
 

 

RESEARCH REPOSITORY 
 

This is the author’s final version of the work, as accepted for publication  
following peer review but without the publisher’s layout or pagination.  

The definitive version is available at: 
 
 

https://doi.org/10.1016/j.jiec.2017.11.046 
 

Phan, T.T.N., Nikoloski, A.N., Bahri, P.A. and Li, D. (2017) Heterogeneous photo-Fenton degradation of organics using 
highly efficient Cu-doped LaFeO 3 under visible light. Journal of Industrial and Engineering Chemistry, 61 . pp. 53-64. 

 
 
 

https://researchrepository.murdoch.edu.au/id/eprint/39974 
 

 
 

 
Copyright: © 2017 The Korean Society of Industrial and Engineering Chemistry 

It is posted here for your personal use. No further distribution is permitted. 
 

 

https://doi.org/10.1016/j.jiec.2017.11.046


Accepted Manuscript

Title: Heterogeneous photo-Fenton degradation of organics
using highly efficient Cu-doped LaFeO3 under visible light

Authors: Thi To Nga Phan, Aleksandar N. Nikoloski, Parisa
Arabzadeh Bahri, Dan Li

PII: S1226-086X(17)30651-2
DOI: https://doi.org/10.1016/j.jiec.2017.11.046
Reference: JIEC 3756

To appear in:

Received date: 4-10-2017
Revised date: 24-11-2017
Accepted date: 29-11-2017

Please cite this article as: Thi To Nga Phan, Aleksandar N.Nikoloski, Parisa Arabzadeh
Bahri, Dan Li, Heterogeneous photo-Fenton degradation of organics using highly
efficient Cu-doped LaFeO3 under visible light, Journal of Industrial and Engineering
Chemistry https://doi.org/10.1016/j.jiec.2017.11.046

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.jiec.2017.11.046
https://doi.org/10.1016/j.jiec.2017.11.046


Heterogeneous photo-Fenton degradation of organics using highly efficient 

Cu-doped LaFeO3 under visible light  

 

Thi To Nga Phan, Aleksandar N. Nikoloski, Parisa Arabzadeh Bahri, Dan Li* 

Chemical and Metallurgical Engineering and Chemistry, School of Engineering and 

Information Technology, Murdoch University, Western Australia 

 

*Corresponding author. Telephone: +61 8 9360 2569; E-mail: l.li@murdoch.edu.au. 

 

Graphical abstract 

 

 

 

ACCEPTED M
ANUSCRIP

T

mailto:l.li@murdoch.edu.au


Highlights 

 Cu-doped LaFeO3 was studied as catalyst for Fenton-degradation of organics 

 It was much more effective in degrading organic compared with undoped LaFeO3 

 The mechanism for photo-Fenton degradation was studied 

 Its application was optimized in terms of solution pH, H2O2 and catalyst dosage 

 The excellent stability and reusability suggested its potential for practical use 

 

Abstract 

Cu-doped LaFeO3 was prepared by a facile hydrothermal reaction and evaluated as highly 

efficient photo-Fenton-like catalyst under visible light for organic degradation. The use of 

LFO-15Cu (LaFe0.85Cu0.15O3), which possessed favourable physicochemical characteristics, 

could achieve almost complete decolourisation of cation and anion dyes within 60 min visible 

light irradiation. The mechanism study by ESR spectroscopy confirmed LFO-15Cu could 

activate H2O2 under visible light to generate many more hydroxyl radicals than LFO (LaFeO3). 

LFO-15Cu was proven with excellent stability and reusability; and in turn showed great 

potential for use in continuous photo-Fenton-like degradation of organic in water under visible 

light. 

Keywords: Photo-Fenton; Visible light; LaFeO3; Copper; Methyl orange 

 

 

1. Introduction 
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Organic dyes from textile production and other industrial processes are one of the main groups 

of pollutants in wastewater [1]. Azo dyes, including reactive black 5, methyl orange (MO), acid 

orange 7, represent 60 – 70% of all organic dyes produced in the world. The discharge of azo 

dye-containing effluent streams without treatment has created serious environmental pollution 

and threats to human health by releasing toxic and carcinogenic compounds [2]. Various 

methods, including biological, physical and chemical means, have been widely studied to 

eliminate azo dyes from wastewater [3]. In particular, advanced oxidation processes (AOPs) 

have become an increasing area of research interest for removing recalcitrant organic 

compounds in wastewater, due to its efficient and eco-friendly application. These processes 

rely on the production of strongly oxidising agents, mainly hydroxyl radicals (•OH), which are 

capable of oxidizing the majority of refractory compounds in industrial effluents due to the 

high oxidation potential (2.8 V) [4-7]. One of the most efficient AOPs is Fenton process, 

basically divided into the homogeneous and heterogeneous systems based on the physical state 

of catalyst. Compared to the homogeneous one, the heterogeneous Fenton process can oxidize 

a variety of organic pollutants in a wide pH range rapidly and non-selectively with the 

generation of little iron sludge. Other advantages include the complete mineralization of 

organic compounds and easy operation at mild condition [8-10]. The heterogeneous Fenton 

process involves the reaction between Fe-based solid catalyst and hydrogen peroxide (H2O2) 

to generate hydroxyl radicals (•OH), which are oxidants capable of degrading various organic 

contaminants in wastewater [11, 12]. In the presence of either ultraviolet (UV) irradiation, 

visible light or both these light sources, a photo-Fenton reaction occurs, which has higher 

degradation rate than the Fenton process [13]. As compared with the relatively high cost and 

energy consumption when utilizing light source to generate UV light, the adoption of visible 

light is more economical.    
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Recently, perovskite oxides with the general formula ABO3 (A = usually an alkaline, alkaline 

earth or rare earth element; B = transition metal) have been recognized as an efficient form of 

heterogeneous catalysts to participate in the photo-Fenton process for the degradation of 

organic pollutants [14-17]. LaFeO3 (LFO) is one of the widely selected perovskite oxides for 

study due to its non-toxicity, stability, and small band gap energy. Li and co-workers prepared 

the LFO heterogeneous photo-Fenton-like catalyst by sol-gel method for rhodamine B (RhB) 

degradation; in which over 97% of RhB was decomposed after 2 h visible light irradiation 

under the reaction conditions of 1 mL of 3% H2O2, 1 g/L catalyst and 10-5 mol/L initial RhB 

concentration [18]. The LaMeO3 (Me = Fe, Co, Mn, Ni, Cu) perovskites supported on cordierite 

monolith, which were prepared by impregnation method, exhibited photo-Fenton activity to 

remove acetic acid; especially the use of 10.5 wt% LFO supported on cordierite monolith 

reached 93% TOC removal after 7 h under a variable addition of H2O2 (0.014 M/h after 1 h 

and 0.007 M/h in the rest of test) at pH = 3.9 under UV light irradiation [19]. Orak et al. 

