 

millions of dollars (Times, 2005). In 2010–2011, 20% of farmland and 35% of the entire wheat crop 

were damaged due to drought that affected eight China provinces (Krishnan, 2011). In the USA in 

2012, a severe drought affected 80% of cropped land and decreased yields of corn by 27.5% and of 

soybean by 10%, with massive financial losses (USDA, 2013). The 2010 droughts in Russia caused a 

reduction in wheat harvest by 32.7% severely diminishing the world’s wheat supply (Sternberg, 

2011). 

Over the last 100 years, Australia has experienced at least eight major extensive droughts and several 

severe regional droughts (McWilliam, 1986). For example, in 1902, during the period of Australian 

Federation, Australia suffered a devastating drought when the wheat crop was "all but lost" (BOM, 

1999). The erratic behaviour of rainfall of Australia is attributable to the phenomenon called El Niño 

Southern Oscillation system (ENSO) which occurs every three to seven years.  The drought in the 

1914-1915 resulted in the destruction of the 1914 wheat yield (BOM, 2006). The drought in 1982/83 

was thought to the most notorious in the 20th Century that caused loss of over US$4000 million in 

decreased crop production (BAC, 1985; EMA, 1997). Cotton production declined by 66% in 

comparison with five years earlier which was considered a "normal" year (WAA, 2004). Over next 

decades the occurrence and severity of drought in Australia are likely to increase due to of global 

climate change (Quiggin, 2010). Regional predictions advise that Australia will be badly affected by 

alteration in rainfall patterns, as well as by increasing temperatures, which increase the severity of 

drought. It is predicted that Australia could confront 40% more drought months by 2070 with worse 

circumstances in a soaring-emission situation (CSIRO, 2007). It is projected that climate change in 

the coming decades will  alter average temperature and rainfall values and will increase the 

unpredictability of precipitation events which may lead to even more severe and frequent droughts 
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with raise from 1% to 30% in extreme drought land area by 2100 (Fischlin et al., 2007; IPCC, 2007; 

Walter et al., 2011).  

Crop growth and development are severely affected by water leading to significant reductions in yield 

and overall productivity. The main consequences of drought in crop plants are decreased cell division 

and growth rate, reduced size of leaves, reduced stem enlargement and disrupted stomatal oscillations, 

and imbalanced water and nutrient ratios (Farooq et al., 2009). If the crop experiences water stress 

during early stage, germination and seedling establishment are severely arrested mainly owing to low 

water uptake, low energy supply and hindered enzyme functions (Kaya et al., 2006; Okçu et al., 2005; 

Taiz and Zeiger, 2010). Water deficit causes reduced dry matter content in all parts of the plant (Asrar 

and Elhindi, 2011; Liu et al., 2011) and minimize the leaf area index (LAI) in crop plants (Hussain et 

al., 2009; Kramer and Boyer, 1995). The crop phenology is also affected by limiting water supply that 

generates a signal to trigger an early switching of plant development from the vegetative stage to 

reproductive stage and thereby shorten the crop growth cycle (Desclaux and Roumet, 1996) which 

generally leads to significant yield losses. Moreover, all major attributes of plant water relations viz. 

relative water contents (RWC), leaf water potential, osmotic potential, pressure potential, and 

transpiration rate are significantly affected under drought conditions leading to impaired crop 

productivity (Kirkham, 2005). 

1.2. Plant strategies to withstand water stress 

The underlying mechanisms of how plants respond to drought stress have been explored to a great 

extent from molecular to whole-plant levels. Researchers have identified hundreds of genes that are 

activated in plants in response to stress. A variety of tools including gene expression patterns and the 

use of transgenic plants has been developed to investigate the particular roles of these genes in plant 

responses to stress. Transgenic technologies and the advent of genomics and proteomics have offered 

a comprehensive profiling of the changes in gene and protein expression resulting from exposure to 

drought. 

Plant reactions to water deficit stress are complicated since it is a function of time and space, and it 

involves multifaceted mechanisms from genomic, molecular and biochemical levels (Blum, 1996; 

Chaves et al., 2003; Xu et al., 2009). Plants use different mechanisms to cope with the stress, and the 

way a plant behaves under drought can be explained by the following six broad strategies: i) Escaping 

from drought by terminating plant life cycle prior to onset of severe stress, e.g. early flowering in 

annuals before the start of water deficit (Geber and Dawson, 1990), ii) Drought avoidance through 

increasing water uptake and reducing water loss, e.g. developing root systems and reducing of stomata 

and canopy area (Jackson et al., 2000; Schulze, 1986), iii) Drought tolerance chiefly through 

maintaining a better osmotic balance and expanding elasticity of the cell wall to keep the tissue turgid 

(Morgan, 1984), iv) Drought resistance via changing metabolic routes to thrive under stress condition 
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(e.g. greater antioxidant metabolism) (Bartoli et al., 1999), v) Drought abandonment by shedding one 

or more plant organ, e.g. detaching older foliage during drought (Chaves et al., 2003), vi) Drought-

adapted physio-biochemical characters developed through plant evolution under long-term drought 

conditions via mutation and modifications at the genomic level (Hoffmann and Merilä, 1999; 

Maherali et al., 2010; Sherrard et al., 2009). 

1.3. Plant-microbe interactions and drought tolerance in plant 

The interaction of microbes with the plant can be traced back to the origin of plants. The early 

evolution of plants occurred in a diverse microbial world. Archaea, bacteria, fungi, and viruses 

had been evolving for billions of years (Reid and Greene, 2013). The most well-known plant–

microbe interaction is the mutualism between mycorrhizal fungi and plants where both partners 

generally benefit from each other. However, under natural settings, plants form relationships with 

endophytic fungi and viruses which can be beneficial or harmful for the partners depending on 

host types and natural and environmental situations (Bao and Roossinck, 2013). Plants in natural 

systems and crop lands are simultaneously exposed to both biotic and abiotic stresses. Though 

stress research is mostly focusing on plant responses to a particular environmental stress, research 

focusing to both biotic and abiotic stresses together has also been conducted (Garrett et al., 2006; 

Xu et al., 2008). Unravelling the complex mechanisms of plant–microbe relations and their effects 

in abiotic stress tolerance in plants could potentially advocate novel tactics to boost the 

productivity of crops (Schenk et al., 2012). 

1.3.1. What are fungal endophytes? 

The term ‘endophyte’ refers to fungi that live inside the plant intercellular and intracellular spaces 

for at least part of their life cycle, causing no concurrent visible symptoms at any specific moment 

(Purahong and Hyde, 2011; Rodriguez et al., 2009). This definition of endophyte is strictly 

operational and contextual since it takes into account the result of a specific fungus–host interaction 

only in a given time under the particular environmental settings, because symptomless endophytes 

can behave differently (e.g. as pathogens) under altered environmental conditions (Andrew et al., 

2012; Márquez et al., 2012). The existence of fungal endophytes from fossil records suggests that 

endophyte–host associations may have evolved from the time of development of first higher plants 

on earth (Krings et al., 2012; Rodriguez and Redman, 1997). Based on the survey conducted in the 

last 20 years on endophytes, it is thought that the majority, if not all plants, have one or more types 

of these endophytes and numerous endophytic species; in some cases, above a hundred can be found 

in a certain plant species (Arnold, 2007). Fungal endophytes have been documented from healthy 

aerial tissues of conifers (Petrini and Fisher, 1986) and grasses (Clay, 1988). Further, fungal 

endophytes have also been reported from marine algae (Hawksworth, 1988), lichens (Li et al., 

2007), mosses and ferns (Fisher, 1996), palms (Fröhlich and Hyde, 1999) and pteridophytes 
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(Dhargalkar and Bhat, 2009). Fungal endophytes can be grouped into three basic ecological groups: 

(1) mycorrhizal fungi, (2) balancious or ‘grass endophytes’ and (3) non-balancious endophytes 

(Schulz and Boyle, 2005). However, Brundrett (2004) separated mycorrhizal from endophytic 

interactions in that mycorrhizas have coordinated plant– fungus development and nutrient transfer at 

specialized interfaces. Later, Rodriguez et al. (2009) classified the endophytes under two major 

groups, viz. clavicipitaceous and non-clavicipitaceous on the basis of phylogeny and life history 

traits. Clavicipitaceous fungal endophytes are limited to certain grasses, while non-clavicipitaceous 

ones have a broad host range including both nonvascular and vascular plant species. In addition, 

recent reviews propose that members of the non-clavicipitaceous group can be segregated into three 

subgroups on the basis of host range, type of tissue infected, pattern spread, in planta infection and 

the establishment, diversity and benefits given to hosts (Purahong and Hyde, 2011; Rodriguez et al., 

2009). A diverse kind of relationships exists between the fungal endophytes and plants ranging from 

mutualistic (Redman et al., 2002), symbiotic and commensal (Deckert et al., 2001) to pathogens 

(Schulz et al., 1998). However, the state of the interaction between endophyte and host may be 

transitory, and many factors could make changes in their mode of interaction. In symbiotic 

associations, balansiaceous endophytes with their hosts are commonly considered as being 

mutualistic (Schardl and Clay, 1997) even though some of them provide nothing to their hosts and 

can occasionally be antagonistic (Schardl et al., 2004). Although most of the endophytes are 

regarded as being mutualistic with their hosts, some fungal endophytes may become pathogenic to 

plants, depending on the developmental stage of the partners, environmental conditions and plant 

defence reactions (Schulz and Boyle, 2005). Endophytic fungi have been known to play a vital role 

in plant growth, especially grasses; however, few reports have elucidated their symbiosis with crops. 

Recently, the ecological roles of some endophytes have been explained (Arnold and Lutzoni, 2007; 

Redman et al., 2011; Waller et al., 2005). In addition to providing nutritional benefits, fungal 

endophytes also confer significant physiological (Malinowski et al., 2004; Malinowski and Belesky, 

2000) and ecological (Malinowski et al., 2004) benefits, including protection from environmental 

stress (Rodriguez et al., 2004) as well as from an attack of pathogens (Zabalgogeazcoa, 2008) and 

pests (Lewis and Clements, 1986). 

1.3.2. Mechanisms of endophyte-mediated plant drought tolerance 

Fungal endophytes have been shown to provide fitness benefit to plants when exposed to water-

limiting conditions. Perhaps the most widely documented example of endophyte-mediated drought 

stress tolerance in plants is the enhanced drought tolerance of tall fescue and perennial ryegrass due 

to infection of the endophyte Neotyphodium coenophialum. Kane (2011) studied the leaf-inhabiting 

endophyte Neotyphodium lolii to assess its potential benefits or harm in drought stress tolerance of 

native perennial ryegrass collections formerly obtained from the Mediterranean regions. Non-grass 

fungal endophytes have also been described to help plants alleviate drought stress (Khan et al., 
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2012; Redman et al., 2011; Waqas et al., 2012). The findings showed that endophyte colonization 

can help improve abiotic stress tolerance such as drought in that host. It must be noted that 

endophytic symbiosis in plants does not always benefit the plant under drought or other abiotic 

stress conditions, endophyte  could reduce plant’s  ability to withstand stresses (Cheplick, 2004; 

Cheplick, 2007; Cheplick et al., 2000; Eerens et al., 1998). Cheplick (2007) reviewed the role of 

fungal endophytes on potential drought tolerance and cited some studies where endophytes imparted 

no improvement in the host’s ability to tolerate drought stress. For instance, Zaurov et al. (2001) 

inoculated fescue plants with Neotyphodium isolates collected from dissimilar hosts. They observed 

that some genotypic combinations affected negatively on plant biomass, some had no effect and 

others increased plant biomass. Similarly, few combinations improved tolerance to soil aluminium; 

others have neutral or decreased tolerance compared to endophyte-free clones. This study revealed 

that genotype-specific interactions may increase or decrease or have no effect on plant adaptation 

and fitness. Thus, the endophyte-mediated responses to water stress is a complex phenomenon 

involving various metabolites and metabolic pathways. While the ability of fungal endophytes to 

provide drought tolerance in host plants has been described in many studies, the underlying 

mechanism(s) are incompletely characterized. In an effort to illuminate the underlying mechanism 

by which endophytes cause increased drought tolerance, researchers have reported few observations. 

Research so far studying the effect of endophyte on plant responses to drought stress have described 

certain physiological, biological and biochemical modifications such as (a) increased growth and 

development, (b) enhanced osmotic balance, (c) increased gaseous exchange and water-use 

efficiency and (d) improved defence against oxidative damage when water-limiting conditions may 

improve, alleviate and recompense the harmful effects of water stress in endophyte-colonized (EC) 

plants (Fig. 8.1). The present chapter aimed at outlining the recent advances in the study of 

improvement of drought tolerance by endophyte colonization in plants subjected to water stress. 

Endophyte-mediated plant growth enhancement 

Fungal endophytes have been shown to enhance growth and biomass of plants under water-limiting 

conditions. For example, inoculation of Fusarium culmorum and Curvularia protuberata resulted in 

higher biomass of drought-affected rice plants than non-inoculated plants (Redman et al., 2011).   

Endophytes Chaetomium globosum and Penicillium resedanum isolated from Capsicum annuum 

plants promoted shoot length and biomass of the host plants subjected to drought stress (Khan et al., 

2014; Khan et al., 2012). Drought-challenged tomato plants showed higher root and shoot biomass 

when inoculated with class 2 fungal endophytes, including Alternaria sp. and Trichoderma harzianum 

(Azad and Kaminskyj, 2016). Inoculating a Trichoderma hamatum isolate caused increased root fresh 

weight, dry weight and water content, regardless of water availability in Theobroma cacao (cacao) 

(Bae et al., 2009). The endophyte Piriformospora indica colonization in Chinese cabbage promoted 

root and shoot growth and lateral root development (Sun et al., 2010). Increased growth of plants 
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under stress is attributed to the production of auxins by endophytes (De Battista et al., 1990). Also, 

stress-induced endogenous abscisic acid and the genes involved, such as zeaxanthin epoxidase, 9-cis-

epoxycarotenoid dioxygenase 3 and ABA aldehyde oxidase 3, have been found to be significantly 

decreased in endophyte-colonized plants under stress, the effect of which could be comparable to that 

of exogenous GA3 in terms of promoting plant growth and yield under stressed conditions by 

manipulating the hosts’ physiological processes (Khan et al., 2014). However, in some cases, it was 

recorded that endophytes do not show positive effects on host growth during drought stress, but they 

help with rapid recovery of host plant after water became available again (Ren and Clayy, 2009). 

Endophyte-mediated improved photosynthesis 

Moisture stress causes decreased levels of photosynthesis in plants through decreased synthesis of 

ATP and enzymes such as rubisco and sucrose–phosphate synthase as water availability decreases 

(Flexas and Medrano, 2002; Ghannoum et al., 2003; Parry et al., 2002; Vassey and Sharkey, 1989). 

Plant tolerance to water stress involves the management of extra radiation caused by reduced 

photosynthesis and CO2 availability and a greater susceptibility to photo-damage (Chaves et al., 

2003; Powles, 1984). The endophyte-colonization results in higher chlorophyll content and leaf area 

in plants challenged by stress than non-colonized plants. Higher concentration of chlorophyll is 

associated with higher photosynthetic rate (Davies et al., 1993). The increased rate of photosynthesis 

was recorded from the drought-stressed Capsicum annuum plants colonized by endophytes 

Chaetomium globosum (Khan et al., 2012) and Penicillium resedanum (Khan et al., 2014). About 

twofold increase in chlorophyll content and photosynthetic efficiency in P. indica-colonized 

Arabidopsis plants was measured when seedlings were challenged with water-limiting conditions 

(Sherameti et al., 2008). P. indica reduced the drought-induced decline in the photosynthetic rate 

and the denaturation of chlorophyll and thylakoid proteins (Sun et al., 2010). Although, the Fv/Fm 

values decreased in the non-EC plants under drought, no significant difference was observed for the 

P. indica-colonized plants indicating that EC plants suffer less from water stress than un-inoculated 

controls. In the same study, the total chlorophyll level was reported to be reduced by more than 50% 

in non-EC plant, but colonized plants showed only a slight decrease in total chlorophyll content (Sun 

et al., 2010). The discrepancy such as the increase in chlorophyll in plants under stress in some cases 

and decrease in others may be due to the severity of the drought challenged or the position of leaves 

where the chlorophyll was measured. Additionally, a decrease in the protein levels of representative 

constituents of the thylakoid membrane and of enzymes situated in the plastid stroma in stressed 

plants was retarded when colonized with P. indica (Sun et al., 2010). Recently, Azad and Kaminskyj 

(2016) characterized a fungal endophyte that enhanced drought tolerance of the host and increased 

photosynthesis in the leaf. The mechanism of increased photosynthesis in EC plants under water 

stress is not fully understood. In one study, it was found that while the photosynthesis rate and 

stomatal conductance increased in drought-affected EC plants, initial rubisco activity and 
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carboxylation efficiency did not differ from non-EC plants (Morse et al., 2002). It was suggested 

that endophyte colonization might result in reduced biochemical damage to the photosynthetic 

machinery of plants subjected to water stress (Swarthout et al., 2009). 

Plant–water relation and osmotic adjustment as mediated by endophytes 

In the broad sense, decreasing water loss and maintaining water uptake are the key processes that 

plants employ to adapt to water-limiting environments. Maintaining water uptake is assisted within 

plant cells by osmotic adjustment (OA), a biochemical mechanism that helps plants to adapt to 

drought conditions. OA results in a net accrual of compatible solutes, also known as osmolytes in 

the cell so as to maintain the favourable gradient for water flow from soil into roots (Sanders and 

Arndt, 2012). This accumulation of various ions, amino acids and sugars leads to a more negative 

osmotic potential, which is important for maintaining cell hydration and turgor, cellular 

development and growth, stomatal opening, photosynthesis and water uptake during drought 

(Chaves et al., 2003; Sanders and Arndt, 2012). Endophyte-colonized plants consume significantly 

less water than non-colonized plants. For example, significantly less water use has been reported in 

endophyte-inoculated panic grass, rice, tomato and dune grass, indicative of their more efficient 

water usage. Reduced water consumption and improved water-use efficiency may offer a distinctive 

mechanism for endophyte-mediated drought resistance in plants (Rodriguez et al., 2008). Again, EC 

plants can maintain significantly greater water content than the non-inoculated under water stress, 

implying the ability of endophytes to delay desiccation and damage in stress. The endophyte 

association could help plants access larger volumes of water from sources not reachable to the non-

infected plants which suffer from stress (Khan et al., 2013). Endophyte association resulted in a 

decreased level of electrolytic leakage inside the plant tissues upon exposure to water deficit stress. 

Altered water potential and improved osmotic balance in drought-affected tall fescue infected with 

Neotyphodium coenophialum endophyte have also been noted in some studies (Elmi and West, 

1995). Increased root water content was reported from Trichoderma hamatum-inoculated 

Theobroma cacao plants subjected to water deficit stress compared to non-inoculated plants (Bae et 

al., 2009). A number of fungal endophytes have been reported to produce active biochemicals and 

metabolites that help the host plant withstand water deficit stress. Under drought conditions, 

significant upregulation of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic 

acid was detected in shoots and roots in tall fescue colonized by N. coenophialum (Nagabhyru et al., 

2013). Variable levels of proline accumulation were observed in EC plants subjected to water stress. 

While significantly more proline was accumulated in one genotype of tall fescue plant, no 

differences were observed in another genotype challenged with mimic drought in hydroponic 

culture (Bayat et al., 2009) when inoculated with Neotyphodium grass endophyte. Increased level of 

proline, soluble sugar and catalase (CAT) was observed in wheat colonized by endophyte 

Chaetomium globosum under water stress (Cong et al., 2015). Concentrations of aspartic acid and 
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glutamic acid and of alanine and γ-aminobutyric acid were measured in drought-affected T. cacao 

seedlings colonized by an isolate of T. hamatum (Bae et al., 2009). The changes in metabolites 

could be attributed to the strategies of EC plants towards drought tolerance or avoidance. 

Downregulation in osmolytes has previously been described as a strategy of drought avoidance, 

whereas the increase of osmoprotectants has been related to drought tolerance (Augé and Moore, 

2005; Ruiz-Sánchez et al., 2010). 

Endophyte-mediated ROS scavenging 

Reactive oxygen species (ROS) act as signalling molecules in plants. ROS is involved in many plant 

processes, including growth, stress response, cell cycle and programmed cell death by influencing 

the expression of related genes. Abiotic stresses cause excess synthesis of these highly reactive 

molecules,  causing oxidative stress and damaging proteins, lipids and DNA (Gechev et al., 2006; 

Gill and Tuteja, 2010). Manufacturing additional ROS, i.e. hydrogen peroxide (H2O2), hydroxyl 

radical (OH.), singlet oxygen and superoxides (1O2), is one of the main mechanisms for plant cell 

damage or death in drought (Smirnoff, 1993). Plants react against excess ROS through an intricate 

network of direct ROS-quenching activity or indirect hormone-mediated signalling activity. Various 

enzymatic and non-enzymatic antioxidant molecules are involved in scavenging ROS (revised in 

(Miller et al., 2010; Scheibe and Beck, 2011). Malfunctioning of these antioxidants’ defence system 

results in oxidative damage in cells (Apel and Hirt, 2004; Kwak et al., 2006). Endophyte 

colonization simulates a more powerful ROS-scavenging system in host plants under stress and 

reduces damage of biomolecules at the cellular level. For instance, a lower level ROS production 

has been documented in endophyte-colonized tomato plants than in control plants following water 

stress (Azad and Kaminskyj, 2016). When plants were inoculated with P. indica and exposed to 

drought stress, up-regulation of peroxidase (POX), catalase (CAT) and superoxide dismutase (SOD) 

activities in the leaves was observed (Sun et al., 2010). The level of another biomarker of oxidative 

stress, namely, malondialdehyde (MDA), was recorded to be lower in P. indica-colonized cabbage 

plants than in control plants. MDA is primarily produced through the ROS-induced degradation of 

polyunsaturated lipids (Del Rio et al., 2005; Pryor and Stanley, 1975). It is suggested that P. indica 

could prevent or reduce the damage of these lipids by inhibiting excess ROS production under stress 

conditions. Endophytes that promote drought tolerance have also been found to have high levels of 

loline alkaloids (Schardl et al., 2004). Further experiments could test if these molecules are 

associated with the prevention of damage of macromolecules or reduction of ROS effects. 

Endophyte-induced production of antioxidant enzyme in plants under stress is predominantly 

observed in leaves (Baltruschat et al., 2008; Vadassery et al., 2009). All these studies demonstrate 

that endophyte inoculation results in a strong defence response in plants in water stress, in which 

alleviation of oxidative stress might be a vital part. The study of non-volatile compounds has been 

the major focus in most plant antioxidant research. However, plant leaves emitting volatile organic 
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compounds could also play as a further defence role against stresses (Kesselmeier and Staudt, 1999; 

Peñuelas and Munné-Bosch, 2005). The effect of volatile compounds such as isoprenoids has been 

described, where these compounds act as protective agent against oxidative stress in plants through 

direct ROS scavenging and indirect alteration of ROS signalling in arbuscular mycorrhizal plants 

(Asensio et al., 2012; Baslam and Goicoechea, 2012; López‐Ráez et al., 2008; Peñuelas and Munné-

Bosch, 2005; Rapparini and Peñuelas, 2014; Vickers et al., 2009; Walter and Strack, 2011). 

Endophyte-colonized plants could emit similar volatile organic compounds to cope with abiotic 

stress, but this aspect of the research has not been done till date. Further investigation is necessary to 

have the information on the fungal side as well as the knowledge of the fungal/plant interaction is 

paramount to elucidate underlying mechanisms regulating antioxidant defences that are crucial to 

improve the tolerance of plants to drought stress. 

Molecular mechanisms of endophyte-mediated plant drought tolerance 

Studies on the beneficial effects of endophyte symbiosis under drought have predominantly focused 

at the plant morpho-physiological level. Molecular tools have also been included in this type of 

studies. The responses of EC plants to stress can be regulated by the expression of drought-

associated plant genes, e.g. those associated with signalling and regulatory pathways or those 

producing enzymes that synthesize various metabolic compounds. It was noted that, under drought 

conditions, EC and non-EC plants differently regulate the expression of several drought genes in the 

plant tissue, indicating the association of activation of Ca2P signalling and related proteins (Schäfer 

et al., 2007) involved in the drought tolerance mechanisms. Among the genes regulated by the 

endophyte symbiosis during drought, delayed expression of drought-altered ESTs such as TcTPP, 

TcSOT, TcPR5 and TcNI in the leaves and TcPR5 and TcCESA3 in the roots has been described 

(Bae et al. 2009). Again, the expression of a diverse array of stress-related genes, including 29A, 

ANAC072, DEHYDRATION-FINGER1, Ddelta, CBL1, HAT, etc. putatively mediate drought 

tolerance of Arabidopsis plants inoculated with P. indica (Sherameti et al., 2008). Similarly, up-

regulation of drought-associated genes DREB2A, CBL1, ANAC072 and RD29A was also reported 

in the drought-challenged leaves of P. indica-colonized Chinese cabbage plants. The contribution of 

endophytes to the enhanced drought tolerance of the host plant can be mediated by CAS protein and 

the thylakoid membrane CAS mRNA level associated with Ca2+ sensing regulator (Sun et al., 

2010). Further research could encompass non-targeted screening of cDNA libraries from both 

endophyte and host plants. Such an approach could allow the detection of stress-induced genes that 

offer increased stress tolerance in endophyte-colonized hosts. Employing microarrays and next-

generation sequencing technologies to elucidate stress tolerance mechanisms (physiological and 

molecular) involved in endophyte colonization will be used to compare EC and non-EC plants of the 

same host genotype. 
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1.2. Plant viruses and abiotic stress tolerance in plants 

Viruses are by far the most abundant biological beings on the planet (Suttle, 2007). Every living being 

can be infected by at least one and normally several viruses and most prokaryotes and eukaryotes are 

infected by diverse and largely undescribed groups of viruses. Plants support enormous numbers of 

viruses that sometimes also replicate in insects. Viruses use the host machinery and resources for their 

own replication and transmission. Until recently, virus infections were seen as always being harmful. 

Indeed, this arises from the fact that most plant viruses described to date are studied as pathogens that 

incite diseases in crop plants (Zaitlin and Palukaitis, 2000). However, in natural non-agricultural 

environments such as in a tropical forests, viruses are present in both symptomatic or asymptomatic 

plants (Xu et al., 2008). Depending on the type of virus, host and the environment the interaction 

between virus and plant could range from mutualistic to pathogenic (Roossinck, 2011). 

Beneficial effects of some plant viruses are evident and they display conditional mutualism and confer 

abiotic stress tolerance to their hosts. N. benthamiana plants inoculated with cucumber mosaic virus 

(CMV), having a very broad host range (Palukaitis et al., 1992; Roossinck, 2001), or tobacco mosaic 

virus (TMV) and tobacco rattle virus (TRV) both with intermediate host ranges, or brome mosaic 

virus (BMV), a virus with a very narrow host range (Lane, 1981), they survive longer after water is 

withdrawn than uninfected plants (Xu et al., 2008). Rice and tobacco plants exhibited better tolerance 

to drought stress when inoculated with BMV and TMV, respectively. Improved drought tolerance was 

also recorded in few other cultivated and wild crops like beet, cucumber, Chenopodium 

amaranticolor, pepper, squash, Solanum habrochaites (wild relative of tomato), tomato and 

watermelon as a result of inoculation with CMV (Xu et al., 2008). Furthermore, beets inoculated with 

CMV were found to tolerate cold treatments but all uninfected plants died (Xu et al., 2008). The 

underlying mechanism for this noteworthy observation is unknown for the most part. However, the 

phenomenon of increased drought tolerance in plants could be explained by the effect of the virus on 

plant morpho-physiological changes.  

Virus infection often causes plants to be shorter (Hull, 2013), with lower water requirements, thereby 

helping plants to survive during severe drought. Viral infection can alter water content and cause the 

production and movement of metabolic compounds (Hull, 2013), all helping plants to be more 

tolerant to drought. In their study, Xu et al. (2008) found that CMV infection increased the water 

content and water retention in infected plants which are indicative of decreased levels of stomatal 

opening and transpiration in virus affected plants (Keller et al., 1989; Lindsey and Gudauskas, 1975). 

By metabolite profiling, Xu and associates (Xu et al., 2008) found high levels of salicylic acid and 

some osmoprotectants and antioxidants in virus-infected plants, causing increased plant tolerance to 

abiotic stress (Singh and Usha, 2003). Moreover, TMV infection radically increased ABA 

concentration in tobacco plants (Whenham et al., 1986), which is often regarded as a plant adaptation 
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strategy to environmental stress, but it is not clear whether this is a universal response of plants to 

virus infection. 

Recent technologies and the development of metagenomics reveal the virus richness in many diverse 

environments and propose that producing disease is not the usual lifestyle of viruses and that many 

are probably benevolent and some are clearly beneficial. More research is needed for understanding of 

the fundamental mechanisms of plant-virus interactions and enhanced plant tolerance to abiotic stress. 

This area of research will provide potential for agricultural applications and also intuition to the key 

role of viruses in the adaptation and evolution of their hosts. This is particularly important in the 

recent era of global climate change when drought is becoming one of the chief limiting factors for 

agricultural production throughout the world (Wollenweber et al., 2005). 

1.5. The Nicotiana Species of Australia 

Several species of Nicotiana have been, and still are, used by Australian Aboriginals either by 

inhalation of smoke, or by smokeless route such as chewing, snuff, dermal pasting etc. Australasian 

species of Nicotiana belong to Suaveolentes and all are originated from allopolyploid (Goodin et al., 

2008) which is placed under the subgenus Petunioides. These species can be identified by the non-

deflexed corolla limb, by the corolla throat not or only slightly dilated, and by the fact that the lowest 

anther is on the longest filament (not in N. debneyi) (Goodspeed, 1947). In terms of distribution, the 

Australian Nicotiana species are widely spread over the continent but no native tobacco has been 

recorded from New Guinea, New Zealand or Tasmania (Horton, 1981; Symon, 2005). The 

morphological characteristics of Australian Nicotiana species may vary substantially according to 

different environmental factors making their identification difficult. For example, plants thriving 

under a dry and harsh habitat may be dwarfed with small, narrow leaves, mostly stems without leaf 

but others of the same species growing in wetter and favourable conditions may be taller in height 

with leafy stems and large, lush, broad leaves (Horton, 1981).  

The Australian species of Nicotiana are real annuals or short-lived perennials. The species have 

striking habitat preferences and most can be found in specific habitats, such as deep sands or rocky 

outcrops (Horton, 1981). They are generally associated with disturbed areas, such as recent regrowth 

on burnt patches or along newly made country roads or places where competition from other plants, 

especially perennials, is limited (Burbidge, 1960). Most species contain one or more pyridine 

alkaloids and have occasionally been suspected of poisoning stock if consumed in large quantities 

(Willaman and Schubert, 1961). 
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1.5. Nicotiana benthamiana - a model plant for plant-microbe interaction research 

Nicotiana benthamiana is indigenous to Australia. In its natural state, it is mostly found amongst 

rocks on hills and cliffs throughout the northern regions of Australia (Goodin et al., 2008). Since it 

contains nicotine and other alkaloids, Nicotiana (and Duboisia) species were used by Australian 

Aboriginals as an intoxicant and drug before the introduction of cultivated tobacco (N. 

tabacum and N. rustica). The Aboriginal called it Pituri or Tjuntiwari or Muntju, and other names, 

depending on the language group and location. It was first collected by Benjamin Bynoe on a voyage 

of the H.M.S. Beagle from the “N.W. Coast” of New Holland in 1837 (Chase et al., 2003; Clarkson et 

al., 2004; Goodin et al., 2008; Knapp and Smith, 2001). 

N. benthamiana Research accession 4 (RA-4) was adopted as a model plant by plant virologists due to 

its susceptibility to plant virus infection (Christie and Crawford, 1978; Quacquarelli and Avgelis, 

1975). Since then it has been used as a model plant for research on plant-microbe interactions, virus-

induced gene silencing (VIGS), and the mechanisms of RNA interference (Angell and Baulcombe, 

1997; Baulcombe, 1999; Kumagai et al., 1995). In addition to being highly susceptible to viruses, the 

plant is also susceptible to attack by many fungi, bacteria, oomycetes, as well as certain insects (Bos 

et al., 2010; de Jonge et al., 2012; Kamoun et al., 1998; Yoshino et al., 2012). The large leaves of N. 

benthamiana and its susceptibility to microorganisms have been exploited as a way to transiently 

express proteins, using either engineered viruses or syringe-infiltration of Agrobacterium tumefaciens 

(Ma et al., 2012; Tang et al., 1996; Wagner et al., 2004). Apart from its use in plant-microbe 

interaction studies this species has also been used for research in many different areas including gene 

silencing, metabolic engineering, protein-protein interactions and gene function studies (Van der 

Hoorn et al., 2000). Although this species has been of great interest in the scientific world, the 

information on the plant itself is scanty. Only single accession is being used by the research 

community to date. The origins of the N. benthamiana accessions used for research are generally not 

known, although one study using  distance based phenetic analysis indicates they are very similar and 

may have derived from a single source (Goodin et al., 2008; Wylie et al., 2015). 

1.6. Research questions 

This research project was undertaken to answer the following questions: 

i. Are there differences among wild Nicotiana accessions with regard to their inherent drought 

tolerant ability?  

ii. Do wild plants of Australian Nicotiana species harbour fungal endophytes? 

iii. Are there any influences of host genotype, tissue origin and host location on the community 

structure of fungal endophytes of Australian Nicotiana species?  
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iv. Do endophytic fungi and viruses associated wild N. benthamiana plants influence their 

responses to water stress? If so,  

a. what are the physiological and metabolic changes in fungal endophytic plants 

undergoing water stress tolerance? 

b. what are the physiological and metabolic changes in virus-infected plants 

undergoing water stress tolerance? 

c. Are there interactions between responses to water stress by plants infected by both 

fungal endophytes and viruses? 
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2.1. Abstract 

Thirty-two accessions of four Nicotiana species (N. benthamiana, N. occidentalis, N. simulans, and N. 

umbratica) collected from wild plants in northern Australia were assessed for responses to water 

stress. Under moderate water stress conditions, shoot fresh weight, shoot dry weight, root fresh 

weight, root dry weight, root/shoot ratio, and relative water content of leaves were significantly 

affected. However, the degree to which the accessions were affected varied considerably. Some 

accessions of N. simulans, N. benthamiana and N. occidentalis were significantly more affected by 

water stress than others. There was significant variation between accessions in leaf and shoot tip 

wilting times. Initial symptom expression (leaf wilting) was significantly delayed in three accessions 

of N. benthamiana, and in one accession of each of N. glutinosa and N. umbratica. The least water 

stress tolerant lines, two accessions each of N. benthamiana, N. occidentalis and N. simulans, 

exhibited advanced symptoms of water stress (shoot tip wilting) within 14-17 days of cessation of 

watering. This stage was significantly delayed in three accessions of N. benthamiana and two 

accessions N. occidentalis and one accession of each of N. simulans and N. umbratica, which showed 

tip wilting only after 21-24 days. There were variations among the accessions of same Nicotiana 

species on their tolerance to water stress. Plant responses to water stress could not be predicted from 
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their plant biomass and leaf relative water content under well-watered conditions. Leaf chlorophyll 

content was variable under water stress, but did not correlate with water stress tolerance.  

Key words: Nicotiana spp.; biomass, chlorophyll content; leaf wilting; shoot tip wilting; RWC. 

2. 2. Introduction 

Water stress represents one of the most important limitations on agricultural productivity (McWilliam 

1986), leading to significant reductions in crop yield and overall productivity (Kirkham 2005). It is 

predicted that climate change in the coming decades will increase average temperatures, and rainfall 

patterns will become less predictable (IPCC 2007). Plant responses to water stress are complicated 

and involve escape, avoidance, and tolerance (Chaves et al. 2003; Morgan 1984). Changes in gene 

expression in response to water stress lead to changes in metabolism (Chaves et al. 2009; Chaves et 

al. 2003). Some responses result in differential influences on carbon assimilation, photosynthesis and 

growth (Pereira and Chaves 1993). The type and degree of physiological response can differ in 

different plant species and between genotypes within species. Parameters of biomass, relative water 

content and chlorophyll content have been used as indices for screening plants for stress tolerance 

(Chaves et al. 2009; Ings et al. 2013). 

Breeding programs have narrowed the genetic diversity in cultivated plants, and in some cases, 

inadvertently reduced tolerance to environmental stress (Ings et al. 2013). Wild plants represent 

sources of new genetic diversity. Thus, the identification of wild plant germplasm with genes for 

better tolerance to stresses may be valuable for introgression to related cultivars (Ings et al. 2013).  

All indigenous Australian species of Nicotiana are fast-growing, short-lived annuals. Most are 

ephemeral, appearing only when soil moisture conditions are favourable, and remaining dormant for 

long periods as seed when it is not. Thus, plants attempt to reduce their risk of experiencing water 

stress by escaping from it by controlling their time of germination. When water stress occurs during 

growth, the plant may die before reproducing. Annual plants have developed a suite of physical 

(structural) and physiological (genetic, metabolic) strategies to prolong survival under stress until the 
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progenitor of the next generation, the seed, is mature (Ledbetter et al. 1996). The present study used 

parameters of leaf relative water content, shoot weight, root weight, and chlorophyll content to screen 

accessions of wild Nicotiana species for tolerance to water stress. Plant wilting is commonly used as a 

visual assessment of relative levels of tolerance to water stress (Bohnert and Sheveleva 1998). The 

initial stage of wilting is characterized by folding, rolling or changes in leaf surface structure followed 

by a change of leaf angle or protrusion of veins on the leaf surface. After leaf wilting, the plant shoot 

tip starts to wilt, and later the wilted shoot tip becomes necrotic, and application of water will no 

longer recover the plant (Engelbrecht et al. 2007).  

N. benthamiana, and to a lesser extent N. occidentalis, are regarded as model plants in plant pathology 

and for gene expression studies. However, unlike another model plant species, Arabidopsis thaliana, 

only one accession of N. benthamiana (research accession 4, RA4) is widely available to the scientific 

community (Goodin et al. 2008; Wylie et al. 2015). Very little is known about the phenotypic range 

of N. benthamiana in its natural range in northern Australia. The objective of this study was to assess 

new wild-collected accessions of Nicotiana species, including N. benthamiana, for tolerance to 

moisture deprivation.  

2.3. Materials and Methods 

2.3.1. Collection of Nicotiana accessions  

Plants of 32 accessions that belonged to six Nicotiana species were used in this study. Of them, plants 

of 29 accessions belonging to four species viz. N. benthamiana, N. occidentalis, N. simulans and N. 

umbratica that were collected from six natural populations in arid regions of northern Western 

Australia (Table 1). The laboratory accession of N. benthamiana (RA4) and plants of N. glutinosa and 

N. tabacum (unknown accession names/cultivars) were also used. The latter are species originating in 

the Andes region of South America. 
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Table 1:  List of Nicotiana accessions used for drought tolerance study with description of the collection 

location  

 

 

 

SL No. Accession 

Code 

Plant Species Collection 

Location 

Altitude 

(meter 

above 

sea 

level) 

Coordinate 

1.   

2.  

3.  

Ham-1 

KL-1 

Kx-1 

N. benthamiana Karijini 

 

649 22° 15' 3.5136'' S 

117° 58' 24.0132'' E 

4.  Weanoo-1 N. umbratica 

5.  Ft-1 N. occidentalis 

6.  HCK-1 N. simulans Karratha 

 

18 20° 44' 11.8140'' S 

116° 50' 48.3540'' E 7.  VL552B.01 N. occidentalis ssp 

obliqua 

8.  

9.  

VL552B.2.1-1 

VL552B.2.2 

N. benthamiana 

10.  
11.  

12.  
13.  

PPM1 

Mill-1(17.23) 

Mill-5(17.26) 

Mill-7(17.28) 

N. benthamiana Millstream 

 

10 20° 46' 8.9976'' S 

117° 8' 47.6664'' E 

14.  Mill-2 (17.25) N. simulans 

15.  
16.  
17.  

MtA-4 

MtA-8 

MtA-11 

N. occidentalis Mount 

Augustus 

 

514 26° 35' 28.3488'' S 

118° 29' 48.2964'' E 

18.  
19.  
20.  

MtA-1 

MtA-5 

MtA-7 

N. benthamiana 

21.  
22.  
23.  
24.  

MtA-2 

MtA-9 

MtA-10 

MtA-12 

N. simulans 

25.  MtG-11 N. occidentalis ssp 

occidentalis 

Mount 

Gould 

 

396 25° 47' 48.0012'' S 

117° 20' 39.9984'' E 

26.  MtG-10 N. simulans 

27.  
28.  
29.  

Nt-1 

Nt-4 

Nt-5 

Nicotiana occidentalis 

ssp hesperis 

Nanutarra 

 

98 22° 35' 27.4020'' S 

115° 55' 41.5020'' E 

30.  RA-4 N. benthamiana Laboratory 

collection 

 

  

31.  Nglu N. glutinosa 

32.  Ntab N. tabacum 
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2.3.2. Water stress and plant physiology: Experiment-1 

Moderate water deficit experiment  

Wild collected seeds of 32 Nicotiana accessions were sown on soil in trays, and after 4 weeks, the 

seedlings were transferred to square-shaped pots (8 cm2; 18 cm depth) containing 800g air-dried 

washed river sand. Sand was selected as the growth medium because it allows even, uniform and 

rapid drying, and simplifies harvesting of roots. All plants were grown in an air-conditioned 

greenhouse under natural lighting conditions, with temperatures set to 25°C/22°C (day/night). There 

was one seedling per pot. All plants were watered daily and supplied nutrients for 21 d after 

transplanting before imposing stress.  The pots were arranged in a randomized complete block design 

(RCBD). There were 24 pots per accession; half of them underwent water stress and the rest received 

adequate watering (control) to drip point. Location of blocks of pots and/or individual pots was 

changed weekly to control for effects micro-environmental variation. At 21 days post-transplantation, 

all plants from both groups were watered to saturation, and then the treatment groups were challenged 

by withholding water supply from that day for five days. Control plants were watered as before until 

the end of the experiment.  

Sample collection for RWC and biomass  

At five days post-stress (dps) imposition, most of the plants started exhibiting symptoms of water 

stress by visibly wilting in the first 2/3 leaves from the base of the plant. At this time, the youngest 

two fully developed leaves were harvested from six plants per accession for the purpose of 

determining fresh, turgid and dry weights. After measuring the fresh weight of leaves, they were kept 

in a bowl containing water for 48 h at 4°C and a second weight was taken at saturation for the turgid 

weight. For taking dry weight, the leaves were dried in an oven at 80°C until a constant weight was 

attained. Measuring water content was based on the maximum amount of water a tissue can hold, 

referred to as relative water content. Therefore, the leaf relative water content (RWC) (Engelbrecht et 

al. 2007) was calculated: RWC (%) = [(FW - DW)/(TW - DW)] × 100 
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FW, DW, and TW are the fresh, dry and turgid weights, respectively, of the leaves.  

The remaining plants (six plants per accession per treatment group) were harvested with their roots 

for shoot and root biomass measurements on the same day. The sand attached to the roots was 

removed gently, and the roots and shoots were separated by cutting. Since the growth substrate was 

removed manually, small errors are expected in root weights. Fresh weight of shoots and roots were 

taken, and the material was loosely wrapped in aluminium foil and dried at 80° C, and then weighed 

again. The root to shoot ratio was calculated from following formula: RSR=DWr/DWs, where DWr 

and DWs are the dry weights of the roots and shoots, respectively. 

Chlorophyll measurement  

Chlorophyll content was measured on the last three fully developed leaves by a hand-held chlorophyll 

meter (CCM-200 plus, Opti-Sciences, Inc., USA).  Three readings per plant were averaged, and the 

resulting figure was taken as the chlorophyll content of that plant. Twelve plants per accession were 

investigated, six of non-stressed and six of stressed plants. This estimation of the chlorophyll content 

involves a non-destructive method by using absorbance of light of the intact leaf. It gives a 

chlorophyll content index (CCI, dimensionless) value obtained from the absorbance of two 

wavelengths (660nm - red, 940nm – near infrared), which is proportional to the amount of chlorophyll 

in the sample. Chlorophyll data measurement was carried out at 5 days after stress was imposed, just 

before the plants were harvested. 

2.3.3. Severe water stress and plant wilting response: Experiment-2  

Essentially the same procedures and growth conditions were adopted as in the moderate drought 

treatment experiment described above. The difference with the first experiment was that the plants 

were not harvested during the moderate stress period. Rather, water stress was continued until the 

plants exhibited shoot tip wilting. The following stress responses were recorded: (i) days to first lower 

leaf wilting (initial visible stress response), (ii) days to upper leaves wilting but shoot tip still upright, 

and (iii) days to shoot tip wilting. The wilting of the shoot tip is considered as the point when 

irreversible damage to the plant occurs (Barrs 1968). We measured the chlorophyll content of stressed 
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and control plants at 0, 5 and 9 dps imposition by following the same procedure described above in 

experiment 1. Experiment 2 was repeated once using the same procedure except that chlorophyll 

measurements were not taken. The terms ‘trial-1’ and ‘trial-2’ refer the repeats of experiment-2.  

2.3.4. Statistical Analysis 

A principal component analysis was run with all biomass parameters, RWC and chlorophyll data of 

both moderately stressed and control plants from experiment 1 on the software “R version 3.2.3” (R 

Core Team 2015) using the co-relation matrices since the data were with different scales. Plant 

accessions were clustered separately based on data from watered and stressed conditions. 

Dendrograms were created by agglomerative hierarchical clustering algorithms (Ward’s linkage) 

using PAST v 3.15 Statistical Software (Hammer et al. 2001). This software package originally 

designed for paleontological data analysis has been variously used in many other fields (Garcia-

Mazcorro et al. 2017; Hirsch et al. 2017; McKay et al. 2016; Vialet-Chabrand et al. 2017; Zaura et al. 

2009; Zhang et al. 2004). PAST, a user friendly and powerful statistical tool, produces Ward’s 

dendrograms identical to those made by Stata (Stata Corp 2017). A two-factor ANOVA was 

performed to measure the effect of water stress and the interactions of accessions and stress. The 

significance of changes in biomass due to stress in each accession was determined with a non-

parametric test (Mann–Whitney U test). For comparing the plant wilting response under severe stress, 

a two-factor ANOVA (accession and trial) was run for the three parameters days to the 2nd leaf 

wilting, days to final leaf wilting and days to shoot tip wilting. The ‘trial’ was considered as a 

categorical variable (independent) which had two levels, viz. trial-1 and trial-2 to determine if the 

results of the two trials were significantly different. Since no significant difference was observed 

between the trials for any of the parameters we combined the data to make a single dataset and treated 

them as replications (n=12) for subsequent analyses. Plant responses to severe stress with leaf and 

shoot tip wilting were compared using ANOVA and pairwise comparison with a post-hoc Duncan's 

new multiple range test (DMRT) test. All ANOVA tests, bar charts and boxplots were done using 

IBM SPSS Statistics 24 (IBM 2012) software and Microsoft excel 2016.  
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2.4. Results 

2.4.1. Physiological traits affected by moderate water stress reveal variable responses within and 

between Nicotiana species 

In experiment 1, water stress was moderate and was applied for a relatively short period (5 days).  

There was a significant effect on all physiological parameters measured (except root dry weight; 

Table 2). Physiological responses varied between accessions and a significant accession × treatment 

interaction was observed for RWC and shoot and root fresh weight (Table 2). To group the accessions 

based on their response to moderate water stress, a principal component analysis (PCA) was 

performed on both the control and stressed plants. Fig. 1a illustrates the first factorial plane delimited 

by the Dim1, which accounted for 57% of the observed variation. N. occidentalis accessions Ft-1,  N. 

simulans accessions MtG-10, MtA-10, MtA-12, HCK-4 and the N. umbratica accession Weanoo-1 

are located far from the origin of the axis in Fig. 1a, showing that these plants had different responses 

to water stress to the average of the studied accessions. The variable factor map (Fig. 1b) produced by 

Dim1 and Dim2 shows that characters under watered or stressed conditions are located closely except 

RWC and RSR, meaning that the quantitatively important variation of 69% (57% for Dim1 and 12% 

for Dim2) is on the same relative value for accessions in watered and stressed conditions: for 

example, accessions showing more shoot fresh weight in watered conditions still had more shoot 

biomass under stressed conditions. However, the relative water content, and to a lesser extent the 

root/shoot ratio, responded differently (Fig.1b) indicating a negative correlation between plants in 

watered and stressed conditions. On the second plane, explaining 12% of the variation, outliers are 

one accession of each of N. glutinosa (Nglu), N. occidentalis (MtG-11), two accessions of N. 

benthamiana (KL-1 and Mill-5) and two accessions of N. simulans (Mill-2 and MtA-2). The variables 

factor map showed that except for relative water content (RWC) and root shoot ratio (RSR), there is 

no distinct separation of parameters measured in watered and stressed conditions.  

