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Abstract

Electroencephalography (EEG) is one of the most useful techniques used to
represent behaviours of the brain and helps explore valuable insights
through the measurement of brain electrical activity. Hence, it plays a vital
role in detecting neurological disorders such as epilepsy. Dyslexia is a
hidden learning disability with a neurological origin affecting a significant
amount of the world population. Studies show unique brain structures and
behaviours in individuals with dyslexia and these variations have become
more evident with the use of techniques such as EEG, Functional Magnetic
Resonance Imaging (fMRI), Magnetoencephalography (MEG) and Positron
Emission Tomography (PET).

In this thesis, we are particularly interested in discussing the use of EEG to
explore unique brain activities of adults with dyslexia. We attempt to
discover unique EEG signal patterns between adults with dyslexia compared
to normal controls while performing tasks that are more challenging for
individuals with dyslexia. These tasks include real-word reading, nonsense-
word reading, passage reading, Rapid Automatized Naming (RAN), writing,
typing, browsing the web, table interpretation and typing of random
numbers. Each participant was instructed to perform these specific tasks
while staying seated in front of a computer screen with the EEG headset
setup on his or her head. The EEG signals captured during these tasks were
examined using a machine learning classification framework, which includes
signal preprocessing, frequency sub-band decomposition, feature extraction,
classification and verification. Cubic Support Vector Machine (CSVM)
classifiers were developed for separate brain regions of each specified task
in order to determine the optimal brain regions and EEG sensors that

produce the most unique EEG signal patterns between the two groups.
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The research revealed that adults with dyslexia generated unique EEG signal
patterns compared to normal controls while performing the specific tasks.
One of the vital discoveries of this research was that the nonsense-words
classifiers produced higher Validation Accuracies (VA) compared to real-
words classifiers, confirming difficulties in phonological decoding skills seen
in individuals with dyslexia are reflected in the EEG signal patterns, which
was detected in the left parieto-occipital. It was also uncovered that all three
reading tasks showed the same optimal brain region, and RAN which is
known to have a relationship to reading also showed optimal performance
in an overlapping region, demonstrating the likelihood that the association
between reading and RAN reflects in the EEG signal patterns. Finally, we
were able to discover brain regions that produced exclusive EEG signal
patterns between the two groups that have not been reported before for
writing, typing, web browsing, table interpretation and typing of random

numbers.
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reconstructed from the retained signal subspace based on the correlation

structure observed in the calibration data’ (Mullen et al.,, 2013).

Dyslexia: A hidden learning disability with a neurological origin (Fletcher,
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Feature Extraction: Transforming the input data into a set of features
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Electroencephalogram: A record of the oscillations of brain electric
potential recorded from electrodes on the human scalp’ (Nunez &

Srinivasan, 2006, pp. 3).
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words (Johnston, McDonnell, & Hawken, 2008).
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Kumari & Prabin Jose, 2011).
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Chapter 1 Introduction

1.1 Background and Motivation

Dyslexia is a hidden learning disability with a neurological origin, which
causes lack of proficiency in reading and spelling despite average or above
average intelligence, sensory abilities and appropriate exposure to literacy
instruction (Fletcher et al., 2006; Perera et al., 2016b). Common symptoms
of dyslexia include poor reading skills, illegible handwriting, slow writing or
copying, bad spellings, letter migration and reversals (Fletcher et al., 2006;
Gvion & Friedmann, 2010; Sahari & Johari, 2012; Shalev, Mevorach, &
Humphreys, 2008). Dyslexia affects a significant amount of the world
population. Statistics show that approximately 20% of the child population
in the United States of America (Shaywitz, 2003), approximately 4% of the
students in Australia (The Dyslexia-SPELD Foundation of WA, n.d.-b) and
overall approximately 15-20% of the world population (de Santana, de
Oliveira, Almeida, & Baranauskas, 2012) experience dyslexia. Current
assessment methods for the identification of dyslexia are based on
indicators such as reading proficiency, spelling ability, writing, working
memory, processing ability, a review of biographical information and the
individual’s educational history (The Dyslexia-SPELD Foundation of WA,
n.d.-a). Standardised test such as Wechsler Individual Achievement Test
(WIAT), Comprehensive Test of Phonological Processing (CTOPP), Oral and
Written Language Scales (OWLS) and Woodcock Johnson (W]) are few of the
tests used to assess these abilities. The severity of dyslexia may vary from
mild to severe, and therefore the symptoms of dyslexia vary from person to

person.

Glancing into the internal organs and imaging without having to open the
body, monitoring and analysing are few of the complexities simplified by
technology. Electroencephalography, commonly known as EEG, is one such
technology that helps to capture neurological behaviours. EEG is a

monitoring technique used to identify unique neurological behaviours in



conditions such as epilepsy (Abdulhay, V, M, V.S, & K, 2017), sleeping
disorders (Hassan & Subasi, 2017) and autism (Grossi, Olivieri, & Buscema,
2017). Although EEG provides very valuable insights into the brain,
discovering these are not always straightforward due to its complexity.
These are often analysed using statistical techniques as well as
computational techniques such as machine learning, which have been

discussed in detail in following chapters.

The availability of affordable EEG devices from organisations such as
Cognionics, Emotiv, OpenEEG, NeuroSky and Mindo, EEG processing
toolboxes such as EEGLAB, and the availability of machine learning
toolboxes makes it possible to design and develop EEG-based pattern
identification and classification frameworks with less effort without having

to re-invent the wheel.

As dyslexia is understood to be neurological in origin, EEG can be used to
identify unique brain behaviours in individuals with dyslexia. Past research
has found unique brain structures as well as distinctions in the brainwave
activation patterns in individuals with dyslexia compared to normal control
groups (Mohamad, Mansor, & Lee, 2013). However, there are many gaps to
be filled in the literature about these unique EEG signal patterns pertaining
to dyslexia, in particular the EEG patterns while performing tasks that are
more challenging for individuals with dyslexia (Perera, Shiratuddin, &
Wong, 2016a). Hence, in this research we aim to identify these unique EEG
signal patterns in adults with dyslexia compared to normal controls.
Identification of unique EEG signal patterns between individuals with
dyslexia compared to normal controls can help provide a better view of

dyslexia as well as help to cater more targeted assistance for dyslexia.



1.2 Aims and Objectives

This section includes the research problems (RP) identified through the
literature review, and the research questions (RQ) and research objectives

(RO) constructed from the gaps identified.

1.2.1 Research Problems

RP1:

Through the literature review, it was evident that dyslexia has a
neurological origin (Fletcher et al, 2006) and preliminary studies show
differences in brain structures and behaviours between individuals with
dyslexia compared to normal controls. However, it is yet to be identified
whether certain tasks, which are more challenging for individuals with
dyslexia, show different brain signal patterns. These tasks are explained in

the sub-problems given below.

RP2:

Individuals having dyslexia fail to attain sufficient reading skills compared
to normal controls despite conventional instructions and teaching
guidelines. For many individuals who are identified with dyslexia, a
phonological deficit is noted (Fletcher et al., 2006) and this deficit results in
poor word decoding abilities and difficulties in sound detection and
isolation. This reduces the reading and spelling experience, which hinders

vocabulary development.

RP3:

Recent research (Donker, Kroesbergen, Slot, Van Viersen, & De Bree, 2016;
Georgiou, Parrila, Cui, & Papadopoulos, 2013; Schatschneider, Carlson,
Francis, Foorman, & Fletcher, 2002) supports the notion on that Rapid
Automatized Naming (RAN) is related to reading. RAN ability is often
comparatively poor in individuals with dyslexia (M. Jones, Branigan, & Kelly,

2009).



RP4:

Individuals having dyslexia suffer poor writing skills. Symptoms include
poor development of written expression skills, letter identity errors such as
substitutions, additions and omissions, bad handwriting, slow writing and

copying and poor spellings (Gvion & Friedmann, 2010).

RP5:
Typing is a modern-day task that often replaces writing, but still, affects

people with dyslexia in a similar manner when it comes to spelling.

RP6:

A significant amount of everyday human tasks involves reading and writing.
In reality, it is not just letters or words that an individual will have to read
and understand. Browsing the web while reading and typing, interpreting
tables with letters and numbers or keying in an unfamiliar number are few

of the present-day challenging tasks individuals with dyslexia face.

1.2.2 Research Questions

RQ1:

Do EEG signals generated while performing specific tasks that are more
challenging for individuals with dyslexia produce unique brainwave signal
patterns in adults with dyslexia compared to normal controls?

Can these EEG signal patterns be detected using machine learning
classification techniques?

Do these EEG signal patterns differ according to the tasks and EEG sensors

spanned across each brain region?

The research questions pertaining to each task is explained in the sub-

questions given below.



RQ2:
Do EEG signals generated while reading produce unique brainwave signal
patterns in adults with dyslexia compared to normal controls?

Do reading real-words, nonsense-words and passages activate the same

brainwave patterns?

RQ3:
Do EEG signals generated during RAN produce unique brainwave signal

patterns in adults with dyslexia compared to normal controls?

RQ4:
Do EEG signals generated while writing produce unique brainwave signal

patterns in adults with dyslexia compared to normal controls?

RQ5:
Do EEG signals generated while typing produce unique brainwave signal

patterns in adults with dyslexia compared to normal controls?

RQ6:
Do EEG signals generated during the following everyday tasks produce
unique brainwave signal patterns in adults with dyslexia compared to
normal controls?

* Browsing the web

* Interpreting tables

» Keying in an unfamiliar number

1.2.3 Research Objectives

RO1:

The main aim of this research is to identify unique patterns in the EEG
signals in adults with dyslexia compared to normal controls when
performing tasks that are more challenging for individuals with dyslexia.

These unique patterns will be identified using an EEG-based machine



learning classification framework and derived through the sub-objectives

explained below.

RO2:

Identify brain regions and EEG electrodes that produce unique EEG signal
patterns in adults with dyslexia compared to normal controls during reading
related tasks. Compare patterns during real-word, nonsense-word and

passage reading.

RO3:
Identify brain regions and EEG electrodes that produce unique EEG signal

patterns in adults with dyslexia compared to normal controls during RAN.

RO4:
Identify brain regions and EEG electrodes that produce unique EEG signal

patterns in adults with dyslexia compared to normal controls while writing.

RO5:
Identify brain regions and EEG electrodes that produce unique EEG signal

patterns in adults with dyslexia compared to normal controls while typing.

RQ6:
Identify brain regions and EEG electrodes that produce unique EEG signal
patterns in adults with dyslexia compared to normal controls during the
following everyday tasks.

* Browsing the web

* Interpreting tables

» Keying in an unfamiliar number

1.3 Scope

This research is primarily focused on identifying unique patterns in the EEG
signals in individuals with dyslexia compared to normal controls when

performing tasks that are more challenging for individuals with dyslexia.