prepared LFO on a monolithic structure by sol-gel method and yielded almost complete 

removal of methylparaben (MP) after 30 min under the reaction conditions of 0.1 g/L catalyst, 

5 ppm MP, 1 mM of H2O2, initial pH 7 and UV light power of 12 W [20]. However, these 

photo-Fenton-like decontamination processes need a relatively long reaction time or special 

UV light source to complete. Therefore, we believe it is desirable to explore other 

heterogeneous photo-Fenton-like perovskite catalysts targeting at the fast and high removal of 

organic from water. Especially, from the point of view of practical application, the 

development of heterogeneous photo-Fenton process using visible light is particularly 

meaningful in terms of cost and energy effectiveness.  

Replacing the element on the A- or B-site in the ABO3 structure, which leads to the change in 

the composition and symmetry of material, is considered as a promising strategy to improve 

photocatalytic performance of a catalyst [21-23]. Such doping approach could not only 
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introduce defect to narrow band gap, but also cause oxygen vacancy inhibiting the 

recombination between photogenerated electrons and holes on the photocatalyst surface. 

Different metal ions through A- or B-site substitution of LFO have been proven to effectively 

improve its photo-Fenton catalytic activity for organic degradation [24-26]. Li and co-workers 

investigated the photocatalytic activity of Ca-doped LaFeO3, which was prepared in reverse 

microemulsion, for the degradation of methylene blue (MB) under visible light [24]. The LFO 

sample doped with 10 mol% Ca exhibited the highest degradation rate (77.5%) in 60 min under 

the reaction conditions of 0.5 g/L catalyst dosage and 10 mg/L initial MB concentration among 

different Ca-doped LFO (5 – 20 mol%). The substitution of Li into La-site in LFO was found 

to considerably improve the photocatalytic performance of catalyst for the degradation of 

methyl blue and acrylon effluents [26]. The optimized catalyst, which was synthesized by the 

acetic acid based sol-gel method, could remove 99% methyl blue and 45.7% acrylon effluents 

in 60 min under UV-visible light illumination. Jauha et al. used Mn-doped LFO as a photo-

Fenton catalyst to degrade anionic and cationic dyes, including Remazol Turquoise Blue, 

Remazol Brilliant Yellow, MB and Safranine-O, respectively [25]. Their results suggested that 

the photocatalytic activity under visible light irradiation be enhanced; however, the further 

increase of Mn doping did not considerably improve the photoactivity of resulting material.  

Previous study has suggested that the catalytic property of ABO3 be mainly determined by the 

nature of B-site [21]. Therefore, the substitution of Fe-site in LFO by a reductive and active 

metal shows potential to dramatically improve photocatalytic activity of resulting material. In 

our literature survey [27-30], in addition to Fe, other multiple redox state elements such as, 

cerium (Ce), manganese (Mg), chromium (Cr), copper (Cu) and cobalt (Co) can react with 

H2O2 to generate •OH in the Fenton-like process. Especially, Cu attracted our research interest 

as a substituting cation due to its advantageous features over Fe [31-36]. For example, Cu 

endows high reducibility; the reduction of Cu(II) by H2O2 occurs more easily than that of 
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Fe(III). The Cu(I)/H2O2 system shows a higher reaction rate than the Fe(II)/H2O2 system in 

terms of organic decomposition. Moreover, a Cu-based Fenton-like system can work over a 

wider pH range than a Fe-based one. The use of Cu as a dopant and its incorporation into the 

perovskite lattice has been proven to narrow the band gap and enhance the catalytic activity of 

parent perovskite, e.g. LaCoO3, LaAlO3 or CaTiO3 [37-39]. To the best of our knowledge, no 

study has been reported on the applicability of Cu-doped LFO as a heterogeneous photo-Fenton 

catalyst for organic dye degradation under visible light. In this study, Cu-doped LFO was 

prepared by a facile one-step hydrothermal method, which shows advantageous features 

towards industrial application, e.g. low temperature, cost effectiveness and process simplicity. 

Its photo-Fenton-like catalytic activity for the decolorization of 10 mg/L MO, MB and RhB 

solution, which concentration has been normally adopted in the photodegradation test of 

different dyes over a variety of heterogeneous catalysts [40-46], under visible light was 

evaluated for the first time. Based on our experimental results, including the catalyst 

morphological, structural and chemical properties, and electron spin resonance (ESR) analysis, 

possible catalytic mechanisms of Cu-doped LFO that improved degradation efficiency were 

also developed. Its stability and reusability in the photo-Fenton catalytic degradation of MO 

was assessed, followed by the examination and optimization on the effects of H2O2 

concentration, catalyst dosage and initial solution pH on material photocatalytic activity. 

 

2. Experimental  

2.1 Catalyst Preparation 

Analytical grade La(NO3)3.6H2O, Fe(NO3)3.9H2O, Cu(NO3)2.3H2O and citric acid were 

purchased from Sigma-Aldrich and used as the starting materials. Cu-doped LaFeO3 (LaFe1-

xCuxO3; x = 5, 10, 15 and 20 mol% of Cu) was prepared via the hydrothermal method [47]. 

Typically, the precursor solution was prepared by mixing La(NO3)3.6H2O, Cu(NO3)2.3H2O, 
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Fe(NO3)3.9H2O, and citric acid in deionized (DI) water. Both the molar concentration of citric 

acid and the total molar concentration of metal nitrates (La(NO3)3.6H2O, Cu(NO3)2.3H2O, 

Fe(NO3)3.9H2O) were 1 mol/L, respectively. The obtained precursor solution was continuously 

stirred for 2 h at room temperature. Ammonia solution (25%, Sigma-Aldrich) was slowly added 

to the solution to adjust the solution pH to 9 before transferring the resulting solution into 50 

mL Teflon-lined autoclave. The solution was then heated at 180 °C for 20 h. After that, the 

autoclave was allowed to cool down to 25 °C naturally. The obtained product was washed with 

DI water and ethanol, and dried at 80 °C for 5 h in air. It was then calcined in air at 800 °C for 

6 h (ramp rate of 5 °C/min from 25 to 800 °C) to obtain the final catalyst. The prepared catalysts 

were named as LFO-5Cu, LFO-10Cu, LFO-15Cu and LFO-20Cu, respectively, according to 

5, 10, 15 and 20 mol% Cu doping concentration in the synthetic solution. For comparison, the 

LaFeO3 catalyst (LFO-0Cu) was synthesized following the above procedures but without 

adding Cu(NO3)2.3H2O during synthesis.  