Each parameter considered in this study was examined carefully after a general assessment of 

accessions on their response to water stress. As predicted, a systematic lower level of relative water 
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content was documented for all accessions following drought. This decrease in RWC during drought 

compared to control conditions was distinct and was significant for most accessions but not very 

conspicuous for six accessions of N. benthamiana (VL552B.2.1-1, MtA-5, Mill-7, RA4, Mill-1 and 

PPM1); one accession of each of N. glutinosa and N. tabacum; two accessions of N. occidentalis 

(VL552B.01, and Nt-4) and two accessions of N. simulans (MtA-2 and MtA-10) (Table 3).  

Shoot fresh weight (SFW) was also affected among accessions under water deficit conditions (Table 

3). Although most of the accessions had a substantial reduction in SFW due to moderate water deficit, 

three accessions of N. benthamiana (VL552B.2.1-1, RA4 and MtA-7) two accessions of N. 

occidentalis (VL552B.01 and Nt-1), and two of N simulans (MtA-2 and MtA-10) were not 

significantly affected.   

Shoot dry biomass of the accessions was also affected by water stress, but this trait was not 

significantly affected across many accessions, the exceptions being the three accessions of N. 

benthamiana (VL552B.2.1-1, Mill-5 and Mill-5), and three of N. simulans (HCK-4, MtG-10 and 

MtA-2), which did show a significant reduction in shoot dry weight. Most accessions produced fewer 

roots as evident from their decreased root fresh weight. On the other hand, RDW increased in 

response to water deficit in all accessions despite the fact that this was statistically significant in only 

a few accessions, i.e. VL552B.2.1-1, MtA-1, PPM1 (N. benthamiana), HCK-4 (N. simulans) and Ntab 

(N. tabacum). As consequence of decreased shoot dry weight (SDW) and increased RDW in the stress 

affected plants, the root shoot ratio was increased in most accessions and was significant for certain 

accessions (Table 3). Variation occurred within species. For example, N. benthamiana accessions Kx-

1 and MtA-1were affected significantly under stress, whereas VL552B.2.1-1 and MtA-7 were more 

tolerant (Table 3).  

2.4.2. Plant reaction to water stress cannot be predicted from their phenotype in well-watered 

conditions 

Accessions were grouped by cluster algorithms using data obtained from the plants in watered and 

water-stressed conditions (Fig. 2). 
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Table 2: Two-factor ANOVA table* showing the effect of moderate water stress on Nicotiana accessions on biomass traits (error df= 320) 

Source of variation Relative water 

content 

Shoot fresh 

weight 

Root fresh 

weight 

Shoot dry 

weight 

Root dry 

weight 

Root shoot ratio Chlorophyll 

content 

F P F P F P F P F P F P F P 

WT (df=1) 307.56 0.000 349.53 0.000 45.53 0.000 16.63 0.000 0.01 0.91 51.31 0.000 7.93 .005 

A (df= 31) 5.81 0.000 24.56 0.000 15.48 0.000 16.57 0.000 14.58 0.000 1.52 0.042 5.85 0.000 

WT× A (df= 31) 4.474 0.000 4.923 0.000 1.870 0.004 0.362 0.999 0.722 0.863 1.471 0.055 1.458 0.059 

 

 

*ANOVA has been run on the whole set of accessions, showing the effect of ‘‘Water Treatment (WT)’’ and ‘‘Accession (A)’’ factors on the measured 

parameters: Leaf Relative Water content, Shoot fresh weight, Root fresh weight, Shoot dry weight, Root dry weight, Root shoot ratio and Chlorophyll 

Content. WT= Water treatment, A= Accession, Significant P- values (≤0.05) are indicated by bold 
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Fig 1. A Principal Component Analysis of control and stressed plants. (1a) Distribution of accessions 

on Dim1 (Dimension1) and Dim2 (Dimension2) axis. (1b) Variable factor map plots for PCA planes 

on correlation circles. The measured traits are specified respectively for watered (c) and stress (s) 

plants: RWC = Relative Water Content, SFW = Fresh weight of shoot, SDW=Shoot Dry Weight, 

RFW = Root Fresh Weight, RDW= Root Dry Weight, RSR=Root Shoot Ratio and CCI=Chlorophyll 

content index.  
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Table 3.  Per cent reduction or increase of biomass parameter in moderately stressed (5 days) 

plants over the control 

Accession 
 

% Changes in biomass trait in moderate drought* 
 

RWC SFW SDW RFW RDW RSR CCI 

Ft-1 -8.63 -55.69 -9.21 -45.8 -6.82 5.86 -4.4 

Ham-1 0.1 -31.83 -9.77 -28.5 14.17 39.2 22.07 

HCK-4 -12.01 -25.09 -19.57 -14.79 29.86 58.53 30.4 

KL-1 -6.83 -26.69 -5.7 -23.62 -23.44 -17.3 17.22 

Kx-1 -5.87 -63.58 -48.06 5.02 -5.18 83.6 17.9 

Mill-1 -4.07 -31.55 -18.62 -31.47 68.93 183.74 19.55 

Mill-2 -0.89 -48.24 -33 -38.18 -10.54 27.91 37.39 

Mill-5 -13.37 -60.1 -14.55 -29.05 19.25 60.69 7.36 

Mill-7 -6.59 -55.93 -15.6 -37.93 50.47 78.12 -15.47 

MtA-1 -5.26 -43.24 -16.2 -27.37 -5.74 23.86 41.55 

MtA-10 -10.91 -63.55 -31.27 -48.09 26.44 79.16 2.93 

MtA-11 -1.52 -42.56 -6.92 9.67 66.61 81.79 -14.25 

MtA-12 -14.29 -64.52 -24.42 -48.65 -19.93 15.31 -29.38 

MtA-2 -9.2 -62.35 -31.37 -43.8 -3.97 37.9 6.85 

MtA-4 -6.52 -59.22 -18.19 -74.46 -62.69 46.26 1.04 

MtA-5 -5.57 -79.09 -34.45 -50.5 -25.29 66.21 -13.31 

MtA-7 -9.95 -67.66 -32.83 -42.6 -29.41 46.14 72.29 

MtA-8 -5.42 -59 -14.8 -31.59 24.91 61.78 19.23 

MtA-9 -9.12 -52.27 -15.08 -34.61 17.58 43.2 15.01 

MtG-10 -3.07 -39.01 -5.39 -42.19 -20.99 -16.82 41.94 

MtG-11 -12.96 -63.37 -17.91 -46.48 2.92 32.81 -26.27 

Nglu -4.81 -58.85 -24.98 -8.65 10.28 47.55 6.16 

Nt-1 -7.44 -70.69 -4.28 -13.24 -36.4 42.22 16.27 

Nt-4 -6.99 -67.07 -18.63 -16.96 10.52 39.21 25.61 

Nt-5 -6.62 -29.38 -8.99 10.86 -5.46 6.23 -2.05 

Ntab -11.41 -64.31 -15.52 -55.08 16.03 45.45 49.34 

PPM1 1.47 -51.76 -2.85 -32.25 -25.1 -24.38 -28.27 

RA-4 -2.77 -63.96 -8.91 -37.31 1.94 11.51 -15.53 

VL552B.01 -2.68 -55.92 -11.48 -27.27 -23.07 7.74 -2.78 

VL552B.2.1-1 -0.23 -58.89 -23.2 29.1 2.35 62.29 12.71 

VL552B.2.2 -1.53 -41.14 -5.99 -21.04 13.1 14.18 -10.82 

Weanoo-1 -6.16 -39.16 -8.77 -25.78 -13.67 -4.94 19.46 

 

*Percent biomass changes were calculated by following formula: per cent biomass change = (Bs-

Bw)/Bw × 100, where Bs = biomass weight of stressed plants and Bw=biomass weight of well-watered 
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plant. RWC= Leaf relative water content, SFW= Shoot fresh weight, SDW= Shoot dry weight, RFW= 

Root fresh weight, RDW=Root dry weight, RSR= root shoot ratio and CCI=Chlorophyll content index 

of 32 accessions. The bold indicates that changes in biomass due to moderate drought is statistically 

significant at P≤0.05 level, determined with a non-parametric test (Mann-Whitney U test). The minus 

(-) sign before the mean value indicates the decrease in biomass trait under mild drought than in control. 

The dendrogram formed by the accessions grown under well-watered conditions, grouped accessions 

KL-1, RA4 (N. benthamiana) and Nglu (N. glutinosa) together on one side of the tree. Under water 

stress, clusters changed in the dendrogram; KL-1 (N. simulans) and Nglu (N. glutinosa) remained 

close together but RA4 separated from them. Accessions, Weanoo-1 (N. umbratica), Kx-1 (N. 

benthamiana), Nt-1, Nt-4, MtA-4 and MtA-8 (N. occidentalis), formed another group in well-watered 

conditions, but they did not group together under water stress (Fig. 2). The accessions PPM1 and 

MtA-5 (N. benthamiana) were close to each other in tree 1, but they were far from each other in tree 2 

(Fig. 2a and 2b). Similarly, the overall response of accessions MtA-2 and Mill-2 (N. simulans) was 

different under well-watered conditions, but was similar under water deficit conditions (Fig. 2a and 

2b).  

2.4.3. Nicotiana accessions vary in response to severe stress 

When the plants were exposed to severe water deficit conditions, significant variations in response 

were observed among the accessions (P≤0.001) in the three parameters measured. Accessions were 

grouped based on their initial response to stress by wilting of second leaves after they were challenged 

with water stress (Fig 3a). Stress symptoms began significantly later in accessions RA4, MtA-5 (N. 

benthamiana), Nglu (N. glutinosa), Ntab (N. tabacum) and Weanoo-1 (N. umbratica) which took 7-9 

days to first exhibit visible stress responses, whereas the majority of accessions started showing 

symptoms from 4-6 days after stress was imposed (Fig 3a).  

Accessions where leaf wilting occurred early showed wilting of all their leaves earlier in general. For 

example, Weanoo-1 (N. umbratica), MtA-5, Ham-1 (N. benthamiana); MtA-2 (N. simulans) and Nglu 

(N. glutinosa) took 15-17 days to complete leaf wilting whereas for some accessions wilting finished 
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in 10-13 days (44% of the total number of accessions) or earlier (7-9 days, 40% of the total number of 

accessions) (Fig. 3b). 

 

Fig.2. Dendrogram of hierarchical classification of the whole set of accessions using the data of shoot 

and root fresh and dry weight, root/shoot ratio and chlorophyll content of leaf under (a) well-watered 

and (b) moderate water stress at five days-post stress. The species names of the accessions are 

indicated in parenthesis. Numbers corresponding to nodes represent percent bootstrap values (N=1000 

replicates).
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For the final responses to stress, three N. benthamiana accessions, MtA-5, VL552B.2.1-1 and RA4; 

two N. occidentalis accessions, Nt-1, VL552B.01 and two N. simulans accessions HCK-4 and MtA-2 

and the accession of N. umbratica Weanoo-1 were the most stress tolerant because they took 21-24 

days for their shoot tips to wilt. In contrast, among the least tolerant ones were five N. benthamiana 

accessions (Ham-1, MtA-7, Mill-1, PPM1and VL552B.2.2), six N. occidentalis accessions (Nt-5, 

MtA-8, Ft-1, MtA-4, MtA-11 and MtG-11), and four N. simulans accessions (MtG-10, MtA-9, MtA-

12, Mill-2), which showed shoot tip wilting within 14-17 days (Fig. 3c). 

All the accessions grouped in six clusters based on similarity of stress responses with respect to the 

three wilting parameters measured. For example, accessions Weanoo-1 (N. umbratica), Nglu (N. 

glutinosa), MtA-2 (N. simulans) and MtA-5 (N. benthamiana) formed cluster 1, being the most stress 

tolerant accessions (Fig 4). Clusters 2 and 3 were the moderately tolerant accessions, whereas cluster 

4 accessions were moderately susceptible. The most stress susceptible accessions were PPM1 (N. 

benthamiana), MtA-8 (N. occidentalis), MtA-9, and MtA-12 (N. simulans) (Fig. 4). The dendrogram 

clearly indicates that there were significant differences between accessions of the same species (Fig. 

4). For example, while an accession of N. simulans (MtA-2) showed the highest stress tolerance, 

another two accessions of the same species (MtA-9 and MtA-12) were among the most susceptible 

accessions (Fig. 4). Similarly, N. benthamiana accessions MtA-5 and Mill-5 were grouped under 

cluster 1 (most tolerant) and Cluster 5 (susceptible), respectively (Fig. 4).  

2.4.4. Effect of species and locations on water stress among Nicotiana populations 

Significant variation in stress response was observed as a function of location and of the two-way 

interaction of species and location with respect to final leaf and shoot tip wilting (Table 4). Plants of 

N. occidentalis in Karratha and N. benthamiana in Mt Augustus took longer days to start leaf wilting 

(Fig 5a). In the case of final leaf wilting, N. benthamiana plants of Karijini, Millstream and Mt 

Augustus; N. simulans of Karratha and Mt Gould took longer days (Fig 5b). No difference in shoot tip 

wilting response as a function of plant species in any location except in Mt Augustus where N. 
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benthamiana plants showed higher stress tolerance (P≤0.05) than did plants of the other two 

Nicotiana species tested (Fig. 5c).  

 

Fig 3. Box plots showing the effect of water stress on wilting response of Nicotiana accessions as 

exhibited by days to (a) First leaf wilting (b) Final leaf wilting and (c) Shoot tip wilting of plants. The 

accessions that are grouped together and are not significantly different (P≤0.05, n=12) as obtained by 

post-hoc test by Duncan new multiple range test (DMRT) are indicated by a line above the bars.   
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Table 4: ANOVA table showing the effect of water stress on Nicotiana accessions on wilting 

response  

Source of variation Second leaf wilting Final leaf wilting Shoot tip wilting 

F P F P F P 

Trial (df=1, 382) 0.119 0.730 2.039 0.154 0.848 0.358 

Accessions (df=31, 352) 5.536 0.000 9.454 0.000 4.505 0.000 

Species (df= 2, 322) 3.028 0.049 6.673 0.001 0.837 0.434 

Location (df= 5, 322) 0.517 0.763 6.268 0.000 4.384 0.000 

Species × Location (df=6, 322) 3.057 0.002 6.004 0.000 3.094 0.006 

 

2.4.5 Chlorophyll content fluctuates under stress but does not correlate with stress tolerance 

Chlorophyll was measured from watered and stressed plants at 0, 5 and 9 dps. In watered plants, 

chlorophyll increased steadily. In stressed plants, the chlorophyll content increased initially but then 

decreased. There was significant variation in chlorophyll among the accessions at day 0, and it ranged 

from 4.0 to 11.0 among the accessions of the stressed group and Mill-5, MtA-1 and HCK-4 had 

higher value and MtA-9 and MtA-5 had lower (Fig. 6a). During moderate stress, chlorophyll 

increased above that of the corresponding control set (Fig. 6b). As stress progressed, chlorophyll 

decreased (Fig. 6c). At severe stress (9dps) the tolerant accessions MtaS1 and MtA-5 had the lowest 

chlorophyll, whereas Weanoo-1 and Nglu had higher values (Fig. 6c). On the contrary, MtA-8 and 

MtA-9-had higher chlorophyll levels even though they were among the most susceptible accessions, 

indicating chlorophyll level is not correlated to water stress tolerance.  

2.4.6. Plant responses to moderate stress correlated with their tolerance to severe water stress 

Stress reduced the relative water content in MtA-12 by 9%, whereas it increased (although not 

significant) in MtA-5 and Nglu plants (Table 3). These changes were correlated with their tolerance to 
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severe stress.  The MtA-12 was the most susceptible accession, whereas MtA-5 and Nglu were among 

the most tolerant accessions. Accessions most affected by moderate water stress were MtA-8, MtA-

12, MtA-9 (Table 3). The tolerant accessions were less affected by moderate stress such as in the case 

of Weanoo-1and Nglu. Tolerant accessions were less affected in the root to shoot ratio under 

moderate stress (Table 3).  

 

 

Fig 4. Dendrogram using average linkage (Ward’s method) of the hierarchical cluster analysis of 

Nicotiana accessions under severe water deficit conditions based on the data of days to leaf wilting, 

final leaf wilting and shoot tip wilting after stress was challenged. Numbers corresponding to nodes 

represent percent bootstrap values (N=1000 replicates).
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Fig. 5:  Variations among the accessions in response to water stress across species and across 

locations based on days to wilting of a) Second leaf wilting, B) Final leaf wilting and C) Shoot tip 

wilting of plants. Significant difference among species within a location is indicated by letter where 

same letters indicate that they are not significantly different (P≤0.05) as obtained by a post-hoc test by 

Duncan new multiple range test (DMRT). 
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Fig.6. Effect of water stress on changes in chlorophyll content (CCI) at (a) 0-days post stress, (b) 5-

days post stress and (c) 9-days post stress in control and drought stressed plants.   
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An attempt was also made to see if plant water stress tolerance related to their above-ground biomass 

weight. No significant positive or negative correlation of days to shoot tip wilting under stress was 

found with either shoot fresh or dry biomass (Fig. 7). 

 

 
Fig. 7: Correlation between (a) Days to shoot tip wilting and Shoot fresh weight and (b) Days 

to shoot tip wilting and shoot dry weight of Nicotiana accessions subjected to water stress. 

The shoot biomass weight was taken from the well-watered control plants after 5-days post 

stress to the stressed group. 

2.5. Discussion 

Nicotiana plants were collected from wild populations in northern Western Australia (Table 1). 

Considering the differences in species and their geographical, climatic and edaphic factors across the 

locations, accessions are potentially subjected to different constraints and selective pressures. Under 

these circumstances, notable variations in responses to water stress would be expected. Indeed, 

significant variation was noted for most of the parameters measured. Therefore, these accessions 

might have developed adaptive responses to stress that could be exploited to further discern the 

inherent variability responsible for these physiological adaptations. 

After principal component analysis combining all the traits measured in both control and stress 

conditions, accessions MtA-1 (N. benthamiana), Nt-1, Ft-1, MtA-4, MtA-8 (N. occidentalis), MtA-12 
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(N. simulans) and Ntab (N. tabacum) were outliers with regards to the effects of water stress on the 

biomass and relative water content and could be good candidates for further studies, which might 

reveal unknown genetic factors or other adaptive traits responsible for variable responses to stress. 

Plant growth seems to be the most sensitive physiological process to water deficit in plants. Water 

availability strongly influences growth and biomass accumulation in plants predominantly through its 

effect on leaf, shoot and root mass accumulation (Beadle et al. 1993). A significant reduction in shoot 

and root fresh biomass was observed in most of the accessions. The dry weight of roots increased in 

stressed plants by relative degrees among the accessions. This increase in root dry biomass seems to 

an important trait to be considered for differentiating accessions on their stress tolerance. The root to 

shoot ratio was observed to be generally higher in stressed than in non-stressed plants, and this may 

be because the growth priority shifts in favour of the roots when plants are water stressed (Kalloo 

1991). Under stress, some plants show rapid growth of roots into deeper soil layers that lead to 

improved water uptake (Larcher 2003). Water stress tolerant plants may have a greater root-shoot 

ratio (viz. MtA-2 and Nglu), although certain water stress susceptible accessions (viz. PPM1 and MtA-

9) had high root-shoot ratios. Such difference could be an outcome of different adaptation 

mechanisms between the accessions. Increased root-shoot ratio occurrence in water deficit-stressed 

plants was also reported by Chaves et al. (2003), who found that an increased root/shoot ratio is a 

long-term response to stress. Tomato, also a solanaceous species, produced extra roots under soil 

water deficit conditions (Larcher 2003).  

In our study, lower leaf relative water content was observed in most accessions following stress. This 

finding is in accordance with Ramos et al. (2003) and Allestrofa (2014) who reported that RWC was 

significantly lower in water stressed bean plants. Schonfeld et al. (1988) showed that wheat cultivars 

having high RWC are more resistant to water stress, although another study with tomato found the 

RWC decreased (Lazacano-Ferrat and Lovat 1999).  
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2.5.1 Chlorophyll  

Chlorophyll is one of the major components of chloroplasts, and relative chlorophyll content of leaves 

is an indicator of the photosynthetic efficiency of plant tissues. Although there exist arguments about 

the contribution of chlorophyll content to growth and yield of plants under stress conditions 

(Allestrofa, 2014), many studies indicated that plants that stay green are associated with better yield 

and transpiration efficiency under water deficit environments. Previous studies showed there is a 

strong correlation between chlorophyll content index (CCI) and the amount of chlorophyll in annual 

and perennial plants. Chlorophyll content increased with time for all accessions in both stressed and 

well-watered plants, but at varying rates (Fig. 6). It was observed that until 5 dps, chlorophyll 

increased in non-watered, although as stress progressed past 5 dps, the plant's chlorophyll decreased. 

Nikolaeva et al. (2010) found similar responses in wheat where differential stress treatment showed 

variable influence on chlorophyll content of leaves. They found that in the first stages of stress (3 

dps), the chlorophyll content increased slightly until 5 dps when the chlorophyll content decreased 

slightly until 7 dps where it suddenly decreased by 13–15%. Rong-hua et al. (2006), however, 

reported that water stress caused decreased levels of chlorophyll in all genotypes of barley, although 

the rate of decrease was less in stress tolerant genotypes than in stress susceptible ones. Similar results 

were reported from wheat, maize and sunflower. The decrease in chlorophyll under severe stress is 

mainly the result of damage to chloroplasts caused by the exposure to active oxygen species. 

2.5.2. Variations in plant stress tolerance 

Accessions showed variations in their responses to severe water deficit stress. Leaf and shoot tip 

wilting are the most prominent physiological responses of plants to water deficit conditions (Blum 

1998) and can be considered to be an indicator of plant stress tolerance (Xu et al. 2008).  

There is an hypothesis that domestication presents trade-offs between stress tolerance and certain 

plant growth traits, and thus a less stress tolerant genotype may be a result of the evolution of plants 

during domestication. In our experiment, the cultivated tobacco (N. tabacum, code Ntab) showed 

higher stress tolerance than most Australian species of Nicotiana. This discrepancy could be 
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explained by the geographic origin of N. tabacum; tobacco is thought to be originated from the 

tropical regions of South America.  

Differences exist among the accessions within species and significant variation was observed as a 

function of location and as a function of a two-way interaction between species and location on water 

stress tolerance of native Australian Nicotiana plants. In general, an adaptation is a phenotypic trait 

which is functionally designed by past natural selection, and which explains Darwinian fitness relative 

to alternative features (Williams 1966). There are various studies that describe the within-species 

plant adaptations to their environment (Malyshev 2015). Within-species variation happens practically 

in every trait and in response to every environmental gradient or stress factor, just as in different 

species (Malyshev 2015). Creation of within-species variation via adaptation marks the early stage of 

speciation events, and is based on the ground that populations become more adapted to their local 

environment through natural selection (Hereford 2009).  

In summary, it was observed that the Nicotiana accessions tested showed variable responses to 

moderate and severe water deficit conditions. Accessions Weanoo-1 (N. umbratica), Nglu (N. 

glutinosa), MtA-2 (N. simulans), MtA-5 (N. benthamiana) were most stress tolerant, whereas 

accessions PPM-1 (N. benthamiana), MtA-8, MtA-2 and MtA-12 (N. simulans) were the least. 

Moderate water stress tolerance is an important trait for crops because plants in most regions of the 

world receive at least short periods of water stress, which affects yield. Screening plants for responses 

to severe water deficit stress was more definitive than screening for moderate stress.  Screening based 

on leaf wilting behaviour is sometimes uninformative because some plants show leaf wilting quickly 

but survive for longer periods under severe stress. In our experiments, we counted days of survival as 

indicated by wilting shoot tip under stress. Observation of plant survival or recovery after re-watering 

plants is another approach used by plant stress physiologists. This approach has some implications in 

agriculture where plants are subjected to water stress for a period and then recover when water is 

available.   No single parameter was indicative of plant water stress tolerance, so it is necessary to use 

multiple parameters.  
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Abstract In arid regions of northern Australia, plants sur-
vive under water deficit, high temperatures, intense solar
radiation and nutrient-impoverished soils. They employ
various morpho-physiological and biochemical adapta-
tions including interaction with microbial symbionts. We
evaluated identity, host and tissue association with geo-
graphical distribution of fungal endophytes isolated from
above- and below-ground tissues of plants of three indig-
enous Australian Nicotiana species. Isolation frequency
and α-diversity were significantly higher for root endo-
phyte assemblages than those of stem and leaf tissues. We
recorded no differences in endophyte species richness or
diversity as a function of sampling location, but did detect
differences among different host genotypes and plant tis-
sues. There was a significant pattern of community simi-
larity associated with host genotypes but no consistent
pattern of fungal community structuring associated with
sampling location and tissue type, regardless of the com-
munity similarity measurements used.

Keywords Arid land . Community structure . Endophyte
diversity . Fungi

Introduction

In arid lands such as those of the North-Western Australia,
plants cope with drought, high temperatures, strong solar ra-
diation, nutrient-impoverished soils and other challenges with
various morpho-physiological and biochemical adaptations
[1, 2]. Less well studied are the interactions of such plants
with microorganisms, which may convey thermo-tolerance,
drought resistance, and other benefits that increase growth,
primary productivity and plant community structure in such
challenging environments [3, 4]. Potential roles of fungal
symbionts of plants such as mycorrhizal and non-
mycorrhizal endophytes have received growing attention from
researchers in the growth and survival of plants in inhospitable
landscapes [5–8]. Studies have focussed on fungi associated
with grasses and sedges [5, 9], gypsophilous plants [10], di-
cots, [11] and some cacti [12].

Endophytic fungi are a polyphyletic group of predomi-
nantly ascomycetous fungi that live within inter- and intra-
cellular spaces for at least part of their life cycle and cause
no visible symptoms of disease on the host [13].
Endophytes are often of diverse species composition [14],
and their composition usually differs as a function of host
species [15], among geographically separated individuals
of the same host species [16], and also within the tissues or
organs of a host plant [17]. Several studies reported that
fungal endophytes may confer physiological [18] and eco-
logical [19] advantages to the host, including protection
from environmental stress [20] as well as from attack by
pathogens [21] and pests [22]. Although long overlooked
due to their cryptic nature, endophytes are increasingly
being recognized for their ecological roles, especially in
extreme environments [23]. Therefore, knowledge on their
nature and distributions is essential both for revealing fea-
tures of plant ecology and evolution in natural and managed
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ecosystems, and for developing effective survey schemes for
tapping their biochemical capabilities [24].

Symbiotic relationships, between plants and fungi are
thought to manifest their utmost significance under stressful
conditions [23, 25] where close interaction of fungi with
plants could alleviate or eliminate the effects of particular
abiotic or biotic challenges. Studies of endophytic fungal sym-
bionts associated with plants in arid and semi-arid regions
increased our knowledge on the host, tissue and geographic
association of endophytes of important plants [5, 9–12,
26–29]. Lower fungal diversity and higher colonization fre-
quency was reported from some plants [12, 29], which were
heavily colonized by dark septate fungi [5, 8–10, 12, 30–33].
Investigations on endophytes in arid lands that have diverse
plant communities as well as experience relatively extreme
conditions would provide an opportunity to assess the poten-
tial of previously unknown endophyte communities would
broaden insights in endophyte-plant associations.

Little is known about the endophyte communities associ-
ated with Australian native plants, and no study has yet been
done on the fungal endophytic communities of indigenous
Nicotiana species native to the hot and arid regions of north-
west Australia. Nicotiana is a genus in the Solanaceae and is
divided into 13 sections comprising 86 species of which about
27 species and subspecies are indigenous to Australia [34]
Some species from the region, notably N. benthamiana and
N. occidentalis, are model species used in plant science labo-
ratories internationally.

This study aimed to investigate the occurrence and species
diversity of fungal endophytes in Nicotiana plants growing in
their natural environments in arid parts of northern Australia.
We also wanted to examine if endophyte varies across sam-
pling location, host and tissue types and if endophyte commu-
nity structure is influenced by location, host and tissue types.

Collection of Nicotiana Species

Plants of three species of indigenous Nicotiana species
(N. benthamiana, N. occidentalis and N. simulans) were collect-
ed under licence from four different locations (Carnarvon,
Karratha, Mount Augustus and Mount Gould) in north-western
Australia. Three plants of each species were used for endophyte
isolation except for the Carnarvon site where noN. benthamiana
were available. The collection sites were chosen based on the
availability and accessibility of Nicotiana plants. The sampling
locations were characterized by arid and hot environments.
Details of the collection sites are presented in Table 1.

Fungal Endophyte Isolation

Asymptomatic plant tissues (leaves, stems and roots) of
Nicotiana plants were collected and used for endophyte isola-
tion. Three or four fully expanded leaves were collected from

shoot tip of the main stem and top two branches at about 60–
70 cm above the ground, and stems were cut from the lower
part of the main stem from above 10 cm off the ground. All the
samples were collected over the course of 2–3 weeks. Tissues
were rinsed under running tap water to remove surface debris
before being subjected to surface sterilization. Samples were
cut into short segments and surface sterilized by immersion in
0.5% sodium hypochlorite for 2 min for root or leaf and 3 min
for stem, before immersing in 70% ethanol for 3 min. After
three washes in sterile distilled water and blotting with sterile
filter paper, samples were cut into 2 mm2 segments using a
sterile scalpel. There were 55 segments from each plant per
tissue/host/location. Accordingly, a total of 5445 segments
were incubated. To evaluate the efficacy of surface steriliza-
tion procedure, the imprint method, i.e. pressing sterilized
tissue segments gently onto potato dextrose agar (PDA) was
used [35] in order to confirm that the isolates only originated
from the internal tissues of the segments. Also, the final water
that used to wash the surface-sterilized tissues was incubated
in PDA to observe any fungal growth. For the fungal isolation,
segments of leaf, stem or root were plated in a petridish con-
taining media composed of 0.1× PDA (PDB 2.4 g (Catalogue
# P6685, Sigma-Aldrich, USA) plus 17 g agar in 1 L water)
amended with 100 μg/mL streptomycin sulphate (Sigma, St
Louis, MO, USA). Each plate contained five tissue fragments
with a total of 55 fragments assayed per tissue type. Plates
were incubated at 25 °C in the dark and checked periodically
for fungal growth. The growing margins (hyphal tips) of col-
onies from tissue segments were transferred to plates of 0.25×
PDA supplemented with streptomycin (100 μg/mL) [36]. The
fungal isolates were numbered and stored temporarily at 4 °C
and the mother culture permanently at −80 °C in 80% sterile
glycerol.

Endophyte Identification

A combination of morphological and molecular techniques
was employed for fungal identification due to the large num-
ber of isolates obtained [37]. Fungal endophytes from differ-
ent tissues of all plant species of a particular location were
grouped based on cultural characteristics such as isolate age,
colony appearances and mycelial textures. We obtained 41,
43, 43 and 33 distinct morphotypes from 477, 523, 622 and
304 fungal isolates from Karratha, Mt. Augustus, Mt. Gould
and Carnarvon, respectively.We obtained ITS sequence for 60
representative isolates from Carnarvon and 80 representative
isolates from each of the other three locations with a total of
300 sequences out of the 1926 isolates (15.6% of the isolates
recovered).

For molecular identification, fungal mycelium taken from
an agar plate was inoculated into a 250-mL flask containing
100 mL PDB and incubated on a shaker for 7–21 days in the
dark. At the harvest, the mycelium was rinsed under tap water
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and squeezed dry on a sterile paper towel and genomic DNA
was extracted following a phenol/chloroform/isoamyl alcohol
(24:24:1) protocol. Briefly, fungal mycelia (100 mg) were
ground in liquid nitrogen and the cells were lysed in 450 μL
of extraction buffer (200mMTris-HCl pH 7.5, 25mMEDTA,
200 mMNaCl, 1% SDS) followed bymixing thoroughly with
continuous shaking for 5 min. The lysate was extracted with
an equal volume of phenol/chloroform/isoamyl alcohol
(24:24:1) and centrifuged at 20,000×g for 5 min, repeating
this process twice. The aqueous phase was transferred to a
sterile 1.5-μL microfuge tube. The genomic DNAwas precip-
itated in an equal volume of iso-propanol at −20 °C for 15–
30 min followed by centrifugation at 20,000×g for 15 min at
4 °C. The resulting pellet was washed twice with 70% ethanol,
air dried and dissolved in 50 μL of sterile RNase-freeWater or
50 μL EB buffer (10 mM Tris-Cl, pH 8.5).

The ITS regions of the fungi were amplified with the uni-
versal primers ITS4 and ITS1 or ITS1F [38, 39] using PCR.
The PCR conditions used were 95 °C for 3 min followed by
30 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and a
final extension at 72 °C for 7 min. The 20 μL reaction mixture
contained 10 μL of 2× Promega Go Taq™ Master Mix,
10 μMof each primer, 1 μL of template DNA and 7 μL water.
Amplicons were purified by AxyPrep Mag PCR Clean-up kit
(Axygen Biosciences, USA). Each sequencing reaction
contained 1 μL of BigDye® Terminator sequence mix
(Applied Biosystems, USA), 1.5 μL of 5× Sequencing
Buffer, 1 μL of the forward primer (3.2 μM), 4 μL cleaned
PCR amplicons and 2.5 μL water. Cycling conditions were
35 cycles of 96 °C for 10 s, 50 °C for 5 s and 60 °C for 4 min.

The fungal sequences were aligned as query sequences
with the databases GenBank (NCBI) and UNITE [40]. The
last two are specially compiled and used for fungal identifica-
tion. In all cases, the isolates were identified to the species
level if their sequences ≥97% similar to any identified acces-
sion from the databases analysed.When the similarity percent-
age was between 95 and 96%, only the genus name was ac-
cepted; and for sequence identities <95%, the isolates were
classified according to family/order or as Bfungal sp.^ [41].

The strains that ended up with same taxa were aligned using
MAFFT (multiple alignment using fast Fourier transform) al-
gorithm [42] and percent similarity was obtained using
EMBL-EBI (http://www.ebi.ac.uk/Tools/msa/mafft/)
platform. We used ≥97% similarity threshold to distinguish
taxa that yielded same blast hit and noted them as BA^ or
BB^ at the end of taxa name.

Analysis of culture and sequence results indicated that cer-
tain genera were isolated frequently in all types of samples
such as Asperg i l l u s , Al t e rnar ia , Chae tomium ,
Cladosporium, Lecythophora, Penicillium, Setophom and
Trichoderma. We inferred the phylogenetic relationships of
these endophytes obtained here in the context of currently
recognized species isolated as endophytes in other studies to
examine the whether endophytes of these genera reflect a sin-
gle evolutionary origin. The sequences were aligned using
MAFFT v7.123b [43] and trimmed to consistent start and
end points. The resulting cured alignment was analysed by
Bayesian inference [44] using MrBayes 3.2.2 [45] in
Geneious 8.1.8 [46] for 5 million generations, with sampling
every 1000th generation. A majority-rule consensus tree was
inferred from 500 trees from the posterior, with support de-
fined by Bayesian posterior probabilities.

Observation of Endophyte Colonization of Nicotiana
Seedlings

Seeds of N. benthamiana (laboratory accession RA4 [47])
were surface sterilized using 0.5% sodium hypochloride for
2 min. The seeds were washed three times in sterile distilled
water, blot dried onto sterilized filter paper and pre-germinated
onmoist filter paper for 2 days at 25 °C. Selected fungal strains
were grown on petridish containing 0.25× PDA medium for
3 days at 25 °C in the dark. Pre-germinated (2 days) seeds were
placed on the growing margin of fungi and incubated in
growth chamber with photoperiod of 16 h:8 h (light/dark) at
23 °C. Control seeds were placed on the samemediumwithout
fungi. Seven to 10 days after inoculation, seedlings, roots and
stems were separated and surface sterilized in 0.5% sodium

Table 1 Description of collection sites of the Nicotiana plants used in the present study

Sampling location Coordinates Altitude (m) Average annual temperature (°C) Average annual
rainfall (mm)

Minimum Maximum

Carnarvon 24° 53′ 02.40″ S
113° 39′ 39.60″ E

4 17.2 27.3 226.0

Karratha 20° 44′ 07.26″ S
116° 50′ 44.89″ E

6 20.8 32.4 298.6

Mount Augustus 24° 19′ 30.00″ S
116° 50′ 30.00″ E

500 17.2 31.8 233.8

Mt. Gould 25° 48′ 12.03″ S
117° 22′ 48.35″ E

240 14.6 30.5 247.9
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hypochloride for 1 min and washed in sterile water.
Microscopic observation of colonization was done using
trypan blue staining method as described by [48] with some
modifications. The tissues were cut into 1 × 1 cm2 segments,
cleared with acetic acid/ethanol (1:3, v/v) solution overnight
for the first time. Then a second clearing was done using in an
acetic acid/ethanol/glycerol (1:5:1, v/v/v) solution for at least
2 h. The samples were subsequently incubated for at least 5 h
to overnight in a staining solution of 0.01% (w/v) trypan blue
in lactophenol. Then the stained samples were rinsed with 60%
sterile and stored in the same until examination. Specimens
were transferred onto microscopic slides and examined under
a compound microscope. Five to six segments were assessed
per fungal inoculation. Specimens were examined under an
Olympus BX 51 optical microscope (Olympus, Japan).

Isolation Frequency

Isolation frequency (IF) was defined as the percentage of tis-
sue fragments yielding an endophyte in culture. We used gen-
eralized linear models to observe variation in isolation fre-
quency from as a function of sampling location, host genotype
and tissue type. The final model used the Pearson chi-square
as scale parameter method and incorporated all main effects
and relevant interaction terms (Table 2). Analyses were per-
formed in SPSS 22 (IBM Corp. Armonk, NY).

Diversity and Community Composition

The species accumulation curves of fungi in root, stems and
leaves were estimated by individual based rarefaction curve
with using Coleman rarefaction and Chao1 estimator [49, 50].
Diversity measures used were the Shannon-Wiener diversity
index (H′), Fisher’s alpha diversity, evenness (H/S),
Menhinick index and Simpson dominance. These were used
to measure endophyte species diversity within samples (α-
diversity). Since the results were consistent in all cases, only

the Shannon-Wiener biodiversity, the most commonly used
index, are shown in the index (H′). An ANOVA test was
performed to compare H′ values across locations, host species
and tissue (Table 3). We used a Shapiro-Wilk test before anal-
ysis to ensure that the distribution of H′ values did not vary
significantly from normal.

We compared differences in community composition and
structure among hosts, tissues and locations (β-diversity)
using analysis of similarity (ANOSIM). Use of three different
pairwise similarity measures was attempted because they take
in account different types of information that can provide dif-
ferent insights for comparing communities [51]. We calculat-
ed (i) the Jaccard’s index, which considers only the presence
or absence of fungal taxa among samples; (ii) the Bray-Curtis
coefficient, which considers the abundance of taxa along with
the presence or absence of particular taxa and (iii) the Morisita
index, another abundance-based measure, is also a highly sug-
gested measure because of its relative independence from size
and diversity of sample [52].

Matrices obtained from pairwise similarity measures of en-
dophyte communities were visualized using non-metric multi-
dimensional scale (NMDS). Multidimensional scaling is
intended to graphically present interactions between objects in
multidimensional space. NMDS is a robust visual analysis
method applicable to various data types, and it is amenable to
a number of user-defined standardizations and transformations
of the data and flexible with respect to which dissimilarity or
similarity measure is used [53]. NMDS plots use rank-order
information in a dissimilarity matrix [54]. A test statistic R
was calculated as the difference of mean ranks between vs.
within groups. Significance was calculated by 10,000 permuta-
tions of group membership. The diversity measures (α-diversity
and β-diversity including NMDS plots) analyses and species
accumulation curves were estimated using PAST ver. 3.15 [55].

Results

Isolation and Identification of Endophytes

The absence of fungal or bacterial growth in the tissue im-
prints onto the PDA media indicated that surface sterilization
protocol was effective enough to eliminate epiphytic fungi. A
total of 1926 isolates of fungal endophytes were recovered
from 5445 tissue segments representing root, stem and tissues
of N. occidentalis, N. benthamiana and N. simulans plants
from four sampling locations (isolation frequency = 35.4%).
Here, an isolates means a visible fungal growth from a 2- mm 2

segment/organ/plant/location. Seedlings inoculated with cer-
tain fungal strains were examined under a light microscopic
for evidence of endophytic colonization. Stained tissues
highlighted the presence of fungal hyphae, most of which

Table 2 Results of generalized linear models for analyses of isolation
frequency of indigenous Australian Nicotiana plants. Whole-model test:
chi-square = 792.4, DF = 32, p < 0.0001, AICc = 3473.86

Source of variation Chi-square DF p

Location 32.357 3 0.000***

Host 10.615 2 0.005**

Tissue 660.851 2 0.000***

Location × host 21.958 5 0.001**

Location × tissue 19.534 6 0.003**

Host × tissue 6.074 4 0.194

Location × host × tissue 8.772 10 0.554

*p < 0.05; **p < 0.01; ***p < 0.001

Dastogeer K. M. G. et al.

56



penetrated the intercellular spaces of the root and stem tissues
(Figs. 1 and 2).

The generalized linear model analysis (SPSS 21.0, IBM
North America, NY, USA) of isolation frequencies indicated
that the number of isolates recovered varied significantly as a
function of sampling location, host species and tissue types
(Table 2). In particular, endophytes were isolated in culture
about 3.3 and 2.3 times more frequently from root tissue
(IF = 60.8%) than from stem and leaf tissue overall (from all
host and location), respectively (chi-square = 660.85, DF = 2,
p < 0.001). In addition, isolation frequency also differed as
function of two-way interaction between location × host (chi-

square = 21.95, DF = 5, p < 0.01) and location × tissue (chi-
square = 19.53, DF = 6, p < 0.01) but not as a function of host
× tissue types or as a function of three-way interaction (loca-
tion × host × tissue types) (Table 2, Fig. 3).

In aggregate across all regions, 300 representative fungal
isolates were selected for molecular identification based on mor-
phological characteristics in cultures. Molecular identification
using ITS rDNA sequences resulted in a total of 68 different
endophytic fungal taxa that belonged to 40 different genera with
few taxa not identified to genus level. All endophytes recovered
fromNicotiana spp. were members of the Dikarya. Ninety-eight
percent of endophyte isolates recovered here represented the

Table 3 Results of ANOVA of
Shannon-Wiener diversity of
indigenous Australian Nicotiana
plants

Source of variation Mean square DF Mean square F p

Host 0.113 2 0.113 3.002 0.057

Tissue 4.875 2 4.875 129.390 0.000***

Location 0.047 3 0.047 1.240 0.302

Host × tissue 0.075 4 0.075 1.979 0.108

Host × location 0.119 5 0.119 3.171 0.013*

Tissue × location 0.021 6 0.021 0.560 0.761

Host × tissue × location 0.034 10 0.034 0.914 0.526

*p < 0.05; **p < 0.01; ***p < 0.001

Fig. 1 Detection of endophytic fungal structures between andwithin root
cells in Nicotiana benthamiana observed in longitudinal section under
light microscopy of a non-colonized and colonized by fungal strain, b
E-210.1 (Acremonium sp.), c E-141 (Ascomycota sp.-A), d E-529
(A. fumigatiaffinis), e Chaetomium sp.-B, f E-284 (Ascomycota sp.-B),

g E-470 (P. cucumerina), h E-162 (C. cladosporioides), i E-145
(A. ochraceus), j E-14 (Lecythophora sp.-A), k E-152 (Thozetella sp.), l
E-172.1 (P. simplicissimum), m E-503 (A. quadrilineatus), n E-163
(Setophoma sp.), o E-133 (Zopfiella latipes)
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Ascomycota and were distributed in four classes of the
Pezizomycotina. The majority represented the Pleosporales
(26%), Eurotiales (19%) and Hypocreales (18%) (Fig. 4).

Overall, the most dominant fungal genus was Penicillium
(8.68%), whereas the most dominant genera isolated from
N. benthamiana, N. occidentalis and N. simulans were species

Fig. 2 Detection of endophytic fungal structures between and within
stem cells in Nicotiana benthamiana observed in longitudinal section
under light microscopy of a non-colonized and colonized by fungal
strain, b E-210.1 (Acremonium sp.), c E-141 (Ascomycota sp.-A), d
E-529 (A. fumigatiaffinis), e Chaetomium sp.-B, f E-284 (Ascomycota

sp.-B, g E-470 (P. cucumerina), h E-162 (C. cladosporioides), i E-145
(A. ochraceus), j E-14 (Lecythophora sp.-A), k E-152 (Thozetella sp.), l
E-172.1 (P. simplicissimum), m E-503 (A. quadrilineatus), n E-163
(Setophoma sp.), o E-133 (Zopfiella latipes)

Fig. 3 Isolation frequency of
fungal endophytes expressed as
the mean percentage (%). Data
indicate the percentage of
different tissue fragments of three
indigenous Australian Nicotiana
species that yielded endophytes in
culture, as a function of sampling
location (Carnarvon, Karratha,
Mt. Augustus and Mt. Gould),
and host species
(N. benthamiana, N. occidentalis,
N. simulans)
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of Cladosporium, Chaetomium and Penicillium, respectively.
Members of four genera viz. Alternaria, Aspergillus,
Lecythophora and Penicillium were recorded from plants of all
four Nicotiana species tested (Fig. 5).

Diversity and Species Richness of Endophyte
Communities (α-Diversity)

The diversity of each endophytic fungal community was
assessed in relation to sampling location, host species and
tissue type. Regarding the intensity of sampling, individual

based rarefaction curve of fungal taxa accumulation curves
became asymptotic in most tissue types regardless of the host
species and sampling location except in some cases signifying
that our sampling was adequate enough to obtain rare fungal
taxa (Supplementary Figs. 1, 2 and 3). Thus, it provided a
basis for the analyses as presented below.

The Shannon-Wiener diversity index (H′) value was used to
compare diversity across sampling location, host species and
tissue types. Diversity of the endophyte communities did not
differ significantly as a function of sampling location and host
species type but their interaction did. Therewere clear differences
in fungal diversity among the tissue types where theH′ value had
a range from 2.61 ± 0.17 (root) to 1.84 ± 0.22 (Fig. 6, Table 3).
Difference in diversity was evident neither for a host × tissue and
location × tissue interactions nor for the location × host × tissue
type interaction (Table 3).

Variation in Endophyte Communities Across Location,
Host and Tissue (β-Diversity)

Ordination analysis was performed to investigate patterns of
endophyte assemblages on various host species, host organs
and locations of the plants. Two-dimensional non-metric mul-
tidimensional scale (NMDS) and ANOSIM-based clustering
of fungal communities revealed that host species had a signif-
icant effect on the structuring of endophyte communities at the
sampling sites (Fig. 7). The ANOSIM statistic R ranged from
0.35 to 0.60, indicating a dissimilarity of the endophyte com-
munities among the host species and that the endophyte com-
munities at particular locations appeared to be specific to a
particular host. On the other hand, endophyte communities
did not vary among different tissue types at various sampling
sites (Fig. 8). However, in the Mount Gould community,

Fig. 4 Schematic representation of phylogenetic placement of 68 fungal
taxa identified from ITS sequences of endophytes isolated fromNicotiana
plants from different locations of Australia. Classification follows Hibbett
et al. (2007). The genotypes represent the crown fungal group Dikarya

(Ascomycota plus Basidiomycota). Isolates were distributed in only one
subphylum of each of the Ascomycota (Pezizomycotina) and
Basidiomycota. Percentages indicate the total number of isolates
obtained out of a total of 1926 isolates for indicated group

Fig. 5 Isolation frequency of dominant fungal genera (>2%) recovered
from different Nicotiana species. Isolation frequency (%) indicates the
total number of isolates obtained out of a total of 1926 isolates for
indicated genera
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Fig. 7 Fungal endophyte communities as influenced by host species.
Non-metric multidimensional scaling (NMDS) and ANOSIM analysis
of endophyte communities recovered three Nicotiana species as
indicated by colours at four locations. For clustering analysis, three
different community similarity indices were computed: a, d, g, j the
Bray-Curtis coefficient and b, e, h, k Morisita index both of which
compares fungal taxa presence or absence along with the abundance

among groups and c, f, i, l the Jaccard’s index uses only presence and
absence data for comparing fungal community similarity among groups.
The ANOSIM statistic R values; large positive R (up to 1) signifies
dissimilarity between groups. The triple asterisk represents the
significance of dissimilarity (R) at p < 0.001 obtained by permutation of
group membership, with 9999 replicates

Fig. 6 Fungal endophyte
biodiversity analysis. The effects
of host species and tissue types on
fungal endophyte biodiversity as
measured by the Shannon-Wiener
index (H′). Endophytes were
isolated from root, stem and leaf
tissues of different Nicotiana
species sampled at four different
sampling locations: a Carnarvon,
b Karratha, cMt. Augustus and d
Mt. Gould
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structuring by tissue type was apparent, although the R value
was very low (~0.2) (Fig. 8j–l). Various ecological similarity
indices did show noticeable differences in luster formation in
all cases.

