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Abbreviations used: 

 ADR: Adverse drug reaction 

 AGEP: Acute generalized exanthematous pustulosis 

EBV: Epstein Barr virus 

 CMV: Cytomegalovirus 

DILI: Drug-induced liver disease 

 DRESS: Drug-reaction with eosinophilia and systemic symptoms 

HHV: Human herpesvirus 

 HLA: Human leukocyte antigen 

 IM-ADR: Immunologically mediated adverse drug reaction 

 MPE: Maculopapular exanthema 

 MRGPRX2: Mas-related G protein-coupled receptor  

 MHC: Major histocompatibility complex 

 NNT: Number needed to treat (to prevent one case) 

 NPV: Negative predictive value 

 p-i: pharmacological interactions  

 PPV: Positive predictive value 

 SJS: Stevens-Johnson syndrome 

 TAP: transporter associated with antigen presentation 

 TCR: T-cell receptor 
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 TEN: Toxic epidermal necrolysis 

 Treg: Regulatory T cells 
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Abstract 

Adverse drug reactions (ADR) can be broadly categorised as either on-target or off-target.  On-target 

ADRs arise as a direct consequence of the pharmacological properties of the drug and are therefore 

predictable and dose dependant.  On-target ADRs comprise the majority (>80%) of ADRs, relate to the 

drug’s interaction with its known pharmacological target and are a result of a complex interplay of 

genetic and ecologic factors.  In contrast off-target ADRs, including immune mediated ADRs (IM-ADRs), 

are due to unintended pharmacological interactions such as inadvertent ligation of host cell receptors 

or non-pharmacological interactions mediated through an adaptive immune response.  IM-ADRs can 

be classified according to the primary immune cell involved and include B cell-mediated (Gell-Coombs 

type I-III reactions) and T cell-mediated (Gell-Coombs type IV or delayed hypersensitivity) reactions.  

IM-ADRs mediated by T cells are associated with phenotypically distinct clinical diagnoses and can vary 

from a mild delayed rash to a life threatening cutaneous, systemic or organ disease, such as Stephen 

Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), drug reaction with eosinophilia and systemic 

symptoms (DRESS) and drug-induced liver disease (DILI).   T-cell mediated ADRs are strongly linked to 

the carriage of particular HLA risk alleles which in the case of abacavir hypersensitivity and HLA-B*57:01 

has led to translation into the clinic as a routine screening test. In this review, we will discuss the 

immunogenetics and pathogenesis of IM-ADRs and how HLA associations inform both pre-drug 

screening strategies and mechanistic understanding.  
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Introduction. 

Adverse drug reactions (ADRs) are major causes of iatrogenic, potentially preventable patient morbidity 

and mortality. These reactions have a significant impact on health care systems and are the source of 

approximately 3-6% of inpatient admissions, comprising 5-10% of inpatient cost. They are estimated to 

be the fourth most common cause of death1-4.  ADRs classified as “on-target” (also known as type A), 

account for up to 80% of all ADRs, and can be predicted based on the pharmacological activity of the 

drug. On-target reactions are typically dose dependent and may be compounded by altered 

pharmacokinetics resulting from comorbidities such as impaired renal or liver function, drug 

interactions or polymorphisms within drug receptor, transporter or metabolism genes and include 

reactions such as prolonged bleeding following warfarin therapy. 

  

ADRs arising from “off-target” (also known as type B) interactions account for approximately 20% of all 

ADRs, however off-target effects may be under-recognized and under-reported.  Off-target reactions 

include those that are directly immune-mediated ADRs (IM-ADRs) and are associated with 

immunological memory as well as pharmacological drug effects where an interaction of a drug with a 

receptor can lead to an immunological phenotype (urticaria) but there is no adaptive response.  The 

latter includes interaction of drugs with the mas-related G-protein coupled receptor (MRGPRX2) on 

mast cell leading to non-IgE mediated mast cell activation5.  IM-ADRs encompass several phenotypically 

distinct clinical entities comprising B-cell (antibody-mediated, Gell Coombs Types I-III) and T-cell 

(delayed type hypersensitivity, Gell-Coombs Type IV) mediated reactions. IM-ADRs display a range of 

clinical features including anaphylaxis, angioedema, urticaria, maculopapular exanthema, fever and 

internal organ involvement (e.g., hepatitis). T-cell mediated - delayed hypersensitivity - reactions 

present as a variety of clinical phenotypes including severe cutaneous syndromes, such as 
This article is protected by copyright. All rights reserved.
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maculopapular exanthema (MPE), acute generalised exanthema pustulosis (AGEP) and Stevens-

Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), systemic reactions such as abacavir 

hypersensitivity syndrome (AHS) and drug reaction with eosinophilia and systemic symptoms (DRESS), 

or as organ specific manifestations such as drug induced liver injury (DILI) and pancreatitis6,7 

(Figure 1).   

 

Mechanisms and Specific Immunologically-mediated Adverse Drug Reactions 

HLA  

Multiple phenotypically distinct T-cell mediated ADRs have been associated with carriage of specific 

human leukocyte antigen (HLA) risk alleles (Table 1). HLA alleles (Figure 2), and particularly HLA-B which 

has been prevalently associated with drug-induced IM-ADR, are highly polymorphic with in excess of 

8000 class I molecules and just over 3000 class II β-chain variants8.  Regions of highest variability map 

to the peptide binding groves, maximising the diversity of self and pathogen derived peptides that can 

be presented to T cells.  The amino acid sequence of peptides presented by individual HLA class I and 

class II molecules depends on components of the antigen processing pathway, such as tapasin and the 

proteasome9, and on the amino acid anchor residues favoured by particular HLA alleles.  The binding 

affinity for these anchor residues is dictated by pockets within the peptide binding groove of the 

particular HLA allele, designated A, B, C, D, E and F for class I molecules (Figure 2B) and P1, P4, P6 and 

P9 for class II molecules. 