The scope of this research is limited to right-handed adults with age of 18
years or older who are fluent in English and have a normal or corrected-to-
normal vision and normal hearing. These tasks include real-word reading,
nonsense-word reading, passage reading, RAN, writing, typing, browsing the
web, table interpretation and typing of random numbers. The participants
with dyslexia were recruited through DSF Literacy and Clinical Services and
were limited to adults who had completed a recent assessment and
diagnosis. The scope of this research does not include the examination of
unique brainwave patterns between other specific learning disabilities such

as dysgraphia or dyscalculia.

Further, this research uses machine learning as the technique to identify the
unique brainwave patterns between the two groups. The machine learning
classifier is selected based on the evidence on reviews and

recommendations of past similar research.

1.4 Significance

With the evolution of technology, the major role that technology now plays
in the identification of patterns pertaining to disorders and difficulties is
paramount. Improving and evaluating the way in which patterns of results
are identified and classified may help uncover answers that are not always

obvious.

This research offers some important insights into the unique brainwave
signal patterns generated for adults with dyslexia compared to normal
controls while performing a few specific tasks that are more challenging for
individuals with dyslexia. These tasks include real-word reading, nonsense-
word reading, RAN, passage reading, web browsing, writing, typing, table
interpretation and typing of random numbers. A literature review shows
that most of the studies carried out by identifying unique brainwave
patterns entail the examination of event-related potentials (ERP), which is
the brain response to a stimulus. In this research, we contribute to the

limited literature of the brain behaviour patterns in straight EEG while



performing these tasks. These findings will help to confirm whether the
greater level of difficulties seen in individuals with dyslexia while
performing these tasks are reflected in the brainwave patterns and identify
the specific brain regions that produce these unique brainwave signal

activation patterns for each task.

EEG signals provide very valuable insights into the behaviour of the brain;
however, identifying these patterns is not always quite straightforward due
to its complexity. Although past studies prove that manual statistical
analysis could detect these patterns, the process requires careful analysis
and could take up a considerable amount of time. In this research, we also
contribute towards the possibility of automating the process through

machine learning classification.

This research would provide significant insights into the brainwave signal
patterns between the adults with dyslexia and normal controls. Listed below
are few of the noteworthy findings it may help uncover.

» [f the greater level of difficulties seen during nonsense-word reading
compared to real-word reading in individuals with dyslexia reflects in
the EEG signal patterns. The capability to read nonsense-words is known
to be one of the best ways to measure phonological decoding skills
(Shaywitz, 2003), and poor phonological decoding skills is one of the
common symptoms seen in individuals with dyslexia (Facoetti et al,
2010; Ziegler, Perry, & Zorzi, 2014). Therefore, the results can help
confirm whether difficulties in phonological decoding skills seen in
individuals with dyslexia are reflected in the EEG brainwave signal
patterns.

» [fall reading related tasks activate similar optimal brain regions

= [f RAN, which is related to reading activate similar optimal brain regions
to reading

» [f everyday human tasks which include reading or interpreting words or
number while writing or typing show unique brainwave activations

patterns



These findings will provide a better view of dyslexia, as it would help
identify distinct brain regions for each task. Hence, help psychologists
provide better-targeted assistance for individuals with dyslexia. EEG signals
are particularly considered as a reliable measure, as the brainwave outcome
cannot be falsified. The discoveries of this research could even one day
benefit the diagnosis process of dyslexia as it can complement the
behavioural-based detection techniques through the introduction of the
neurological symptoms. Further, the use of automated machine learning

classification makes it more practical and appealing to be used in real life.

The identification of brain regions helps to narrow down the EEG sensors
required to distinguish unique brainwave signal patterns specific to
dyslexia. These results would perhaps enable EEG headset manufacturers to
produce EEG headsets specifically to be used in the dyslexia detection

process.

In summary, the outcomes of this research could help fill gaps in the limited
literature on the unique brainwave patterns generated in adults with
dyslexia compared to normal controls while performing specific tasks that
are more challenging for individuals with dyslexia. Furthermore, the
classification framework used in this research can be used as a guideline in

the development of dyslexia pattern recognition software.



1.5 Outline of Thesis

This thesis is divided into 6 chapters, and the outline of the chapters is

presented below.

Chapter 1 presents an introduction to the thesis that includes the
background, motivation and aims of objectives of the current research. It

also highlights the scope and significance.

Chapter 2 reviews relevant literature by critically evaluating prior similar
work. It comprises reviews on dyslexia, the conventional dyslexia detection,
role of technology played to improve dyslexia detection and EEG-based
signal pattern recognition frameworks for dyslexia. Finally, summarises the

gaps in the literature.

Chapter 3 describes the methodology used, which includes research
strategies implemented for signal acquisition, analysis and classification.
Further, it includes about pilot studies carried out in order to confirm the

suitability of the adapted methods.

Chapter 4 presents the results of all the classifiers build in order to
determine if there are unique EEG signal patterns between adults with
dyslexia and normal controls. The results are categorised task wise, with
each task containing the classifiers for each brain region along with the

validation metrics.
Chapter 5 includes a critical discussion of the results on how the insights of
the findings relate to the research questions, objectives and past similar

research.

Chapter 6 provides a summary of the research, its contributions and

recommendations for future research.
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Chapter 2 Literature Review

2.1 Overview

This section outlines and reviews the literature related to the research by
critically evaluating prior similar work. The review starts by discussing
details of dyslexia, its symptoms, conventional dyslexia detection
techniques, targeted assistance required, followed by unique brain
structures and behaviours seen in individuals with dyslexia. Next, a detailed
evaluation of the role of technology played in improving the dyslexia
detection techniques is discussed. This includes efforts made to improve the
current dyslexia detection process as well as to revolutionise the process;
which explores new potential areas for dyslexia detection through
symptoms that are not merely visible externally. Subsequently, a
comparison of the existing EEG-based signal pattern recognition
frameworks for dyslexia is conducted, where the strengths and gaps are
highlighted. Further, popular pattern recognition techniques including
statistical analysis and machine learning are discussed. Finally, the findings

are summarised through highlighting the gaps in the literature.

2.2 Dyslexia

2.2.1 What s Dyslexia?

Dyslexia, commonly known as a word-blindness in the 1800’s (Zerbin-
Ridin, 1967) is a word originated from the Greek language with the
combination of the two Greek words ‘dys’ and ‘lexia’. ‘Dys’ with the meaning
‘difficulty’ and ‘lexia’ with the meaning ‘words’ put together simply means

difficulty with words (Hultquist, 2008).

A child having dyslexia can become a depressed, unmotivated or a low self-
esteemed child if the condition goes undetected. Difficulty in learning to
interpret letters, words or sometimes even symbols certainly causes the
child to have a hard time keeping up with his or her peers in school
(Mohamad et al, 2013). Although individuals having dyslexia face

difficulties with reading, writing and spelling, there are many great dyslexic
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minds such as Albert Einstein, Leonardo da Vinci, Alexander Graham Bell,
Hans Christian Andersen, Walt Disney, Henry Ford, Steve Jobs and Richard
Branson (Davis, 2010). According to Davis (2010) in the book ‘The gift of
dyslexia: why some of the brightest people can't read and how they can
learn”, individuals with dyslexia are believed to be highly intuitive and
insightful with the ability to alter and create perceptions. They are known to
be highly aware of the environment, with more curiosity than average,
thinking mainly in pictures instead of words and experiencing thought as

reality with a lot of vivid imaginations (Davis, 2010).

Diagnosing dyslexia at an early stage is important to prevent a child having
to go through a stressful, rough childhood and face frustrating experiences
at school. Early detection helps to direct children with dyslexia to the
necessary treatments required. Targeted assistance is essential for
individuals with dyslexia to not only develop coping mechanisms but
intervention an remediation aims to reduce the level of disadvantage that
the individual experiences and to improve their underlying literacy skills.
Recent studies (Sahari & Johari, 2012) states that ‘dyslexia is not a disease
or defect that can be cured’, rather a ‘condition that can be helped’ with
proper targeted support. Promising results have shown through children
who go through intervention programs in the early stages of literacy
development (Zakopoulou et al, 2011) demonstrate an improvement in
reading performance as well as a reduction of anxiety (Haddadian, Alipourb,

Majidi, & Maleki, 2012).

Research shows poor reading skills, bad spellings, unclear and slow writing,
letter migrations and reversals as prevalent symptoms of dyslexia (Gvion &

Friedmann, 2010; Sahari & Johari, 2012; Shalev et al., 2008).

Dyslexia is a specific learning disability that is neurological in origin. It is
characterized by difficulties with accurate and/or fluent word recognition and by
poor spelling and decoding abilities. These difficulties typically result from a

deficit in the phonological component of language that is often unexpected in
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relation to other cognitive abilities and the provision of effective classroom
instruction. Secondary consequences may include problems in reading
comprehension and reduced reading experience that can impede the growth of

vocabulary and background knowledge (Fletcher et al., 2006, pp. 104).

As stated by Fletcher et al. (2006) dyslexia is a disability with a neurological
origin, causing difficulties in reading and spelling. Lack of phonological
awareness; ‘the ability to hear and manipulate the sounds’ in words
(Johnston et al., 2008) and poor phonological decoding skills (Facoetti et al.,
2010; Ziegler et al., 2014) are commonly found symptoms in individuals
having dyslexia. Phonological decoding refers to the ability to utilize phonics
knowledge when reading and is usually measured based on nonsense-word
reading performance (Facoetti et al., 2010). Further, as shown in Figure 2.1
Ziegler et al. (2008) proves that individuals having dyslexia perform worse

in reading irregular and nonsense-words compared to regular words.

Controls Dyslexics 4 t-value

Accuracy (% correct)

Regular 99.2 (2.8) 97.1(5.5) 2.1 1.65

Irregular 92.5(7.9) 68.8 (28.0) 237 3199

Nonwords 96.3 (5.8) 78.3(17.5) 18.0 4,75
Latency (ms)

Regular 700 (144) 876 (235) 176 312

Irregular 812 (159) 1124 (335) 312 411"

Nonwords 938 (188) 1186 (333) 248 317"

Figure 2.1: Reading performance of individuals having dyslexia (Ziegler et al., 2008)

RAN is the ability to quickly name familiar things such as letters, digits,
objects and colours (Jones et al,, 2010) and measures the speed of retrieval
of language-based information from long term memory. Research confirms
RAN is related to reading (Georgiou et al., 2013) and that it is impaired in
individuals with dyslexia (Jones et al., 2010).

Dyslexia is heritable, which means a child has a possibility to inherit it from
a parent who has dyslexia. It has been reported that 23-65% of children who
have a parent with dyslexia are at risk of having dyslexia (Shaywitz &

Shaywitz, 2005).
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Dyslexia in some cases can have partly or wholly distinct genetic causes.
Francks, MacPhie, and Monaco (2002) suggest looking into the genetic
aspect to diagnose dyslexia instead of merely considering individual
disabilities. Identification of the genetic variants would help to estimate and
reduce the risk of developing severe reading problems earlier than currently
possible. Studies have shown that overall reading abilities including dyslexia
have significant genetic components with heritability estimated at 54-84%

(Eicher & Gruen, 2013).