An attempt was made to determine the influence of a partic-
ular factor on structuring fungal communities by plotting an
overall NMDS plot for each location and host and tissue types
obtained by clustering fungal communities of particular loca-
tion, host and tissue types, respectively. As predicted, host had a
significant effect but the sampling location did not (Suppl. Fig.
3 A, B). However, the tissue types did show a degree of spec-
ificity in overall clustering. The specificity (although very low)
of tissue-communities in Mt. Gould could affect this overall
prediction (Suppl. Fig. 3C). However, tissue specificity of fun-
gal communities was not consistent as depicted in (Fig. 8j–l).

Phylogenetic Analyses

Phylogenetic analyses of the most abundant genera revealed
low phylogenetic richness endophytes of the Australian

Nicotiana species within these genera (Fig. 9). Further, most
endophytes of particular genera associated with the plants sur-
veyed here mostly form a single monophyletic group along
with other known endophyte taxa from other plants.
Consistent with the community-level analysis, no phylogenet-
ic pattern was evident with regard to the tissue, or sampling
site from which the isolates was recovered (Fig. 9). Although,
community analyses revealed a strong effect of host species,
endophytes of the most frequent isolated genera did not show
a pattern in terms of host affiliations (Fig. 9).

Discussion

Microbial symbionts of plants including endophytes are in-
creasingly recognized for their potential in agriculture and
biotechnology [20, 36, 56]. Fungal endophyte communities
have been recorded from a broad range of wild and agricul-
tural plants. The object of our current study was to examine for
the first time the composition, biodiversity, spatial variation

Fig. 8 Fungal endophyte communities as influenced by tissue types.
Non-metric multidimensional scaling (NMDS) and ANOSIM analysis
of endophyte communities recovered from root, stem and leaf tissues as
indicated by different colours from three Nicotiana species at four
sampling location. For clustering analysis, three different community
similarity indices were computed: a, d, g, j the Bray-Curtis coefficient
and b, e, h, k the Morisita index both of which compares fungal taxa

presence or absence along with the abundance among groups and c, f, i, l
the Jaccard’s index uses only presence and absence data for comparing
fungal community similarity among groups. The ANOSIM statistic R
values; large positive R (up to 1) signifies dissimilarity between groups.
The single asterisk and double asterisk represent the significance of
dissimilarity (R) at p < 0.05 and p < 0.01 respectively, obtained by
permutation of group membership, with 9999 replicates
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and host affiliation of the Nicotiana plants, studied as repre-
sentative of indigenous Australian plans collected from hot
and arid regions. The present study compared root, leaf and
stem fungal endophytes obtained from plants in their native
habitat. The resulting data set will augment the available
knowledge on root and shoot associated fungal endophytes
of plants in deserts and grasslands [6, 8, 9, 29, 57].

The value of studies on endophytes is dependent on the
methods used [58]. The identity and isolation efficiency can
be affected by various experimental factors that, in turn, may
affect the comparability datasets obtained. Our surface sterili-
zation protocol was sufficient to eliminate fungal epiphytes
and bacteria, as shown by the absence of microbial growth
on control media following tissue imprints of sterilized tissue
fragments [59]. Moreover, our use of PDA might also have
affected the isolation if it was unsuitable for the growth of
certain taxa. Given that the same sterilization protocol, media
and growth conditionswere applied to all samples in this study,
our comparisons of communities across location, host and tis-
sue type are expected to be unaffected by any bias related to the
specific fungal isolation methods. Problems, however, remain
in the identification of culturable endophytes using ITS region-
based approaches [60]. There is no assurance that the se-
quences listed on GenBank have always been correctly identi-
fied [61]. Given these limitations, ITS sequence analysis is still
the most widely used method of fungus identification, which is
why the current study adopted this approach of identification.
The names of taxa were proposed on the basis of maximum
similarity with curated database, UNITE [40] (≥97% similarity
threshold applied), as was done in other studies [62, 63].

Composition of Endophytes

On average, endophytes were isolated in culture from 35% of
the tissue segments plated. We found that endophytes associ-
ated with stems and leaves were isolated roughly two- to
threefold less frequently than those with root tissues. Various
factors could influence isolation frequency from particular
tissues. Low endophyte isolation frequency of above-ground
tissues has been reported to be correlated with UV radiation
and atmospheric aridity [59, 64].

The DNA sequence data revealed 68 distinct fungal taxa of
which the majority belonged to the Ascomycota (98%). The
predominance of Ascomycota seems to be characteristic of
endophytic mycota identified from other plant species [65,

66]. Basidiomycota have also been reported as endophytes
in many plant species, although, as we found, in lower num-
bers and frequencies [67]. The dominant endophytic fungi
identified here contained several isolates of the genera
Acremonium, Aspergillus, Penicillium, Chaetomium,
Cladosporium, Fusarium, Phoma and Trichoderma; most of
them represent common saprophytes or plant pathogens.
However, they were also reported to be the plant symbionts
and some of them are playing significant roles in plant growth,
nutrient uptake, tolerance to harsh environments, defence
against pathogens and herbivores [33, 56, 65, 68–80]. Our
results are in accordance with a previous study by Spurr and
Welty [81, 82] who reported the frequent occurrence of spe-
cies of Alternaria sp., Penicillium sp., Aspergillus sp. and
Cladosporium sp. from N. rustica, N. glutinosa and
N. sylvestris. In one study, it was reported that Australian
native Gossypium (cotton) species harbour similar genera as
those identified in our study [63]. Zhou et al. [83] isolated 38
endophytic fungi from the healthy roots and stems of tobacco
(N. tabacum) in China, of which dominant genera were
Acremonium, Fusarium, Plectosphaerella, Penicillium and
Cladosporium. They also identified the genera such as
Clonostachys, Ilyonectria, Mortierella, Myriodontium,
Petriella, Podospora, Purpureocillium, Rhizopycnis,
Stephanonectria and Thielavia; all genera were absent from
the plants studied here. This indicates that Nicotiana species
worldwide may be colonized by a large range of endophytic
fungi.

Diversity and Structuring of the Endophyte Community

Endophytic composition and diversity can be influenced by
several factors such as host genotype, tissue origin, local en-
vironmental conditions, nutrient availability and interactions
with soil fungi and bacteria [49, 84]. Therefore, we wanted to
examine if endophyte diversity would exhibit any variation
across sampling location, host and tissue types. The
Shannon-Wiener diversity index (H′) values, which considers
both richness (the number of species) and evenness (relative
abundance) of the individuals present in a sample [49] were
not significantly different among the locations sampled and
also among the host genotypes, but we did observe a differ-
ence for the location × host interaction, implying that both
host genotype and geography together have impacts on diver-
sity of fungal communities (Table 3).

As with isolation frequency, the diversity of culturable,
horizontally transmitted endophytes in above-ground plant
parts is often negatively correlated with factors including
UV radiation and aridity [59, 64]. We tested to see if endo-
phytes occupying stem and leaf tissues of these plants show
lower diversity than root tissue. Our findings indeed suggest
that fungal community diversity of stem and leaf was much
lower than the root tissue (Table 3). Our results agree with

�Fig. 9 Phylogenetic analysis of the nine most frequently isolated
endophyte genera obtained from wild Australian Nicotiana plants. Taxa
are annotated to indicate isolate number, taxon name, tissue of origin, host
site, and sampling location. Taxa with accession number indicate these
sequences were obtained from GenBank. The tree depicts the results of
MrBayes analysis of ITSrDNA data; support values are Bayesian
posterior probabilities
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previous studies showing there were differences in endophyte
diversity among various host tissues [17, 33].

Within a particular sampling location, we sought to exam-
ine for an effect of host and tissue types on endophyte com-
munity structuring by comparing three different indices of
community similarity (β-diversity), each of which conveys
different information and explanation. The Bray-Curtis coef-
ficient uses quantitative species abundance data while
Jaccard’s similarity measure takes into account only binary
presence-absence data [51, 85]. Another abundance-based
measure, the Morisita index, though not as widely used as
the Bray-Curtis, was used because of its relative independence
from size and diversity of sample [52].

Irrespective of the community similarity index employed,
we observed an obvious clustering of endophyte communities
associated with different Nicotiana species at any of the sam-
pled localities (Fig. 5). It implied that endophyte community
structure can be highly influenced by host genotypes.

Regarding tissue types, we did not observe any clustering
at any sampling sites except in Mt. Gould (Fig. 6) indicating a
neutral effects of tissue types on endophyte community struc-
turing at any particular location.

We also wanted to test for regional variation in endophyte
community assemblage across all locations by using pooled
taxa across host within each location to make a single com-
munity for comparisons across sampling locations. The spe-
cies accumulation curves obtained to assess sampling intensi-
ty (Supplementary Figs. 1 and 2) showed that our sampling
was adequate enough to recover rare fungal taxa irrespective
of the host and tissue being assessed. Since we could not
sample N. benthamiana from Carnarvon, we did not include
this host species in our regional analysis. Assessing the whole
endophyte community assemblage across all location did not
demonstrate any strong pattern of similarity indicating that
spatial position did not have strong role in fungal endophyte
community structuring. These results are at par with one of the
few studies that specifically investigate the spatial turnover in
local community composition [86]. In that study, endophyte
communities in tropical ferns were not strongly related to
spatial position. In contrast, Higgins et al. [87] found that
endophyte community similarity reduced significantly over
distances as short as 1 km in tropical forest grasses.

It should be noted that our inferences have limitations be-
cause we focussed only on cultivable fungi, and specifically
on those that could be cultured on PDA, we are likely to have
underestimated the numbers of fungi present in our samples.
Previous research indicates that plants harbour many species
of endophytes including other microbiomes that remain unde-
tected in culture-based approaches, but can be detected in
culture-independent approaches [88]. Such tools may be par-
ticularly important in harsh environments where obligate sym-
bionts may be favoured and are less likely to be recovered
easily by culturing [5, 9, 10]. Therefore, culture-independent

identification approaches should ideally be combined with
culture-dependant methods.

To sum up, we assessed identity, host, tissue association
and geographical association tolerance of fungal endophytes
isolated from root, stem and leaf tissues Australian Nicotiana
plants. Endophyte isolation frequency and α-diversity were
significantly higher for below-ground than above-ground tis-
sues. We found no variation in endophyte species diversity as
a function of sampling location, but as a function of host
genotype and tissue origin. A significant pattern of communi-
ty structuring was observed due to host genotypes but no
consistent pattern of fungal community structuring was re-
corded to be associated with sampling location and tissue
type.
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Supplementary Information 

Supplementary Table 1: Identity of endophytic fungal isolates of wild Australian Nicotiana species along 

with GenBank Accession numbers. 

 

Sl 

No. 

Isolate 

Code 

OTU name assigned GenBank 

Accession 

Host Species Host 

Tissue 

1 E-86 Acremonium sclerotigenum KU059866 N. occidentalis Root 

2 E-9.1 Acremonium sp. KU059954 N. occidentalis Root 

3 E-98 Acremonium sp. KU059854 N. occidentalis Stem 

4 E-114 Acremonium sp. KU059861 N. occidentalis Leaf 

5 E-138 Acremonium sp. KU059812 N. rosulata Root 

6 E-143 Acremonium sp. KU059970 N. occidentalis Root 

7 E-144 Acremonium sp. KU059885 N. occidentalis Leaf 

8 E-150 Acremonium sp. KU059971 N. occidentalis Stem 

9 E-178.5 Acremonium sp. KU059978 N. occidentalis Root 

10 E-210.1 Acremonium sp. KU059865 N. occidentalis Leaf 

11 E-229.1 Acremonium sp. KU059872 N. occidentalis Leaf 

12 E-723 Acremonium sp. KU059973 N. rosulata Root 

13 E-504 Alternaria alternata KU059918 N. occidentalis Root 

14 E-505 Alternaria alternata KU059919 N. benthamiana Leaf 

15 E-515.1 Alternaria alternata KU059925 N. benthamiana Stem 

16 E-520.1 Alternaria alternata KU059929 N. occidentalis Root 

17 E-530.1 Alternaria alternata KU059951 N. benthamiana Root 

18 E-507 Alternaria sp.-A KU059920 N. benthamiana Leaf 

19 E-196 Alternaria sp.-B KU059824 N. simulans Root 

20 E-204 Alternaria sp.-B KU059889 N. simulans Root 

21 E-288 Alternaria sp.-B KU059938 N. simulans Root 

22 E-219 Apodus oryza KU059868 N. rosulata Stem 

23 E-106 Aspergillus carbonarius KU059964 N. occidentalis Root 

24 E-110 Aspergillus carbonarius KU059937 N. occidentalis Stem 

25 E-529 Aspergillus fumigatiaffinis KU059950 N. rosulata Root 

26 E-518.1 Aspergillus fumigatiaffinis  KU059926 N. benthamiana Root 

27 E-202 Aspergillus niger KU059864 N. occidentalis Stem 

28 E-134 Aspergillus ochraceus KU059881 N. benthamiana Root 

29 E-145 Aspergillus ochraceus KU059883 N. simulans Stem 

30 E-531.1 Aspergillus oryzae KU059952 N. simulans Leaf 

31 E-503 Aspergillus quadrilineatus KU059917 N. simulans Stem 

32 E-135 Aurantiporus alborubescens KU059953 N. simulans Root 

33 E-506 Aureobasidium pullulans KU059941 N. benthamiana Root 

34 E-526 Bartalinia pondoensis KU059948 N. benthamiana Stem 

35 E-247 Botrytis cinerea KU059891 N. benthamiana Root 

36 E-9 Chaetomium funicola KU059876 N. occidentalis Root 

37 E-84 Chaetomium globosum KU059836 N. occidentalis Root 

38 E-228.1 Chaetomium globosum KU059890 N. simulans Root 
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39 E-824 Chaetomium globosum KU059939 N. occidentalis Root 

40 E-521.1 Chaetomium sp.-A KU059945 N. occidentalis Root 

41 E-5 Chaetomium sp.-B KU059912 N. benthamiana Leaf 

42 E-101 Chaetomium sp.-B KU059913 N. occidentalis Root 

43 E-111 Chaetomium sp.-B KU059860 N. occidentalis Root 

44 E-120 Chaetomium sp.-B KU059816 N. occidentalis Root 

45 E-136 Chaetomium sp.-B KU059817 N. occidentalis Stem 

46 E-137 Chaetomium sp.-B KU059818 N. occidentalis Root 

47 E-139 Chaetomium sp.-B KU059819 N. occidentalis Root 

48 E-146 Chaetomium sp.-B KU059820 N. occidentalis Stem 

49 E-151 Chaetomium sp.-B KU059821 N. occidentalis Root 

50 E-156 Chaetomium sp.-B KU059822 N. benthamiana Leaf 

51 E-186.1 Chaetomium sp.-B KU059825 N. occidentalis Root 

52 E-187.1 Chaetomium sp.-B KU059826 N. benthamiana Leaf 

53 E-

187.10 

Chaetomium sp.-B KU059914 N. occidentalis Stem 

54 E-195 Chaetomium sp.-B KU059823 N. occidentalis Root 

55 E-216.1 Chaetomium sp.-B KU059867 N. occidentalis Stem 

56 E-226 Chaetomium sp.-B KU059934 N. occidentalis Stem 

57 E-600 Chaetomium sp.-B KU059815 N. occidentalis Root 

58 E-162 Cladosporium cladosporioides KU059933 N. benthamiana Root 

59 E-128 Cladosporium halotolerans KU059905 N. simulans Root 

60 E-283 Cladosporium halotolerans KU059910 N. simulans Root 

61 E-17 Cladosporium sp. KU059878 N. benthamiana Root 

62 E-121 Cladosporium sp. KU059960 N. simulans Stem 

63 E-516.1 Curvularia tsudae KU059944 N. benthamiana Leaf 

64 E-527 Curvularia tsudae KU059949 N. simulans Root 

65 E-280 Cylindrocarpon pauciseptatum KU059935 N. benthamiana Stem 

66 E-509 Dothideomycetes sp. KU059942 N. occidentalis Root 

67 E-511 Edenia gomezpompae KU059943 N. benthamiana Root 

68 E-279 Exserohilum sp. KU059895 N. benthamiana Leaf 

69 E-519.1 Exserohilum sp. KU059927 N. occidentalis Stem 

70 E-523 Exserohilum sp. KU059946 N. occidentalis Leaf 

71 E-522 Fusarium equiseti KU059931 N. rosulata Root 

72 E-177.1 Fusarium oxysporum KU059856 N. simulans Root 

73 E-225.1 Fusarium oxysporum KU059870 N. benthamiana Root 

74 E-253 Fusarium oxysporum KU059892 N. benthamiana Root 

75 E-712 Fusarium oxysporum KU059848 N. benthamiana Stem 

76 E-179.5 Fusarium sp. KU059845 N. benthamiana Root 

77 E-180.3 Fusarium sp. KU059956 N. benthamiana Root 

78 E-501 Gelasinospora saitoi KU059940 N. simulans Root 

79 E-502 Gelasinospora saitoi KU059916 N. benthamiana Root 

80 E-131 Hongkongmyces sp. KU059969 N. benthamiana Stem 

81 E-08 Setophoma sp. KU059911 N. occidentalis Root 

82 E-720 Hyaloscyphaceae sp. KU059859 N. simulans Root 
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83 E-812 Hyaloscyphaceae sp. KU059884 N. simulans Root 

84 E-92 Hypomyces sp. KU059902 N. occidentalis Leaf 

85 E-93 Hypomyces sp. KU059879 N. simulans Stem 

86 E-14 Lecythophora sp.-A KU059832 N. benthamiana Leaf 

87 E-11 Lecythophora sp.-B KU059853 N. simulans Root 

88 E-513.1 Microsphaeropsis arundinis KU059924 N. benthamiana Root 

89 E-508 Myrothecium verrucaria KU059921 N. simulans Leaf 

90 E-512 Myrothecium verrucaria KU059923 N. benthamiana Leaf 

91 E-135.2 Neocosmospora rubicola KU059882 N. simulans Stem 

92 E-178.3 Paramyrothecium roridum KU059976 N. occidentalis Leaf 

93 E-182.2 Paramyrothecium roridum KU059979 N. benthamiana Stem 

94 E-188.4 Penicillium citrinum KU059828 N. occidentalis Stem 

95 E-191.5 Penicillium citrinum KU059850 N. simulans Leaf 

96 E-13.2 Penicillium oxalicum KU059858 N. benthamiana Stem 

97 E-190.1 Penicillium oxalicum KU059831 N. simulans Root 

98 E-172.1 Penicillium simplicissimum KU059811 N. benthamiana Stem 

99 E-180 Penicillium simplicissimum KU059955 N. benthamiana Stem 

100 E-190.2 Penicillium simplicissimum KU059833 N. occidentalis Root 

101 E-193.1 Penicillium simplicissimum KU059862 N. occidentalis Root 

102 E-193.2 Penicillium simplicissimum KU059863 N. occidentalis Root 

103 E-223.1 Penicillium simplicissimum KU059869 N. simulans Root 

104 E-230.1 Penicillium simplicissimum KU059873 N. occidentalis Leaf 

105 E-87 Penicillium sp. KU059928 N. occidentalis Root 

106 E-183.1 Penicillium sp. KU059980 N. occidentalis Stem 

107 E-183.4 Penicillium sp. KU059803 N. occidentalis Root 

108 E-188.2 Penicillium sp. KU059827 N. occidentalis Leaf 

109 E-189.2 Penicillium sp. KU059830 N. occidentalis Root 

110 E-192.2 Penicillium sp. KU059851 N. occidentalis Stem 

111 E-16 Phanerochaete sp. KU059877 N. occidentalis Root 

112 E-161 Phanerochaete sp. KU059932 N. occidentalis Root 

113 E-206 Phlebia acerina KU059900 N. occidentalis Root 

114 E-521.1 Phoma sp.-A KU059930 N. rosulata Root 

115 E-127.1 Plectosphaerella cucumerina KU059904 N. occidentalis Root 

116 E-178.4 Plectosphaerella cucumerina KU059977 N. occidentalis Stem 

117 E-183.2 Plectosphaerella cucumerina KU059981 N. benthamiana Leaf 

118 E-185.5 Plectosphaerella cucumerina KU059809 N. occidentalis Root 

119 E-232.1 Plectosphaerella cucumerina KU059874 N. occidentalis Stem 

120 E-233.1 Plectosphaerella cucumerina KU059875 N. occidentalis Leaf 

121 E-835 Plectosphaerella cucumerina KU059936 N. occidentalis Root 

122 E-903 Plectosphaerella cucumerina KU059968 N. occidentalis Leaf 

123 E-510 Pleosporales KU059922 N. occidentalis Root 

124 E-218 Pleurostomophora repens KU059915 N. occidentalis Root 

125 E-172 Rasamsonia piperina KU059908 N. benthamiana Leaf 

126 E-124 Sarocladium sp. KU059839 N. benthamiana Stem 

127 E-163 Setophoma sp. KU059886 N. occidentalis Root 
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128 E-178.6 Setophoma sp. KU059887 N. occidentalis Root 

129 E-277 Setophoma sp. KU059894 N. occidentalis Root 

130 E-36 Setophoma terrestris KU059857 N. occidentalis Stem 

131 E-119 Sporothrix schenckii  KU059903 N. simulans Stem 

132 E-270 Stagonosporopsis 

cucurbitacearum 

KU059893 N. simulans Root 

133 E-271 Stagonosporopsis 

cucurbitacearum 

KU059901 N. simulans Root 

134 E-123 Thozetella sp. KU059967 N. benthamiana Root 

135 E-152 Thozetella sp. KU059907 N. simulans Leaf 

136 E-167 Thozetella sp. KU059840 N. benthamiana Root 

137 E-170 Thozetella sp. KU059810 N. benthamiana Root 

138 E-185.4 Thozetella sp. KU059808 N. benthamiana Root 

139 E-80 Trichoderma asperellum KU059834 N. simulans Root 

140 E-83 Trichoderma asperellum KU059835 N. simulans Leaf 

141 E-100 Trichoderma asperellum KU059963 N. simulans Root 

142 E-173 Trichoderma asperellum KU059972 N. rosulata Root 

143 E-198 Trichoderma asperellum KU059852 N. rosulata Root 

144 E-228 Trichoderma hamatum KU059871 N. simulans Leaf 

145 E-185.1 Trichoderma sp. KU059806 N. simulans Root 

146 E-116 Trichoderma sp.  KU059965 N. simulans Root 

147 E-117 Trichoderma sp.  KU059966 N. simulans Root 

148 E-191.3 Trichoderma sp.  KU059849 N. simulans Root 

149 E-96 Uncultured ascomycota KU059855 N. benthamiana Leaf 

150 E-141 Uncultured ascomycota KU059813 N. occidentalis Root 

151 E-157 Uncultured ascomycota KU059814 N. occidentalis Root 

152 E-177.2 Uncultured ascomycota KU059841 N. benthamiana Leaf 

153 E-177.4 Uncultured ascomycota KU059843 N. simulans Root 

154 E-177.5 Uncultured ascomycota KU059844 N. occidentalis Root 

155 E-178.1 Uncultured ascomycota KU059974 N. benthamiana Leaf 

156 E-178.2 Uncultured ascomycota KU059975 N. benthamiana Root 

157 E-181.3 Uncultured ascomycota KU059957 N. simulans Root 

158 E-181.5 Uncultured ascomycota KU059959 N. benthamiana Root 

159 E-182.4 Uncultured ascomycota KU059846 N. simulans Root 

160 E-184.4 Uncultured ascomycota KU059804 N. benthamiana Stem 

161 E-184.5 Uncultured ascomycota KU059805 N. occidentalis Root 

162 E-185.3 Uncultured ascomycota KU059888 N. benthamiana Root 

163 E-189.1 Uncultured ascomycota KU059829 N. benthamiana Leaf 

164 E-

189.10 

Uncultured ascomycota KU059899 N. benthamiana Root 

165 E-282 Uncultured ascomycota KU059896 N. occidentalis Root 

166 E-285.4 Uncultured ascomycota KU059898 N. benthamiana Leaf 

167 E-524 Uncultured ascomycota KU059947 N. benthamiana Stem 

168 E-702 Uncultured ascomycota KU059847 N. benthamiana Leaf 

169 E-750 Uncultured ascomycota KU059958 N. benthamiana Root 

170 E-896 Uncultured ascomycota KU059961 N. benthamiana Leaf 
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171 E-901 Uncultured ascomycota KU059962 N. simulans Root 

172 E-126 Unknown fungus-A KU059837 N. occidentalis Root 

173 E-284 Unknown fungus-B KU059897 N. benthamiana Root 

174 E-133 Zopfiella latipes KU059838 N. simulans Root 

175 E-177.3 Zopfiella latipes KU059842 N. occidentalis Leaf 

176 E-10 Lecythophora sp.-A KY582065 N. benthamiana Stem 

177 E-13 Pleurostomophora richardsiae KY582066 N. simulans Stem 

178 E-175.3 Fusarium oxysporum KY582067 N. simulans Stem 

179 E-239 Phoma sp.-A KY582068 N. occidentalis Root 

180 E-263 Talaromyces islandicus KY582069 N. simulans Root 

181 E-300 Penicillium sp. KY582070 N. occidentalis Leaf 

182 E-303 Trichoderma sp. KY582071 N. simulans Leaf 

183 E-304 Thozetella sp. KY582072 N. benthamiana Root 

184 E-305 Plectosphaerella cucumerina KY582073 N. occidentalis Root 

185 E-306 Thozetella sp. KY582074 N. benthamiana Root 

186 E-307 Penicillium simplicissimum KY582075 N. benthamiana Stem 

187 E-311 Chaetomium sp.-B KY582076 N. occidentalis Root 

188 E-312 Chaetomium sp.-B KY582077 N. occidentalis Root 

189 E-313 Chaetomium sp.-B KY582078 N. occidentalis Stem 

190 E-314 Chaetomium sp.-B KY582079 N. simulans Root 

191 E-315 Chaetomium sp.-B KY582080 N. occidentalis Root 

192 E-316 Chaetomium sp.-B KY582081 N. occidentalis Stem 

193 E-317 Chaetomium sp.-B KY582082 N. occidentalis Root 

194 E-318 Chaetomium sp.-B KY582083 N. benthamiana Leaf 

195 E-319 Chaetomium sp.-B KY582084 N. occidentalis Root 

196 E-320 Alternaria sp.-B KY582085 N. simulans Root 

197 E-321 Chaetomium sp.-B KY582086 N. occidentalis Root 

198 E-322 Chaetomium sp.-B KY582087 N. benthamiana Leaf 

199 E-323 Penicillium sp. KY582088 N. occidentalis Leaf 

200 E-324 Penicillium citrinum KY582089 N. occidentalis Stem 

201 E-326 Penicillium sp. KY582090 N. occidentalis Root 

202 E-327 Penicillium oxalicum KY582091 N. simulans Root 

203 E-329 Penicillium simplicissimum KY582092 N. occidentalis Root 

204 E-330 Trichoderma asperellum KY582093 N. simulans Root 

205 E-331 Trichoderma asperellum KY582094 N. simulans Leaf 

206 E-332 Chaetomium globosum KY582095 N. occidentalis Root 

207 E-336 Thozetella sp. KY582096 N. benthamiana Root 

208 E-341 Fusarium sp. KY582097 N. benthamiana Root 

209 E-344 Fusarium oxysporum KY582098 N. benthamiana Stem 

210 E-345 Trichoderma sp.  KY582099 N. simulans Root 

211 E-346 Penicillium citrinum KY582100 N. simulans Leaf 

212 E-347 Penicillium sp. KY582101 N. occidentalis Stem 

213 E-348 Trichoderma asperellum KY582102 N. rosulata Root 

214 E-349 Lecythophora sp.-B KY582103 N. simulans Root 

215 E-352 Fusarium oxysporum KY582104 N. simulans Root 
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216 E-353 Setophoma terrestris KY582105 N. occidentalis Stem 

217 E-354 Penicillium oxalicum KY582106 N. benthamiana Stem 

218 E-355 Hyaloscyphaceae sp. KY582107 N. simulans Root 

219 E-356 Chaetomium sp.-B KY582108 N. occidentalis Root 

220 E-358 Penicillium simplicissimum KY582109 N. occidentalis Root 

221 E-359 Penicillium simplicissimum KY582110 N. occidentalis Root 

222 E-360 Aspergillus niger KY582111 N. occidentalis Stem 

223 E-363 Chaetomium sp.-B KY582112 N. occidentalis Stem 

224 E-365 Penicillium simplicissimum KY582113 N. simulans Root 

225 E-366 Fusarium oxysporum KY582114 N. benthamiana Root 

226 E-369 Penicillium simplicissimum KY582115 N. occidentalis Leaf 

227 E-370 Plectosphaerella cucumerina KY582116 N. occidentalis Stem 

228 E-371 Plectosphaerella cucumerina KY582117 N. occidentalis Leaf 

229 E-373 Zopfiella latipes KY582118 N. occidentalis Root 

230 E-374 Cladosporium sp. KY582119 N. benthamiana Root 

231 E-375 Hypomyces sp. KY582120 N. simulans Stem 

232 E-376 Aspergillus ochraceus KY582121 N. benthamiana Root 

233 E-377 Neocosmospora rubicola KY582122 N. simulans Stem 

234 E-379 Hyaloscyphaceae sp. KY582123 N. simulans Root 

235 E-380 Acremonium sp. KY582124 N. occidentalis Leaf 

236 E-381 Setophoma sp. KY582125 N. occidentalis Root 

237 E-382 Setophoma sp. KY582126 N. occidentalis Root 

238 E-384 Alternaria sp.-B KY582127 N. simulans Root 

239 E-385 Chaetomium globosum KY582128 N. simulans Root 

240 E-386 Botrytis cinerea KY582129 N. benthamiana Root 

241 E-387 Fusarium oxysporum KY582130 N. benthamiana Root 

242 E-389 Setophoma sp. KY582131 N. occidentalis Root 

243 E-390 Exserohilum sp. KY582132 N. benthamiana Leaf 

244 E-395 Neocosmospora rubicola KY582133 N. occidentalis Root 

245 E-397 Hypomyces sp. KY582134 N. occidentalis Leaf 

246 E-399 Plectosphaerella cucumerina KY582135 N. occidentalis Root 

247 E-401 Thozetella sp. KY582136 N. simulans Leaf 

248 E-404 Hyaloscyphaceae sp. KY582137 N. occidentalis Root 

249 E-405 Chaetomium sp.-B KY582138 N. benthamiana Leaf 

250 E-406 Chaetomium sp.-B KY582139 N. occidentalis Root 

251 E-407 Chaetomium sp.-B KY582140 N. occidentalis Stem 

252 E-409 Gelasinospora saitoi KY582141 N. benthamiana Root 

253 E-410 Aspergillus quadrilineatus KY582142 N. simulans Stem 

254 E-411 Alternaria alternata KY582143 N. occidentalis Root 

255 E-412 Alternaria alternata KY582144 N. benthamiana Leaf 

256 E-414 Myrothecium verrucaria KY582145 N. simulans Leaf 

257 E-416 Myrothecium verrucaria KY582146 N. benthamiana Leaf 

258 E-417 Microsphaeropsis arundinis KY582147 N. benthamiana Root 

259 E-418 Alternaria alternata KY582148 N. benthamiana Stem 

260 E-420 Exserohilum sp. KY582149 N. occidentalis Stem 
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261 E-421 Penicillium sp. KY582150 N. occidentalis Root 

262 E-424 Fusarium equiseti KY582151 N. rosulata Root 

263 E-425 Zopfiella latipes KY582152 N. occidentalis Root 

264 E-426 Cladosporium cladosporioides KY582153 N. benthamiana Root 

265 E-427 Chaetomium sp.-B KY582154 N. occidentalis Stem 

266 E-428 Cylindrocarpon pauciseptatum KY582155 N. benthamiana Stem 

267 E-429 Plectosphaerella cucumerina KY582156 N. occidentalis Root 

268 E-430 Aspergillus carbonarius KY582157 N. occidentalis Stem 

269 E-432 Chaetomium globosum KY582158 N. occidentalis Root 

270 E-433 Gelasinospora saitoi KY582159 N. simulans Root 

271 E-434 Acremonium sp. KY582160 N. benthamiana Root 

272 E-437 Curvularia tsudae KY582161 N. benthamiana Leaf 

273 E-439 Exserohilum sp. KY582162 N. occidentalis Leaf 

274 E-441 Bartalinia pondoensis KY582163 N. benthamiana Stem 

275 E-442 Curvularia tsudae KY582164 N. simulans Root 

276 E-443 Aspergillus fumigatiaffinis KY582165 N. rosulata Root 

277 E-445 Aspergillus oryzae KY582166 N. simulans Leaf 

278 E-446 Chaetomium funicola KY582167 N. simulans Root 

279 E-447 Acremonium sp. KY582168 N. occidentalis Root 

280 E-448 Penicillium simplicissimum KY582169 N. benthamiana Stem 

281 E-449 Fusarium sp. KY582170 N. benthamiana Root 

282 E-453 Cladosporium sp. KY582171 N. simulans Stem 

283 E-456 Trichoderma asperellum KY582172 N. simulans Root 

284 E-457 Aspergillus carbonarius KY582173 N. occidentalis Root 

285 E-458 Trichoderma sp. KY582174 N. simulans Root 

286 E-459 Trichoderma sp. KY582175 N. simulans Root 

287 E-460 Thozetella sp. KY582176 N. benthamiana Root 

288 E-461 Plectosphaerella cucumerina KY582177 N. occidentalis Leaf 

289 E-462 Neocosmospora rubicola KY582178 N. benthamiana Stem 

290 E-463 Acremonium sp. KY582179 N. occidentalis Root 

291 E-464 Acremonium sp. KY582180 N. occidentalis Stem 

292 E-465 Trichoderma asperellum KY582181 N. rosulata Root 

293 E-466 Acremonium sp. KY582182 N. rosulata Root 

294 E-469 Paramyrothecium roridum KY582183 N. occidentalis Leaf 

295 E-470 Plectosphaerella cucumerina KY582184 N. occidentalis Stem 

296 E-471 Acremonium sp. KY582185 N. occidentalis Root 

297 E-472 Paramyrothecium roridum KY582186 N. benthamiana Stem 

298 E-473 Penicillium sp. KY582187 N. occidentalis Stem 

299 E-474 Plectosphaerella cucumerina KY582188 N. benthamiana Leaf 

300 E-500 Phoma sp.-B KY582189 N. benthamiana Root 
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Supplementary figure 1. Species accumulation curves of fungal taxa recovered from three species of 

Nicotiana plants. The graphs depict the relationship between the number of fungal taxa obtained and the 

number of isolates recovered in each of the species at (A) Carnorvon, (B) Karratha (C) Mt Augustus and (D) 

Mt Gould. Whole endophyte communities were considered per host species at particular location. 

 

Supplementary figure 2. Species accumulation curves of fungal taxa recovered from root, stem and leaf 

tissues of Nicotiana. The graphs depict the relationship between the number of fungal taxa obtained and the 

number of isolates recovered from different tissues from all host at (A) Carnorvon, (B) Karratha (C)  Mt 

Augustus and (D) Mt Gould. Whole endophyte communities were considered per tissue for all species at each 

particular location. 
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Supplementary figure 3. Structuring of fungal endophyte communities as influenced by location, host and 

tissue types. Non-metric multidimensional scaling (NMDS) obtained by and ANOSIM analysis of endophyte 

communities recovered from root, stem and leaf tissues as indicated by different colours from three Nicotiana 

species at four sampling location. For clustering analysis, Bray Curtis similarity as computed: (A) Fungal 

communities of all host and tissue type were pooled to obtain the overall fungal community of a particular 

location as indicated by colours; (B) Fungal communities of all tissue type from all locations were pooled to 

obtain the overall fungal community of a particular host species as indicated by colours (C) Fungal 

communities of all host from all sampling location were pooled to obtain the overall fungal community of a 

tissue type as indicated by colours. The ANOSIM statistic R values; Positive R (up to 1) signifies dissimilarity 

between groups. ** and *** represents the significance of dissimilarity (R) at p < 0.01 and p< 0.001 

respectively, obtained by permutation of group membership, with 9,999 replicates. 
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another experiment, the same 17 isolates carried forward 
to the sand-based test used in the glasshouse screening test 
were inoculated to N. benthamiana plants in pots in a nutri-
ent-limiting environment to test their influence on growth 
promotion. Isolates related to C. cladosporioides, Fusarium 
equiseti, and Thozetella sp. promoted seedling growth by 
increasing shoot length and biomass. The fungal isolate 
E-162 (C. cladosporioides) significantly enhanced moisture 
deprivation tolerance as well as promoted seedling growth.

Keywords  Agar media · Filter paper · Glasshouse · 
Growth promotion · Water deficit · Wilting

Introduction

All macroscopic organisms living in nature share close 
associations with microorganisms (Moran 2006). This 
association includes the bacterial microflora of animal 
digestive systems to the mycorrhizal fungi of plants. 
Plants, owing to their sessile lifestyle, are exposed to 
continually fluctuating environmental conditions. It may 
be this that has led to symbiotic interactions with vari-
ous microorganisms to adapt to these conditions. These 
microbes are believed to have vital functions in the struc-
ture, function, and fitness of plant communities (Clay 
and Holah 1999). Despite the fact that almost 300,000 
plant species are recorded to be associated with one or 
more endophytes (endo  =  within, phyte  =  plant), few 
associations have been studied in detail, and the main 
exceptions being the legume–rhizobia symbiosis (Long 
et al. 2008) and mycorrhizae (Herrera et al. 2010; Lugo 
et  al. 2015). Endophytes are increasingly reported for 
their ecological importance, especially in extreme envi-
ronments (Rodriguez et  al. 2004). Unlike mycorrhizal 

Abstract  Some fungal endophytes confer novel pheno-
types and enhance existing ones in plants, including toler-
ance to water deprivation stress. A range of fungal endo-
phytes was isolated from wild Nicotiana plants growing in 
arid parts of northern Australia. These were screened for 
ability to enhance water deprivation stress tolerance by 
inoculating seedlings of the model plant N. benthamiana in 
two in vitro tests. Sixty-eight endophyte isolates were co-
cultivated with N. benthamiana seedlings on either damp 
filter paper or on agar medium before being subjected to 
water deprivation. Seventeen isolates were selected for 
further testing under water deprivation conditions in a 
sand-based test in a glasshouse. Only two fungal isolates, 
Cladosporium cladosporioides (E-162) and an unknown 
fungus (E-284), significantly enhanced seedling tolerance 
to moisture deprivation consistently in both in  vitro and 
sand-based tests. Although a strongly significant correla-
tion was observed between any two screening methods, 
the result of filter paper test was more strongly reflected 
(r  =  0.757, p  <  0.001) in results of the glasshouse test, 
indicating its relative suitability over the agar-based test. In 
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fungi that inhabit plant roots and grow into the rhizos-
phere, endophytes live predominantly inside plant roots, 
stems, and/or leaves (Sherwood and Carroll 1974; Car-
roll 1988; Stone et  al. 2004). Of the two major groups, 
clavicipitaceous endophytes are isolated from some 
grasses, whereas the non-clavicipitaceous endophytes 
can be isolated from tissues of many plant types (Rod-
riguez et  al. 2009). Non-clavicipitaceous endophytes 
represent a highly diverse group of fungi that may have 
a role in improving abiotic stress tolerance of plants 
(Redman et al. 2002; Schulz and Boyle 2005; Rodriguez 
et al. 2008), and in promoting growth of host (Bacon and 
White 2000). The mechanism by which endophytes con-
fer drought tolerance generally entails one or more of the 
following mechanisms: (1) aiding the plants to evade or 
alleviate the impacts of the stress by stimulating early 
host stress response systems (Redman et  al. 1999); (2) 
producing anti-stress biochemicals (Strobel et  al. 2001; 
Miller et  al. 2002), and (3) activation of host stress 
response systems by acting as biological triggers (Rod-
riguez et al. 2004).

Plants of the deserts of northwest Australia cope with 
aridity, thermal fluctuations, and nutrient impoverished 
soils using various morphological, physiological, and 
biochemical strategies (Hopper et al. 1997; Wende 1997; 
Pepper and Keogh 2014). Less well documented are the 
biological associations of these plants with microorgan-
isms, which may provide additional levels of adapta-
tion to stress (Yang et  al. 2009; Marasco et  al. 2012). 
There is potential that this knowledge could be applied 
to agricultural systems to improve tolerance  to  abiotic 
stressors.

We isolated fungal endophytes from wild Australian 
Nicotiana plants growing in arid parts of northwest Aus-
tralia. Nicotiana benthamiana is a model plant used inter-
nationally in plant virology and gene expression studies 
(Goodin et al. 2008, Wylie et al. 2015). N. benthamiana 
is an indigenous plant of parts of subtropical and tropi-
cal zones of northern Australia where it inhabits a range 
of habitats, from offshore islands to arid inland regions. 
Although it has been used as a model plant in laborato-
ries for 70 years, very little is known about its ecology. 
We hypothesized that fungal endophytes could influ-
ence tolerance of N. benthamiana plants to moisture 
stress conditions. One of the major setbacks for study-
ing endophyte-conferred stress tolerance is lack of suit-
able methods for screening endophytes involved in stress 
tolerance from those that may not be. Our study focused 
on the facility of developing a large-scale procedure to 
rapidly screen for the ability of non-clavicipitaceous fun-
gal endophytes to confer water deprivation tolerance to 
seedlings in vitro, before testing more fully in sand-based 
tests.

Materials and methods

Endophyte isolates

The fungal endophytes were isolated from root, stem, and 
leaf tissue of plants belonging to three indigenous Aus-
tralian Nicotiana species collected in natural habitats in 
northern Western Australia. Endophytes were isolated 
from surface sterilized plant tissue on 0.1X potato dex-
trose agar (PDA) medium from symptomless plant tissue 
(Schulz et  al. 1993). A combined morphological (colony 
appearance, mycelial texture, hyphae, and conidial struc-
tures) and molecular approach was used for fungal iden-
tification. Molecular identification of isolates was done 
by Sanger sequencing of PCR products of ITS regions 
using the universal primers ITS1 and ITS4 or ITS1F and 
ITS4 (White et al. 1990) (Table 1). Fungal sequences were 
aligned as query sequences with GenBank (NCBI) and 
UNITE (Abarenkov et al. 2010) databases. Fungal species 
names were given if their sequences were >98% similar 
to an accession identified from the databases. If the simi-
larity was between 95% and 97%, only the genus name 
was accepted, and for sequence identities <95%, the iso-
lates were classified according to family, or order, or as 
‘unknown fungus’ (Rosa et al. 2010). While there are limi-
tations to using ITS for species identification, it is the most 
widely used region for fungal DNA barcoding (Schoch 
et al. 2012; Yahr et al. 2016), which is why we adopted this 
approach. Fungal mother cultures were stored at −80 °C in 
potato dextrose broth (PDB) containing 15% (v/v) glycerol. 
Fungi were sub-cultured from the frozen stock to potato 
dextrose agar (PDA) and incubated at 25°C in the dark 
prior to use in experiments.

Filter paper‑based test

Three round filter papers (Whatman 10312209, Grade 
598) were saturated in 2  ml sterile water and placed in 
a sterile disposable petri dish. Nicotiana benthamiana 
seeds (Research accession RA-4) (Goodin et  al. 2008; 
Wylie et  al. 2015) were surface-sterilized in 1% NaOCl 
for 1 min, rinsed in 70% ethanol 1 min, and serially rinsed 
in sterile water six times. Five seeds were placed on the 
soaked filter paper in the petri dish, which was sealed 
with parafilm (Parafilm® M, P7793, Sigma). Petri dishes 
were incubated at 25 °C and exposed to a 16 h light and 
8 h dark cycle in an inclined position to facilitate down-
ward root movement. At day 9 post-germination, a 5 mm3 
agar plug made from the growing edge of fungal colony 
was placed along the roots of each seedling and 100  µl 
of sterile water was added to each seedling. Dishes were 
sealed again with parafilm and incubated as before. At 
10 dpi (days post-inoculation), the parafilm was removed 
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Table 1   Endophytes used in 
this study, showing original host 
species and the organ where it 
was isolated

Isolate Code Predicted identity GenBank 
Accession 
code of ITS 
region

Host species Tissue origin

E-9 Chaetomium funicola KU059876 N. occidentalis Root
E-11 Lecythophora sp.-B KU059853 N. simulans Root
E-13 Pleurostomophora richardsiae KY582066 N. simulans Leaf
E-13.2 Penicillium oxalicum KU059858 N. benthamiana Stem
E-14 Lecythophora sp.-A KU059832 N. benthamiana Leaf
E-16 Phanerochaete sp. KU059877 N. occidentalis Root
E-17 Cladosporium sp. KU059878 N. benthamiana Root
E-84 Chaetomium globosum KU059836 N. occidentalis Root
E-86 Acremonium sclerotigenum KU059866 N. occidentalis Root
E-93 Hypomyces sp. KU059879 N. simulans Stem
E-100 Trichoderma asperellum KU059963 N. simulans Root
E-106 Aspergillus carbonarius KU059964 N. occidentalis Root
E-119 Sporothrix schenckii KU059903 N. simulans Stem
E-124 Sarocladium sp. KU059839 N. benthamiana Stem
E-126 Fungal sp. KU059837 N. occidentalis Root
E-128 Cladosporium halotolerans KU059905 N. simulans Root
E-131 Hongkongmyces sp. KU059969 N. benthamiana Stem
E-134 Aspergillus ochraceus KU059881 N. benthamiana Leaf
E-135 Aurantiporus sp. KU059953 N. simulans Root
E-139 Chaetomium sp.-A KU059819 N. occidentalis Leaf
E-143 Acremonium sp. KU059970 N. occidentalis Root
E-162 Cladosporium cladosporioides KU059880 N. benthamiana Root
E-172 Rasamsonia piperina KU059908 N. benthamiana Leaf
E-172.1 Penicillium simplicissimum KU059811 N. benthamiana Stem
E-177.1 Fusarium oxysporum KU059856 N. simulans Leaf
E-184.4 Ascomycota sp.-A KU059804 N. benthamiana Stem
E-185.1 Trichoderma sp. KU059806 N. simulans Stem
E-189.2 Penicillium sp. KU059830 N. occidentalis Root
E-202 Aspergillus niger KU059864 N. occidentalis Stem
E-204 Alternaria sp.-B KU059889 N. simulans Root
E-206 Phlebia acerina KU059900 N. occidentalis Root
E-218 Pleurostoma repens KU059915 N. occidentalis Root
E-219 Apodus oryzae KU059868 N. rosulata Stem
E-228 Trichoderma hamatum KU059871 N. simulans Leaf
E-233.1 Plectosphaerella cucumerina KU059875 N. occidentalis Leaf
E-239 Phoma sp.-A KY582068 N. occidentalis Root
E-247 Botrytis cinerea KU059891 N. benthamiana Root
E-263 Talaromyces islandicus KY582069 N. simulans Root
E-271 Stagonosporopsis cucurbitacearum KU059901 N. simulans Leaf
E-277 Setophoma sp. KU059894 N. occidentalis Stem
E-284 Ascomycota sp.-B KU059897 N. benthamiana Root
E-306 Thozetella sp. KY582074 N. benthamiana Root
E-322 Chaetomium sp.-B KY582087 N. occidentalis Leaf
E-341 Fusarium sp. KY582097 N. benthamiana Stem
E-346 Penicillium citrinum KY582100 N. simulans Leaf
E-353 Setophoma terrestris KY582105 N. occidentalis Root
E-373 Zopfiella latipes KY582118 N. occidentalis Root
E-379 Hyaloscyphaceae sp. KY582123 N. simulans Stem
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from the petri dishes to induce slow drying of the filter 
paper. Seedling responses were checked daily until seed-
ling death. The control treatment was mock inoculation 
with an agar plug containing no fungus. Each fungal 
inoculation or control treatment plate was replicated at 
least four times.

Agar‑based test

Screening of fungal cultures was done on potato dex-
trose agar plates. Agar plugs (5 mm3) containing mycelia 
of each fungal isolate were placed in the middle of each 
petri dish containing 1/4th strength PDA media (each 
petri dish was filled 2/3rd with media and assumed vari-
ation was minimized by replication). Nicotiana bentha-
miana seeds (RA-4) were surface-sterilized as above. 
Five seeds were plated on each agar plate surrounding the 
fungal inoculum at similar distance and the petri dishes 
were sealed with parafilm. The petri dishes were then 
incubated at room temperature (25  °C) and exposed to 
a 16 h  light and 8 h dark cycle. At day 14, the parafilm 
was removed to initiate slow drying-up of the medium to 
impose moisture stress conditions. The seedlings were 
observed daily and days to seedling death recorded. Con-
trols contained no fungus. Each fungal inoculation or 
control was replicated at least four times.

Sand‑based test

Spore or mycelial suspensions were prepared from 10-day-
old fungal cultures growing in 1/4th strength PDB and 
incubated on a shaker. The mycelial pellicle was washed 
in sterile water to remove residual broth, then macerated 
in a blender, and filtered through sterile cotton wool. The 
number of spores or mycelial fragments was counted using 
a haemocytometer and diluted to 5 × 104  spores/mycelial 
fragments mL−1.

