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Abstract

We develop and test a new theory for pressure dependent outflow from the eye. The theory

comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential

decay constant and (iii) a no-flow intraocular pressure, from which the total pressure depen-

dent outflow, average outflow facilities and local outflow facilities for the whole eye may be

evaluated. We use a new notation to specify precisely the meaning of model parameters

and so model outputs. Drawing on a range of published data, we apply the theory to animal

eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model

parameters. It is shown that the theory can fit high quality experimental data remarkably well.

The new theory predicts that outflow facilities and total pressure dependent outflow for the

whole eye are more than twice as large as estimates based on the Goldman equation and

fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can

be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithe-

lium, while any residual discrepancy may be due to pathological processes in aged eyes. The

model predicts that if the hydraulic conductivity is too small, or the exponential decay con-

stant is too large, then intraocular eye pressure may become unstable when subjected to

normal circadian changes in aqueous production. The model also predicts relationships

between variables that may be helpful when planning future experiments, and the model gen-

erates many novel testable hypotheses. With additional research, the analysis described

here may find application in the differential diagnosis, prognosis and monitoring of glaucoma.

Introduction

Glaucoma is the most significant cause of irreversible blindness world-wide, with some 70 mil-

lion people affected [1]. While glaucoma is a group of diseases, there is a crucially important

association between the initiation and progression of glaucoma, and raised intraocular pres-

sure (IOP). It is hypothesized that raised IOP (or more specifically, elevation of the pressure

gradient across the optic nerve head [2, 3]) can directly lead to optic nerve neuropathy. One

postulated mechanism driving optic nerve neuropathy is the disruption of axonal transport at

the optic nerve head, which leads to retinal ganglion cell degeneration and loss of vision [4, 5].

The only proven treatment of glaucoma is reduction of IOP [1, 6].
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Given the importance of IOP from diagnostic, monitoring and prognostic viewpoints, try-

ing to measure and understand the causes of elevated intraocular pressure has attracted con-

siderable attention. It is known that IOP is determined by the interplay between net fluid

production and pressure dependent outflow from the eye. Outflow occurs through the trabec-

ular meshwork (the so-called ‘conventional pathway’) and the through the uveoscleral route

(the so-called ‘unconventional pathway’) [7]. But it is also well-documented that pressure

dependent and pressure independent outflow also occurs across the retinal pigmented epithe-

lium into the choroid [8–18]. Probably because it is difficult to measure clinically [19], this lat-

ter pathway is often neglected in discussions of eye fluid turnover [6, 20, 21]. Further pressure

driven outflow may also occur at the ciliary body itself [22–26], which is the usual source of

fluid production in the eye [27, 28].

Impairment of outflow facility of the eye is believed to be the primary determinant of raised

IOP [29]. Consequently there is considerable clinical interest in measuring the outflow facility,

both to identify a primary risk for glaucoma and to monitor the IOP response to treatment

(e.g. drug therapies). Friedenwald (1937) realized that accurate clinical estimation of local out-

flow facility using tonography depended on an accurate estimation of the ocular rigidity. This

led him to test the ocular rigidity of eyes ex vivo, and to develop nomograms to interpret paired

Schiotz tonometric measurements [30–33]. Indeed, ocular rigidity can be directly measured in

a clinical setting using differential tonometry, which may involve use of Schiotz tonometry

and pneumatonometer or Goldman tonometry [19, 31–35]. Alternatively more elaborate

means may be employed, such as measuring intraocular pressure pulsation in response to pul-

satile blood flow [36] or using Pascal dynamic contour tonometry to measure ocular pressure

pulsations, while measuring changes in choroidal thickness using optical coherence tomogra-

phy to estimate blood pulsation volume within the eye [37, 38].

Initially outflow facility of the eye was thought to be constant [39–41], though it was recog-

nised that outflow facility decreased in some disease states [40]. However, beginning with Bru-

baker (1975) and Moses (1977), it became increasingly apparent that outflow facility is

pressure dependent [42–44]. More recently high quality evidence has emerged indicating out-

flow facility is indeed a function of intraocular pressure for normal eyes. This is clearly evi-

denced in both animal eyes [45, 46] and in vivo human eyes [47, 48]. This pressure

dependence of outflow facility sets new challenges in interpreting outflow facility measure-

ments, and for identifying exactly what changes occur in disease states such as glaucoma.

In this paper we develop a new theoretical model for the analysis of pressure dependent out-

flow from the eye. To unambiguously develop this theory requires much greater precision in

the way outflow facility (C) has been defined than heretofore [49]. Indeed when outflow facility

is pressure dependent, there is any number of outflow facilities that can be measured for an

eye. For this reason, we need to introduce a new notation that removes any possible uncer-

tainty or ambiguity about precisely which outflow facility is being considered. Here we define

and so distinguish two quantities:

1. a local (or point) estimate of outflow facility, as the mathematical derivative of the total

pressure dependent outflow with respect to IOP (denoted Cp1 at IOP p1). For example C15

(where C15 means the derivative of the total pressure dependent outflow with respect to

IOP evaluated at an IOP of 15 mm Hg);

2. an average of local outflow facility over a pressure range (denoted �Cp2
p1

over a pressure range

p1 to p2). For example �C20
15 (where the overbar denotes average, and �C20

15 means the average

of the local outflow facilities over the IOPs ranging from 15 mm Hg to 20 mm Hg).
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We find the clinically measured outflow facility corresponds to the second definition, and

represents an average of local outflow facilities across a pressure range. We develop the theory

and governing equations using the new nomenclature, and then employing various published

experimental data, solve the model equations to make estimates of the three key parameters

governing outflow facility in the new theoretical model, namely: (i) the hydraulic outflow con-

ductance for the whole eye, CSLT (microliters/min/mm Hg), describing membrane outflow

properties (ii) an exponential decay constant α (mm Hg)-1 for the whole eye, which describes

the rate of decrease of local outflow and outflow facility with increasing IOP, and (iii), the IOP

denoted pT (mm Hg), at which there is no pressure dependent flow to or from the eye. Follow-

ing parameter estimation, we can obtain an average outflow facility for the eye up to the IOP

of interest, from which the total pressure dependent outflow from the whole eye may be

calculated.

When developing the theory, we make use of physiological fundamentals describing fluid

flow across biological membranes to motivate the analysis. We carefully develop the theory

that enables us to interpret the various outflow facilities from pressure-volume and pressure-

time data obtained from intracameral manometric measurements on the eye. During the theo-

retical development, we arrive at the position where we need to estimate the difference in the

rates of change of IOP and ‘membrane reference pressure’ with respect to changing IOP.

Though other functions may be employed, we choose to approximate this relationship as an

exponentially decaying function of intraocular pressure, and then follow through the conse-

quences of this assumption, calculating both local and average outflow facilities for the eye.

Having developed the theory and governing equations, we solve the equations to make esti-

mates of the three key model parameters governing pressure dependent outflow. To do this we

employ published experimental data on manometric measurements for normal aged in vivo
human eyes, and published experimental data on manometric measurements for enucleated

human eyes. During this calibration, we also refer to and make some use of animal data. Taken

together, this experimental data allows us to estimate the total pressure dependent outflow and

outflow facility for the normal, aged human eye in vivo. Based on experimental measurements,

we estimate a total pressure dependent outflow for normal, aged in vivo human eyes to be

more than twice as large as usual estimates of aqueous production. The theory also reveals that

as the hydraulic conductance constant decreases and exponential decay constant increases,

intraocular pressure may become unstable with normal circadian variations in net fluid pro-

duction. Finally the theory suggests many new hypotheses that can be tested with additional

experimental data. We begin our analysis by developing our theory of pressure dependent

outflow.

Method

Development of a theory for pressure dependent outflow

It is well known that fluid flow is driven by spatial differences in the chemical potential of the

fluid (for water the chemical potential may be denoted μw), and fluid flow across any mem-

brane is not an exception. In general a biological ‘membrane’ may refer to a cell membrane, or

a cell layer, or extracellular matrix, or some combination thereof. An exemplar case in point

motivating our analysis is the net flow of water across a semipermeable membrane separating

two ideal solutions, which is described by the Starling force equation [50], viz,

_V ¼ Lpðm
w � mw

ref Þ ¼ Lp½ðp � sRTcÞ � ðpref � sRTc ref Þ� ð1Þ

where _V is the rate of water volume flux per unit area across the membrane, R the gas constant,
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T the absolute temperature in degrees Kelvin. mwref , pref and cref are the reference chemical

potential, membrane reference fluid pressure and molar reference concentration of osmoti-

cally active particles (which may include proteins and salt depending on the composition of

the solution and the pore size of the membrane) on the reference side of the membrane. μw, p
and π are similar quantities on the other side of the membrane. Lp is the hydraulic filtration

coefficient per unit (apparent) cross-sectional area normal to the flow and σ is the reflection

coefficient that varies between 0 and 1, becoming 1 for ideal membranes. In the following we

assume the membrane is ideal, but the theory is easily modified to account for non-ideal

conditions.

The hydraulic filtration coefficient Lp is a function that depends on the geometry of the

membrane and the viscosity of the fluid. Consequently it is in general a function of other vari-

ables, including time. For example, the filtration coefficient may change due to changes in

material properties of the membrane (e.g. the aquaporin density of a cell membrane may

increase over time, which increases the flow capacity of a cell membrane). Because cells have

multiple sensors, gene expression may change with mechanical strain, hydrostatic pressure

and osmotic pressure [6, 51], and this may change membrane hydraulic conductance. Natu-

rally we can include these relationships in Lp if they are known, but in the following we assume

Lp is constant. This is probably a reasonable approximation for short-term tests that do not

involve excessive changes in intraocular pressure [51].

An example of flow across a membrane due to Starling forces occurs at the ciliary body. Ion

pumping at the ciliary body results in a relative ion excess in the aqueous humor (i.e. it is a

hypertonic solution), which generates an osmotic suction at the aqueous humor. This suction

drives water movement from the ciliary body to the aqueous humor [24, 27]. We note that the

difference in osmolality across a cell layer (e.g. across the non-pigmented epithelium in the cil-

iary body) does not need to be very large to generate a significant osmotic suction. For example

if the osmolarity difference across the semipermeable membrane Δc = 1 mM, then at 37

degrees Celsius, RT Δc = Δπ is about 20 mm Hg. So comparatively small differences in concen-

trations of osmotically active particles across a membrane causes comparatively large changes

in equilibrium osmotic pressure.

To illustrate this point, at the choroid plexus in the ventricles of the brain, a difference of 5

mOsm creates an osmotic suction of about 100 mm Hg in the cerebrospinal fluid, drawing

water across the choroid plexus epithelium [52]. While the magnitude of the osmotic suction

for aqueous humor appears to have not been quantified precisely, it is known aqueous humor

is not a simple blood filtrate, as chloride ions are concentrated in the aqueous humor relative

to blood plasma (by about 20%), as are some other molecules (e.g. lactate is concentrated 2.4

fold, ascorbic acid is concentrated 50 to 70 fold) (see Table 1 [27]).

Though equilibrium is never reached in vivo, at thermodynamic equilibrium the mechani-

cal fluid pressure p becomes equal to the osmotic pressure (π), so it is usual to replace RTc by

π. For transient ‘pressure dependent’ flow in or out of the eye we can write:

_V ¼ Lp½ðp � pÞ � ðpref � pref Þ� ð2Þ

As biological membranes contain ion pumps, which play a key role in determining the

osmotic pressure difference (Δπ = π − πref) across the semipermeable membrane, we may pre-

fer to write the previous equation as,

_V ¼ Lp½Dp � DpÞ� ð3Þ

where Δp = p − pref. Both intraocular mechanical and osmotic pressures are maintained by

Na+-K+-ATPase (and other) ion pumps—water simply follows the ion gradient established by
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the ion pumps [27] at a rate determined by the basal membrane permeability and aquaporin

density [53]. Ion pumps maintain net fluid flow into the eye from the non-pigmented epithe-

lium at the ciliary body, while at the retinal pigmented epithelium ion pumps maintain a con-

stant outflow from the vitreous to the choroid. Fluid flow across the ciliary body continues

because fluid drains or is transported away from the anterior, posterior and vitreous chambers

of the eye, so that thermodynamic equilibrium for the system is never established.

It is reported that the ion pumps are dependent for their activity on adequate blood flow [28],

as presumably their pumping activity can be limited by their oxygen supply. Importantly, it has

been shown that physiological intraocular pressures have no effect on ion pump activity, as it

requires several MPa of hydrostatic pressure to inhibit Na+-K+-ATPase ion pumps via hydro-

static pressure [54, 55]. Given there is adequate blood supply to the eye, and given the operation

of ion pumping is independent of physiological achievable pressures within the eye, it is conve-

nient to write Starling force equation for total hydraulic outflow _Vi across the ith tissue or ana-

tomic structure of the eye (which includes the retinal pigmented epithelium, the non-pigmented

epithelium of the ciliary body and the conventional and unconventional outflow pathways) as:

_Vi ¼
R
LpidSi½Dpi � Dpi� ¼ C

SL
i ðp � pref � iÞ þ PFi ð4Þ

where CSL
i ¼

R
LpidSi is the hydraulic conductance of the ith tissue or anatomical structure

through which fluid may exit the eye, p is the intraocular pressure, pref−i is the ‘membrane refer-

ence pressure’ for the ith tissue or anatomical structure, PFi is the outflow at ith tissue or anatom-

ical structure due to ion pumping alone. The total pressure dependent outflow ( _Vout) for the eye

is simply the sum of the outflows across the individual tissues and anatomical structures.

We note it is possible that the effective hydraulic conductance area (Si) and the hydraulic fil-

tration coefficient may change as a function intraocular pressure (e.g. membrane tension may

stretch the membrane and increase the effective conductance area or intraocular pressure may

alter the size of membrane flow pathways). While we assume here that the membrane area and

filtration coefficient are constant, if their variation with pressure is known, this pressure effect

can be incorporated in CSLi at this point. Of course the consequences of doing this need to be

carefully followed when making model predictions and estimating model parameters.

It is usual to assume that the intraocular pressure is uniform throughout the eye, so we do

not need to identify individual intraocular pressures for each tissue or for each anatomical

structure. We note that for the case of pressure dependent outflow through the conventional

route, we can set pump flow to zero (PFcon = 0), and then rearrangement of Eq (4) recovers the

Goldman equation [19, 33, 49].

Here we wish to further develop the theory of pressure dependent outflow facility. This pur-

pose is best served by now defining the local pressure dependent outflow at a specified intraoc-

ular pressure using a differential equation. To be specific, we first define the ‘local pressure

dependent outflow facility’ of the eye at IOP p, denoted here by Cp, as the limit as Δp!0 of a

ratio of two finite differences, the numerator being the difference in two outflow flow rates at

two IOPs, and the denominator being the difference of the two IOPs) [39, 45, 49], which is by

definition the derivative of total pressure dependent outflow with respect to IOP. In other

words, the local pressure dependent outflow is the tangent to the total outflow curve versus

IOP at pressure p of interest. Differentiating Eq (4) with respect to p and then summing across

all n tissues or anatomic structures of the eye leads to,

Cp ¼
d _VoutðpÞ
dp

¼
Xn

i¼1

d _Vout� i

dp
¼
Xn

i¼1

CSLi
dðp � pref � iÞ

dp
¼
Xn

i¼1

SiLpi
dðp � pref � iÞ

dp
ð5Þ

Estimating outflow facility for human eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0188769 December 20, 2017 5 / 53

https://doi.org/10.1371/journal.pone.0188769


where Si is the total surface area of the ith membrane normal to the ith outflow, and _Vout is the

total pressure dependent outflow from the whole eye. This means the ‘local pressure depen-

dent outflow facility’ is simply the derivative of the pressure dependent outflow curve with

respect to IOP. We immediately see that if all pref−i are constants (i.e. the pref−i do not change

with p) this reduces to:

Cp ¼ CSL
T ¼

Xn

i¼1

CSLi ð6Þ

We could drop the superscript ‘p’ in this case and denote this as simply C (with units micro-

liters/min/mm Hg), because the local outflow facility is independent of intraocular pressure.

More generally though, the various reference pressure pref−i are not constant, but are them-

selves a function of intraocular pressure. We then see that even when CSLi remains constant as

intraocular pressure changes, a changing pref−i implies that a local of pressure dependent out-

flow facility at pressure p for the ith anatomical or tissue structure, Cpi , may also change,

because (p − pref−i) may change with IOP. That is, if we differentiate Eq (4) with respect to

intraocular pressure, we find

Cp
i ¼ CSLi

dðp � pref � iÞ
dp

ð7Þ

where Cp
i is the local pressure dependent outflow for the ith tissue or anatomic structure. This

more complicated expression for Cp
i occurs because of the way local outflow facility at pressure

p is defined as the product of CSLi and d(p − pref−i)/dp, while d(p − pref−i)/dp is not a constant

even when CSLi is constant. The critical point here is the local outflow facility (which is generally

not measured) is defined in terms of the change in pressure dependent outflow for a unit change

in intraocular pressure, while the biophysics of the outflow actually involves three quantities:

the membrane properties (parameter CSL
i ), the intraocular pressure (p) and the membrane refer-

ence pressure (pref−i). What then might we expect to observe if pref−i varies with the intraocular

pressure? We now explore the consequences of this, but as described in the Discussion, it is

appears likely that multiple tissue processes and their non-linear interactions are responsible for

membrane reference pressures increasing with increasing intraocular pressure.

To progress our theory, we now quantitate the difference in the rates of change of intraocu-

lar pressure and membrane reference pressure with respect to a change in intraocular pressure

(i.e. quantitate d(p − pref)/dp). This could be done using a variety of approximating functions,

some of which may be more or less suitable for particular experimental data, but a reasonable

and very mathematically convenient expression involving only one parameter is an exponen-

tial decay function that depends on intraocular pressure, viz,

d½ðp � pref � iÞ�
dp

� e� aip ¼ Mp
i ð8Þ

where αi is (normally) a positive coefficient representing the decay rate for the difference in

rates of change of intraocular pressure and membrane reference pressure with increasing IOP.

We use the approximation symbol (�) to indicate that the exponential function is an approxi-

mation to the actual decay function for an eye tissue or anatomical structure, which may be

experimentally estimated within the limits of measurement uncertainty. We mention here that

if there is an (additive) constant ‘background fluid pressure’ (say pB) throughout the whole eye

system, then this is easily accommodated by introducing another parameter into Eq (8) (viz,

e� aiðp� pBÞ), but this model is not pursued here.
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We now observe from Eq (8) that when αi is zero or p!0, thenMp
i is one, meaning that at

zero IOP there is no change in the membrane reference pressure for a vanishingly small

increase in IOP. And if αi> 0 and p!1 thenMp
i ! 0.Mp

i ! 0 means that the rates of change

of IOP and reference pressure with respect to IOP approach equality. Or in other words,

Mp
i ! 0 physically means a unit increase in IOP is matched by a unit increase in membrane

reference pressure, so at this point the driving pressure difference across the membrane

becomes fixed. To say this in another way, whenMp
i ! 0 the ‘pressure dependent outflow’

becomes effectively ‘pressure independent outflow’.