 

HLA class I molecules are present on the surface of all nucleated cells and, predominantly, present 

endogenously processed peptides to CD8 T cells.  HLA class II molecules are present on antigen 
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presenting cells such as dendritic cells, macrophages and B cells.  Class II molecules present exogenous 

peptides to CD4 T cells. Typically, class I presented peptides are in the order of 9-11 amino acids in 

length. As a result of the more open nature of the peptide binding groove, peptides presented by class 

II molecules are typically in the order of 11-15 amino acids in length.  The mechanism by which small 

drug molecules, typically in the size range of 1-3 amino acids10, stimulate T-cell responses remains 

incompletely understood, although three non-mutually exclusive models have been proposed to 

explain this apparent contradiction. These are (1) the hapten/prohapten model, (2) the 

pharmacological interaction with immune receptors (p-i) model and (3) the altered peptide repertoire 

model (Figure 3).   

 

The hapten/prohapten model proposes that drug or drug metabolite binds covalently to a host protein 

which then undergoes intracellular antigen processing to generate a pool of chemically-modified 

peptides. When presented in the context of HLA these modified peptides are recognized as foreign by 

T cells and elicit an immune response11,12.  Examples of this model include allergy to penicillin and 

reactive metabolites of sulfamethoxazole (nitroso-sulfamethoxazole)13,14. The pharmacological 

interaction with immune receptors (p-i) model postulates that the offending drug binds, non-

covalently, to either the T-cell receptor (TCR) or HLA protein in a peptide-independent manner to 

directly activate T cells. This model has been hypothesized to explain T-cell reactivity that is labile (i.e., 

reactivity is abrogated by washing drug from the surface of antigen presenting cells) and/or is observed 

within seconds of drug exposure, a time course too short for intracellular antigen processing15,16.  

Finally, in the altered peptide repertoire model, the drug occupies a position in the peptide binding 

groove of the HLA protein changing the structure of the binding cleft and therefore the peptide 
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specificity of the HLA risk allele. The neo-epitopes displayed as a result of altered binding specificity are 

recognized as foreign by the immune system and therefore elicit a T-cell response17,18.   

 

The T-cell receptor. 

HLA risk allele restricted T-cell responses have been detected to a range of drugs including HLA-B*57:01 

presented abacavir17,19-22, -B*58:01 restricted allopurinol and oxypurinol SJS/TEN and DRESS23,24, -

B*15:02 restricted SJS/TEN and -A*31:01 presented carbamazepine MPE>>DRESS>>>SJS/TEN25-27 as 

well as -B*57:01 restricted flucloxacillin DILI28.  Despite the clear role that T cells play in these reactions, 

the nature of the TCR is poorly defined and the degree of TCR specificity/clonality is likely unique for 

each drug-HLA combination.  Abacavir specific T-cell responses are polyclonal17,19,20 in keeping with the 

altered peptide model.  Oxypurinol specific T-cell lines derived from the blood of patients with 

allopurinol SJS/TEN appear more restricted and show preferential Vβ TCR use within individual 

patients.  However, public TCRs, those shared across different patients, were not identified in one 

study29.  In contrast, in carbamazepine induced SJS/TEN patients, shared CD8+ T-cell clonotypes bearing 

a public CDR3 sequence have been identified30. Zhou and colleagues have suggested that 

carbamazepine may make more intimate contacts with the TCR loops than the HLA molecule31. The 

carbamazepine data are significant as they suggest for the first time the concomitant involvement of 

both a specific HLA allotype and a specific TCR clonotype in the pathogenesis of a serious IM-ADR.  

However, it remains the case that a crystal structure of drug/HLA/TCR complex has yet to been solved 

for any T-cell mediated IM-ADR. 

 

Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
SJS and TEN are two of the most severe IM-ADRs with an estimated patient mortality rate over 30% at 

one year following disease onset32.  Cardinal features of SJS/TEN include widespread epidermal 

necrosis that resembles a severe burn injury and manifests clinically with skin, mucous membrane and 

eye involvement. SJS/TEN is a single disease with a cohesive immunopathogenesis and is defined by 

the percentage of body surface area involvement (SJS: 10% BSA affected; SJS/TEN overlap: 10-30% BSA 

affected; TEN: >30% BSA affected).  Internal organ failure and secondary complications such as 

infection, thrombosis and deconditioning are frequently associated with acute SJS/TEN. Further, the 

long-term sequelae of this disease, including scarring, blindness and psychiatric illness, are a source of 

significant disability for survivors. SJS/TEN pathogenesis is characterised by widespread epidermal 

necrosis and detachment.  Early skin lesions are characterized by the epidermis and dermoepidermal 

infiltration of CD14+CD16+CD11c+HLA-DR+ monocytes33.  The pathogenesis is however, driven by 

cytotoxic CD8+ T cells, NK cells and CD3+CD56+ NK T cells (NKT cells) which are enriched in blister fluid 

of patients with acute SJS/TEN34-37. Granulysin, a cytotoxic peptide produced by CD8+ T cells, NK and 

NKT cells, is present in high concentrations in the blister fluid and is the key mediator of epidermal cell 

death in SJS/TEN38.  Serum levels of granulysin associate with the severity of acute SJS/TEN and predict 

mortality39,40. 