2.2.2 Conventional Dyslexia Detection

The conventional dyslexia detection techniques are mostly based on
behavioural aspects and academic indicators, which include measures such
as reading, writing and spelling abilities, 1Q level, phonological awareness,
working memory, processing ability, biographical information and
educational history. Individuals are assessed using standardised tests to
identify these capabilities and thereby detect dyslexia (The Dyslexia-SPELD
Foundation of WA, n.d.-a). Given below in Table 2.1 are few of the

standardised, well-recognised tests used by professionals in the industry.

Table 2.1: Dyslexia standardised tests

Category Test

1Q WISC (Wechsler Intelligent Scale for Children) or
WASI (Wechsler Abbreviated Scale of Intelligence)
and W] (Woodcock Johnson)

Reading WIAT (Wechsler Individual Achievement Test)
TOWRE (Test of Word Reading Efficiency)
YARC (York Assessment of Reading for
Comprehension)

GORT (Gray Oral Reading Tests)

Writing OWLS (Oral and Written Language Scales)
WIAT (Wechsler Individual Achievement Test)

Phonological CTOPP (Comprehensive Test of Phonological

14



Processing Processing)
SPAT (Sutherland Phonological Awareness Test)
QUIL (Queensland University Inventory of Literacy)

Mathematics WIAT (Wechsler Individual Achievement Test)

Memory WISC (Wechsler Intelligent Scale for Children) or
W] - iii (Woodcock Johnson)

Listed below are few of the standardised tests in more detail.
*  WISC: WISC measures 1Q along with critical insights into children'’s
cognitive functionalities. This test is tailored for children of age range
6 years and 0 months to 16 years and 11 months, which includes
assessment areas of fluid reasoning, working memory and processing

speed (Wechsler, 2003)

* WIAT: WIAT measures all areas important for detecting and
categorizing learning disabilities as specified by the IDEA legislation.
[t assesses patterns of strengths and weaknesses of individuals in

order to identify learning disabilities.

WIAT-III offers a total of 16 subtests for individuals ranging from age
4 years and 0 months to 50 years and 11 months. The assessments
include oral reading, math, early reading skills, listening
comprehension, oral expression and written expression (Wechsler,

2009).

*  OWLS: OWLS uses mainly four scales; listening comprehension, oral
expression, reading comprehension, and written expression for
assessing language skills accordance with IDEA requirements. It is
available for age ranges 3 years and 0 months to 21 years and 11
months (Listening Comprehension and Oral Expression); 5 years and
0 months to 21 years and 11 months (Reading Comprehension and
Written Expression) to identify learning disabilities and language

difficulties (Carrow-Woolfolk, 2011).
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* CTOPP: CTOPP is used to assess phonological processing skills as a
prerequisite to reading fluency. It helps to determine the strengths
and weaknesses in phonological processing capabilities of
individuals of age ranges 4 years and 0 months to 24 years and 11

months (Wagner, Torgesen, Rashotte, & Pearson, 2013).

2.2.3 Targeted Assistance

Individuals with dyslexia fail to achieve sufficient reading and writing skills
despite conventional teaching instructions and guidelines (Démonet, Taylor,
& Chaix, 2004). They often require targeted assistance and modified

teaching techniques.

The Orton-Gillingham approach is one such widely used successful multi-
sensory teaching approach, which includes visual, auditory and touch
combined with the learning practices (Beetham, 2011; Mohamad et al,,

2013; Purkayastha, Nehete, & Purkayastha, 2012).

Targeted multi-sensory teaching game tools are one of the successful
techniques introduced by research to keep children with dyslexia interested
in the learning process. Educational multisensory games have shown
effective results in the learning curves of people with dyslexia (Malekian &

Askari, 2013).

Daud and Abas (2013) proposed a mobile application named ‘Dyslexia Baca’
to support children having dyslexia with letter recognition. The applications
specifically focused on aiding difficulties with letter reversals such as ‘d and
b’ and ‘w and m’ using multi-sensory teaching techniques in an enjoyable

approach.
Individuals with dyslexia are often given extra time at exams to compensate

for their difficulties. Although this does not help to remediate the difficulties

directly, it helps to mitigate the difficulties faced to a certain extent by
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allowing additional time to process and review written information. The
British Dyslexia Association recommends 25% extra time during exams for
students with dyslexia (Allison Schwartz, n.d; The British Dyslexia

Association, n.d.).

Web accessibility could also be challenging for persons having dyslexia due
to the related deficiencies. Recent research (de Santana et al.,, 2012; Rello,
Kanvinde, & Baeza-Yates, 2012) has initiated focusing on providing custom
tailored web layout guidelines for improving the web accessibility
experience. The difficulties faced while browsing the web have been
captured using conventional ways such as interviews and questionnaire as

well as modern techniques such as eye tracking.

Such custom layout guidelines can also be useful for virtual learning
environments used in higher education. A study (Habib et al., 2012) carried
out regarding the struggles encountered by students with dyslexia in higher
education show that the information overload in virtual learning

environments is quite problematic.

2.2.4 Brain Structures and Behaviours

Recent studies (Mohamad et al., 2013) show that with the advancements in
neuroimaging techniques, researchers are looking into how neurological
techniques can assist to detect unique differences specific to dyslexia. The
existence of the variances in the brain anatomy between individuals with

dyslexia and normal individuals has been disclosed through findings.

Individuals with dyslexia often have to consciously interpret written words
instead of instantaneously recognizing it. This is because the Broca's and
Wernicke’s areas of the brain function separately. The Wernicke’s area is
important for language and speech organisation and production, whereas
Broca's area is important for language processing and reading. This brain
behaviour certainly contributes toward causing difficulties to attain

sufficient reading skills in individuals with dyslexia (Mohamad et al., 2013).
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The distribution of Cerebral White Matter and the structure of the Corpus
Callosum of the brain are example of different anatomy found in individuals
with dyslexia. 3D Texture Analysis of MRI brain images has proven the clear
differentiation of the individuals with dyslexia compared to normal

individuals (El-Baz et al,, 2008; Elnakib, El-Baz, Casanova, & Switala, 2010).

Analysis of the brain cortex to detect dyslexia through 3D images has been
investigated by research (Nitzken et al., 2011). Specifically, the comparison
of cortex gyrifications shows noteworthy differences between individuals

with dyslexia and without dyslexia.

Further research (Heim & Keil, 2004; Hudson, High, & Al Otaiba, 2007) also
shows a difference in brain hemisphere structures in individuals with
dyslexia compared to individuals without dyslexia. In general, right-handed
non-dyslexic individuals have asymmetrical brains where the left
hemisphere is larger than the right hemisphere. On the contrary, individuals
who have been identified as having dyslexia tend to have larger right
hemispheres compared to the left hemispheres and sometimes even

symmetrical hemispheres.

Soo-Yeon and van Najarian (2008) have proposed an fMRI-based method for
dyslexia detection. fMRI scans depict changes in the blood flow (Soo-Yeon &
van Najarian, 2008). Through this research, they were was able to identify
distinguishable brain patterns in the fMRIs between the individuals with
dyslexia and normal controls to word recognition stimulus. The final
outcome of the research was a model that can detect unique brain activation

patterns of dyslexia based on a hierarchical optimisation algorithm.

In a nutshell, research has found differences in the brain structures and
behaviours of individuals with dyslexia and without dyslexia. This would
give a better picture of the disability since it looks into variance in brain
structure and processing skills that are present internally of the human

brain.
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2.3 Role of Technology in Dyslexia Detection

Technology undoubtedly helps to improve detection processes through the
use of improved data capturing techniques as well as improved data
analysis techniques. In the past few years, researchers have been working
on how to use advanced technology to detect and improve identification
techniques of dyslexia. Research carried out to improve the detection
process of dyslexia are orderly categorised and discussed below. An

overview of the categorization is shown in Table 2.2.

Table 2.2: Overview of the categorization of the technologies used for dyslexia detection

Improving Efficient Data Analysis using
Conventional Computational Intelligence
Process Techniques
Improved Data Capturing Interactive Multimedia
Game-based Techniques
Revolutionising | Eye-Movements Statistical Techniques
Process Computational
Intelligence and Pattern
Recognition
EEG Statistical Frequency
Analysis
Classification Algorithms

2.3.1 Improving Conventional Process
The initiatives that have been made by recent research to automate the
traditional paper-based detection approach are divided into two categories

as explained below.

2.3.1.1 Efficient Data Analysis using Computational Intelligence Techniques

An early dyslexia screening system based on microcomputers was proposed
by Cresswell, Monteith-Hodge, and Winfield (1997). The main intent of this

research was to implement software that can learn the patterns of
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grammatical mistakes made by individuals with dyslexia, improving the

accuracy of the screening results with time.

A computational Artificial Neural Network based model proposing to
distinguish between the learning disabilities dyslexia, dysgraphia and
dyscalculia was introduced by Jain, Manghirmalani, Dongardive, and
Abraham (2009). The model presented is an Artificial Neural Network with
a signal layer perceptron based learning disability diagnostic tool. By
training the model, a level of 90% accuracy rate was obtained through this

proposed research for the diagnostics.

Fuzzy logic has become a popular choice for diagnostic systems because of
its many-valued nature of logic instead of the binary valued nature. A
research team from Spain (Palacios, Sanchez, & Couso, 2010) have worked
on a diagnosis system for dyslexia using Artificial Intelligence techniques.
They attempt to automate the complex scoring task of the diagnostic
process, which is usually carried out by a human expert. A Genetic Fuzzy
system, which consists of a genetic cooperative-competitive algorithm with

a rule-based classifier, is suggested to tackle this uncertain dataset.

Researchers Manghirmalani, Panthaky, and Jain (2011) have proposed a
model to diagnose learning disabilities using a Soft Computing approach
called Learning Vector Quantization. The model classifies subjects as
learning disabled or non-learning disabled using Learning Vector
Quantization. Further, it uses the Rule Based approach to identify and
categorise the learning disability of the subjects, namely dyslexia,

dysgraphia or dyscalculia.
2.3.1.2 Improved Data Capturing

2.3.1.2.1 Interactive Multimedia
An Interactive multimedia based early screening system, replacing the

paper-based dyslexia screening approach was presented by Ekhsan, Ahmad,
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Halim, Hamid, and Mansor (2012). This alternative approach offered more

reliable results compared to the manual screening process.

2.3.1.2.2 Game-based Techniques

The traditional dyslexia diagnosis test was attempted to be implemented as
a set of games by a Spanish research team (Bartolome, Zorrilla, & Zapirain)
in (2012). A web-based game application was introduced which evaluates
word and syllable reading as well as syllabic, verbal and auditory memory
capabilities to detect dyslexia. This application assesses the progress

following therapy as well.