We now define pTi to be the ‘intraocular reference pressure’ (not to be confused with pref−i,
which is the ‘membrane reference pressure’) at which there is no pressure dependent flow

across the ith membrane or structure. If in addition to no flow at pTi, there is no fluid flow at

IOPs less than pTi, then pTi can be viewed as a ‘threshold IOP’ for fluid flow. We can now inte-

grate Eq (8) from pTi up to intraocular pressure p to find exactly what the driving pressure is at

each intraocular pressure for each anatomical structure, viz,

ðp � pref � iÞ �
Zp

pTi

Mp
i dp¼

Zp

pTi

e� apdp¼
1

ai
ðe� aipTi � e� aipÞ ð9Þ

We can simply rearrange Eq (9) to calculate the ith membrane reference pressure for any

intraocular pressure, viz,

pref � i � p �
1

ai
ðe� aipTi � e� aipÞ ð10Þ

We also note in passing that differentiating Eq (10) reveals that the rate of change of mem-

brane reference pressure with respect to intraocular pressure is simply dpref � i=dp ¼ 1 � Mp
i .

We also mention here that if CSL
i is itself behaving as an exponential decay function of pres-

sure in a similar way toMp
i for any reason, we can define a second decay coefficient α2i, and it

too can be incorporated intoMp
i . This revised Mp

i could simply involve the sum of two decay

coefficients (αi + α2i), with one decay constant representing the difference in rates of pressure

change, while the other decay constant reflects changes in membrane properties with pressure

(CSLi ). While it is most likely that α2i would have a positive value, it is possible for α2i to be nega-

tive. For example a negative α2i exponent may occur if over a range of pressures, the effective

surface area available for fluid transport increased exponentially with IOP. However we note

that if α2i is defined and used in this theoretical framework, then experimentally measured

driving pressures may or may not match theoretically predicted driving pressures. While any

discrepancy may provide useful information in and of itself about the eye system behaviour

(which may provide one interesting avenue for future research), as mentioned previously, here

we develop and apply the theory assuming all CSL
i are constants.

We are now in a position to further develop the analysis by substituting Eq (8) in Eq (7) and

summing across all n tissues and anatomical structures. We define a local pressure dependent

outflow facility for the whole eye at pressure p to be Cp, then

Cp �
Xn

i¼1

CSLi M
p
i ð11Þ

We now wish to approximate and simplify this Eq (11) as a product of two sums (rather

than a sum of products). To do this we use our previously defined hydraulic conductance for

the whole eye, CSL
T (see Eq (6)) for definition) as one of the two sums, but we also need to
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introduce a new approximation function Mp
T such that,

Cp � CSL
T M

p
T ð12Þ

whereMp
T is given by,

Mp
T ¼

Xn

i¼1

CSL
i M

p
i

Xn

1¼1

CSLi

ð13Þ

Clearly the function Mp
T is an average of the individual component exponential decay func-

tions for each tissue or anatomical structure, weighted by the individual hydraulic conduc-

tance. To a first approximation Mp
T may itself be also represented as an exponential decay

function, with decay constant for the whole eye defined as α (with units (mm Hg)-1). We note

that as the exponential decay constants for the various tissue or anatomical structures (αi)
become more disparate in magnitude, the range of IOPs over whichMp

T may itself be reason-

ably represented using a single exponential decay function reduces. Should this problem arise

and it be desired to widen this range to make it more practically useful, a different approximat-

ing function forMp
T may be chosen, or Eq (11) may be employed directly. Indeed, more

detailed analyses of whole eye behaviour may well benefit from using Eq (11) directly.

Importantly, having defined the local outflow facility at pressure p to be Cp, we can now

define the average outflow facility over a pressure range p1 to p2 as �Cp2
p1

(see Eq (18) for details).

We can now evaluate the total pressure dependent outflow for the whole eye ( _Vout): (1) which

by definition, _Vout is equal to the product of the ‘average total pressure dependent outflow’ �Cp
pT

and the apparent intraocular driving pressure (p − pT), that is, _Vout ¼
�Cp
pT
ðp � pTÞ, and (2) also

by definition _Vout is equal to the hydraulic outflow conductance for the whole eye, CSL
T (micro-

liters/min/mm Hg) and the outflow driving pressure for the whole eye (p − pref), where pref is

the membrane reference pressure for the whole eye (pref is defined quantitatively below) and

(3) we also know _Vout is equal to the sum of the products of the hydraulic conductance of the

ith tissue or anatomical structure (CSL
i ) and the individual driving pressure (p − pref−i) and (4)

integrating Eq (11) between pT and p, where pT is the intraocular no-flow pressure. We can

now bring together all these four different definitions and levels of approximating the total

pressure dependent outflow and the total pressure dependent outflow facility into two equa-

tions. For the total pressure dependent outflow equation we have,

_Vout ¼
�Cp
pT
ðp � pTÞ ¼ CSL

T ðp � pref Þ ¼
Xn

i¼1

CSL
i ðp � pref � iÞ �

Zp

pT

Cpdp

� CSLT

Zp

pT

Mp
Tdp �

Xn

i¼1

CSLi

Zp

pTi

Mp
i dp

ð14Þ

where to avoid any confusion we state again that pref is defined as the membrane reference

pressure for the whole eye while pT is defined as the no-flow intraocular pressure for the whole

eye. The equals sign (=) is used for definitions and the approximation sign (�) for estimates

made based on an approximating function (an exponential decay function is used here). Sim-

ply rearranging this equation reveals the ‘average total pressure dependent outflow facility’,
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�Cp
pT

may also be evaluated in a variety of ways, viz,

�Cp
pT
¼ CSL

T

ðp � pref Þ
ðp � pTÞ

¼

Xn

i¼1

CSLi ðp � pref � iÞ

ðp � pTÞ
� CSL

T

Zp

pT

Mp
Tdp

ðp � pTÞ
� CSLT �Mp

pT
ð15Þ

where

�Mp
pT
¼

Zp

pT

Mp
Tdp

ðp � pTÞ
�
ðp � pref Þ
ðp � pTÞ

ð16Þ

and

ðp � pref Þ �
Zp

pT

Mp
Tdp¼

Xn

i¼1

CSL
i ðp � pref � iÞ

Xn

1¼1

CSL
i

ð17Þ

We note that pref for the whole eye can be calculated from Eq (17). The ratio (p − pref)/(p − pT)

defines the way the total pressure dependent outflow facility for the whole eye declines from its

maximum value at pT. That is, for any α> 0, (p − pref)/(p − pT) approaches a maximum as p! pT
and declines to zero as p!1. We now apply this theory to the analysis of both physiological and

clinical problems involving the estimation of pressure dependent outflow from the eye.

Theory for the analysis of pressure-volume and pressure-time

measurements

An experimental aim may be to measure the average pressure dependent outflow facility over

an experimentally convenient intraocular pressure range. The average pressure dependent out-

flow facility over a pressure range p1 to p2, denoted here �Cp2
p1

, is the average of the local outflow

facilities between pressures p1 and p2. This turns out to be a well-known ratio of finite differ-

ences [39, 45], viz,

�Cp2
p1
¼

1

p2 � p1

Zp2

p1

Cpdp ¼
1

p2 � p1

Zp2

p1

d _Vout

dp
dp ¼

_Vout� 2 �
_Vout� 1

p2 � p1

ð18Þ

where _Vout� 2 and p2 is incremental outflow rate at pressure two, and similarly for the incre-

mental outflow rate at pressure one. If the finite difference is small, Eq (18) can be employed to

approximate Cp1 , for as p2! p1 so �Cp2
p1
! Cp1 . For animal experiments, an incremental volume

flow rate into the eye may be held constant until the IOP stabilizes at a new level above the rest-

ing IOP, and the average outflow facility over this pressure range is calculated directly using

Eq (18). Very occasionally this technique has been employed using in vivo human eyes [41].

More often for human eyes, outflow facility is estimated from recordings of a pressure-vol-

ume curve and a pressure-time curve for an individual eye. Direct cannulation of the eye is the

most accurate method of first volumetrically loading the eye with fluid, and so measuring the

pressure-volume curve for the eye (stage one), and then in stage two, cease volumetric eye

loading and manometrically measure the pressure-time decay curve [47, 48, 56].
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In the clinic, measurements of eye volume changes with change in IOP are much more

error prone, with eye volume change usually estimated based on typical corneal shapes and

corneal deformations upon application of a standardized loading to the corneal surface. Eye

pressure-time curves are generally measured using pneumatonometry [33]. These approaches

have the clinical advantage of removing the need to directly cannulate the eye. However a few

researchers have directly cannulated the anterior chamber of the human eye immediately prior

to cataract surgery, and estimated outflow facility by first volumetrically loading the eye (i.e.

stage one, obtaining a subject-specific pressure-volume curve from which the ocular rigidity

can be inferred), then in stage two employing manometric measurements to record the pres-

sure-time curve as excess fluid drains from the eye [47, 48, 56].

To estimate outflow facility obtained using intracameral manometric measurements, we

need to equate the rate of volume change of the eye as the difference in net rate of pressure

independent volume inflow and pressure dependent volume outflow. If we then express the

rate of pressure dependent outflow using the average outflow facility between two pressures,

we can use this equation to infer �Cp
nt . Let us now do this. We first write the fluid volume bal-

ance equation at arbitrary pressure p during stage two (i.e. pressure-time recording, when the

external volume loading of the eye is zero) as,

dðVe þ DVp
e Þ

dt
¼ _Vpump �

�Cp
ntðp � pntÞ ¼ 0 ð19Þ

where Ve is the reference eye volume at the normotensive intraocular pressure for the resting

eye pnt, DVp
e is the change in eye volume from this reference state due to some intraocular pres-

sure p, and _Vpump is the sum of all pressure independent flows across all tissues or anatomical

structures in the eye. The net pumped fluid volume is allowed to be a (slowly) varying function

of time—but not of pressure.

To recover a suitable equation to analyse the intracameral manometric data, probably the

formally correct method would be to take the partial derivative of Eq (19) with respect to p (so

removing pressure independent terms), and then immediately evaluating a definite integral

between the normotensive pressure pnt and pressure of interest p (so including any time

dependent terms). Doing this results in Eq (22) directly. However because of the features of

the particular function being analysed, it is possible to recover the same equation by taking a

limit of a finite difference ratio (as discussed previously). Because this second option is more

intuitively appealing and more frequently employed, we describe this approach.

First we write down Eq (19) at two intraocular pressures, p1 and p2, viz

dðVe þ DVp2
e Þ

dt
¼ _Vpump �

�Cp2
pnt
ðp2 � pntÞ ¼ 0

dðVe þ DVp1
e Þ

dt
¼ _Vpump �

�Cp1
nt ðp1 � pntÞ ¼ 0

ð20Þ

We note that if _Vpump is a slowly varying function of time then pnt also varies slowly in time,

but this change is assumed negligible for short duration tests. Subtraction of these two equa-

tions leads to,

dDVe

dt

�
�
�
p2

�
dDVe

dt

�
�
�
p1

¼ � �Cp2
nt ðp2 � pntÞ þ �Cp1

nt ðp1 � pntÞ ð21Þ

Usually the normotensive state is the dynamic steady-state intraocular reference pressure,

and the eye volume at this pressure is then the reference eye volume. Now let p1! pnt, then

�Cp1
nt ðp1 � pntÞ ! 0 and by definition

dDVe
dt jpnt ! 0, which removes these terms. Then changing
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notation to let p2 = p, and allowing for the possibility of rapid volume injection into the eye

(i.e. _VinjðtÞ) perturbing the pressure from the normotensive state (which normally happens in

stage one of manometric eye testing i.e. when volumetrically loading the eye with fluid)), we

have,

dDVe

dt

�
�
�
�
�
p

¼ _Vinj �
�Cp
pnt
ðp � pntÞ ð22Þ

This equation can be used to analyse ‘volume loading’ of the eye (which normally happens

in stage one of manometric eye testing). Now setting _Vinj equal to zero (which normally hap-

pens in stage two of manometric eye testing i.e. when measuring the pressure-time decay

curve for the eye), employing the chain rule of differentiation, and using equation (43) (see S1

Supporting Information Ocular Rigidity), we find �Cp
nt is given by,

�Cp
nt ¼ C

SL
T

�Mp
nt ¼
�

dDVe
dt jp

p � pnt
¼
� ð

c0
p þ c1Þ

dp
dt jp

p � pnt
ð23Þ

We mention here that an accurate estimation of the ocular rigidity is crucially important

for the accurate estimation of average outflow facility between two IOPs from a pressure-time

test. Though often not used in clinical practice, employing a pressure dependent ocular rigidity

proves particularly important for obtaining accurate estimates of average outflow facility. For

this reason we have provided a derivation of pressure dependent ocular rigidity (see S1 Sup-

porting Information Ocular Rigidity), based on the approach developed by Silver and Geyer

(2000).

If the average outflow facility and the ocular rigidity are known, then combining Eqs (23),

(35) and (38) (see S1 Supporting Information Ocular Rigidity), the rate of change of pressure

with respect to time at pressure pmay be estimated using,

dp
dt

�
�
�
�
p

¼ �
K̂ �Cp

ntpðp � pntÞ
Ve� nt

¼ � Ccðp
2=pnt � pÞ ð24Þ

where CC ¼
K̂ �Cpntpnt
Ve� nt

is a parameter (with units min-1) governing the pressure-time response behav-

iour for an individual eye system, and additional variables are defined in S1 Supporting Informa-

tion Ocular Rigidity. The parameter CC is analogous to the ‘consolidation coefficient’ governing

the consolidation-time response of poroelastic materials, so this parameter may be similarly

referred to as a ‘consolidation coefficient’ CC for the eye. Employing our newly defined CC, a non-

dimensional time (T) may also be defined as T = CCt. Then Eq (24) may be written as,

dp
dT

�
�
�
�
p

¼ ðp � p2=pntÞ ð25Þ

While helpful, because Eq (24) is non-linear, the analytic utility of this approach is probably

limited to small changes in pressure. In general, both K̂ and �Cp
nt are functions of pressure, how-

ever for small pressure changes, as a first approximation it is common practice to assume they

are all independently constants. We note that it is possible for the parameters in CC to be a

function of intraocular pressure independently, but when brought together make CC more

nearly constant. Indeed this happens as cartilage is compressed—the hydraulic conductivity

decreases as the stiffness of the cartilage increases with compression—leaving the coefficient of

consolidation nearly constant over a significant range of deformation. As �Cp
nt is a decreasing
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function with increasing IOP, in the present case, CC is more nearly constant only when c1 is

negative (see S1 Supporting Information Ocular Rigidity for definition of c1).

Results

We begin by first outlining the biophysical meaning of our analysis of pressure dependent out-

flow for the theory developed above. As a first step we use Eq (14) to plot the total pressure

dependent outflow as a function of intraocular pressure, for a range of exponential decay con-

stants. We then plot the average outflow facility versus intraocular pressure (Eq (26)) and the

local outflow facility versus intraocular pressure (Eq (27)) for a range of exponential decay

constants.

Using published data for the in vivo human eye, we then estimate pT and the range of nor-

mal values for the exponential decay constant α. We make a ‘first-principles’ estimates of out-

flow pathway specific parameters (e.g. pTch and pTcon and αch and αcon), and then estimate

model parameters pT and α for the whole eye. We then estimate α and CSLT for both vervet mon-

key data and for data on enucleated human eyes. Then using published pressure-volume

curves, ocular rigidity estimates and pressure-time curves for in vivo human eye, we work

through Examples 1 to 5, estimating model parameters and outflow facility using Eq (23).

Finally, we estimate a range of values for the consolidation coefficient for the in vivo human

eye, and the total pressure dependent outflows for the in vivo eye.

Total pressure dependent outflow, average and local outflow facilities

Unless otherwise stated, for all the following plots we have assumed the intraocular reference

pressure pT equals 3 mm Hg, while normotensive IOP is assumed to be 15 mm Hg. For all the

following plots we arbitrarily assume the hydraulic conductance for the whole eye, CSL
T is 1

microlitre/minute/mm Hg (see Eq (6) for definition of CSLT ).

The driving pressure (p − pref) is calculated using Eq (17) or Eq (26) with pT equal to 3 mm

Hg, or by evaluating the definite integral of the local outflow facility curves from pT equals 3

mm Hg up to the pressure of interest.

Because the hydraulic conductance for the whole eye (CSL
T ) is chosen to be 1 microlitre/min/

mm Hg, the total pressure dependent outflow curves are exactly the same curves as the ‘driving

pressure’ (p − pref) curves (see Eq (14))—hence the vertical axis has two separate labels (Fig 1

and see Eq (17) for definition of (p − pref)). For these chosen values, we can plot the total pres-

sure dependent outflow as a function of intraocular pressure for a range of different decay con-

stants α (Fig 1). Because CSLT is assumed to be a constant in the theory, we note that total

pressure dependent outflows for different values of CSL
T can be obtained by simply scaling the

outflow curves shown for unitary CSL
T .

Fig 1 immediately predicts that if the decay constant is zero, then the total pressure depen-

dent outflow is proportional to the intraocular pressure. The proportionality constant is the

average outflow facility, which is the slope of the linear outflow curve for α equals zero. We see

from Fig 1 that as the decay constant (α) increases the total pressure dependent outflow

decreases for any chosen intraocular pressure, and that the rate of increase of total pressure

dependent outflow for any constant α decreases with increasing intraocular pressure.

If the outflows or the driving pressures are known at two IOPs, Fig 1 allows α be estimated

based on the ratio of the outflows or driving pressures. However most importantly, if the driv-

ing pressures for the whole eye are known at two IOPs, then it is also numerically possible to

estimate both α and pT from the two known driving pressures by simultaneously satisfying

the ratio of the driving pressures as well as their magnitudes. If the outflows are also known at

the two IOPs and pT is 3 mm Hg, then it possible to also estimate CSL
T by simply scaling the
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outflows shows in Fig 1 until it matches the measured outflows (otherwise CSL
T can be esti-

mated numerically for any pT).

The average outflow facility is calculated over the intraocular pressure range from pT to p
(see Eq (15) or Eq (26)). From these equations the average outflow facility �Cp

pT
, can be calcu-

lated as shown in Fig 2. Examining Fig 2 it is clear that the curve representing average outflow

facilities for curve α> 0 approach a maximum as p!0. With the exception of α = 0, all curves

decline towards zero as p!1.