Seventeen fungal isolates were screened in a green-
house. Isolates screened were E-11, E-84, E-86, E-100, 
E-128, E-162, E-177.1, E-284, E-306, E-373, E-379, 
E-409, E-424, E-500, E-505, E-507, and E-509 (Table 1). 
Three-week-old seedlings of N. benthamiana grown in 
steam treated soil were washed to remove soil adhering 
to roots. Seedlings were inoculated by placing roots in the 
spore suspension for 4–5  h. Four seedlings were planted 
per pot, and there were four pots per treatment. Inoculated 
seedlings were transplanted in steamed washed yellow sand 
and watered daily. The position of pots was changed at 
7 dpi to minimize the influence of microenvironments. At 
14 dpi, all seedlings were watered to field capacity and no 
more water was applied from that day onwards. Plants were 
scored daily until the shoot tip wilted, which was the point 
from which they could not recover if water was applied 
(Engelbrecht et al. 2007; Xu et al. 2008). Days until wilting 

Table 1   (continued) Isolate Code Predicted identity GenBank 
Accession 
code of ITS 
region

Host species Tissue origin

E-390 Exserohilum sp. KY582132 N. benthamiana Root
E-395 Neocosmospora rubicola KY582133 N. occidentalis Root
E-409 Gelasinospora saitoi KY582141 N. benthamiana Stem
E-414 Albifimbria verrucaria KY582145 N. simulans Root
E-424 Fusarium equiseti KY582151 N. rosulata Leaf
E-428 Dactylonectria pauciseptata KY582155 N. benthamiana Leaf
E-437 Curvularia tsudae KY582161 N. benthamiana Root
E-469 Paramyrothecium roridum KY582183 N. occidentalis Root
E-500 Phoma sp.-B KY582189 N. benthamiana Root
E-503 Aspergillus quadrilineatus KU059917 N. simulans Stem
E-505 Alternaria alternata KU059919 N. benthamiana Leaf
E-506 Aureobasidium pullulans KU059941 N. benthamiana Root
E-507 Alternaria sp.-A KU059920 N. benthamiana Leaf
E-509 Dothideomycetes sp. KU059942 N. occidentalis Root
E-510 Pleosporales sp. KU059922 N. occidentalis Root
E-511 Edenia gomezpompae KU059943 N. benthamiana Root
E-513.1 Microsphaeropsis arundinis KU059924 N. benthamiana Root
E-518.1 Aspergillus fumigatiaffinis KU059926 N. benthamiana Root
E-526 Bartalinia pondoensis KU059948 N. benthamiana Stem
E-531.1 Aspergillus oryzae KU059952 N. simulans Leaf
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of 1st leaf from the bottom, days till wilting of all leaves, 
and the days to shoot tip wilting were recorded.

Root colonisation

Trypan blue staining was used to identify fungal mycelium 
within root tissues (Chung et  al. 2010). Inoculated seed-
lings on filter paper were collected 7 day post-inoculation 
(dpi). Roots were cut into 0.3–0.5 cm segments and cleared 
with acetic acid:ethanol (1:3, v/v) solution overnight. A 
second clearing was done by soaking tissues in acetic 
acid:ethanol:glycerol (1:5:1, v/v/v) solution for 2  h. The 
samples were subsequently incubated 5 h to overnight in a 
staining solution of 0.01% (w/v) trypan blue in lactophe-
nol. Stained tissues were rinsed with 60% sterile glycerol 
and stored in the same until examination. Specimens were 
examined under an Olympus BX 51 optical microscope 
(Olympus, Japan). Five segments were assessed per fungal 
inoculation treatment.

Root segments from N. benthamiana seedlings inocu-
lated (in filter paper screening) with the fungal isolates 
E-162 and E-284 were fixed in 3% glutaraldehyde in 
0.025 M phosphate buffer (pH 7.0) overnight at 4 °C. After 
rinsing three times with the same buffer, they were fixed 
with osmium tetraoxide in 0.025 M phosphate buffer (pH 
7.0) for 1  h at room temperature. After washing in three 
changes in the same buffer, the specimens were dehydrated 
in an ascending series of ethanol through 30, 50, 70, 90, 
and 100% with two changes of each solution, each 10 min. 
The specimens were incubated in two changes of amyl 
acetate. After critical point drying with CO2 (Critical point 
dryer 11 120, Balzers Union), samples were mounted on 
stubs and coated with gold (sputting device 07 120, Balzers 
Union). The specimens were visualized under a scanning 
electron microscope (JEOL JCM-6000 NeoScope Bench-
top SEM).

Plant growth promotion study

Fungal isolates that were used for the water deprivation tol-
erance study were also used for a growth promotion study. 
The same methods for inoculation were used, and the same 
steam-treated washed yellow sand medium was used. This 
experiment was done twice, with differences in data col-
lection time. In the first experiment, above ground seed-
ling height was measured at 7, 11, and 15  dpi. Since no 
significant differences were noted at days 7 and 11 in the 
first experiment, in the second experiment, seedling height 
measurement began at day 14 and continued until day 26. 
At day 26, seedlings were harvested and roots were washed 
to remove adhering sands. The fresh and dry weights of 
roots and shoots were recorded.

Statistical analysis

Statistical analysis was done using IBM SPSS statistics 
21 (SPSS Inc., Chicago, IL, USA). All data sets were 
tested for normal distribution based on the Shapiro–Wilk 
test and the significance of treatment effects and the bio-
mass were analysed using one-way ANOVA. If the main 
effects were significant, treatment means were compared 
using a post-hoc test “Tukey’s HSD (Honestly Signifi-
cant Difference)”. The regression equation, correlation 
co-efficient, and corresponding p value were calculated, 
and the bar charts, line graphs, and the box plots were 
created using Microsoft Excel 2016 and its Data Analysis 
ToolPak.

Results

Effect of endophytes on seedling water deprivation 
tolerance in vitro

Filter paper screening

Plants co-cultivated with three fungal isolates, 
viz., unknown fungus-B (E-284), Cladosporium 

Fig. 1   Boxplots showing the number of days of survival after chal-
lenging N. benthamiana seedlings inoculated with three fungal 
isolates with moisture stress in a filter paper test. Significant differ-
ences to the control are indicated by an asterisk above the box. The 
*** denotes that the mean is significantly different from control at 
p < 0.001 obtained from post-hoc test using Tukey’s HSD (Honestly 
significant difference) test. The value with a “+” symbol inside the 
box indicates longer seedling survivability under water stress when 
colonised with the respective fungal isolate as a percentage over con-
trol. Effects of the isolates that significantly increased seedling stress 
tolerance are shown and the results of other isolates are presented in 
Supplementary Table 1
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cladosporioides (E-162), and Cladosporium halotolerans 
(E-128) were more tolerant to water deprivation than con-
trols, as manifested by their significantly longer survival 
in water stress. These isolates caused seedlings to survive 
58, 45, and 44% longer (E-284, E-128, and E-162, respec-
tively) over mock-inoculated seedlings in water deficit 
conditions, which were statistically significant at p < 0.001 
(Fig.  1). Of the 68 isolates tested, more than 60% either 
killed the seedling upon inoculation or decreased seedling 
tolerance by causing death of seedlings significantly earlier 
than controls under water deficit (Fig. 2a). About 34% of 
the isolates exhibited no measurable influence on moisture 
stress tolerance (Fig.  2a and Supplementary Table  1). In 
relation to the tissue origin of the endophytes, all three iso-
lates that significantly enhanced seedling moisture stress 
tolerances were isolated from roots of either N. bentha-
miana (E-162 and E-284) or N. simulans (E-128) plants. 
Most of the isolates obtained from roots or leaves had neu-
tral effects (36 and 50%, respectively), whereas those from 
the stem often acted as pathogens to the seedlings (69%) 
(Fig. 2a).

Agar media screening

Four isolates E-84 (Chaetomium globosum), E-500 
(Phoma sp.-B), E-284 (unknown fungus-B), and E-162 
(C. cladosporioides) enhanced tolerance of N. benthami-
ana seedlings to water deprivation as manifested by their 
significantly longer survivability (22, 22, 23, and 33%, 
respectively) over non-inoculated seedlings (Fig.  3) on 
agar medium. Of the 68 fungal isolates inoculated to N. 
benthamiana seedlings on agar, more than 60% of isolates 
either became pathogenic (32%) or decreased seedling lon-
gevity under water limitation (32%) (Fig. 2b). No isolates 

from leaf or stem tissues were found to increase seedling 
moisture tolerance. About 50% of the leaf isolates had neu-
tral effect on seedling moisture stress tolerance. However, 
isolates from stem tissues were either pathogenic (44%), 
or showed negative influence on seedling stress tolerance 
(44%) (Fig.  2b and Supplementary Table  1). All isolates 
enhancing seedling moisture stress tolerances had been iso-
lated from roots of either N. benthamiana (E-162, E-284, 
and E-500) or N. occidentalis (E-84) plants.

Fig. 2   Percentage of endo-
phytic isolates recovered from 
different tissues showing 
differential reactions when 
co-cultivated with N. benthami-
ana seedlings in a filter paper 
screening and b agar media 
screening to study the moisture 
deprivation tolerance. The 
number inside each stack bar 
indicates the relative percentage 
of endophyte isolates corre-
sponding to particular tissue 
with their reaction
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Fig. 3   Boxplots showing the number of days which the seedlings 
survived after challenging with moisture stress in the agar media 
screening. Significant differences to the control are indicated by an 
asterisk above the box. The ** and *** denote that the mean is signif-
icantly different from control at p < 0.01, and p < 0.001, respectively, 
obtained from post-hoc test using Tukey’s HSD (honestly significant 
difference) test. The value with “+” symbol inside the box indicates 
longer seedling survivability in stress when colonised with respec-
tive isolates as a percentage over control. Effects of the isolates that 
significantly increased seedlings stress tolerances are shown and the 
results of other isolates are presented in Supplementary Table 1
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Effect of endophytes on seedling water deprivation 
tolerance in sands in a glasshouse

The longest shoot tip survivability was recorded from the 
seedlings inoculated with the isolate E-162 (C. cladospori-
oides), which delayed wilting time by 57% (p  <  0.001) 
(Fig. 4). This was followed by the seedlings colonised by 
isolates, viz., E-284 (unknown fungus-B), E-306 (Thoze-
tella sp.), and E-500 (Phoma sp.-B) and E-128 (C. halotol-
erans), which also enhanced tolerance to water deprivation 
as manifested by their effect on significantly delaying shoot 
tip wilting by 35, 37, 38, 45, and 57%, respectively, over 
non-inoculated control seedlings under water deficit stress 
(Fig.  4). Of the two parameters considered, time to leaf 
wilting was not significantly different between treatments 
and the control seedlings (Fig. 4).

Comparison and correlation between screening 
methods

There were positive and significant regression lines and 
correlation co-efficients among the three methods used 
to screen isolates. The highest correlation (r  =  0.757) 
was found between filter paper screening and glasshouse 
screening, followed by that between the filter paper screen 
and the agar plate screen (r = 0.697), and both were sta-
tistically significant at p < 0.001 (Fig.  5). The significant 
positive correlations between the trials indicated that the 
results of in vitro trials are comparable with the glasshouse 
trial. Despite significant correlations between the trials, 
some fungi behaved differently under different screen-
ing methods. For example, the fungal isolates E-177.1 (F. 
oxysporum) and E-100 (T. asperellum) either killed seeds 
or seedlings or decreased tolerance in both in  vitro trials 

but did not kill seedlings in the glasshouse trial and even 
the isolate E-100 did not differ significantly with controls 
regarding its effect on days to leaf and shoot tip wilting in 
the glasshouse trial. The fungal strain E-500 (Phoma sp.-
B) did not confer tolerance in the filter paper test as it did 
in other tests. The isolates E-84 (C. globosum) and E-306 
(Thozetella sp.) did not significantly enhance water depri-
vation tolerance to seedlings in any other tests except in the 
agar media and the glasshouse test. An attempt was made 
to group isolates based on their effects on water deprivation 
tolerance using average linkage cluster analysis. The den-
drogram grouped isolates into three major clusters in which 
E-84 (C. globosum), E-128 (C. halotolerans), E-162 (C. 
cladosporioides), E-284 (unknown fungus-B), and E-500 
(Phoma sp.-B) formed one cluster, indicating these fungi 
had a significant influence on increasing tolerance to water 
deprivation (Fig. 6). The remaining isolates formed another 
cluster along with the control, indicating they had a neu-
tral influence on the seedling tolerance to moisture depriva-
tion under nearly all conditions. The other isolates showed 
poor performance in that they either killed the seedlings or 
increased sensitivity of seedlings to moisture stress (E-86 
and E-177.1) or showed variable effects in different trials 
(E-100). 

Endophyte colonisation of roots

Roots of plants inoculated with isolates E-84, E-86, E-128, 
E-162, E-284, E-306, E-373, E-379, E-424, and E-507 
were examined under a light microscope for evidence 
of endophytic colonisation. Stained roots highlighted 
the presence of a network of hyphae, most of which pen-
etrated the intercellular spaces of the root cortex (Fig. 7a, 
arrows). Colonisation of two fungal isolates, namely E-162 

Fig. 4   Multiple bar plots 
indicating number of days to 
leaf and shoot tip wilting of 
seedlings inoculated with dif-
ferent isolates and control when 
challenging moisture stress in 
glasshouse trial. Significant dif-
ferences to the control are indi-
cated by an asterisk above the 
box. The ** and *** denote that 
the mean is significantly dif-
ferent from control at p < 0.01, 
and p < 0.001, respectively, 
obtained from post-hoc test 
using Tukey’s HSD (honestly 
significant difference) test. The 
above the bar indicates longer 
seedling survivability in stress 
when colonised with respective 
isolates as a percentage over 
control
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(C. cladosporioides) and E-284 (unknown fungus-B), was 
confirmed by sections from resin-embedded roots used for 
scanning electron microscopy (Fig. 7b).

Plant growth promotion by endophytes

Two experiments tested the influence of fungal inocu-
lation on the promotion of growth of N. benthamiana 
seedlings. In experiment 1, no significant variation was 
observed between inoculated and un-inoculated plants in 
terms of shoot length at 7 and 11 dpi. At 15 dpi seed-
lings inoculated with E-162 (C. cladosporioides), E-306 
(Thozetella sp.), and E-424 (F. equiseti) showed signifi-
cantly (p < 0.05) increased shoot length (39%) over non-
inoculated controls (Fig. 8). Inoculation with other fungal 
isolates did not significantly increase growth. In experi-
ment 2, consistently higher shoot length was measured at 
14–26 dpi from the seedlings inoculated with the above 
three isolates. At 14 dpi along with these three isolates, 
E-100 also promoted shoot length growth (Fig.  9). Iso-
lates E-162, E-306, and E-424 resulted in >47% longer 
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Fig. 5   Relationship between agar media screening (top left) and filter 
paper screening, glasshouse screening and filter paper screening (top 
right), and glasshouse trial and agar media screening (lower left). To 
measure the co-correlation between the in vitro tests, a bivariate Pear-
son co-relation co-efficient (r) was obtained using values of days to 
death of seedlings inoculated with all 68 fungal isolates and that of 

the controls after exposed to moisture stress. To obtain the correlation 
of the in vitro tests with the glasshouse screening, the same correla-
tion co-efficients were obtained using the value of days to seedling 
death and days to shoot tip wilting, respectively, inoculated with the 
same 17 isolates for all tests

Fig. 6   Clustering of 17 endophyte isolates based on their interac-
tion with seedlings in both in  vitro and glasshouse experiments for 
drought tolerance screening. The average linkage clustering was done 
using squared Euclidean distance
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shoot length at 20 dpi and >57% longer shoot length at 
26 dpi compared to the non-inoculated control (p < 0.05) 
(Fig. 9). 

Differences in biomass of seedlings subjected to dif-
ferent treatments also occurred. Inoculation with the 
isolate E-424 (F. equiseti) stimulated the highest shoot 
biomass, which was 88% higher (p < 0.05) than the con-
trol (Table 2). In addition, E-162 (C. cladosporioides-B) 
and E-100 (T. asperellum) also significantly enhanced 
(>74%) the shoot biomass (Table  2). Other isolates did 
not enhance shoot growth of seedlings. With regard to 
root growth, isolates E-100 (T. asperellum), E-162 (C. 
cladosporioides), and E-424 (F. equiseti) increased root 
biomass by 118, 121, and 146%, respectively (p < 0.05) 
(Table 2). 

Discussion

Endophytes conferred plant water deprivation 
tolerance

In the current study, we described two simple in vitro meth-
ods and compared them with a glasshouse test as rapid 
screening methods of endophytic fungal isolates to deter-
mine their influence on conferring plant tolerance to water 
deprivation. Sixty-eight fungal endophytes isolated from 
wild Nicotiana species were screened using these methods. 
Of these, two isolates, viz., E-162 (C. cladosporioides) and 
E-284 (unknown fungus-B), consistently conferred toler-
ance to water deprivation in N. benthamiana seedlings. 
Additional isolates also improved plant water deprivation 

Fig. 7   Colonization by the 
fungal isolate E-162 (C. 
cladosporioides-B) inside 
the root tissue of Nicotiana 
benthamiana inoculated in the 
filter paper screening test. The 
yellow-coloured arrow head 
indicates the presence of fungal 
mycelia as observed under a 
compound microscope stained 
with trypan blue and b scanning 
electron microscope

Fig. 8   Box plot shows the effect of inoculation of seventeen selected 
fungal endophytes on growth of shoots of N. benthamiana seedlings 
growing in pots under glasshouse conditions in experiment 1 at a 
7 days, b 11 days, and c 15 days post-inoculation. Significant differ-
ences to the control are indicated by an asterisk above the box. The 

asterisk denotes the mean is significantly different from control at 
p  <  0.05 obtained from post-hoc test using Tukey’s HSD test. Per-
centage increase of shoot length over control is presented above the 
bar for the isolates that showed significant tolerance
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Fig. 9   Box plot shows the effect of inoculation of seventeen selected 
fungal endophytes on growth of shoot of N. benthamiana seedlings 
growing in pots under glasshouse conditions in experiment 2 at a 
14  day, b 20  day, and c 26  day post-inoculation. Significant differ-
ences to the control are indicated by asterisk above the box. The 

asterisk denotes that the mean is significantly different from con-
trol at p < 0.05 and p < 0.01, respectively, obtained from a post-hoc 
test using Tukey’s HSD (honestly significant difference). Percentage 
increase of shoot length over control is presented above the bar for 
the isolates that showed significant tolerance

Table 2   Effects of inoculation with endophytic fungi on shoot and root dry weights of plants and root/shoot ratios of glasshouse grown Nico-
tiana benthamiana  plants

In a column, treatment means having a common letter(s) are not significantly different at the 5% level by Duncan’s Multiple Range Test. Values 
in the table refer to mean ± SD, the minus sign (—) indicates that the growth was inhibited. Values are the means of five replications

Isolate code Shoot dry weight 
(SDW) (g)

% Increase/decrease 
of SDW over 
control

Root dry weight 
(RDW)

% Increase/decrease 
of RDW over 
control

Root/shoot ratio 
(RSR)

% Increase/decrease 
of RSR over control

E-11 0.184 ± 0.037c −20.39 0.034 ± 0.0103d −18.03 0.183 ± 0.026a −0.4
E-84 0.251 ± 0.048bc 8.64 0.048 ± 0.0116bcd 14.1 0.187 ± 0.009a 2.02
E-86 0.251 ± 0.048bc 8.65 0.048 ± 0.012bcd 14.11 0.188 ± 0.009a 2.02
E-100 0.404 ± 0.014ab 74.9 0.091 ± 0.008ab 118.17 0.225 ± 0.012a 22.88
E-128 0.258 ± 0.009bc 11.63 0.046 ± 0.003bcd 9.52 0.178 ± 0.0083a −3.1
E-162 0.408 ± 0.008ab 76.62 0.103 ± 0.010a 146.44 0.253 ± 0.027a 38.03
E-177.1 0.144 ± 0.073c −37.6 0.040 ± 0.008d −4.7 0.182 ± 0.019a −0.48
E-284 0.247 ± 0.035bc 6.8 0.048 ± 0.013bcd 15.58 0.189 ± 0.024a 3.27
E-306 0.278 ± 0.047abc 20.61 0.056 ± 0.012abcd 34.69 0.203 ± 0.022a 10.7
E-373 0.192 ± 0.019c −16.95 0.039 ± 0.008d −7.85 0.196 ± 0.023a 7.18
E-379 0.250 ± 0.047bc 8.64 0.047 ± 0.011bcd 14.1 0.187 ± 0.0094a 2.01
E-409 0.193 ± 0.021c −27.7 0.042 ± 0.003cd −39.48 0.220 ± 0.011a −15.01
E-424 0.433 ± 0.035a 87.72 0.092 ± 0.018a 120.89 0.230 ± 0.024a 14.59
E-500 0.167 ± 0.029c −4.35 0.026 ± 0.003d 7.84 0.156 ± 0.012a 10.61
E-505 0.220 ± 0.011c −15.55 0.045 ± 0.007cd −6.16 0.203 ± 0.024a 7.82
E-507 0.195 ± 0.016c −27.7 0.039 ± 0.008d −39.48 0.198 ± 0.022a −15.01
E-509 0.167 ± 0.029c −16.29 0.025 ± 0.002d 0.88 0.156 ± 0.012a 20.27
Control 0.231 ± 0.018c – 0.042 ± 0.006cd – 0.183 ± 0.028a –
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tolerance, but the results were inconsistent between 
tests (Fig. 10).

Although a strong and significant correlation was 
observed between any two screening methods in our 
study, the result of the filter paper screening method was 
more strongly reflected in the result of the glasshouse test 
(r = 723, p < 0.01), indicating its relative suitability over 
the agar-based screening method (Fig. 5). The filter paper 
screening method has additional benefits over the agar-
based method. The set-up of the filter paper test is very 
simple and inexpensive, requiring only petri dishes and 
filter paper and sterile water. The time required for drying 
the paper and thus entering the stress phase is much quicker 
than for the agar test. A measured amount of water is 
applied in the paper, and therefore, the experimental error 
between treatments is negligible. Since the paper contains 
no nutrients, it does not provide any significant nutritional 
benefit to either fungi or seedling. A possible limitation 
with this technique is the difficulty in standardizing the 
amount of inoculum present in each plug. The amount of 
inoculum present may be a factor in pathogenicity (Dangl 
and Jones 2001).

On the other hand, the relatively longer time to dry 
agar makes it slower and less precise than the filter paper 
method. Although the glasshouse screening technique may 
be more closely resemble plant growth and plant–microbe 

interactions in nature, the longer time required for assess-
ment, the possibility of contamination with other microbes, 
relative heterogeneity of moisture stress application in 
sand/soil based media, the greater space requirement, and 
the cost involved makes it less attractive as an initial and 
rapid screening method of choice in large-scale experi-
ments. The in  vitro screening methods developed identi-
fied fungi that enhanced water stress tolerance in plants 
growing in soil. However, in some cases, fungi responded 
to hosts differently in sand than they did in in vitro tests, 
indicating that in large-scale screens, some potentially ben-
eficial fungal lines could be discarded at the in  vitro test 
stage because they did not perform well, but they may per-
form differently in a more complex biological situation in 
the field. In the present screening methods, only one fungus 
was inoculated to each plant, which does not closely mimic 
the natural situation where multiple organisms are interact-
ing internally and externally on the plant. Experiments with 
Arabidopsis thaliana infected with Piriformospora indica 
showed enhanced root and shoot growth in natural soil con-
taining other microbial species, but not when interacting in 
sterile growth medium (Sirrenberg et al. 2007).

Endophyte-conferred benefits to hosts are dependent 
upon the host’s genetic background and ecological habitats 
(Rodriguez et  al. 2009). N. benthamiana is an indigenous 
Australian species, as presumable are the endophytes used 

Fig. 10   Cartoon summarizing the results of in vitro and glasshouse 
screening approaches for identifying fungal endophytes of Nicotiana 
spp. that conferred water deprivation tolerance to seedlings. The 
number indicates the count of isolates showing respective effects as 

indicated by colors when inoculated onto the N. benthamiana seed-
lings. Isolate codes are presented for those that enhanced water depri-
vation tolerance in seedling in any of the tests
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here. The region where the original hosts, the experimental 
host and the fungal endophytes were collected experiences 
periodic extreme heat and drought (Wheeler 2016). We 
hypothesized that annual plants growing under such con-
ditions would host endophytes if they provided a measure 
of assistance in enabling survival long enough to set seed. 
The phenomenon of endophyte-mediated moisture stress 
tolerance occurs in some grasses (Arechavaleta et al. 1989; 
Malinowski and Belesky 2000; Hubbard et al. 2014). The 
effect of endophyte-mediated moisture stress tolerance on 
non-grasses species is less well studied. One notable exam-
ple is the study of Redman et al. (2001) who described that 
the non-grass endophytes Colletotrichum magna and Cur-
vularia protuberata significantly increased drought toler-
ance of wheat, tomato, and watermelon plants. The present 
study identified certain fungal isolates such as E-128 (C. 
halotolerans), E-84 (Chaetomium sp.-B), E-162 (C. cla-
dosporioides), E-306 (Thozetella sp.), E-284 (unknown 
fungus-B), and E-500 (Phoma sp.-B) which positively 
influenced moisture deprivation tolerance in N. benthami-
ana seedlings. None of these fungal species has previously 
been reported to increase plant moisture stress tolerance 
except in a report where a higher incidence (33%) of C. 
cladosporioides was found to be associated with drought 
affected rice grains than in water grown rice (Morillo et al. 
2011). An isolate of Chaetomium globosum conferred 
water stress tolerance to wheat and Chrysanthemum plants 
(Song et al. 2011, Cong et al. 2015).

Endophyte–host interaction and tissue origin

Although fungal taxa of the isolates used in this study had 
been isolated as endophytes, inoculation of some of these 
isolates showed pathogenic effects. About 43% of isolates 
in the filter paper screening and 32% in the agar media 
screening became pathogenic to seeds or seedlings (Fig. 2a, 
b). This could be explained by the fact that the phenom-
enon of endophytism is influenced by various factors and 
a host-endophyte interaction is subject to change over time 
(Saikkonen et al. 1998; Schulz and Boyle 2005). This inter-
action can change from mutualistic to a pathogenic inter-
action, or vice versa, depending on various factors includ-
ing host identity, host physiological status, environmental 
conditions, etc (Millar 1980; Fisher and Petrini 1992). It 
is also interesting to note that certain endophyte isolates 
decreased the seedling tolerance to stress in both in  vitro 
trials, although they did not show pathogenicity initially. 
Previous authors postulated that some fungal endophytes 
remain latent in plant tissues, but when environmental fac-
tors change or host defence mechanisms are compromised, 
they can become pathogenic (Bayman 2007). Another 
observation was that most isolates recovered from the leaf 
tissue showed no influence on seedling stress tolerance.

Growth promotion and water deprivation tolerance 
as conferred by endophytes

In the current study, few endophyte isolates promoted 
growth of N. benthamiana seedlings under glasshouse 
conditions. Plant growth promotion mediated by C. clad-
osporioides, F. equiseti, and Trichoderma spp. was previ-
ously reported (Baker et al. 1984; Chang et al. 1986; Hya-
kumachi and Kubota 2003; Saldajeno and Hyakumachi 
2011; Paul and Park 2013). Several mechanisms were 
proposed to explain the effect of microbes on plant growth 
promotion (Harman et  al. 2004; Ting et  al. 2008; Tucci 
et  al. 2011). This study detected isolates that conferred 
water deprivation tolerance to the host without promoting 
growth, e.g., E-128 (C. halotolerans), E-284 (unknown 
fungus-B), and E-500 (Phoma sp.-B), while E-424 (F. 
equiseti) and E-100 (T. asperellum) promoted growth pro-
motion but did not confer water deprivation tolerance. 
However, the only isolate that promoted the growth of N. 
benthamiana seedlings as well as enhanced water depriva-
tion tolerance consistently in all screening experiments was 
E-162 (C. cladosporioides). It is unclear if growth promo-
tion is related to the stress tolerance response. Providing a 
fitness benefit to the plant through the promotion of growth 
could be a way to mediate tolerance to abiotic stress. A 
larger plant would probably have a greater root surface, 
and, therefore, can explore the soil to a greater depth and 
absorb more water. On the other hand, a larger plant would 
have a greater leaf area from which to lose water.
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Supplementary Table 1: Mean days to death of seedling after applying moisture stress to seedling colonised 

by different fungal isolates and the control along with their corresponding rank in in vitro trial 

 

 Filter paper screening Agar media screening 

Sl 

No 

Isolates 

code 

Mean 

days to 

death of 

seedling 

Rank* 
Isolates 

code 

Mean 

days to 

death of 

seedling 

Rank* 

1 E-284 12.4 a E-162 27.52 a 

2 E-128 11.38 ab E-284 25.33 ab 

3 E-162 11.29 ab E-500 25.25 ab 

4 E-93 10.05 a-c E-84 25.18 ab 

5 E-500 9.05 b-d E-373 22.07 bc 

6 E-409 8.55 b-e E-507 22.05 bc 

7 E-509 8.43 b-e E-306 22.02 bc 

8 E-131 8.35 b-f E-128 21.93 b-d 

9 E-306 8.3 b-f E-409 21.91 b-d 

10 

Mock 

inoculation 

(control) 7.84 c-g E-379 21.67 b-d 

11 E-424 7.83 c-g E-93 21.2 b-e 

12 E-395 7.8 c-g E-14 21.05 b-f 

13 E-11 7.58 c-g E-322 20.73 c-f 

14 E-84 7.25 c-h Control 20.66 c-f 

15 E-507 7 c-h E-143 20.58 c-f 

16 E-13.1 6.9 d-h E-86 20.53 c-f 

17 E-379 6.9 d-h E-206 20.13 c-g 

18 E-16 6.6 d-i E-509 19.67 c-h 

19 E-271 6.3 d-j E-424 19 c-i 

20 E-106 6.2 d-k E-11 17.91 c-j 

21 E-14 6 d-l E-390 17.53 d-k 

22 E-506 5.85 e-m E-505 17 e-l 

23 E-206 5.83 e-m E-518.1 17 e-l 

24 E-172.1 5.25 f-n E-139 16.8 e-l 

25 E-228 5.25 f-n E-172.1 16.67 f-l 

26 E-189.2 5 g-o E-126 15.8 g-m 

27 E-263 4.9 g-o E-119 15.33 h-n 

28 E-247 4.25 h-p E-414 15 i-n 

29 E-518.1 4.25 h-p E-503 15 i-n 

30 E-139 3.5 i-p E-511 15 i-n 

31 E-204 3.35 j-p E-526 15 i-n 

32 E-526 3.25 j-p E-16 14.99 i-n 

33 E-322 3.1 k-p E-506 14.42 j-o 

34 E-135 3.04 l-p E-134 14.33 j-o 

35 E-503 3 l-p E-228 14.33 j-o 

36 E-511 2.8 m-p E-437 14.33 j-o 

37 E-346 2.6 n-p E-277 13.42 k-o 

38 E-437 2.45 n-p E-395 12.75 l-o 
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39 E-177.1 2.05 Op E-428 11.67 m-p 

40 E-86 1.75 p E-510 11.25 n-p 

41 E-9 - - E-184.4 11 n-p 

42 E-13.2 - - E-204 11 n-p 

43 E-17 - - E-172 10.33 op 

44 E-100 - - E-189.2 10.25 op 

45 E-119 - - E-346 8 p 

46 E-124 - - E-271 7.9 p 

47 E-126 - - E-185.1 7.5 p 

48 E-134 - - E-9 - - 

49 E-143 - - E-13 - - 

50 E-172 - - E-13.2 - - 

51 E-184.4 - - E-17 - - 

52 E-185.1 - - E-100 - - 

53 E-202 - - E-106 - - 

54 E-218 - - E-124 - - 

55 E-219 - - E-131 - - 

56 E-233.1 - - E-135 - - 

57 E-239 - - E-177.1 - - 

58 E-277 - - E-202 - - 

59 E-341 - - E-218 - - 

60 E-353 - - E-219 - - 

61 E-373 - - E-233.1 - - 

62 E-390 - - E-239 - - 

63 E-414 - - E-247 - - 

64 E-428 - - E-263 - - 

65 E-469 - - E-341 - - 

66 E-505 - - E-353 - - 

67 E-510 - - E-469 - - 

68 E-513.1 - - E-513.1 - - 

69 E-531.1 - - E-531.1 - - 

 

*the ranking was done on the basis of a multiple comparison test obtained using Tukey’s HSD test. The mean 

sharing similar letter in the rank column are did not differ statistically from each other and those with different 

letters did. 

**n/a indicates that the colonisation of these isolates was lethal to seeds upon or prior germination (agar 

media screening) or seedling upon inoculation (filter paper screening) and therefore application of moisture 

stress was not possible. 
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A B S T R A C T

Endophytic fungal colonization may influence how plants respond to environmental stress. Two promising
fungal isolates, one resembling Cladosporium cladosporioides and another unidentified ascomycetous fungus,
isolated from wild N. benthamiana plants in northern Australia were inoculated to plants of the research ac-
cession of N. benthamiana (RA-4). Inoculated seedlings were grown under adequate or water deficit conditions.
We examined leaf metabolites using gas chromatography-mass spectrometry (GC–MS) to compare levels of
sugars, sugar alcohols, amino acids and other metabolites at various stages of plant growth and stress appli-
cation. Ninety-three metabolites were detected in leaves, including 20 sugars, 13 sugar alcohols, 21 amino acids,
29 organic and fatty acids and ten other compounds. Endophyte colonization caused significantly differential
accumulation of 17–21 metabolites when the plants were grown under well-watered condition. The presence of
endophytes under water stress conditions caused differential accumulation of cytosine, diethylene glycol, ga-
lactinol, glycerol, heptadecanoate, mannose, oleic acid, proline, rhamnose, succinate, and urea. Accumulation of
these metabolites suggests that fungal endophytes influence plants to accumulate certain metabolites under
water-stress. Further, plants colonised by the two different endophytes tested, showed some differences in the
metabolites they accumulated. Colonization with endophytic fungi significantly increased root dry mass and
relative water content in plants under severe water stress condition, suggestive of a symbiotic relationship be-
tween these fungi and N. benthamiana plants, a species adapted to the hot and unpredictable soil moisture
conditions of northern Australia. We reveal that endophyte colonization triggers reprogramming of host meta-
bolism and indices changes in host development. This study sheds lights on the mechanisms underlying in-
creased tolerance to water stress in plants conferred by fungal endophytes. Fungal endophytes have the po-
tentials for application to increase the inherent water stress tolerance of crops.

1. Introduction

In nature, plants are exposed to various environmental stresses that
may have significant impacts on size, lifespan and fecundity. Water
deficit (commonly referred to as drought) is one of the most widespread
abiotic stresses limiting plant growth in many parts of the world
(Chaves et al., 2003; Lawlor, 2012). Current climate change models
predict that soil water availability in some regions will be significantly
reduced (Stocker, 2014). Plant strategies to cope with water stress can
broadly be divided into tolerance and avoidance (Claeys and Inzé,
2013). Plant drought tolerance involves detoxification of reactive
oxygen species (ROS) and the accumulation of solutes called osmolytes

such as sugars, the amino acid proline, and other compounds that
maintain the cellular turgor pressure required for cell expansion under
stress conditions (Chen and Jiang, 2010; Claeys and Inzé, 2013;
Hoekstra et al., 2001; Morgan, 1984; Rodriguez and Redman, 2005).
Also, microbial symbionts may play a role in plant adaptation to stress
(Coleman-Derr and Tringe, 2014; Rodriguez et al., 2009).

Fungal endophytes live in association with plants while inducing no
visible symptoms of pathogenicity. In some cases, fungal endophytes
confer benefits to plants exposed to water scarcity (Upson et al., 2009).
Possibly the most well-known example endophyte-mediated plant
water stress tolerance is the mutualism of tall fescue and perennial
ryegrass with the grass endophyte (Class 1, sensu: Rodriguez et al. 2009)
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Epichloë coenophiala (Kane, 2011). Non-grass fungal endophytes (Class
2, sensu: Rodriguez et al. 2009) have also been reported to improve
plant tolerance under water deficit stress (Khan et al., 2013, 2015;
Redman et al., 2011; Waqas et al., 2012). Although the role of fungal
endophytes to mediate plant water stress tolerance has been described
in several studies, the key mechanism(s) are incompletely understood.
Endophyte colonization causes (a) increased growth and development
(Khan et al., 2013; Redman et al., 2011) (b) enhanced osmotic adjust-
ment (Grover et al., 2001), (c) increased gas exchange and water use
efficiency (Bae et al., 2009; Elmi and West, 1995) and (d) improved
defence against oxidative stress in host plants (Azad and Kaminskyj,
2016). Metabolomic studies in Festuca arundinacea (tall fescue) colo-
nised with E. coenophiala have reported a significant impact of the en-
dophyte on primary and secondary metabolism under water deficit
conditions (Nagabhyru et al., 2013; Rasmussen et al., 2008). Stress-
induced accumulation of sugars, sugar alcohols, amino acids, and mi-
neral ions has been documented in plants (Chen and Jiang, 2010;
Hanson and Smeekens, 2009; Loescher, 1987). Class 1 endophytes have
a significant effect on the accumulation of simple sugars in the plant
under water stress. Effects of the endophyte on accumulations of amino
acids, organic acids other metabolites in plants under water stress have
not been well characterised.

To the best of our best knowledge, no study has yet been undertaken
to investigate the role of Class 2 endophytes on water stress tolerance of
hosts at the metabolic level. Our preliminary (Dastogeer et al., 2017b)
study identified two ascomycetous fungal endophytes isolated from
indigenous Australian Nicotiana plants growing in arid conditions that
provided significantly improved water stress tolerance in Nicotiana
benthamiana plants tested in both in vitro and greenhouse trials. Ana-
lysing these endophyte effects on host plants at the metabolite level
using high-throughput metabolite profiling is an approach to elucidate
the mechanisms of endophyte-enhanced plant growth and survival
under water deficit conditions. The objectives of this study were to
investigate and compare the metabolic responses of endophytic and
non-endophytic N. benthamiana plants grown under well-watered,
moderately water stressed and severely water stressed conditions.

2. Materials and methods

2.1. Fungal isolates

Two fungal endophytes, named E-162 (GenBank ID: KU059880) and
E-284, (GenBank ID: KU059897) were selected from our previous ex-
periments (Dastogeer et al., 2017b) which indicated that they increased
water stress tolerance of N. benthamiana plants both in vitro and in
greenhouse conditions. These endophytes were originally isolated from
the roots of wild Nicotiana benthamiana plants species collected in
northern Western Australia. The strains were isolated from surface-
sterilized plant tissue on 0.1 × potato dextrose agar (PDA) medium
from symptomless root tissue (Dastogeer et al., 2017a). Combined
morphological (colony appearance, mycelial texture, hyphae and con-
idial structure, etc.) and molecular techniques were used to help in
identification of the fungi studied. Molecular identification was done by
Sanger sequencing of PCR amplified products of the ITS regions rDNA
of the fungi using the universal primers ITS1 or ITS1F with ITS4
(Gardes and Bruns, 1993; White et al., 1990). Based on the closest
match ( > 98% similarity) from a Blastn search of the NCBI nucleotide
UNITE (Abarenkov et al., 2010) database, isolate E-162 was identified
as closely resembling isolates of Cladosporium cladosporioides, whereas
E-284 was not identified below the subkingdom level of Ascomycota.
The closest matching sequences (≥95%) to isolate E-284 were all la-
beled as unidentified Ascomycota (Supplementary Fig. 1). Since the
isolate did not sporulate on PDA media, we went no further in de-
scribing E-284 in greater detail.

Fungal cultures were stored at −80 °C in potato dextrose broth
(PDB) containing 15% (v⁄v) glycerol. Fungi were sub-cultured from the

frozen stock to potato dextrose agar (PDA) and incubated at 25 °C in the
dark, prior to use in experiments.

2.2. Inoculum preparation

For inoculum preparation, the fungi were seeded in 250 ml
Erlenmeyer flasks containing 0.1× potato dextrose broth (PDB), with
continuous shaking at 100 rpm at 25 °C. Seven-day-old mycelial pellets
were harvested and macerated in a liquid homogenizer-mixer into
uniform fragments. The suspension was filtered through sterile absor-
bent cotton wool plugs to remove large hyphal fragments. The in-
oculum concentration was determined by using a haemocytometer with
a compound microscope and was adjusted to 5 × 104 fragments mL−1

through sterile dilution. This inoculum concentration was chosen based
on our previous findings (Dastogeer et al., 2017b). To assess the via-
bility of the fragments, a germination test was carried out on PDA after
incubation for 48 h at 25 °C.

2.3. Stress treatment

Seeds of the research accession of N. benthamiana (research acces-
sion 4 (RA-4)) (Goodin et al., 2008; Wylie et al., 2015) were surface-
sterilised by submerging them in 3% sodium hypochlorite for 3 min and
then in 75% ethanol for 2 min, then rinsed with sterile water three
times. The seeds were sown in steam-treated sand for germination.
Steam sterilization of soil was done at 99 °C for 4 h twice with a gap of
48 h in between steaming sessions to eliminate other fungi. Three-
week-old seedlings were removed from the soil, and the roots were
washed to remove adhering soil. For inoculation, the seedling roots
were submerged in the inoculum suspension for 5 h before planting.
The control seedlings were immersed in sterile distilled water for 5 h.
Treated seedlings were transplanted in steam-treated sand in pots
(10 cm in diameter and 12 cm deep). We used sterilised media to see
the effect only these strains in absence of other microbes. In non-ster-
ilised soil the effect of these fungal stains could have been modified by
the interaction with indigenous microbial communities and we would
not be able to measure the sole effect of these strains. To improve the
efficacy of inoculation, the inoculum suspension was also applied to the
root-zone of the seedling at the time of planting. The root-zone appli-
cation was done by spraying of the inoculum suspension into depres-
sions in the sand where the seedlings were to be planted. The plants
were maintained in a greenhouse at 22–24 °C, 60 ± 5% RH, and with
natural photoperiod. Seedlings were watered to drip point for three
weeks before stress treatment was imposed to allow acclimation of
plants after transplanting and to allow sufficient growth of plants. The
pots were arranged randomly; the position of pots was rearranged every
week to minimise environmental variation within the greenhouse, until
the imposition of stress. Plant infection status was checked at the end of
the experiments by culturing surface-sterilized roots and identifying
isolated fungi by microscopy as well as by sequencing of the ITS region
as described above.

2.4. Sampling

The first sampling was done at 21 days post-inoculation (dpi), re-
ferred to as harvest one (H1, 0 days post-stress). In the following days,
half of the pots from each inoculated and non-inoculated group re-
ceived stress by withholding watering and other half continued to re-
ceive watering as before. There were four plants per pot, five pots per
replication and four replications in each endophyte or non-endophyte
treatment under well-watered condition. The same number of plants
was treated with water stress. When the non-inoculated groups started
showing stress symptoms as manifested by wilting of one or two leaves
from the bottom at 4 days post-stress (at 25 dpi), we considered it as
moderate water stress and harvested the second sample (H2). As the
stress continued, the non-inoculated group showed shoot tip wilting.
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We considered this stage as severe water stress and collected the final
sample (H3) at 8 d post-stress imposition (29 dpi). The 3rd and 4th
mature leaves from the top of a single plant per pot were harvested
during each sampling (a total of five seedlings from each replication
from each endophytic and non-endophytic plants under both well-wa-
tered and stressed groups). Leaves sampled for metabolite extraction
were wrapped in aluminium foil and frozen in liquid nitrogen im-
mediately after harvest and then stored at −80 °C.

2.5. Relative water content and biomass

One seedling in each pot was harvested at the final sampling to
measure the relative water content (RWC) of the leaves and shoot and
root biomass. Seedlings were divided into roots and shoots, and soil was
washed from roots by hand. Samples were desiccated for 48 h at 80 °C,
and dry weight (mg) was recorded. Because of limitations of number of
plants, we measured RWC at the end only. We considered other phy-
siological parameter e.g. wilting behaviour to determine the stress level
as described under “Sampling”, which we thought could be an alter-
native or supplementary to RWC. RWC of the leaf samples was eval-
uated based on the method of Gonzalez (2003). One leaf from each
plant was weighed just after sampling to obtain fresh weight (Wf).
Leaves were then soaked in 100 ml of distilled water for 24 h at 4 °C in
the dark, and turgid weight (Wt) was noted. Subsequently, samples
were dried in the oven at 70 °C for 24 h, and dry weight (Wd) was
measured. RWC was determined as: RWC = (Wf − Wd)/
(Wt − Wd) × 100.

2.6. Metabolite extraction and derivation

Leaf metabolite extraction was done following the protocol of Du
et al. (2012) with modifications. Leaf tissue from five seedlings from
five pots in one replication were mixed for each endophyte treatment
and water treatment. Leaf tissues (100 mg) from the mix which con-
tained similar amount (20 mg) from each five seedlings was pulverised
in liquid nitrogen and extracted in a 1.4 mL solution of methanol:wa-
ter:ribitol (20:2:1). The ribitol was added in the extraction solution as
an internal standard and was prepared in water (0.4 mg mL−1). The
extract was incubated in a thermo-mixer (Eppendorf ThermoMixer® C)
with shaking (500 g) at ambient temperature for an hour and then at
80 °C for 20 min. The extraction solution was centrifuged for 3 min at
3000g, the supernatant was transferred to new tubes, and 1.4 ml of
water and 0.75 ml of chloroform was added. The mixture was vortexed
and centrifuged for 2 min at 3000 × g. The polar phase (methanol/
water) was decanted into 1.5 ml high-performance liquid chromato-
graphy vials and dried in a centrifugal concentrator (Labconco Cor-
poration, Kansas City, MI). Before methoximation, the polar phase was
dried under nitrogen gas. The dried polar phase was methoximated for
90 min at 30 °C with 50 μl of 20 mg mL−1 methoxyamine hydro-
chloride in pyridine (made fresh) and was trimethylsilylated (TMS)
with 30 μl MSTFA (N-methyl-N-(trimethylsilyl) trifluoroacetamide with
1% trimethylchlorosilane) and 40 ml pyridine for 30 min at 70 °C whilst
shaking at 200 × g. The reaction was allowed to sit for 30 min at room
temperature before being subjected to Gas chromatography–mass
spectrometry (GC–MS) analysis.

2.7. Gas chromatography–mass spectrometry analysis

Extracted metabolites were analysed on an Agilent HP5890II GC
fitted with an Agilent 5972 MSD system. A derivatized aliquot (1 μl) of
the extracts was injected into a Varian Factor 4 capillary column (VF-
5ms, 30 m × 0.25 mm, 0.25 μm plus 10 m EZ-Guard) (Agilent J &W
Scientific, Folsom, CA). The inlet temperature was set at 300 °C. After a
5-min solvent delay, initial GC oven temperature was set at 70 °C for
1 min, ramped at 1 °C/min until 76 °C and then the GC oven tempera-
ture was raised to 325 °C at a rate of 6 °C/min with a final hold for

8 min. The MSD transfer line heater was set to 300 °C, MS quadruple at
150 °C and the ion source temperature was adjusted to 230 °C.
Hydrogen was used as the carrier gas with a constant flow rate set at
1 ml min−1.

2.8. Data analysis

The spectral data files were processed using AMDIS (Automated
Mass Spectral Deconvolution and Identification System) software for
metabolite identification. Metabolites were identified by retention
index and spectral comparison using the commercial mass spectral li-
brary NIST 14 (National Institute Standard and Technology).
Metabolites that had a confirmed identity and were present in the
majority of samples were used for further data analysis; other com-
pounds present at a low abundance across the dataset were not used for
statistical analysis. Data were normalised by dividing the response va-
lues for each compound in each sample by the mean value of the re-
ference sample for the metabolite in the sample batch run. The re-
ference sample was made by combining leaf tissues from a selection of
the entire sample range (covering all time points and treatments) that
was extracted in bulk, and four of these reference samples were run for
each batch. Relative response ratios were calculated based on internal
standard extracted per gram fresh weight for each analysed metabolite
as described by Roessner et al. (2000). Data were tested for normality,
and a multivariate ANOVA was performed on log transformed values
using SPSS version 24 (IBM SPSS, USA). In the ANOVA for each of the
metabolites the response ratio was the dependent variable. There were
three factors (dependent variables) such as the water treatment (two
levels; well-watered, stressed) endophyte status (three levels; inocula-
tion with NE, E-162, E-284) and the days to sampling (three levels; H1,
H2 and H3). Both the main effects and possible interaction effects were
determined. Since the sampling was done in a destructive way, repeated
measures ANOVA was not possible. The response ratios were auto-
scaled to improve the biological interpretability (van den Berg et al.,
2006) and a global principal component analysis (PCA) was initially
applied to the whole dataset to verify statistically the differences be-
tween the metabolic profiles of the watered and stressed tissues, and to
identify the main metabolites responsible for the differences. In a
subsequent step, partial least squares discriminant analyses (PLS-DA)
using regressions were done separately for the watered, moderately and
severely stressed samples with both endophytic and non-endophytic
samples using Metaboanalyst 3.0 (Xia and Wishart, 2016). The x-fold
changes of metabolite were presented for endophytic samples relative
to non-endophytic samples at H1 and for the stressed samples at each
time point relative to respective watered control at each time point as
well as for the stress-treated endophytic samples relative to stress-
treated non-endophytic samples at each time point. Statistical differ-
ences in metabolites between treatment means were measured by
Mann-Whitney test algorithms at p < 0.05 probability. Plant meta-
bolic pathway map was constructed in VANTED (Junker et al., 2006)
using normalised log-transformed response ratio of the metabolites
identified.