An Italian research group (Gaggi, Galiazzo, Palazzi, Facoetti, & Franceschini,
2012) proposed a similar game based dyslexia prediction system. A serious
game was introduced to detect dyslexia through finding the capabilities of
eye and hand coordination and visual and auditory stimuli. Once the
symptoms are detected, the system treats the individuals by training the

impairments in phonological skills and visual-spatial attention.

A prototype using Neural Networks for screening individuals who are at risk
of dyslexia was presented by Costa, Zavaleta, Serra da Cruz, et al. (2013) The
computational tool supports the identification process and predetermine

intervention strategies.

Through these researches it is clear that technologies such as fuzzy logic and
neural networks have contributed towards assisting the conventional
dyslexia detection techniques. Most of the approaches have focused on
identifying the patterns and hence perform classifications to differentiate
individuals with dyslexia from the rest. Substitute approaches such as
multimedia and serious gaming applications are also being trialled for its

detection capabilities.
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2.3.2 Revolutionising Process
This section covers research carried out to improve dyslexia detection
techniques that go beyond the conventional methods. The detection

techniques involve looking into symptoms that are not visible externally.

2.3.2.1 Eye-Movements

Eye movement patterns are another area currently being covered by
research (Bellocchi, Muneaux, Bastien-Toniazzo, & Ducrot, 2013; De Luca,
Borrelli, Judica, Spinelli, & Zoccolotti, 2002; De Luca, Di Pace, Judica, Spinelli,
& Zoccolotti, 1999; Macas, Lhotska, & Novak, 2013) to detect symptoms of
dyslexia. Research has been able to find unique eye movement patterns
pertaining to individuals with dyslexia compared to individuals without
dyslexia when performing reading related tasks. The following provides the

findings of such research.

2.3.2.1.1 Statistical Techniques

Eye-movement patterns of individuals having dyslexia performing linguistic
and non-linguistic tasks have been compared through research (De Luca et
al,, 1999). It was observed that there was no difference between the fixation
and saccade eye-movement patterns in visual tasks of individuals with
dyslexia compared to normal controls, but there were significant altered
eye-movement patterns in individuals with dyslexia while performing
reading tasks. This research proved that individuals having dyslexia suffer
dysfunctions in the orthography to phonology conversion (letter to sound)

and not in oculo-motor dysfunction.

De Luca et al. (2002) carried out research to identify how eye-movement
patterns differ between individuals with dyslexia and normal controls while
reading words and pseudo-words. The findings showed that in normal
controls with the word length the saccade amplitude increased regardless of
an associated change in the number of saccades, but for pseudo-words the
number of saccades increased with the length. On the other hand, for

individuals with dyslexia for both words and pseudo-words the saccade
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amplitude was small and constant, the number of saccades depended on the

word length.

Eye-movement patterns of individuals having dyslexia during reading and
visual search tasks have been compared through research. It was observed
that there was no significant difference between the eye-movement patterns
in visual tasks of persons with dyslexia compared to persons without
dyslexia, but there were significant altered eye-movement patterns in
persons with dyslexia while performing reading tasks. They showed more
rightward fixations while reading, which suggested that they can process

only a few letters simultaneously (Prado, Dubois, & Valdois, 2007).

2.3.2.1.2 Computational Intelligence and Pattern Recognition

Unsupervised classification was performed using eye-movements captured
from videography systems of individuals with dyslexia was proposed by
Novak et al. (2004) for automatic dyslexia analysis. The eye movements
were captured from subjects during two non-verbal and one-verbal tasks.
The self-organizing maps used in the method were capable of distinguishing
between persons with dyslexia, without dyslexia and persons with other

reading difficulties.

A first step towards building a non-verbal based diagnostic system through
eye-movements was proposed by Macas et al. (2013). A simple non-verbal

based feature extraction is proposed for future dyslexia detection systems.

In short, the above-elaborated research relating to the eye-movement shows
that individuals with dyslexia have unique eye movement patterns when
performing task relating to reading. This behaviour is not caused because of
any problems with the motions of the eyes, but due to complications

occurred during the conversion of orthography to phonology functions.
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2.3.2.2 EEG
‘EEG is a record of the oscillations of brain electric potential recorded from

electrodes on the human scalp’ (Nunez & Srinivasan, 2006, pp. 3) as shown

in Figure 2.2.
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Figure 2.2: Capturing EEG (Nunez & Srinivasan, 2006, pp. 5)

As discussed in 2.2.4 individuals with dyslexia have different brain
structures and behaviours compared to individuals without dyslexia. EEG is
a technique that can be used to monitor and detect brain functions. The
electrical activity of the brain for various stimuli can be identified via the
electrodes placed on the scalp. EEG is often used for detecting conditions in
the brain such as epilepsies, seizures, brain tumours and sleeping disorders
(Nunes, Coelho, Lima, Papa, & de Albuquerque, 2014; Plante et al., 2013;
Shantha Selva Kumari & Prabin Jose, 2011; Silipo, Deco, & Bartsch, 1999).
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Researchers have also started looking into the possibility of using EEG to

detect dyslexia. These are categorised and discussed below.

2.3.2.2.1 Statistical Frequency Analysis

An analysis of EEG signals to differentiate subtypes of dyslexia using neural
networks was introduced by Ramadan (1998). The EEG was recorded
during relaxing and reading states. Next, using neural networks the model
was able to distinguish between normal and subtypes of dyslexia;
dysphonetic dyslexics and dysorthographic dyslexics. The neural network
was able to differentiate between the groups through the EEG from the
reading state, but could not perform classifications from the data collected
from the relaxed state since the relax state did not show significant changes

between the groups.

Rippon and Brunswick (2000) have found unique event-related EEG
patterns in people with dyslexia when performing readings compared to
people without dyslexia. Significant changes were discovered during
phonological processing tasks whereas the EEG responses for visual related

tasks did not show any significant changes as such.

Increased Slow activity in the delta and theta bands in the frontal and right
temporal areas of the brain of individuals having dyslexia have also been
uncovered through EEG research (Arns, Peters, Breteler, & Verhoeven,
2007). Significant correlations were uncovered between reading-related
tasks such as rapid naming of letters, deletion of phoneme, articulation,

spellings and EEG coherence profiles

Furthermore, EEG has also shown different brain activation patterns in
individuals with dyslexia during phonological tasks compared to normal
controls. Individuals with dyslexia show a right-lateralized pattern in
brainwaves while normal controls show theta and beta activations at the

brain left frontal (Spironelli, Penolazzi, & Angrilli, 2008).

25



A research (Fuad, Mansor, & Lee, 2013) conducting Wavelet Packet Analysis
of EEG during writing has been able to discriminate between the brain
activation patterns between the individuals with dyslexia and without
dyslexia. The EEG signals from the channels were C3, C4, P3 and P4 were
recorded during writing, letter recognition and the relaxed state. The signals
were assessed through decomposing the signals into 5 level sub-bands using
Wavelet Packet Analysis. The alpha sub-bands, which are usually present in
the relaxed state, did not appear to have a significant difference between
individuals with dyslexia and without dyslexia. However, during the writing
conditions higher beta sub-bands frequencies were seen in individuals with

dyslexia.

A study was carried out by Che Wan Fadzal, Mansor, Lee, Mohamad, and
Amirin (2012) in order to identify the brain behaviours of individuals with
dyslexia while performing writing tasks. The study comprised of the
analysis of 4 EEG channels; C3, C4, P3 and P4, which included capturing the
EEG while performing six tasks; relaxed state, recognition of alphabets,
sounding out alphabets, writing alphabets, spelling words and writing
words. Through this study, it was found that individuals with dyslexia
produce higher frequency beta waves in the range of 22-28Hz compared to

normal controls when performing written task utilising more energy.

2.3.2.2.2 Classification Algorithms

Approximate Entropy (ApEn), a ‘statistical parameter used to quantify the
regularity of a time series data of physiological signals’ (Andreadis,
Giannakakis, Papageorgiou, & Nikita, 2009) has also been used in past
research (Andreadis et al.,, 2009) to detect brainwave features of individuals
with dyslexia. The EEG from a group with dyslexia and control group were
recorded in the relaxed state and to a single sound tone given to listen
through earphones which was either a high frequency with a value of
3000Hz or a low frequency value of 500Hz followed by random numbers to

be memorised. The features extracted using ApEn is then trained using
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Support Vector Machines (SVM) for classifying. The framework presented

promising results for differentiating dyslexia group from the control group.

A SVM based algorithm using ERP have been conducted by Frid and Breznitz
(2012) to distinguish dyslexia readers from the normal readers. The brain
activities of all subjects were recorded for button presses in response to a
target stimulus. The features Positive Area, Maximal Peak Amplitude/Time
ratio, Spectral Flatness Measure, Standard Deviation and Skewness, Power

Spectral Density were extracted and trained using SVM for the classification.

A Malaysian research team (Karim, Abdul, & Kamaruddin, 2013) have
presented an EEG-based Classification between the individuals with dyslexia
and normal controls during the relaxed state. The feature extraction from
the EEG recorded was performed using the Kernel Density Estimate (KDE)
method and the classifier was implemented using Multilayer Perceptron

(MLP).

In recapitulating, the research regarding brainwave activation patterns of
dyslexics demonstrate the capability of EEG signals to detect dyslexia. The
prior research has been able to capture differences in the EEG frequencies
during task relating to reading and writing, specifically high beta wave
frequencies. However, the explorations regarding to reading have not been
drilled down to different types of word reading such as regular words, non-
words and the writing hasn’t been compared with the modern day
alternative task being typing. Overall, EEG can be identified as an assuring
and favourable choice to detect unique brainwave behaviour of individuals

with dyslexia according to previous parallel studies and investigations.

2.4 EEG Signal Pattern Recognition Framework for Dyslexia

As discussed above, it is clear that many researchers have attempted to
identify unique EEG signal patterns of individuals with dyslexia. In this
section, we look into these studies more thoroughly in order to identify gaps

in the literature.