The average outflow facility shown in Fig 2 is the average of all the local (or point) estimates

of outflow facilities over the intraocular pressure range pT up to p. This average can be calcu-

lated by taking the definite integral with respect to intraocular pressure of the local outflow

facilities between pT and p, and then dividing by (p − pT) (see Eq (18)). Doing this we find for

CSLT ¼ 1,

�Cp
pT
¼
ðp � pref Þ
ðp � pTÞ

� �Mp
pT
¼

1

ðp � pTÞ
ðe� apT � e� apÞ

a
ð26Þ

The average outflow facility �Cp
3 is calculated either using Eq (26), or by evaluating the aver-

age of the local outflow facility curves shown in Fig 3 between pT equals 3 mm Hg and the

pressure of interest p. The average of the local outflow facility curves can be evaluated by first

evaluating the definite integral of the local outflow facility curves shown in Fig 3, from 3 mm

Hg up to the pressure of interest, then dividing by range of the definite integral i.e. dividing by

Fig 1. Driving pressure and total pressure dependent outflow as a function of intraocular pressure, for a range of

values of α (note: CSL
T is 1 microlitre/min/mm Hg).

https://doi.org/10.1371/journal.pone.0188769.g001
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(p−3) mm Hg. We note that the average outflow facility over an ocular pressure range is plot-

ted at the upper limit of the pressure range, that is, at p.

Local outflow facilities (see Eq (12)) for CSLT ¼ 1, are given by

Cp ¼ Mp
T ¼ e� ap ð27Þ

and this equation is plotted in Fig 3. It is clear from Fig 3 that when α> 0.1, then for all intra-

ocular pressures greater than about 30 mm Hg, local outflow facilities are close to zero. Physi-

cally this means a unit increase in IOP is matched by a unit increase in the membrane

reference pressure for the whole eye, so at some intraocular pressure there is effectively no fur-

ther incremental driving pressure across the membrane with increasing IOP (that is Δ(p − pref)
! 0), and so there is no further increase in pressure dependent outflow with increasing IOP.

In other words, for all practical purposes the total outflow eventually becomes pressure inde-

pendent above a certain IOP. We notice that the IOP at which this pressure independent state

is deemed to occur decreases with increasing α.

We may notice that each local outflow facility curve associated with each α can be uniquely

identified by the ratio of local outflow facilities at two different IOPs (i.e. no two local outflow

facility curves have the same local outflow facility ratio for the same two IOPs). When attempt-

ing to estimate α using local outflow facilities, we see that an estimated α is usually more accu-

rate when two local outflow facilities are estimated at widely separated intraocular pressures

(i.e. the two IOPs are ‘low’ and ‘high’).

Fig 2. Average outflow facility Cp
3 as a function of intraocular pressure and for a range of values of α.

https://doi.org/10.1371/journal.pone.0188769.g002

Estimating outflow facility for human eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0188769 December 20, 2017 14 / 53

https://doi.org/10.1371/journal.pone.0188769.g002
https://doi.org/10.1371/journal.pone.0188769


We also note that the average outflow facility when estimated from a normotensive pressure

and for CSL
T ¼ 1 is given by,

�Cp
nt ¼

�Mp
nt ¼

1

ðp � pntÞ
ðe� a1pnt � e� a1pÞ

a
ð28Þ

Fig 4 shows the incremental total pressure dependent outflow, found by multiplying Eq

(28) by (p − pnt). Following ‘volume loading’ of the eye, the average outflow facility Fig 4 is par-

ticularly relevant when estimating the rate of excess fluid leaving the eye during a pressure-

time test. Eq (28) is also helpful when attempting to intuitively understand the meaning of the

more complicated expressions shown in Eqs (23) and (24).

Fig 5 shows the average outflow facility �Cp
15 (Eq (28)), which is what might be expected to

be typically estimated in the clinical context (assuming a normotensive eye at 15 mm Hg). It is

readily apparent that it appears as though the outflow facility �Cp
15 is reasonably approximated

as a linear function of IOP over the pressure range 20 mm Hg to 40 mm Hg, but in fact all the

curves are intervals of an (integrated) exponential decay function of IOP divided by (p − pnt)
(Eq (28)).

The averaging process smears out information, so while it is theoretically and practically

possible to estimate the decay constant α from at least two average outflow facilities at two dif-

ferent pressure using the �Cp
15 curves (particularly for smaller alphas with ‘steeper slopes’), due

to measurement uncertainty, it becomes practically more difficult to do this accurately as α

Fig 3. Local (or point) outflow facility Cp as a function of intraocular pressure and for a range of values of α. These curves may

be calculated either using Eq (27), or by taking the derivative with respect to IOP of the total pressure dependent outflow curves shown

in Fig 1.

https://doi.org/10.1371/journal.pone.0188769.g003
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becomes larger. When attempting to estimate α using average outflow facilities, we note that

an estimate is most accurate when two average outflow facilities are estimated with as widely

differing averaging pressure ranges as practically possible.

Effect of assuming an incorrect reference IOP on average outflow facility

and outflows for zero threshold pressure

We examine here the situation where we know the actual total pressure dependent outflows,

but we assume incorrectly that the reference pressure pT is zero mm Hg rather than 3 mm Hg

(so we then calculate the average outflow facility by dividing by the intraocular pressure p
rather than (p − pT), we obtain quite a different set of curves for average outflow facility to

those shown in Fig 1. The average outflow facility curves shown in Fig 6 now appear to have

maxima when α> 0. We observe that the estimated average outflow facility slowly converges

to the correct value as p!1 and interestingly, at low intraocular pressures the curves con-

verge at the actual no-flow intraocular reference pressure pT. On the other hand the local out-

flow facilities remain unchanged as they should (see Fig 3), which is very important from an

experimental viewpoint. The local outflow facility curve is fundamental (there is only one local

outflow facility curve, at least for the theory as developed here), while average outflow facility

changes with the averaging interval (and any assumptions made about the averaging interval).

However local outflow facilities are inherently more difficult to measure, requiring greater

measurement accuracy and precision.

Fig 4. Driving pressure and pressure dependent outflow as a function of intraocular pressure, for a range of

values of α. Pressure dependent outflows are calculated using Eq (18) with a normotensive pressure of 15 mm Hg as the

intraocular reference pressure. The data in this figure can employed to help understand or evaluate Eqs (23) and (24).

https://doi.org/10.1371/journal.pone.0188769.g004

Estimating outflow facility for human eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0188769 December 20, 2017 16 / 53

https://doi.org/10.1371/journal.pone.0188769.g004
https://doi.org/10.1371/journal.pone.0188769


Fig 6 demonstrates clearly that the accurate estimates of the average outflow facility (�Cp
pT

)

and total pressure dependent outflow for the eye depend on knowing the intraocular reference

pressure for the eye. In Fig 7 we show the predicted total pressure dependent outflow when

pT = 0. All predicted total pressure dependent outflows are seen to be translated vertically

upwards relative to the outflow curves shown in Fig 1. This clearly demonstrates that assuming

a no flow reference pressure pT of zero mm Hg, when in fact it occurs at 3 mm Hg, results in

higher estimates of outflow facility than actually occurs (in other words, assuming pT = 0 do

not lead to conservative estimates of total pressure dependent outflow).

Estimating exponential decay constants for normal in vivo eyes from ‘first

principles’ based on animal and human data

With this background understanding of pressure dependent outflow predicted by the model,

let us now try to estimate plausible values of model parameters for in vivo eyes. We initially

adopt a ‘first-principles’ modeling approach, meaning we focus on finding experimental values

for the fluid driving pressure on both sides of the ‘membrane’ at two different intraocular pres-

sures for two of the major pressure dependent outflow pathways, namely: (i) the retinal pig-

mented epithelial-choroidal pathway and (ii) the conventional outflow pathway. In the

Fig 5. Average outflow facility Cp
15, as a function of intraocular pressure and for a range of values of α. The average outflow facility Cp

15

is calculated using Eq (28). Note: the average outflow facility curves shown in the figure above are not the same as the average outflow facility

curves shown in Fig 2, as the pressure range over which averaging occurs are different in the two figures. For example for α equal to 0.05, at 20

mm Hg the average outflow facility in the above figure is just over 0.4 microlitres/minute/mm Hg, while in Fig 2 it is about just under 0.6 microlitres/

minute/mm Hg. The relative difference in the two average outflow facilities increases with increasing α.

https://doi.org/10.1371/journal.pone.0188769.g005
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following, we explain in detail the reasoning and all the steps in the calculations leading to

parameter estimation, referring to the previous figures where possible to demonstrate various

steps. All calculations are done numerically.

We first consider the retinal pigmented epithelial-choroidal pressure dependent pathway,

that is, outflow through the retina and across the retinal pigmented epithelium (RPE) (‘RPE

cells assembled by tight junctions, forming a continuous epithelium monolayer’), through

Bruch’s membrane (‘composed of 5 layers: the basement membrane of the choriocapillaries,

an outer collagenous layer, a central elastic layer, an inner collagenous layer, and the basement

membrane of the RPE’) to the choroidal interstitial space and finally into the choriocapillaris

[57]. As far as the authors are aware, suitable data for the detailing the choroidal interstitial

response to changes in intraocular pressure in humans is not available. Similar data for animals

is rare. However, fortunately there is one paper reporting quality data obtained from 18 cyno-

molgus monkeys (see [23]). Fig 5 in Emi et al (1989) shows exactly the driving pressure data

required to estimate αch (where the subscript ch denotes the retinal-epithelial-choroidal flow

path).

At very low pressures there is some uncertainty about the accuracy for choroidal interstitial

pressure readings obtained via direct cannulation of the choroidal tissue, and so additional

pressure readings we made (via cannulation) of a silicone sponge inserted into the choroid.

We note that direct cannulation of the choroidal tissue appears to behave more or less as pre-

dicted by the present theory at low IOPs (possibly due to a threshold opening pressure for the

interstitial space [58, 59] around the choriocapillaris, which would explain the failure of direct

Fig 6. Average outflow facility Cp
0 as a function of intraocular pressure and for a range of values of α. These average

facility curves are calculated using Eq (26), but wrongly assumes pT is equal to zero, when in fact pT equals 3 mm Hg.

https://doi.org/10.1371/journal.pone.0188769.g006
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cannulation to record very low pressures, rather than experimental artefact). We need to keep

in mind too that the sponge does not measure normal choroidal interstitial fluid pressure,

rather it measures sponge interstitial pressure in a grossly deformed choroid (see Fig 3 [23]).

Surgical trauma associated with sponge insertion may well increase sponge protein concentra-

tions, creating an experimental artefact that significantly influences low fluid pressure readings

via osmotic pressure due to the abnormally high protein concentration. Nevertheless the

authors provide measurement data over the pressure range from 5 mm Hg to 60 mm Hg by

both methods, so appreciating the uncertainty we can assess the data and select a convenient

pressure range for analysis. Importantly the authors conclude that: ‘it is clear from the present

study that the pressure difference [i.e. pressure between IOP and the pressure in the supra-

choroidal space] is significantly correlated to the level of IOP’ [23]. We observe the driving

pressure for retinal-choroidal outflow is not equal to the IOP minus a constant choroidal inter-

stitial pressure, but instead the driving pressure increases at a decreasing rate with increasing

IOP (at least over the pressure range up to 40 mm Hg). Let us try to describe quantitatively

how the driving pressure varies by choosing a suitable αch.
For convenience we choose to calibrate the approximating function to fit the data over the

pressure range 3 mm Hg to 40 mm Hg. Over this pressure range we expect that our approxi-

mation to plausibly represent the two measured data sets for driving pressure (see Fig 5 [23]).

Taking into account the increasing curvature with decreasing IOP, we see that extrapolating

the experimental data obtained by direct posterior suprachoroidal cannulation from 5 mm Hg

Fig 7. Driving pressure and total pressure dependent outflow as a function of intraocular pressure, and for a range of values of α. The

driving pressure (p − pref) is calculated using Eq (14) with pT equal to zero.

https://doi.org/10.1371/journal.pone.0188769.g007
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to lower IOPs, that the no flow IOP (pTch) is plausibly about 3 mm Hg (see Fig 5 [23]). We

therefore initially assume that pTch equals about 3 mm Hg.

From Fig 5 [23], we see for IOP 10 mm Hg the driving pressure is about 3.2 mm Hg, and at

IOP 40 mm Hg the driving pressure is about 7.1 mm Hg. We then take the ratio of the driving

pressures at the two IOPs (i.e. 3.2/7.1 = 0.45), and searching for the alpha that has this ratio in

Fig 1 (αch is estimated as 0.075). But we see the driving pressures are too high at this alpha, so

we would like to adjust pTch and find a new estimate of αch that has both the right ratio and
right driving pressures. We do this numerically by trial and error and find the solution satisfy-

ing these constraints is pTch equals 3.85 mm Hg and αch equals 0.095. These parameters provide

a reasonable fit to the driving pressure data over the range 5 to 50 mm Hg. We now turn our

attention to pressure dependent outflow through the anterior chamber of the eye.

There are two anterior pressure dependent flow paths reported in the literature: the so-

called conventional (trabecular meshwork) pathway that is pressure dependent, and the so-

called unconventional (uveoscleral) pathway, which is believed to be pressure independent [7].

We therefore focus on the conventional pressure dependent pathway (denoted by subscript

con in the following), and we focus on the driving pressure between the IOP and the episcleral

venous pressure, which ‘can be described as a back-pressure against which aqueous humor

must flow’ [60].

The episcleral venous pressure in humans (denoted EVP in the text, and by subscript evp in

mathematical symbols) is reported to be normally in the range 7 to 10 mm Hg when the intra-

ocular pressure is 15 mm Hg in the upright position [51, 60–62]. The intraocular no-flow pres-

sure could be interpreted as the membrane reference (back) pressure in the no flow state, but

this pressure is uncertain for the conventional outflow pathway. One initial approach to guide

estimation of pTcon is to look at the ‘orbital venous pressure’, which is remote from the episcl-

eral venous pressure that is normally measured close to the limbus. The ‘orbital venous pres-

sure’ is reported to be about 2 to 3 mm Hg in rabbits at normal mean blood pressure [63]).

Another indicator of a suitable reference back-pressure pressure indicative of pTcon for the rhe-

sus monkey, is the episcleral venous pressure becoming independent of IOP at a distance of

‘about 4 to 5 mm from the limbus, with the tip of the cannula directed away from the eye’ [25].

Brubaker (1970) reported a minimum such episcleral venous pressure of 3.1 mm Hg for rhesus

monkeys fitted with neck bands (see animal 7 listed in Table I [25]). On the basis of this animal

data, we again adopt pTcon equal to 3 mm Hg as being a reasonable first guesstimate.

We therefore assume that the membrane pressure reference increases from 3 mm Hg to 8

mm Hg EVP as the intraocular pressure changes from 3 to 15 mm Hg (so (p − pevp) = 7 mm

Hg). We can also estimate a lower bound pressure reference change to be from 3 mm Hg to 6

mm Hg as intraocular pressure changes from 3 mm Hg to 15 mm Hg (so (p − pevp) = 9 mm

Hg), and we can estimate the upper bound reference pressure change to be from 3 mm Hg to

10 mm Hg as intraocular pressure changes from 3 mm Hg to 15 mm Hg (so (p − pevp) = 5 mm

Hg). We note Acott et al (2014) reports that the driving force between the IOP and the episcl-

eral veins is around 6 mm Hg to 9 mm Hg for the normal eye [51], which is close to the range

estimated above (i.e. 5 mm Hg to 9 mm Hg).

We now have initial information about pTcon and the outflow driving pressure at one IOP,

but to unequivocally estimate pTcon and αcon, we actually need additional information. For

example when estimating αch, we took the ratio of two driving forces at two known IOPs (elim-

inating the hydraulic conductivity) and sought to optimize the driving pressures and their

ratio by adjusting pTcon and αcon. But in the present case, we do not have the driving forces at

two IOPs, rather we have the driving force at only one IOP. Hence we propose to proceed

without sufficient information, but then check our estimate with independent information.

That is we use independent experimentally measured CSL
con and outflow facility or known total
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outflow to confirm the accuracy of a proposed estimate. If it is not accurate, we will iterate to

find a better solution. Adopting this strategy, we assume pT equals 3 mm and as an initial guess

we read αcon directly from Fig 1 at 15 mm Hg. We find for the known driving pressure of 7

mm Hg at an IOP of 15 mm Hg, our initial guess for αcon is about 0.0625.

We now independently check the accuracy of our estimate. We can proceed in two ways:

(i) check the total outflow, and (ii) check the outflow facility. We check both ways using two

independent sets of data. But because it is useful to us in the following, we first calculate the

hydraulic conductance of the conventional route by dividing the ‘typical [measured pressure

dependent] human outflow rates’, which is equal to 2.5 to 3.0 microlitres/min [51] (and

we mention in passing that the lower end of the range of outflow rates are more likely in

people> 65 years [64]) by the median estimate for the driving pressure (i.e. 7 mm Hg) to esti-

mate the hydraulic conductivity for the conventional pathway as CSL
con ¼ 0:36 � 0:43 microli-

tres/min/mm Hg. We note that for 23 human anterior segment organ culture experiments,

[51] reports CSLcon ¼ 0:34 microlitres/min/mm Hg, just outside the lower end of our estimated

range.

Now our first and simplest method is to check the predicted total outflow with measured

total outflow in vivo. We multiply the outflow at 15 mm Hg, unit hydraulic conductance and

pTcon equals 3 mm (i.e. 7.0 microlitres/min for alpha equals 0.0625) by CSL
con equals 0.36, to find

a predicted outflow of 2.5 microlitres/min. This agrees closely with the independently mea-

sured flow rate of 2.4 ± 0.6 microlitres/min reported in [64] for eyes greater than 60 years of

age. Based on the agreement between the measured outflow and driving pressure at 15 mm Hg

and predicted outflow and single driving pressure 15 mm Hg, we accept αcon is about 0.0625,

CSLcon equals 0.36 and pTcon is assumed to be 3 mm (summarized as Entry 1 in Table 1).

The second checking method looks at outflow facilities in enucleated eyes. In other words

we can multiply the average outflow facility 0.65 microlitres/min/ mm Hg (obtained numeri-

cally at IOP equals 15 mm Hg, with pT = 0 and αevp = 0.0625) by 0.36 to 0.43 (see above), to

obtain a model estimated conventional outflow facility for the in vivo normal eye to be in the

range 0.23 to 0.28 microlitres/min/ mm Hg. We now compare this predicted outflow facility

with measured outflow facilities for enucleated human eyes at 15 mm Hg. For 5 donor eyes

(mean age 62 years, range 32 to 74 years) the mean outflow facility was found to be 0.21 ± 0.03

microlitres/min/mm Hg [65] (note: implied flow rate 3.2 microlitres/min). In another study,

the mean outflow facility for six enucleated human eyes at 15 mm Hg was found to be 0.24

microlitres/min/ mm Hg [44] (note: implied flow rate 3.6 microlitres/min).

It appears that the predicted outflow facilities (range 0.23 to 0.28 microlitres/min/mm Hg

when αcon = 0.0625 and pT = 0) is above the measured range for outflow facilities. So we need

Table 1. Data employed for ‘first-principles’ estimation of pT and αcon, which describe the no-flow IOP

and the rate of decrease in local pressure dependent outflow via the conventional route.