 

Drug Reaction with Eosinophilia and Systemic Symptoms 

DRESS, also known as drug induced hypersensitivity syndrome (DIHS), presents as a widespread rash of 

varying severity, without skin separation or blistering, and is frequently accompanied by fever, internal 

organ involvement (usually hepatitis) and hematologic abnormalities (often atypical lymphocytes 

and/or eosinophilia). Diffuse lymphadenopathy, pneumonitis, encephalitis, cardiac failure 

(myocarditis) and nephritis are variable features of this syndrome, which may mimic a viral illness. 
This article is protected by copyright. All rights reserved.
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Mortality rates in DRESS approximates 10%41. The onset of symptoms typically occurs 2-8 weeks 

following initiation of the inciting drug and can persist for weeks. Prolonged or recurrent symptoms, 

sometimes weeks following cessation of the offending drug, as well as late onset autoimmune diseases 

including thyroiditis, systemic lupus erythematosis and type I diabetes have been described up to four 

years following disease resolution42.   Numerous drugs are associated with the development of DRESS 

including the allopurinol, antiepileptic medications (carbamazepine, phenytoin, phenobarbital and 

lamotrigine), beta-lactam antibiotics, NSAIDs, sulfa antimicrobials, other antibiotics such as vancomycin 

and minocycline and drugs used to treat other infections such as anti-mycobacterial drugs (rifamycins, 

isoniazid, ethambutol), dapsone and drugs used to treat HIV such as nevirapine, raltegravir and 

darunavir. 

 

DRESS is associated with expansion of circulating and dermal-infiltrating effector T cells as well as 

CD4+FoxP3+ regulatory T cells (Treg)43,44. Skin homing CD4+FoxP3+ T cells are postulated to limit the 

severity of acute disease by suppressing effector T-cell responses45. Reactivation of human 

herpesviruses, in particular human herpesvirus (HHV)-6, but also Epstein-Barr virus (EBV), HHV-7 and 

cytomegalovirus (CMV) is universally observed during acute and recovery phase disease. HHV-6 and 

EBV reactivation has been observed as early as 2-3 weeks after onset of rash and antiviral CD8+ effector 

T cells are expanded during this phase of disease. Whether viral replication contributes to the events 

inciting DRESS or is the result of general immune dysfunction, such as breakdown of Treg suppressor 

function or the up-regulation of the HHV-6 receptor, CD134, on CD4+ T cells, has not been defined44-47.  

Nevertheless, viral replication and a virus-specific T-cell responses likely contribute to the clinical 

features of DRESS including prolonged duration, multi-organ involvement and relapsing disease 

following withdrawal of glucocorticoid steroids.  

This article is protected by copyright. All rights reserved.
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Drug-induced Liver Disease 

DILI is one of the more common causes of primarily single organ IM-ADR and accounts for 10% of all 

episodes of acute hepatitis and up to 13% of all instances of liver failure in the USA48.   DILI can manifest 

within several days and up to 8 weeks post drug exposure.  In some cases where the primary phenotype 

is severe drug-induced liver disease other features such as skin rash of varying severity have been 

described.  Several drugs have been associated with the development of DILI including drugs withdrawn 

from the market such as ximelagatran, lumiracoxib, diclofenac, amoxicillin-clavulanate and 

flucloxacillin (Table 1).  Amoxicillin-clavulanate (AC), one of the most heavily prescribed antibiotics, 

accounts for up to 17% of DILI cases requiring hospitalisation49,50.  AC-DILI was first associated with 

carriage of the class II allele HLA-DRB1*15:0151-53.  AC-associated DILI can present as either cholestatic, 

hepatocellular or mixed, phenotypes.  This presentation appears to be subject to ethnicity, with French 

and Belgian populations experiencing a bias toward a cholestatic presentation.  In contrast, Spanish 

populations presented with an almost equal proportion of cholestatic, hepatocellular or mixed 

phenotypes54.  A later study of Spanish populations indicated that HLA-A*30:02 was associated with 

hepatocellular liver injury and the class II haplotype DRB1*15:01-DQB1*06:02 was associated with 

cholestatic or mixed pattern DILI55.  Finally, HLA-A*02:01 which is haplotypic with DRB1*1501-

DQB1*06:02 is associated with AC-induced DILI in Northwestern Europeans56. 

 

HLA and IM-ADRS: Representative Examples 

Abacavir 

This article is protected by copyright. All rights reserved.
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AHS is an exemplar of T-cell mediated ADR, explaining both the HLA association and the mechanism of 

T-cell activation.  The clinical features of abacavir hypersensitivity are not consistent with DRESS and 

the AHS is quite unique in its rapid onset and lack of associated eosinophilia and organ involvement 

paralleled only perhaps by azathioprine hypersensitivity which can present in a similar fashion.    