27



2.4.1 Existing Frameworks

A study carried out by Arns et al. (2007) was able to uncover unique brain
activation patterns in children with dyslexia. A total of 38 participants: 19
with dyslexia (11 males and 8 females) and 19 controls (11 males and 8
females) between the ages of 8 to 16 years took part in this study. The
exclusion criteria included mental illness or genetic disorders in person or
family history, neurological disorder, brain injury, addiction to drug or
alcohol and serious medical conditions. The EEG data was acquired at a
sampling rate of 500Hz using the internationally recognized 10-20 electrode
positioning system having 28 channels namely: Fp1, Fp2, F7, F3, Fz, F4, F8,
FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, 01, Oz and
02. The experiment was performed in a sound and light attenuated room,
which was controlled at a room temperature of 22 degree Celsius. The EEG
data was recorded for 2 minutes while being seated with eyes open,
focusing the attention on a red dot displayed on a computer screen. The
group of participants with dyslexia was also given a few language tests.
These tests consist of articulation, rapid naming of letters, phoneme deletion
and spelling. These reading related tasks were collected to find the
correlation between EEG and the neurological findings of dyslexia. However,
EEG was not recorded while these tasks were performed. Instead, the
above-explained tasks with eyes open were used since the EEG of resting
state highly correlated with the tests. The data is Electrooculography (EOG)
corrected prior to the analysis. This data is then examined using the power
spectral analysis. The approach followed is that the data is first partitioned
into adjacent 4-second sections, next the data is transformed to the
frequency domain from the time domain using Fast Fourier Transform
(FFT) and finally the average power spectra are calculated for specified
frequency bands ranging within the delta, theta, alpha and beta bands. The
EEG data is then analysed statistically using one-way ANOVA to find the
significant differences between the dyslexic and control group. Further, a
correlation matrix is acquired for correlations between the variables within
the group with dyslexia. The significant measures of the EEG power and

coherence data obtained from the two groups are submitted for the
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correlation analysis with the four language tests explained above. The study
revealed that the dyslexic group had increased slow theta and delta activity
in the frontal and right temporal areas of the brain. Beta was clearly
increased at F7 and significant correlations were found between the EEG
coherence and the dyslexia tests (Arns et al., 2007). This study performs
statistical analysis using the EEG data and does not present any
classification mechanisms to differentiate between the group with dyslexia
and the control group. The EEG data is collected only in the resting state and
not while the tests are actually being undertaken, important artefacts
specific to each task are most likely to be missed out. Since the EEG was
recorded only in the resting state the only main unwanted artefact being the
eye blinks have been removed in the preprocessing step of the analysis. The
input features using the EEG recordings include the power spectra for

specified frequency bands such as alpha, beta and theta at each EEG channel.

A framework for detecting abnormalities in dyslexia using approximate
entropy of EEG signals was proposed by Andreadis et al. (2009). This study
consisted of a total of 57 participants: 38 with dyslexia (26 males and 12
females) and 19 Control (7 males and 12 females) between the ages of 2 to
13 years. The exclusion criterion comprises of difficulties in hearing, history
of head injury, neurological diseases or attention deficit disorders. The EEG
for this study was recorded using the International 10-20 system, containing
15 channels which are namely: Fp1, F3, C5, C3, Fp2, F4, C6, C4, 01, 02, P4,
P3, Pz, Cz and Fz. The experiment for this study is that a single sound tone
was presented to the participant via earphones, which was of a high
frequency of 3000 Hz or low frequency of 500 Hz, followed by numbers that
had to be memorised. The brainwave data was collected as EEG signal for
500ms before the stimulus and as ERP after the stimulus for 1000ms. The
preprocessing mechanisms used in this study include two main steps. The
first step was recording the EOG and rejecting values higher than 75pV and
the second step was normalising the waveforms by subtracting the mean
value and dividing by the standard deviation of each signal. This data is then

analysed using ApEn and Cross-ApEn (comparing EEG signals from two
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electrodes). A SVM classifier was then implemented using the statistical
significant electrodes for all subjects obtained using ApEn as input features.
This classifier offered promising results. The study was then taken a step
forward to enhance the classifier using the input features from Cross-ApEn.
This method looks at significant pairs of electrodes instead of evaluating
electrodes on its own. Although this technique delivered better
discrimination abilities, no clear pattern has yet been found because there
was a very high number of statistically significant pairs of electrodes. In
looking at the study as a whole, it can be stated that the researchers have
been able to successfully develop a classifier that can differentiate between
the group with dyslexia and the control group. However, the experiment
used looks into only the working memory abilities and does not involve any
reading or writing related elements. Since dyslexia is a condition that causes
deficiencies in reading and writing abilities important factors required for
the differentiation process could be missed out. The same research team
performed another analysis using the same experiment and data by using
Wavelet Entropy (Giannakakis, Tsiaparas, Xenikou, Papageorgiou, & Nikita,
2008). The findings revealed that Wavelet Entropy could be used as a
quantified measure to observe and analyse EEG and ERP signals to detect

brain patterns specific to dyslexia.

A Malaysian research team conducted a frequency analysis of EEG signals
generated between children with and without dyslexia during writing (Che
Wan Fadzal, Mansor, Lee, Mohamad, & Amirin, 2012; Che Wan Fadzal,
Mansor, Lee, Mohamad, Mohamad, et al., 2012). The EEG was recorded from
a total of 6 right-handed children: 3 with dyslexia and 3 controls between
the ages of 8 and 12 years using the standard international 10-20 system.
This study uses only 4 EEG channels, namely: C3, C4, P3 and P4. The
experiment involved collecting EEG in the relaxed state and while
performing writing related activities, which were designed based on the
conventional method of diagnosing dyslexia. During the preprocessing
phase, unwanted artefacts being Electrocardiograms (ECG) and EOG were

filtered out. Next, the signals containing the writing related data was
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extracted using a band-pass FIR filter ranging from 8Hz to 30Hz. For the
frequency analysis, the signals are transformed to the frequency domain
from the time domain using FFT. The study revealed that the children with
dyslexia consume more energy and resulting in high-frequency beta wave
relaxed states and well as during writing related activities compared to
normal children. The frequency range identified for children with dyslexia is
between 22-28Hz whereas for normal children it is between 14-22Hz.
Overall this study does not provide any classification mechanism. It only
analyses the frequencies obtained from the two groups. The study has
explicitly used subjects that are right-handed, which in fact, is an important
factor since the handedness has an effect on the EEG activities between the
right-handed and left-handed subjects (Andrew Ng & Leong, 2014; Provins
& Cunliffe, 1972). Additionally, is it not indicated whether a silent and
temperature controlled room were used to carry out the experiment. The
preprocessing techniques used in this study is similar to previous similar
studies, however since this study involves hand movements, it is not
specified how the artefacts generated from the hand movements were
filtered out. Furthermore, the experiment focuses only on the writing

related tasks.

Frid and Breznitz (2012) proposed an SVM-based algorithm for
differentiating between dyslexic readers and regular readers using ERP. The
study was carried out with a total of 50 participants: 20 with dyslexia and
30 controls of the ages between 24 to 40 years. The signals were recorded at
a sampling rate of 2048Hz using the standard 10-20 system with 64
channels. The experiment used in the study is that the subject is required to
press a button in response to a target stimulus, which is a tone. The
conditions consist of 50 stimuli of target tones at frequencies of 1000Hz and
50 non-target tones of 2000Hz. The data collected is first preprocessed
using a band pass filter at 0.1-100Hz, and then a notch filter at 50Hz is used
to remove noise caused by electric power lines and finally unwanted
artefacts such as eye and muscle movements are filtered out. The next step

is the feature selection where the features with the most relevance and the
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ability to discriminate are chosen. The five features selected are Positive
Area (Ap), Maximal Peak Amplitude/Time ratio (Mp), Spectral Flatness
Measure (SFM), Standard Deviation and Skewness, Power Spectral Density
(PSD). Although the classification was first attempted using a single
classifier for all features, it was not successful. Therefore, the approach
follows was to use ensemble SVM. The classification results were compared
for the combinations: the best single feature, an ensemble of three SVM and
only the left or right hemispheres. To recapitulate, the study uses a simple
experiment task, which relates to working memory and reasoning abilities
but does not engage any stimulus with regard to reading or writing which
are important factors in detecting unique patterns to dyslexia. This may
have bypassed on activating vital areas of the brain specific to dyslexia. The
study does not indicate whether they were any inclusion and exclusion
criteria taken into account when recruiting the participants, which could

increase the likelihood of having outliers within the groups selected.

A classification model to distinguish children with dyslexia from the normal
children during rest state was suggested by (Karim et al., 2013). A total of 6
participants: 3 with dyslexia and 3 controls within the ages of 4 to 7 years
took part in this study. The EEG is collected using the International 10-20
electrode placement system using 8 channels with a sampling rate of 250Hz.
The experiment is carried out in a room with controlled temperature and
lighting while the participants are in the resting state with both eyes closed
and eyes open. During the preprocessing phase, noise and irrelevant
artefacts have been removed. Since the data collection is done in the resting
state, the frequency band relating to this state is alpha, and this has been
extracted using band-pass filtering. The next phase being the Feature
Extraction is performed using Kernel Density Estimation (KDE), which is an
artificial neural network technique organised in several different layers
(Karim et al, 2013). Finally, the classifier is trained using Multilayer
Perceptron (MLP). This mechanism was able to obtain an accuracy rate of
90% to classifying between individuals with dyslexia and control during

both eyes open and eyes closed conditions. To wrap-up, the study uses EEG
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data from only the resting state disregarding the essential reading and
writing related brainwave data. No inclusion or exclusion criteria for

participants used is indicated.

A Wavelet packet analysis of EEG signals between children with dyslexia
and without dyslexia during writing was proposed by (Fuad et al,, 2013). A
total of 8 subjects: 4 with dyslexia and 4 controls between the ages of 7 to 12
years took part in this study. The EEG was recorded in the temperature
controlled room at 24 degrees Celsius using the international 10-20 system
with 4 channels, namely: C3, C4, P3 and P4 having a sample rate of 256Hz.
The signals were captured in the relaxed state, writing state and during
letter recognition and each task was repeated 6 times. This is then examined
using wavelet packet analysis for alpha and beta frequency bands. The
outcome of the study discovered that there were no significant differences
in the alpha band frequencies during the relaxed state and writing state in
children with dyslexia, however, for normal children the alpha band
frequency was higher during relaxed state compared to writing state. During
writing beta frequency was higher in children with dyslexia compared to
normal controls. This study looks into the brain behaviours during the
resting and writing states, but does not look into the reading state. No
information is provided about preprocessing the signal to remove unwanted
artefacts such as eye blinks. Finally, the study performs only an analysis and

does not perform any classifications.

2.4.2 Highlights and Gaps in Exiting Frameworks
In this section, we discuss important findings and gaps found in the above-
described EEG signal pattern recognition frameworks implemented to

identify patterns unique to individuals with dyslexia.

= Age Range
According to previous similar studies, EEG-based pattern identification
frameworks for dyslexia studies have been carried out on children as well as

adults, which means that the research can be used on either group.
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However, it is important to make sure that the subjects within the age range

selected have parallel reading and writing abilities.

* Environment
The data collection location and its environment is a very important factor
to be looked at when recording EEG. Below given is a summary of typical
environment extracted from the review and more suggestions. These factors
are important to make sure no interference is caused to the signals, the
subjects are comfortable and are not distracted.
o Sound and light attenuated room
o Temperature controlled room - if subjects are perspiring, it could
cause problems to the recordings.
o Any extra equipment in the room should be electrically quiet - this
can be checked via a probe test for electromagnetic signals

("Preparing the Experiment Room," 2015)

= EEG Recording System and Channels
The recommended electrode placement system is the International 10-20
system. This method describes the location electrodes on the scalp. The
10" and "20" refer to the fact that the actual distances between adjacent
electrodes are either 10% or 20% of the total front-back or right-left
distance of the skull’ (Khazi, Kumar, & Vidya, 2012).
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Table 2.3: Arrangement of the International 10-20 electrode system (Khazi et al., 2012)
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» Inclusion and Exclusion criteria of the subjects
The inclusion and exclusion criteria summarised from the reviews are given
below.
Exclusions:

o Mental illness

o Genetic disorders in person or family history

o Neurological disorders

o Brain injuries

o Drug or alcohol addiction

o Serious medical condition

o Difficulties in hearing/ vision - this would not apply if the subject has

corrected vision/hearing

o Attention deficit disorders

Inclusions:

o Handedness - The participants recruited need to be either left
handed or right handed and not have a mix of the both. This is
because there is a difference in EEG activities between the right-
handed and left-handed subjects (Andrew Ng & Leong, 2014; Provins
& Cunliffe, 1972).