Expected (mm Hg) Lower Bound (mm Hg) Upper Bound (mm Hg)

pTcon 3.0/2.5(2.5,7.5)/0.0/0.0 3/3/0/0 3/3/0/0

pepv 8.0/8.0(22.5,26)/6.3/8.0 6/6.7/3.75/6 11/11.7/9.3/11

p 15/15 (33,33)/15/15 15/15/15/15 15/15/15/15

(p − pepv) 7.0/7.0(10.5,7.0)/8.7/7 9/8.3/11.25/9 4/3.3/6.3/4

(p − pepv)/(p – pTcon) 0.58/0.55/0.58/0.47 0.75/0.69/0.75/0.6 0.42/0.28/0.42/0.33

CSLcon 0.36/na/0.38/0.36 0.36/na/0.38/0.36 0.36/na/0.38/0.36

Flow rate (μl/min) 2.5/2.5(3.5,2.5)/3.3/2.5 3.2/3.3/4.5/3.2 1.4/1.3/2.4/1.4

αcon 0.0625/0.07/0.08/0.12 ~0.03/0.04/0.04/0.075 ~0.13/0.16/0.13/0.25

https://doi.org/10.1371/journal.pone.0188769.t001
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to iterate i.e. guess another αcon, and follow the same procedure in an attempt to find a better solu-

tion. Iterating we find that when αcon = 0.08 the predicted outflow facilities range from 0.21 to

0.25 microlitres/min/ mm Hg, which is in close agreement between the measured range of out-

flow facilities (range 0.21 to 0.24 microlitres/min/mm Hg). This provides us with a second esti-

mate for αcon based on data obtained from enucleated eyes (summarized as Entry 3 in Table 1).

As explained above, to unequivocally estimate αcon and pTcon when both are unknown,

parameter estimation is most straight-forward when two driving pressures at two IOPs are

known. We have one known driving pressure at 15 mm Hg, but it would be most convenient if

there was data for the driving pressure at a higher IOP. Fortunately altering the angle of body

tilt and measuring EVP and IOP is one way to obtain such data for the in vivo human eye. One

experiment measured episcleral venous pressure and intraocular pressure upon inversion (i.e.

in the head-down vertical position). Such an experiment was performed on 11 volunteer sub-

jects aged 24 to 38 years of age, with IOP and EPV measured in both the supine and inverted

positions [66]. Friberg et al (1987) reports that commencing measurements 1 minute after this

postural change, the Pearson correlation coefficient (i.e. slope of regression line) between the

measured change in EVP and the measured change in IOP is 0.83 ± 0.21, and that IOP approx-

imately doubles in the inverted position relative to normal IOP. We now analyse this data to

estimate the driving pressure at the steady-state IOP in the inverted position.

Employing the reported initial mean IOP of 16.8 mm Hg and a final mean IOP of 32.9 mm

Hg [66], and using the abovementioned line slope between change in EVP and change in IOP,

EVP rises by (32.9–16.8) × 0.83 = 13.4 ± 3.4 mm Hg. Adding this change in EVP to the initial

EVP (assumed to be 9.0 mm Hg at an IOP of 16.8 in the supine position) gives an EVP of 22.4

mm Hg when inverted. The driving pressure (p − pevp) at 32.9 mm Hg is then (32.9–22.4) =

10.5 mm Hg. At 15 mm Hg the driving pressure has been estimated above at 7 mm Hg. So the

ratio of the two driving pressures at 15 mm Hg and 32.9 mm Hg is about 7/10.5, which equals

0.67. Then searching for the combination of variables that gives the right ratio and magnitude

of driving pressures, we find this occurs when pTcon = 2.5 mm Hg and αcon is 0.07 (range 0.055

to 0.10) (summarized as Entry 2 in Table 1)

Can the theoretical model tell anything more about the inversion experiment? Given

pTcon = 2.5 mm Hg and using other model parameters appropriate for the inversion experi-

ment, the model leads to a predicted pressure dependent outflow at 33 mm Hg about (10.5/7)

50% larger than at 15 mm Hg. Given that changing neurohormonal activity can change aque-

ous production, this seems plausible upon immediate head inversion under normal condi-

tions. On the other hand aqueous production is reportedly unchanged with changes up to ± 50

degrees head position [67], but these outflow measurements were made 30 minutes after the

posture change, which presumably gives sufficient time for adaption processes at various levels

to occur. Assuming sufficient time has elapsed during the inversion experiment for aqueous

production to return to its former rate, in terms of the model developed here, it seems likely

the intraocular no-flow reference pressure pTcon has changed, possibly driven by changing neu-

ral activity in response to the now substantial constant theoretical hydrostatic head in the

inverted position. A 30 cm of head of water in an upright tube generates about 22.5 mm Hg of

pressure, which we note to be almost identical to our estimated EVP above. Indeed it is pre-

sumably this EPV pressure that drives aqueous and blood from the eye back to the level of the

heart. Searching for a new pTcon that results in the same pressure dependent outflow at 33 mm

Hg, it is found by trial and error that if pTcon = 7.5 mm Hg in the theoretical model, then the

pressure dependent outflow at 33 mm Hg in the inverted position is very nearly unchanged

from the pressure dependent outflow at 15 mm Hg in the sitting position (and the driving

pressure returns to 7.0 mm Hg). In other words, the model predicts that if the pressure depen-

dent outflow is unchanged, head inversion increases pTcon by about 5 mm Hg relative to the
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sitting position. This change in pTcon is much less than the nominal hydrostatic pressure

change associated with inversion (about 22.5 mm Hg), but this does suggest that pTcon is vari-

able (possibly under neural/hormonal/paracrine controls, which possibly influence cell

contraction).

We also mention that if αcon for the eye is known, then the slope of the predicted correlation

relating the change in EVP to a change in intraocular pressure between any two IOPs of inter-

est can be evaluated directly by taking the average of dpepv=dp ¼ 1 � Mp2
p1

over the pressure

range of interest. Using the data for the inversion experiment as an example, if it is first known

that αcon is 0.07, then we predict the slope of the line relating the change in EVP to change

in intraocular pressure between initial mean IOP of 16.8 (approximated as 17) mm Hg

and the final mean IOP of 32.9 (approximated as 33) mm Hg. Performing this averaging of

dpepv=dp ¼ 1 � Mp
epv, we find predicted mean line slope is (1 –(0.304–0.99)/(0.07�(33–17))) =

0.82, while the mean slope of the regression line and SEM reported by [66] is 0.83 ± 0.21. The

predicted and measured slopes agree closely, again suggesting 0.07 is a good estimate for αcon.
We also note that if the change in IOP with body tilt is small (i.e. IOP changes a few mm

Hg), then for known αcon the predicted regression slope relating the change in EVP to a change

in intraocular pressure can be estimated using Fig 3, as 1 minus the local outflow facility (see

Fig 3) at the intraocular pressure of interest. So for example, if αevp is 0.075, then at 10 mm Hg

IOP the predicted local regression slope relating the change in EVP to a change in intraocular

pressure is (1–0.62) = 0.38, at 15 mm Hg IOP the predicted local regression slope is (1–0.53) =

0.47, and at 20 mm Hg IOP the predicted local regression slope is (1–0.45) = 0.55. As expected,

all these local regression slopes are much less than the experimentally measured group average

regression slope found by [66], because Friberg et al (1987) found an average over a much

higher pressure range (initial mean IOP of 16.8 mm Hg and final mean IOP of 32.9 mm Hg,

correlation slope 0.83 ± 0.21). Such model predictions point to the potential utility of the mod-

el’s predictions for experimental design [68].

We summarise the data and assumptions employed above in estimation of αcon in Table 1.

Each cell in Table 1 has four entries (1/2/3/4), identifying four different sets of experimental cir-

cumstances and so modelling assumptions to estimate conventional outflow parameters. For

example, Entries 1 in the second column assumes pT is 3 mm Hg, the driving pressure for out-

flow is 7 mm Hg at an IOP of 15 mm Hg and CSLcon = 0.36 microlitres/min/mm Hg). Then to

match an experimentally measured outflow of 2.5 microlitres/min we estimate αcon to be 0.0625.

Entries 2 in the second column estimates both pT and αcon from known driving pressures at

two IOPs. The driving pressure is 7 mm Hg at 15 mm Hg IOP and shown in brackets, the driv-

ing pressure is 10.5 mm Hg at 33 mm Hg IOP. We estimated αcon to be 0.075 and pTcon = 2.5

mm Hg (see details above). Entries 3 in the second column assumes pT is 0 mm Hg and the

outflow facility (p − pepv)/(p − pT) remains constant (i.e. the same as Entry 1) (see analysis

above of enucleated eyes). In other words the third model assumes �Cp
pT

is held constant and pT
is 0 mm Hg—then the flow rate then increases about 38%. Entries 4 in the second column

assumes pT is 0 mm Hg and the driving pressure (p − pepv) remains constant (i.e. the same as

Entry 1). In other words, the fourth model assumes the flow rate is held constant when pT is 0

mm Hg, but we notice the estimates for αcon are then much higher than for Entries 3 (the

fourth model is not described in more detail here).

We now assess the validity of these four conventional pathway outflow models. The first

model estimates αcon knowing one driving pressure at one IOP, and matching the experimen-

tally measured outflow. Because all data is for the human eye, with driving pressure and out-

flow data for the in vivo human eye, this estimate should be reliable. The second model is

based on ratio of two driving pressures, so this estimate is theoretically rigorous (CSL
con do not
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influence the estimation of αcon and pT using this method), so this estimate should also be reli-

able. Assuming constant outflow facility, the third model predicts a 38% increase in flow rates at

15 mm Hg (range 3.4 to 4.2 microlitres/min) for an enucleated eye compared to the in vivo eye.

We note that the implied flow rate for Ren et al (2013) is 3.2 microlitres/min, and for Hashi-

moto and Epstein (1980) is 3.6 microlitres/min. This range (3.2 to 3.6 microlitres/min) is in rea-

sonable agreement with the predicted flow rate range. Indeed, the measured flow rates are

nearly equal to the predicted flow rate if the in vivo flow is 2.5 microlitres/min and pT equals 3

mm Hg, so this also appears to be reasonably reliable. Finally the fourth model assumes outflow

rate is constant, and this results in a very large predicted αcon. Because the flow rates are in fact

significantly increased for the enucleated eye, this fourth model is rejected. Indeed, the predic-

tions for αcon in the third model also turn out to be much larger than all later predictions for α,

which provides confirmatory evidence to reject the fourth model.

With this wealth of experimental data and model estimates, we are now in a strong position

to again examine the validity of choosing pTcon is 3 mm for the in vivomodel. Based on Entries

1 and 3 in Table 1, we now have estimated αcon as being about 0.0725 and CSL
con (around 0.36 to

0.43). So we can now adjust pTcon and compare the prediction pressure dependent outflow at

15 mm Hg with an independently experimentally determined in vivo aqueous known flow

rate, such as that reported by (e.g. [21], who reports an aqueous outflow of 2.4 ± 0.6 microli-

tres/min). By this method, we can fix pTcon .

When we do this, we find for pTcon equal to 1 mm Hg, the pressure dependent outflow

through the conventional route is 3.3 to 3.9 microlitres/min (i.e. mean 3.6 ± 0.3 microlitres/

min), for pTcon equal to 3 mm the pressure dependent outflow through the conventional route

is 2.3 to 2.8 microlitres/min (i.e. mean 2.55 ± 0.25 microlitres/min), and for pTcon equal to 5

mm the pressure dependent outflow through the conventional route is 1.8 to 2.1 microlitres/

min (i.e. mean 1.95 ± 0.15 microlitres/min). Comparing these ranges with measured flow rate

of 2.4 ± 0.6 microlitres/min [21], pTcon equals 3 mm is a clearly a good estimate (the exact value

to give 2.4 microlitres/min when CSLcon equals 0.36 is pTcon equals 2.7 mm Hg).

Finally, to predict the behaviour of the whole eye requires us to find the weighted average of

the two estimates for αi (i.e. αch = 0.095 based on cynomolgus monkey data and αcon =

0.063,0.07,0.08 based on reliable human data), and the weighted of average of two estimates of

pTi (i.e. pTch = 3.85 based on cynomolgus monkey data and pTcon = 2.5,2.7 mm Hg based on

reliable human data). Theoretically one should now use this data to estimate a weighted aver-

age (using hydraulic conductivities as the weights) to obtain a suitable α and pT for the whole

eye (see Eq (12)), but in this case the reliability of the estimates is probably the dominant issue.

Given the human data for the conventional outflow pathway is much more reliable than esti-

mates based on cynomolgus monkey data, we therefore assume that α for the whole eye equals

about 0.07 (our estimated range is from 0.04 to 0.13), and pT is taken to be equal to 3 mm Hg.

Assuming the above estimates were of the equal reliability these estimates would vary as the

relative hydraulic conductivities (or approximately, as fractions of net fluid production exit via

the anterior, posterior and vitreous chambers), and then based on the above data α and pT
would be somewhat larger than the values chosen above. We note that any initially assumed

fractional outflow can be checked once estimates of total pressure dependent outflows have

been made, and refinements to the estimates can be made by iteration.

Estimating pressure dependent outflow parameters for in vivo Vervet

monkey eyes

The outflow facility (�Cp0þ11:9

p0þ2:5 ) for Vervet monkeys (n = 45) is reported by [39] to be 0.55 micro-

litres/minute/mm Hg. ‘Resting intraocular pressure’ (denoted p0 in Barany (1964)) for Vervet
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monkeys is approximately 9.0 mm Hg. Barany (1964) considers the effect of an exponentially

varying time dependent change on outflow facility while testing an animal, but he does not

consider an exponentially dependent variation with intraocular pressure on outflow facility. In

fact, Barany suggests that there is no pressure dependent change in outflow facility, though he

does acknowledge and presciently cautions that data shown in Fig 7 of Barany (1964) may in

fact suggest that the outflow facility probably is not constant as the intraocular pressure is low-

ered (‘Perhaps at these low pressures the outflow channels are not always filled with aqueous

in a normal manner and C therefore not constant under changing pressure’ [39]). Careful con-

sideration of the data shown in Fig 7 of Barany (1964) is indeed consistent with α> 0.

This can be seen by calculating the actual �Cp0þ11:9
p0

for individual animals based on removing

differences in measured and estimated p0 (i.e. using Eq 2 in Barany (1964) to analyse the data

shown in Fig 7), and then plotting measured p0 against �Cp0þ11:9
p0

. It is found that �Cp0þ11:9
p0

is pres-

sure dependent across the group of animals. An analysis of this plot based on the data shown

in Fig 7 of Barany (1964) indicates to a reasonable approximation that α is actually around

0.05, rather than zero, and that CSL
T ¼ 1:0. We find when p0 = pT is 9.1 mm Hg and CSLT ¼ 1:0,

then �Cp0þ11:9=2
p0

is 0.55 microlitres/min as reported by Barany (1964), and the mean outflow

(estimated at p0 + 2.5 mm Hg and p0 + 11.9 mm Hg) is 3.9 microlitres/min, while Barany

(1964) reports 4.0 microlitres/min. This new estimate of α has the effect of raising the low esti-

mates of p0 relative to the measured values reported at lower intraocular pressures, as shown in

Fig 7 of Barany (1964). This estimated α also explains the somewhat higher outflow facility

estimates relative to the measured values at higher intraocular pressures. Taken together this

data leads us to estimate �Cp
3 ¼ CSLT �Mp

3 ¼ 1:0 �Mp
3 microliters/min/mm Hg. At a normal intraoc-

ular pressure of 9.1 mm Hg, we can then estimate the average total pressure dependent outflow

as �C9:5
3
ðp9:5 � p3Þ ¼ 0:73ð9:1 � 3Þ ¼ 4:45 microlitres/min, and at 15 mm Hg we estimate the

total pressure dependent outflow as �C15
3
ðp15 � p3Þ ¼ 0:64ð15 � 3Þ equals 7.7 microlitres/min.

Estimating pressure dependent outflow parameters for enucleated

human eyes

Brubaker (1975) reports testing ten, enucleated human eyes (no age details provided). All eyes

were studied within 24 hours of enucleation. At 15 mm Hg, testing revealed a mean total pres-

sure dependent outflow to be about 5.9 microlitres/min (see Fig 2 of [43]). However tests on

enucleated eyes are less likely to be representative of in vivo behaviour (e.g. back-pressure is

only generated by distortion of aqueous and vascular networks in the absence of normal blood

flow through normal aqueous and vascular networks that have normal autonomic and vascular

autoregulation). But exactly how much less representative is uncertain. It is interesting though,

to note that total pressure dependent outflow shown in Fig 2 of Brubaker (1975) clearly indi-

cates that outflow facility decreases with increasing intraocular pressure. Indeed if Fig 2 of Bru-

baker (1975) (exact values shown in Fig 2 of Brubaker (1975) can be computed using the data

shown in Table 1 of Brubaker (1975)) is fitted to an exponential decay curve using our model

assuming pT is 2 mm Hg, the mean data for ten eyes indicates α� 0.029 (range 0.023 to 0.036)

and CSL
T � 0:57 microliters/min/mm Hg. Again pT equal to 2 mm Hg is in reasonable agree-

ment with an important assumption underlying our later in vivo analysis. We also mention that

another model, with pT equal to zero, estimates α� 0.02 and CSL
T � 0:45 microliters/min/mm

Hg. This second model fits the Brubaker (1975) data with comparable accuracy to the first

model. This second model almost exactly approximates Brubaker’s reported slope for the ‘frac-

tional increase in outflow resistance Q’ (where Q = d(R/R0)/dp = 0.012) for his linear regression

analysis of ‘outflow resistance’ versus IOP (see Fig 3 of Brubaker (1975)). We also observe that
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assuming pT is 3 mm, leads to model estimates α� 0.038 (range 0.030 to 0.045) and CSLT � 0:70.

This third model is less accurate than the models one and two, but remains well within ± 1

SEM, and serve to illustrate parameter estimates when pT is 3 mm Hg.

Estimating pressure dependent outflow parameters for in vivo human

eyes

Langham and Eisenlohr (1963) measure in vivo outflow facility for normal eyes in two subjects

(age not specified), by simultaneously measuring the steady-state incremental pressure depen-

dent outflow rate and IOP. Data on incremental outflow rate and incremental IOP is provided

at two pressures for one of these two subjects (as shown in Fig 7 of their paper [41]). Assuming

the normotensive pressure is 15 mm Hg and pT equals 3 mm Hg, we can interpret their data

using Fig 5 above. We first estimate α from the ratio of the measured average outflow facilities.

The average outflow facility between 15 mm Hg and 22 mm Hg is 2.1/7 = 0.30, and between 15

mm Hg and 35 mm Hg is 4.4/20 = 0.22. The α in Fig 5 associated with the ratio 0.22/0.3 at the

two specified IOPs is 0.05. Knowing Fig 5 is constructed for CSLT ¼ 1:0 we can scale the outflow

shown in Fig 5 to agree with the experimentally measured outflows. When we do this we find

CSLT � 0:74. This single estimate is somewhat lower than the first-principles mean estimate of

0.07, but it is clearly within the first-principle range 0.04–0.13.

Karyotakis et al (2015) has also experimentally measured the local outflow facilities for in
vivo human eyes over the pressure range 20 mm Hg to 40 mm Hg. Nineteen subjects involved

in this study were tested prior to cataract surgery, and had average age of 71.2 ± 4.1 years. We

can estimate the value from α for this data by matching the ratios of the experimentally deter-

mined local outflow facilities with the local outflow facility ratios predicted by the model.