2.2 Catalyst Characterization 

Morphology of the catalysts was examined by scanning electron microscopy (SEM, 5 kV, Zeiss 

1555, VP-FESEM) and transmission electron microscopy (TEM, 200 kV, TEM-TITAN). The 

powder sample was coated by sputtering of a thin platinum layer before performing SEM. The 

sample for TEM was dispersed in ethanol and then deposited on a carbon-copper grid to allow 

the solvent to evaporate at ambient temperature. X-ray powder diffraction (XRD) experiments 

were performed on a GBC eMMA X-ray diffractometer with Cu Kα radiation using an 

acceleration voltage of 35 kV and a current of 28 mA. The diffraction angle 2θ was scanned 

from 20 to 80 ° at a rate of 1 °/min. Average crystallite size of the sample was calculated from 

the XRD patterns according to the Scherrer equation [48, 49]. Lattice parameters of the sample 

were determined using the Bragg’s law and the equation  
1

d2 =
h2

a2 +
k2

b2 +
l2

c2 [50] (d is lattice 

spacing (Å); h, k, l are lattice planes and a, b, c are lattice parameters (Å)). The cell volume 
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was obtained by a × b × c due to its orthorhombic structure. Nitrogen adsorption-desorption 

isotherms were measured at 77 K using SAPA2010 (Micromeritics Inc, USA). Prior to 

analysis, the samples were degassed at 200 °C for 12 h under vacuum. The surface area was 

determined from the linear part of the BET plot (P/P0 = 0.05 ~ 0.20) and the pore size was 

calculated from the desorption branch of the isotherm by using Barrett-Joyner-Hallenda (BJH). 

The total pore volume was evaluated from the adsorbed nitrogen amount at a relative pressure 

of 0.98.  Compositions of the catalysts were determined by chemical analysis using Inductively 

Coupled Plasma – Mass Spectrometry (ICP-MS, PerkinElmer’s NexION 350). The digestion 

of sample was conducted by mixing 0.005 g of catalyst with 10 mL of aqua regia, followed by 

heating at 100 °C for 24 h. The digested sample was diluted with 2% HNO3 to lower its 

concentration below 100 ppb for ICP-MS analysis. X-ray photoelectron spectroscopy (XPS) 

data were taken on Kratos AXIS Ultra DLD X-ray photoelectron spectroscopy (Perkin-Elmer) 

using a monochromated Al-Kα X-ray source (hʋ = 1486.6 eV) at chamber pressured better than 

8 x 10-9 Torr. Optical properties of the samples were characterized on a Perkin Elmer Lambda 

750 UV/Vis/NIR spectrophotometer mounted with an integrating sphere accessor and using 

BaSO4 as a reference. Band gap energy of the sample was obtained from the plot of Kubelka-

Munck function [F(R)hʋ]2 versus the energy of adsorbed light hʋ [51]. 

2.3 Photocatalytic Organic Degradation and its Mechanism Study  

Photocatalytic activity of the catalyst leading to the degradation of methyl orange (MO) (details 

in Fig. S1) in aqueous solution was carried out under visible light. The degradation experiment 

was performed in a cylindrical Pyrex vessel surrounded by a circulating water jacket to keep 

the reaction temperature at ambient temperature. The catalyst was dispersed into 100 mL of 10 

mg/L MO aqueous solution. A photo-Fenton reaction was initiated by introducing 1 mL H2O2 

to the suspension. A Xenon lamp (CEL-HX F300, Beijing, China) with a 400 nm cut-off filter 

to ensure the suspension was illuminated under visible light for photocatalytic degradation test. 
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In all photodegradation tests, the illuminated area of solution was 24 cm2 and the intensity of 

light was 1734 W/m2, which was measured by TES 132-Solar power meter (US). Before light 

irradiation, the solution was magnetically stirred in the dark for 30 min to reach the adsorption-

desorption equilibrium of MO onto the catalyst. Subsequently, the suspension was exposed to 

visible light for 60 min, during which the sample was taken from the suspension every 10 min 

for analysis. The catalyst was removed from each analysis sample by centrifugation at 10,000 

rpm for 10 min. The remaining solution was tested for the concentration of MO using Perkin 

Elmer Lambda 750 UV/Vis spectrometer and examined for the concentration of metal ions (La, 

Fe, and Cu) using ICP-MS (PerkinElmer’s NexION 350). Several factors, including the catalyst 

dosage, the initial H2O2 concentration, the initial solution pH and co-existing inorganic salt 

NaCl were studied herein. The catalyst dosage was varied from 0.5 to 1.2 g/L. The initial 

solution pH value was adjusted from 4 to 8 by adding HCl or NaOH solution. The effect of 

H2O2 dosage on the degradation of MO was examined by varying the initial concentration from 

0.1 to 0.5 g/L. To investigate the effect of co-existing ion on the photodegradation of MO, 0.01 

M NaCl was added into the solution. 

The photodegradation data were fitted with the pseudo-first-order kinetic model. The apparent 

rate constant k was obtained from the slope of the straight line by plotting -ln(C/C0) as a 

function of time, t, through regression; where C0 and C were the initial dye concentration and 

the dye concentration at a given period of time t, respectively. Herein, the corresponding 

regression coefficients R2 were above 0.975. In addition to MO, MB and RhB (details in Fig. 

S1) were chosen to further evaluate the photo-Fenton catalytic performance of LFO-15Cu 

following the same procedures as above.  

To test stability and recyclability of the catalyst, repetitive degradation test was performed 

using LFO-15Cu. After the degradation experiment, the suspension was centrifuged at 10,000 
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rpm to separate the catalyst particles and aqueous solution. The collected catalyst was then 

reused in a new degradation experiment. This process was repeated for several times.  