= Experiment
The research presented thus far provide evidence that most of the EEG-
based studies relating to dyslexia have been carried out by measuring the
brain response to a stimulus. Since individuals with dyslexia experience high
level of difficulties compared to normal controls while performing reading
and writing tasks, it is useful to know if the EEG signals generated during
these tasks reflect these differences. In this research we address this gap in
RQ1 and aim to identify these unique EEG signal patterns in individuals with
dyslexia compared to normal controls as explained in RO1. Summarised
below are a few tasks identified as more challenging for individuals with

dyslexia.
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o Reading - Previous research has established that poor reading
skills seen in individuals with dyslexia is caused by a deficit in
phonological decoding abilities (Fletcher et al.,, 2006) and in fact
lower levels of performance is seen in reading nonsense-words
compared to real-words (Ziegler et al., 2008). These findings
highlight the need to investigate if these behavioural differences
show as neurological differences through brainwave signal
patterns. This is addressed in RQ2 and ROZ2.

o RAN - The association between RAN and reading fluency has been
confirmed in prior research (Georgiou et al, 2013) and is
identified as a poor skill in individuals with dyslexia (Jones et al,,
2010). Therefore, this opens the need to examine if the EEG
signals generated during RAN in individuals with dyslexia have
differences compared to normal controls, as it has not been
revealed in past research. This is addressed in RQ3 and RO3.

o Writing and typing - Difficulties in writing skills is yet another
deficiency caused by dyslexia (Gvion & Friedmann, 2010).
Preliminary studies have shown unique EEG signals pertaining to
dyslexia, however, it has been investigated in only few EEG
channels (Fuad et al.,, 2013). Therefore, relatively only a little is
known about these EEG signal patterns. Examination using more
EEG channels as well as exploring the effects during typing which
is the modern-day task for writing is a gap to be filled in the
literature. This is addressed in RQ4 and RQ5, and RO4 and RO5.

o Everyday human tasks - Realistic day-to-day activities include a
combination of reading and writing tasks together with additional
tasks such as interpreting tables and numbers. Past studies
provide no information as to how EEG signal patterns behave
during such complex tasks in individuals with dyslexia. Hence,
this is yet another area to be explored. This is addressed in RQ6

and RO6.
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* Preprocessing

Preprocessing is one of the most important steps in the analysis process of
the signals. This step makes sure unwanted artefacts are removed from the
signal. When recording EEG signals one of the most commonly seen
irrelevant artefacts are the eye-movements and eye blinks and the common
practices used for removing these from EEG signals are Independent
Component Analysis (ICA) and Principal Component Analysis (PCA) (Shi-
Yun, Kai-Quan, Chong Jin, Wilder-Smith, & Xiao-Ping, 2009; Turnip & Junaidi,
2014). Comparison studies between these two techniques show ICA
produces better results compared to PCA (Bugli & Lambert, 2007; Turnip &
Junaidi, 2014).

In addition to EOG, which is produced from eye-movements, EEG recordings
can contain contamination signals such as electromyogram (EMG) and ECG.
Typically, body movements are kept to a minimum during EEG-based
experiments. This is because movements cause unwanted artefacts in the
EEG signal making the analyses and classifications difficult. In fact,
sometimes trials with unwanted artefacts are manually rejected from
studies (Sabisch, Hahne, Glass, von Suchodoletz, & Friederici, 2006).
However, new methods have now been introduced making it possible to
collect data during real-life activities instead of only collecting data during
resting state or simple activities such as button clicks. Artefact Subspace
Reconstruction (ASR) is one such method which can be used to filter out
body movement and muscle burst artefacts from the EEG signals (Bulea,
Prasad, Kilicarslan, & Contreras-Vidal, 2014; Mullen et al., 2013). ASR ‘relies
on a sliding-window Principal Component Analysis, which statistically
interpolates any high-variance signal components exceeding a threshold
relative to the covariance of the calibration dataset. Each affected time point
of EEG is then linearly reconstructed from the retained signal subspace
based on the correlation structure observed in the calibration data’ (Mullen

etal,, 2013).
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ASR requires a 1-minute EEG recording in the relaxed state, which is known
as the calibration data set. This technique performs PCA on a sliding-
window, removes high-variance up to three standard deviations above the
mean and finally reconstructs using the remaining signal. This automated
artefact removal technique is quite easy to use as it is available as a plugin in
EEGLAB. An example of filtration of movements from an EEG using ASR is

shown in Figure 2.3.
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Figure 2.3:Example of filtering out movements from EEG using ASR (Mullen et al., 2013)

Another important aspect to be filtered prior to the analysis is the noise
caused by electric power lines. This is often seen at 60Hz or 50Hz and this

can be filtered out using a notch filter.

* Analysis
There are mainly two types of analysis that could be used, which are namely
Frequency/Fourier Analysis and Wavelet Analysis.

o Frequency Analysis
One of the commonly used analyses in EEG-based pattern recognition
frameworks for dyslexia is the frequency analysis. The raw EEG signal
recorded is in the time domain. This waveform is a combination of a number
of sinusoidal waves although it is not directly visible. FFT is one of the
methods that can be used for the decomposition of the waveform into a sum
of sinusoids of different frequencies. Therefore, by performing the Fourier
transform, it helps detect spikes in the frequency domain which could not

have been visible before.
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o Wavelet Analysis
On the other hand, wavelet analysis is a method that decomposes a signal
onto a set of basic functions called wavelets (Akin, 2002) and allows analysis

on the frequency domain as well as and time domain.

The type of analysis should be selected based on the expected outcome.
Although wavelet gives extra information, this might not be important if the
intension of the research is only to identify the voltages are present at each
frequency and not the time the particular voltage was present. The decision
for the analysis method should purely base on the objective of the

experiment and the expected outcome.

2.4.3 Pattern Recognition Techniques
The research discussed thus far show mainly 2 techniques used to identify if
there is a significant difference in the brainwave patterns between the

individuals with dyslexia and the normal controls.

2.4.3.1 Statistical Analysis

Statistics ‘is a field of knowledge that enables an investigator to derive and
evaluate conclusions about a population from sample data’ (Koch & Droege,
2006). These techniques are used to determine whether there are any
statistically significant differences in the EEG signals between the two
groups, and thereby use conclusions about the dataset to reach a broader
conclusion. T-test, Analysis of Variance (ANOVA) and regression analysis are

few of the commonly used statistical methods (Koch & Droege, 2006).

2.4.3.2 Machine Learning

Machine learning helps to solve complex computations and ‘creates new
knowledge by finding previously unknown patterns in data’, by “learning"
patterns in data, with little or no intervention by an expert’ (Mitri &
Wilburn, 2006). Given below are few of the popular machine learning
approaches used in EEG classifications, along with the pros and cons of each

method.
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2.4.3.2.1 Linear Discriminant Analysis

Linear Discriminant analysis classifies data by first creating ‘models of the
probability density functions for data generated from each class. Then, a
new data point is classified by determining the probability density function
whose value is larger than the others’ (Eslahi & Dabanloo, 2013). The
algorithm ‘assumes that each of the class probability density functions can
be modelled as a normal density, and that the normal density functions for

all classes have the same covariance’ (Eslahi & Dabanloo, 2013).

Linear Component Analysis is known to be a simple classifier that requires
very small computations. However this algorithm is not suitable for complex
non-linear EEG classifications since it does not produce good results for

such scenarios (Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 2007).

2.4.3.2.2 Neural Networks
Neural Networks is ‘an assembly of several artificial neurons which enables

to produce nonlinear decision boundaries’ (Lotte et al., 2007).

Neural networks perform better for EEG classifications compared to Linear
Discriminant Analysis since it can be used to implement boundaries for non-
linear classifications. But to acquire the desired level of accuracy, it is
important to choose a suitable number of hidden units, which can become
problematic. Having a larger number of hidden units than required results
in memorising the training set which causes poor generalization (Garrett et

al, 2003).

2.4.3.2.3 Support Vector Machines

SVM is a supervised learning method, which can handle both linear and non-
linear classifications. It produces a hyper-plane having the maximal margin
to the support vectors. SVM can classify even overlapping and non-
separable data sets by mapping into higher dimensional spaces using the
kernel functions (Garrett et al., 2003; Shantha Selva Kumari & Prabin Jose,

2011).
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Support Vectors

Figure 2.4: Overview of Support Vector Machines (Shantha Selva Kumari & Prabin Jose, 2011)

Furthermore, SVM has good generalisation characteristics; it is insensitive
to overtraining and curse of dimensionality but could lose the speed of
execution achieving these benefits (Lotte et al, 2007). Curse of
dimensionality is ‘if the number of training data is small compared to the
size of the feature vectors, the classifier will most probably give poor

results’ (Lotte et al.,, 2007). An overview of SVM is shown in Figure 2.4.

2.4.3.2.4 Popular Machine Learning Technique for EEG classification
Through the comparison of the popular choices of the classification

algorithms for EEG signals, it can be concluded that SVM is a better choice.

SVM has been used in past research for many EEG signal classifications.
Successful results have been obtained in classifying mental-tasks (Hosni,
Gadallah, Bahgat, & AbdelWahab, 2007), seizure detection (Shantha Selva
Kumari & Prabin Jose, 2011), discrimination between individuals with
dyslexia and normal controls (Andreadis et al., 2009; Frid & Breznitz, 2012),
epilepsy diagnosis (Nunes et al., 2014) and vigilance analysis (Lei, Jie, Yaoru,

Huaping, & Chungang, 2010).

Furthermore, research by (Ahmad et al,, 2015; Garrett et al., 2003; Lotte et
al, 2007) has recommended SVM as a more appropriate choice for EEG

signal classifications.
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2.5 Summary

Through the literature review, it is understood that dyslexia is a disability
with a neurological origin, affecting a significant amount of the population,
which causes difficulties in reading, writing and spelling despite normal or
above average intelligence levels. It is a heritable condition, but not a
disease or defect that can be cured, rather a state that can he helped with

proper targeted support such as multi-sensory learning techniques.