3. Results

3.1. Overview of metabolite analysis results

Fungal re-isolation data at the end of the experiment showed that
there was successful recovery of both fungal strains in the inoculated
plant roots. Our investigation confirmed that infection was successful
for most of the sample for both strains which was about 90% and 82%
for E-162 and E-284, respectively. We did not find any major differ-
ences in infection rate due to stress treatment. Non-infection of some
seedlings was present, and this may influence the results to a small
extent. We did not check the fungal growth in shoots, but our previous
study in vitro (Dastogeer et al., 2017b) did show that any of the fungal
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Table 1
Three-factor ANOVA [Fdf (4, 54)] values of all metabolites detected from endophytic and non-endophytic N. benthamiana plant grown under well watered, moderately and severely
stressed conditions.
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*WT =Water Treatment, E = Endophyte, D = Day (sample harvesting time points H1, H2 and H3). Significant F-values are indicated by shading the box where the dark, medium dark
or the light shades indicate that the F-value is significant at p ≤ 0.001, at p ≤ 0.01 to> 0.001 or at p ≤ 0.05 to>0.01, respectively.

K.M.G. Dastogeer et al. Environmental and Experimental Botany 143 (2017) 59–71

63

98



strains could not grow in shoots. In the metabolite analysis, a total of 93
distinct metabolites were detected in leaves of N. benthamiana, in-
cluding 20 sugars, 13 sugar alcohols, 21 amino acids, 29 organic and
fatty acids and 10 other compounds. Of these, 43–74% exhibited dif-
ferential accumulation as a function of single factors such as endophyte
infection, stress treatment and days to sampling (40, 47 and 74 meta-
bolites, respectively) (Table 1). Some metabolites showed a differential
response (p < 0.05) to two factors, i.e. as a function of the interaction
between water treatment × endophyte infection and endophyte in-
fection × days to sampling, or as a function of three-way interaction of
endophyte infection × water treatment × days to sampling (17, 10 and
7 metabolites, respectively) (Table 1).

Under well-watered conditions, higher total amounts of all meta-
bolites were measured in both E-162- and E-284 endophytic plants as
compared to non-endophytic plants at sampling points H1, H2 and H3.
Water stress induced significant changes in the levels of total amounts
of all compounds categories regardless of inoculation status. The
magnitudes of change, however, varied between endophytic and non-
endophytic samples. For example, under moderate stress, the total
content of sugars increased by 105% and 71% in E-162 and E-284 en-
dophytic plants, respectively, whereas it increased by only 62% in non-
endophytic plants compared with the well-watered and non-endophytic
control plants sampled at H1 (Fig. 1). Under severe stress, the differ-
ences between stressed versus watered and endophytic versus non-en-
dophytic became more pronounced (Fig. 1).

Principal component analysis (PCA) showed a good separation of

watered, moderately-stressed and severely stressed samples (Fig. 2a).
This separation seems to be due to the water treatment (watered vs.
moderate water stress vs. severe water stress) with further separation
between endophytic and non-endophytic samples. The separation be-
tween samples of watered and stressed plants appeared to be mostly
due to differential levels of threonine, malonate, oxaloacetate, doc-
osanoate, cystathionine, tyrosine, myoinositol, lysine, phenylalanine,
citrate, sorbitol and tryptophan (Fig. 2b). The heatmap revealed the
patterns of fluctuation of metabolite levels among treatments, showing
an overview of the effect of the various treatments on the metabolism of
the plant (Fig. 2c).

PLS-DA analysis revealed the strong influence of endophyte in-
oculation regardless of water treatment on metabolite composition.
There was a good separation of endophytic samples from non-en-
dophytic samples under well-watered conditions (Fig. 3a). The se-
paration was more pronounced under moderate and severe water stress
(Fig. 3c and d). The corresponding metabolite-biomarkers of the plant
response to endophyte treatments displayed in the corresponding
loading plots revealed the patterns of variation of metabolite levels,
showing the effect of the endophyte treatment on the metabolism of the
plant under both wet and dry conditions (Fig. 3b, d and f).

3.2. Effects of endophyte colonisation under well-watered condition

In well-watered plants at H1, 17–21 metabolites expressed differ-
entially (p < 0.05) in endophytic plants of which 11 metabolites were

Fig. 1. Percent relative changes of the total amount of different metabolite groups for both endophytic and non-endophytic Nicotiana benthamiana leaf samples collected at different
sampling points over the amount in non-endophytic well-watered samples at H1. NE = no endophyte, E-162; inoculation with fungal isolate E-162; E-284; inoculation with fungal isolate
E-284. W; well-watered, d = drought stressed. H1, H2, and H3 indicate sample harvesting time points. AA = Amino Acid, OA = Organic Acid, OC = Other Compounds, SA = Sugar
Alcohol, SU = Sugar.

Fig. 2. Principal component analysis (PCA) and hierarchical clustering analysis of 93 metabolites in the leaves from endophytic and non-endophytic N. benthamiana plants grown under
well-watered, moderate and severe water stressed conditions. Score (a) and loading plot (b) of samples (c) heat-map constructed using average linkage hierarchical clustering. NE = no
endophyte, E-162; inoculation with E-162; E-284; inoculation with E-284. W = well-watered, d = drought stressed. H1, H2, and H3 indicate sample harvesting time points.
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common to both fungal inoculation and the other ten and six metabo-
lites were exclusive to the effect of strains E-162 and E-284, respectively
(Supplementary Table 1). For example, E-162-endophytic plants had
one to three-fold (log2fc) increases in allantoin, citrate, GABA, glycerol,
glycerol-3-P, hexadecanoate, mannitol, mannose, pipecolate, and
threonine and inoculation with E-284 caused one to three-fold (log2fc)
increases in allantoin, arabinose, citrate, glycolate, heptadecanoate,
leucine, mannitol, oleic acid, and xylitol (Fig. 4; Supplementary
Table 1).

Among the metabolites, only arabinose and mannitol showed a
differential response due to inoculation of either of the fungi

throughout all the sampling points under well-watered conditions, and
plant age did not affect their response. The majority of metabolites in
non-endophytic plants did not show any significant changes with the
age of the plants, with the exceptions of allantoin, ascorbate, maltose,
alanine and aspartate. Similarly, none of the metabolites except gly-
cerate, succinate, and octadecanol in E-162 endophytic plants and
glutamate, mannitol, malonate, aconitate maltose, rhamnose and
mannose in E-284 endophytic plants exhibited a substantial change
(P < 0.05) as the plants grew older over time under well-watered
condition (Supplementary Table 2).

Fig. 3. Partial least squares-discriminant analyses (PLS-DA); component 1/2 score plots (a, c, e); and loading plots (b, d, f) obtained from hierarchical average linkage clustering for well-
watered samples (a and b), moderately stressed samples (c and d) and severely stressed samples (e and f). NE = no endophyte, E-162; inoculation with E-162; E-284; inoculation with E-
284. W; well-watered, d = drought stressed.

Fig. 4. Fold changes (log2) of metabolites in endophytic samples over non-endophytic samples under well-watered conditions throughout the course of sampling, NE = no endophyte, E-
162; inoculation with E-162; E-284; inoculation with E-284; H1, H2, and H3 indicates the samples harvesting time points. Only the metabolites that showed significant differences
(p < 0.05) between non-endophytic and either of the endophytic samples at the respective sampling point are shown.
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3.3. Effects of endophyte colonization under water stress condition

Under moderate water stress, 11 and nine metabolites were up-
regulated in E-162 and E-284 plants respectively of which five com-
pounds were common. Under severe water stress, six and seven meta-
bolites were significantly up-regulated in E-162 and E-284 endophytic
plants respectively of which five compounds were common. Under se-
vere stress, only two compounds were downregulated in both en-
dophytic and non-endophytic plants (Fig. 5).

3.3.1. Amino acids
The majority of amino acids increased in both endophytic and non-

endophytic plants under moderate and severe water stress (Table 2,
Fig. 6). The most pronounced increase (2–5-fold) was observed for as-
paragine, phenylalanine, lysine, methionine, proline, tryptophan and
tyrosine in all samples regardless of endophytic colonization. On the
other hand, threonine, cystathionine, pyroglutamate, valine decreased
significantly in most samples under stress (Table 2). Endophyte in-
oculation caused differences in accumulation of certain amino acids
under stress. For example, proline accumulated at a significantly
(P < 0.05) lower level, valine was higher in E-284 plants, whereas
GABA and leucine accumulated higher amount in E-162 plants as
compared to non-endophytic plants under severe stress (Fig. 6)

3.3.2. Organic acids
Approximately 20–24% of organic acids in E-162 and E-284 en-

dophytic plants, and 34% of organic acids in the non-endophytic plants,
increased under moderate stress (Table 2). Under severe stress, 27–70%
of the organic acids showed differential accumulation (p < 0.05). The
most pronounced increase over watered samples were citrate (2–5-
fold), dodecanoate (1- to 4-fold) and fumarate for all samples regardless
of fungal treatments. In addition, docosanoate, malonate and ox-
aloacetate decreased following stress in all samples (Table 2).

Endophyte inoculation caused differences in accumulation of cer-
tain organic acids under stress. For example, heptadecanoate, succinate
and pipecolate in E-162 and heptadecanoate, oleic acid and succinate in
E-284 endophytic plants exhibited significantly higher amounts (1–2-

Fig. 5. Venn diagrams showing number of metabolites up-and down regulated in en-
dophytic and non-endophytic samples and their overlaps under both moderate (H2) and
severe water stress (H3). NE = no endophyte, E-162; inoculation with E-162; E-284;
inoculation with E-284.

Table 2
Fold change (log2) of metabolites under moderate and severe stress in endophytic and
non-endophytic plants over corresponding well-watered plants. Fold change was calcu-
lated by dividing the response value of a particular compound under stress condition with
that under well-watered condition and the log2 value was obtained. Metabolites that were
differently expressed (P≤ 0.05) are represented with their fold-change bolded.

Metabolites Moderate stress Severe Stress

NE E-162 E-284 NE E-162 E-284

Sugar
Arabinose 0.24 −0.08 2.27 2.38 −0.36 3.23
Cellobiose 1.00 0.44 1.25 2.00 0.95 3.07
Fructose 0.92 1.32 1.34 1.99 2.95 2.00
Fucose 1.04 1.95 2.64 2.36 2.86 2.84
Galactopyranose −2.19 −0.43 −0.60 −2.96 −0.37 −1.33
Galactose 0.65 0.44 1.03 0.81 0.97 0.80
Gentibiose 0.43 0.28 0.03 −0.09 −1.13 −0.35
Glucose 0.61 1.25 0.48 1.43 3.06 1.24
Maltose −1.12 −0.81 −1.89 −1.71 −0.64 −1.07
Mannose −0.07 0.10 0.13 −0.21 0.07 0.54
Melibiose 0.29 0.25 0.03 0.17 1.24 0.53
Psicose −0.36 −0.02 0.03 −1.54 −0.89 −0.85
Raffinose −0.10 0.16 0.31 0.42 1.22 −0.15
Rhamnose −0.17 2.40 −0.95 −0.09 2.41 0.80
Ribose 0.15 −0.19 −0.29 0.62 −1.08 0.69
Sucrose 0.47 0.53 0.40 1.11 2.36 1.62
Talose −0.05 −0.22 −0.90 −0.98 0.17 −1.06
Threose 0.01 0.18 0.13 0.71 0.13 1.07
Trehalose 1.31 1.31 1.20 2.31 3.05 3.23
Xylose −0.92 −0.28 −0.03 −1.94 −1.05 1.61

Organic acids
Aconitate 0.04 0.03 −0.08 0.41 0.26 1.13
Arachidonic acid 0.06 0.05 0.54 0.27 0.19 0.40
Ascorbate −0.35 −0.24 −0.27 −0.47 −0.27 −0.58
Benzoate −0.57 −0.29 −0.63 −1.89 −0.57 −0.84
Citrate 3.25 1.74 1.62 5.01 3.81 4.13
Docosanoate −1.50 −0.94 −0.97 −2.13 −3.84 −4.37
Dodecanoate 1.23 0.87 1.35 3.35 3.14 2.39
Fumarate 2.11 0.99 0.92 1.75 1.68 1.79
Gluconate −0.07 0.53 0.16 0.82 1.50 1.85
Glycerate 1.42 1.63 1.23 2.54 1.94 1.66
Glycolate 0.57 0.03 −0.02 1.22 1.17 1.40
Gulonate −0.51 −0.15 −0.19 −2.33 −0.32 −0.97
Heptadecanoate 0.15 0.18 0.51 −0.12 0.27 0.50
Hexadecanoate 0.21 0.33 0.30 −0.69 0.06 −0.62
Isocitrate −0.15 −0.26 −0.19 1.17 −0.16 −0.14
Lactate −1.23 −0.90 −1.22 −1.91 −1.15 −1.52
Linoleic acid −0.50 −0.22 −0.43 −0.74 −0.37 −0.20
Malate 1.37 0.99 0.37 1.64 1.36 1.53
Maleate −0.24 −0.34 −0.30 −0.25 −0.27 −0.17
Malonate −0.63 −0.65 −0.95 −1.05 −2.37 −1.58
Nonanoate 1.42 0.90 1.53 2.07 2.30 2.38
Octa-decanoate 0.02 −0.05 −0.07 −0.06 0.92 0.71
Oleic acid 0.29 0.43 0.04 0.84 0.40 2.05
Oxalate −0.01 0.12 0.05 −0.69 −0.25 −0.69
Oxaloacetate −0.60 −0.75 −0.59 −0.84 −0.94 −0.80
Pipecolate −0.49 −0.45 −0.59 −0.75 −1.13 −0.82
Succinate −0.52 0.40 0.58 −1.43 0.91 0.65
Tartarate −0.50 −0.51 −0.47 −0.68 −0.81 −0.93
Threonate 1.94 0.64 1.25 2.82 2.26 2.55

Sugar Alcohol
Digalactosyl glycerol −0.04 0.31 −0.92 0.75 0.68 −0.70
Fucitol 0.80 0.76 0.40 0.22 0.94 0.70
Galactinol 0.70 0.78 0.83 1.00 0.56 0.51
Galactitol 0.21 0.88 0.56 0.98 1.34 1.01
Galactosyl-glycerol −0.79 −0.73 −0.47 −1.08 −0.69 −0.79
Glycerol 0.84 1.03 0.93 1.30 1.33 1.21
Glycerol-3-P −0.69 −0.37 −0.33 −1.25 −1.33 −1.45
Mannitol 0.67 1.31 0.36 0.59 1.86 1.88
Myoinositol 1.88 1.92 2.03 3.82 3.83 3.51
Ribonate −0.60 −0.46 −0.45 −0.99 −0.26 −0.59
Sorbitol 2.09 1.80 1.49 3.67 4.13 4.05
Threitol 0.56 0.86 0.59 0.95 0.92 0.76
Xylitol 0.91 1.02 1.40 1.57 1.50 1.83

(continued on next page)
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fold, p < 0.05) as compared to non-endophytic plants under moderate
stress (Fig. 6). Under severe stress, nine to ten organic acids accumu-
lated at significantly (p < 0.05) different levels in endophytic plants
than in non-endophytic plants (Fig. 6; Supplementary Table 3).

3.3.3. Sugars
In addition to fructose and fucose, which were significantly upre-

gulated in all the samples, glucose and rhamnose were upregulated only
in E-162 plants, arabinose and trehalose only in E-284 plants, and
trehalose in non-endophytic plants under moderate stress (Table 2).
Total sugars increased by 55, 30 and 40% under severe stress. The most
pronounced changes were in accumulation of glucose, fructose, fucose,
sucrose and trehalose regardless of endophyte status (Table 2).

Arabinose, galactopyranose, fucose, rhamnose accumulated at sig-
nificantly higher amounts (2–5-fold) in both E-162 and E-284 plants
than in non-endophytic plants under moderate stress (Fig. 6). It is in-
teresting to note that 13 sugars out of the 20 tested showed a variable
response in E-162 plants, but only four sugars had a variable response
in E-284 plants (Fig. 6, Supplementary Table 4). Arabinose, mannose
and sucrose the three sugars accumulated substantially higher in en-
dophytic plants than in non-endophytic plants under stress (Fig. 6;
Supplementary Table 3).

3.3.4. Sugar alcohols
Some sugar alcohols showed varied response under stress in non-

endophytic plants whereas 35–55% of the total number of sugar alco-
hols analysed showed differential accumulation in endophytic plants
(Table 2). Myinositol and sorbitol increased following stress in all
samples irrespective of colonisation status. Mannitol and glycerol and
glycerol-3-P were accumulated differentially under stress in endophytic
plants but not in non-endophytic plants (Table 2).

In endophytic plants under moderate and severe water stress, we
found that several sugar alcohols accumulated to higher levels than in
non-endophytic plants. For example, mannitol, xylitol and glycerol in E-
162 and mannitol and xylitol in E-284 plants showed a significantly
higher value over non-endophytic plants under moderate stress (Fig. 6;
Supplementary Table 3).

3.3.5. Other compounds
Most of the other compounds identified did not show any significant

change under stress. Exceptions were ethanolamine, which rose under
stress (1–2-fold, p < 0.05) in all samples. Levels of cytosine and urea
were detected significantly higher (p < 0.05) in endophytic plants
than in non-endophytic plants at both moderate and severe water stress.
Compounds that decreased were diethylene glycol in both E-162 and E-
284 plants, and octadecanol and thiourea in E-162 plants (Fig. 6;
Supplementary Table 3).

3.4. Relative water content (RWC) and biomass traits

Under well-watered conditions, no significant differences were ob-
served in seedling biomass, or leaf RWC by endophyte colonization
except that E-162 plants had higher dry mass in shoots (Fig. 7). Water
stress significantly affected the shoot and root dry weights as well as
RWC and increased the root to shoot ratio in both endophytic and non-
endophytic plants. When the plants were subjected to severe stress,
both endophyte plants produced significantly higher root biomass but
not shoot biomass and accumulated higher RWC in leaves compared to
non-endophytic plants (Fig. 7).

4. Discussion

To characterise the metabolic responses of N. benthamiana to water
stress and the potential effect of fungal endophytes on this response, we
evaluated the differences in metabolite accumulation in leaves of en-
dophytic or non-endophytic Nicotiana benthamiana plants under well-
watered, moderately and severely stressed conditions. Analyses iden-
tified a separation between endophytic and non-endophytic plants,
between the watering levels (watered and stressed) and among the
harvest times.

Arabinose and mannitol were significantly and consistently up-
regulated in both E-162- and E-284 plants irrespective of plant age
under well-watered, moderate and severe stressed conditions, in-
dicating that accumulation of these metabolites is directly associated
with fungal inoculation. Similarly, accumulation of GABA was found to
be directly associated only with E-162 plants and xylitol only with E-
284 plants, irrespective of age and water treatment status.

There were significantly higher levels of several amino acids in
water-stressed plants. Amino acids synthesis is influenced because of
the role as the precursor proteins as well as for diverse kinds of com-
pounds with various functions in plant growth and adaptation to stress
(Less and Galili, 2008). Abiotic stress causes protein degradation
leading to an internal ammonium build-up in plants (Krasensky and
Jonak, 2012; Vierstra, 1993). Under stress, production of amides, par-
ticularly asparagine, inhibits ammonium toxicity (Bowne et al., 2012;
Díaz et al., 2005; Rare, 1990). Accumulation of various amino acids is
associated with plant tolerance to water stress (Díaz et al., 2005; Mayer
et al., 1990; Yoshiba et al., 1997).

Differential accumulation of several amino acids occurred in en-
dophytic plants. For example, threonine and GABA in E-162 plants and
leucine in E-284 plants increased significantly under well-watered
conditions. A previous study also reported a higher level of some amino
acids in tall fescue inoculated with endophytes, and they postulated
that endophytes could have directly synthesised these amino acids
(Lyons et al., 1990). Contrasting results were reported by Redman et al.
(2011) where endophyte infection decreased the level of certain amino
acids in grasses, and they described that endophyte effects on plant

Table 2 (continued)

Metabolites Moderate stress Severe Stress

NE E-162 E-284 NE E-162 E-284

Amino acid
Alanine 0.06 0.01 0.00 −0.03 0.04 0.06
Asparagine 4.43 2.56 2.46 5.28 4.47 4.26
Aspartate 0.16 0.20 0.00 −0.12 0.03 −0.01
Cystathionine −0.78 −0.43 −0.83 −1.83 −1.15 −0.98
GABA −0.06 0.20 0.40 −0.01 0.14 0.02
Glutamate 1.28 0.55 1.20 2.34 1.45 2.17
Glutamine 0.56 1.07 0.80 1.26 0.93 1.39
Glycine 1.40 0.38 0.31 2.97 1.31 1.24
Homoserine 0.38 0.31 1.41 1.64 1.77 2.59
Isoleucine 0.52 0.99 0.74 1.19 1.12 1.30
Leucine 0.17 0.08 0.38 −0.08 0.83 −1.66
Lysine 3.13 1.65 2.08 4.24 2.76 3.32
Methionine 2.24 1.56 1.34 3.22 3.61 3.21
Phenylalanine 3.23 3.35 3.39 4.06 4.24 4.48
Proline 2.17 1.60 1.49 3.52 2.99 2.66
Pyroglutamate 0.50 1.00 0.84 −1.30 −1.01 −0.74
Serine 0.44 0.99 0.87 1.25 1.86 3.14
Threonine −0.78 −1.42 −1.25 −1.33 −3.78 −2.50
Tryptophan 2.91 3.03 3.11 4.36 3.81 4.29
Tyrosine 2.70 2.01 2.71 4.64 3.92 4.37
Valine −1.75 −0.32 −0.27 −2.80 −1.07 −0.83

Other Compounds
Adenosine −0.11 −0.10 −0.18 −0.64 −0.39 −0.64
Allantoin −0.34 −0.25 −0.27 −1.09 −0.62 −0.59
Cytosine −0.18 0.02 0.09 −0.12 0.03 0.36
Diethylene glycol −0.34 −0.24 −0.48 −0.86 −0.77 −0.90
Ethanolamine 1.78 1.67 1.89 2.69 2.40 2.39
Guanine −0.22 −0.16 −0.21 1.16 1.04 1.32
Octadecanol 0.06 −0.01 0.00 0.04 0.02 −0.03
Thiourea 1.09 1.15 0.51 −0.87 −0.35 0.04
Uracil −0.04 0.00 0.00 0.04 0.06 −0.01
Urea −0.01 0.05 0.23 −0.11 −0.10 0.90
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metabolite were dependant of host characteristics and nutrient supply.
Nagabhyru et al. (2013) found that several amino acids were differ-
entially expressed in endophytic plants under water stress.

In accordance with earlier investigations (Verslues and Sharma,
2010), higher proline levels occurred in plants in response to moisture

stress. However, proline levels were higher in non-endophytic plants
than in endophytic plants under stress, indicating that proline accu-
mulation is somewhat inhibited by colonization by endophytic fungi.
Proline is a stress-related amino acid, which may function as an os-
moregulator (Yoshiba et al., 1997) as well as an ROS scavenger (Chen

Fig. 6. Metabolic pathway map for endophytic and
non-endophytic samples under mild and severe
water-stressed conditions. Bars with * indicate sig-
nificant difference from corresponding non-en-
dophytic samples. Plots filled with a dim grey color
indicate that metabolite accumulated differentially
in both fungal inoculated samples, and those partly
filled with dim gray and light grey color indicate
metabolite accumulated differentially only in E-162
or E-284 inoculated plants, respectively, throughout
all the time points of sampling. The significant dif-
ferences were obtained by ANOVA test at the 95%
confidence interval after normalizing data using log
transformation.
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and Dickman, 2005). Its accumulation correlates with both osmotic
stress tolerance and responses to stress conditions involving dehydra-
tion (Aspinall and Paleg, 1981; Gzik, 1996; Verbruggen and Hermans,
2008). However, it is still debatable if its presence is an adaptive trait
that confers higher stress tolerance or if its accumulation is a symptom
of stress damage (Ashraf and Foolad, 2007). The relatively lower ac-
cumulation of proline in endophytic plants could, therefore, be an in-
dication that there is less damage in endophytic drought-stressed
plants. Relatively lower levels of proline in endophytic plants than non-
endophytic plants under stress has been reported by others (Elbersen
and West, 1997; Hahn et al., 2008; Pandey et al., 2016; Shukla et al.,
2012; Vazquez-de-Aldana et al., 2013; Yang et al., 2014), as has in-
creased proline levels in endophytic plants under stress (Bae et al.,
2009; Cong et al., 2015; Molina-Montenegro et al., 2016; Nagabhyru
et al., 2013 Zhang and Nan, 2007) and no change in proline (Bayat
et al., 2009; Nagabhyru et al., 2013). The proline response may depend
on the host-endophyte interaction and the level of stress.

Methionine, besides its role in protein synthesis, acts as the pre-
cursor for S-adenosylmethionine (SAM), the principal methyl donor in
transmethylation reactions (Chiang et al., 1996). SAM also serves as a
precursor for compounds including 3-dimethylsulphoniopropionate
which is an osmoprotectant (Amir et al., 2002).

Tyrosine and phenylalanine are produced through the shikimate
pathway and act as precursors for a varied range of secondary meta-
bolites, including ROS scavengers (Gill and Tuteja, 2010; Less and
Galili, 2008). Water stress increases the production of ROS and the
regulation of the activity of enzymes involved in detoxifying ROS, to
escape cellular damage, is considered to be vital in plant dehydration
tolerance (Chaves et al., 2003).

Accumulation of some of the amino acids such as asparagine, cy-
tosine, lysine, methionine, phenylalanine, pyroglutamate, mentioned
above did not appear to be associated with endophyte inoculation since
we observed no consistent endophyte effects on these amino acids le-
vels under stress. A more or less comparable trend was described for
water stressed tall fescue infected with the fungal endophyte E. coeno-
phiala (Nagabhyru et al., 2013).

Soluble sugars such as glucose, fructose and sucrose play critical
roles in plant structure and metabolism at the cellular and whole-or-
ganism levels (Couée et al., 2006). Sugars commonly accumulate in
plants under stress, and the level of accumulation is associated with
plant water stress tolerance (Bowne et al., 2012; Hoekstra et al., 2001).
These sugars influence osmotic adjustment and thus help regulate plant
water uptake and maintain cell turgor under water deficit conditions
(Krasensky and Jonak, 2012; Morgan, 1984) and can act as regulatory
molecules in various signalling pathways (Hanson and Smeekens, 2009)
involved in maintaining redox balance and ROS scavengers (Couée
et al., 2006; Deryabin et al., 2007). Our findings showed that en-
dophytic plants accumulated a higher level of different osmotically
active sugars. For example, endophytic plants generally accumulated
more total sugars in leaves compared to non-endophytic plants
(Fig. 1C). Endophyte presence increased arabinose, mannose and su-
crose with few others indicating such increases could be a part of en-
dophyte-mediated water stress tolerance of N. benthamiana. It implies
that endophytes could have contributed to increased synthesis of sugars
to allow better osmotic adjustment and thus alleviate the impact of
stress on the host plant. Comparable results were obtained in other
plant-endophyte systems where endophytes improved water stress tol-
erance of tall fescue, maize and grapevine plants with higher and faster
accumulation of stress-related metabolites (Fernandez et al., 2012;
Nagabhyru et al., 2013; Vardharajula et al., 2011).

Due to hydroxyl groups, sugar alcohols can imitate the structure of
water and can make an artificial sphere of hydration surrounding the
macromolecules (Schobert, 1977). Sugar alcohol can also act as sca-
vengers of ROS for impeding lipid peroxidation and the consequent
cellular destruction (Smirnoff and Cumbes, 1989). Two sugar alcohols,
myoinositol and sorbitol increased due under water stress in all plants
regardless of colonisation status. Endophyte colonisation resulted in a
higher accumulation of mannitol, xylitol and glycerol-3-P. Higher accu-
mulation of mannitol in endophyte-endophytic plants was also reported
by Richardson et al. (1992). These authors did not observe any effect on
the mannitol levels when the plants were challenged with polyethylene
glycol, which mimics water stress. Mannitol accumulation in endophytic

Fig. 7. Effect of endophyte colonization and water
stress on biomass and RWC of N. benthamiana seed-
lings. Bars with same letter are not statistically dif-
ferent according to Tukey’s multiple comparisons
test (P < 0.05 n = 20). Plant biomass and leaf RWC
were from seedling harvested at H3 (8 days post-
stress) from well-watered and stressed samples.
NE = no endophyte, E-162; inoculation with E-162;
E-284; inoculation with E-284.
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plants in our study could be because this metabolite is common fila-
mentous fungi (Solomon et al., 2007). Mannitol can act as an osmopro-
tectant in plants and fungi under abiotic stress, as well as serve as an
antioxidant (Patel and Williamson, 2016), so mannitol in the endophytic
plants may have contributed to their tolerance to water stress (Chan
et al., 2011; Hu et al., 2005; Sickler et al., 2007; Tarczynski et al., 1993)

Increased levels of some tricarboxylic acid cycle (TCA) inter-
mediates under stress such as aconitate, citrate, fumarate, and malate
could be reflective of the plant’s mechanisms to withstand water stress.
Moreover, higher levels of aconitate, fumarate, and succinate in en-
dophytic plants over non-endophytic plant could be an indicative of
better mitochondrial activity leading to increased formation of reducing
agents and ATP (Vasquez-Robinet et al., 2008).

Endophytic plants had significantly higher root weight and RWC
under stress. A similar result was reported by Hassan et al. (2014) who
demonstrated that presence of Trichoderma spp. significantly increased
root length and root dry mass in millet plants. Higher root biomass,
which is frequently noted in drought-tolerant plants, could also con-
tribute to avoidance in endophyte-colonized plants (Harman, 2000;
Mastouri et al., 2012). Endophyte induced higher RWC in water
stressed plants is in line with the earlier investigations (Bae et al., 2009;
Zhang and Nan, 2007). These results suggested that endophyte colo-
nization may help maintain the host cell protoplasm water to support
metabolization (Malinowski and Belesky, 2000).

Production of bioactive plant secondary metabolite by fungal en-
dophytes is well-known (see review by Aly et al., 2013) but the en-
dophyte induced changes in plant metabolism particularly under water
stress and their molecular mechanisms have not been studied well. In a
study on the effects of E. festucae infection on ryegrass revealed that
endophyte has significant effects on host responses to stress through
reprogramming of host metabolism and altering stress responsive gene
expression and substantially alters host development (Dupont et al.,
2015). Rasmussen et al. (2008) reported of roles E. coenophiala on the
primary and secondary metabolism of Lolium perenne (perennial rye-
grass). The necessity of more works to identify robust metabolic traits
and pathways associated with stress tolerance in plants have been
emphasized in reviews (Rasmussen et al., 2012). As we observed in the
endophytic plants, the fungi in the infected plants may have induced, or
rapidly activated, the plant biochemical reactions to accumulate the
metabolites during stress conditions, and this may be one of the ways
that the presence of the endophyte helps reduce the effects of water
deficit stress. It supports the view that beneficial effects of fungal en-
dophytes on plant is context dependent (Rodriguez et al., 2009; Yang
et al., 2014). It should be mentioned that the generalization of our
findings to natural environments entail further investigation, since the
experimental design, e.g., glasshouse or controlled conditions and in-
teraction with other biotic and abiotic factors may significantly impact
the outcome of this type of experiment.

Fungal endophytes may play a role in persistence of annual
Australian N. benthamiana plants, an ephemeral species that lives in the
hot, dry and unpredictable conditions of northern Australia. If en-
dophytes enable these plants to survive somewhat longer than non-
endophytic plants when water stress occurs, their opportunity for seed
set is increased.
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Supplementary Information: 

 

 
 

Supplementary Fig.1: Distance tree of results obtained from NCBI BLAST search of the ITS-based query 

sequence of the fungal strain E-284. Tree was created using Fast Minimum Evolution method (Desper and 

Gascuel, 2004). The maximum allowed fraction of mismatched bases in the aligned region between any pair 

of sequences was 0.75.  Number of nodes were reduced in the tree by collapsing subtrees composed of nodes 

that belong to the same Blast name.  

 

Desper, R., Gascuel, O., 2004. Theoretical foundation of the balanced minimum evolution method of 

phylogenetic inference and its relationship to weighted least-squares tree fitting. Molecular Biology and 

Evolution 21, 587-598. 
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Supplementary Table 1: Fold change (Log 2) of metabolites in the endophytic plants over the non-

endophytic plants at various time points under well-watered conditions. 

 

 Metabolites 

NE

H1.

w 

E-

162H1.w 

E-

284H1.w 

NEH2.

w 

E-

162H2.w 

E-

284H2.w 

NEH3.

w 

E-

162H3.w 

E-

284H3.w 

 
Sugar    

 
   

 
 

1 Melibiose 1.00 0.10 0.04 1.00 0.19 0.10 1.00 0.00 -0.03 

2 Arabinose 1.00 4.00 2.32 1.00 3.73 2.44 1.00 3.78 2.55 

3 Fructose 1.00 0.13 -0.09 1.00 0.00 -0.23 1.00 0.25 0.09 

4 Fucose 1.00 -0.13 -0.06 1.00 0.31 0.16 1.00 0.04 0.11 

5 Galactopyranose 1.00 0.09 0.34 1.00 0.09 0.16 1.00 0.04 0.34 

6 Galactose 1.00 -0.15 -0.17 1.00 0.08 0.02 1.00 -0.09 0.01 

7 Glucose 1.00 -0.06 -0.02 1.00 0.14 0.25 1.00 -0.11 -0.11 

8 Gentibiose 1.00 0.18 0.14 1.00 0.02 0.26 1.00 -0.32 -0.04 

9 Mannose 1.00 1.03 0.60 1.00 1.20 1.17 1.00 0.94 0.87 

10 Psicose 1.00 0.71 -0.41 1.00 0.86 -0.09 1.00 0.89 0.09 

11 Raffinose 1.00 -0.03 -0.15 1.00 0.16 -0.03 1.00 0.14 0.17 

12 Rhamnose 1.00 0.04 -0.50 1.00 -0.22 0.45 1.00 -0.04 -0.09 

13 Maltose 1.00 -1.67 -0.85 1.00 -2.95 -1.78 1.00 -2.10 -0.51 

14 Ribose 1.00 0.42 0.21 1.00 -0.40 0.11 1.00 0.89 0.54 

15 Sucrose 1.00 -0.41 -0.16 1.00 -0.31 -0.35 1.00 -0.12 0.03 

16 Talose 1.00 0.16 -0.34 1.00 -0.04 0.02 1.00 0.03 0.02 

17 Threose 1.00 -0.25 -0.05 1.00 -0.17 -0.09 1.00 0.03 -0.02 

18 Trehalose 1.00 0.01 -0.05 1.00 -0.03 -0.17 1.00 0.29 -0.18 

19 Cellobiose 1.00 -0.11 -0.10 1.00 -0.06 -0.11 1.00 0.06 -0.11 

20 Xylose 1.00 0.02 -0.02 1.00 0.09 0.09 1.00 -0.10 0.04 

 Organic acids          

21 Arachidonicacid 1.00 0.17 0.06 1.00 0.06 -0.02 1.00 -0.10 -0.03 

22 Ascorbate 1.00 0.59 0.47 1.00 0.55 0.23 1.00 -0.53 -0.07 

23 Benzoate 1.00 -0.01 0.01 1.00 -0.35 -0.05 1.00 -0.31 -0.23 

24 Citrate 1.00 1.01 1.15 1.00 0.01 0.02 1.00 0.00 -0.02 

25 Aconitate 1.00 -0.25 -0.32 1.00 -0.25 0.05 1.00 1.05 1.08 

26 Docosanoate 1.00 -0.47 -0.21 1.00 0.10 0.07 1.00 0.11 -0.02 

27 Dodecanoate 1.00 -0.02 0.09 1.00 -0.04 -0.09 1.00 0.08 0.05 

28 Fumarate 1.00 0.06 0.03 1.00 1.07 1.18 1.00 1.15 0.99 

29 Glycerate 1.00 -0.28 -0.45 1.00 -0.51 0.44 1.00 -0.55 0.15 

30 Glycolate 1.00 0.20 1.38 1.00 0.19 1.44 1.00 0.01 1.37 

31 Gulonate 1.00 0.00 0.00 1.00 0.01 0.02 1.00 0.06 0.01 

32 Heptadecanoate 1.00 1.48 1.82 1.00 1.71 1.68 1.00 2.23 2.26 

33 Hexadecanoate 1.00 -0.17 -0.11 1.00 -0.06 -0.15 1.00 -0.08 0.00 

34 Isocitrate 1.00 -0.04 -0.18 1.00 0.02 -0.06 1.00 0.37 -0.01 

35 Gluconate 1.00 0.05 -0.17 1.00 -0.20 0.23 1.00 0.10 0.05 

36 Lactate 1.00 0.03 0.12 1.00 0.03 0.09 1.00 0.08 0.00 

37 Linoleic acid 1.00 -0.25 -0.35 1.00 -0.11 -0.22 1.00 0.17 0.08 
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38 Maleate 1.00 0.01 0.05 1.00 0.05 0.00 1.00 0.01 0.03 

39 Malate 1.00 0.77 0.64 1.00 0.93 0.97 1.00 1.09 0.96 

40 Malonate 1.00 0.03 -0.35 1.00 -0.21 -0.13 1.00 0.16 0.06 

41 Succinate 1.00 1.06 0.16 1.00 1.34 -0.20 1.00 2.05 0.25 

42 Nonanoate 1.00 0.26 0.14 1.00 0.01 -0.13 1.00 -0.13 -0.12 

43 Octa-decanoate 1.00 -0.06 -0.12 1.00 -0.10 0.02 1.00 0.14 0.15 

44 Oleic acid 1.00 -0.20 1.31 1.00 -0.13 1.76 1.00 -0.30 -0.07 

45 Oxalate 1.00 -0.24 -0.19 1.00 -0.06 -0.14 1.00 -0.08 0.00 

46 Oxaloacetate 1.00 -0.35 -0.15 1.00 0.28 0.14 1.00 0.14 -0.21 

47 Pipecolate 1.00 1.56 0.02 1.00 1.57 0.04 1.00 1.87 0.07 

48 Threonate 1.00 -0.31 -0.28 1.00 -0.06 -0.15 1.00 -0.01 0.06 

49 Tartarate 1.00 0.32 0.12 1.00 0.03 -0.12 1.00 -0.34 -0.18 

 Sugar Alcohols          

50 Fucitol 1.00 0.22 0.02 1.00 0.03 -0.26 1.00 0.11 -0.17 

51 Galactinol 1.00 0.23 -1.00 1.00 -0.12 -0.20 1.00 -0.02 -0.04 

52 Galactitol 1.00 0.23 -0.02 1.00 0.11 -1.71 1.00 0.14 -1.46 

53 

Galactosyl-

glycerol 1.00 -0.03 -0.01 1.00 0.01 -0.04 1.00 -0.04 0.09 

54 

Digalactosyl 

glycerol 1.00 -0.18 -0.31 1.00 -0.16 0.01 1.00 -0.53 -0.08 

55 Glycerol 1.00 1.04 -0.23 1.00 1.15 0.10 1.00 1.46 -0.13 

56 Glycerol-3-P 1.00 1.19 0.14 1.00 1.62 0.20 1.00 1.32 0.07 

57 Mannitol 1.00 2.13 1.93 1.00 2.32 2.73 1.00 2.63 2.19 

58 Myoinositol 1.00 0.08 0.07 1.00 0.03 -0.05 1.00 0.06 0.02 

59 Ribonate 1.00 0.32 0.26 1.00 -0.15 -0.22 1.00 -0.16 -0.08 

60 Sorbitol 1.00 -0.06 -0.21 1.00 -0.06 0.01 1.00 -0.03 0.01 

61 Threitol 1.00 -0.08 -0.36 1.00 -0.11 0.01 1.00 -0.05 -0.10 

62 Xylitol 1.00 -0.24 1.66 1.00 -0.29 1.69 1.00 0.12 2.13 

 Amino acids          

63 Alanine 1.00 0.11 0.23 1.00 -0.07 -0.29 1.00 0.00 0.11 

64 Asparagine 1.00 0.91 0.96 1.00 1.15 1.22 1.00 1.03 0.94 

65 Aspartate 1.00 0.01 0.13 1.00 -0.01 0.00 1.00 0.00 -0.23 

66 Cystathionine 1.00 -0.19 0.00 1.00 0.09 0.02 1.00 0.00 -0.29 

67 GABA 1.00 1.29 -0.10 1.00 1.50 0.13 1.00 1.35 -0.05 

68 Glutamate 1.00 0.03 -0.03 1.00 -0.09 -0.08 1.00 0.03 0.05 

69 Glutamine 1.00 -0.01 0.17 1.00 -0.37 -0.27 1.00 0.08 -0.18 

70 Glycine 1.00 0.18 0.00 1.00 -0.27 -0.19 1.00 -0.07 -0.03 

71 Homoserine 1.00 0.17 0.04 1.00 -0.02 0.03 1.00 0.00 0.01 

72 Isoleucine 1.00 -0.10 0.08 1.00 -0.34 -0.25 1.00 0.07 -0.17 

73 Leucine 1.00 0.01 1.64 1.00 0.03 1.75 1.00 0.00 2.12 

74 Lysine 1.00 -0.09 -0.07 1.00 -0.14 -0.15 1.00 -0.08 -0.17 

75 Methionine 1.00 0.10 0.03 1.00 -0.21 -0.21 1.00 0.13 0.08 

76 Phenylalanine 1.00 0.13 0.15 1.00 -0.01 -0.05 1.00 0.00 0.03 

77 Proline 1.00 0.11 0.05 1.00 0.03 -0.08 1.00 0.09 -0.06 

78 Pyroglutamate 1.00 0.21 -0.06 1.00 -0.03 -0.38 1.00 -0.09 0.02 

79 Serine 1.00 0.17 -0.33 1.00 -0.03 -0.37 1.00 -0.17 0.01 
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80 Threonine 1.00 1.13 0.98 1.00 1.08 0.95 1.00 0.93 0.77 

81 Tryptophan 1.00 0.18 -0.09 1.00 -0.02 -0.27 1.00 0.02 0.08 

82 Tyrosine 1.00 0.02 0.01 1.00 0.00 -0.01 1.00 0.03 0.05 

83 Valine 1.00 0.17 -0.03 1.00 -0.16 0.03 1.00 0.22 0.15 

 

Other 

compounds          

84 Adenosine 1.00 -0.03 -0.06 1.00 0.15 0.03 1.00 -0.03 -0.05 

85 Allantoin 1.00 2.70 2.92 1.00 0.06 -0.11 1.00 -0.02 0.01 

86 Cytosine 1.00 0.21 0.19 1.00 0.19 0.06 1.00 0.06 0.04 

87 Diethylene glycol 1.00 0.21 -0.87 1.00 0.05 -1.57 1.00 -0.25 -1.76 

88 Ethanolamine 1.00 0.03 -0.02 1.00 0.00 -0.02 1.00 0.10 0.10 

89 Guanine 1.00 0.03 -0.32 1.00 -0.08 -0.05 1.00 0.14 0.16 

90 Octadecanol 1.00 0.07 0.01 1.00 0.00 0.00 1.00 0.02 0.04 

91 Thiourea 1.00 -0.07 -0.02 1.00 0.04 -0.03 1.00 -0.12 0.02 

92 Uracil 1.00 0.01 0.01 1.00 -0.03 -0.06 1.00 0.00 0.06 

93 Urea 1.00 0.62 0.61 1.00 0.70 0.72 1.00 0.59 0.60 

 

 

 

Supplementary table 2: Fold change (Log 2) of metabolites at various time points over that of H1 in the 

endophytic and non-endophytic plants grown under well-watered conditions. 