Electron spin resonance (ESR) spectroscopy was used to examine photodegradation 

mechanism by detecting reactive oxygen species. Three conditions were selected herein for 

test, including LFO-15Cu/H2O2/Light (10 mg/L MO solution with 0.8 g/L LFO-15Cu in the 

presence of 0.3 g/L H2O2 under visible light irradiation), LFO-15Cu/H2O2/Dark (10 mg/L MO 

solution with 0.8 g/L LFO-15Cu in the presence of 0.3 g/L H2O2 in dark) and LFO/H2O2/Light 

(10 mg/L MO solution with 0.8 g/L LFO-0Cu in the presence of 0.3 g/L H2O2 under visible 

light irradiation). In 2 minutes after starting the reaction, 100 µL of the sample was collected 

from the reaction suspension and immediately mixed with 20 µL of 0.2 mol L-1 DMPO to form 

DMPO-•OH adduct. The ESR spectra were obtained on a Bruker ESR 300E with microwave 

bridge (receiver gain: 40 dB; modulation amplitude: 1 Gauss; microwave power: 2.10-4 mW; 

modulation frequency: 100 kHz). 

3. Results and Discussion 

3.1 Catalyst Characterization  

3.1.1 XRD analysis 

As shown in Fig. 1, the crystal structures of LaFe1-xCuxO3 samples (LFO-5Cu – LFO-20Cu) 

were not affected by the presence of Cu dopants, as all peaks were identical to that of LFO 

(LFO-0Cu). The characteristic diffraction peaks at 22.6°, 32.2°, 38.0°, 39.6o, 46.3°, 52.0°, 

53.3o
, 57.4°, 67.4o, 72.0o and 76.7o in the diffraction data of all samples can be indexed as the 

crystal planes of (101), (121), (112), (220), (202), (141), (311), (240), (242), (143) and (204), 

indicating that the fabricated samples were well crystallized with orthorhombic structure 

(JCPDS No. 37-1493) [52, 53]. No crystalline Cu peaks were observed and the single 
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perovskite phase formed in all cases (LFO-5Cu – LFO-20Cu). However, the increase of Cu 

doping decreased the intensity of diffraction peaks and broadened them. 

Table 1 shows the lattice parameters, cell volumes and average crystallite sizes of LFO and 

LaFe1-xCuxO3. As can be seen, the cell volume of LaFe1-xCuxO3 was slightly smaller than that 

of LFO; this value decreased with increasing Cu doping. Obviously, the introduction of Cu(II) 

with larger ionic radius (0.730 Å) to replace Fe(III) with smaller ionic radius (0.645 Å) did not 

lead to the expansion of LFO unit-cell [54]. The smaller cell volume of LaFe1-xCuxO3 might be 

caused by the defects in the form of anionic vacancies, which maintained the electroneutrality 

in LaFe1-xCuxO3 [55]. In Table 1, the crystallite sizes of Cu-doped LFO samples were smaller 

than that of undoped sample and decreased with increasing amount of Cu dopant. This is in 

good agreement with the literature [56], revealing Cu doping could cause lattice distortion and 

suppress growth of large crystallites in the samples. The high degree of crystallinity with few 

defects helps to minimize the recombination of electron-hole pairs, leading to enhanced 

efficiency of photodegradation [57].   

3.1.2 Nitrogen adsorption-desorption analysis 

In the N2 adsorption-desorption isotherms of LFO and LaFe1-xCuxO3 samples (Fig. 2), all the 

samples showed type IV isotherms with type H3 hysteresis loop, where a steep increase was 

found in high-pressure range (0.8 < P/P0 < 1). This could probably be associated with the pores 

formed between the particles due to aggregation. Table 2 summarizes the corresponding values 

of BET surface area, pore volume and pore size. The LaFe1-xCuxO3 samples, especially LFO-

15Cu, exhibited slightly larger specific areas than the LFO sample; which might be the 

advantageous feature providing more active sites for the degradation to take place and 

improving photocatalytic degradation efficiency.  
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We believe that the addition of Cu source during hydrothermal synthesis would affect the 

crystallization of catalyst and in turn its structural properties. The possible mechanisms of 

LaFe1-xCuxO3 formation are proposed as follows based on the literature [58]: 

La(NO3)3 → La3+ + 3NO3
−                                                                                                    (1) 

Fe(NO3)3 → Fe3+ + 3OH− →  Fe(OH)3                                                                               (2) 

Cu(NO3)2 → Cu2+ + 2OH− →  Cu(OH)2                                                                              (3) 

La3+ + C6O7H8 → [C6O7H5]3−La3+ + 3H+                                                                          (4) 

[C6O7H5]3−La3+ + 3OH−  →  La(OH)3 + [C6O7H5]3−                                                         (5) 

La(OH)3 + Fe(OH)3 + Cu(OH)2  → LaFe1−xCuxO3 + H2O                                                 (6)           

La(NO3)3 released La3+ when dissociated in water (Eq. 1), which tended to chelate with citric 

acid (Eq. 4). The resulting compound slowly reacted with hydroxide during hydrothermal 

reaction into La(OH)3 via alcoholysis (Eq. 5). On the other side, Fe(NO3)3 and Cu(NO3)2 

dissociated into Fe3+ and Cu2+, which were then hydrolysed to produce Fe(OH)3 and Cu(OH)2 

(Eq. 2 – 3). The condensation of Cu(OH)2 – Fe(OH)3 – La(OH)3 system yielded Cu-doped LFO 

(Eq. 6). The increasing addition of Cu source in the synthetic solution might affect the 

condensation of Cu(OH)2 – Fe(OH)3 – La(OH)3, and subsequent nucleation and crystallization 

of LaFe1-xCuxO3 during hydrothermal reaction. Consequently, small particles with large SBET 

and small crystallite size were observed.               

3.1.3 Band gap characterization 

The UV-Vis absorption spectra and the corresponding band gap energy of LFO and LaFe1-

xCuxO3 are shown in Fig. 3a and b. It is noted that all the samples had suitable band gap energy 

for organic pollutant degradation under visible light irradiation. Interestingly, the substitution 

of Cu into Fe-site in LFO modified the light absorption property of perovskite. Dong et al. also 

observed the decrease of gap energy when introducing Zn(II) (ionic radius = 0.74 Å) into LFO 

[59]. The substitution of metal in the Fe-site of LFO might lead to the formation of oxygen 
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vacancies and additional energy levels; thereby increasing the distance between atomics and 

narrowing the energy gap of material [59]. However, the high concentration of Cu doping 

(LFO-20Cu) resulted in an increase of band gap energy, accompanied with significantly 

reduced crystallite size (Table 1). The reduced band gap energy of LaFe1-xCuxO3 would be the 

favourable characteristic for harvesting more photons; more photocharged electrons and holes 

can be generated, thus enhancing the photocatalytic activity of catalysts. 