Abacavir is a guanosine analogue that is used as part of combination antiretroviral therapy for the 

treatment of HIV-1 infection.  Early use of abacavir was associated with hypersensitivity reactions in 5-

8% of patients57.  Early reports described that AHS typically manifests within the first 6 weeks of 

therapy, however patch test positive or immunologically confirm AHS occurs from 1.5 days to 3 weeks 

following first drug exposure58.  AHS is characterized by fever, malaise, gastrointestinal, respiratory 

symptoms, and/or generalized rash.  In 2002, a strong association between carriage of the HLA class I 

allele, HLA-B*57:01, and AHS was reported59, an association borne out by subsequent studies60,61. Using 

immunologically defined (patch test positive62) cases as a co-primary clinical endpoint, the PREDICT-1  

study demonstrated that screening for, and exclusion of HLA-B*57:01 carriers from abacavir drug 

exposure could completely eliminate the incidence of true immunologically mediated (patch test 

positive) AHS.  Another case-control study, the SHAPE study confirmed carriage of HLA-B*57:01 as a 

risk allele for AHS, generalizable across race. The PREDICT-1 study also demonstrated that HLA-B*57:01 

carriage provided a 100% negative predictive value (NPV) and a 55% positive predictive value (PPV)63,64 

for AHS. 

 

Abacavir shows exquisite specificity for HLA-B*57:01, failing to interact with closely related HLA alleles, 

HLA-B*57:02, HLA-B*57:03 and HLA-B*58:01, which differ by 2-4 amino acids.  Amino acid differences 

between these alleles locates abacavir binding to the C-terminal end of the peptide binding groove19. 

The capacity of HLA-B*57:01 to present abacavir requires antigen processing, being dependent on 
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transporter associated with antigen presentation (TAP) and tapasin19, although it does not require the 

proteasome20.  The abacavir binding site on HLA-B*57:01, and the potential mechanism of disease, was 

defined in 2012 with the simultaneous publication of the crystal structures of HLA-B*57:01 in complex 

with abacavir and peptide by two independent groups17,65. Abacavir binds non-covalently within the 

HLA-B*57:01 peptide binding groove at the C, D, E and F pockets (Figure 4).   Abacavir interacts directly 

with the two residues, Asp114 and Ser116, that distinguish HLA-B*57:01 from HLA-B*57:03.  This 

binding alters the F pocket, under the C-terminus of the bound peptide, and induces a change in the 

binding properties of HLA-B*57:01.  The canonical terminal anchor residues for HLA-B*57:01 are large 

aromatic amino acids such as Tyr or Phe.  In the presence of abacavir, peptides with small aliphatic C-

terminal residue (Ile, Leu, Val, Ala) are preferentially used as a terminal anchor residue, specificity for 

the p7 is also altered by the binding of abacavir17,65,66.  Consequently, binding of abacavir alters the 

peptide specificity of HLA-B*57:01 such that 20-45% of the peptides eluted from abacavir-treated HLA-

B*57:01 antigen presenting cells are distinct from those recovered from untreated cells17,65,66. These 

studies defined the altered peptide repertoire model of IM-ADRs and predicts that in the context of 

drug, numerous novel self-peptides are presented to T cells.  These neo-epitopes are not subject to 

traditional tolerance mechanisms and can activate naïve T cells or stimulate cross reactive pre-formed 

memory T cells in a manner analogous to graft rejection and graft versus host disease, where T cells 

are also exposed to novel HLA molecules presenting self-antigens. 

 

The exact mechanisms driving the pathology seen in AHS are not fully understood.  Drug altered peptide 

binding should generate a vastly different immunopeptidome leading to the generation T cells with 

multiple specificities in patients with AHS.  Abacavir specific CD8+ T cells are present in patients with 

AHS20,67 and are polyclonal in nature17,19,20.  Abacavir specific CD8+ T cell lines can be generated from 
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both memory and naïve precursors21,68, suggesting that abacavir can stimulate cross reactive memory 

responses as well as promote the generation of de novo responses from naïve T cells.  In support of the 

former proposition, AHS can occur rapidly after administration of the drug, in some instances within 2 

days21, well before the generation of de novo responses could occur.  Memory responses are also 

suggested by the rapid and exaggerated clinical responses such as fever and shock seen in AHS patients 

inadvertently re-challenged with abacavir.  Finally, abacavir reactive T cells can be identified in the 

blood of abacavir-naïve individuals21.  The activation threshold for memory T cells is low compared to 

naïve cells as they do not require second signal.  How abacavir leads to the activation of naïve T cells is 

less clear as these is no obvious danger signal associated with the drug.  However a recent study, using 

supra-physiological concentrations of abacavir suggests that the drug is able to activate the NLRP3 

inflammasome following phorbol ester TPA or Toll-like receptor pre-stimulation69. Inflammasomes, a 

component of the innate immune response, are triggered by pathogen associated patterns and 

facilitate inflammatory responses by cleaving pro-interleukin 1β to IL-1β. It is possible that naïve T cells 

are activated via the effects of drug on components of the innate response, such as the NLRP3 

inflammasome that creates the initial danger signal, coupled with signals derived from cross reactive 

memory responses to the drug or response to infectious agents such as HIV. 

Carbamazepine.   

Carbamazepine is anticonvulsant used in the treatment of epilepsy and can lead to the development 

of MPE, DRESS and SJS/TEN (Table 1).  MPE is most strongly associated with the carriage of HLA-A*31:01 

Several class I alleles, including HLA-A*31:01 as well as, -A*01:01 and -Cw*07:01, -B*08:01 and class II 

alleles, DRB1*03:01, DQA1*05:01, DQB1*02:01 have been associated with the development of 

carbamazepine DRESS.  SJS/TEN is associated with carriage of HLA-B*15:02 and HLA-A*31:01 (Table 1).  

The best characterised of these associations is carriage of HLA-B*15:02 and SJS/TEN.  This association 
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was first noted for Han Chinese and later for Thai, Indian and Malaysian and Japanese populations70-82.  