When we do this, we find a good fit when α equals 0.069. The best statistical fit exponential

curve to the experimental data was found by the authors to have a decay constant of 0.069

(with CSL
T somewhere between 1.0 and 1.05). Taking into account reported standard error of

the mean for the mean local outflow facilities, the ±1 SEM range for α conceivably lies in the

range 0.05 and 0.075. The first-principles mean value is 0.07 (range 0.04–0.013) versus the

experimentally measured mean estimate 0.07 (range 0.05–0.075), it is apparent that the mean

estimates agree while the estimated ranges completely overlap.

Examples of estimates of outflow parameters based on pressure-volume

and pressure-time curves for in vivo human eyes

We are now in a position to begin our estimation of outflow facility for the in vivo human eye.

For manometric testing of the in vivo human eye, outflow facility estimation is usually esti-

mated in two stages: (i) a pressure-volume curve is obtained as excess fluid is loaded into the

eye, and (ii) a pressure-time test is recorded as this excess fluid leaves the eye (usually for 4

minutes).

First consider stage one of the manometric measurement—measurement of the pressure-

volume curve and estimation of the ocular rigidity for the in vivo eye. Pallikaris et al (2005)

reported tests on 79 subjects immediately prior to cataract surgery (mean age 65 ± 13.5 years,

range 27 to 91 years) [69]. By directly injecting a known amount of fluid into the eye while

measuring IOP, they obtained incremental pressure-volume curves for in vivo human eyes.

From this data they estimated the mean ocular rigidity (K) for the group over the IOP range

10 mm Hg to 35 mm Hg to be 0.0290 (per microliter), with a 95% confidence interval on the

mean estimate to be in the range 0.0257 to 0.0343 per microlitre [69]. For this group, they pro-

posed that the volume-pressure data in living eyes could be approximated using straight-lines.

Supporting this contention, they show the pressure-volume data for one patient (Fig 2 in
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Pallikaris et al (2005)). The data shown in this figure displays a near linear relationship

between intraocular pressure (mm Hg) and volume of fluid injected into the eye (in microli-

tres) over the range pressure 0 mm Hg to 55 mm Hg. It is clear from equation(43) that such a

linear relationship can only occur when c0 equals zero (see S1 Supporting Information Ocular

Rigidity for definitions of c0 and c1). When c0 is zero the theoretical pressure-volume relation-

ship is linear, and the ocular rigidity is inversely proportional to the ocular pressure. That is

equation (43) reveals,

K ¼
1

c1p
ð29Þ

It is important to realize that Eq (29) means the ocular rigidity is not constant, as often

assumed in clinical analysis of eye measurements. It is particularly interesting to observe that

for the data shown in Fig 2 in Pallikaris et al (2005), c1 is positive and equal to 1.43. This means

that the ocular rigidity decreases with increasing intraocular pressure, which agrees with the

earlier findings of [70, 71]. This decrease in ocular rigidity can be very substantial. To illustrate

this for the data shown in Fig 2 of Pallikaris et al (2005), at 10 mm Hg the ocular rigidity is

0.0687, at 15 mm Hg it is 0.0458, further reducing to 0.0311 at 22.5 mm Hg and again reducing

to 0.0172 at 40 mm Hg. In other words, for this individual the ocular rigidity at 40 mm Hg is

only 25% of what it is at 10 mm Hg.

We note that for the data shown in Fig 2 of Pallikaris et al (2005), c1 is approximately six

times the magnitude of the average c1 estimated by Silver and Geyer (2000). This attests to the

large coefficient of variation observed for most eye parameters. We also note here that in a

later study of 50 patients (20 men and 30 women) also undergoing cataract surgery, mean age

62 ± 12 years, over the IOP in range 15 mm Hg to 40 mm Hg, Dastiridou et al (2009) report

that:

. . ..pressure-volume relation in the human eye is generally in accordance with the results

presented in Silver and Geyer (2000). . ..[and] The values for the coefficient of ocular rigid-

ity are also similar to the results by Pallikaris et al (2005), but lower. . .the corresponding

Friedenwald coefficient being 0.0098 [72].

We note here the mean ocular rigidity reported by Dastiridou et al (2009) is 0.0224 ± 0.005

at 37.5 mm Hg, while the mean ocular rigidity reported by Pallikaris et al (2005) (corrected

from the Friedenwald coefficient reported by Pallikaris et al (2005)—see S1 Supporting Infor-

mation Ocular Rigidity) is 0.0254 at 27.5 mm Hg.

Rather than being constant, the in vivo ocular rigidity is often a strong function of pressure,

which has important implications for the estimation of outflow facility via pressure-time

curves. For having a pressure dependent ocular rigidity changes both the pressure-time

response of the eye (from which the outflow facility is estimated), and it changes the value of

the ocular rigidity employed to estimate the outflow facility (see Eq (23)). For example, if c1 is

strongly positive while the ocular rigidity is assumed to be constant over the pressure range of

interest, then the outflow facility is substantially under-estimated at the higher end of the pres-

sure range, and substantially over-estimated at the lower end of the pressure range.

Now consider ‘stage two’ of the manometric measurement—measurement of the pressure-

time curve and estimation of the outflow facility for the in vivo eye, as described by [48]. Again

prior to cataract surgery, Karyotakis et al (2015) estimates outflow facility based on manomet-

ric testing performed on 19 subjects (average age 71.2 ± 4.1 years).

The time dependent ‘pressure decay curve’ for a single patient is shown in Fig 1 of Karyota-

kis et al (2015). A volume-pressure curve was published by the same research group in 2013
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(see Fig 1 of Detorakis et al (2013)), but it is clear this volume-pressure curve is not linear over

the range 10 mm Hg to 40 mm Hg. Using equation (43) (see S1 Supporting Information Ocu-

lar Rigidity), the pressure-volume data shown in Fig 1 of Detorakis et al (2013) can be reason-

ably approximated with c0 = 45 and c1 = 0.2. We note that we have chosen fitting parameters

that results in the ocular rigidity decreasing with increasing pressure, rather than the ocular

rigidity increasing with increasing pressure (see S1 Supporting Information Ocular Rigidity).

Example 1: For this initial example, we use the pressure-time curve shown in Fig 1 of Kar-

yotakis et al (2015), and the ocular rigidity obtained from the volume-pressure curve shown in

Fig 1 of Detorakis et al (2013) and assume pT equals 3 mm Hg. Using these two data curves,

arbitrarily brought together from two different patients, we estimate the outflow facility by

solving Eq (23) and so the total pressure dependent outflow.

A reasonable fit to the data is obtained (a highly accurate fit is not required for the purposes

of illustration in this example) when c0 = 45, c1 = 0.2, α = 0.06 and �Cp
3 ¼ CSL

T
�Mp

3 ¼ 2:05 �Mp
3

microlitres/minute/mm Hg. Our estimated total pressure dependent outflow at 15 mm Hg is

�C15
3
ðp15 � p3Þ ¼ 1:22ð15 � 3Þ ¼ 14:6 microliters/min. This is our first estimate of the total

pressure dependent outflow at 15 mm Hg for the in vivo human eye.

CSL
T is high for this (arbitrary) data combination, as is the incremental volume change

between 15 mm Hg and 40 mm Hg at 49.1 microlitres. However α is in the range estimated

using first-principles (0.04 to 0.13). This example again serves to illustrate that the ocular rigid-

ity has a profound impact on the estimation of model outflow parameters and so on the pre-

dicted outflow facility and total pressure dependent outflow. With this in mind, we note that

Karyotakis et al (2015) also reported the mean constant ocular rigidity for the group to be c0 =

35.3 and c1 = 0 (which is quite different to the ocular rigidity parameters used in the first exam-

ple). Karyotakis et al’s (2015) ocular rigidity constant was obtained from the pressure-volume

curves of the nineteen subjects with an average age of 71.2 ± 4.1 years.

Analysing the pressure-time data using the experimentally measured ocular rigidity, the

authors found the estimated group mean local outflow facilities are C40 = 0.0672 and C20 =

0.2652. Yet the analysis shown in Example 1 predicts C40 = 0.1917 and C20 = 0.6177. This very

substantial discrepancy in the local outflow facilities clearly demonstrates that our initial

Example 1 model, which brought together an arbitrary pressure-volume curve with an arbi-

trary pressure-time curve from two patients from two different groups, proves unsatisfactory

when attempting to explain the Karyotakis et al (2015) findings. Clearly our model needs to

use the mean ocular rigidity and the measured local pressure dependent outflow facilities

reported by Karyotakis et al (2015) (though of course we may expect a better estimate using

the patient specific pressure-volume and pressure-time curves, rather than using group mean

values). This example illustrates the important point that simply choosing an arbitrary ocular

rigidity results in unsatisfactory outflow facility estimates.

Example 2: The previous example suggests that if we want to estimate the outflow facility

for a subject group, it is preferable to estimate each individual’s outflow facility and then take

the mean, rather than first estimate model parameter means (e.g. ocular rigidity) and use these

to estimate the mean outflow facility. But the second approach is what we have, and so we pro-

ceed with the data as reported by Karyotakis et al (2015).

If we now let c0 = 35.3 and c1 = 0 (reported mean value for group ocular rigidity), we can

find a very good fit to the mean local outflow facilities reported by Karyotakis et al (2015).

After parameter fitting the model, we find C40 = 0.067 is predicted by our model versus C40 =

0.0672 measured, and we find C20 = 0.266 is predicted by our model versus C20 = 0.2652 mea-

sured. From the ratio of C20/C40 we estimate α = 0.069. Then adjusting CSLT to fit C40 = 0.0672

and C20 = 0.2652 while solving Eq (23), we find �Cp
3 ¼ CSL

T
�Mp

3 � 1:058 �Mp
3. We mention that
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taking into account additional Cp data reported between 20 mm Hg and 40 mm Hg does result

in a lower estimate for CSL
T � 1:0, which is closer the reported value by Karyotakis et al (2015).

For CSL
T � 1:0 and pT equals 3 mm Hg, we predict that total pressure dependent outflow at

15 mm Hg is C15
3
ðp15 � p3Þ ¼ 0:55ð15 � 3Þ ¼ 6:6 microliters/min. This is our second estimate

of the total pressure dependent outflow for the in vivo human eye. This estimate is clearly the

most reliable estimate of the two example estimates by far, as it is for a group of nineteen sub-

jects with average age 71.2 ± 4.1 years, and the estimate is based upon experimentally measured

mean local (or point) estimates of outflow facility at two different pressures.

We also mention that the mean pressure-time curve obtained for this reported data is some-

what higher compared to the individual’s pressure-time curve shown in Fig 1 of Karyotakis

et al 2015, falling from 40 mm Hg to only 26.7 mm Hg within four minutes using the above-

mentioned mean parameters, rather than falling from 42.5 to 22.5 mm Hg within four minutes

as shown for the individual pressure-time shown in Fig 1 of Karyotakis et al (2015). But such a

difference is to be expected.

The estimated α = 0.07 is the same as our median ‘first-principles’ estimate of α = 0.07. Nev-

ertheless the direct estimates in this second example are based on experimental measurements

for in vivo human eyes, which gives us much greater confidence in this estimate than our initial

estimates of α based on first principles using data assembled from a diverse variety of sources

(though weighted towards reliable human data).

Example 3: Dastiridou et al (2013) reports the local outflow facilities at two pressures (25

mm Hg and 35 mm Hg) for two groups—control and glaucoma groups. In this example we

consider the glaucoma group only (the next example we consider the normal control group).

All eyes diseases were excluded other than cataract and glaucoma. There are 21 subjects in the

glaucoma group (twelve with primary open angle glaucoma (POAG) and nine with pseudo-

exfoliative open angle glaucoma (OAG)). The average age of the cataract patients is 75.4 ± 7.8

years, and 10 are male and 11 female—all were on medication for glaucoma treatment. Pre-

operative mean IOP was 16 mm ± 5.0 mm Hg, so IOP is well-controlled by medication. Eye

testing was performed immediately prior to cataract surgery.

Using the same method as described for the Karyotakis et al (2015) data, for this group of

subjects the authors estimated experimentally that the ocular rigidity is c0 = 45.5 and c1 = 0, and

C25 = 0.178 (±0.133) and C35 = 0.092 (±0.082). From the ratio of C25/C35 we find again α�
0.069. Then we find �Cp

3 ¼ CSL
T

�Mp
3 � 1:0 �Mp

3. From this estimate, we predict that mean total pres-

sure dependent outflow at 15 mm Hg is C15
3
ðp15 � p3Þ ¼ 0:55ð15 � 3Þ ¼ 6:6 microliters/min.

Example 4: Dastiridou et al (2013) reports the local outflow facilities at two pressures (25

mm Hg and 35 mm Hg) for two groups—controls and glaucoma groups. In this example we

consider the control group only. All eye diseases other than cataract are excluded. There are 21

subjects in the control group. The average age of the cataract patients is 73.2 ± 5.5 years, and

12 are female and 9 male—none were on medications for glaucoma treatment. Pre-operative

mean IOP was 14.5 mm ± 4.8 mm Hg.

Using the same experimental method as described by Karyotakis et al (2015), for this group

the authors experimentally estimated that the ocular rigidity is c0 = 45.5 and c1 = 0 and C25 =

0.292 (±0.166) and C35 = 0.149 ((±0.085). From the ratio of C25/C35, which is very nearly iden-

tical to that found in Example 3, we find again α� 0.069. We then scale the local outflow facili-

ties to find �Cp
3 ¼ CSL

T
�Mp

3 � 1:65 �Mp
3. From this estimate, we predict that total pressure

dependent outflow at 15 mm Hg is C15
3
ðp15 � p3Þ ¼ 0:90ð15 � 3Þ ¼ 10:9 microliters/min.

One interesting and potentially important observation here is that α� 0.07 for both normal

and well-controlled glaucoma groups is the same, while the total hydraulic conductance for

the control group Dastiridou et al (2013) data is considerably increased (70%) relative to the
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glaucoma group. We also mention that the pressure-time curve obtained for this reported data

is now similar to that shown in Fig 1 of Karyotakis et al 2015, falling from 40 mm Hg to 21.9

mm Hg within four minutes using these parameters (the pressure-time curve shown in Fig 1

of Karyotakis et al 2015 falls from 42.5 to 22.5 mm Hg in four minutes).

Example 5: One final, reasonably probable estimate of outflow facility parameters based on

published data that may potentially be useful, is to pair the mean ocular rigidity reported by

Silver and Geyer (2000) (c0 = 30.2, c1 = 0.242), with the individual pressure-time curve found

in Fig 1 of Karyotakis et al (2015). When we do this, we find a good fit to the pressure time

curve when α = 0.06, �Cp
3 ¼ CSLT �Mp

3 ¼ 1:5 �Mp
3. For this fit we find that at the local outflow facili-

ties at 40 mm Hg is C40 = 0.14 (compare to Karyotakis et al (2015) data mean C40 = 0.0672)

and at 20 mm Hg is C20 = 0.45 (compare to Karyotakis et al (2015) data mean C20 = 0.2652).

From these estimates, we predict that total pressure dependent outflow at 15 mm Hg is

�C15
3
ðp15 � p3Þ ¼ 0:89ð15 � 3Þ ¼ 10:7 microliters/min. This is a higher estimate than Example

3. We note that the estimated α = 0.06 is now just below our estimated first-principles mean

estimate, and well within range of α being between 0.04 and 0.013. This is our third and final

estimate of the total pressure dependent outflow for the normal in vivo normotensive eyes.

Summary of model parameter estimates

For our proposed model of outflow there are three key parameters controlling pressure depen-

dent outflow: (i) the hydraulic conductance for the whole eye, CSL
T (microliters/min/mm Hg),

(ii) the exponential decay constant, α (mm Hg)-1 and (iii), and no flow reference intraocular

pressure pT (mm Hg). We have employed animal and human in vivo data to make ‘first esti-

mates’ of the parameters CSL
T , α and pT. We have fitted our model to published data, and in so

doing investigated the likely range of parameters controlling pressure dependent outflow. All

the findings are summarized in Table 2.

Estimating the consolidation coefficient for the in vivo human eye

The consolidation coefficient CC is defined by Eq (24), viz,

CC ¼
K̂ �Cp

ntpnt
Ve� nt

ð30Þ

Table 2. Estimates of model parameters (estimated range in brackets), and total pressure dependent outflow at 15 mm Hg.

Data Source CSL
T

(μliters/min/mm Hg)

α (mm Hg)-1 pT

(mm Hg)

Outflow at

15 mm Hg IOP

(microliters/min)

First-principles estimate SN - 0.07 (0.04–0.13)¶ 3 (2.5–3.9) -

Barany (1964)

(n = 45)

AN 1.0 (0.9–1.1)* 0.05 - 7.7

Brubaker (1975)

(n = 10)

E 0.57 0.029 (0.023–0.035)* 2 (0–3.0) 5.8

Langham and Eisenlohr (1963) (n = 1) N 0.74 0.05 - 5.8

Karyotakis et al (2015) (n = 19) N 1.0–1.05 0.07 (0.05–0.075)* - 6.6

Dastiridou et al (2013) (n = 21) G 1.0–1.05 0.07 - 6.6

Dastiridou et al (2013) (n = 21) N 1.65 0.07 - 10.9

Example 5 SN 1.5 0.06 - 10.7

N = normal in vivo human eyes, SN = estimate from data synthesized to approximate normal in vivo human eyes, AN = in vivo Vervet monkey eyes,

E = enucleated human eyes, G = in vivo human eyes diagnosed with glaucoma but IOP well-controlled by medication (approximately 60% POAG and 40%

pseudo-exfoliative OAG). Mean estimates for groups display considerable variability. It is certain that subject to subject variability is considerably larger.

* ±1 SEM
¶ estimated ±1 SEM

https://doi.org/10.1371/journal.pone.0188769.t002
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Assuming a normal resting in vivo eye at 15 mm Hg, ranging from young adult to aged,

plausible values for the ocular rigidity (K̂=Ve� nt) are the range 0.01 to 0.03, and �Cp
nt for reason-

ably small increments of IOP, is in the range 0.2 to 0.3. Then for normal eyes we estimate CC
(min-1) at 15 mm Hg as defined above to be in the range 0.03 to 0.14. It appears the most likely

values are K̂=Ve� nt equals 0.028, �Cp
nt equals 0.25 and pnt equals 15 mm Hg, giving a most likely

estimate of CC equals 0.105.

Discussion

Implications for clinical practice and research

The interplay between net fluid production via active ion transport and pressure dependent

outflow determines intraocular pressure. Because fluid outflow from the in vivo eye is pressure

dependent, this complicates measurement and prediction of outflow facility [49], and the esti-

mation of total pressure dependent outflow. Ideally a clinician would like to know the total

pressure dependent outflow at every IOP for an in vivo eye (e.g. Fig 1). For in possession of

such information, the local outflow facility, average incremental outflow facilities for any

range of IOPs, and model parameters can be estimated, and so an assessment can be made of

any deviation in model parameters from normal, which may assist diagnosis, prognosis or

monitoring of eye disease. But in practice, we do not know how the total pressure dependent

outflow changes with intraocular pressure.