3.1.4 Morphological analysis 

As can be seen from Fig. 4, all the prepared samples exhibited similar morphology, consisting 

of agglomerated spherical-like particles. It is observed that the Cu-doping did not significantly 

affect the morphology and particle size of sample. However, when synthesized at high Cu 

doping concentration, the particles tended to merge together to form large agglomerates, as 

shown in Fig. 4. This may also explain the greater pore volumes and sizes, shown in Table 2, 

for the samples of LFO-15Cu and LFO-20Cu, when compared with others.  

In the TEM images of LFO-0Cu and LFO-15Cu (Fig. 5), both samples showed sphere-like 

particles with diameters ranging from 30 – 70 nm, which is in an agreement with the SEM 

observation. Literature suggests small particle size as a favourable feature for enhancing 

photocatalytic activity because: (i) it results in large specific area, which may offer a large 

number of active sites for dye photodegradation; (ii) it helps to supress the recombination of 

photogenerated electron and hole pairs, which then migrate to particle surface and react with 

adsorbed dye [60]. There were no pure Cu particles observed on the surface of LFO-15Cu or 

in the surrounding environment, suggesting homogeneous substitution of Cu in the Fe-sites of 

LFO. The lattice fringes of LFO-0Cu and LFO-15Cu were 0.279 and 0.278 nm, respectively, 

which matched with the (121) crystallographic plane of LFO [53].     

3.1.5 Composition analysis and XPS measurements 
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Table 2 shows the chemical compositions (Cu/Fe molar ratios) of LFO and LaFe1-xCuxO3 

samples using ICP-MS analysis, suggesting that the actual Cu doping of LaFe1-xCuxO3 samples 

are consistent with the theoretical values. 

To inspect the surface elemental composition and oxidation state of principal elements of LFO-

15Cu as compared with LFO-0Cu, the typical XPS spectra of La 3d, Fe 2p, O 1s and Cu 2p are 

illustrated in Fig. 6. As can be seen, the spectrum in the La 3d region demonstrated a binding 

energy at 834.2 eV for La 3d5/2 and at 850.4 eV for La 3d3/2, implying that La had an oxidation 

state of +3 in LFO-15Cu and LFO-0Cu, which is in a good agreement with the literature [53, 

56]. The La 3d5/2 peak revealed the typical complex structure of core-level photoemission 

spectra of light rare earth materials. The similarity for the peaks in the spectrum of La 3d region 

also suggests that the Cu doping did not significantly affect the chemical environment of La 

[56]. The O 1s spectrum presented two major peaks, suggesting that there be at least two kinds 

of O chemical states corresponding to the binding energy from 526.0 to 534.0 eV [56]. The 

binding energy of O 1s situated at 529.0 eV was due to the lattice oxygen species (OL) in LFO-

0Cu and LFO-15Cu. Meanwhile, the other broad peak (OH) located at around 531.0 eV was 

mainly caused by a partial hydroxylation and/or carbonatation at the material surface [56, 61]. 

We note that there was a slight increase of intensity and broadening in the peak at 531.5 eV for 

the sample with Cu doping (LFO-15 Cu). It might be attributed to the enhanced hydroxylation 

and/or carbonatation onto the Cu-doped LFO material surface. The stable surface carbonates 

could block active sites and in turn suppressed photodegradation. On the other side, the higher 

surface hydroxylation was suggested increasing the number of active sites, thus favouring 

photodegradation [56]. The latter one is believed to play a dominating role herein when the 

reaction occurred in aqueous phase and seen from the following improved degradation results. 

Two strong peaks of Fe 2p3/2 and Fe 2p1/2 were located at 710.5 and 723.8 eV, respectively, 

which could be assigned to the +3 oxidation state of Fe in LFO-0Cu and LFO-15Cu [62]. There 
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was a slight shift of the Fe3+ peak in the LFO-15Cu spectrum, possibly caused by the change 

of Fe-O bond by introducing Cu in Fe-site [63]. In the Cu 2p spectrum of LFO-15Cu, the 

characteristic peaks of Cu 2p1/2 and Cu 2p3/2 located at 953.5 and 933.2 eV, respectively; and a 

satellite peak at 942.3 eV, which can be attributed to the +2 oxidation state of Cu [56, 64, 65]. 

The results of XPS spectra obviously indicate that the doping with Cu into LFO did not form 

other phases.  

3.2. Photo-Fenton Degradation of MO 

3.2.1. Copper doping on MO degradation  

The photocatalytic activity of LFO and LaFe1-xCuxO3 was evaluated by the degradation of MO 

in the presence of visible light and H2O2. Before starting light illumination, the adsorption of 

MO onto LFO and LaFe1-xCuxO3 was found negligible, which was less than 3%. As can be 

seen in Fig. 7, the LaFe1-xCuxO3 samples exhibited much better catalytic activity for MO 

degradation than the LFO sample. As the amount of Cu doping increased, the MO degradation 

efficiency increased; but it suffered a decrease when using LFO-20Cu. There appear to be an 

optimum amount of Cu doping to obtain the maximum rate of photodegradation of MO, with 

the photocatalytic efficiency following the order: LFO-0Cu < LFO-5Cu < LFO-20Cu < LFO-

10Cu < LFO-15Cu. The LFO-15Cu sample showed the highest catalytic activity with over 90% 

of MO removed after 60 min exposure to visible light, which is significantly greater than 33% 

of MO removed by LFO-0Cu. The pseudo-first-order model was used to better understand the 

reaction kinetic of MO degradation [40]. From the pseudo-first-order kinetic modelling (Fig. 

7b), the apparent rate constant k was 0.0064, 0.0144, 0.0243, 0.0414, and 0.0195 /min for LFO-

0Cu, LFO-5Cu, LFO-10Cu, LFO-15Cu and LFO-20Cu, respectively. The highest value of k 

was observed for LFO-15Cu, suggesting the fastest degradation rate and best photocatalytic 

activity.  
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Fig. 8 illustrates the time-dependent absorbance spectrum of LFO-15Cu in the MO photo-

Fenton degradation; the inset shows the corresponding colour change of solution. As irradiation 

time increased, the absorption maximum of MO at λ = 464 nm steadily decreased. There was 

little change in the absorption maximum for LFO-15Cu after 50 min visible light irradiation. 