Other members of the HLA-B75 serotype, HLA-B*15:08, HLA-B*15:11 and HLA-B*15:21 are also 

associated with carbamazepine SJS/TEN (Table 1).  Modelling studies demonstrate that carbamazepine 

binding to HLA-B*15:02 maps to the B pocket with a likely primary contact at the Arg62 residue on the 

edge of the cleft, which is a conserved amino acid among HLA B75 serotypes83. Additional contacts at 

the Asn63, Ile95 and Leu156 residues also likely participate in carbamazepine HLA-B*15:02 

interactions, as alteration of these residues results in reduced carbamazepine binding affinity83. 

Although peptide loading of class I is required, neither drug nor antigen processing is essential for T-

cell activation which suggests an alternative mechanism to the altered peptide repertoire of MHC-drug 

interaction17,83,64. 

Allopurinol 

Allopurinol is a purine analogue that is used in the treatment of gout and hyperuricemia.  Like 

carbamazepine, allopurinol can cause a range of IM-ADRs (Table 1) including, MPE, DRESS and SJS/TEN.  

However, unlike carbamazepine, a single HLA risk allele, HLA-B*58:01, is linked to all these phenotypes.  

The association between allopurinol induced SJS/TEN and HLA-B*58:01 was first reported for the Han 

Chinese population84 and later in other populations including Europeans85, Thai86 and Japanese82.  

Carriage of HLA-B*58:01 has a 100% NPV for allopurinol induced SJS/TEN in Han Chinese populations, 

but only a ~2.7% PPV87.  Functional studies indicate that HLA-B*58:01 restricted reactivity is stronger 

to the metabolite oxypurinol than the parent drug. This and non-covalent interactions between HLA-

B*58:01 and oxypurinol are supported by the fact that allopurinol is rapidly metabolised to oxypurinol 

and patients with renal insufficiency are at higher risk of developing allopurinol SJS/TEN and DRESS and 

have a poorer prognosis88,89.  These later data are consistent with the dose dependency evidenced 

during the induction of allopurinol and oxypurinol specific T-cell lines24,29.   
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Similar to carbamazepine, the presentation of allopurinol to T cells does not require-antigen processing. 

HLA-B*58:01 differs to HLA-B*57:01, which does not present allopurinol, by only 4 amino acids, 45 

(Thr/Met), 46 (Glu/Ala), 97 (Arg/Val), and 103 (Leu/Val).  Site directed mutagenesis studies suggested 

that Arg97, between the E and C pocket of HLA-B*58:01, may be a key contact residue for oxypurinol90.  

These data are consistent with molecular modelling studies which indicate that oxypurinol should make 

van der Waals interactions with residues surrounding the F pocket and established a hydrogen bond 

with Arg97 in HLA-B*58:0123.  These studies also predict that allopurinol has a lower binding affinity for 

HLA-B*58:01 due to the lack of a critical oxygen molecule at position six in the pyrimidine ring which 

affects the hydrogen bond to Arg97.  These data are consistent with finding that T-cell responses are 

skewed toward oxypurinol rather than the parent drug23,29.  The putative binding sites of drug and 

metabolite are not consistent with a p-i model of T cell engagement leading some to suggest that 

intermittent disassociation of peptide and HLA could allow drug to bind under the peptide without 

requiring antigen processing23. 

 

Nevirapine 

Nevirapine is a non-nucleoside reverse transcriptase inhibitor used in the treatment of HIV-1.  NVP 

hypersensitivity affects approximately 5% of HIV infected individuals who start the drug and 

encompasses different clinical phenotypes with cutaneous, hepatic or systemic symptoms that include 

SJS/TEN, DRESS and DILI.  The different IM-ADR phenotypes are associated with both shared and 

specific class I and class II HLA alleles, which have variable distribution and risk across ethnic groups.  

Cutaneous reactions range in severity from mild rash through to severe diseases with high morbidity 
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and mortality such as SJS/TEN and DRESS.  Nevirapine DRESS and SJS/TEN share the same HLA-C*04:01 

risk allele in African, Asian and European populations91-93.  However the associations of HLA risk alleles 

with  nevirapine DRESS show phenotype and ethnic specific differences with HLA-B*35 a risk allele for 

DRESS with grade III or IV rash  in Asian populations91,94, HLA-DRB1*01:01 and DRB1*01:02 associated 

with hepatic effects in African, Asian and European populations91 and the HLA-C*08-B*14 haplotype 

associated with eosinophilia in Caucasians populations95,96.  

 

A recent analysis of cutaneous NVP hypersensitivity across Caucasian, African and Asian patients has 

shown unique distributions of risk alleles in each ethnic group, and a common F pocket of the HLA-C 

peptide binding groove and position 156R that are associated with hypersensitivity.  The risk HLA-C F 

pocket and 156R are carried by HLA-C*04:01, as well as HLA-C*05:01 and HLA-C*18:01.  An 

independent association with cutaneous hypersensitivity was demonstrated in a group of class II alleles 

which share the HLA-DRB1-P4 pocket, as well as NVP HSR protection attributed to a cluster of HLA-B 

alleles, including HLA-B*15:01, defined by a characteristic peptide binding groove B pocket97.  This 

approach, considering HLA alleles according to specific shared pockets within the peptide binding 

groove may provide insight into other IM-ADRs in which multiple HLA risk alleles with shared peptide 

binding specificities are implicated across different ethnic groups. 