 
 

 

Metabolites 
NEH1.

w 

NEH2.

w 

NEH3.

w 

E-

162H1.

w 

E-

162H2.

w 

E-

162H3.

w 

E-

284H1.

w 

E-

284H2.

w 

E-

284H3.

w 

 
Sugar          

1 Melibiose 1.00 0.01 0.19 1.00 0.10 0.09 1.00 0.06 0.12 

2 Arabinose 1.00 0.18 0.35 1.00 -0.10 0.13 1.00 0.30 0.59 

3 Fructose 1.00 0.13 -0.06 1.00 0.00 0.07 1.00 0.00 0.13 

4 Fucose 1.00 0.09 0.19 1.00 0.53 0.36 1.00 0.31 0.36 

5 

Galactopyra

nose 1.00 0.05 -0.01 1.00 0.04 -0.06 1.00 -0.14 -0.01 

6 Galactose 1.00 -0.14 -0.01 1.00 0.10 0.05 1.00 0.06 0.17 

7 Glucose 1.00 0.11 0.23 1.00 0.31 0.18 1.00 0.37 0.14 

8 Gentibiose 1.00 0.23 0.33 1.00 0.06 -0.17 1.00 0.34 0.15 

9 Mannose 1.00 0.06 0.31 1.00 0.24 0.23 1.00 0.63 0.59 

10 Psicose 1.00 -0.10 -0.09 1.00 0.05 0.09 1.00 0.21 0.41 

11 Raffinose 1.00 0.01 0.04 1.00 0.20 0.22 1.00 0.13 0.36 

12 Rhamnose 1.00 -0.15 0.32 1.00 -0.41 0.25 1.00 0.80 0.74 

13 Maltose 1.00 1.04 1.08 1.00 -0.24 0.65 1.00 0.11 1.42 

14 Ribose 1.00 0.64 -0.19 1.00 -0.18 0.28 1.00 0.54 0.14 

15 Sucrose 1.00 0.19 0.14 1.00 0.29 0.43 1.00 -0.01 0.33 

16 Talose 1.00 0.15 0.23 1.00 -0.06 0.10 1.00 0.51 0.59 

17 Threose 1.00 0.10 0.06 1.00 0.17 0.34 1.00 0.05 0.09 

18 Trehalose 1.00 0.21 0.02 1.00 0.16 0.30 1.00 0.08 -0.11 

19 Cellobiose 1.00 0.10 0.04 1.00 0.15 0.22 1.00 0.10 0.04 

20 Xylose 1.00 0.06 0.21 1.00 0.12 0.09 1.00 0.17 0.28 
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Organiuc 

acids          

21 

Arachidonic

acid 1.00 0.26 0.39 1.00 0.14 0.12 1.00 0.18 0.30 

22 Ascorbate 1.00 0.28 1.25 1.00 0.24 0.13 1.00 0.04 0.70 

23 Benzoate 1.00 0.27 0.60 1.00 -0.07 0.30 1.00 0.21 0.36 

24 Citrate 1.00 0.87 0.91 1.00 -0.14 -0.10 1.00 -0.26 -0.26 

25 Aconitate 1.00 0.04 -0.47 1.00 0.05 0.84 1.00 0.41 0.94 

26 Docosanoate 1.00 -0.21 -0.13 1.00 0.36 0.46 1.00 0.07 0.07 

27 Dodecanoate 1.00 0.09 0.07 1.00 0.08 0.18 1.00 -0.09 0.02 

28 Fumarate 1.00 -0.96 -1.43 1.00 0.05 -0.35 1.00 0.20 -0.47 

29 Glycerate 1.00 -0.95 -0.47 1.00 -1.19 -0.75 1.00 -0.06 0.13 

30 Glycolate 1.00 0.10 -0.05 1.00 0.09 -0.25 1.00 0.16 -0.06 

31 Gulonate 1.00 0.00 -0.07 1.00 0.01 -0.02 1.00 0.02 -0.07 

32 

Heptadecano

ate 1.00 -0.07 -0.26 1.00 0.17 0.49 1.00 -0.21 0.18 

33 

Hexadecano

ate 1.00 -0.24 -0.02 1.00 -0.13 0.06 1.00 -0.27 0.09 

34 Isocitrate 1.00 -0.01 -0.12 1.00 0.06 0.29 1.00 0.11 0.06 

35 Gluconate 1.00 0.11 0.17 1.00 -0.13 0.22 1.00 0.51 0.39 

36 Lactate 1.00 0.18 0.18 1.00 0.18 0.23 1.00 0.16 0.07 

37 

Linoleic_aci

d 1.00 -0.08 -0.19 1.00 0.06 0.23 1.00 0.04 0.24 

38 Maleate 1.00 0.17 0.00 1.00 0.22 0.01 1.00 0.12 -0.02 

39 Malate 1.00 -0.19 -0.13 1.00 -0.02 0.19 1.00 0.14 0.18 

40 Malonate 1.00 -0.07 -0.10 1.00 -0.30 0.02 1.00 0.15 0.32 

41 Succinate 1.00 0.21 -0.03 1.00 0.49 0.95 1.00 -0.16 0.05 

42 Nonanoate 1.00 0.26 0.34 1.00 0.01 -0.05 1.00 0.00 0.08 

43 

Octa-

decanoate 1.00 -0.01 0.12 1.00 -0.05 0.32 1.00 0.13 0.39 

44 Oleic acid 1.00 -0.39 -0.11 1.00 -0.31 -0.21 1.00 0.05 -1.50 

45 Oxalate 1.00 -0.31 -0.10 1.00 -0.13 0.06 1.00 -0.27 0.09 

46 Oxaloacetate 1.00 -0.31 -0.21 1.00 0.32 0.28 1.00 -0.01 -0.27 

47 Pipecolate 1.00 -0.07 -0.04 1.00 -0.06 0.27 1.00 -0.06 0.01 

48 Threonate 1.00 -0.37 -0.36 1.00 -0.13 -0.06 1.00 -0.25 -0.03 

49 Tartarate 1.00 0.32 0.56 1.00 0.03 -0.10 1.00 0.08 0.25 

 
Sugar 

Alcohol          

50 Fucitol 1.00 0.56 0.62 1.00 0.22 0.38 1.00 0.34 0.56 

51 Galactinol 1.00 0.27 0.45 1.00 0.15 0.36 1.00 -0.44 -0.02 

52 Galactitol 1.00 0.34 0.27 1.00 0.14 0.14 1.00 0.11 0.12 

53 

Galactosyl-

glycerol 1.00 -0.03 -0.06 1.00 0.01 -0.06 1.00 -0.07 0.04 

54 

Digalactosyl 

glycerol 1.00 0.38 0.35 1.00 0.40 0.00 1.00 0.70 0.57 

55 Glycerol 1.00 0.04 0.48 1.00 0.15 0.90 1.00 0.37 0.57 

56 Glycerol-3-P 1.00 -0.04 0.16 1.00 0.39 0.28 1.00 0.02 0.08 

57 Mannitol 1.00 -0.18 -0.13 1.00 0.01 0.37 1.00 0.62 0.12 

58 Myoinositol 1.00 -0.02 0.13 1.00 -0.08 0.11 1.00 -0.14 0.08 

111



59 Ribonate 1.00 0.34 0.25 1.00 -0.14 -0.23 1.00 -0.14 -0.09 

60 Sorbitol 1.00 0.08 0.46 1.00 0.08 0.50 1.00 0.30 0.68 

61 Threitol 1.00 -0.03 0.25 1.00 -0.05 0.28 1.00 0.33 0.51 

62 Xylitol 1.00 0.33 0.19 1.00 0.29 0.55 1.00 0.36 0.66 

 
Amino 

acids          

63 Alanine 1.00 0.54 0.45 1.00 0.36 0.34 1.00 0.02 0.33 

64 Asparagine 1.00 -0.21 -0.06 1.00 0.03 0.06 1.00 0.06 -0.07 

65 Aspartate 1.00 0.20 0.36 1.00 0.17 0.35 1.00 0.06 0.00 

66 

Cystathionin

e 1.00 -0.05 0.18 1.00 0.23 0.37 1.00 -0.02 -0.11 

67 GABA 1.00 -0.16 -0.05 1.00 0.05 0.02 1.00 0.07 0.00 

68 Glutamate 1.00 0.14 0.25 1.00 0.01 0.25 1.00 0.08 0.33 

69 Glutamine 1.00 0.16 0.09 1.00 -0.21 0.18 1.00 -0.29 -0.26 

70 Glycine 1.00 0.25 0.44 1.00 -0.20 0.19 1.00 0.05 0.40 

71 Homoserine 1.00 0.00 0.04 1.00 -0.18 -0.13 1.00 -0.01 0.01 

72 Isoleucine 1.00 0.09 0.03 1.00 -0.15 0.20 1.00 -0.24 -0.22 

73 Leucine 1.00 0.09 0.08 1.00 0.11 0.07 1.00 0.20 0.57 

74 Lysine 1.00 -0.04 0.01 1.00 -0.09 0.01 1.00 -0.12 -0.10 

75 Methionine 1.00 0.16 0.00 1.00 -0.15 0.04 1.00 -0.08 0.05 

76 

Phenylalanin

e 1.00 0.19 0.15 1.00 0.06 0.03 1.00 0.00 0.04 

77 Proline 1.00 0.02 0.09 1.00 -0.06 0.07 1.00 -0.10 -0.01 

78 

Pyroglutama

te 1.00 0.30 0.35 1.00 0.06 0.04 1.00 -0.01 0.43 

79 Serine 1.00 0.31 0.45 1.00 0.11 0.11 1.00 0.26 0.78 

80 Threonine 1.00 0.05 0.24 1.00 0.00 0.04 1.00 0.02 0.03 

81 Tryptophan 1.00 0.26 0.42 1.00 0.06 0.27 1.00 0.08 0.59 

82 Tyrosine 1.00 0.00 -0.01 1.00 -0.02 0.00 1.00 -0.02 0.03 

83 Valine 1.00 0.10 0.03 1.00 -0.23 0.08 1.00 0.16 0.21 

 
Other 

Compounds          

84 Adenosine 1.00 -0.06 0.12 1.00 0.13 0.12 1.00 0.03 0.13 

85 Cytosine 1.00 0.18 0.26 1.00 0.24 0.17 1.00 -0.16 -0.02 

86 Allantoin 1.00 2.88 2.89 1.00 0.16 0.11 1.00 0.05 0.11 

87 

Diethylene 

glycol 1.00 0.30 0.67 1.00 0.14 0.21 1.00 -0.40 -0.22 

88 

Ethanolamin

e 1.00 -0.05 -0.12 1.00 -0.09 -0.05 1.00 -0.05 0.01 

89 Guanine 1.00 0.25 -0.04 1.00 0.14 0.06 1.00 0.52 0.43 

90 Octadecanol 1.00 -0.02 0.00 1.00 -0.08 -0.05 1.00 -0.02 0.03 

91 Thiourea 1.00 -0.03 0.00 1.00 0.08 -0.04 1.00 -0.04 0.04 

92 Uracil 1.00 0.07 -0.02 1.00 0.03 -0.03 1.00 0.01 0.03 

93 Urea 1.00 0.00 0.12 1.00 0.08 0.09 1.00 0.11 0.11 
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Supplementary Table 3: Fold change (Log 2) of metabolites in the endophytic plants over the non-endophytic 

plants at various time points under moderate and severe stress conditions 

 
 

Metabolites NEH2.d E-162H2.d E-284H2.d  NEH3.d E-162H3.d E-284H3.d 

 
Sugar        

1 Melibiose 1.00 0.16 -0.16  1.00 1.07 0.33 

2 Arabinose 1.00 3.41 4.47  1.00 1.04 3.40 

3 Fructose 1.00 0.40 0.19  1.00 1.22 0.10 

4 Fucose 1.00 1.22 1.77  1.00 0.54 0.58 

5 Galactopyranose 1.00 1.85 1.74  1.00 2.63 1.96 

6 Galactose 1.00 -0.13 0.41  1.00 0.06 -0.01 

7 Glucose 1.00 0.78 0.12  1.00 1.52 -0.30 

8 Gentibiose 1.00 -0.14 -0.14  1.00 -1.36 -0.31 

9 Mannose 1.00 1.37 1.37  1.00 1.22 1.62 

10 Psicose 1.00 1.20 0.29  1.00 1.54 0.78 

11 Raffinose 1.00 0.42 0.38  1.00 0.94 -0.40 

12 Rhamnose 1.00 2.35 -0.33  1.00 2.46 0.80 

13 Maltose 1.00 -2.64 -2.55  1.00 -1.03 0.13 

14 Ribose 1.00 -0.74 -0.33  1.00 -0.80 0.61 

15 Sucrose 1.00 -0.24 -0.42  1.00 1.14 0.54 

16 Talose 1.00 -0.21 -0.83  1.00 1.18 -0.06 

17 Threose 1.00 0.00 0.03  1.00 -0.56 0.33 

18 Trehalose 1.00 -0.03 -0.29  1.00 1.04 0.75 

19 Cellobiose 1.00 -0.62 0.14  1.00 -0.99 0.95 

20 Xylose 1.00 0.73 0.98  1.00 0.79 3.59 

 Organic acids        

21 Arachidonicacid 1.00 0.05 0.46  1.00 -0.18 0.11 

22 Ascorbate 1.00 0.66 0.32  1.00 -0.33 -0.18 

23 Benzoate 1.00 -0.07 -0.11  1.00 1.01 0.82 

24 Citrate 1.00 -1.51 -1.61  1.00 -1.20 -0.90 

25 Aconitate 1.00 -0.26 -0.07  1.00 0.90 1.80 

26 Docosanoate 1.00 0.66 0.61  1.00 -1.60 -2.26 

27 Dodecanoate 1.00 -0.40 0.03  1.00 -0.12 -0.91 

28 Fumarate 1.00 -0.05 0.00  1.00 1.08 1.03 

29 Glycerate 1.00 -0.31 0.24  1.00 -1.15 -0.73 

30 Glycolate 1.00 -0.36 0.85  1.00 -0.04 1.56 

31 Gulonate 1.00 0.36 0.34  1.00 2.07 1.36 

32 Heptadecanoate 1.00 1.74 2.03  1.00 2.62 2.87 

33 Hexadecanoate 1.00 0.06 -0.06  1.00 0.67 0.07 

34 Isocitrate 1.00 -0.09 -0.11  1.00 -0.96 -1.31 

35 Gluconate 1.00 0.41 0.47  1.00 0.78 1.08 

36 Lactate 1.00 0.36 0.11  1.00 0.85 0.39 

37 Linoleic acid 1.00 0.16 -0.16  1.00 0.53 0.62 

38 Maleate 1.00 -0.04 -0.07  1.00 -0.01 0.10 
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39 Malate 1.00 0.55 -0.03  1.00 0.81 0.85 

40 Malonate 1.00 -0.22 -0.45  1.00 -1.16 -0.46 

41 Succinate 1.00 2.26 0.89  1.00 4.38 2.33 

42 Nonanoate 1.00 -0.52 -0.02  1.00 0.11 0.19 

43 Octa-decanoate 1.00 -0.16 -0.06  1.00 1.12 0.92 

44 Oleic acid 1.00 0.02 1.51  1.00 -0.74 1.14 

45 Oxalate 1.00 0.07 -0.09  1.00 0.36 0.00 

46 Oxaloacetate 1.00 0.14 0.15  1.00 0.04 -0.17 

47 Pipecolate 1.00 1.61 -0.06  1.00 1.49 0.00 

48 Threonate 1.00 -1.36 -0.84  1.00 -0.56 -0.21 

49 Tartarate 1.00 0.01 -0.09  1.00 -0.47 -0.44 

 Sugar Alcohol        

50 Galactitol 1.00 0.58 -0.07  1.00 0.48 -1.46 

51 Fucitol 1.00 -0.13 -0.17  1.00 0.32 0.24 

52 Galactinol 1.00 0.29 -1.85  1.00 0.07 -0.46 

53 Galactosyl-glycerol 1.00 0.07 0.29  1.00 0.35 0.38 

54 

Digalactosyl 

glycerol 1.00 0.20 -0.87  1.00 -0.59 -1.53 

55 Glycerol 1.00 1.34 0.19  1.00 1.50 -0.22 

56 Glycerol-3-P 1.00 1.94 0.57  1.00 1.24 -0.14 

57 Mannitol 1.00 2.96 2.42  1.00 3.89 3.47 

58 Myoinositol 1.00 0.07 0.10  1.00 0.07 -0.29 

59 Ribonate 1.00 -0.01 -0.07  1.00 0.58 0.33 

60 Sorbitol 1.00 -0.35 -0.60  1.00 0.43 0.39 

61 Threitol 1.00 0.20 0.03  1.00 -0.08 -0.28 

62 Xylitol 1.00 -0.17 2.19  1.00 0.04 2.39 

 Amino acid        

63 Alanine 1.00 -0.12 -0.35  1.00 0.07 0.20 

64 Asparagine 1.00 -0.72 -0.75  1.00 0.23 -0.07 

65 Aspartate 1.00 0.03 -0.16  1.00 0.15 -0.12 

66 Cystathionine 1.00 0.44 -0.02  1.00 0.68 0.56 

67 GABA 1.00 1.76 0.59  1.00 1.51 -0.02 

68 Glutamate 1.00 -0.82 -0.16  1.00 -0.85 -0.12 

69 Glutamine 1.00 0.13 -0.03  1.00 -0.24 -0.06 

70 Glycine 1.00 -1.28 -1.28  1.00 -1.72 -1.76 

71 Homoserine 1.00 -0.10 1.06  1.00 0.13 0.96 

72 Isoleucine 1.00 0.13 -0.03  1.00 0.01 -0.05 

73 Leucine 1.00 -0.07 1.95  1.00 0.91 0.55 

74 Lysine 1.00 -1.62 -1.21  1.00 -1.57 -1.09 

75 Methionine 1.00 -0.89 -1.11  1.00 0.52 0.06 

76 Phenylalanine 1.00 0.11 0.11  1.00 0.18 0.45 

77 Proline 1.00 -0.54 -0.76  1.00 -0.44 -0.92 

78 Pyroglutamate 1.00 0.46 -0.04  1.00 0.20 0.58 

79 Serine 1.00 0.52 0.06  1.00 0.44 1.90 

80 Threonine 1.00 0.44 0.47  1.00 -1.52 -0.40 
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81 Tryptophan 1.00 0.09 -0.07  1.00 -0.52 0.01 

82 Tyrosine 1.00 -0.69 0.00  1.00 -0.69 -0.22 

83 Valine 1.00 1.27 1.51  1.00 1.95 2.12 

 Other Compounds        

84 Adenosine 1.00 0.15 -0.05  1.00 0.22 -0.06 

85 Allantoin 1.00 0.15 -0.04  1.00 0.45 0.51 

86 Cytosine 1.00 0.39 0.33  1.00 0.22 0.52 

87 Diethylene glycol 1.00 0.15 -1.71  1.00 -0.16 -1.80 

88 Ethanolamine 1.00 -0.11 0.10  1.00 -0.20 -0.20 

89 Guanine 1.00 -0.02 -0.05  1.00 0.02 0.31 

90 Octadecanol 1.00 -0.07 -0.06  1.00 0.00 -0.03 

91 Thiourea 1.00 0.10 -0.61  1.00 0.41 0.94 

92 Uracil 1.00 0.00 -0.02  1.00 0.02 0.00 

93 Urea 1.00 0.76 0.97  1.00 0.59 1.61 

 

  The fold change value is significantly different at P≤0.001 and positive 

  The fold change value is significantly different at P≤0.01 and positive 

  The fold change value is significantly different at P≤0.05 and positive 

  The fold change value is significantly different at P≤0.001 and negative 

  The fold change value is significantly different at P≤0.01 and negative 

  The fold change value is significantly different at P≤0.05 and negative 
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Highlights: 

• Water stress tolerance of endophyte-colonized plants was correlated with increases in plant 

biomass, RWC, osmolytes, and antioxidant enzymes.  

• There was significant upregulation of drought-related genes in endophyte colonized plants.  

• Both fungi and the virus reprogram plant responses to water stress in a similar way.  

• Co-infection of fungi and virus neither had an additive nor a regressive effect on plant 

drought responses.  

6.2. Abstract 

Microbial symbionts increase plant growth and eco-physiological performance under abiotic stress. In 

this study, we evaluated how the colonization of two fungal endophytes isolated from wild Nicotiana 

species from areas of drought-prone northern Australia, and a plant virus, yellowtail flower mild 

mottle virus (genus Tobamovirus), improved water stress tolerance in N. benthamiana plants. 

Inoculation with both of the two fungal strains used and the virus significantly increased plants 

tolerance to water stress as manifested by their significant delay in wilting of shoot tips. The water 

stress tolerance of fungus-inoculated plants was correlated with increases in plant biomass, relative 

water content, soluble sugar, soluble protein, proline content, increased activities of the antioxidant 

enzymes catalase, peroxidase and polyphenol oxidase, decreased production of reactive oxygen 

species, and decreased electrical conductivity. In addition, there was significant upregulation of 

several genes previously identified as drought induced. The influence of the virus was similar to the 

fungi in terms of increasing the plant osmolytes, antioxidant enzyme activity and gene expression. 

Although separate infection of fungi and virus increased plant water stress tolerance responses, their 

co-infection in plants did not have an additive effect on water stress responses. These findings show 

that both fungi and viruses reprogram plant responses to water stress in a similar way.  

Keywords: Antioxidants; chlorophyll; drought tolerance; gene expression; fungi; osmolytes; plant 

biomass; ROS; wilting.  

6.3. Introduction 

Plants, being sessile, are continuously challenged with environmental stimuli and stresses, which 

significantly deter their growth and survival. Of these, water deficit or drought stress is one of the 

most important limiting factors for the growth of plants in both natural and agricultural settings 

(Passioura, 2006). Current climate change models are predicting a substantial decrease in soil water 

availability for plants in the coming years (IPCC, 2015).  
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The way plants respond to water stress is rather complex and involves various physiological and 

morphological adaptations (Chaves et al., 2009; Flexas et al., 2006; Nobel, 1999). Water deprivation 

causes an imbalance in the osmotic potential of the plant tissues, and induces the synthesis of reactive 

oxygen species (ROS) (Jakab et al., 2005). Plants accumulate compatible solutes or osmolytes such as 

sugars, proteins, proline, etc. to maintain their cellular redox potential and osmoregulation (Dar et al., 

2016; Joshi et al., 2016; Lisar et al., 2012; Munns, 1988; Serraj and Sinclair, 2002a; Slama et al., 

2015). The plant also produces reduced glutathione (GSH), polyphenols, and several antioxidant 

enzymes like catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO), etc. to counter the 

detrimental effects of increased ROS (Claeys and Inzé, 2013; Hoekstra et al., 2001). Many drought-

related genes have been identified (Seki et al., 2002) that can be grouped into two major classes: i) 

proteins that function directly in abiotic stress tolerance, and ii) regulatory proteins, which are 

involved in signal transduction or expression of stress-responsive genes (Shinozaki et al., 2003). 

Several microorganisms such as bacteria and fungi have been found to increase plant tolerance to 

water stress. Fungal induced plant water stress tolerance has been reported for both mycorrhizae 

(reviewed by Rapparini and Peñuelas (2014)) and endophytes (reviewed by (Dastogeer and Wylie, 

2017); Rodriguez et al. (2009). In particular, fungal endophytes have been shown to increase drought-

tolerance in many crops through morphological and biochemical mechanisms such as increased 

photosynthetic rate and water use efficiency (Rozpądek et al., 2015; Swarthout et al., 2009), higher 

accumulation of osmoprotectants or compatible solutes (Grover et al., 2011), improving the plant 

nutrient availability and root growth (Malinowski and Belesky, 2000b) and regulation of genes 

implicated in homeostasis (Estrada et al., 2013).  

The study of plant viruses has been biased towards investigating pathogens. The study on the positive 

role of virus induced plant stress tolerance is, however, limited. Several viruses provide benefits to their 

hosts undergoing stress. For instance, a three-way mutualism between a virus, a fungus and a plant 

conferred thermal tolerance (Márquez et al., 2007). Infection with some RNA plant viruses such as 

brome mosaic virus (BMV), cucumber mosaic virus (CMV), tobacco mosaic virus and tobacco 

rattle virus increase drought tolerance through the accumulation of osmoprotectants and antioxidants (Xu et al., 

2008). Plant tissue contains various RNA viruses, but their roles in plant ecophysiology to a large extent are 

still unstudied. Because plants simultaneously interact with biotic and abiotic agents, biotic and abiotic 

signalling pathways share common nodes and their output has substantial overlaps. This may be why infection 

with some microbes primes plants to survive under complex environmental conditions (Chini et al., 2004; 

Timmusk and Wagner, 1999; Xu et al., 2008). 

We aimed to study the effects of infection by two ascomycete fungal endophytes and yellow tail 

flower mild mottle virus that were identified previously (Dastogeer et al., 2017a). N. benthamiana is 

an important model plant in plant virology and other branches of plant science (Goodin et al., 2008). 
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Here we described the changes in plant biomass, relative water content, chlorophyll content, electrolyte 

leakage, accumulation of osmolytes and some antioxidant enzymes as well as expression of drought 

related genes in N. benthamiana plants caused by fungal and virus infection and drought stress and by 

their interactions.   

6.4. Materials and methods 

6.4.1. Endophyte strain, virus and plant materials 

Two ascomycete endophytic fungal strains; E-162 (Cladosporium cladosporioides, GenBank 

accession: KU059880) and E-284, (unidentified member of the Ascomycota, GenBank accession: 

KU059897) were previously isolated from sterilised root tissues of native Nicotiana benthamiana 

plants (Dastogeer et al., 2017c). These isolates were chosen based on their positive influence on water 

stress tolerance of N. benthamiana plants (Dastogeer et al., 2017a). We used yellow tailflower mild 

mottle virus isolate Cervantes (YTMMV, genus Tobamovirus, GenBank accession KF495565) which 

was originally collected from a wild plant of Yellow Tailflower (Anthocercis littoria, family 

Solanaceae) at Cervantes, Western Australia (Wylie et al., 2014). For the current study, we chose an 

accession of wild N. benthamiana plant, Mta5, originally isolated from an Arid region near Mt 

Augustus, Western Australia. This accession was identified to have the highest inherent tolerance to 

water stress from a number of accessions of Australian Nicotiana species tested (unpublished). This 

virus and the plant accession were chosen because this virus was not lethal to the wild accessions of 

N. benthamiana plants we used. Instead, it results in systemic spread within plants as was confirmed 

by RT-PCR, and produces moderate symptoms of chlorosis, leaf mosaic and deformation. It causes 

moderate stunting of growth and reduces flower production (Wylie et al., 2015). 

 

6.4.2. Plant growth conditions and inoculation 

Surface-sterilised seeds were prepared by treatment with 3% sodium hypochlorite for 3 min and then 

75% ethanol for 2 min, then rinsed with sterile water three times. Three weeks after sowing, seedlings 

were uprooted and roots were washed in running water. Before transplanting each seedling in an 

individual pot filled with sterilised soil, the roots were inoculated with fungal mycelium. For 

inoculum preparation, fungal strains were grown on potato dextrose broth (0.1X) at 25°C for 7 d. The 

mycelia were collected, and the mycelial suspension was prepared in a liquid homogenizer-mixer by 

maceration. The large hyphal bits were removed by filtration through sterile absorbent cotton wool 

plugs. With the help of a haemocytometer and a compound microscope, the inoculum concentration 

was counted and adjusted to the desired level (5×104 fragments mL-1) through sterile dilution 

(Dastogeer et al., 2017a). The viability of mycelial fragments was assessed by a germination test on 

PDA after incubation for 48 h at 25°C.  
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Inoculation of N. benthamiana seedling was done by dipping the roots in the inoculum suspension for 

5 h before planting. The control seedlings were mock inoculated with sterile distilled water. The 

seedlings then were transplanted in steam-treated soil in pots with one seedling per pot (10 cm in 

diameter and 12 cm deep, 800 g soil per pot). Steam treatment of soil was done at 99°C for 4 h twice 

with a gap of 48 h in between steaming sessions to eliminate other microbial contaminants. Sterilised 

media was used to observe the effects only of these strains in the absence of other fungi. Inoculation 

efficiency was achieved by applying the inoculum suspension by spraying at the root-zone of the 

seedling at the time of planting. The plants were grown in an insect proof greenhouse at 22°C days 

and 17°C night, 60±5% RH, with a natural photoperiod. They were watered regularly and received 

weekly nutrient feeds.  

After two weeks of fungal inoculation, half of each group was subjected to mock inoculation with 

0.1M phosphate buffer (pH 7) and diatomaceous earth (Sigma) and another half as above with the 

addition of macerated leaf material from YTMMV infected plants (Wylie et al., 2015). After two 

weeks when the YTMMV inoculated plants showed mild mosaic symptoms on the leaves, water stress 

was applied to half of each group by withholding watering. Plants were grown under the condition 

described above except that the water stress group did not receive watering. The fungal infection 

status was checked by culturing surface-sterilized roots and identifying the isolated fungi by 

sequencing of the ITS region of the rDNA (Dastogeer et al., 2017c). 

6.4.3. Biomass and relative water content (RWC) measurement 

Biomass is an overall measure of plant fitness. For the measurement of biomass, six plants from each 

treatment combination (watered vs. stressed; YTMMV vs. mock inoculated; E-162 vs. E-284 vs. non-

inoculated, NE) were removed from the potting medium at 11 d after water stress application. The 

roots were washed clean, and the plants were cut at the crown to separate root and shoot. Biomass dry 

weight was measured after oven drying the samples at 75°C for 48 h.  

To measure RWC, fully expanded leaves from twelve plants from each treatment combinations were 

sampled at d11 after water stress treatments. The leaves were weighed just after sampling to obtain 

fresh weight (Wf) and were submerged in tubes containing distilled water. The tubes were then stored 

at 4°C in darkness for 24 h to achieve full turgidity of the leaves. Then, the leaves were removed from 

the tubes, and the turgid weight (Wt) was determined. Finally, the leaves were oven-dried (48 h at 

75°C) to obtain dry weight (Wd). The leaf relative water content was determined as RWC =

[(Wd–  Wd)/(Wt –  Wd)] (Barrs and Weatherley, 1962) 
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6.4.4. Determination of electrolyte conductivity (EC) and chlorophyll content (ChlC) 

We followed the techniques of Sullivan (1971) with modifications to determine the membrane 

stability of leaves. Fully expanded leaves were collected from plants at 0, 4, 8 and 11 days after stress 

treatment. Leaves were washed with deionized water to remove leaf surface-adhered electrolytes. To 

allow electrolyte diffusion from the leaf tissue, leaf discs (5 mm diameter) were placed in a test tube 

containing 10 ml of deionized water and incubated at 25°C for 4 h. After incubation, tubes were 

brought to 25°C, shaken, and the initial conductance (EC1) was determined with a digital electric 

conductivity meter. Tubes were then placed in an autoclave at 121°C for 20 min to completely kill 

leaf tissues, releasing all electrolytes. After cooling to 25°C, shaken, and final conductance was 

remeasured (EC2). There were twelve plants from each treatment combinations (watered plus 

stressed; YTMMV plus mock inoculated; E-162 plus E-284 plus NE inoculated). Leaf electrolyte 

leakage was calculated as a percentage as follows: LEL =  EC1/EC2 ×  100. 

Chlorophyll content of leaves was measured by using a hand-held chlorophyll meter (CCM-200plus, 

Opti-Science) at 0, 4, 8 and 11 d after stress treatment from six plants of each treatment combination. 

Chlorophyll measurement was taken during mid-day from three fully expanded leaves from the top, 

and the readings were averaged. 

6.4.5. Determination of sugar, protein and proline 

Leaf samples for sugar, protein and proline determination were collected at 0, 4, 8 and 11 d after 

water stress treatments from six plants per treatment combination. Immediately after harvesting leaves 

were snap frozen in liquid nitrogen and preserved at -80°C until use.   

Proline content (µmols/gram). 

Proline was estimated according to the method described by Bates et al. (1973) with minor 

modifications. Approximately 0.05 g of frozen leaf tissue was homogenised in 5 ml of 3% aqueous 

sulfosalicylic acid. The homogenate was centrifuged at 4000 xg for 10 min at 4°C. One millilitre of 

the supernatant was mixed with 1 ml of acid ninhydrin and 1 ml of glacial acetic acid in a test tube. 

The mixture was placed in a boiling water bath for 1 h. The reaction mixture was extracted with 3 ml 

of toluene, and the absorbance was measured at 520 nm with a spectrometer (Lambda 25, 

PerkinElmer). Appropriate proline standards were used for calculation of proline levels in the 

samples. 

Soluble sugar content (mg/g) 

Total soluble sugar content was estimated using the method of Dubois et al. (1951). Frozen leaves 

(0.05 g) of each sample were homogenised in 5 ml of 80% ethanol and incubated for 1 h at 80°C in 

water bath. In 0.5 ml extracts, 0.5 ml distilled water and 1 ml of 5% phenol were added and incubated 

for 1 hr at 25°C. After adding 2.5 ml sulphuric acid in the solution, the absorbance was read at 490 

nm with a spectrometer (Lambda 25, PerkinElmer). Glucose was used as a standard. 
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Soluble protein content (mg/g): 

The total soluble protein was estimated by a dye-binding assay as described in Bradford and Williams 

(1976) with some modification. Leaf materials (0.05 g) were homogenised in 1.5 ml of phosphate 

buffer solution and centrifuged at 4000 xg for 5 min. Then, 0.1 ml of extract was placed in a test tube 

containing 5 ml protein reagent. One litre of protein reagent was prepared with 100 mg Coomassie 

Brilliant Blue-G250 in 50 ml of 95% ethanol and 100 ml of 85% phosphoric acid in water. The 

absorbance of samples was read at 595 nm against a blank with a spectrometer (Lambda 25, 

PerkinElmer). Bovine Serum Albumin (BSA) was used to prepare the standard curve.   

6.4.6. Determination of reactive oxygen species (ROS) sensitivity.  

For ROS determination leaves were harvested at 11 d after stress treatment. Using a cork borer, discs 

(2 mm) from fresh leaves were obtained from each of the treatment combinations and placed in a 

solution of 100 uM of the herbicide paraquat (N,N’-Dimethyl–4,49-bipyridinium dichloride, Sigma, 

CAS No.# 856177-) and incubated at 22 °C under fluorescent lights. After 48 hr exposure to paraquat, 

leaf discs were observed to record chlorophyll oxidation visualised by tissue bleaching (Redman et 

al., 2011).  

6.4.7. Measurement of the antioxidant enzyme activity 

The activity of catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO) were chosen as 

representative antioxidants to estimate the plant's responses to water stress, endophytes and virus 

infection. Leaf samples were collected at 0, 4, 8 and 11 d after water stress treatments from twelve 

plants per treatment combination. Immediately after harvesting, leaves were snap frozen in liquid 

nitrogen and preserved at -80 °C until use.  Plant leaves (100 mg) were homogenised in 5 ml 

phosphate buffer (0.1M, pH 7.0) and then centrifuged (4000xg rpm for 15 min at 4°C). The 

supernatant was used for all enzymatic analyses. All parameters were expressed as activity per mg 

protein. Total proteins were determined according to Bradford method as described above (Bradford 

and Williams, 1976). 

The CAT activity was estimated as described by Aebi (1984). In the 0.5 ml crude enzyme supernatant 

0. 5 ml phosphate butter (10 mM, 7.0 pH and 0.5 ml H2O2 (0.2M) were added. After 1 min incubation, 

the reaction was stopped by adding 4 ml H2SO4 (2%, v/v). The absorbance of the reaction solution 

was measured at 240 nm. An absorbance change of 1 min was defined as μg of H2O2 released per mg 

protein per min. 

The POD and PPO activities were measured as described by Kar and Mishra (1976) with a little 

modification. To the 0.1 ml crude enzyme supernatant, 0.4 ml phosphate buffer (0.1 M), 50 μl 

pyrogallol (1 M, Sigma, CAS No.# 254002) and 50 μl H2O2 (30%) were added. After incubation (1 

min at 25°C), the reaction was stopped by adding 5% (v/v) H2SO4 (4 ml). The amount of 

purpurogallin synthesised during the reaction was measured by the absorbance at 420 nm. A similar 
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assay mixture (without H2O2) was prepared for determination of polyphenol oxidase and the 

absorbance of purpurogallin formed was read at 420 nm after 5 min incubation at 25°C. 

6.4.8. Gene expression analysis using RT-qPCR 

The effect of fungi and virus infection on relative expression of drought related genes was studied. 

Leaf samples were collected at 8 d after initiation of water stress and kept under -80°C until use. Total 

RNA was extracted using QIAGEN RNeasy plant mini kit per the manufacturer’s instructions. The 

quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis was performed using 

QIAGEN OneStep RT-PCR kit in Rotor-Gene Q instrument (QIAGEN) and the gene-specific primers 

described in Table 1. Thermal cycling conditions utilized a reverse transcription step at 50°C for 30 

min; 95°C for 15 min (RT inactivation and initial denaturation step), followed by 40 PCR cycles at 

94°C for 40 sec, 60°C for 30 sec and 72 for 1 min and final extension at 72°C for 10 min.  

The full coding sequence of genes of interest was obtained from the NCBI (National Center for 

Biotechnology Information) database, and primers were designed using primer3 in accordance with 

the criteria required for quantitative PCR primer design (Udvardi et al., 2008). Actin was chosen as 

the reference gene due to its constitutive and stable expression (Staiger, 2000; Tian et al., 2015a; 

Vergne et al., 2007). The expression levels of each gene were normalised using actin as a reference 

gene, and relative expression of genes were derived using 2ΔΔCT method (Livak and Schmittgen, 

2001). 

6.4.9. Plant wilting behaviour 

Three different parameters were considered: days to showing first leaf wilting symptoms; days to final 

leaf wilting and days to shoot tip wilting (irrecoverable damage) after initiating the water stress. Six 

plants from each of the treatment combinations (YTMMV vs. Mock; E-162 vs. E-284 vs. NE and all 

possible combinations) were chosen, and water stress applied. to the plant. This experiment was 

repeated once again under same experiment condition and experimental design.  

6.4.10. Statistical analysis 

The three-way ANOVA was performed separately on data under well-watered and stressed 

conditions. The variables were sugar content, protein content, proline, CAT, POD, PPO, EC, ChlC, 

while the independent variables were days of water stress, fungal inoculation, and virus inoculation 

status. For parameters, such as RWC, biomass traits, ROS sensitivity and gene expression analysis the 

data were obtained only at a single time point, so the independent variable was not present in the 

three-way ANOVA analysis. Instead, water treatment, fungal inoculation, and virus inoculation were 

the three independent variables considered. The multiple comparisons among the treatments were 

computed using Tukey’s HSD tests. For analysing the wilting behaviour of the plants in response to 

water stress, the data from the two separate experiments were pooled because we did not find any 
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Table 1: Primers used for quantitative reverse transcriptase-polymerase chain reaction analysis of Nicotiana benthamiana drought associated genes 

Gene Code Description GenBank 

Accession 

Forward Primer (5’-3’) Reverse Primer (3’-5’) 

NbPAL1 N. benthamiana cDNA similar to 

Phenylalanine ammonialyase 1 

JK739025.1 CCCATGTTTGCCTCTCCGTG 

 

GCCCGTTGAAACACCTTGC 

 

NbMYB N. benthamiana cDNA similar to Myb-

related transcription factor 

JK739024.1 TGGCCTGGAGACTGATAACG 

 

GATGTAGGTGGTGGTGGTGG 

 

NbMYC N. benthamiana cDNA similar to MYC 

related transcription factor 

JK739021.1 GATCAATGCCAAACTGGAAGC GACTTAGCGGTGGTTAAGAGTC 

 

NbGBP16 N. benthamiana cDNA similar to DNA-

binding protein GBP16 

JK739018.1 TTGAGGCTTGTGAGACCAGG 

 

GGCTTTCCTTCACCAGTGCT 

 

NbSOS1 N. benthamiana cDNA similar to SOS1 

mRNA for Na+/H+ antiporter 

JK739016.1 GACAAGGGCAAGGGTGATTA CGTCTTCGCTATTATCCCACTC 

 

NbPDH1  N. benthamiana cDNA similar to Proline 

oxidase/dehydrogenase 1 (PROX1) 

JK739015.1 GCCGTTTAAACTCAGCTCCG 

 

GAACGCCGTAGAACAGCTCC 

NbCAT3  N. benthamiana cDNA similar to 

Catalase (CAT3) 

JK739008.1 

 

GGAGCAAATCATAGTCACGCC 

 

GCAAGATGTCCTCAGGCCAG 

 

NbHSP101 N. benthamiana cDNA similar to Heat 

shock protein 101 kDa (HSP101) 

JK739013.1 

 

CTGAGGCAGCTCTAGATTTCATAC 

 

ATTAGGAGATGGTTGGAGAGGA 

 

NbZfP 

 

N. benthamiana zinc finger protein 

mRNA 

AY899938.1 

 

AGGCACAAAACGGAAAACAC 

 

CTGGCATTTGATTGAGCAGA 

 

NbDreb2a 

 

N. benthamiana mRNA for transcription 

factor DREB2a 

FN649467.1 

 

TGAAAGCGCTTGAACCTTTT 

 

CTACACGGCCCATAGGGTTA 

 

NbWrky 

 

N. benthamiana cDNA 5- similar to 

WRKY transcription factor 44 (WRKY 

DNA-binding protein 44) 

EH367381.1 

 

GTCTGAGGCATCCAAGACAA 

 

CCTCATTCCGGCACAATAAATG 

 

NbActin 

 

N. benthamiana actin (act) mRNA, act-b 

allele 

JQ256516.1 GAGCGGGAAATTGTCAGGGA GAAACGCTCAGCACCAATGG 
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significant difference between the experiments. A two-way ANOVA was performed to determine the 

effect of fungi and virus, and their interaction on plants stress tolerance. The ANOVA and multiple 

comparison tests were performed in statistical software R using package agricolae (De Mendiburu, 

2016). The line graphs, bar charts and box plots were created in Microsoft Excel-2016, and the mean 

and standard error values were calculated in PAST (Hammer et al., 2008).  

Results 

6.5.1. Plant Biomass, relative water content and chlorophyll content 

Water stress significantly affected plant biomass, and it caused a decreased shoot and root dry mass as 

well as root/shoot ratio (Table 2). The presence of the fungal endophyte did not show any effect on 

biomass traits under well-watered conditions, but both the fungal strains produced greater root 

biomass and root/shoot ratio under stress only in the absence of YTMMV (Table 2). It was noted that 

the effect of the YTMMV infection was significant and it caused lower accumulation of shoot and 

root biomass under the well-watered condition and a lower accumulation of shoot biomass under 

stressed conditions irrespective of fungal inoculation (Table 3). Infection of the virus had no apparent 

effect on root/shoot ratio in any case (Table 2). We did not find any interaction between fungi and 

virus or three-way interaction of virus, fungus and water stress on plant biomass accumulation (Table 

2). 

The RWC was dependent on water stress treatment and endophyte status, water stress × endophyte 

status and water stress × virus inoculation on plants (Table 2). There was no interaction between 

endophyte infection status and virus inoculation status and three-way interactions of water stress, 

endophyte infection and virus inoculation (Table 2). A significantly lower level of water content was 

measured from all samples subjected to stress (Fig. 1). Non-endophytic samples, however, showed 

substantially decreased RWC compared to the endophytic plants with either of the strains (E-162 or 

E-284) regardless of virus inoculation. Virus infection did significantly influence RWC of plants 

under stress. The YTMMV significantly negatively affected leaf chlorophyll pigment under all 

conditions (Fig. 2a). Water stress caused a reduction in leaf chlorophyll only at d11 in the absence of 

virus in NE and E-284 plants but did not affect in E-162 plants (Fig. 2a).  

6.5.2. Reactive Oxygen Species 

Excised leaf discs from N. benthamiana seedlings grown under well-watered and under stress 

conditions with or without fungus and/or virus were analysed for ROS sensitivity. The photobleaching 

of leaf disc by herbicide paraquat is mimicking to ROS sensitivity. 
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 Leaves that were not subjected to water stress remained green indicating that ROS was not produced 

by exposure to paraquat and the effect of fungi and virus was neutral. When exposed to water stress, 

plants colonized with either of the fungal strains showed no significantly different in photobleaching 

than those uncolonized (Table 3) in the absence of virus. Interestingly, under water stress, virus 

infected plants showed significantly lower photobleaching than non-infected plants, and there was no 

interaction effect of the virus and fungal colonization in any condition (Table 3).

 

Fig 1. Relative water content of N. benthamiana leaf at 8 d after stress application. Bar indicates mean 

with standard error (SE), N=12. Bar with different letters a significantly different at p≤0.05 under a 

condition (well-watered or stressed) in presence or absence of virus (YTMMV or Mock) as obtained 

by Tukey’s honestly significant difference (HSD) test. The E-162 indicates a plant inoculated with the 

fungal strain E-162, E-284 indicates a plant inoculated with fungal strain E-284, NE = No fungal 

inoculation, Mock = in absence of virus and YTMMV = plant inoculated with YTMMV (yellowtail 

flower mild mottle virus).   

6.5.3. Electrical conductivity 

Under well-watered conditions, there were no differences in electrolyte conductivity (EC) of leaves 

among the treatments across sampling points (Fig. 2b). Water stress significantly influenced EC of 

leaves, and it increased as the stress progressed in all plants. However, the rate of the increase in non-

endophytic plants was significantly higher as compared to the endophytic plants at 8 d and 11d. This 

increasing trend continued in all groups as the stress progressed in absence of virus. It was noted that 

the YTMMV virus inoculation increased the EC under water stress at d4 in the non-endophytic plants 

but not significantly so in endophytic plants. Under well-watered condition, YTMMV increased EC in 

NE and E-284 plants but not in E-162 plants at d11 (Fig. 2b).  
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Table 2: Results of the three-way ANOVA of relative water content and biomass data of N. 

benthamiana plants subjected to water stress and inoculated with fungal endophytes and virus1. 

 
RWC (n=12, error df=132) Biomass traits (n=6, error df=60) 

F value Shoot Root Root: Shoot 

F value F value F value 

WT 121.51*** 35.68*** 9.19** 27.09*** 

VI 2.66 32.36*** 25.77*** 0.00 

EI 10.42*** 0.15 0.59 1.28 

WT×VI 7.01** 4.92* 8.45** 6.06* 

WT×EI 4.46* 0.22 0.93 3.55* 

VI×EI 0.25 0.02 0.07 0.64 

WT×VI×EI 0.32 0.03 0.28 0.53 
 

1WT= Water treatment, EI= Endophyte inoculation, VI= Virus inoculation, RWC= Relative 

water content. The “*, ** and ***” symbols indicate the F-value is significant at p ≤0.05, 

p≤0.01, p≤0.001, respectively. 

 

Fig. 2. (a) Chlorophyll Content Index and (b) Electrical conductivity values of N. benthamiana 

leaf at 0, 4, 8 and 11 d after water stress application. The bars indicate standard error (SE), N=6. 

The “*” symbol above any line indicates the value is significantly different (p≤0.05) from the 

other treatments at the corresponding time point under a condition (well-watered or stressed) in 

presence or absence of virus (YTMMV or Mock) as obtained by Tukey’s HSD test. The E-162 

indicates plants inoculated with the fungal strain E-162, E-284 indicates plants inoculated with 

fungal strain E-284, NE = No fungal inoculation, Mock = in absence of virus, and YTMMV = 

plant inoculated with YTMMV (yellowtail flower mild mottle virus).   
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6.5.4. Accumulation of osmolytes 

Soluble Sugars: 

None of the endophyte strains had any noticeable influence on the plant soluble sugar levels across 

sampling points under well-watered conditions. Inoculation with YTMMV seemed to increase the 

sugar level in endophytic plants to a certain extent under well-watered conditions (Fig. 3a, Table 4). 

When drought was applied, sugar levels showed a steady increase in all the groups irrespective of 

endophyte or virus inoculation status even though there were significant differences in the level of 

sugar between endophytic and non-endophytic plants (Fig. 3a, Table 4). In contrast, virus inoculation 

did not influence sugar accumulation in the plant under water stress (Fig. 3a, Table 4). 

Soluble protein: 

The amount of soluble protein in leaves showed a sharp increase under water stress conditions 

regardless of fungal or viral inoculation (Fig. 3b). When there was no virus inoculation, endophyte 

treatment alone resulted in significantly higher protein accumulation than non-endophytic plants. 

YTMMV infection resulted in a steeper increase (> four times the level under control condition) in the 

level of protein in both endophytic and non-endophytic plants (Fig. 3b). The YTMMV inoculation 

increased soluble proteins in the plants also under the well-watered condition, and no influence of any 

of the endophyte isolates was observed (Fig. 3b and Table 4). 

Proline content: 

Proline levels measured low and were constant in well-watered (Fig.  3c). None of the endophyte 

strains had any influence on proline in well-watered plants, but inoculation with YTMMV increased 

proline levels to some extent as the plants grew older (Fig. 3c). The levels of proline increased 

dramatically in plants challenged with increasing water stress in all treatments (Fig. 3c). There were 

significant differences in proline levels between endophytic and non-endophytic plants in the absence 

of virus inoculation. But this difference was not observed when the plants were inoculated with the 

YTMMV (Fig. 3c). Therefore, it was noted that virus inoculation had a substantial impact on leaf 

proline levels in both stressed and well-watered conditions (Fig. 3c). 

6.5.5. Changes in antioxidant enzymes 

Catalase  

Catalase activity increased under water stress treatment. The rate of increase was highest in E-162 

inoculated plants (Fig. 4a). Infection of YTMMV caused a steady increase in CAT activity, which 

became more prominent as water stress progressed (Fig. 4a). No additive effect of virus and fungal 

inoculation was noted regardless of water status in the plants except at d8 under stress (Table 4 and 

Fig. 4a).  

 

129



 
 

 

130



 
 

Fig. 3. (a) Soluble sugar (b) Soluble protein and (c) Proline content of N. benthamiana leaves at 0, 4, 

8 and 11 d after water stress application. The bars indicate standard error (SE), N=12. The “*” symbol 

above any line indicates the value is significantly different (p≤0.05) from the other treatments at the 

corresponding time point under a condition (well-watered or stressed) in presence or absence of virus 

(YTMMV or Mock) as obtained by Tukey’s HSD test. E-162 indicates plants inoculated with fungal 

strain E-162, E-284 indicates plants inoculated with fungal strain E-284, NE = No fungal inoculation, 

Mock = in absence of virus, and YTMMV = plant inoculated with YTMMV (yellowtail flower mild 

mottle virus).   

Peroxidase 

Water stress caused increased peroxidase activity in plants in all treatments. At severe water stress, 

the peroxidase activity was significantly higher in endophytic plants with either of the fungal strains 

(Fig. 4b). The virus inoculation resulted in a higher peroxidase activity regardless of water availability 

although the increase was much more pronounced under water stress conditions (Fig. 4b). We did not 

observe any interaction effect of the virus and fungal inoculation on peroxidase activity under any 

condition except at d11 (Table 4 and Fig. 4b). 

Polyphenol oxidase 

Water stress increased polyphenol oxidase activity in all plants. Plants inoculated with E-284 had a 

significantly higher polyphenol oxidase activity under both conditions in presence of virus (Fig. 4c). 