The MO photodegradation performance of LFO-15Cu was promising when compared with 

literature [45, 46, 66], although note that the reaction conditions varied. For example, LFO-15 

Cu removed > 90% MO after 1 h visible light illumination under the conditions of temperature 

= 25 °C; initial dye concentration = 10 mg/L; catalyst dosage = 0.8 g/L; initial H2O2 

concentration = 0.3 g/L; initial pH = 6. Under the similar conditions (temperature = 30 °C; 

initial dye concentration = 10 mg/L; dosage = 0.75 g/L; initial H2O2 concentration = 0.5 mol/L; 

initial pH = 6), the H3PW12O40 supported Fe-bentonite (HPW-Fe-Bent) only degraded 78% 

MO after 1 h UV light irradiation [45].  

Note that when no catalyst was added, the degradation of MO was only ~2% and 7% in the 

absence and presence of H2O2 after 60 min visible light irradiation (Fig. 7a). This suggests that 

MO itself was hardly degraded by H2O2 or light. In the other words, significant decolorization 

was observed under visible light illumination when both LFO-15Cu and H2O2 were present, 

which implies LFO-15Cu as a heterogeneous visible-light-excited Fenton-like catalyst. Taken 

account of excellent photo-Fenton catalytic performance, LFO-15Cu was chosen for all the 

following experiment.  

3.2.2. Proposed mechanism for MO degradation  

ESR spectroscopy was used to confirm the roles of •OH radicals in our experiments, with 

DMPO chosen as the scavenger of hydroxyl radicals which were generated during the photo-

Fenton reaction. The same sample tube (size and type), DMPO concentration, and volume of 

DMPO adducts solution were used for all measurements; the intensity of EPR signals therefore 

depended only on the amount of •OH radicals. As can be seen from Fig. 9a, four characteristic 
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peaks of DMPO-OH adduct with the intensity of 1:2:2:1 were observed in LFO/H2O2/Light, 

LFO-15Cu/H2O2/Dark and LFO-15Cu/H2O2/Light, suggesting that hydroxyl radicals form in 

all three cases. The increase in signal intensity for LFO-15Cu/H2O2/Light as compared to that 

for LFO-15Cu/H2O2/Dark indicated that more •OH radicals were generated when the system 

was illuminated by visible light than that in the dark condition. These results supported the 

suggestion that visible light irradiation enhanced the formation of hydroxyl radicals and 

thereby accelerated the photo-Fenton degradation of MO (as shown in Fig. 9b). For 

LFO/H2O2/Light, the peak intensity of DMPO-OH adducts appeared weaker than for LFO-

15Cu/H2O2/Light when both were irradiated by visible light, indicating that LFO-15Cu 

enhanced the decomposition of H2O2 to generate a larger amount of •OH radicals during the 

decolorization of MO. It was consistent with the observation in Fig. 9b, that the doping with 

Cu on LFO enhanced photocatalytic activity.  

On the basis of above results and literature review, the MO degradation over LFO-15Cu likely 

occurred via two mechanisms as follows: 

(a) The first pathway is suggested as a heterogeneous Fenton-like catalytic mechanism [67]. In 

a typical Fenton-like reaction, the commonly accepted mechanism is:  

≡FeIII + H2O2 →  ≡FeII + HO2
•+ H+ (7) 

≡FeIII + HO2
•+ H+ → ≡FeII + O2 + 2H+  (8) 

≡FeII + H2O2 → ≡FeIII + •OH + OH-  (9) 

Similarly to Fe, Cu also activated H2O2 via the reactions as follows [33, 68]: 

≡CuII + H2O2 → ≡CuI + H+ + HO2
• (10) 

≡CuII + HO2
•+ H+ → ≡CuI + O2 + 2H+  (11) 
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≡CuI + H2O2 → ≡CuII + •OH + OH- (12) 

Photo-Fenton process is similar to the Fenton reaction, but also introduces light irradiation to 

improve the degradation. Under light illumination, the reduction of Fe(III) and Cu(II) can be 

accelerated, yielding additional reactive •OH (Eq. (13, 14)), which can attack target organic 

[69].  

≡FeIII + OH-→  ≡FeIII(OH) + ℎ𝑣 → ≡FeII + •OH (13) 

≡CuII + OH-→  ≡CuII(OH) + ℎ𝑣 → ≡CuI + •OH (14) 

The partial substitution of Cu(II) into Fe(III)-site in LFO-15Cu not only promoted the 

production of hydroxyl radicals but also led to the generation of more Fe(II) onto surface of 

the LFO-15Cu catalyst shown in Eq. (15) [68]: 

≡FeIII + ≡CuI → ≡FeII + ≡CuII (15) 

(b) The second pathway follows photocatalytic mechanism, in which LFO-15Cu absorbed the 

visible light and then underwent charge separation (Eq. (16)). Then the electrons were trapped 

by the H2O2 to generate •OH (Eq. (17)) 

LFO-15Cu + ℎ𝑣  → 𝑒𝑐𝑏
−  + ℎ𝑣𝑏

+  (16) 

H2O2 + 𝑒𝑐𝑏
−  → •OH + OH- (17) 

The electron-hole recombination (Eq. (18)) needs to be minimized for producing •OH.  

𝑒𝑐𝑏
−  + ℎ𝑣𝑏

+  → 𝑒𝑛𝑒𝑟𝑔𝑦  (18) 

Finally, the generated •OH directly oxidized MO, as represented in Eq. (19): 
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•OH + MO → Degradation products (19) 

As shown in Fig. 7, the highest value of k was observed for LFO-15Cu among a number of 

undoped and Cu-doped samples, suggesting the fastest degradation rate and best photocatalytic 

activity. This can be explained by its high specific surface area and low band gap energy, 

accompanied with good crystallinity and small particle size. These features benefit suppression 

of election-hole recombination and generation of •OH radicals. Especially, a greater amount of 

•OH radicals would form via the interaction of oxygen vacancies, which was caused by the 

substitution of Fe(III) by Cu(II), and water molecules adsorbed on the catalyst surface [56]. 

Furthermore, Cu and oxygen vacancies might act as electron traps reducing recombination of 

electron and hole; and in turn enhancing photodegradation.  

3.3 Effects of Parameters on MO Degradation   

3.3.1 Effect of catalyst dose on MO degradation 

In Fig. 10, the photocatalytic efficiency of LFO-15Cu increased with increasing catalyst dosage 

up to 0.8 g/L and above that the degradation efficiency decreased. The observed apparent rate 

constant k for MO degradation at the catalyst dosage of 0.5, 0.8, 1.0, and 1.2 g/L was 0.0168, 

0.0468, 0.04214, and 0.0217 /min, respectively. A possible explanation is that initially, the 

higher dosage of LFO-15Cu created more active sites and thus enhanced MO degradation. 