 

Translation into Clinical Practice 

Mapping of IM-ADR to specific HLA alleles permits the use of pharmocogenomic screening to identify 

patients are greatest risk for the development of severe drug reactions.  However, for all HLA alleles so 

far identified, even those with NPV as has high as 100%, the PPVs are typically much lower (Table 1).  
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Therefore, where the NPV is 100%, specific HLA risk alleles are necessary but not sufficient for the 

development of IM-ADR.  The utility and safety of pharmocogenomic screening for HLA risk alleles is 

influenced by the NPV as well as the number needed to treat to prevent one case (NNT).  The NNT is a 

function of PPV, the frequency of the risk allele in the target population and the prevalence of the IM-

ADR.  Other factors may influence the utility of genetic screening including the cost effectiveness of 

screening in clinical practice, the severity of the clinical or economic consequences of the disease and 

the availability of alternative drugs that have a wider safety margin and/or do not require genetic 

testing98,99. Together these factors determine the cost and number of patients required to be tested to 

avoid one IM-ADR case and have implications for patients who may unnecessarily be denied optimal 

treatment, those that carry risk allele, but would not have developed an adverse reaction.   

 

Despite these constraints, screening for risk HLA genes has been successfully applied to the prevention 

of IM-ADR.  The first global screening program for HLA-B*57:01 prior to starting abacavir therapy has 

successfully eradicated reported cases of AHS in areas where routine HLA-B*57:01 screening has been 

introduced100,101. The high positive predictive value of HLA-B*57:01 for AHS (55%) has meant that this 

has been a cost-effective approach.  For HLA-B*15:02 driven carbamazepine SJS/TEN, the prevalence 

of HLA-B*15:02 is highest amongst Asian populations (0.057–0.145 in Han Chinese, 0.085–0.275 in Thais 

and 0.12–0.157 in Malays) compared with European (0.01–0.02), Japanese (0.002) and Korean 

populations (0.004).  Studies based in Taiwan and Thailand have demonstrated utility and cost-

effectiveness of HLA-B*15:02 screening in such populations where the risk allele is most common102,103. 

Other screening programs currently being implemented or evaluated include HLA-B*58:01 testing prior 

to allopurinol initiation and CYP2C9*3/HLA-B*15:02/HLA-B*13:01 screening prior to phenytoin 

prescription in Southeast Asians104-106. 
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Knowledge gaps and Future Directions 

Despite advances in our understanding of the genetic and phenotypic traits that potentiate IM-ADR 

risk, a series of unanswered questions remain.  Chief amongst these are; Although the presence of an 

HLA risk allele  appears to be necessary for the development of a specific IM-ADR, why is the PPV of 

such risk alleles typically <10%? What drives the exquisite tissue specificity and clinical presentation of 

many of these reactions? Why do these reactions occur so rapidly in many cases and show evidence of 

immunological memory?  

The variable and for the most part, low PPV associated with specific HLA risk alleles indicates that other 

mechanisms contribute to the development of IM-ADRs.  Some of these will be patient specific 

variables such as renal and/or liver function or polymorphisms in genes that regulate drug 

metabolism40,91,107-109.  However, many features of the disease may help unravel a more cohesive 

model of IM-ADR.  For some IM-ADRs the first manifestation of disease occurs within 1.5 days of drug 

exposure21. In addition, drug re-exposure is typically associated with rapid and enhanced toxicity11,57.  

Taken together these features suggest the involvement of memory T cells.  T cells primed via exposure 

to previously encountered pathogens mature into one of several memory phenotypes.  Central 

memory T cells (TCM) express CD45RO, CCR7 and L-selectin and circulate through lymph nodes via the 

circulation.  Effector memory T cells (TEM) express CD45R0, but do not express CCR7 and L-selectin and 

are excluded from the lymph node, being found in the peripheral circulation and tissues.  Tissue 

resident memory T cells (TRM) express CD45RO, CD69 and CD103 but not CCR7110.  These latter cells are 

restricted to the tissues and do not recirculate in the peripheral blood.  These TRM are poised, ready to 

activate and proliferate, within tissues known to be affected by IM-ADR.  Therefore, it is possible that 
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TRM play a role as key mediators of disease or in the initiation of disease, these cells remain a critical 

area of study in understanding the pathogenesis of IM-ADRs. 

 

The heterologous immunity model has been proposed as a means of addressing many of the 

unexplained features of IM-ADR19,111.  In this model, pre-formed memory T cells, educated by prior 

exposure to common pathogens such as HHV, cross recognize the drug-altered self-peptide as foreign 

and initiates an inappropriate anti-self response.  In this model, the tissue specificity is dictated, at least 

in part, by the location of memory T cells. For instance, skin involvement in SJS/TEN would be mediated 

by skin TRM, recruited to and resident in the skin following prior infection with pathogens such as herpes 

simplex type 1 or 2.  This may also explain why some patients with risk alleles such as HLA-B*58:01, 

which predispose to both allopurinol SJS/TEN and DRESS develop one condition over another 

depending on the specific memory cell population that cross-recognizes drug, the location of this 

population and the tissue specific repertoire of self-peptides. In an analogous situation, solid organ 

transplant rejection, it is clear that cross-reactive T cells mediate alloreactivity and in many instances 

these cross-reactive T cells have cognate specificity HHV112. 