Research has proven differences in the brainwave activation patterns and
brain structures of individuals with and without dyslexia. Technology plays
a great role in improving the detection techniques of dyslexia. The
traditional dyslexia detection techniques have been attempted to be
improved by technologies such as fuzzy logic, soft computing approaches,
neural networks and alternative approaches such as presenting the
diagnosis as series of serious of games. Technology has also helped the
detection techniques go beyond the conventional methods. Eye-movements,
brain imaging (MRI, fMRI) and brainwave activation patterns (EEG) are few

of the upcoming trends.

In particular, EEG has become a popular technique used to identify unique
brain activation behaviours. In all research reviewed thus far, it was evident
that most of the research carried out in order to identify unique EEG signal
patterns between individuals with dyslexia compared to normal controls
were based on ERP analysis. However, such studies remain narrow in focus
dealing only with the reactions to a certain stimulus. Since dyslexia is a
condition, which causes difficulties in reading and writing, analysing the
EEG signal during the actual reading and writing tasks could give light to
insights of the brain behaviours unknown thus far. Although literature does
contain a few of these studies, relatively little is known. Therefore, this
highlights the need to examine the unique EEG signal patterns between
individuals with dyslexia compared to normal controls when performing
tasks that are more challenging for individuals with dyslexia. This includes

real-word reading, nonsense-word reading, passage reading, RAN, writing,

42



typing and everyday human tasks that includes a combination of reading or

interpreting and writing or typing together.

Further in terms of the computational analysis, past studies advocate SVM
as a suitable choice of algorithm for the classification of EEG signals. The
ability to tackle linear, non-linear, overlapping or non-separable datasets
are undoubtedly beneficial properties of SVM. Moreover the insensitivity to
overtraining and the curse-of-dimensionality make SVM preferential over

the other EEG classification options.
In summary, it can be concluded that through the gaps identified by this

review, more important insights about the brainwave signal patterns

between individuals with dyslexia and normal controls can be revealed.
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Chapter 3 Methodology

3.1 Overview

This chapter describes the research methodology used to achieve the
objectives of this research. The chapter begins with a detailed outline of the
research strategies deployed for the investigation. It then gradually moves
on to a comprehensive explanation of the sample size, EEG acquisition and
measurement instruments, procedure for data collection and the techniques
adapted for data analysis and classification. The classification section also
includes details about the pilot study adapted to determine the classification
algorithm used for this research. Next, it explains the verification process of

the classifiers developed, followed by a summary of the chapter.

3.2 Research Design

This research attempts to discover differences in the EEG signals generated
between adults with dyslexia compared to normal controls while
performing specific tasks. These include reading, writing and typing tasks
that are comparatively more challenging for people with dyslexia. The
research design and execution stages followed in this research are shown in

Figure 3.1.

The first stage of the research, which is the preparation stage, includes
reviewing of literature, formulation of the research problems, questions,
aims and objectives, designing the data collection experiments with a
psychologist specialising in dyslexia assessment and diagnosis, designing
the data analysis and classification model, developing a website to host the
experiment tasks, obtaining the human research ethics approval and
recruiting participants. Prior to performing the actual research, stages two
to four were executed in order to confirm the suitability of the data
collection environment and to verify the reliability of the data collection
instruments used. The first pilot study was carried out with one participant.
This research helped to determine the EEG headset setup time, accuracy and

the reliability of the tasks hosted on the website, especially the time taken
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for each task. Few of the tasks required minor amendments in order to fit
the total timeframe. These changes were made under the supervision of the
psychologist and the human ethics application was revised with these
changes. Once the human ethics application changes were approved, the
second pilot study was carried out with one participant for confirmation.
Next, the actual experiment was carried out with all the participants and the
data was analysed and classified using the model built. Finally, during the

last stage, the classifier results were produced.

Stage 1: Preparation

O

Stage 2: Pilot Study - 1

-

Stage 3: Revise Study

-

Stage 4: Pilot Study - 2

-

Stage 5: Actual Study

-

Stage 6: Data Analysis and Classification

U

Stage 7: Results and Discussion

Figure 3.1: Research design and execution stages
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3.3 Research Framework

Shown below in Figure 3.2 is an overview of the research framework
consisting of 6 main steps namely signal acquisition, preprocessing,
frequency sub-band decomposition, feature extraction, classification and

verification. The following sections explain each step in detail.

» EEG signals will be acquired from groups of adults with
dyslexia and the normal controls while performing specific

A Signal tasks and in the relaxed state.
cquisition

~
» The EEG signals will be preprocessed to remove unwanted
artefacts such as eye blinks, body movements and electric
Pre-processing power noise. )
~
» The EEG signal will be decomposed into frequency sub-
bands using band-pass filters and frequency domain
el transformations.
Decomposition )
 Features will be extracted for each sub-band. }
Feature
Extraction
e The classification will be performed using the SVM
algorithm.
Classification
e The framework is validated using a cross-validation of 10
folds.
Verification

Figure 3.2: Overview of the research framework
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3.4 Signal Acquisition

This section describes the design and execution of the data collection. The
data collection for this research was approved by the Murdoch University
Human Research Ethics Committee (approval 2014/204). All participants

signed a consent letter confirming voluntary participation.

3.4.1 Determination of Sample Size

The determination of the sample size in research is a very important
decision to be made. In medical related research, the number of subjects
used for a research is mostly limited because of uniqueness, ethical
considerations, time and cost. Therefore, it is important to identify the
optimal sample size to avoid the sample being too small resulting in not
being able to recognise important effects and the sample being too large

resulting in a waste of resources.

The number of participants for this research was determined using the
Altman’s Nomogram sample size calculation as shown in Figure 3.3.
According to this calculation for a power of 0.80 (p-value significance of
0.05) and a standardised difference value between 0.8 and 1.0 (Cohen’s d
effect size), the total number of participants could vary between 30 to 50
participants. Therefore, the number of subjects per group would vary

between 15 and 25.
This research was carried out on a total of 32 participants: 17 participants

with dyslexia (10 females and 7 males) and 15 participants without dyslexia

(7 females and 8 males).
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Figure 3.3: Altman's Nomogram sample size calculation (Bland, 2011)

3.4.2 Subject Inclusion and Exclusion Criteria

All subjects were adults 18 years and above, right-handed, fluent in English,
have a normal or corrected-to-normal vision and normal hearing. It was a
prerequisite that the participants with dyslexia to be diagnosed by a
psychologist as having a specific learning disorder or disability in reading
and spelling, also known as dyslexia, whereas the control group had to be
free from motor and neurological conditions such as dyslexia, ADHD and
autism. The participants with dyslexia were recruited with the help of DSF
Literacy and Clinical Services in Western Australia (The Dyslexia-SPELD
Foundation WA Inc.) using the past patient database. This research was
limited to right-handed participants since research has shown that
handedness could cause a difference in EEG recordings between right-
handed and left-handed people (Goez & Zelnik, 2008; Tonnessen, Lokken,
Hoien, & Lundberg, 1993).
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3.4.3 Environment

The signal acquisition was carried out in a quiet, temperature-controlled
room, maintaining the temperature between 20-24°C. Further, all
equipment that was not used in the data collection process was kept

electronically silent to minimise interference with the EEG recordings.
3.4.4 EEG Acquisition and Measurement Instruments

3.4.4.1 EEG Headset

The EEG headset used for this research is the Cognionics 32-channel dry
EEG headset. The channels used are AF7, Fp1, Fpz, Fp2, AF8, AF3, AF4, F5,
F3, Fz, F4, F6, C5, C3, C1, Cz, C2, C4, C6, Cp5, Cpz, Cp6, P3, Pz, P4, P7, PO3,
P04, P8, 01, Oz and 02. The EEG was recorded at a sampling rate of 300Hz
using the internationally recognised 10-20 placement system as shown in
Figure 3.4. The EEG channel map on the left shows an output from EEGLAB
with only the channels used in this research, the EEG channel map on the
right shows a better view of the EEG channels retrieved from the EEG
headset manufacturer (Cognionics Inc, n.d.), where the channels used on

this specific EEG headset are indicated in grey.

Channel locations

Figure 3.4: EEG channel maps

The Cognionics EEG headset is equipped with two types of sensors; namely

the flex sensors and dry pad sensors. The flex sensors are to be used on the
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area with the hair and the dry pad sensors are to be used on areas touching

hairless-skin such as the forehead.

3.4.4.2 Tasks

The participants were given tasks related to reading and writing, which
were designed similar to the standardised psychometric tests used in the
dyslexia diagnosis process. The datasets required for the activities were
created under the supervision of a psychologist specialised in dyslexia
assessments. Some of these datasets were obtained from well-recognised
books and tests, which have been explained in detail below. Some of the
datasets were condensed in order to fit the time frame and nature of the

task.

3.4.4.2.1 Relaxed state
Participants were instructed to stay seated in the relaxed position with their
eyes closed, avoiding body movements including jaw clenches for 60

seconds at a stretch.

3.4.4.2.2 Real-word Reading
The participants were instructed to read aloud each word as it flashed on

the screen every 10 seconds, which were presented on a computer screen.

The words for this task were taken from the ‘Phonics Handbook’ by Tom
Nicholson (Nicholson, 2006, pp. 84). Although the original dataset consisted

of 110 words, only 25 words were used for this task.

3.4.4.2.3 Nonsense-word Reading
The instructions for the participants for this task were the same as reading

real-words. The only difference was having a different dataset.

The words for this task were obtained from the Macquarie Online Test
Interface (MOTIf) ‘The Castles and Coltheart Test 2’ (CC2) developed at
Macquarie University (Macquarie Online Test Interface (MOTIf), n.d.). This
test includes a total of 40 nonsense words, and 25 words were selected for

this task.
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3.4.4.2.4 Passage Reading
The passage for this task was taken from the ‘Phonics Handbook’

(Nicholson, 2006, pp. 53). The passage consisted of 93 words.

3.4.4.2.5 Rapid Automatized Naming

The activity selected for this task is the rapid naming of colours. The
participants were instructed to name aloud colours from a colour card
presented on the computer screen as quickly as possible. The colours used
for this test were red, blue, green, yellow and black. Prior to the actual test,
each participant was presented with a sample colour card on screen as
shown in Figure 3.5, and told to identify these colours accurately to make
sure the participant was not colour blind. During the actual rapid colour-
naming task, a colour card with a total of 50 instances of the unique colours
indicated in the sample colour card was presented to the participant to

name aloud (Horne, 2012), see Appendix A.

Figure 3.5: Sample colour card

3.4.4.2.6 Writing
The participants were given a topic to write a simple short paragraph. They

were provided with paper and a pen, the topic given was ‘My family’.

3.4.4.2.7 Typing
This task is similar to the writing task, where the participants were given a
topic to type a simple short paragraph using a standard QWERTY keyboard.

The topic given was ‘How I spent my weekend’.