However, as the dosage increased further, an excessive amount of catalyst suppressed light 

penetration into the suspension, decreasing the photo-activation effect and in turn lowering the 

degradation rate.  

3.2.3 Effect of initial pH on MO degradation 

It is well-known that the initial pH value has a great influence on the photo-Fenton reaction 

because pH controls the generation of hydroxyl radicals. The effect of initial pH on MO 

degradation is illustrated in Fig. 11. The percentage of MO removal via the photo-Fenton 
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degradation decreased with increasing pH; this is consistent with the recent report [70]. A 

maximum degradation rate of 92.9% was achieved when using LFO-15Cu at pH = 6; whilst 

the degradation rate dropped to 85.9% at pH = 7 and 70.4% at pH = 8. The pseudo-first-order 

reaction rate constant k was found to be the highest (0.0468 /min) at pH = 6; as compared with 

0.0313, 0.0338, 0.0346, and 0.0212 /min when at pH = 4, 5, 7, and 8, respectively. This could 

be explained by the form of MO existence which depends on the solution pH. In acidic solution, 

MO is in quinoid structure which is easier to be decomposed in comparison with that in azo 

structure formed at alkaline solution [71]. The increase of solution pH is also detrimental to the 

Fenton-like degradation process due to the decomposition of hydrogen peroxide into water and 

oxygen [72]. We found that the degradation rates of MO at pH 4 and 5 were both smaller than 

that at pH 6. This may be due to the fact that the catalyst’s active sites are unstable in a more 

acidic media and copper just exhibits a dominant role in the Fenton reaction at pH > 4 [73]. On 

the other side, at the low pH, more H+ ions were generated that could react with hydroxyl 

radicals •OH, leading to the decrease of degradation efficiency [73].  

3.3.2 Effect of H2O2 concentration on MO degradation 

The effect of H2O2 dosage on the degradation of MO was examined by varying the initial 

concentration from 0.1 to 0.5 g/L, with the results shown in Fig. 12. As the H2O2 concentration 

was increased from 0.1 to 0.3 g/L, the MO degradation rate also increased correspondingly 

from 78.8% to 92.9% with k increasing from 0.0260 to 0.0468 /min, because of increasing 

hydroxyl radicals in the solution. However, a decrease of MO degradation rate was observed 

when further increasing the concentration of H2O2 to 0.5 g/L. The pseudo-first-order reaction 

apparent rate constant k was found to attain an optimum value of 0.0468 /min in 0.3 g/L H2O2, 

and then decreased to 0.0412 /min when the H2O2 concentration rose up to 0.5 g/L. This is 

probably due to the fact that at a high H2O2 concentration, •OH radicals can react with H2O2 to 

generate less reactive species such as hydroperoxyl radicals HO2
• [46], following the reaction: 
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•OH + H2O2 → HO2
• + H2O    

This reaction would compete with the dye degradation reaction, reduce the probability of MO 

attacked by •OH radicals and subsequently lower dye removal rate.  

3.3.3 Effect of co-existing ion on MO degradation 

The effect of co-existing ion on the photo-Fenton degradation of MO is presented in Fig. 13. 

As is well known, inorganic ion such as chloride (Cl-) is commonly present in the wastewater 

originated from dyestuff and textile industries; thus, its effect on photodegradation of MO 

cannot be neglected. Taking account of the negligible effect of Na+ [74], our results revealed 

that Cl- appeared to inhibit the MO removal by using LFO-15Cu. In the presence of 0.01 M Cl-

, only 62.8% MO (k = 0.0170 /min) was removed, which was much lower than that (92.9%; k 

= 0.0468 /min) when no Cl- was added in the dye-containing solution. Cl- might act as the 

scavenger of •OH and h+ [75], thus reducing the formation of hydroxyl radicals and lowering 

photodegradation efficiency. The presence of Cl- in the solution exhibited a negative impact on 

the photodegradation of MO.       

3.5 Stability and Reusability of Cu-doped LFO 

The stability and reusability of LFO-15Cu was examined by reclaiming the catalyst after an 

initial MO degradation experiment, then using it as the catalyst with a fresh batch of MO, and 

repeating this for several times. The results are illustrated in Fig. 14.  

LFO-15Cu demonstrated only a slight drop in removal efficiency of MO from 92.9% (1st run) 

to 88.5% (4th run), suggesting that it have good stability over repetitive photo-Fenton catalytic 

degradation of MO under visible light illumination. It was further supported by the XRD and 

ICP-MS analysis. After finishing 4 cycles of photo-Fenton catalytic degradation of MO, the 

structure of LFO-15Cu was almost unchanged based on the XRD patterns (Fig. 15). The ICP-
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MS analysis showed only 1.558 mg/L La and 0.482 mg/L Cu in the solution after degradation 

test with little Fe observed, which suggests that metal leaching from the catalyst be negligible. 

Thus, LFO-15Cu was proven to be stable and reusable for MO degradation.  

3.4 Evaluation of Cu-doped LFO on Degradation of Other Dyes 

As can be seen above, excellent photo-Fenton catalytic degradation of MO was observed under 

the optimum conditions: 0.3 g/L H2O2 dosage and 0. 8 g/L catalyst loading at the initial solution 

pH 6. Under the same conditions, the photocatalytic performance of LFO-15Cu was also 

evaluated for the cationic dyes, RhB and MB.  

Seen from Fig. 16, negligible removal of dye was induced by adsorption (3% for MO; 4.5% 

for MB; and 2% for RhB). Of these three dyes, MB showed the highest self-degradation and 

the oxidation by H2O2 under visible light, with the decolourization rate of 26% and 65%, 

respectively (Fig. 16). On the other side, a limited amount of RhB and MO (˂ 6%) was removed 

in the processes which were initiated solely by using visible light or H2O2. Our results showed 

that LFO-15Cu exhibited superior catalytic activity for the photodegradation of these dyes, 

with a removal rate of 99.4% for RhB, 98.8% for MB and 92.9% for MO (Fig. 16). The slightly 

lower photodegradation efficiency of MO might be attributed to its high chemical stability and 

low photosensitized property [76]. Similar observation was also reported in other studies [77, 

78].    