Virus inoculated plants had a higher PPO activity under normal watering or stress conditions even 

though the rate of increase was much more prominent under water stress (Fig. 4c). We did not observe 

any interaction effect of the virus and fungal inoculation on peroxidase activity under well-watered 

conditions but did observe the interaction of E-284 and the virus under stress condition (Table 4 and 

Fig. 4c). 
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Table 3: Effect of fungal endophyte and virus infection on biomass and ROS sensitivity in water-stressed N. benthamiana plants at d8* 

Water 

treatment 

Biomass 

trait 
Shoot (mg) Root (mg) Root: Shoot ROS  

EI Mock YTMMV Mock YTMMV Mock YTMMV Mock YTMMV 

WS 

E-162 273.82±53.9aA 160.03±31.6aA 51.42±6.1aA 38.17±8.1aA 5.20±0.7bA 4.18±0.51aA 7.6±0.87aA 5±0.84aB 

E-284 241.87±34.2aA 131.23±25.8aB 49.78±7.8aA 31.23±5.8aA 4.94±0.2bA 4.65±0.67aA 8.4±0.51aA 3.8±0.58aB 

NE 243.03±23.3aA 136.53±22.2aB 31.58±1.7bA 27.60±6.1aA 7.80±0.9aA 5.66±0.89aA 10.4±0.51bA 4.8±0.58aB 

WW 

E-162 502.20±58.9aA 269.50±32.7aB 74.72±15.1aA 29.48±3.9aB 7.32±0.8aA 9.33±0.8aA 1.4±0.51aA 0.6±0.24aA 

E-284 536.83±135.7aA 273.60±59.5aA 77.75±21.0aA 37.33±8.3aA 7.29±0.5aA 7.94±0.9aA 2.2±0.86aA 1±0.32aA 

NE 501.03±53.2aA 242.77±17.4aB 78.27±9.5aA 32.23±2.9aB 7.12±1.4aA 7.79±.07aA 0.8±0.37aA 0.8±0.37aA 

 

*The values with different letters are significantly different (p≤0.05) as obtained by Tukey’s honestly significant different test; small letters compare across 

column s separately under well-watered (WW) and water stress (WS) condition and the capital letters compare across rows between Mock and YTMMV. E-

162=plants inoculated with fungal strain E-162, E-284-plants inoculated with fungal strain E-284, NE=No fungal inoculation, Mock = in absence of virus and 

YTMMV = plants inoculated with YTMMV; ROS=reactive oxygen species.  
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Table 4: F-values obtained from the three-way ANOVA of data of various parameters under well-watered and stressed conditions.1  

 
 df EC Proline Protein Sugar Catalase Peroxidase  Polyphenol oxidase 

Well-watered 

(n=12, error 

df=336) 

VI 1 9.07* 9.65* 46.19*** 4.18* 145.55*** 49.82*** 111.83*** 

EI 2 1.3 0.29 0.05 0.59 0.02 1.34 0.62 

Day 3 1.77 12.69*** 3.35* 1.66 7.60*** 16.94*** 6.33*** 

VI×EI 2 0.89 0.04 0.001 1.55 1.51 0.55 0.51 

VI×Day 3 0.61 4.29* 0.3 1.51 1.78 2.4 1.59 

EI×Day 6 0.96 0.36 0.11 0.37 0.66 0.74 0.46 

VI × EI × Day 6 0.63 0.46 0.05 0.76 0.46 1.41 0.4 

Stressed (n=12, 

error df=198 

VI 1 1.02 11.87** 60.52*** 0.13 50.14*** 124.45*** 94.03*** 

EI 2 14.31*** 3.32* 7.32** 13.42*** 5.91* 6.54** 4.50* 

Day 2 37.29*** 101.75*** 103.01*** 76.25*** 107.59*** 75.30*** 55.91*** 

VI×EI 2 0.86 5.01* 4.08* 0.21 0.33 1.86 2.68 

VI×Day 2 2.57 2.33 12.85*** 0.08 2.5 11.71*** 16.15*** 

EI×Day 4 0.36 0.56 1.98 3.86** 1.69 2.43* 0.48 

VI × EI × Day 4 0.79 0.99 1.18 0.17 0.099 1.27 0.54 

 

1EI= Endophyte inoculation, VI= Virus inoculation, EC= Electrical conductivity. The “*, ** and ***” symbols indicate the F-value is significant at p 

≤0.05, p≤0.01, p≤0.001, respectively. 
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Fig. 4. Activity of (a) catalase, (b) and peroxidase (c) polyphenol oxidase enzymes in N. benthamiana 

leaf at 0, 4, 8 and 11 d after water stress application. The bars indicate standard error (SE), N=12. The 

“*” symbol above any line indicates the value is significantly different (p≤0.05) from the other 

treatment at the corresponding time point under a condition (well-watered or stressed) in presence or 

absence of virus (YTMMV or Mock) as obtained by Tukey’s HSD test. E-162 indicates plants 

inoculated with fungal strain E-162, E-284 indicates plants inoculated with fungal strain E-284, NE = 

No fungal inoculation, Mock = in absence of virus and YTMMV = plants inoculated with YTMMV 

(yellowtail flower mild mottle virus).   

 

6.6.6. Expression of drought stress related genes 

Water stress and virus infection separately caused differential expression of most of the genes under 

investigation. There was a significant interaction between water stress and YTMMV inoculation on 

NbCAT3, NbDreb2a, NbGBP16, NbMYB, NbPAL1, and NbSOS1 (Table 5). The NbCAT3 was 

significantly upregulated (8-11 fold) in YTMMV infected plant under well-watered conditions, which 

increased even more (17-20 fold) under stress (Fig. 5). The fungus-infected plants did not show any 

difference in expression compared to non-inoculated plants under well-watered conditions in absence 

of virus. Under stress however. However, under stress, NbCAT3 expression differed as a function of 

fungal inoculation (Fig. 5) in absence of the virus. NbDreb2a expression was significantly 

downregulated under stress and due to YTMMV inoculation (Fig. 5), and there was a significant 

interaction of stress and virus infection (Table 5). The expression of NbGBP16 was upregulated under 

water stress, and E-162 inoculation caused a further increase in its expression in the absence of virus. 

Interacting with YTMMV, water stress resulted in higher expression (20-24-fold compared to non-

inoculated control) regardless of endophyte inoculation. While water stress caused in general a higher 

expression of NbHSP101 gene its expression was much higher in non-endophytic plants than 

corresponding endophytic plants (Fig. 5).  

There were significant three-way interaction effects of water treatment, endophyte inoculation and 

virus inoculation as well as all possible three-way interaction effects on the expression of this gene 

(Table 5). E-162 caused significant upregulation of NbMYB gene under stress but only in the absence 

of virus. In presence of virus, stress induced NbMYB expression did not differ among endophytic or 

non-endophytic plants. (Fig. 5). E-162 had a marked influence on NbMYC expression in the absence 

of YTMMV (Fig. 5). Expression of NbPAL1 was upregulated by virus infection in well-watered 

condition only (Fig. 5). In absence of virus fungal inoculation increased NbPAL1 expression under 

stressed and watered conditions. NbSOS1 expression was increased by YTMMV infection in well-

watered plants regardless of fungal presence. The gene NbPDH1 and NbWRKY were significantly 

upregulated in endophytic plants under water stress irrespective of YTMMV infection (Fig. 5). 
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 Fig 5. Relative changes in expression of drought related genes in N. benthamiana leaves under water 

stress after 8 d. The bars indicate standard error (SE), N=3. Bars with different letters are significantly 

different (p≤0.05) under a condition (well-watered or stressed) in presence or absence of virus 

(YTMMV or Mock) as obtained by Tukey’s HSD test. E-162 indicates plant inoculated with fungal 

strain E-162, E-284 indicates plant inoculated with fungal strain E-284, NE = No fungal inoculation, 

Mock = in absence of virus, and YTMMV = plants inoculated with YTMMV (yellowtail flower mild 

mottle virus).   

The expression of NbZfP was increased by water treatment and virus infection, but their interaction 

was not significant (Fig. 5, Table 5) and the role of fungal inoculation was not apparent on its 

expression (Table 5). 

Table 5.  F values obtained from three-way ANOVA of the data of relative expression of the N. 

benthamiana drought associated genes. *  

Gene Code WT VI EI WT×VI WT×EI VI×EI WT×VI×EI 

Degrees of 

freedom 1 1 2 1 2 2 2 

NbCAT3 111.25 36.75 6.78 6.16 4.34 6.24 6.34 

NbDreb2a 0.9 5.45 1.00 13.29 1.95 1.55 0.79 

NbGBP16 75.87 11.55 1.92 12.74 1.63 1.01 0.57 

NbHSP101 173.96 1.73 19.57 10.82 21.33 6.98 6.9 

NbMYB 22.9 19.25 0.96 3.04 2.63 1.15 0.75 

NbMYC 32.4 14.05 1.85 0 5.42 2.07 0.54 

NbPAL1 0.68 30.86 0.58 7.51 0.96 1.39 0.36 

NbPDH1  28.45 1.82 4.16 0.59 2.53 0.04 0.17 

NbSOS1 1.93 5.98 0.25 7.25 1.21 0.76 0.25 

NbWrky 55.94 5.81 10.86 0.92 3.44 0.34 0.45 

NbZfP 43.61 13.74 1.8 3.64 1.21 0.68 1 

 

*The Ct value for each gene was normalised with the Ct value of NbActin and relative expression 

value was obtained using 2ΔΔCT method. A three-way ANOVA was performed to detect whether the 

effect of WT= water treatment, VI=virus inoculation and EI= Endophyte inoculation and all possible 

interactions between them were significant. The values provided are F-ratio. The cells marked with 

dark are significant at p≤0.001 and those with grey and light grey are significant at p≤0.01 and 

p≤0.05. 

6.5.7. Plant wilting behaviour under water stress: 

Plants respond to water stress by wilting of leaves followed by wilting of the shoot tip and ultimately 

death at the severe stage. In our experiment, we found that inoculation with YTMMV delayed plant 

initial responses to stress. Virus-inoculated plants took a significantly longer time to begin leaf wilting 

irrespective of fungal inoculation. None of the fungal strains had an apparent effect on the plants early 
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response to water stress (Fig. 6). As wilting progressed, virus inoculated plants took significantly 

more days to fully wilt. Regarding the shoot tip, both fungal strains significantly delayed plant shoot 

tip wilting in the absence of the virus.  For example, plants inoculated with E-162 or E-284 took an 

average of 19 days for the shoot tip to wilt, whereas non-inoculated plants wilted within 14 dps (days 

post stress) (Fig. 6). However, in the presence of YTMMV infection, all the plant significantly 

delayed shoot tip wilting (average: 23-25 dps) compared to virus free plants (14-19 dps) and the effect 

of fungal infection was not apparent (Fig. 6). 

6.5. Discussion 

6.6.1. Plant responses to water stress  

None of the fungal strains increased plant shoot biomass either under well-watered or stressed 

conditions. This result is in line with several other studies showing a neutral effect of fungal 

endophytes on shoot biomass under stress (Briggs et al., 2013; He L, 2017; Hesse et al., 2003, 2005; 

Hill et al., 1996; Jia et al., 2015; Kane, 2011; Khan et al., 2013; Oberhofer et al., 2014; Rudgers and 

Swafford, 2009). In contrast, certain endophytic strains were also reported to increase (Ghabooli et al., 

2013; Gibert et al., 2012; Hill et al., 1996; Malinowski et al., 2005; Vazquez-de-Aldana et al., 2013; 

Zhang and Nan, 2007) or decrease (Assuero et al., 2006; He L, 2017; Rahman et al., 2015; Yang et 

al., 2014; Zhang, 2017) plant shoot biomass under water stress. Previously, we reported increased 

shoot biomass increased of N. benthamiana plants under stress when inoculated with the same fungal 

strains that we used in the present study (Dastogeer et al., 2017a). This could be because of the 

differences in plant genotype and their inherent drought tolerance level suggesting that the endophyte-

plant interaction is context dependent. Increased root biomass of endophytic plants under stress could 

be a mechanism to uptake water from a greater area and increase tolerance. A similar mechanism 

could be associated with virus-infected plants in the current study, which was supported by the 

findings that virus infection did not change plant root biomass under stress, although it reduced the 

shoot biomass substantially under stress.  

As can be expected, the RWC of Nicotiana seedlings significantly diminished under stress, while 

colonization with either of the fungal strains enhanced the leaf water levels to a small extent. This is 

in accordance with previous studies. For example, inoculation with a strain of Chaetomium globosum 

resulted in an increased water content of wheat leaves subjected to water stress as compared to non-

endophytic counterparts (Cong et al., 2015). Also, Trichoderma atrovride colonization in maize 

(Guler et al., 2016) and T. hamatum colonization in cacao (Bae et al. 2009) showed a relative increase 

in water status under stress conditions. In similar research, it was shown that endophytic plants use 

significantly less water than non-endophytic plants (Chepsergon et al. 2014). Martinez-Medina et al. 

(2014) also showed that endophytic T. hamatum drew water from deeper soil to enhance plant water 

potential. Endophytes could also help plants reduce the losses of water as the stress progresses to  
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Fig. 6. Wilting behaviour of N. benthamiana under water stress. The bars indicate standard error (SE), 

N=12. Bars with different letters are significantly different (p≤0.05) as obtained by Tukey’s HSD test. 

E-162 indicates plants inoculated with fungal strain E-162, E-284 indicates plants inoculated with 

fungal strain E-284, NE = No fungal inoculation, Mock = in absence of virus, and YTMMV = plant 

inoculated with YTMMV (yellowtail flower mild mottle virus). 
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better the plant performance by reducing transpiration and through osmotic and metabolite adjustment 

(Dastogeer et al., 2017b; Morsy et al., 2010; Rodriguez et al., 2010; Waller et al., 2005).  

Reduction in chlorophyll content under water stress regimes is the main cause of inactivation of 

photosynthesis (Shukla et al., 2012). Root colonization with the fungal endophyte E-162 alleviated the 

water stress effect by improving chlorophyll pigment contents in N. benthamiana seedlings. A similar 

result has been reported by Bae et al. (2009) who reported an increase in chlorophyll content in 

seedlings colonized by T. hamatum. Harman et al. (2004) reported that a strain of T. harzianum 

increased leaf greenness in maize, which enhanced the vigour when an adequate carbon source was 

available for plant development. In our study, the isolate E-284 did now show any effect on 

chlorophyll content, while a positive effect of fungal endophytes on plant chlorophyll is common 

(Bayat et al., 2009; Guler et al., 2016; Khan et al., 2013; Khan et al., 2015; Mastouri et al., 2012; 

Shukla et al., 2012; Sun et al., 2010b; Waqas et al., 2012; Zhang and Nan, 2007), neutral or negative 

(Pandey et al., 2016; Ren et al., 2011; Tian et al., 2015b). It is understandable that virus infection 

severely reduces plant chlorophyll content (Dai et al., 2009; Guo et al., 2005; Plattt et al., 1979). 

However, it is interesting that in our study, water stress did not influence chlorophyll content in virus 

infected plants. One possible explanation is that initial plant drought response includes wilting of 

lower leaves and plant diverts most available water and energy to the upper leaves from where we 

measure chlorophyll to increase photosynthesis to support growth. The virus accumulation may not 

keep pace with the activity of these leaves as they can do in the well-watered plant leaves resulting in 

slower symptom expression (such as yellowing) and hence the disruption of chlorophyll. However, 

we did not come across any literature explaining this phenomenon and this may be an interesting area 

of future studies. 

A higher level of EC in the plant under water stress is an indication of damage to the cell membrane. 

Higher leakage of solutes could be associated with increased H2O2 production and lipid peroxidation 

under stress causing membrane destruction and metabolic toxicity leading to higher solutes leakage 

(Deshmukh et al., 1991; Dionisio-Sese and Tobita, 1998; Premchandra et al.). An increased EC in 

non-endophytic plants suggests more tissue damage, while this is reduced by the presence of 

endophytic fungi under stress conditions. Endophyte-mediated reduced EC in plants under stress has 

been reported in other studies (Bayat et al., 2009; Khan et al., 2013; Shukla et al., 2012; Tian et al., 

2015b).  

6.6.2. Osmolytes under water stress 

Increased sugar accumulation in plants in response to water stress has been documented (Assuero et 

al., 2006; Ren et al., 2006). Accumulation of soluble sugars in plants is an adaptive response to stress, 

which functions as an osmotic adjustment balance (Ren et al., 2006). Research on the influence of 
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fungal endophytes on plant sugar accumulation under water deficit stress reported variable results. For 

example, endophytes may increase (Assuero et al., 2006; Ren et al., 2006; Richardson et al., 1992; 

Yang et al., 2014) or decrease (Hill  et al., 1990) or exert no apparent influence (Cong et al., 2015; 

Hill  et al., 1990) sugar levels in stressed plants, depending on the host species, breeds and genotypes. 

Higher sugar accumulation could contribute to the osmotic potential of endophytic plants under stress, 

which might be initiated by altered carbohydrate balance or by carbohydrate re-metabolization from 

sugars of senescing leaves (Assuero et al., 2006).  

Stressed increased plant soluble proteins. This could be related to their roles in permeation and 

antioxidation, for example, antioxidant enzymes, phytohormone receptors, etc (Yang et al., 2014). 

Endophyte-mediated increased soluble proteins and various amino acids in response to water stress 

has also been reported (Bae et al., 2009; Yang et al., 2014). 

Stress induced proline accumulation is common in plants, although its role as an osmoprotectant is 

still debated (Delauney and Verma, 1993; Serraj and Sinclair, 2002b). Proline accumulation may or 

may not have any relation with plant drought tolerance (Cha-Um et al., 2010; Hien et al., 2003; Roy et 

al., 2009). Similar to our findings, endophyte-induced increase in proline was described from drought 

stressed grass species (Abernethy and McManus, 1998; Bandurska and Jóźwiak, 2010; Elbersen and 

West, 1996; Malinowski and Belesky, 2000a; Nagabhyru et al., 2013). The higher proline 

accumulation in the endophytic plant could be due to the role of endophytes under stress conditions to 

shield plants from the severity of damage through increased accumulation of osmoprotectants (such as 

proline). It was noted that virus infection increased proline in both watered and stressed plants. This 

might be because virus infection put the plant under stress, stimulating proline accumulation which 

was intensified even more under water stress. 

6.6.3. ROS and antioxidant enzymes under water stress 

When photosynthetic tissue is exposed to paraquat, it generates superoxide ions and causes 

photobleaching through the reduction of the electron transfer from the plants photosystem I and 

oxidation by molecular oxygen (Vaughn and Duke, 1983). ROS production is associated with early 

events in the plant stress response mechanism. The current study indicated that water stress tolerance 

in endophytic or virus inoculated plants correlated with reduced ROS activity. Higher ROS synthesis 

is common to all stresses because of stress-induced metabolic imbalances (Apel and Hirt, 2004; 

Vaughn and Duke, 1983). Decreased ROS activity in endophytic or YTMMV-infected plants could be 

achieved by improved ROS scavenging of antioxidation systems, which correlate strongly with stress 

tolerance and may play a critical role in the process. 

Plants tend to produce additional ROS in response to various environmental stimuli. Various 

pathways are involved in detoxifying ROS in plants (Mittler, 2002).  Plant cellular antioxidative 
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enzymes are produced to scavenge more H2O2 (Tran et al., 2012) . While the interaction between 

endophytes and the elements of defence mechanisms is not well-understood, activities of CAT, POD, 

and PPO were more significantly increased in endophytic plants than in non-endophytic plants under 

water stress. These enzymes counteract ROS induced oxidative damage. Peroxidase and polyphenol 

oxidase protect cells against the toxic effects of H2O2 by catalysing its decomposition through the 

oxidation of phenolic osmolytes (Elmi and West, 1995). Our results correlate with those of others that 

suggest these enzyme activities are increased in endophytic plants challenged with abiotic and biotic 

stress (Harman, 2011; Khan et al., 2013; Waller et al., 2005). Endophyte-inoculated plants recruited 

higher amount of oxidative stress enzymes that successively protect plants against ROS formation and 

membrane damage under stress (Baltruschat et al., 2008; Guler et al., 2016; Harman, 2006; Hashem et 

al., 2014; Khan et al., 2014; Khan et al., 2013; Mastouri et al., 2012; Shukla et al., 2012; Waller et al., 

2005). Virus-induced changes CAT, POD and PPO activity in plants have been reported (Amoako et 

al., 2015; Buonaurio and Montalbini, 1993; Chatterjee and Ghosh, 2008; Madhusudhan et al., 2009; 

Riedle-Bauer, 1998; Srivastava and Singh, 2010). In the current study, the activity of all these 

antioxidant enzymes was increased in the presence of the virus. This could be one of the mechanism 

the plant uses for virus resistance. The plant we used is a wild accession of native Australian N. 

benthamiana which responded with moderate symptoms to YTMMV infection. The virus produces 

mosaic or mottling symptoms on leaves of N. benthamiana plants, but is not lethal to them. Under 

water stress, the virus resulted in a more pronounced increase in these enzymes. We hypothesise that 

when the plant was challenged with water stress and YTMMV simultaneously, the plant produces 

more antioxidant enzymes to protect it from increased ROS production. We assumed that the effect of 

fungal infection was masked by virus infection and therefore its influence could not be distinguished 

from the effect of the virus.  

6.6.4. Drought related gene expressions 

It is known that catalase is one of the key enzymes participating in the regulation of H2O2 in cells. The 

upregulation of NbCAT3 is correlated with increased CAT activity during water stress as well as virus 

infection. This could be a plant strategy to shield the toxic influence of elevated ROS under stress. At 

the same time, activation of CAT may be beneficial for the virus, by reducing the efficiency of the 

plant defence system. It is still unclear if activation of NbCAT3 is a consequence of viral infection, or 

if it is a common response to ROS upregulation under any stress stimulus. Some plant viruses are 

known to influence the expression of antioxidant defence-related genes (Kogovšek et al., 2010; 

Pompe-Novak et al., 2006; Yergaliyev et al., 2016).  

Several transcription factors, MYB, MYC, DREB, and ZFP, have roles in plant development and 

stress tolerance (Kizis et al., 2001; Mengiste et al., 2003; Meshi and Iwabuchi, 1995; Narusaka et al., 

2003; Xiang et al., 1997). The MYB family of proteins is large, functionally diverse and represented 
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across all eukaryotes. Different MYB transcription factors have been characterised in many plant 

species, and their involvement in drought responses have been described (Ambawat et al., 2013; 

Baldoni et al., 2015). NbPHAN, a MYB transcriptional factor, was found to regulate leaf development 

and affects drought tolerance in N. benthamiana plants (Huang et al., 2013).  

The WRKY transcription factors are unique to plants (Eulgem et al., 2000; Kalde et al., 2003). The 

WRKY proteins have been implicated in cellular defence against a variety of biotic and abiotic 

stressors, including drought and salt (Jiang and Deyholos, 2006; Tripathi et al., 2014). In the present 

study, we found that NbWRKy, an NTEIG-D homolog (WERKY-like gene), is upregulated under 

stress and was upregulated under fungus infection. The earlier study suggests that NbWRKY 

overexpressed in N. benthamiana plants under water stress (Archana et al., 2009).  

Most genes investigated in this study were upregulated in response to water stress in fungus- and 

virus-colonized seedlings. Endophyte-induced upregulation of drought related genes was reported in 

Piriformospora indica-infected Arabidopsis seedlings (Sherameti et al., 2008a; Sherameti et al., 

2008b; Sun et al., 2010a; Xu et al., 2017). It is likely that a more comprehensive analysis will uncover 

more fungus- and virus-responsive genes and proteins involved in water stress tolerance. 

Taking these results together, both fungal endophytes and the virus may confer water stress tolerance 

to N. benthamiana seedlings by increased accumulation of sugar, protein and proline as osmolytes, 

increased antioxidative enzyme activity, reduced membrane damage, and enhanced expression of 

drought-related genes. Plant drought tolerance is a complex trait. Roles of compatible solutes in plant 

drought stress tolerance have been discussed elaborately. At physiological level, osmotic adjustment 

is an adaptive mechanism involved in drought tolerance and permits the maintenance of turgor 

pressure under stress conditions. Also, these osmoprotectants (sugars, prolines, proteins etc) and 

antioxidant enzymes detoxify adverse effect of reactive oxygen species and alleviate drought stresses 

in plants (reviewed by Singh et al. (2015). Our results suggest, the fungal endophytes and the virus 

helps plant increase plant biomass, chlorophyll, RWC and osmoprotectants as well as antioxidant 

enzymes and thus enhance the adaptive drought tolerance mechanisms in plant.  
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7. General Discussion 

Plants interact with diverse microorganisms including fungal endophytes. The roles of these 

endophytes in the broader context of evolution and ecology remains largely unknown, as well as their 

specific effects on the host. In our study, we assessed identity, host, tissue association and 

geographical association of fungal endophytes isolated from root, stem and leaf tissues of native 

Australian Nicotiana plants. The diversity of fungal endophytes did not vary as a function of sampling 

location but it varied as a function of host genotype and tissue origin. A significant pattern of 

community structuring was observed due to host genotypes but no consistent pattern of fungal 

community structure was recorded to be associated with sampling location and tissue type. Although 

endophytes were recovered from symptomless tissues, inoculation of the isolated endophytes showed 

that the majority of these fungi acted as commensals or pathogens. Among the endophytes, only two 

isolates significantly enhanced drought tolerance in Nicotiana seedlings. The presence of these 

endophytes under water stress resulted in differential accumulation of certain plant metabolites. 

Drought tolerance of fungus-inoculated plants was correlated with increased plant biomass, relative 

water content, soluble sugar, soluble protein, proline content, and increased activity of antioxidant 

enzymes. Additionally, fungus-mediated plant drought tolerance was associated with decreased 

production of reactive oxygen species and electrical conductivity and differential regulation of 

drought-related genes. The influence of infection by yellow tailflower mild mottle virus (YTMMV) 

was similar, but virus infection and drought together did not have a positive additive effect on plants, 

nor did they decrease the plant’s drought tolerance. The summary and major findings described in 

different chapters are depicted in a conceptual diagram (Fig. 7.1). 

7.1. Drivers of fungal endophyte community structuring: consistent or variable 

Our study revealed that fungal endophyte community structering was shaped primarily by Nicotiana 

host species. The results of previous studies have been inconsistent with respect to endophyte host 

specificity (Cannon and Simmons, 2002; Davis and Shaw, 2008; De Errasti et al., 2010; Higgins et 

al., 2007; Ragazzi et al., 2003; Suryanarayan and Kumaresan, 2000; Suryanarayanan et al., 2005; 

Walker et al., 2011). The reliability of studies on endophytes depends on the methods used (Hyde and 

Soytong, 2008). The identity and isolation efficiency can be affected by various experimental factors 

that, in turn, may affect the comparability of results. Our inferences on host specificity may have 

limitations because we focussed only on cultivable fungi, and specifically, those that could be 

cultured on PDA, we are likely to have underestimated the numbers and diversity of fungi present in 

our samples. Previous research indicates that plants harbour many species of endophytes, including 

microbiomes other than fungi, that remain undetected in culture-based approaches but can be detected 

in a culture-independent approach (Chobba et al., 2013). Therefore, culture-independent identification 

approaches should be combined with culture-dependent approaches. Such tools may be particularly 
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important in harsh environments where obligate symbionts may be favoured and are less likely to be 

recovered easily by culturing (Herrera et al., 2010; Khidir et al., 2010; Porras-Alfaro et al., 2014).  

 

 

Fig. 7.1: Summary of thesis structure with key findings 

Host specificity has also been reported to be the major determinant of bacterial endophytes (Ding et 

al., 2013; Wagner et al., 2016). The host effect on microbial endophyte communities can be explained 

by the fact that the majority of endophytes enter into plants via roots. Different plant species are 

characterized by different root exudation patterns, which are likely to attract different microorganisms 

to the rhizoplane, that can subsequently gain entry into the plant. Furthermore, plant physiology and 

chemical or physical characteristics are likely to play a major role (Hardoim et al., 2015).  
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In our study, we did not consider other factors such as soil types, soil water content, time of the year, 

surrounding vegetation, anthropogenic intervention etc. We controlled these factors by collecting the 

same number of plants from all locations studied and assumed that there were little variations within a 

location. It would be interesting to know if associated soil or rhizosphere fungi and other microbes 

show similar or different pattern of community structuring. There are numerous gaps in our 

knowledge about plant-endosymbiont relationships. For example, is host specificity a general 

phenomenon among endophytic microorganisms? Is the host specificity of endophytes of a plant 

species stable over ranges of environments? Is it stable across host generations? Is host specificity a 

factor with other microbes (e.g. bacteria and archaea), and viruses that associate with plants? Do 

agricultural practices affect the microbiome of cropped plant species? Are there any temporal 

variations? What host and microbial factors are associated with endophyte-host associations? What 

kind of relationship exists between microbial endosymbionts the co-occur in a host? With high 

throughput technologies, such as next-generation sequencing and metagenomics, we can begin to 

study endophyte microbiomes across hosts, environmental conditions, and at different time points and 

focus on mechanisms of the plant-endophyte association.  

Measuring host specificity using physiological parameters combined with sequence data may provide 

a solid platform for delineating morphologically cryptic host-specific microorganisms. The degree of 

plant genetic control over endophytic community structuring is of interest to plant breeders and 

evolutionary biologists, since heritability of the microbiome determines whether it can evolve in 

response to selection on host plants (Bordenstein and Theis, 2015; Moran and Sloan, 2015; 

Whitham et al., 2006; Whitham et al., 2003). For the researcher, host specificity provides a unique 

opportunity to investigate co-evolution of host and endophyte. Manipulative experiments in the 

laboratory and under field conditions will be needed to unravel the molecular interactions and 

learn how each affects plant microbiome composition and function (Anderson et al., 2014). Use of 

genome-wide association studies, RNAseq, metagenomics and experimental re-inoculations will be 

necessary. An improved understanding of how host genetic variation affects associated microbial 

compositions will be rewarding for future efforts to integrate microbiome biology into 

evolutionary ecology and agricultural biotechnology. 

7.2. Endophyte-mediated plant stress amelioration: implications for sustainable agriculture 

Global agriculture is under pressure to provide increased production to feed the growing population, 

which is projected to reach up to 12 billion by the end of this century (DESA, 2015). Both abiotic and 

biotic stresses place limitations on production. Moreover, climate change is predicted to intensify the 

frequency, extent and severity of limiting factors. Emphasis must be given towards sustainable 

intensification of agriculture under variable and unpredictable conditions. Plants and their microbial 

symbionts co-evolved around 400 million years ago (Rodriguez and Redman, 2008), and so it is likely 
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that mutual benefits arise. Recently, a paradigm shift has taken place by considering plants as a 

holobiont, an ecological and evolutionary unit encompassing both the host and its associated 

microbiome (Vandenkoornhuyse et al., 2015). Mutualistic interactions between endophytic fungi and 

plants are ecologically important and globally prevalent. Certain endophytic microbes residing within 

plant tissues have been shown to promote plant growth and endow protection against biotic and 

abiotic stresses (Baltruschat et al., 2008; Hubbard et al., 2014; Khan et al., 2017; Šišić et al., 2017). 

These interactions are not currently actively exploited in agricultural systems. One reason is that the 

underlying mechanisms of beneficial plant-endophyte interactions are not well understood. Our study 

revealed that a subset of ascomycete fungal endophytes protects plant growth and promotes water 

stress tolerance through manipulating host metabolic pathways, and the production of osmolytes, 

antioxidant enzymes, and through altered gene expression. This proved our hypothesis that beneficial 

fungal endophytes interact with Australian Nicotiana plants from regions where aridity prevails and 

where selection favours interactions that increase survival under drought. Endophyte-mediated 

drought tolerance in these Nicotiana plants may be explained by plant-fungus mutualism under 

adverse climatic conditions.  

Most published studies, including ours, were performed under controlled laboratory conditions. The 

results of these controlled experiments may not always reflect field conditions (Serfling et al., 2007). 

Fungal endophytes have been tested singly with a few pure isolates, but our isolations revealed large 

co-associations with their hosts. The outcome could be variable under microbe-microbe competition 

for space and nutrients, mycoparasitism, activation of host defences or antagonism involving the 

production of antifungal or antibacterial compounds (Saunders et al., 2010). To assess the likelihood 

of such an inadvertent outcome, co-inoculations with multiple mutualistic microorganisms are 

merited. Another key consideration would be to study the behaviours of endophytes under a range of 

conditions and stages of the life cycle. It is important to understand these factors in order to manage 

the risk of endophytes becoming pathogenic, either through a change in environmental conditions or 

adaptation to an alternative host (Redman et al., 2001). An innovative biotechnology strategy might 

be to modify root exudation chemistry to attract beneficial microbial communities, once these are 

identified. Studying function and structure of the whole microbiome will enable comparisons between 

different microbiomes on isogenic plant lines (Busby et al., 2017). This may be more meaningful than 

assessing endophytes individually. 

Achieving agricultural sustainability will involve a greater understanding of the plant microbiome, 

and more research to determine if findings in wild systems can be applied to managed systems. A 

number of questions need to be addressed. How much correlation is there between the results in 

controlled environments and the natural field situation? Will effects of individual fungal isolates on 

host fitness, such as those examined here, be meaningful in the presence of other interacting microbes 
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and under field conditions? What drives the outcomes of the plant-microbe association? What is the 

molecular basis of these outcomes? Are these outcomes specific to the particular host-microbe system 

or could that be utilized in a new system after modification? Are these benefits sufficient to include 

endophytes in existing farming systems? Are there any unexpected harmful effects of these 

microorganisms in human and animal health? What are the public and scientist perceptions on using 

inocula in food production? 

7.3. Virus and plant stress tolerance 

Plant-microbe mutualistic symbiosis is a not new concept (Bronstein, 1994; Long, 1989; Redman et 

al., 2001; Schardl et al., 2004; Soto et al., 2009). Although the concept of viruses as mutualists is 

relatively new, the positive interactions between viruses and other organisms is common (Roossinck, 

2011). Plant viruses are commonly studied as pathogens. Recent studies indicate that there is more to 

viruses than simply causing diseases (Xu et al., 2008). In our present study, we found that infection 

with a plant virus improved the tolerance of the host under water limiting conditions, indicating the 

potential of a mutualistic association between virus and plant. Earlier studies reported that several 

acute plant viruses improved plant responses to drought, salinity and cold in host plants under 

greenhouse conditions. The mechanism is unknown, but we found that some osmoprotectants, and 

oxidative enzymatic enzymes were stimulated in virus infected plants under stress. Also, there was 

differential expression of certain drought related genes in virus infected plants.  In addition, plant 

viruses impact biotic stress factors. For example, zucchini yellow mosaic virus infects wild gourds 

reducing infestation of beetles and transmission of wilt bacteria. Viral beneficial mutualists have also 

been reported in human and insect viruses, and microbes (Bhattarai and Stapleton, 2012; Mai-

Prochnow et al., 2015; Márquez and Roossinck, 2012; Xu et al., 2014). Looking at viruses as 

pathogens is an incomplete view on their roles. The virus-host interaction could be on a continuum 

between mutualism and antagonism, depending on the circumstances (Bao and Roossinck, 2013a; 

Roossinck, 2015). 

Conditional mutualistic interactions have been described in other symbiotic systems (Bronstein, 1994; 

Clay and Schardl, 2002; Redman et al., 2001; Schardl et al., 2004). For instance, certain pathogenic 

fungi such as Colletotrichum spp. can express a mutualistic lifestyle depending on the host genotype 

(Redman et al., 2001). Endophyte-colonised tall fescue increased plant recovery following drought 

stress (Schardl et al., 2004). The DpAV4 ascovirus is beneficial in some Diadromus wasps but is 

pathogenic to other species of this genus (Stasiak et al., 2005). Even mycorrhizal associations can be 

antagonistic depending on environmental conditions and plant physiology (Johnson et al., 1997). 

Therefore, symbioses can be variable particularly under complex natural conditions. Symbiosis 

generally involves sharing of either benefits or costs among the partners depending on host species 

and environmental conditions. From an evolutionary point of view, a true mutualism is a reciprocated 
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increase in fitness for both partners. We did not test reproductive fitness of the plant host pe se.  The 

death of virus-free plants versus survival of virus-infected plants under extreme drought stress 

represents a conditional difference in fitness if the surviving plants can subsequently produce 

offspring.  

YTMMV used in our study is a plant virus. The possible interaction effect of a mycovirus and a 

fungal endophyte on plant stress tolerance may not be predicted. Certain mycoviruses have been 

reported to affect their fungal or plant hosts, causing hypovirulence, disease or being beneficial.  For 

example, a virus-infected endophyte was reported to increase heat tolerance to tomato plants 

(Márquez et al., 2007). A review of fungal endophytic viruses by Bao and Roossinck (2013b) outlined 

an excellent and exhaustive account on viruses with their putative roles.  They argued that viruses can 

be detected from all different kinds of fungal endophytes and their species richness is probably high in 

endophytes. However, our attempt to detect mycoviruses in 80 representative strains of all fungal taxa 

in the present study using high- throughput sequencing was not successful (data not provided). We 

concluded that viruses in fungal endophytes may not be present as frequent as previously claimed or 

viruses were lost during pure culturing of fungi (Bao and Roossinck, 2013b). In the future, it would be 

interesting to study the effect of fungal endophytes with or without mycoviruses on plant fitness under 

stress conditions.    

Plants are simultaneously exposed to numerous environmental stresses. Stress research often focuses 

on plant responses to a single stress such as resistance to biotic attack, whereas cross tolerance to 

multiple abiotic stresses have been less described. Plant responses to simultaneous abiotic and biotic 

stresses are complex (Garrett et al., 2006) and it can sometimes be synergistic (Diourte et al., 1995; 

Mayek-PÉrez et al., 2002). The mechanisms of interaction and underlying factors warrant critical 

examination in a case by case basis. Studying viruses in the context of ecology and evolutionary 

biology (Dennehy, 2014) provides a foundation for a deeper understanding of the intricate 

relationships of all life. It is expected that more examples of mutualistic viruses will be discovered as 

we continue this exciting phase of virus discovery. More in-depth studies through metabolite profiling 

and RNAseq analysis would provide a detailed picture of the virus-host interaction under stress. This 

will open new opportunities for agricultural applications which is especially important in the future as 

we face changes to the earth’s climate. 
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8Plant–Fungi Association: Role of Fungal 
Endophytes in Improving Plant 
Tolerance to Water Stress

Khondoker M.G. Dastogeer and Stephen J. Wylie

Abstract
Plants are constantly being challenged with various biotic and abiotic stresses 
throughout their life cycle that exert profound deleterious effects on growth, 
development and health. Plants employ various physiological, biochemical and 
molecular mechanisms to combat these stress factors. Microorganism-mediated 
plant stress tolerance, particularly plant drought tolerance, is important in the 
study of plant–microbe interactions. Although relatively less well-known, fun-
gal endophyte-mediated plant drought tolerance has been described for several 
cases. Unlike mycorrhizal fungi, non-mycorrhizal fungi may mediate the effects 
of water stress by adjusting, regulating or modifying plant physiological, bio-
chemical and metabolic activities. We review the evidence for fungal endophyte-
mediated plant drought tolerance and mechanisms.

Keywords
Abiotic stress • Water deficit • Endophyte • Growth • Photosynthesis • ROS • 
Osmotic adjustment
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8.1	 �Introduction

Abiotic stress tolerance plays a vital role in determining crop productivity and dis-
tribution of plant species across the environment (Boyer 1982; Chaves et al. 2003). 
Environmental stresses such as drought, extreme temperatures, salinity or chemical 
toxicity bring serious consequences to crop production, causing collectively more 
than 50% yield losses worldwide (Bray et al. 2000; Wang and Frei 2011). Due to 
global climate change, abiotic stresses are expected to become more widespread in 
the coming decades and will pose serious threats to global food security (Ashmore 
et  al. 2006; Battisti and Naylor 2009). Among the environmental stresses, water 
stress commonly, known as ‘drought’, is considered as one of the major challenges 
to crop production worldwide (Yue et al. 2006; IPCC 2007). If the crop is subjected 
to stress, particularly drought during its  early stage of growth, germination and 
seedling establishment are severely arrested mainly owing to low water uptake, low 
energy supply and hindered enzyme functions (Okcu et al. 2005; Taiz and Zeiger 
2010). The crop phenology is also affected by triggering a premature shifting of 
plant development from the vegetative stage to reproductive stage. This shortens the 
crop growth cycle (Desclaux and Roumet 1996). Moreover, all major attributes of 
plant–water relations, viz. leaf relative water contents (RWC), water potential, 
osmotic potential, pressure potential and transpiration rate, are significantly affected 
by drought, leading to impaired crop productivity (Kirkham 2005). Improving plant 
resistance to water stress and maintaining crop productivity are great challenges for 
achieving sustainable agriculture. Given the importance of drought stress to agricul-
ture, plant reactions to stresses have been studied extensively. Such studies have 
added considerably to our understanding of plant response to stress at the whole-
plant, morphological, physiological, cellular and molecular levels (Grover et  al. 
2001). Considerable research has been done to understand the mechanisms of abi-
otic stress responses in a wide variety of model and crop plant species. Now scien-
tists are recognising that microbial partnerships are a ubiquitous part of plant 
biology. The presence and roles of microbes in plants are becoming clearer with 
high-throughput technologies such as genomics, functional genomics, proteomics 
and metabolomics. Plants form various associations with diverse kinds of microor-
ganisms such as fungi, bacteria, viruses, archaea, protozoa, etc, and the form rela-
tionships ranging from mutualism to pathogenicity. One such interaction is the 
association of plants with fungal endophytes, which have been recorded from most 
plants studied in natural ecosystems. Fungal endophytes remain inside plant tissues 
without showing any disease symptoms (Rodriguez et al. 2009; Purahong and Hyde 
2011). Besides mycorrhizal endophytes, non-mycorrhizal endophytes have been 
recovered from most plants. Non-mycorrhizal fungal endophytes (hereafter referred 
to as endophytes) form an intimate relationship with the host and provide various 
benefits including protection from drought stress (Lewis and Clements 1986; 
Rodriguez et  al. 2004; Malinowski et  al. 2004; Malinowski and Belesky 2006; 

K.M.G. Dastogeer and S.J. Wylie

166



145

Zabalgogeazcoa 2008). Endophyte-mediated drought tolerance is associated with 
improving growth and productivity of the host. Endophytes also improve osmolyte 
production; influence plant–water relations and photosynthesis; adjust plant water 
potential, electrolyte balance, antioxidant synthesis and other structural and func-
tional parameters; and thus enhance the plant’s ability to tolerate stresses. This 
chapter presents an outline of the main studies in the area of water deficit stress 
responses in plants mediated by non-mycorrhizal fungal endophytes.

8.2	 �Plant Strategies to Withstand Water Stress

The underlying mechanisms of how plants respond to drought stress have been 
explored to a great extent from molecular to whole-plant levels. Researchers have 
identified hundreds of genes that are activated in plants in response to stress. A vari-
ety of tools including gene expression patterns and the use of transgenic plants has 
been developed to investigate the particular roles of these genes in plant responses 
to stress. Transgenic technologies and the advent of genomics and proteomics have 
offered a comprehensive profiling of the changes in gene and protein expression 
resulting from exposure to drought.

Plant reactions to water deficit stress are complicated since it is a function of time 
and space, and it involves multifaceted mechanisms from genomic, molecular and 
biochemical levels (Blum 1996; Chaves et al. 2003; Xu et al. 2009). Plants use dif-
ferent mechanisms to cope with the stress, and the way a  plant behaves under 
drought can be explained by the following six broad stategies:

	1.	 Escaping from drought by terminating plant life cycle prior to onset of severe 
stress, e.g. early flowering in annuals before the start of water deficit (Geber and 
Dawson 1990)

	2.	 Drought avoidance through increasing water uptake and reducing water loss, e.g. 
developing root systems and reducing of stomata and canopy area (Schulze 
1986; Jackson et al. 2000)

	3.	 Drought tolerance chiefly through maintaining better osmotic balance and 
expanding elasticity of the cell wall to keep the tissue turgid (Morgan 1984)

	4.	 Drought resistance via changing metabolic routes to thrive under stress condition 
(e.g. greater antioxidant metabolism) (Bartoli et al. 1999)

	5.	 Drought abandonment by shedding one or more plant organ, e.g. detaching older 
foliage during drought (Chaves et al. 2003)

	6.	 Drought-adapted physio-biochemical characters developed through plant 
evolution under long-term drought conditions via mutation and modifications at 
the genomic level (Hoffmann and Merilä 1999; Sherrard et al. 2009; Maherali 
et al. 2010)
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8.3	 �Plant–Microbe Interactions and Drought Tolerance 
in Plant

The interaction of microbes with the plant can be traced back to the origin of plants. 
The early evolution of plants occurred in a diverse microbial world. Archaea, bacte-
ria, fungi, and viruses had been evolving for billions of years (Reid and Greene 
2012). The most well-known plant–microbe interaction is the mutualism between 
mycorrhizal fungi and plant where both partners generally benefit from each other. 
However, under natural settings, plants form relationships with endophytic fungi 
and viruses which can be beneficial or harmful for the partners depending on host 
types and natural and environmental situations (Bao and Roossinck 2013). Plants in 
natural systems and crop lands are simultaneously exposed to both biotic and abi-
otic stresses. Though stress research is mostly focusing on plant response to a par-
ticular environmental stress, research focusing to both biotic and abiotic stresses 
together has also been conducted (Xu et al. 2008; Garrett et al. 2006). Unravelling 
the complex mechanisms of plant–microbe relations and their effects in abiotic 
stress tolerance in plants could potentially advocate novel tactics to boost the pro-
ductivity of crops (Schenk et al. 2012).

8.3.1	 �What Are Fungal Endophytes?

The term ‘endophyte’ refers to the fungi that live inside the plant intercellular and 
intracellular spaces for at least part of life cycle, causing no concurrent visible 
symptoms at any specific moment (Rodriguez et  al. 2009; Purahong and Hyde 
2011). This definition of endophyte is strictly operational and contextual since it 
takes into account the result of a specific fungus–host interaction only in a given 
time under the particular environmental settings, because symptomless endophytes 
can behave differently (e.g. as pathogens) under altered environmental conditions 
(Andrew et al. 2012; Sanchez-Marquez et al. 2012). The existence of fungal endo-
phytes from fossil records suggests that endophyte–host associations may have 
evolved from the time of development of first higher plants on earth (Rodriguez and 
Redman 1997; Krings et  al. 2012). Based on the survey conducted in the last 
20 years on endophytes, it is thought that the majority, if not all plants, have one or 
more types of these endophytes and numerous endophytic species; in some cases, 
above a hundred can be found in a certain plant species (Arnold 2007). Fungal 
endophytes have been documented from healthy aerial tissues of conifers (Petrini 
and Fisher 1986) and grasses (Clay 1988). Further, fungal endophytes have also 
been reported from marine algae (Hawksworth 1988), lichens (Li et  al. 2007), 
mosses and ferns (Fisher 1996), palms (Frohlich and Hyde 1999) and pteridophytes 
(Dhargalkar and Bhat 2009). Fungal endophytes can be grouped into three basic 
ecological groups: (1) mycorrhizal fungi, (2) balancious or ‘grass endophytes’ and 
(3) non-balancious endophytes (Schulz and Boyle 2005). However, Brundrett 
(2004) separated mycorrhizal from endophytic interactions in that mycorrhizas 
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have coordinated plant–fungus development and nutrient transfer at specialized 
interfaces. Later, Rodriguez et al. (2009) classified the endophytes under two major 
groups, viz. clavicipitaceous and non-clavicipitaceous on the basis of phylogeny 
and life history traits. Clavicipitaceous fungal endophytes are limited to certain 
grasses, while non-clavicipitaceous ones have a broad host range including both 
nonvascular and vascular plant species. In addition, recent reviews propose that 
members of the non-clavicipitaceous group can be segregated into three subgroups 
on the basis of host range, type of tissue infected, pattern spread, in planta infection 
and the establishment, diversity and benefits given to hosts (Rodriguez et al. 2009; 
Purahong and Hyde 2011). A diverse kind of relationships exists between the fungal 
endophytes and plant ranging from mutualistic (Redman et al. 2002), symbiotic and 
commensal (Deckert et al. 2001) to pathogens (Schulz et al. 1998). However, the 
state of the interaction between endophyte and host may be transitory, and many 
factors could make changes in their mode of interaction. In symbiotic associations, 
balansiaceous endophytes with their hosts are commonly considered as being mutu-
alistic (Schardl and Clay 1997) even though some of them provide nothing to their 
hosts and can occasionally be antagonistic (Schardl et al. 2004a). Although most of 
the endophytes are regarded as being mutualistic with their hosts, some fungal 
endophytes may become pathogenic to plants, depending on the developmental 
stage of the partners, environmental conditions and plant defence reactions (Schulz 
and Boyle 2005). Endophytic fungi have been known to play a vital role in plant 
growth, especially grasses; however, few reports have elucidated their symbiosis 
with crops. Recently, the ecological roles of some endophytes have been explained 
(Redman et al. 2001; Waller et al. 2005; Arnold et al. 2007). In addition to providing 
nutritional benefits, fungal endophytes also confer significant physiological 
(Malinowski and Belesky 2000; Malinowski et al. 2004) and ecological (Malinowski 
and Belesky 2006) benefits, including protection from environmental stress 
(Rodriguez et al. 2004) as well as from an attack of pathogens (Zabalgogeazcoa 
2008) and pests (Lewis and Clements 1986).

8.3.2	 �Mechanisms of Endophyte-Mediated Plant Drought 
Tolerance

Fungal endophytes have been shown to provide fitness benefit to plant when exposed 
to water-limiting conditions. Perhaps the most widely documented example of 
endophyte-mediated drought stress tolerance in plants is the enhanced drought tol-
erance of tall fescue and perennial ryegrass due to infection of the endophyte 
Neotyphodium coenophialum. Kane (2011) studied with the leaf-inhabiting endo-
phyte Neotyphodium lolii to assess its potential benefits or harm in drought stress 
tolerance of native perennial ryegrass collections formerly obtained from the 
Mediterranean regions. Non-grass fungal endophytes have also been described to 
help plants alleviate drought stress (Redman et al. 2011; Khan et al. 2012; Waqas 
et  al. 2012). The findings showed that endophyte colonization can help improve 
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abiotic stress tolerance such as drought in that host. It must be noted that endophytic 
symbiosis in plants does not always benefit the plant under drought or other abiotic 
stress conditions, and their interactions could cost for plants in terms of their ability 
to stand in stresses (Eerens et al. 1998; Cheplick et al. 2000; Cheplick 2004, 2006). 
Cheplick (2006) reviewed the role of fungal endophytes on potential drought 
tolerance and cited some studies where endophytes imparted no improvement in the 
host’s ability to tolerate drought stress. For instance, Zaurov et al. (2001) inoculated 
fescue plants with Neotyphodium isolates collected from dissimilar hosts. They 
observed that some genotypic combinations affected negatively on plant mass, 
some had no effect and others increased plant biomass. Similarly, few combinations 
improved tolerance to soil aluminium; others have neutral or decreased tolerance 
compared to endophyte-free clones. This study revealed that genotype-specific 
interactions may increase or decrease or have no effect on plant adaptation and fit-
ness. Thus, endophyte-mediated response to water stress is a complex phenomenon 
involving various metabolites and metabolic pathways. While the ability of fungal 
endophytes to provide drought tolerance in host plants has been described in many 
studies, the underlying mechanism(s) are incompletely characterized. In an effort to 
illuminate the underlying mechanism by which endophyte causes increased drought 
tolerance, researchers have reported few observations. Research so far studying the 
effect of endophyte on plant responses to drought stress have described certain 
physiological, biological and biochemical modifications such as (a) increased 
growth and development, (b) enhanced osmotic balance, (c) increased gaseous 
exchange and water-use efficiency and (d) improved defence against oxidative 
damage when water-limiting conditions may improve, alleviate and recompense the 
harmful effects of water stress in endophyte-colonized (EC) plants (Fig. 8.1). The 
present chapter aimed at outlining the recent advances in the study of improvement 
of drought tolerance by endophyte colonization in plant subjected to water stress.