 

Although many questions remain in explaining the nature of T-cell mediated ADRs, the characterisation 

of clear HLA associations are the critical first step.  Well characterised HLA associations for particular 

IM-ADRs, such as HLA-B*57:01 and AHS or HLA-B*15:02 and SJS/TEN in Asian populations or HLA-

B*58:01 and allopurinol SJS/TEN or DRESS continue to provide invaluable models that allow us to 

explore the unknown factors that contribute to variation in IM-ADR phenotypes and explain 

susceptibility of certain individuals such as differences in drug metabolism, TCR interactions and 
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contributions from the innate immune system.  Taken together, these studies increase our 

understanding of all ADRs and provide a foundation to explore new drug induced adverse reactions as 

they arise. 
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Drug DHR  HLA risk alleles PPV NPV Populations
Abacavir HSS/DIHS B*57:0158,61,113,114 55% 100% European, African 
Carbamazepine SJS/TEN  B*15:0270-80   3% 100% in Han Chinese Han Chinese, Thai, Malaysian, Indian 
  B*15:11115,116  Korean, Japanese
  B*15:18, B*59:01 and C*07:0481  Japanese
  B*15:21117    
  A*31:01116,118-120    Japanese, northern European, Korean 
 HSS/DIHS/ DRESS 8.1 AH (HLA A*01:01, Cw*07:01, B*08:01, DRB1*03:01, DQA1*05:01, DQB1*02:01)121  Caucasians
  A*31:01122 0.89% 99.98% Europeans
  A*31:01122 0.59% 99.97% Chinese 
  A*31:01116,118-120   Northern Europeans, Japanese, and Korean 
  A*11 and B*51 (weak)120   Japanese 
 MPE A*31:01123 34.9% 96.7%
 Any ADR A*31:01124  
Allopurinol SJS/TEN/DIHS/DRESS/MPE B*58:01 (or B*58 haplotype)85,125-131 3% 100% in Han Chinese Han Chinese, Thai, European, Italian, Korean 
Oxcarbazepine SJS/TEN B*15:02 and B*15:18132-134  15:02 - 0.73% 15:02 -99.97 Han Chinese, Taiwanese 
Lamotrigine SJS/TEN B*15:02 (positive)133    Han Chinese 
  B*15:02 (no association)135,136  Han Chinese
Phenytoin SJS/TEN B*15:02(weak), Cw*08:01 and DRB1*16:0272,73,137  Han Chinese
 DRESS/MPE B*13:01 (weak) B*5101 (weak)137    Han Chinese 
Nevirapine SJS/TEN C*04:01138   Malawian 
 HSS/DIHS/DRESS DRB1*01:01 & DRB1*01:02 (hepatitis and low CD4+)91,139 18% 96% Australian, European and South African 
  Cw*8 or Cw*8-B*14 haplotype96,140  Italian and Japanese
  Cw*491,141  Blacks, Asians, Whites, Han Chinese
  B*3591  B*35:0195  B*35:05142   16% 97% Asian 
 Delayed rash DRB1*01143  French
  Cw*0491,93    African, Asian, European, and Thai 
  B*35:05142   Thai 
Dapsone HSS B*13:01144 7.8% 99.8%
Efavirenz Delayed rash DRB1*01143  French
Sulfamethoxazole SJS/TEN B*3885   European 
Amoxicillin-
clavulanate 

DILI DRB1*15:01 A*02:01 DQB1*06:02,  and rs3135388, a tag SNP of DRB1*15:01-DQB1*06:02 DRB1*07 and HLA-A1 (protective)145-147  
  European 

Lumiracoxib DILI DRB1*15:01-DQB1*06:02-DRB5*01:01-DQA1*01:02 haplotype148   International, multi-center
Ximelagatran DILI DRB1*07 and DQA1*02149  Swedish
Diclofenac DILI HLA-A11150  European
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Flucloxacilin DILI B*57:01DRB1*07:01-DQB1*03:01 151  0.12% 99.99% European
Lapatinib DILI DRB1*07:01-DQA2*02:01-DQB1*02:02/02:02152  International, multi-center
Methimazole/ 
Carbimazole/ 
Anti-thyroid 
drugs 

Agranulocytosis HLA-B*38:02 (*5 SNPs)153-155HLA-B*27:05(3/5 SNPs)155,156  HLA-DRB1*08:03153,155,157  
7%*30% 99.9%>99%  Chinese, Northern Han Chinese*European/Northern Han Chinese  Chinese, Japanese, Northern Han Chinese Northern Han Chinese 

Clozapine Agranulocytosis/ Neutropenia HLA-B*59:01158 HLA-DQB1 (126Q)  HLA-DQB1*05:02;  HLA-B (158T) (HLA-B*39:01, HLA-B*39:06, HLA-B*38:01)159 HLA-DQB1160 
     35.1% 

 Japanese European    European 
Azathioprine Pancreatitis HLA-DQA1*02:01;  HLA-DRB1*07:01161  9%  European 
Statins Myopathy HLA-DRB1*11:01162   European, African 
Asparaginase Anaphylaxis DRB1*07:01163   European 

Table 1: HLA associations for IM-ADR  
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Figure 1. Gell and Coombs classification of hypersensitivity reactions. Drugs can elicit all of the defined reaction types, examples are shown in 
the text boxes at the bottom of the table.  These include antibody mediated reactions (Type I-III) and T-cell and cytokine mediated reactions 
(Type IVa-d).  Acute generalised exanthemetous pustulosis (AGEP), polymorphonuclear leukocyte (PMN), cytotoxic T cell (CTL), granulocyte 
macrophage colony stimulating factor (GM-CSF).  Adapted from Pichler, 2007.   Drug Hypersensitivity Reactions: Classification and Relationship 
to T-Cell activation, in Drug Hypersensitivity. 