Typically a clinician probes the eye system response by first inducing an incremental vol-

ume change, and then measuring the time dependent pressure response [33]. Based on this

data, an ‘outflow facility coefficient’, C can be calculated using Grant’s equation (see Eq 2

[33]). The C found from Grant’s equation is usually not symbolically distinguished from the

‘conventional outflow facility’, also denoted C, which is defined using the modified Goldman

equation (see Eq 1 [33]).

Goldman’s equation says the total pressure dependent outflow is the product of the outflow

facility C and the ‘driving pressure’, where the driving pressure is defined as the difference in

intraocular pressure and episcleral pressure. The outflow facility C in Goldman’s equation is

usually interpreted as being primarily a ‘material property’ of the membrane and/or tissues

through which fluid flows [43]. We notice that Grant’s equation assumes that the episcleral

pressure changes a small amount during tonography [33], but this correction does not depend

on the change in intraocular pressure. So with a fixed episcleral pressure, any change in driving

pressure associated with elevated intraocular pressure is assumed to be solely due to the change

in intraocular pressure. In contrast, the theory developed here assumes the pressure dependent

outflow is primarily due to pressure dependent changes in the driving pressure (p − pref).
It is reported that a surprisingly high fraction of outflow resistance (up to more than one

half at normal intraocular pressure) resides distal to the trabecular meshwork [65, 73–76]. It is

known there can be significant variation in resistance and variation in the diameter of episcl-

eral veins [65, 76]. It is known there is a significant pressure gradient and pressure drop

between the episcleral veins at the limbus and more distant ophthalmic veins (e.g. orbital

veins, branches of the facial vein) [25, 63]. There may be significant resistance (and attendant

pressure decrease) as aqueous humor flows through the network of aqueous filled vessels,

which at some are point join blood filled vessels, which then join the episcleral vessels, which

eventually join larger ophthalmic veins. Reports [75]:

After flowing through the trabecular meshwork, aqueous humor (AH) enters Schlemm’s

canal (SC), which expresses both blood and lymphatic markers; AH then passes into collec-

tor channel entrances (CCE) along the SC external well. From the CCE, AH enters a deep
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scleral plexus (DSP) of vessels that typically run parallel to SC. From the DSP, intrascleral

collector vessels run radially to the scleral surface to connect with AH containing vessels

called aqueous veins to discharge AH to blood-containing episcleral veins.

Exactly where we define our ‘membrane reference pressure’ for the conventional pressure

dependent aqueous pathway is uncertain, but it is located somewhere between Schlemm’s

canal and the larger ophthalmic vessels (the precise location at least partly depending on the

duration of the experiment, the extent of eye tissues involved in distortions resulting from

changes in IOP, and other eye state specific details). We also note there is significant non-lin-

ear variation in the driving pressure between the vitreous and the choroid interstitium over

the pressure range 5 mm Hg to 40 mm Hg, as measured by direct cannulation of the choroid

[23].

In both these cases, and indeed for all anatomical structures in the eye across which fluid

flows, it is certain that increasing intraocular pressure distorts the local aqueous, lymphatic

and blood networks in tissues of the eye through to the outside surface of the sclera, increasing

aqueous and vascular outflow resistance [77–81], and thereby increasing fluid back-pressure

in these flow networks. The degree of vascular distortion induced by the tissue loading from

the IOP is to some extent mitigated by the fluid back-pressure in the aqueous, vascular and

lymphatic networks, which mechanically holds the network vessels open against the tissue

loading due the IOP that tends to collapse the vessels. The aqueous back-pressure also depends

on both the magnitude and relative amounts of aqueous flow and blood flow through the aque-

ous and vascular networks, so there is a dependence on mean arterial pressure and orbital

venous pressure [63]. The consequences of aqueous and vascular network distortion is also

mitigated by autoregulation of the vascular network (which includes neural [76], autocrine

and paracrine mechanisms), in ways that are only beginning to be understood [65]. For exam-

ple increased back-pressure proximally may be offset by less back-pressure more distally, or

vice-versa.

This increased aqueous and vascular back-pressure in turn increases local interstitial tissue

pressures (interstitial fluid pressures are generally larger than aqueous or vascular pressures to

ensure flow towards these networks), and this interstitial fluid pressure helps support the IOP.

Because tissue is a saturated porous material, the tissue distortion of the extracellular matrix is

controlled by the ‘solid stress’ or (‘effective stress’) in the tissue (which is equal to the total

stress plus the interstitial fluid pressure). For eye tissues, the applied tissue loading is the IOP

(which is equal to the applied ‘total stress’ on the inner surfaces of eye tissues i.e. solid stresses

are zero at the inner surfaces of the eye). Tissue distortions are caused by drag forces on the

solids in the tissue as aqueous fluid flows through the tissue. The key to understanding this sys-

tem is to realise that a constant hydrostatic pressure causes no tissue distortion, while the tissue

drag forces that cause tissue distortion are proportional to the fluid outflow rate. If drag forces

are too large, then tissue distortion increases, which collapses aqueous and vascular networks

and outflow reduces, and so drag forces reduce. On the other hand, if drag forces are too

small, then tissue distortion is small and aqueous and vascular networks open up and outflow

increases, and so drag forces increase. These two opposing processes reach an equilibrium

state. It appears plausible that as IOP increases, the two processes involving the aqueous and

vascular networks within the saturated porous media interact and reach a ‘limit equilibrium

state’, in which the ‘driving pressure’ across the tissue becomes independent of IOP.

In the choroid and supraciliary space, the interstitial protein concentration (particularly

albumin) may also influence the local interstitial fluid pressure and indeed fluid transport

across the eye tissue or anatomical structure of interest. This is not included in the current

model, and so this represents a model limitation. However we note that a constant osmotic

Estimating outflow facility for human eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0188769 December 20, 2017 32 / 53

https://doi.org/10.1371/journal.pone.0188769


suction has the effect of changing the no flow intraocular pressure pT while leaving α
unchanged). We also note that choroidal albumin concentration in the cynomolgus monkey is

measured at between 2% and 12% of blood concentration [82]. While the smaller value for

albumin concentration has negligible effect on the analysis presented here, the larger value has

the effect of decreasing pT by about 2.5 mm Hg.

Aqueous and vascular back-pressures and accompanying local increases in interstitial tissue

pressures reduce local fluid driving pressures below what they would have otherwise been, and

so pressure dependent outflows from the eye are less than what they otherwise would have

been. Given this, it seems reasonable to suppose that the fluid driving pressure (p − pref)
changes due to eye tissue distortions as IOP increases, and so it appears reasonable to include

this phenomena in a model of pressure dependent outflow from the eye.

At least for relatively short-term experiments, tissue distortions and attendant back-pres-

sures induced by changing IOP are reversible, meaning the eye moves through ‘eye states’ that

are reversible. So for example, these eye states are essentially the same for increasing IOP as for

decreasing IOP [23, 43, 78]. Borrowing terminology from thermodynamics, the existence of a

state function means that a particular eye state is independent of the path taken from an initial

state to a final state. This suggests the existence of a ‘state function’ for outflow from the eye, so

that eye states can be defined by state model parameters (e.g. the eye states can be defined by

the theoretical model parameters such as α, CSL
T , pT, IOP and net fluid production, as described

herein).

The concept of a state function is reinforced by the observation that even for complete

inversion (i.e. head-down position) causing substantial changes in venous back-pressure [66],

at least in the short term, pressure dependent outflow from the eye, governed by α, CSLT , pT and

IOP, and the eye response continues to behave predictably. Postural inversion involves all out-

flow structures of the eye, not just the conventional outflow pathway, so the existence of a state

function for the whole eye implies that all outflow pathways in the eye behave predictably. By

this reasoning, the theoretical model proposed here may represent an ‘equation of state’ for the

eye, but further testing of the model with experimental data is required to confirm this

hypothesis.

There is no a priori reason to expect that the eye would behave as if there were a state func-

tion describing its behaviour, other than the existence of multiple, powerful homeostatic feed-

back processes (both biological and biophysical) at all levels of eye (and cardiovascular

system). But each eye is different, and assuming state functions exist, every eye almost certainly

has its own state function (i.e. each eye has its own model parameters).

In this paper we have developed a novel model for interpreting pressure-volume and pres-

sure-time data, and so estimating incremental pressure dependent outflow and incremental

outflow facility that takes account of ‘distortional pressures’ on eye outflow via changes in fluid

driving pressure, (p − pref). Like the Goldman equation, the pressure dependent outflow in this

new model is the product of the outflow hydraulic conductivity and the driving pressure (p −
pref). We note that C in the Goldman equation applied to the conventional pathway is equiva-

lent to CSL
con in the model presented here (the subscript con denotes conventional pathway). A

non-linear pressure dependent driving pressure versus IOP is incorporated in the definition of

outflow facility, so the outflow facility itself becomes pressure dependent while the hydraulic

conductivity is assumed to be constant.

We note in passing that the pressure dependence of the outflow facility was noticed in the

1960s but attributed to changes in aqueous production rather than driving pressure for the

pressure dependent outflow. For example, [41] comments: ‘Steady-state perfusion studies were

too few to yield constructive information on this aspect, but it was of interest that, in both
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living eyes studied, the pressure-flow relationship was curvilinear and consistent with a signifi-

cant suppression of aqueous humor formation by an increase in intraocular pressure’.

But numerous experimental studies have shown the outflow facility is pressure dependent

(including flow at the ciliary body, which makes a minor contribution to total pressure depen-

dent outflow), so we need to denote the average outflow facility using the new notation �Cp2
p1

,

which precisely defines the pressure range over which an average outflow facility is measured

or calculated. For the purposes of the theory developed here CSL
T is taken to be constant, which

is probably a good approximation for the short term tests employed to measure outflow facil-

ity. However CSLT is generally time dependent, and the model can accommodate a pressure

dependent CSL
T if data suggests a need to explicitly include this (i.e. via α2i as described in the

theoretical development).

For the new model presented here, three key parameters govern pressure-dependent out-

flow, namely: (i) the hydraulic outflow conductance for the whole eye (denoted CSLT ), (ii) the

exponential ‘decay constant’ describing the rate of decrease of local outflow facility with IOP

for the whole eye (denoted α) and, (iii) the IOP at which there is zero pressure dependent flow

into or out of the whole eye (denoted pT). Using the theory presented here, if these three pieces

of information are known the total pressure dependent outflow at every IOP for an in vivo eye

is known, and so all pressure dependent outflow facilities can be estimated, including those

measured in the clinic (i.e. this is typically �Cp2
nt , where pnt is the patient specific normotensive

pressure).

We assume that a clinician wanting to implement this theory will have available two esti-

mates of incremental outflows at two different IOPs, or two estimates of average outflow facili-

ties over two pressure ranges (i.e. they have two points on a curve shown in Fig 5, obtained

from pneumatonography at two different weights). The ‘thorny problem’ that presents itself is

how to reconstruct the total pressure dependent outflow curve (or equivalently, estimate the

three model parameters) from two estimates of incremental outflows or average outflow facili-

ties. Unfortunately this is not possible for one key reason: while we can estimate both CSLT and

α assuming pT, in fact we do not know and cannot estimate pT measuring incremental outflows

(e.g. even three measurements of incremental outflows cannot fix pT, though it can reduce

uncertainty in the estimates of CSL
T and α). To estimate pT we need to know either at least one

total outflow at one IOP, or one driving pressure for the whole eye at one IOP.

In a research context, it may be possible in a small group of patients to observe the rate of

subretinal fluid drainage following retinal detachment [18], and also measure aqueous outflow

fluorometrically [83], so enabling an estimate to be made of total outflow. Another potential

way to try and circumvent this problem in the clinic would be to estimate the outflow or driv-

ing pressure for the conventional outflow pathway [60, 83], and use estimated whole eye

parameters CSL
T and α to then estimate the no-flow pressure pTcon. pTcon would then be assumed

to be representative for the whole eye. But in addition to being practically challenging, clearly

this would again be subject to both modelling and measurement error, and requires further

research to know if it is a clinically useful approach. Clearly a significant practical problem

when estimating model parameters from the incremental outflows is measurement error.

In this manuscript we have attempted to managed these two problems by providing a pres-

sure dependent outflow model that uses precisely defined parameters to interpret measured

data (i.e. by precisely defining �Cp2
p1

), and by using a conservative value for pT, meaning making

a choice that results in a probable low estimate of total pressure dependent outflow from the

eye. We have shown the estimate of pT = 3 mm Hg is in reasonable agreement with a range of

available human and animal data (see first-principles parameter estimation summarized in

Table 2). The most convincing evidence available is for the conventional outflow pathway,
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where the total outflow at normotensive pressure has been extensively investigated and so

known. It is demonstrated here that pTcon is reasonably estimated to be about 3 mm Hg. While

this is encouraging progress, the reliability of the estimated pT estimate for the whole eye

remains somewhat uncertain, and clearly further research is required.

However we can estimate α for the whole eye by first taking the ratio of the incremental

outflows at the known IOPs, and finding the curve in Fig 4 that has the same ratio of incre-

mental total outflows at the two known IOPs. Once α is known, we can then scale CSL
T from Fig

4 (Fig 4 is constructed for CSL
T ¼ 1). We can scale from Fig 4 because the ratio of the hydraulic

conductivities (actual hydraulic conductivity to the one assumed in Fig 4) has the same pro-

portion as the ratio of the pressure dependent outflows (i.e. the actual incremental outflow (at

known IOP) to the one shown in Fig 4 (at known IOP and the now known α)). Of course the

precision and accuracy of incremental outflow estimates depends on model uncertainty

(including any assumptions about model parameters), and the accuracy of the estimate

depends on the precision and accuracy of the measurements of average outflow facility.

This is probably where the clinical relevance of the model proposed in this paper rested,

until [47] and [48] published what are effectively estimates of local outflow facilities (denoted

here Cp) for the aged in vivo human eye. As far as we are aware, this is the first published data

on local outflow facilities for the in vivo human eye. In the context of our theory, these papers

are important publications because they demonstrate that the local outflow facility for in vivo
human eyes is reasonably approximated by an exponential decay function for the whole eye.

This fact substantially reduces potential modelling uncertainty. Nevertheless our ‘thorny prob-

lem’ remains: how to reconstruct the total pressure dependent outflow curve from estimates of

local outflow facilities.

The process of reconstructing incremental pressure dependent outflow curves from esti-

mates of the local outflow facility is most simply found by evaluating a definite integral

between the ocular pressures of interest (see Eqs (14) and (26)). The only real difficulty that

presents itself when reconstructing the total pressure dependent outflow curves is again not

knowing the IOP at which there is no pressure dependent flow into or out of the whole eye,

that is pT. Typically we can estimate α by first taking the ratio of two measured local outflow

facilities, and finding the curve in Fig 3 that has the same ratio. Once α is known, we can then

scale CSLT so two (or more) estimated local outflow facilities have the same magnitude as the

measured local outflow facilities. Once again, the precision and accuracy of outflow estimates

again depends on model uncertainty, model assumptions, and on the precision and accuracy

of the measurements of local outflow facility. But given the exponential decay curve fits the

experimentally measured human in vivo local outflow facilities very well, model uncertainty

for the in vivo human eye is considerably reduced.

Model uncertainty is further reduced by our reanalysis of the experimental data presented

by [39] and Brubaker (1975). We have found the exponential model fits their data reasonably

well too. The data presented by Brubaker (1975) is extraordinary in so far as the authors are

aware, it is one of the few publications that presents the total pressure dependent outflow for

the whole eye across nearly the entire range of IOPs from 10 mm Hg up to 50 mm Hg. While

the data is for human eyes, the only drawback is that the data is obtained as an average of data

from enucleated human eyes. Nevertheless in terms our model this data suggests the no-flow

IOP (pT) is from zero up to 3.0 mm Hg. Interestingly we notice that a ‘critical closure pressure’

has been reported in enucleated rabbit eyes (where pT is reported to be about 7 mm Hg [76]).

Though additional explanations for a threshold pressure are possible in vivo (e.g. active cell

contraction), the presence of a threshold flow pressure pT in enucleated eyes is consistent with

a residual compressive (solid) stress in the extracellular matrix, so that aqueous and vascular
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networks are shut by the residual compressive stress, and so there is no flow below the thresh-

old IOP pressure pT.

And we again note that extrapolation of direct cannulation data for choroidal interstitium

in cynomolgus monkeys also suggests that pT around 3 mm Hg is a plausible in vivo estimate

for this outflow pathway [23]. And in addition the two analyses of conventional pathways for

in vivo in human eyes also suggests that pT is around 3 mm Hg. So this data is consistent with

our modelling assumption (pT is 3 mm Hg) used throughout the calculations presented in the

Results section (unless stated otherwise). However it is likely that this value changes with in
vivo conditions and from eye to eye. It seems a plausible range for a normal pT in the normal

eye is probably in the range from minus a few mm Hg up to positive 4 or 5 mm Hg.

We now turn to consideration of the most likely estimate for the decay constant α, which in

the theory formulated here is responsible for decreasing pressure dependent outflow facility

with increasing intraocular pressure. Our ‘first-principles’ estimate for the decay constant is

grounded in the reported changes in choroidal interstitial pressures for cynomolgus monkeys

and the in vivo resting episcleral venous pressure in humans, but heavily weighted towards the

more reliable human data. Based on this mixture of animal and human data, we estimated the

median decay constant in normal young adult eyes to be about α = 0.07, with a normal range

for α estimated to be 0.04–0.13.

Based on experimental data for the aged-adult and apparently normal in vivo human eyes,

[47] and [48] calculate local outflow facilities and then statistically fit this data to an exponen-

tial function. The statistical fitting parameters turn out to be our CSLT and α, which in our the-

ory are physiological meaningful model parameters, rather than simply statistical curve fitting

parameters. Karyotakis et al (2015) estimated the scale fitting constant to be 0.997, while the

exponential decay constant is estimated as 0.069. We note that to estimate the local outflow

facilities, Karyotakis et al (2015) assumed a constant ocular rigidity in their data analysis (and

when we use the reported values, we also obtain similar estimates). Importantly, the data and

curve fitting estimate for the group of 19 subjects (average age 71.2 ± 4.1 years) is clearly con-

sistent with the normal range for the decay constant based on our independent first-principles

estimate. Pleasingly the range for first-principles estimate for α (0.04 to 0.13) and the range for

the experimentally measured in vivo estimate of α (0.05 to 0.075), completely overlap, giving

greater confidence in both estimates for normal in vivo human eyes (see summary of results

shown in Table 2).

While any difference in these estimates may be partly related to age of the subjects whose

data was employed for these two estimates, and partly related to differences in the pressure

range over which the estimates are made, clearly the experimentally measured estimate for the

in vivo human eye by [47] and [48], are more reliable estimates than our first-principles esti-

mate. The first-principles estimate suffers from inadequate data about flow across the retinal

pigmented epithelium, and the necessary accompanying assumptions made along the way to

obtain the first-principles estimate. For example, the use of data obtained from cynomolgus

monkeys rather than humans, differences in pressure ranges, and uncertainty about the frac-

tions of flow exiting the anterior and posterior chambers all make the first-principles estimate

less reliable.