8.3.2.1	 �Endophyte-Mediated Plant Growth Enhancement
Fungal endophytes have been shown to enhance growth and biomass of plants under 
water-limiting conditions. For example, inoculation of Fusarium culmorum and 
Curvularia protuberata resulted in higher biomass of drought-affected rice plants 
than non-inoculated plants (Redman et al. 2011). Endophytes Chaetomium globo-
sum and Penicillium resedanum isolated from Capsicum annuum plants promoted 
shoot length and biomass of the host plants subjected to drought stress (Khan et al. 
2012; Khan et al. 2014). Drought-challenged tomato plants showed higher root and 
shoot biomass when inoculated with class 2 fungal endophytes, including Alternaria 
sp. and Trichoderma harzianum (Azad and Kaminskyj 2016). Inoculating a 
Trichoderma hamatum isolate caused increased higher root fresh weight, dry weight 
and water content, regardless of water availability in Theobroma cacao (cacao) 
(Bae et al. 2009). The endophyte Piriformospora indica colonization in Chinese 
cabbage promoted root and shoot growth and lateral root development (Sun et al. 
2010). Production of auxins by fungal endophytes is attributed to the increased 
growth of plants under stress (De Battista et al. 1990). Also, stress-induced endog-
enous abscisic acid and the genes involved, such as zeaxanthin epoxidase, 
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9-cis-epoxycarotenoid dioxygenase 3 and ABA aldehyde oxidase 3, have been 
found to be significantly decreased in endophyte-colonized plants under stress, the 
effect of which could be comparable to that of the exogenous GA3 in terms of pro-
moting plant growth and yield under stressed conditions by manipulating hosts’ 
physiological processes (Khan et al. 2014). However, in some cases, it was recorded 
that endophytes do not show positive effects on host growth during drought stress, 
but they help with rapid recovery of host plant after water became available again 
(Ren and Clay 2008).

8.3.2.2	 �Endophyte-Mediated Improved Photosynthesis
Moisture stress causes decreased levels of photosynthesis in plants through 
decreased synthesis of ATP and other enzymes such as rubisco and sucrose–phos-
phate synthase as water availability decreases (Vassey and Sharkey 1989; Flexas 
and Medrano 2002; Parry et al. 2002; Ghannoum et al. 2003). Plant tolerance to 
water stress involves the management of extra radiation caused by reduced photo-
synthesis and CO2 availability and a greater susceptibility to photo-damage (Powles 
1984; Chaves et al. 2003). The endophyte-colonization results in higher chlorophyll 
content and leaf area in plants challenged by stress than non-colonized plant. Higher 
concentration of chlorophyll is associated with higher photosynthetic rate (Davies 
et al. 1993). The increased rate of photosynthesis was recorded from the drought-
stressed Capsicum annuum plants colonized by endophytes Chaetomium globosum 
(Khan et al. 2012) and Penicillium resedanum (Khan et al. 2014). About twofold 

Fig. 8.1  Endophyte colonization can help plants better withstand in water deficit stress by exerting 
their effects, directly or indirectly, on plant functions at both above- and belowground. The plant on 
the left side which represents a drought-stressed non-colonized plant shows reduced growth and 
biomass due to lower photosynthetic rate, higher amount of oxidative damage, reduced uptake water 
and unbalanced osmoregulation. On the right side, a fungal endophyte-colonized plant under water 
deprivation stress is shown. Endophyte colonization shows increased growth and biomass due to 
enhanced photosynthetic rate, increased water-use efficiency and better osmotic balance. There is 
higher accumulation of osmolytes and lower degree of oxidative damage in the EC plants
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increase in chlorophyll content and photosynthetic efficiency in P. indica-colonized 
Arabidopsis plants was measured when seedlings were challenged with water-
limiting conditions (Sherameti et al. 2008). P. indica reduced the drought-induced 
decline in the photosynthetic rate and the denaturation of chlorophyll and thylakoid 
proteins (Sun et  al. 2010). Although, the Fv/Fm values decreased in the non-EC 
plants under drought, no significant difference was observed for the P. indica-
colonized plants indicating that EC plants suffer less from water stress than un-
inoculated controls. In the same study, the total chlorophyll level was reported to be 
reduced by more than 50% in non-EC plant, but colonized plants showed only a 
slight decrease in total chlorophyll content (Sun et al. 2010). Additionally, a decrease 
in the protein levels of representative constituents of the thylakoid membrane and of 
enzymes situated in the plastid stroma in stressed plants was retarded when colo-
nized with P. indica (Sun et al. 2010). Recently, Azad and Kaminskyj (2016) char-
acterized a fungal endophyte that enhanced drought tolerance of the host and 
increased photosynthesis in the leaf. The mechanism of increased photosynthesis in 
EC plant under water stress is not fully understood. In one study, it was found that 
while the photosynthesis rate and stomatal conductance increased in drought-
affected EC plants, initial rubisco activity and carboxylation efficiency did not dif-
fer from non-EC plants (Morse et  al. 2002). It was suggested that endophyte 
colonization might result in reduced biochemical damage to the photosynthetic 
machinery plants subjected to water stress (Swarthout et al. 2009).

8.3.2.3	 �Plant–Water Relation and Osmotic Adjustment as Mediated 
by Endophyte

In the broad sense, decreasing water loss and maintaining water uptake are the key 
processes that plants employ to adapt to water-limiting environments. Maintaining 
water uptake is assisted within plant cells by osmotic adjustment (OA), a biochemi-
cal mechanism that helps plants to adapt to drought conditions. OA results in a net 
accrual of compatible solutes, also known as osmolytes in the cell so as to maintain 
the favourable gradient for water flow from soil into roots (Sanders and Arndt 2012). 
This accumulation of various ions, amino acids and sugars leads to a more negative 
osmotic potential, which is important for maintaining cell hydration and turgor, cel-
lular development and growth, stomatal opening, photosynthesis and water uptake 
during drought (Chaves et al. 2003; Sanders and Arndt 2012). Endophyte-colonized 
plants consume significantly less water than non-colonized plants. For example, 
significantly less water use has been reported in endophyte-inoculated panic grass, 
rice, tomato and dune grass, indicative of their more efficient water usage. Reduced 
water consumption and improved water-use efficiency may offer a distinctive mech-
anism for endophyte-mediated drought resistance in plants (Rodriguez et al. 2008). 
Again, EC plants can maintain significantly greater water content than the non-
inoculated under water stress, implying the ability of endophytes to delay desicca-
tion and damage in stress. The endophyte association could help plant access larger 
volumes of water from sources not reachable to the non-infected plants which suf-
fered from stress (Khan et al. 2013). Endophyte association resulted in a decreased 
level of electrolytic leakage inside the plant tissues upon exposure to water deficit 
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stress. Altered water potential and improved osmotic balance in drought-affected 
tall fescue infected with N. coenophialum endophyte have also been noted in some 
studies (Elmi and West 1995). Increased root water content was reported from T. 
hamatum-inoculated T. cacao plant subjected to water deficit stress compared to 
non-inoculated plants (Bae et al. 2009). A number of fungal endophytes have been 
reported to produce active biochemicals and metabolites that help the host plant 
withstand water deficit stress. Under drought conditions, significantly upregulation 
of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid was 
detected in shoots and roots in tall fescue colonized by Neotyphodium coenophi-
alum (Nagabhyru et al. 2013). Variable levels of proline accumulation were observed 
in EC plants subjected to water stress. While significantly more proline was accu-
mulated in one genotype of tall fescue plant, no differences were observed in another 
genotype challenged with mimic drought in hydroponic culture (Bayat et al. 2009) 
when inoculated with Neotyphodium grass endophyte. Increased level of proline, 
soluble sugar and catalase (CAT) was observed in wheat colonized by endophyte 
Chaetomium globosum under water stress (Cong et  al. 2015). Concentrations of 
aspartic acid and glutamic acid and of alanine and γ-aminobutyric acid were mea-
sured in drought-affected Theobroma cacao seedlings colonized by an isolate of 
Trichoderma hamatum (Bae et  al. 2009). The changes in metabolites could be 
attributed to the strategies of EC plants towards drought tolerance or avoidance. 
Downregulation in osmolytes has previously been described as a strategy of drought 
avoidance, whereas the increase of osmoprotectants has been related to drought 
tolerance (Augé and Moore 2005; Ruiz-Sánchez et al. 2010).

8.3.2.4	 �Endophyte-Mediated ROS Scavenging
Reactive oxygen species (ROS) act as signalling molecules in plants. ROS is 
involved in many plant processes, including growth, stress response, cell cycle and 
programmed cell death by influencing the expression of related genes. Abiotic 
stresses cause excess synthesis of these highly reactive molecules, these ROS caus-
ing oxidative stress and damaging proteins, lipids and DNA (Gechev et al. 2006; 
Gill and Tuteja 2010). Manufacturing additional ROS, i.e. hydrogen peroxide 
(H2O2), hydroxyl radical (OH.), singlet oxygen and superoxides (1O2), is one of the 
main mechanisms for plant cell damage or death in drought (Smirnoff 1993). Plants 
react against excess ROS through an intricate network of direct ROS-quenching 
activity or indirect hormone-mediated signalling activity. Various enzymatic and 
non-enzymatic antioxidant molecules are involved in scavenging ROS (revised in 
Miller et al. 2010; Scheibe and Beck 2011). Malfunctioning of these antioxidants’ 
defence system results in oxidative damage in cells (Apel and Hirt 2004; Kwak 
et al. 2006). Endophyte colonization simulates a more powerful ROS-scavenging 
system in host plants under stress and reduces damage of biomolecules at the cel-
lular level. For instance, a lower level ROS production has been documented in 
endophyte-colonized tomato plants than in control plants following water stress 
(Azad and Kaminskyj 2016). When plants were inoculated with P. indica and 
exposed to drought stress, up-regulation of peroxidase (POX), catalase (CAT) and 
superoxide dismutase (SOD) activities in the leaves was observed (Sun et al. 2010). 
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The level of another biomarker of oxidative stress, namely, malondialdehyde 
(MDA), was recorded to be lower in P. indica-colonized cabbage plants than in 
control plants. MDA is primarily produced through the ROS-induced degradation of 
polyunsaturated lipids (Pryor and Stanley 1975; Del Rio et al. 2005). It is suggested 
that P. indica could prevent or reduce the damage of these lipids by inhibiting excess 
ROS production under stress conditions. Endophytes that promote drought toler-
ance have also been found to have high levels of loline alkaloids (Schardl et  al. 
2004b). Further experiments could test if these molecules are associated with the 
prevention of damage of macromolecules or reduction of ROS effects. Endophyte-
induced production of antioxidant enzyme in plants under stress is predominantly 
observed in leaves (Baltruschat et al. 2008; Vadassery et al. 2009). All these studies 
demonstrate that endophyte inoculation results in a strong defence response in plant 
in water stress, in which alleviation of oxidative stress might be a vital part. The 
study of nonvolatile compounds has been the major focus in most plant antioxidant 
research. However, plant leaves emitting volatile organic compounds could also 
play as a further defence system against stresses (Kesselmeier and Staudt 1999; 
Peñuelas and Munné-Bosch 2005). The effect of volatile compounds such as iso-
prenoids has been described, where these compounds act as protective agent against 
oxidative stress in plant through direct ROS scavenging and indirect alteration of 
ROS signalling in arbuscular mycorrhizal plants (Peñuelas and Munné-Bosch 2005; 
Rapparini et al. 2008; Lopez-Ráez et al. 2008; Vickers et al. 2009; Walter and Strack 
2011; Asensio et  al. 2012; Baslam and Goicoechea 2012). Endophyte-colonized 
plants could emit similar volatile organic compounds to cope with abiotic stress, but 
this aspect of the research has not been done till date. Further investigation is neces-
sary to have the information on the fungal side as well as the knowledge of the 
fungal/plant interaction is paramount to elucidate underlying mechanisms regulat-
ing antioxidant defences that are crucial to improve the tolerance of plants to drought 
stress.

8.3.2.5	 �Molecular Mechanisms of Endophyte-Mediated Plant 
Drought Tolerance

Studies on the beneficial effects of endophyte symbiosis under drought have pre-
dominantly focused at the plant morpho-physiological level. Molecular tools have 
also been included in this type of studies. The responses of EC plants to stress can 
be regulated by the expression of drought-associated plant genes, e.g. those associ-
ated with signalling and regulatory pathways or those producing enzymes that syn-
thesize various metabolic compounds. It was noted that, under drought conditions, 
EC and non-EC plants differently regulate the expression of several drought genes 
in the plant tissue, indicating the association of activation of Ca2P signalling and 
related proteins (Singh et al., 2011) involved in the drought tolerance mechanisms. 
Among the genes regulated by the endophyte symbiosis during drought, delayed 
expression of drought-altered ESTs such as TcTPP, TcSOT, TcPR5 and TcNI in the 
leaves and TcPR5 and TcCESA3 in the roots has been described (Bae et al. 2009). 
Again, the expression a diverse array of stress-related genes, including 29A, 
ANAC072, DEHYDRATION-FINGER1, Ddelta, CBL1, HAT, etc. putatively 
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mediate drought tolerance of Arabidopsis plants inoculated with P. indica (Sherameti 
et al. 2008). Similarly, up-regulation of drought-associated genes DREB2A, CBL1, 
ANAC072 and RD29A was also reported in the drought-challenged leaves of P. 
indica-colonized Chinese cabbage plants. The contribution of endophyte to the 
enhanced drought tolerance of the host plant can be mediated by CAS protein and 
the thylakoid membrane CAS mRNA level associated with Ca2+ sensing regulator 
(Sun et  al. 2010). Further research could encompass non-targeted screening of 
cDNA libraries from both endophyte and host plants. Such an approach could allow 
the detection of stress-induced genes that offer increased stress tolerance in 
endophyte-colonized hosts. Employing microarrays and next-generation sequenc-
ing technologies to elucidate stress tolerance mechanisms (physiological and 
molecular) involved in endophyte colonization will be used to compare EC and 
non-EC plants of the same host genotype.

8.4	 �Future Directions

Studies indicate that fungal endophytes occur in most plant species studied so far. 
Endophytes that exhibit non-mutualistic lifestyles in particular hosts may form 
mutualistic symbioses with genetically dissimilar plant species and confer stress 
tolerance. If this is true for all the endophytes, it may be promising to isolate endo-
phytes from the plant living in harsh environments and exploit their role in geneti-
cally different stress-sensitive plant species. To achieve this, identification of novel 
endophytes from plant of diverse habitat and genotypes is paramount since it is 
assumed that many endophytes have not yet been identified, and the ecological 
functions have not been thoroughly studied. The effects of endophytes in improving 
of drought stress on plants have typically been investigated using pot cultures under 
greenhouse or growth chamber conditions where interactions between the partners 
were studied in a controlled manner. However, under natural conditions, endophyte 
colonization is affected by factors that are absent in controlled greenhouse or labo-
ratory conditions. With a view to fully comprehend the endophyte effects on plant 
stress tolerance, future research must include field trials. These investigations could 
include varying levels of stress treatment and nutrition supplement as well as at 
various geographical locations so as to reveal the effects of endophyte, stress, soil 
nutrition and their interaction effects. Promising endophyte isolates could also be 
tested with various crop species under various cropping practices that resembles 
those used by growers. The proportion of fungal endophytes capable of forming an 
effective symbiosis with the host under drought stress and enhance tolerance is gen-
erally unknown. A thorough investigation of endophyte colonization of various 
plants and extensive screening of endophyte isolates to select the most promising 
ones is the first step towards utilizing their full potential. Morphologically, similar 
strains of the same fungal species can have differential roles on host growth and 
development as influenced by temperature, pH, water, nutrient availability and other 
factors (Picone 2003). Such conditional phenomena demand that beneficial endo-
phyte isolates may need to be tested with various host genotypes and local 
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agroecosystem settings. Again, most studies have been taken place on the plant side, 
but efforts should be made to study the effect on the endophyte side and how they 
function at the different circumstances. Therefore, mutants of both partners will be 
valuable tools to elucidate the fundamental processes involved. Combined efforts 
where various disciplines as plant physiology, ecology, mycology, biochemistry, 
molecular biology and biotechnology could meet together are still needed. These 
investigations should also be united with a thorough analysis of the transmission of 
this knowledge to natural environments, considering the fact that knowledge of the 
roles endophytic fungi play in ecosystems is important as parts of the earth are 
warm and dry.

8.5	 �Concluding Notes

In nature, plants do not live as independent entities, but form a complex commu-
nity with diverse organisms including microbes. These organisms, in particular, fun-
gal endophytes, provide significant advantage to the plants that grow in inhospitable 
environments. From the studies reviewed in this chapter, it is evident that endophyte 
colonization can significantly improve plant drought stress tolerance. We focused 
our review on plant growth, photosynthesis, osmotic balance, water relation, meta-
bolic changes and antioxidant production. All these parameters are interrelated and 
will influence each other, especially at the plant physiological level. How endo-
phytic fungi affect these parameters under drought is still unclear. Molecular 
approaches will help elucidate the whole response of plant–endophyte interactions 
at different levels. Further, in-depth investigation involving a combination of 
approaches, including physiological, biochemical and molecular data and ‘omics’ 
techniques, will clarify the interrelated molecular mechanisms and novel metabolic 
pathways of endophyte-mediated plant drought tolerance.
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Abstract 

Water limitation often hinders plant productivity in both natural and agricultural settings.  Endophytic 

fungal symbionts can mediate plant water stress responses by enhancing drought tolerance and 

avoidance, but these effects have not been quantified across plant-endophyte studies. We performed a 

meta-analysis of published studies to determine how endophytic fungal symbionts influence plant 

response under non-stressed vs. water-stressed conditions. A significantly positive or neutral overall 

effect of fungal endophyte was noted under water stressed condition. In contrast, under non-stressed 

conditions, the overall effect of fungi on plant was mostly neutral. In general, the presence of fungal 

endophytes increased plant total biomass, chlorophyll content and stomatal conductance irrespective 

of water availability. In addition, plant shoot biomass, tiller density, plant height, maximum quantum 

yield (Fv/Fm), net photosynthesis, relative water content (RWC), amounts of ascorbate 

peroxidase  (APX), glutathione (GSH), polyphenol oxidase (PPO), superoxide dismutase (SOD), and 

phenolics were significantly increased. The malondialdehyde (MDA) and hydrogen peroxide (H2O2) 

reduced in endophytic plants under stress as compared to non-endophytic counterparts. Categorical 

analysis revealed that accumulation in plant biomass is influenced by factors such as host and fungi 

identity, the magnitude of which are greater under stress than under non-stress conditions. Therefore, 

plant and their fungal symbionts appear to interact in a context-dependent manner, varying with biotic 

and abiotic conditions. Plant-endophyte symbioses considerably alter plant response to stress, and 

they could play a role in responses to climate change. 
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Introduction 

Water limitation is one of the major constraints to plant productivity in many natural ecosystems and 

agroecosystems1. As predicted by climate change models, the intensity and frequency of drought may 

increase in some places2,3. Water deficit stress exerts detrimental effects on general plant physiology, 

i.e., growth, plant water status, gas exchange; photosynthesis as well as metabolism depending on the 

speed, severity, and duration of the stress event4-7. 

Plants employ a series of interconnected morpho-physiological, cellular, and molecular mechanisms 

to perceive and respond to water stress8. Plant responses are modulated by the severity, duration, and 

speed of development of the imposed stress9. Strategies to cope with stress can be grouped into three 

broad categories: (i) changes in plant phenology, (ii) avoidance of stress through reduced 

evapotranspiration and increased root-to-shoot ratios, and (iii) tolerance to water stress through 

increasing cellular osmolyte concentrations to improve water uptake and retention10.  

Whereas these direct plant responses to stress have been well studied, plant responses indirectly 

through plant-microbe interactions have been given less attention. In particular, plant species 

commonly associated with fungal symbionts such as mycorrhizal fungi and endophytes (within 

plants) which may influence their responses to environmental stimuli including water stress. Both 

above- and belowground fungal endophytes can change how plants respond to stress and thus have the 

potential to ameliorate the effects of water stress. These fungal endophytes interact with hosts and 

increase tolerance to water stress through increasing plant growth and productivity11-15, increasing 

osmolyte production and plant-water relations16-20, improving photosynthetic activity11,13,15,21,22, 

reducing oxidative damage 11,15,23,24 and other structural and functional modifications.  

Endophyte effects on these physiological processes are not always predictable. For instance, the plant-

fungus symbioses have resulted in increased plant growth13,14,22,25-27, decreased plant growth 28 or have 

no effect on plant growth 29,30. The same is true for relative water content, photosynthesis efficiency, 

and metabolite accumulation 31,32. These discrepancies were primarily as a result of intricate 

relationships between plant and fungal symbionts which are modulated by the nature of the interaction 

and the nature and severity of the stress, among other factors. Thus, it is delicate to infer the findings 

in general context from individual studies. Therefore, to determine the central tendency and identify 

different patterns of endophyte effects on plants under stress and compare with them under control, it 

may be useful integrate results across studies in order to determine if general factors can be identified. 

To this end, we carried out a meta-analysis to estimate the overall strength and direction of summary 

effects size of endophyte symbiosis on important plant characteristics associated with stress tolerance 

mechanisms. 
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A meta-analysis is a synthetic approach which analyses data from different experimental studies using 

weighted statistical methods to determine a mean effect size for treatment across a range of studies33. 

It helps understand the findings of any study in the context of all other comparable studies to 

determine if the effect of a particular treatment is consistent across studies or if it varies considerably 

among studies and which factor might cause this variation34. Categorical variables or “moderators” 

are frequently examined in meta-analyses to know how experimental conditions modify the treatment 

effect of interest. This form of analysis has been, for example, used to determine the effect of 

arbuscular mycorrhizae (AM) and endophytic fungi on plant response to water stress32 and the effect 

of dark septate root endophytes on plant response under adequate water35. In their analysis, Worcel et 

al. 32 reported that although AM had significant overall effects on plant biomass, the effect of 

endophytes was neutral under water stress and that the plant photosynthetic pathway (C3 and C4), as 

well as fungal phylogeny, were important moderators on that effect. However, in their study, they 

included only clavicipitaceous endophytes and measured only few growth parameters.  

In the present study, we accumulated data from all studies to date and measured effects of endophytes 

on 32 plant response parameters that encompass plant growth, photosynthesis, water relations, 

metabolites, and enzymatic activities that are subjected to change under water stress conditions. Our 

purpose was to answer following questions: 

1) What is the overall impact of endophyte colonization on various physiological parameters of 

plants exposed to water stress? 

2) Is the plant-fungal relationship different under stressed conditions compared to unstressed 

conditions? 

3) Are influences mediated by particular combinations of host and symbionts? 

Results 

We examined endophyte influence on 32 effect sizes in plants exposed to water stress. Summary 

effect sizes for non-stressed plants from the studies were also considered for comparison. Plant hosts 

were represented by 26 species in 22 genera and five families across the 67 articles.  Ryegrass and 

Tall fescue were the most commonly studied hosts. The most studied fungal genus was Epichloë (45 

articles) followed by Penicillium and Trichoderma (seven articles each) out of the 13 fungal genera 

recorded from all the studies. We use the genus name Epichloë when the fungal genus was reported as 

Neotyphodium36.  

Fungal endophytes on plant growth parameter 

Endophyte colonization had a significant effect on five of the nine plant growth characteristics 

measured during water stress conditions. The symbiosis significantly stimulated plant height, shoot 
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biomass, tiller density, total biomass, and it diminished the specific leaf mass parameter (Fig. 1). The 

largest impact was on plant height with an effect size of 0.9307. Under non-stressed conditions, 

endophytes had neutral effects on all the plant growth parameters except the root/shoot ratio, seed 

germination, and total biomass which was increased by endophyte colonization (Fig. 1).  

 

Fig. 1 Growth and biomass responses of endophyte-inoculated plants under water stress (filled circle) 

and under non-stressed (open circle) condition. Error bars are effect size means ±95 % bootstrap CIs. 

Where the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant. 

n=number of studies included in the meta-analysis 

Total biomass 

Five categorical variables considered for analysis indicated that endophyte infection differentially 

influenced plant total biomass. For example, class-2 endophytes increased total plant biomass under 

stressed and non-stressed conditions, whereas for class-1 endophytes relatively lower effect size 

values were recorded under both conditions and the effect was only significant under stressed 

condition (Fig. 2a). Taxonomically, the effect of Trichoderma followed by Epichloë outweighed the 

effect of other endophytes with a positive effect on plant total biomass under water stress (Fig. 2b). It 

was noted that categorically none of the fungal taxa expressed any significant impact on plant biomass 

under non-stressed conditions (Fig. 2b). 

Endophyte colonization positively influenced both dicotyledonous and monocotyledonous plants 

under water stress. The effect size (ES=2.64) was greater for dicotyledonous plants than monocots 

(Fig. 2c). Under sufficient water, effects on both groups were neutral even though dicots had higher 

95% CIs values than the monocots (Fig. 2c). The effect of endophyte colonization on annual plants 

tended to be greater under both stressed and non-stressed conditions than on perennial plants (Fig. 
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2d). Plant total biomass was increased significantly in the annual plants when infected with 

endophytes irrespective of water stress, whereas in the perennial plants the effect of fungal 

colonization was only striking under stress but not when plants were grown under non-stressed 

conditions (Fig. 2d) 

It is interesting to note that plant identity was crucial in determining the effect of endophytes on stress 

tolerances. As is evident in figure 2e, t endophyte effects on the non-grass plant species were higher 

than on grass species, and it was significantly different from the ryegrass when the plants were 

subjected to water stress. Under non-stressed conditions, plant total biomass was decreased by 

endophyte infection in ryegrass whereas it was significantly increased in the other grass species and 

neutrally influenced in the non-grass species (Fig. 2e)  

Shoot biomass 

Categorical variables considered for analysis indicated that endophyte infection differentially affected 

plant shoot biomass. For example, whereas class-2 endophytes increased plant shoot biomass under 

both stress conditions, they had neutral effect under non-stressed conditions. No significant effect of 

class-1 endophytes was recorded under any conditions (Fig. 2f). Taxonomically, the effect of 

Penicillium was higher and it significantly positively influenced shoot biomass under stress but not 

under non-stressed conditions (Fig. 2g). It was noted that categorically none of the other fungal taxa 

expressed any significant impact on plant shoot biomass under either condition (Fig. 2g) 

Monocotyledonous plants were significantly positively influenced by endophyte colonization under 

water stress although the effect the shoot biomass tended to decrease due to endophyte colonization 

under non-stressed conditions (Fig. 2h). Endophyte infection did not significantly influence plant 

shoot biomass under any circumstances in the dicotyledonous plants (Fig. 2h). The effect of 

endophyte colonization on annual plants tended to be higher under both stressed condition than on the 

perennial plants (Fig. 2i). Plant shoot biomass increased significantly in the annual plants when 

infected with endophytes under stress, but endophytes had neutral effect on the perennial plants under 

both non-stressed and stress conditions (Fig. 2i) 

The effect of endophytes on plant shoot biomass varied greatly among plant species. Endophyte 

effects on grass species other than ryegrass and tall fescue were positively significant under 

conditions of water deficit stress (Fig. 2j, 3e). Interestingly, shoot biomass increased significantly in 

tall fescue and decreased in ryegrass even if the effect under stress was not significant in both species. 

Non-grass plant species were neutrally influenced by fungal endophytes in either condition (Fig. 2j).  

Root biomass 
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Most categorical variables considered for analysis indicated that endophyte infection differentially 

affected plant root biomass. For example, whereas class-2 endophytes increased root biomass under 

stress conditions, no significant effect of class-2 endophytes was recorded under non-stressed 

conditions, but class-1 endophyte significantly increased root biomass (Fig. 2k). The effect of fungal 

taxa other than Epichloe was higher and it significantly positively influenced root biomass under 

stress and not under non-stressed conditions (Fig. 2l). Epichloe increased root biomass significantly 

under well-watered conditions, but it had neutral influence under stress (Fig. 2l) 

Endophyte presence increased root biomass in dicotyledonous plants, and the effect of endophytes on 

dicots was significantly higher than on monocots, although the influence of endophytes on root 

biomass tended to decrease in dicots under non-stressed conditions (Fig. 2m). Endophyte colonization 

did not significantly influence monocot root biomass under any conditions (Fig. 2m). The effect of 

endophyte colonization on annual plants tended to be higher under stress condition (Fig. 2n). Plant 

root biomass increased significantly under stress in annual plants but not under non-stressed 

conditions (Fig. 2n). 

Effect on plant root biomass did not vary significantly with plant identity. As depicted in figure 2o,  

endophyte infection did not yield significant impacts on root biomass on any grass species 

irrespective of water treatment. In contrast, root biomass increased significantly in endophyte-infected 

non-grass plant species under water limiting environment even though the effect was neutral under 

sufficient water conditions (Fig. 2o).  

Fungal endophytes on plant photosynthetic activity 

Endophyte colonization significantly increased stomatal conductance and total chlorophyll content in 

plants under both stressed and non-stressed conditions (Fig. 3). Endophyte symbiosis significantly 

increased Parameter, Fv/Fm, and net photosynthesis only under water stress conditions. All 

photosynthetic parameters considered, however, tended to be influenced more under stress than under 

non-stress as evident from their larger effect sizes (Fig. 3).  

Fungal endophytes on plant water relations  

Most of the plant-water relation parameters seemed to be influenced significantly by endophyte 

symbiosis both in stressed or non-stressed conditions (Fig. 4). Leaf relative water content (RWC) was 

increased significantly by  
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Fig. 2 Effect of endophytes on plants photosynthetic ability under water stress (filled circle) and under 

non-stressed (open circle) condition. Error bars are effect size means±95 % bootstrap CIs. Where the 
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CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant. n=number of 

studies included in the meta-analysis 

 

Fig. 3 Effect of endophytes on photosynthetic ability under water stress (filled circle) and non-stressed 

(open circle) conditions. Error bars are means±95 % bootstrap CIs. Where the CIs do not overlap the 

vertical dashed lines, the effect size for a parameter is significant. n=number of studies included in the 

meta-analysis. 

fungal colonization only under watered conditions (Fig. 4). Endophyte-colonized plant showed a 

higher rate of transpiration and hence significantly lower water use efficiency (WUE) when grown 

under adequate water, but no such effect was evident under stress. It is interesting to note that the 

effects of endophytes on most of the plant-water relation characteristics were much more variable 

under stress than those under non-stressed conditions as is evident from their larger confidence 

interval values (Fig. 4). 

Fungal endophytes on plant metabolites 

Plant metabolite profiles were not, in general, influenced significantly by endophyte symbioses either 

in water stressed or non-stressed conditions. The exception was the soluble sugar content, which 

significantly increased under non-stressed condition (Fig. 5).  

Proline 

Categorical variables considered for analysis indicated that endophyte infection differentially 

influenced plant proline content. Both class-1 and-2 endophytes had neutral effects on leaf proline 

content under both non-stressed and stress conditions. However, interactions with class-2 endophytes 

tended to decrease proline content under water stress (Fig. 6a). The effect of most fungal taxa on 

proline content was neutral irrespective of water stress, although the effect under stress was variable 
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as evident from their wide 95% CIs values (Fig. 8b). It was noted that Trichoderma reduced leaf 

proline significantly under water-limiting environments (Fig. 6b). 

No significant categorical variation was observed in proline content in monocotyledonous and 

dicotyledonous plants under either stress or non-stressed conditions (Fig. 6c). Endophyte colonization 

tended to lower the proline content in both annual and perennial plants under stress conditions even if 

the difference was not significant under any conditions (Fig. 6d).  

 

Fig. 4 Effect of endophytes on plants water relation under water stress (filled circle) and under non-

stressed (open circle) condition. Error bars are means±95 % bootstrap CIs. Where the CIs do not 

overlap the vertical dashed lines, the effect size for a parameter is significant. n=number of studies 

included in the meta-analysis. 

 

Fig. 5 Effect of endophytes on plant metabolites under water stress (filled circle) and under non-

stressed (open circle) condition. Error bars are means±95 % bootstrap CIs. Where the CIs do not 
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overlap the vertical dashed lines, the effect size for a parameter is significant. n=number of studies 

included in the meta-analysis. 

Effect endophytes on plant root biomass did not vary greatly by plant identity. As depicted in figure 

5e, endophyte infection did not significantly impact on proline on any plant species irrespective of 

water treatment. However, endophytes tended to decrease proline in grasses other than tall fescue and 

the non-grass plant species (Fig. 6e).  

 

Fig. 6 Effect of endophytes on plant metabolites under water stress (filled circle) and under non-

stressed (open circle) condition. Error bars are means±95 % bootstrap CIs. Where the CIs do not 

overlap the vertical dashed lines, the effect size for a parameter is significant. n=number of studies 

included in the meta-analysis. 

Fungal endophytes on plant enzyme activities and other parameters 

Symbioses significantly stimulated APX (ascorbate peroxidase), GSH (glutathione), phenolics, PPO 

(polyphenol oxidase) and SOD (superoxide dismutase) activity and decreased EC (Electrical 

Conductivity), H2O2 (hydrogen peroxide) and MDA (malondialdehyde) activity, but had neutral effect 
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on CAT (Catalase) and POD (peroxidase) under water limiting conditions (Fig. 7). The largest 

positive impact was on APX activity with an effect size of 5.0105 (Fig. 7). Interestingly, MDA 

activity was found to be significantly increased under non-stressed condition although its activity was 

decreased under stress in the endophyte colonized plants compared to non-endophytic plants. No 

other enzymatic activities were influenced by endophyte colonization when the plants were growing 

under adequate watering environments except POD activity (Fig. 7). 

 

Fig. 7 Effect of endophytes on plant enzymatic activity under water stress (filled circle) and under 

non-stressed (open circle) conditions. Error bars are means ±95 % bootstrap CIs. Where the CIs do 

not overlap the vertical dashed lines, the effect size for a parameter is significant. n=number of studies 

included in the meta-analysis. APX= Ascorbate peroxidase, CAT= Catalase, EC= Electrical 

conductivity, GSH= Glutathione, H2O2= Hydrogen peroxide, MDA=Malondialdehyde, POD= 

Peroxidase, PPO= Polyphenol oxidase, SOD=Superoxide Dismutase. 

Discussion 

Meta-analysis combined data from independent studies to estimate the degree of effects across similar 

studies and locate common factors contributing variations among them (Gurevitch and Hedges 1999). 

This study indicated fungal endophyte inoculation has a significant impact on various plant 

physiological variables relating to plant growth, plant water relations, metabolite accumulation, and 

enzyme activities under water stress. 
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Endophyte inoculation significantly increased plant height, shoots biomass, tiller density and total 

biomass under water stress. However, influences under stress were context dependent with several 

factors playing important roles. For example, class-2 endophytes increased plant shoot, biomass, root 

biomass and total biomass more so than class-1 endophytes under stress. The effects of Trichoderma 

on total plant biomass and that of Penicillium on shoot biomass were more pronounced under stress 

than any other fungal taxa studied. Endophyte colonization, in general, had a substantially positive 

impact on the shoot and root biomass in monocotyledonous and dicotyledonous plants, respectively 

whereas their effect on total biomass was significant in both plant clades under stress. The stage of the 

plant life cycle did not seem to play a major role in plant-fungal associations under stressed or non-

stressed conditions. Plant identity was crucial in determining the plant-endophytes interactions under 

both well-watered and stresses conditions. For instance, in non-grass plant species, total biomass 

increased much more than in the grass species in the endophyte colonized stressed plants. Conversely, 

regarding shoot biomass grass species were more influenced by endophyte symbiosis under stress and 

no significant difference on root biomass among plant species was observed.  

In most cases effect of endophytes on plant growth parameters were more visible under stress than 

under well-watered conditions. It indicated that plant growth response to endophyte colonization is an 

outcome of moisture availability. The beneficial effect of fungal symbiosis is increased under extreme 

environments (Redman et al. 2002; Bunn et al. 2009). A meta-analysis with AM fungi and leaf 

endophytes and plant growth parameters reported similar results where effects of fungi increased as 

moisture stress increased 32. Therefore, the mode of the plant-microbe interaction with regard to 

mutualism, commensalism, amensalism and parasitism may be dependent on moisture availability 

along with various factors such as nutritional status, plant/fungal partners, temperature, etc.32,37. 

Increased nutrient availability and uptake efficiency are the proposed mechanisms involved in 

endophyte-induced plant growth promotion. Fungus mediated plant growth enhancements under stress 

could also be attributable to the production of auxins by fungal endophytes38. Endophyte colonization 

under stress involves the expression of endogenous abscisic acid and the related genes zeaxanthin 

epoxidase, 9-cis-epoxycarotenoid dioxygenase-3, and ABA aldehyde oxidase-3. Expression of these 

compounds promotes plant growth and yield through the production of exogenous GA3
13. 

Plant photosynthetic parameters were also influenced by fungal colonization, which was greater under 

conditions of stress. Improvement in the photosynthetic ability of endophytic plants is reflected 

directly by the higher plant biomass of inoculated plants. Water stress exerts an adverse impact on 

photosynthetic machinery and gaseous exchange of plants leading to altered physiological and 

biochemical processes. Early response to water stress could result in accelerated stomatal closure and 

reduced water loss39 in plants colonized by endophytic fungi. Also, increased chlorophyll pigments 
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and stomatal conductance in endophytic plants under stress reflects their better photosynthesis which 

co-relate with their stress tolerance12,40,41. 

Endophyte symbioses stimulated APX, GSH, phenolics, PPO, and SOD activity and decreased EC, 

H2O2, and MDA under water stress. Plants produce additional ROS when exposed to stresses. Water 

stress causes enhanced H2O2 accumulation and generation of ROS (reactive oxygen species) leading 

to disruption of cell membranes and metabolic toxicity which resulted in leakage of solutes42-44. 

Several pathways are involved in plants transforming toxic ROS to a less toxic form45. Alleviating 

ROS has been described as an important mechanism in fungus mediated stress tolerance46. Lower 

H2O2 in endophytic plants under stress could be a protection mechanism from the effect of stress by 

lowering ROS production. Moreover, a link may exist between the ability of osmotic balance and the 

degree of membrane protection from the influence of dehydration47. The lower H2O2 content was also 

found to be associated with over-expression of glutathione S-transferase, glutathione-dependent 

formaldehyde dehydrogenase genes in the stress associated pathways48. MDA accumulation is 

indicative of the rate of lipid peroxidation and oxidative stress in plants due to water stress49. The 

overall level of MDA was lower in fungus-colonized plants, and thus the fungus influences this stress 

response. MDA formation is associated with ROS-induced degradation of polyunsaturated lipids50,51. 

Endophytes could inhibit or impede the deterioration of these lipids by preventing excess ROS 

formation under stress conditions.  

Antioxidant enzymes (POD, SOD, PPO) increased in endophytic plants under stress. Triggering the 

antioxidant system is an adaptive mechanism to reduce ROS generation and minimize oxidative 

damage under stress. Our analysis revealed a significantly higher level of ROS scavenging enzymes 

such as SOD, CAT, APX and GR in endophytic plants under stress. These enzymes are the elements 

of the antioxidation system that helps plants manage the redox balance. Higher levels of enzymatic 

activities could be related to better antioxidant responses that protect plants from oxidative injury in 

endophytic plants26,52-54. POD belongs to a large group of enzymes that detoxify H2O2, organic 

hydroperoxide, and lipid peroxides to produce alcohols. These enzymes have a  

heme cofactor in their active sites that is manufactured in the plastid. Heme is also attached to the iron 

homeostasis, which may be involved in plant-microbe interactions55. Moreover, the presence of 

redox-active cysteine residues in POD help measure the redox potential of the cell or organelle. Th 

plastid is an essential organelle in a leaf that modulates the redox potential56,57. It is, however, not 

known if fungi interfere with the iron homeostasis and redox potential of the plant cell and increase 

plant stress tolerance via this mechanism.  

Higher proline levels existed in both stressed and non-stressed endophytic plants. Proline is 

considered to be a stress-related amino acid which may act as an osmoregulator58 as well as an ROS 
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scavenger59, and its accumulation is correlated with both osmotic stress tolerance and responses to 

stress conditions involving dehydration60-62. However, it is still controversial if its presence is an 

adaptive response that provides greater stress tolerance or if its increase is a symptom of stress 

injury63. Relatively higher levels of proline in the presence of endophytes could, therefore, be an 

indication that there is less damage in a drought-stressed plant in the presence of endophytes. 

Water deficit inhibits plant growth by affecting photosynthesis, osmotic balance, enzymatic activities 

and metabolic activities. Fungal endophytes consistently help plants reduce the impact of water stress 

by manipulating physiological processes. Endophyte-induced plant water stress tolerance has broad 

ecological and agricultural implications. In dryer regions, increased water tolerance can result in 

higher crop yield under low moisture availability. Continued interest in fungal endophyte research to 

uncover the underlying mechanisms of plant-fungal interaction appears well-justified. 

Materials and methods 

Database search 

We followed the general guidelines of Field and Gillett64 for obtaining meta-data. We did a literature 

search in ISI Web of Science (Thompson Reuters) through March 2017. The search combinations 

entered were endophyte* inoculation and water stress/drought, fungi* inoculation and water 

stress/drought. The Boolean truncation (‘*’) character used to ensure that the variations of the word 

such as endophyte, endophytic or fungi, fungus and fungal were also included. We did subsequent 

searches of relevant papers listed in reference sections. We also collected relevant publications from a 

review by Worcel et al..32.  

Study selection 

The data search procedure yielded 314 online references, of which 160 were considered likely to 

contain significant relevant information. To minimize bias in the selection of publications, we 

screened the papers based on predefined criteria:  

(i) The experiment had to manipulate at least one fungal endophyte irrespective of inoculation 

method or colonization rate,  

(ii) The fungal symbionts were from any class of endophytes other than those considered as 

mycorrhizal fungi,  

(iii) Both endophyte-inoculated and non-inoculated plants were grown under water stressed and 

non-stressed conditions. Where more than one level of stress was applied, we considered the 

results of only the most severe level of stress in our analysis,  

(iv) Any of the physiological parameters e. g biomass, RWC, metabolites, etc. were measured  

195



 
 

(v) The findings reported sample size, means, standard deviations/errors and other relevant 

statistical information such that the outcome could be converted to a standardized measure of 

effect size.  

Those studies that did not present information on any of our targeted response variables and those that 

provided unrelated data were excluded. If there was more than one measurement of any trait over 

time, we only recorded measurement from the final date. We permitted studies to differ in the levels 

of fertilizer applied, growth situations (greenhouse, growth chamber or field), duration of time before 

stress was applied, and growth media into our meta-analysis. Among the 160 references, 93 papers 

were rejected, and we identified only 67 articles that met these selection criteria (Supplementary 

Material 1). Papers spanned 25 years (1992-2017) and were in English and Chinese (1 article).  

Data extraction 

Treatment means, sample sizes (replications), standard deviation were collected for each study. When 

standard errors (SE) were reported, we obtained standard deviation following the equation: SE=SD 

(n−1/2). The 95% CIs (confidence intervals) reported were converted to SD where necessary65. When 

results were presented in a graph, the image was digitized, and data was extracted using 

WebPlotDigitizer66. Multiple treatments or host/endophyte combinations from the same article were 

considered as independent studies and represented as a separate data unit in the analysis. We were 

aware that extracting multiple studies from one experiment increases the dependence on that study by 

assuming, perhaps incorrectly, that studies are independent67. However, we included them because 

they increased the statistical power of the analysis68. This approach has been used in various 

biological meta-analyses69-73. 

Meta-analysis 

To quantify the magnitude and direction of plant-fungal interactions under stress and non-stressed 

conditions, we used all comparisons in our dataset to calculate the mean effect sizes. We used 

MetaEasy software v1.0.274 to compute effect sizes and standard error (SE) from each study. From 

sample size information and various combinations of summary statistics, for instance, the mean and 

the related p-values, we calculated the standardized cumulative effect size 74. We estimated effect 

sizes with 95% CIs using the Dersimonian-Laird (DL) random effects model because it takes into 

account heterogeneity (study variation)75. A cumulative effect size was considered significant when 

95% CIs did not bracket zero. The level of heterogeneity was assessed using Cochran’s Q statistic, 

where Q follows a χ2
k-1 distribution with k = number of studies76. Q-statistic is a measure of weighted 

squared deviations which display only presence versus absence of heterogeneity. Therefore, we 

quantified heterogeneity with an I2 statistic which estimates the ratio of true heterogeneity to total 
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heterogeneity across the observed effect sizes77,78 (Table 1). By convention, an I2 value >75 % 

indicates significant between-study heterogeneity79.  

Categorical analyses were also performed on the data to determine the influence of the factors such as 

plant or endophyte identity, type, etc. for some parameters where sufficient data was available. For a 

factor to be included in the analysis as a moderator or categorical variable, it had to be reported from 

at least five studies.  

Table 1: Heterogeneity statistics for the 32 summary effect sizes under non-stressed and water stress 

condition Q , total heterogeneity; p, significance of Q heterogeneity ; I2: percentage of heterogeneity 

due to true variation among effect sizes. 

Parameters Parameters Under stress Under non-stressed 

Q p I2 Q p I2 (%) 

Plant growth Leaf Area  75.12 0.00 70.71 29.79 0.10 29.51 

Plant Height  188.90 0.00 83.59 216.76 0.00 86.62 

Root Biomas  414.12 0.00 90.58 105.28 0.00 71.50 

Root Shoot Ratio  45.79 0.00 65.06 44.81 0.03 35.28 

Seed Germiantion 22.76 0.00 73.64 0.00 1.00 0.00 

Shoot Biomas  765.49 0.00 91.12 265.47 0.00 78.15 

Spelicif Leaf 

Weight  

11.78 0.04 57.56 3.93 0.41 0.00 

Tiller Density  195.07 0.00 70.78 215.51 0.00 76.34 

Total Biomas  256.37 0.00 78.94 336.68 0.00 89.31 

Photosynthetic 

activity 

Fv/Fm 22.08 0.18 22.99 3.18 1.00 0.00 

Net Photosyntheis 25.60 0.01 53.13 74.68 0.00 77.24 

Stomatal 

conductance 

75.11 0.00 77.37 16.01 0.10 37.52 

Total Chlorophyll 65.48 0.00 57.24 102.61 0.00 82.46 

Plant water 

relation 

Osmotic Potential 43.62 0.00 79.37 14.31 0.05 51.10 

Relative Water 

Content 

62.07 0.00 72.61 24.68 0.13 27.06 

Transpiration 19.62 0.00 74.52 5.46 0.36 8.47 

Water Potential 21.82 0.00 72.50 3.80 0.70 0.00 

Water Use 

Efficiency 

16.54 0.00 75.82 1.00 0.80 0.00 

Metabilites Proline 975.17 0.00 97.74 31.88 0.02 46.68 

 Glucose 38.57 0.00 89.63 97.43 0.00 96.92 

Sucrose 2.44 0.65 0.00 7.60 0.06 60.53 

Sugar 24.18 0.00 83.46 16.81 0.00 76.21 

Enzymatic 

activity 

ascorbate 

peroxidase  (APX) 

176.18 0.00 97.73 14.58 0.01 72.57 

Catalase (CAT) 308.05 0.00 96.75 547.05 0.00 97.99 

Electrical 

conductivity (EC) 

15.03 0.06 46.76 30.21 0.00 73.52 

glutathione (GSH  61.96 0.00 90.32 61.21 0.00 90.20 

Hydrogen peroxide 

(H2O2) 

16.27 0.01 63.11 8.28 0.22 27.50 

Malondialdehyde 

(MDA) 

63.53 0.00 77.96 34.23 0.00 64.94 
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Phenolics 49.36 0.00 89.87 8.03 0.15 37.70 

Peroxidase (POD) 420.52 0.00 98.34 418.46 0.00 98.33 

Polyphenol 

Oxidase (PPO) 

14.16 0.00 78.81 74.05 0.00 95.95 

Superoxide 

Dismutase (SOD) 

90.99 0.00 86.81 7.59 0.58 0.00 
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