Figure 2.  The human leukocyte antigen (HLA). A. The HLA genes are amongst the most polymorphic of all human genes and are located on the 
short arm (p) of human chromosome 6.  The class I regions encodes the HLA-A, HLA-C and HLA-B genes whilst the class II regions encode HLA-
DR, HLA-DQ and HLA-DP.  B. Peptides are presented on the surface of cells in the context of HLA to the T cell receptor (TCR).  For class I HLA 
alleles peptides bind within specific pockets, A, B, C, D, E and F, of the peptide binding groove.  The B and F pockets bind the anchor residues, P2 
and P9 of each peptide providing binding specificity to a particular HLA molecule.  The TCR engages with the CDR3 region of the HLA molecule 
and appropriate solvent exposed peptide residues.  

Figure 3. Models of T cell-mediated drug hypersensitivity.  (I) In the hapten/prohapten model the drug forms covalent bonds with endogenous 
peptides or proteins.  This modified complex is processed via conventional antigen processing pathways and presented on the surface of cells in 
the context of HLA.  The de novo antigens thus displayed are recognised as foreign by host T cells.  (ii)  In the p.i model non-modified drug binds 
directly to immune receptors such as the TCR via non-covalent bonds (dashed line), this response is independent of peptide or antigen 
processing.  (iii) In the altered peptide model drug binds non-covalently within the peptide binding groove thereby altering the chemistry of the 
antigen binding cleft.  This alters the repertoire of peptides capable of binding to a specific allele - creating a pseudo-allogenic HLA molecule - 
which presents non-tolerised altered self to T cells. 

Figure 4.  Solved structure of abacavir-peptide-HLA complex.  A. Intramolecular contacts within the peptide binding cleft of HLA-B*57:01 and 
peptide and abacavir.  HLA-B*57:01 in grey, synthetic peptide (HSITYLLPV) in cyan.  Abacavir is shown as orange for carbon, blue for nitrogen 
and red for oxygen.  Residues that distinguish HLA-B*57:01 from the abacavir insensitive allele, HLA-B*57:03, are shown in magenta for carbon, 
blue for nitrogen and red for oxygen.  Black dashed lines show hydrogen bonds from abacavir to both the peptide and HLA-B*57:01.  B. Model 
of abacavir-peptide-HLA interacting with the TCR. HLA is depicted in grey, peptide in cyan (carbons) and abacavir as orange for carbon and blue 
for nitrogen. TCR is depicted in pink. 
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Figure 1. Gell and Coombs classification of hypersensitivity reactions. Drugs can elicit all of the defined reaction types, examples are shown in the text boxes 
at the bottom of the table.  These include antibody mediated reactions (Type I-III) and T-cell and cytokine mediated reactions (Type IVa-d).  Acute generalised 
exanthemetous pustulosis (AGEP), polymorphonuclear leukocyte (PMN), cytotoxic T cell (CTL), granulocyte macrophage colony stimulating factor (GM-CSF).  
Adapted from Pichler, 2007.   Drug Hypersensitivity Reactions: Classification and Relationship to T-Cell activation, in Drug Hypersensitivity. 

 

Figure 2.  The human leukocyte antigen (HLA). A. The HLA genes are amongst the most polymorphic of all human genes and are located on the short arm (p) 
of human chromosome 6.  The class I regions encodes the HLA-A, HLA-C and HLA-B genes whilst the class II regions encode HLA-DR, HLA-DQ and HLA-DP.  B. 
Peptides are presented on the surface of cells in the context of HLA to the T cell receptor (TCR).  For class I HLA alleles peptides bind within specific pockets, 
A, B, C, D, E and F, of the peptide binding groove.  The B and F pockets bind the anchor residues, P2 and P9 of each peptide providing binding specificity to a 
particular HLA molecule.  The TCR engages with the CDR3 region of the HLA molecule and appropriate solvent exposed peptide residues.  

 

Figure 3. Models of T cell-mediated drug hypersensitivity.  (I) In the hapten/prohapten model the drug forms covalent bonds with endogenous peptides or 
proteins.  This modified complex is processed via conventional antigen processing pathways and presented on the surface of cells in the context of HLA.  The 
de novo antigens thus displayed are recognised as foreign by host T cells.  (ii)  In the p.i model non-modified drug binds directly to immune receptors such as 
the TCR via non-covalent bonds (dashed line), this response is independent of peptide or antigen processing.  (iii) In the altered peptide model drug binds 
non-covalently within the peptide binding groove thereby altering the chemistry of the antigen binding cleft.  This alters the repertoire of peptides capable 
of binding to a specific allele - creating a pseudo-allogenic HLA molecule - which presents non-tolerised altered self to T cells. 

 

Figure 4.  Solved structure of abacavir-peptide-HLA complex.  A. Intramolecular contacts within the peptide binding cleft of HLA-B*57:01 and peptide and 
abacavir.  HLA-B*57:01 in grey, synthetic peptide (HSITYLLPV) in cyan.  Abacavir is shown as orange for carbon, blue for nitrogen and red for oxygen.  Residues 
that distinguish HLA-B*57:01 from the abacavir insensitive allele, HLA-B*57:03, are shown in magenta for carbon, blue for nitrogen and red for oxygen.  Black 
dashed lines show hydrogen bonds from abacavir to both the peptide and HLA-B*57:01.  B. Model of abacavir-peptide-HLA interacting with the TCR. HLA is 
depicted in grey, peptide in cyan (carbons) and abacavir as orange for carbon and blue for nitrogen. TCR is depicted in pink. 
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