As discussed in the development, our theory is somewhat indefinite about the specific phys-

ical origin of the decay constant (e.g. IOP induced tissue distortions result in changes in inter-

stitial fluid pressure, and aqueous, lymphatic and vascular network back-pressures), and so

indefinite about the origin of the decreasing local pressure dependent outflow facility with

increasing intraocular pressure. However based on the analysis of experimental published data

shown above, it seems likely that for IOPs up to about 40 mm Hg for human subjects, the pro-

posed theory appears to fit the existing experimental data rather well.
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Nevertheless we also need to keep in mind that there are almost certain changes occurring

over longer time scales, due to differential gene expression and long-term tissue remodelling,

not to mention changes due to disease states. In this context, it is interesting to note the

remarks by [75] about the location and mechanism by which (free) energy dissipation in the

aqueous outflow occurs. These authors comment:

Distal resistance and its relationship to the [trabecular meshwork] TM and [Schlemm’s

canal] SC are key considerations to define outflow resistance in glaucoma. We must deter-

mine whether distal resistance means distal to the TM or distal to SC external wall, which

represent two distinct mechanisms. The distinction has ramifications for both theoretical

constructs for outflow resistance and minimally invasive glaucoma surgical approaches. If

distal indicates distal to the TM inner wall, then TM tissues still may have a central role in

resistance, since TM tissues can change their location and configuration. Such resistance

changes can occur, since the trabecular tissue distends into SC to occlude SC lumen, dis-

tends into the collector channels, compresses SC structures, and reconfigures the CCE at

SC external wall through their connections.

If distal refers to only structures that are distal to the SC external wall, then distal resistance

alternatives are limited to the CCE and the intrascleral collector channels in the deep scleral

plexus (DSP), which course through the sclera to the episcleral veins and the aqueous veins.

Identifying the TM, SC, and the distal outflow pathways as possible discrete sites of resis-

tance raises the possibility that resistance occurs in series. This hypothesis suggests that

resistance sites act synergistically with a spectrum of relative inputs that act in concert to

synchronously regulate AH outflow and determine IOP.

Given the uncertainty about the precise location of (free) energy dissipation, it seems

appropriate that our theory is somewhat indefinite about exactly where the reference pressure

is measured, and indefinite about the multiple mechanisms and their interactions underlying

the decay constant α. What is known is that the outflow facility is pressure dependent, and it is

shown here that the observed pressure dependence of outflow facility is reasonably well

explained using the theory described herein. So from one perspective, the theory itself can

stand independent of any physical mechanism that attempts to explain it, and still be regarded

as a useful theory if it makes useful predictions.

For example, the qualitative structure of estimated total pressure dependent outflows show

in Fig 1 is of considerable practical interest. The various curves show that when the decay con-

stant α becomes sufficiently large, the total pressure dependent outflow curve flattens, and

eventually becomes effectively constant. For example when α = 0.15, the total pressure depen-

dent outflow is rather flat from an intraocular pressure of about 15 mm Hg and higher, and is

almost completely flat above an intraocular pressure of 40 mm Hg. This is confirmed by look-

ing at Fig 3, which shows the local outflow facility approaches zero as intraocular pressure

increases above about 30 mm Hg. According to the theory developed here, this occurs physi-

cally because a unit increase in intraocular pressure is matched by a unit increase in membrane

reference pressure, so when α = 0.15, over the range 15 mm Hg to 40 mm Hg there is very little

net increase in driving pressure across eye membrane with increasing intraocular pressure.

These observations may provide an explanation for why some eyes exhibit large circadian

variations in intraocular pressure. For when the total pressure dependent outflow is ‘flat’ with

respect to IOP, comparatively small circadian variations in net eye fluid production [84], will

result in large variations of IOP. The practical effect is that as α becomes large, intraocular eye

pressure becomes unstable. Eyes with large and unstable variations in intraocular pressure are
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reported to exist. For example, Wilensky (1991) classifies diurnal variations in intraocular

pressure as ‘flat’, ‘rhythmic’ and ‘erratic’, with the percentage of erratic diurnal variations

increasing from 0% in normal eyes, to 14% in those diagnosed with ocular hypertension to

22% in those diagnosed with glaucoma. Indeed large diurnal intraocular pressure fluctuations

have been identified as an independent risk factor for glaucoma progression [85, 86].

To give another example testifying to the model’s potential theoretical usefulness, we con-

sider uveoscleral (unconventional) outflow. Tian et al (2006) explains:

In normal living monkeys, trabecular outflow is pressure sensitive and uveoscleral outflow

is comparatively pressure-insensitive when IOP is greater than 7 to 10 mmHg. Although,

under some circumstances, such as at low pressures. . .. uveoscleral outflow may not be

completely pressure insensitive, pressure-insensitive outflow typically represents primarily

uveoscleral outflow. . . Based on Bill’s studies when the pressure is elevated from P0 to P1 at

the beginning of perfusion, uveoscleral outflow will increase pressure-dependently until the

pressure reaches a specific point (e.g., 7–10 mmHg). However, when the pressure is elevated

from P1 to P2 during perfusion, the uveoscleral outflow will be no longer pressure sensitive.

In terms of the present theory, we see that so-named ‘unconventional’ uveoscleral outflow

pathway may in fact be quite ‘conventional’ in the sense that it can be regarded as pressure

dependent outflow with an unusually large α. For example if αuv = 0.25 (i.e. about 3 to 4 times

larger than the normal α for the whole eye) then 92% of the maximum total outflow is attained

at 10 mm Hg, while 98% of the maximum total outflow via this route is attained at 15 mm Hg.

For all higher IOPs, for all practical purposes uveoscleral outflow can be regarded as pressure

independent. We see the theory presented here in a small but useful way provides insight, cre-

ating a more complete ‘mental model’ of uveoscleral outflow, one that subtly changes our

understanding of pressure dependent outflow from the whole eye.

Contemplating the theory presented here, many new hypotheses present themselves. One

hypothesis is that eyes showing erratic or usually large circadian variations in IOP [87] are

likely to have a large α. An alternate hypothesis is that hydraulic conductivity for the eye, CSL
T ,

may decrease sufficiently for similarly unstable behaviour to occur. Yet another hypothesis

might be that both α and CSLT increase with age, with the beneficial increase in CSLT normally off-

setting the deleterious increase in α, which together maintain a normal IOP with increasing

age. However if α increases more quickly than CSLT , then ocular hypertension and eventually

glaucoma may result. To examine these hypotheses requires more extensive data sets to better

define parameter distributions and establish any correlations between pT, α and CSLT , and how

this may change with age.

Finally we reflect further on the analysis of the ‘inversion experiment’ reported in the

Results. We found that immediately following inversion, the measured parameters were con-

sistent with the model proposed here, and the experimental results were readily parameterized.

But over an unspecified period of time, under the influence of the elevated hydrostatic head of

about 22.5 mm Hg, in terms of the current model it seemed likely that the no-flow intraocular

pressure increased from about 2.5 to 7.75 mm Hg, an increase of 5 mm Hg, and this change

enabled aqueous production to return to its former rate.

But there is an alternative outflow model that takes into account an (additive) constant

background pressure pB (as mentioned in the development), which can be included by a sim-

ple modification of the theory that will be examined in a future paper. This modification

includes the additional parameter pB that enables the outflow curves to be translated horizon-

tally (as we know, the parameter pT enables the outflow curves to be translated vertically). In

this model extension, the original model curves in the all the above figures can slide along the

Estimating outflow facility for human eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0188769 December 20, 2017 38 / 53

https://doi.org/10.1371/journal.pone.0188769


IOP axis under the influence of a background pressure. Experimental results consistent with

this theory have been published [88]. Based on the theory of porous media (which says tissue

deformations are not controlled by total stresses, but rather by effective or solid stresses, and

hydrostatic pressure causes no tissue deformation), it appears this background pressure model

is grounded with a sound theoretical basis.

This range of theoretical models appears to suggest that immediately after inversion, the

first model is a good representation of what was observed experimentally. But then over a rela-

tively short time (e.g. half an hour), the background pressure in the whole eye increases to a

constant back-ground value, and the second model is then explanatory. To obtain the same

rate of fluid production in the inversion experiment as prior to inversion, the background

pressure pB throughout the eye needs to be about 18 mm Hg, while pT remains unchanged. In

this case, we would expect eye pressure to return to normal upon assuming an upright posi-

tion, once excess fluid in the eye had drained. Finally, the first model predicts that in the long-

term, pT increases by about 5 mm Hg (possibly due to tissue remodeling). If tissue remodelling

is responsible for this change, then we would expect that it would take some days, weeks or

months to achieve. And because tissue remodelling cannot be quickly reversed, we expect that

IOP would not return to normal immediately upon resuming an up-right position.

We note that following surgical correction of spontaneous multiple A-V fistulas that were

increasing venous pressure in one eye (which is physiologically analogous to a reversal of pro-

longed inversion), [89] reports: ‘At the second month of follow-up. . .the IOP elevation had

regressed’, suggesting it takes some time for IOP to return to normal. It is yet unclear if this

proposed sequence of events is correct, but the model predictions described here can be readily

discriminated experimentally, as their respective responses to further incremental IOP

increases are very different. However it is possible all the modelling predictions are correct,

and indeed it is likely that the real eye behaves with elements of several models that are con-

nected to each other through time-dependent model parameters. Clearly this requires further

investigation.

Estimates of pressure dependent outflow and outflow facilities for the

eye

The experimental measurement of outflow facility for the in vivo eye is challenging. For in vivo
intracameral measurements on human eyes, readings are confounded by breathing, intraocu-

lar pulsations and any eye movement. Estimating outflow facility accurately based on pres-

sure-time curves is critically dependent upon the accurate estimation of ocular rigidity, as

outflow facility estimates change significantly with microliter variations in the volume of

excess fluid estimated to be draining from the eye. Ocular rigidity estimation relies upon accu-

rate estimation of the pressure-volume curve for each individual eye. Even seemingly good

coefficients of determination for the pressure-volume curve (e.g. a curve fit to the data with an

r2 value of say 0.95) can lead to a significant error in the estimation of outflow facility com-

pared to a curve fit with an r2 value of 0.99. For this reason the analysis presented here strongly

suggests that using an adjustable pressure dependent ocular rigidity, such as the one developed

by Silver and Geyer (2000), can result in significantly more accurate estimates of outflow facil-

ity relative to those estimates assuming a constant ocular rigidity.

Based on the data presented in (Karyotakis, Ginis et al. 2015), our analysis suggests that for

a group of 19 cataract patients, average age 71.2 ± 4.1 years, with no known eye disease, the

mean average outflow facility (�C15
3

) is around 0.55 microlitres/minute/mm Hg. At normal

intraocular pressure we estimate the total pressure dependent outflow to be 6.6 microlitres/

minute (see Results, Example 2). This conservative estimate is more than twice as large as the
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reported average anterior chamber rates of aqueous formation (at around 2.4 to 3.0 microli-

tres/minute—normal range 1.8 to 4.3 microlitres/minute [21, 27, 28, 51, 64, 90].

However in this context we note that Karyotakis et al (2015) also reportedmedian local

resistances at several IOPs (local resistance is the inverse of local outflow facility), which are

somewhat different to the mean local resistances. Fitting an exponential curve to the median

local outflow facilities we find CSLT is then about 0.85 microlitres/min/mm Hg, and estimated

median pressure dependent outflow would then be about 5.6 microlitres/min. However in the

following, we work with the mean pressure dependent outflow estimate rather than the

median estimate, as mean estimates are most often reported in the literature.

These model estimates are broadly consistent with fluorometric measurements of total

aqueous outflow measured at 5.2 ± 1.9 microlitres/minute for Beagle dogs [91]. The outflow

facility for Vervet monkeys (n = 45) is reported by [39] to be around �C21:4
12

equals 0.55 microli-

tres/minute/mm Hg, with a ‘resting intraocular pressure’ p0 of approximately 9.1 mm Hg. Our

reanalysis of the data shown in Fig 7 of Barany (1964), indicates that α is approximately 0.05,

rather than zero as suggested by [39]. We observe that the estimated α� 0.05 is somewhat

lower than the first-principles estimates for α (mean 0.07 and range 0.04 to 0.13), and some-

what lower than the estimate for aged human eyes (α around 0.07). The estimate for Vervet

eyes of CSLT � 1:0 (range 0.90 to 1.10) appears reasonable when compared that for the in vivo
aged human eyes (CSL

T � 0:74, and CSL
T � 1:0 � 1:7). Estimates of total pressure dependent

outflow for Vervet monkey eyes in vivo is around 4.45 microlitres/min at 9.1 mm Hg (resting

IOP), is consistent with the 5.2 microlitres/min in vivo estimate for Beagle dogs [91] and with

the 6.6 microlitres/min we estimated above for aged in vivo human eyes.

Brubaker (1975) reports testing ten, enucleated human eyes less than 24 hours after enucle-

ation, with ‘episcleral tissue and bulbar conjunctiva carefully removed’, using a technique that

‘minimises the artefactual effects of ocular stretching and anterior chamber deepening’ (no

details of age are given). At 15 mm Hg measured mean total pressure dependent outflow aver-

aged over the 10 eyes is around 5.85 microlitres/min (see Fig 2 and Table I [43]). If the average

data shown in Fig 2 in Brubaker (1975) is fitted to an exponential decay curve, prediction accu-

racy is excellent when pT equals 2 mm Hg, α� 0.029 (range 0.023 to 0.035) and CSL
T ¼ 0:57.

This estimate for α is below our estimated range for α based on our first-principles estimate,

which employed data from in vivo eyes (α range 0.04 to 0.10), but we note that when pT equals

3 mm Hg, α� 0.038 (range 0.030–0.045) and, which is at the lower end of our estimated range

for the in vivo eye.

It appears that pT, α and CSL
T are all lower for enucleated eye tests relative to in vivo eye tests,

which is perhaps not surprising given the substantive differences between ex vivo and in vivo
eye conditions, even though the pressure dependent outflows at normotensive pressures are

predicted to be similar. Brubaker (1975) pressure tested the eyes through an ‘up-down’ or

‘down-up’ pressure sequence twice, and we note in passing that α reduces significantly

between first and second testing (from α equals 0.041 on the first testing to 0.024 on the second

testing, at pT equals 2 mm Hg and CSL
T ¼ 0:60), which appears to be indicative of further signif-

icant changes occurring in the eye due to the test procedure itself. For example pressure depen-

dent outflow at 50 mm Hg is 11.70 microlitres/min on the first test, but this increases to 16.55

microlitres/min on the second test (a 40% increase).

Nevertheless, the enucleated eye data presented also demonstrates that an exponential

approximation of local outflow facility provides an accurate representation of pressure depen-

dent outflow across the pressure range 10 mm Hg to 50 mm Hg. Further, it can be observed

from Table 2 that for enucleated human eyes CSLT � 0:57 microliters/min/mm Hg when pT
equals 2 mm Hg, but this rises to CSLT ¼ 0:70 when pT equals 3 mm Hg, which is consistent
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with other in vivo estimates of CSL
T shown in Table 2. For example the estimate of CSL

T � 0:70

microliters/min/mm Hg is very close to the estimate based on in vivo data presented by [41]

for a single subject (i.e. CSLT � 0:75 microliters/min/mm Hg and α� 0.05).

Interestingly we can also employ the model to analyse the incremental outflow facility for

the whole eye based on pneumatonometry and pneumatonography data reported in [33]. Fifty

six eyes from 28 healthy participants were measured (age range 41 to 68 years). Using the stan-

dard assumed ocular rigidity constant, the measured outflow facility was 0.24 ± 0.08 microli-

ters/min/mm Hg, but if the measured ocular rigidity for the group was used, the measured

outflow facility was found to be 0.21 ± 0.07 microliters/min/mm Hg. If we assume that for in
vivo human eyes CSLT � 0:7 � 1:0 microliters/min/mm Hg, pT equals 3 mm Hg, and that the

mean intraocular pressure for the test is about 28 mm Hg, then α can be read directly from Fig

5 (or finding the incremental pressure dependent outflow from the incremental facilities,

using Fig 4 that is more accurately read). When CSL
T ¼ 1:0 microliters/min/mm Hg, α is esti-

mated to be about 0.075. When CSL
T ¼ 0:7 microliters/min/mm Hg, α is estimated to be about

0.055. Pleasingly, we observe these estimates are close to CSL
T � 0:75 microliters/min/mm Hg

and α� 0.05 estimated from the single subject reported in [41], while the 0.075 estimate is

close to the first-principles estimate (0.07). Most importantly, this estimate is close to the

model estimated α based on the data presented by [47] and [48] (see Table 2). Of course if the

incremental outflow facility is measured over a second pressure range, both α and CSL
T can be

fixed. In this context we note that more accurate mean estimates of α and CSL
T can be made if

based on patient-specific data (rather than group averages), and again more accurate estimates

of α can be made if patient-specific incremental and/or local outflow facilities (based on an

accurate volume-pressure curve) are measured at a minimum of two IOPs.

By examining multiple small data sets currently available, we see that a plausible range for

models parameters can be gradually established, but clearly a great deal of additional clinical

and basic research needs to be done to establish the distributions of model parameters, to

establish model parameter correlations and how these may change with age and in disease

states. To help further the process of model parameter estimation for specific outflow path-

ways, we now attempt to draw together our insights based on all the previous analysis using

the new model (and from the analysis of pseudofacility explained in the next section). Here we

summarize our own ‘best estimates’ for model parameters that describe pressure dependent

eye outflow from a normal eye at 15 mm Hg, namely: for pressure dependent outflow through

anterior pathways CSL
con � 0:33 � 0:43 microliters/min/ mm Hg (driving pressure 7 mm Hg),

for retinal pigmented epithelium/choroidal pressure dependent outflow CSL
ch � 0:45 � 0:60

(driving pressure 5 mm Hg), for pressure dependent outflow across the ciliary body (pseudofa-

cility) CSLcb � 0:06 � 0:11 (driving pressure 11 mm Hg). These pathway specific estimates give

an estimated pressure dependent outflow range from the whole eye from 5.3 to 7.3 microlitres/

min. We note in passing that eye size is one factor contributing to these ranges, and with

appropriate subject-specific data, it may be possible to reduce these ranges.