5. Conclusions 

Cu-doped LaFeO3 (LaFe1-xCuxO3) samples were prepared by a hydrothermal method and used 

as heterogeneous visible-light-driven Fenton-like catalysts for the degradation of methyl 

orange (MO). The results showed that LFO-15Cu with a theoretical 15 mol% Cu doping was 

more effective than the sample of LaFeO3 (LFO) in terms of MO decolourisation. Under visible 

light irradiation, the use of 0.8 g/L LFO-15Cu induced 92.9% of MO removal in 60 min at the 
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initial H2O2 concentration of 0.3 g/L and initial pH of 6. The partial substitution of Cu into 

LFO improved MO degradation rate by approximately 60%; which could be ascribed to the 

formation of more •OH radicals during the decolorization of MO. The encouraging data also 

indicated the high stability and reusability of LFO-15Cu; therefore, it shows great potential as 

a promising catalyst for organic pollutant removal in the field of wastewater treatment. 
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Figures: 

  

Fig. 1. XRD patterns of LFO and LaFe1-xCuxO3.  
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Fig. 2. N2 adsorption-desorption isotherms of LFO and LaFe1-xCuxO3. 
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Fig. 3. (a) UV-vis absorption spectra and (b) corresponding bandgaps of LFO and LaFe1-

xCuxO3 . 
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Fig. 4. SEM images of LFO and LaFe1-xCuxO3. 
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Fig. 5. TEM images of LFO-0Cu and LFO-15Cu. 
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Fig. 6. XPS spectra of La 3d, Fe 2p, O 1s for LFO-0Cu and LFO-15Cu; and Cu 2p for LFO-

15Cu. 
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 Fig. 7. (a) Photodegradation of MO as a function of illumination time by using LFO and LaFe1-

xCuxO3 (reaction conditions: temperature = 25 °C; initial dye concentration = 10 mg/L; catalyst 

dosage = 1.0 g/L; initial H2O2 concentration = 0.3 g/L; initial pH = 6; NaCl = 0 M); and (b) 

plots of -ln (C/C0) versus irradiation time. 
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Fig. 8. Temporal UV-vis spectral change of MO aqueous solution versus irradiation time in the 

photo-Fenton reaction (the inset: colour change of MO solution versus irradiation time) 

(reaction conditions: temperature = 25 °C; initial dye concentration = 10 mg/L; catalyst dosage 

= 0.8 g/L; initial H2O2 concentration = 0.3 g/L; initial pH = 6; NaCl = 0 M). 
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Fig. 9. (a) EPR spectra of DMPO-.OH adducts and (b) degradation of MO in the systems of 

LFO-15Cu/H2O2/Dark, LFO-15Cu/H2O2/Light and LFO/H2O2/Light. 
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Fig. 10.  (a) Effect of catalyst dosage on photodegradation of MO (reaction conditions: 

temperature = 25 °C; initial dye concentration = 10 mg/L; initial H2O2 concentration = 0.3 g/L; 

initial pH = 6; NaCl = 0 M) and (b) plots of -ln (C/C0) versus irradiation time. 
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Fig. 11.  (a) Effect of initial pH on photodegradation of MO (reaction conditions: temperature 

= 25 °C; initial dye concentration = 10 mg/L; catalyst dosage = 0.8 g/L; initial H2O2 

concentration = 0.3 g/L; NaCl = 0 M) and (b) plots of -ln (C/C0) versus irradiation time. 
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Fig. 12.  (a) Effect of initial concentration of H2O2 on photodegradation of MO (reaction 

conditions: temperature = 25 °C; initial dye concentration = 10 mg/L; catalyst dosage = 0.8 

g/L; initial pH = 6; NaCl = 0 M); and (b) plots of -ln (C/C0) versus irradiation time. 
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Fig. 13. (a) Effect of NaCl on photodegradation of MO (reaction conditions: temperature = 25 

°C; initial dye concentration = 10 mg/L; catalyst dosage = 0.8 g/L; initial H2O2 concentration 

= 0.3 g/L; initial pH = 6) and (b) plots of -ln (C/C0) versus irradiation time. 
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Fig. 14. Stability of LFO-15Cu over photo-Fenton catalytic degradation of MO in four cycling 

runs (reaction conditions: temperature = 25 °C; initial dye concentration = 10 mg/L; initial 

H2O2 concentration = 0.3 g/L; catalyst dosage = 0.8 g/L; initial pH = 6; NaCl = 0 M). 
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Fig. 15. XRD patterns of fresh LFO-15Cu before photo-Fenton catalytic degradation of MO 

and spent LFO-15Cu after 4 cycles of photo-Fenton catalytic degradation of MO. 
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Fig. 16.  Removal of MB, RhB and MO using LFO-15Cu via adsorption, photolysis, oxidation 

by H2O2 and photodegradation (reaction conditions: temperature = 25 °C, initial dyes 

concentration = 10 mg/L; catalyst dosage = 0.8 g/L, initial H2O2 concentration = 0.3 g/L; initial 

pH = 6; NaCl = 0 M). 
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Tables:  

Table 1. Crystallite size, cell volume and lattice parameters of LFO and LaFe1-xCuxO3. 

 

Sample 
Lattice constant (Å) 

Cell volume (Å3) Crystallite size (nm) 
a b c 

LFO-0Cu 5.5566 7.8446 5.5555 242.160 28.0 

LFO-5Cu 5.5539 7.8409 5.5475 241.580 27.3 

LFO-10Cu 5.5512 7.8372 5.5412 241.074 26.4 

LFO-15Cu 5.5461 7.8185 5.5463 240.499 25.7 

LFO-20Cu 5.5418 7.7850 5.5189 238.101 21.4 
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Table 2. Structural property and chemical composition of LFO and LaFe1-xCuxO3. 

Sample 

Structural property 
 

Molar ratio 

SBET 

(m2/g) 

Pore volume 

(cm3/g) 

Pore size 

(nm) 

 Actual 

Cu/Fe 

Theoretical 

Cu/Fe 

LFO-0Cu 17.63 0.099 45.66  - - 

LFO-5Cu 19.01 0.068 32.90  0.05/0.95 0.05/0.95 

LFO-10Cu 21.37 0.11 35.52  0.11/0.89 0.10/0.90 

LFO-15Cu 25.33 0.12 39.29  0.14/0.86 0.15/0.85 

LFO-20Cu 24.57 0.14 37.95  0.18/0.82 0.20/0.80 
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Table 3. Concentration of metal ions leaching from LFO-15Cu. 

Ion species Concentration (mg/L) 

La 1.558 

Fe 12.8 × 10-3 

Cu 0.482 

 

 

ACCEPTED M
ANUSCRIP

T