The mean hydraulic conductivity for the whole eye is then in the range CSL
T � 0:84 � 1:14,

and the mean driving pressure for outflow from the whole eye is around 6.4 mm Hg. pT is

probably normally in the range 0 to 3 mm Hg. Assuming pT is 3 mm Hg and pressure depen-

dent outflow is 6.6 microlitres/min, then the following model parameter values are probable:

CSLcon � 0:40, CSLch � 0:55 and CSL
cb � 0:075 suggesting CSLT � 1:025, and the mean driving pres-

sure at 15 mm Hg is then 6.4 mm Hg for α equal to 0.0725 mm Hg-1. We estimate the average

outflow facility �C15
3

as 0.55 microlitres/min/mm Hg for the whole eye with α equal to 0.0725

mm Hg-1, and the component average outflow facilities are: for anterior flow pathways 0.215

microlitres/min/mm Hg, for retinal pigmented epithelium/choroidal pathway 0.295
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microlitres/min/mm Hg and for the ciliary body flow pathway 0.04 microlitres/min/mm Hg

(sum 0.55). But the component average outflow facilities based on actual driving pressures

and/or outflows (or from pathway specific alphas) for each tissue or anatomical structure

(rather than the average driving pressure or the average alpha) are: for anterior flow pathways

0.23 microlitres/min/mm Hg, for the retinal pigmented epithelium/choroidal pathway 0.23

microlitres/min/mm Hg and for the ciliary body flow pathway 0.07 microlitres/min/mm Hg

(sum 0.53).

Finally assuming aqueous hypertonicity is 5 mOsm relative to its reference fluid (equivalent

to about 100 mm Hg osmotic suction), then the driving pressure for inflow is (100–11) 89 mm

Hg, and the inflow from the ciliary body is then 89 times 0.075, that is 6.7 microlitres/min,

which approximately provides mass balance with the pressure dependent outflow from the

whole eye (compare 6.6 microliters/min).

Implications for eye physiology

Taken together, these estimates for total pressure dependent outflow do create a clear and sig-

nificant discrepancy in estimates between the predicted in vivo pressure dependent outflow

estimates (i.e. mean estimate of 6.6 microlitres/min—see Results, and Examples 2, 3 and 4

using [48] and [47] data, and the summary of Results shown in Table 2), and reported aqueous

production rates by the ciliary body (i.e. 2.4 to 3.0 microlitres/min [21, 27, 28, 51, 64]).

We first wish to point out that we have at each stage employed modelling options and

results that minimise our predicted in vivo pressure dependent outflow. For example the total

pressure dependent outflow based on control group in the Dastiridou et al (2013) data predicts

an much higher 10.9 microlitres/min (see Results section Example 4 using Dastiridou et al

(2013) data, or summary Table 2). And when we pair the high quality pressure-volume data of

Silver and Geyer (2000) with the calculated pressure-time curve for Karyotakis et al. 2015 (see

Results section Example 5), we find the predicted in vivo total pressure dependent outflow is

10.7 microlitres/min. Again this is significantly larger than our mean estimate 6.6 microlitres/

min. The estimates of 10.9 and 10.7 microlitres/min are clearly qualitatively correct, as a larger

hydraulic conductance and a more compliant eye means that more fluid can be expelled from

the orbit in the same period of time, resulting in estimates of total pressure dependent outflow

higher than 6.6 microlitres/min, which we have chosen as a conservative estimate. Further

based on a range of experimental data, we have also chosen our IOP reference pressure as 3

mm Hg rather than 2 mm Hg or perhaps zero mm Hg, which results in conservative estimates

of total pressure dependent outflow. All this suggests the apparent discrepancy between esti-

mated total pressure dependent outflow and aqueous production noted above may well be

real, and so should be rationally explained in some way. We now seek such explanations.

One possible explanation for the magnitude of predicted total pressure dependent outflows

is the influence of so-called ‘pseudofacility’. Pseudofacility is defined as the ‘excess facility’ of

outflow in a measurement of outflow facility due to the reduction in net fluid production as a

result of IOP elevation [31]. Based on earlier work by Barany (e.g. [92]), Brubaker (1970) help-

fully explains how to estimate ‘true outflow facility’, ‘pseudofacility’ and ‘total outflow facility’,

and then makes the necessary experimental measurements on rhesus monkeys, estimating

total outflow facility at 0.67 microlitres/min/mm Hg and estimating pseudofacility at 0.12

microlitres/min/mm Hg i.e. about 18% of the total outflow facility [25]. If the same fraction of

pseudofacility occurred in human eyes, then about 0.18 times 6.6 = 1.2 microlitres/min could

be explained by pressure dependent flow through the ciliary body epithelium.

Says Brubaker (1970): ‘the total outflow facility can be measured by comparing two steady

states at different intraocular pressure [with constant EVP], while true outflow facility can be
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measured by comparing two steady states at different episcleral venous pressures [with con-

stant IOP]. The pseudofacility is the difference between the two measurements.’ Providing one

recognises that true outflow facility includes flow through to the choroid as well as through the

anterior pathways, and providing membrane reference pressures for all pathways are con-

trolled by the neck band and mirror episcleral venous pressure, and provided the flow is across

a simple ideal membrane, this is a logical enough way of deducing the pressure dependent flow

through the ciliary epithelium.

But all outflow pathways from the eye are complicated—one pathway involves two non-

ideal membranes with an interstitial fluid with protein between (e.g. retinal pigmented epithe-

lium route), one pathway involving more than two membranes (e.g. ciliary body), and some

pathways remain uncertain as to exactly what is going on despite intensive research over many

decades (i.e. uveoscleral outflow and trabecular meshwork outflow for humans). So despite the

certainty with which these experimental methods are specified to estimate ‘total outflow facil-

ity’ and ‘pseudofacility’ by Barany (1963) and Brubaker (1970), the exact relationship between

these test measurements and what this tells us about fluid outflow from the in vivo eye is some-

what uncertain. Indeed, when developing his analysis Barany makes remarks to the effect that

his proposed conceptual model is ‘only a first approximation and undoubtedly will have to be

refined’ [92]. It is now known the complexity of fluid transfer from the eye was not fully appre-

ciated in the 1960s. For example ion pumping across the retinal pigmented epithelium was not

known until 1979 [93], while aquaporins were not discovered until 1992 by Peter Agre [94].

We already know that the Na+K+ATPase ion pumps are not influenced by physiological

hydrostatic pressures experienced by the eye. Net fluid production may decrease either due to

an increase in driving pressure from the eye across the non-pigmented epithelium at the ciliary

body, or because net fluid production may decrease due to inadequate availability of ATP to

maintain aerobic metabolism. The most likely cause of inadequate ATP is a reduction in blood

flow, leading to a decrease in the local partial pressure of oxygen and local hypoxia at the ciliary

body. On this topic, Kiel et al (2010) reports Moses as stating that:

. . .the production of aqueous humor formation decreases slightly as intraocular pressure

increases until the region of ciliary blood pressure is approached’. . .[while Kiel later

states]. . .that recent studies of the relationship between ciliary blood flow and aqueous

humor production support the prediction of Moses’ iconic graph.

Moses’ ‘iconic graph’ (Fig 1, Kiel et al (2011)) shows the aqueous humor production

decreasing slightly (by about 0.01 microlitres/min/mm Hg; at 15 mm Hg this is 0.15 microli-

tres/min, or about 0.15/2.6 = 6% of reported aqueous production (and only about 2.3% of our

model predicted pressure dependent outflow), considerably less than that the 18% reported by

[25]. This same figure also shows aqueous humor production dropping precipitously above

about 50 mm Hg as the ciliary blood flow is interrupted.

Pseudofacility may be estimated from ‘first-principles’, providing the osmotic suction is

known and some additional assumptions are made. As the osmotic suction is not known, to

obtain an approximate first estimate we assume that the osmolality difference across the ciliary

epithelium is 5 mOsm (i.e. the same as found at the choroid plexus epithelium in the ventricles

of the brain [52]) and that this creates an osmotic suction of about 100 mm Hg across the cili-

ary body, drawing water into the eye. Because the hydraulic conductivity of ciliary body (and

indeed all typical membrane) is the same in both directions, the ratio of the pressure depen-

dent outflow across the ciliary body (equal to f times total inflow), is given by

CSLcb ðp � pref � cbÞ=ðfC
SL
cb ð100 � ðp � pref � cbÞÞ, where f is the fraction of total ciliary body fluid pro-

duction that exits the eye by pressure dependent outflow pathways.
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Assuming f is 0.7 (which can be checked by calculations below), IOP is 15 mm Hg and the

interstitial reference pressure near the inner surface of the ciliary epithelium is 4 mm Hg (0/8

mm Hg, where 8 mm Hg is close to the hydraulic conductivity weighted average reference

pressure for the whole (human) eye at IOP of 15 mm Hg), then outflow at the ciliary body is

estimated to be about 18% (25/11%) of the total pressure dependent outflow, about the same

as the pseudofacility experimentally estimated by Brubaker (1970). Assuming f is 1.0, IOP is 15

mm Hg and the interstitial reference pressure near the inner surface of the ciliary epithelium is

4 mm Hg (0/8 mm Hg), then outflow at the ciliary body is estimated to be about 12% (18/9%)

of the total pressure dependent outflow Though there are a number of assumptions in this

first-principles analysis it appears plausible, so in the following analysis we therefore lean

towards Brubaker’s (1970) estimate for pseudofacility rather than some much lower estimates,

and settle on 12.5% as a reasonable estimate of the total outflow facility being pseudofacility.

Given pseudofacility explains about 12.5% of estimated pressure dependent outflow (for 6.6

microlitres/min) that is 0.83 microlitre/min. But clearly pseudofacility cannot by itself explain

the discrepancy, so we seek alternative explanations.

Given that fluorometric estimation of aqueous outflow through the anterior chamber of the

eye is the basis for estimation of aqueous inflow [64, 95], another possible explanation is that

the measured aqueous outflow through the anterior chamber does not reflect the total produc-

tion of fluid by the ciliary body. This concept would suggest that a considerable fraction of

fluid produced by the ciliary body travels posteriorly through the vitreous humor, exiting

through the retinal-choroidal route. This seems plausible, as there are a large number of papers

supporting the notion of a posterior flow through the vitreous towards the retinal surfaces [10,

18, 96–99]. In addition, there are also many papers reporting measurements of flow across the

pigmented retinal epithelium that suggest both pressure dependent and pressure independent

flows occur from the vitreous through the retina, across the pigmented retinal epithelium and

Bruch’s membrane, into the interstitial choroidal fluid and finally into the choriocapillaris [8,

9, 12–18, 93, 100–103].

For example Tsuboi (1987) measured both the pressure dependent and independent flows

across retinal pigmented epithelium for adult dogs weighing 15 Kgs to 30 Kgs. The pressure

independent flow from retina to choroid is reported to be 0.11 microlitres/min/cm2, and the

hydraulic filtration coefficient for the retinal pigmented epithelium into the choroid (Lp−RPE)

is reported to be 0.0126 microliters/min/cm2/mm Hg. For cynomolgus monkeys, Emi et al

(1989) reports that at an intraocular pressure of 15 mm Hg, the driving pressure (p − pref) from

vitreous to choroid is about 5 mm Hg. Combining these estimates with the surface area of the

retina in the human eye (reasonably estimated at 12 cm2 [104], but could range between 10

and 14 cm2 depending on eye size), this leads to an estimated pressure independent flow in the

human eye of around 1.3 microlitres/min, and a pressure dependent flow from the vitreous

into the choroid to be around 0.8 microlitres/min, giving at total flow through the posterior

route of about 2.1 microlitres/min. However Chihara et al (1985) reports resorption of sub-ret-

inal fluid for in vivo human eyes occurs at the rate of 0.18 microlitres/min/cm2 (about half the

volume of the vitreous is replaced each day [18], n = 10) leading to a directly estimated total

outflow through the retinal pigmented epithelium for the human eye of around 2.5 microli-

tres/min, which is similar though somewhat higher than the previous estimate of the total out-

flow for humans based extrapolated from measurements made on dog tissue.

We mention here that it is actually difficult to classify outflows as pressure independent and

pressure dependent at the retinal pigmented epithelium, because if salt is not pumped across

the retinal epithelium while water flows through the membrane, salt accumulates on the vitre-

ous side of the membrane and the vitreous and retinal tissues will experience hypertonicity. It

is possible that the local hypertonicity at the membrane influences ion pump density and so
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the pumping rate at the retinal pigmented epithelium, as suggested by Na-K-ATPase mRNA

upregulation for dog lens epithelial cells exposed to salt hypertonicity [105], but whether this

happens at the retinal pigmented epithelium is currently unknown [57]. In other words, it is

difficult to classify outflow as pressure dependent or independent without knowing the relative

importance of all the drivers for all ion transporter densities, and so the drivers for pumping

rates by the epithelial cell sheet [106]. In this context, if we regard outflow through the retinal

pigmented epithelium as entirely pressure independent, then f can be estimated to be about

6.6/(6.6+2.5) = 0.7, but if this outflow is regarded as entirely pressure dependent then f is about

1.0 (see pseudofacility analysis in this section for definition of f).
If the outflow through the retinal pigmented epithelium is regarded as pressure dependent

and equal to about 2.5 microlitres/min, then to a first approximation, this suggests that

approximately equal amounts of fluid produced by the ciliary body exit through the anterior

and vitreous chambers of the eye. But an estimate of 2.5 microlitres/min of outflow through

the retinal pigmented epithelium in vivo still explains only a fraction of the discrepancy in

pressure dependent flow noted above. Assuming a pressure independent flow anteriorly

through the uveoscleral route of 1 microlitre/min [107] is in fact pressure dependent (see Dis-

cussion above), and that the estimated 2.5 microlitres/min outflow through the retinal pig-

mented epithelium is pressure dependent, this means most of the estimated pressure

dependent outflow has been accounted for—that is, 2.5 (anterior routes) + 2.5 (retinal pig-

mented epithelium) + 0.83 (possible pseudofacility) giving a total of 5.83 microlitres/min. The

estimated in vivo outflow of 5.83 microlitres/min accounts for (5.83/6.6) about 90% of the esti-

mated pressure dependent flow. On the other hand, if unconventional outflow and outflow

across the retinal pigmented epithelium are regarded as pressure independent, then only (1.6

+0.8+0.83)/6.6) about 50% of the estimated pressure dependent outflow is explained.

Clearly the above observations on basic eye physiology appear to have gone some way to

explaining the total pressure dependent outflow estimated here at 6.6 microlitres/min (and

does appear to explain the median estimate of pressure dependent outflow of 5.6 microlitres/

min). But however outflow is classified (pressure dependent or pressure independent), our

analysis of the pressure dependent outflows may not entirely explain the estimated pressure

dependent outflow (and if some outflow is regarded as pressure independent, the discrepancy

between reported aqueous production and predicted total outflow has only widened). What

else might provide an explanation? Could there be an additional source of fluid in the eye,

which is possibly of greater magnitude in aged people? In this context, it appears reasonable to

postulate that the total fluid formation rate within the eye is the sum of ciliary body production

and leakage of fluid from the retinal vasculature.

In the normal eye, the blood-retinal barrier is intact and fluid leakage is negligible, however in

aged eyes, it is known that various pathologies may arise that entail fluid leakage from the retinal

vasculature. Crucially, knowing the physiology of transport across membranes involves aquapor-

ins, it a small step to then expect that increases in vascular and epithelial permeability will be

accompanied by increases in aquaporin density (e.g. AP1/AP4 density) [14, 108–110]. Indeed this

appears to be the case (e.g. [111, 112]). It is known that VEGF and some inflammatory mediators

increase the expression of aquaporins in endothelial and epithelial cells [16, 113–116]. Developing

sub-clinical pathologic states would allow increasing pressure dependent fluid leakage from the

retinal vasculature into the retina (providing another fluid source within the orbit [16, 115, 116])

while increasing the hydraulic filtration coefficient for the pigmented retinal epithelium (increas-

ing the pressure dependent outflow facility of the posterior chamber of the eye) [16, 117].

It therefore appears reasonable to suppose that in aged eyes the net fluid production within an

eye is the sum of ciliary body production (which for normal eyes is the sum of normal pressure

dependent and pressure independent outflows) and vascular leakage, and for aged eyes with
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normal IOP this increased rate of fluid production due to vascular leakage is balanced by an

increase in pressure dependent outflow across the retinal pigmented epithelium. If we add this

incremental fluid transport to the normal fluid movement across the retinal pigmented epithelium

due to increasing CSL
ch , it appears plausible that the total pressure dependent outflow in apparently

normal aged eyes could reasonably be expected to reach 6.6 microlitres/min, and possibly more.

Conclusions

In this paper we have developed a new theory of pressure dependent outflow based on the dif-

ference in the differential rates of change of IOP and the membrane reference pressure with

respect to changing IOP. Though an alternate functional relationship may be required in some

circumstances, as a good first approximation we have fitted a simple exponential decay func-

tion to approximate the local outflow facility of the eye at pressure p, denoted Cp. Averaging

local outflow facilities across a specified pressure range defines the average outflow facility,

denoted �Cp2
p1

. For our model, we find there are three key parameters controlling pressure

dependent outflow: (i) the hydraulic conductance for the whole eye, denoted CSL
T (microliters/

min/mm Hg), (ii) the exponential decay constant, denoted α (mm Hg)-1 and (iii), and no flow

reference intraocular pressure denoted pT (mm Hg). We then investigated the parameters con-

trolling pressure dependent outflow, and fit model parameters to published data. We have

employed animal and human in vivo data to make first estimates of all three key parameters

CSLT , α and pT. Using a mixture of both animal and human data our first-principles estimate for

pT is 3 mm Hg, and α is found a range of 0.04 to 0.13, with a mean estimate of 0.07. A reanaly-

sis of Barany (1964) in vivo data for Vervet monkeys suggests α is about 0.05, and CSLT about

1.0. A reanalysis of Brubaker’s (1975) data on enucleated eyes suggests α is about 0.04, CSLT
about 0.70, when pT is assumed to be 3 mm Hg. Finally, based on the in vivo human eye data

presented in Dastiridou et al (2013) and Karyotakis et al (2015), our analysis suggests that for a

group of cataract patients, average age over 70 years and with no known eye disease, α is about

0.07 (0.05 and 0.075), while mean CSLT ranges between 1.0–1.7 (median CSL
T is probably around

0.85) (see summary of parameter estimates Table 2). If α and CSL
T both increase with age, a

more rapid increase in α relative to CSLT may lead to unstable IOPs and ocular hypertension. We

have employed the estimates of CSL
T , α and pT to calculate average outflow facilities for the in vivo

eye, together with estimating the total pressure dependent outflow. While acknowledging limita-

tions of these estimates, using this approach we have found the pressure dependent outflows are

around twice as large as fluorometric estimates for aqueous outflow. We have sought possible

explanations for this discrepancy and concluded that it appears likely that the discrepancy may

be explained by a combination of normal pseudofacility, normal fluid movement through the vit-

reous exiting the eye via the retinal pigmented epithelium, and increasing retinal pigmented epi-

thelial flows as a result of age related disease processes. We hope further theoretical and

experimental data can help refine and extend the theory presented here (e.g. to include another

model parameter pB), and in doing so provide a sound theoretical framework for a fuller under-

standing of fluid dynamics for the eye. While much remains to be done to understand the variety

of physiological mechanisms potentially explaining model parameters, with further research the

theoretical framework described herein may enable more accurate estimation of pressure depen-

dent outflows for human eyes that aids diagnosis, monitoring and prognosis of glaucoma.
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