3.4.4.2.8 Web Browsing
The participants were given a simple web-browsing task to perform using a
keyboard and mouse. The task selected was online shopping. The

participants were given a set of instructions to ensure consistency (see
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Appendix B). Participants were given the instructions prior to the EEG
recording to read and understand.
The instructions included;

* Navigating to a pre-defined online clothing store

* Selecting a top of his/her size and adding it to the cart

* Selecting a bottom of his/her size and adding it to the cart

3.4.4.2.9 Interpreting Table

A simple table containing information of tourists visiting Australia was
presented on screen. The participant was required to interpret this table
and answer a simple question by selecting a radio button out of the multiple

options provided (see Appendix C).

3.4.4.2.10 Typing Random Number
The participants were given a randomly generated 10-digit number to key

into a textbox.

3.4.4.3 Mapping tasks to the research problems, questions and objectives
Table 3.1 depicts how each data collection tasks are related to the research

problems, questions and objectives explained in Chapter 1.

Table 3.1: Relationship between data collection tasks and research problems, questions and

objectives
‘ Tasks ‘ RP RQ RO
Real-word Reading RP1, RP2 RQ1, RQ2 RO1, RO2
Nonsense-word Reading | RP1, RP2 RQ1, RQ2 RO1, RO2
Passage Reading RP1, RP2 RQ1, RQ2 RO1, RO2
RAN RP1, RP3 RQ1, RQ3 RQ1, RQ3
Writing RP1, RP4 RQ1, RQ4 RQ1, RQ4
Typing RP1, RP5 RQ1, RQ5 RQ1, RQ5
Web browsing RP1, RP6 RQ1, RQ6 RQ1, RQ6
Interpreting Table RP1, RP6 RQ1, RQ6 RQ1, RQ6
Typing Random Number | RP1, RP6 RQ1, RQ6 RQ1, RQ6
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3.4.4.4 Software

There were two software programs used during the data collection sessions.
The first software used was a custom-built website to host all the tests and
test instructions in electronic form. This password protected website was
developed using PHP, HTML, JavaScript and MySQL. A text-to-speech plugin
named ‘ReadSpeaker’ was incorporated on to the website to enable the
participants to listen to the test instructions. This was a feature added
specially to help the participants having dyslexia. The second software used

was the Cognionics data acquisition software, which records the EEG.

3.4.5 Procedure

As shown in Figure 3.6, each participant was instructed to perform the tasks
explained in section 3.4.4.2 while staying seated in front of a computer
screen with the EEG headset setup on his or her head. The EEG device was
wirelessly paired to another computer which had the EEG data acquisition
software installed. The live impedance check provided in the software was
used to ensure all electrodes were in contact. The EEG signal data was
acquired while the participants performed each task as well as in the
relaxed state. All instructions to be followed by the participant were
presented on screen and played via the text-to-speech software prior to
each test (see Appendix D). The average time taken for each participant to
complete all the tasks was approximately one hour. As a fatigue
management strategy, all participants were offered the freedom to take any

much of breaks with refreshments in-between tasks.
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Figure 3.6: Overview of the procedure

3.5 Signal Processing

Once the EEG signals are acquired, the next step is to prepare the predictors
to train the classifier. This includes removing unwanted artefacts,
decomposing signal into frequency sub-bands and extracting features. This
process needs to be performed on each participant for every task. Figure 3.7
shows an outline of this process through a pseudocode. The signal

processing was performed using MATLAB R2015a and EEGLAB v13.4.5b.

Although the actual number of EEG channels is 32, the raw EEG signal
output file shows 37 channels, which consists of 5 additional parameters,
which are occupied by the 3-axis accelerometer, packet counter and trigger.

In analysing the EEG signals only the 32 channels were taken into account.

54



foreach participant {
foreach task {
preprocess EEG signal using ASR
remove electric power noise from EEG signal
foreach EEGChannel {

decompose signal into sub-bands (delta, theta, alpha, beta, gamma)
using band-pass filters

foreach sub-band {
transform signal into the frequency domain using FFT

calculate features: mean, median, mode, standard deviation,
maximum, minimum, skewness and kurtosis

Figure 3.7: Signal processing pseudocode

3.5.1 Signal Preprocessing

Relaxed
State EEG  [2
ASR
ASR sy Filtered
Task EEG
Task
EEG >

- /

Figure 3.8: Overview of preprocessing EEG signal

Preprocessing signals is one of the most important steps in the signal
analysis process. This includes removing unwanted artefacts from the

signal. In this case, the unwanted signals seen on the EEG signals were eye
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movements, eye blinks, body movement and muscle burst artefacts. These
artefacts were reduced using ASR, which has been explained in detail in
section 2.4.2. The data was cleaned using the EEGLAB ASR plugin. An
overview of this process is shown in Figure 3.8. A 60-second long relaxed
state EEG recording was used as the calibration dataset for each participant.
The input for the ASR filter requires the DC-offsets removed. This was
achieved by using a simple 0.5Hz high-pass butter filter. Further, the filter
settling artefacts were eliminated by removing few of the initial samples.
Once the data was ready, the ASR algorithm was applied to the data. The
graphical representations of the signals are depicted in Figure 3.8, Figure

3.9, Figure 3.10 and Figure 3.11.

e e 18
]

7
1
4
§
3 A st Pt o]
te o] P S S AR et B NSNS By R e
3 S S et Nl ot gyl ot R N S NS ORI Y R SN I S
g PV I ANASY Savid PR gt gl gt NPT AR PRNAPS O ST o VNt ey W
Ferd s O VN PO [ SN APt ! s, A2 [
& L) U DU M Y e e o Sl Sy e e Ko I I
C3 ayvmwu_mquFWMWNJ\gwmwu/\ﬁwVN,Avuw~mA/:m@;;m
Ci [ foettu e N N
& 8 P R A A N M o o AT s WA e e et
e -~ Lo
gg [ ﬂwvxmﬁwwmwwﬂmMﬂw»m,wm“wM::::ﬁ: P N N L S= eawt WA B s WS e
Y o
Cps [ R I LRI S fmreafoaym o h g ve]
Cpz oy A AR s Aelranl A NP e ey
%s 5”‘“9%ﬁﬁgﬁkﬁz§:: A A .,wxﬁlvvn¢vxn¢v\»¢Mmmu»~;j3:2:~/“;$ﬁ
] wNMW\J\w/\/WMqu\W-WMMMmMmWWWWMMMWMW‘M
] A s o iy, A AR S PR IRV SN A A
i& iy ‘/&mﬁxwwﬁmmvxmwvww~wvwwwxzzx;sg\erV“/V\ A WA [t b PO
Y A N T et el 47
PO4 Pl s o Pim Maf s i %WV““WWWWMW
Pg P A N I e Tt A A e A M
&5 e s SR Vet Y P g Pl AR, S ooy M am e A o NN
0z R e A g R an T et SR SAVEH SIVRVY SRR B B Yt T R B A P s A
22 T i v et o [ [t e
BECT B D S
ree) o]
Packet Counter
TRIGGER
0 1 2 3 4

Figure 3.9: Raw relaxed state EEG recording (calibration data)

Bk
Ao

OO OOTT T
RN ZE T AN RN G P TEe D T

OO0A O

OOTED Jowo

o 2

000D SS:

OO
TEiBeRy

DRBEE

o

unter

v
8
&

k)

Figure 3.10: Raw experiment EEG recording (while performing a task)
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Figure 3.11:ASR filtered EEG recording

Once the data was cleaned using ASR, there was yet another unwanted
artefact in the signal which needed to be filtered. This was the noise caused
by electric power lines at 50Hz. As shown in Figure 3.12, this was filtered
out using a band-stop IIR Butterworth digital filter by removing at least half
the power of the frequency between 49Hz to 51Hz.

Power Noise
ASR Filtered Band-stop [IR Filtered Task
Butterworth

Task EEG Digital Filter BEG

Figure 3.12: Overview of filtering 50Hz electric power noise

Figure 3.13 displays a single EEG channel with the electric power noise and

Figure 3.14 shows the filtered channel.
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Figure 3.13: Example of a 50Hz electric power noise in a single channel
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Figure 3.14: Example of a 50Hz electric power noise in a single channel filtered

3.5.2 Frequency Sub-band Decomposition

The original EEG recording is in the time domain. Although it is not directly
visible, this waveform is essentially made of a sum of sinusoidal waves.
Therefore, to perform a frequency analysis the data needs to be transformed

into the frequency domain.
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Figure 3.15: Overview of EEG sub-band decomposition and frequency domain transformation

In this research, the EEG signals are analysed by decomposing the EEG

signals into pre-defined sub-bands. The sub-bands are namely delta, theta,

alpha, beta and gamma. The sub-band decomposition was performed using

band-pass FIR digital filters. The filter orders for each frequency range as

shown in Table 2.1 was determined using EEGLAB eegfiltnew function

(Callan, Durantin, & Terzibas, 2015). Figure 3.16 depicts a graph of

frequency sub-bands for a single channel.

Table 3.2: Frequency sub-bands and filter orders

Sub-band Frequency Range Filter Order
Delta 1-39 992
Theta 4-79 496
Alpha 8-13.9 496
Beta 14-299 284
Gamma 30 -64 134
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Figure 3.16: Example of Frequency Sub-bands for a Single Channel

Once the data was sent through the above-described filters and divided into
the frequency sub-bands, the frequency domain transformation was
performed using MATLAB's fft function. This function returns the Discrete

Fourier Transform (DFT) computed using a FFT algorithm.

3.5.3 Feature Extraction

Feature extraction is transforming the input data into a set of features
(Shantha Selva Kumari & Prabin Jose, 2011). This helps to analyse the data
in terms of a reduced but most useful set of features instead of the large

original input data set.

As shown in the pseudocode in Figure 3.7, the features mean, median, mode,
standard deviation, maximum, minimum, skewness and Kkurtosis are
calculated (Siuly, Li, & Zhang, 2017) for each participant, for each task, at
each frequency sub-band (delta, theta, alpha, beta and gamma) in a channel.
The minimum, median and maximum represents a three-number summary
about the characteristics of the dataset. The mean and standard deviation

are important measures to quantify the dispersion of the dataset. Although

60



the mean is a popular measure of central tendency, the median gives a
better measurement of the central tendency if the dataset is skewed.
Skewness represents the symmetry of a dataset and the kurtosis represents
whether the dataset is heavily or lightly tailed in regard to the normal
distribution. Thus, all of these features collectively represent important

characteristics of the EEG signal datasets.

For each participant, for each task, for all 32 channels, for 5 frequency bands
and for 8 features the input predictors for the classifier were calculated.
This adds up to a total of 1280 predictors per participant. Table 3.3 shows
an example of 5 predictors calculated, i.e. the delta mean from channel 1 to 5

for 32 participants.

Table 3.3: Classifier predictors — delta mean for 5 channels for 32 participants

1 2 3 4 5

delta_mean_c1l delta_mean_c2 delta_mean_c3 delta_mean_c4 delta_mean_c5
1 0.0048 0.0068 0.0057 0.0060 0.0047
2 0.0058 0.0067 0.0062 0.0066 0.0056
3 0.0041 0.0070 0.0060 0.0053 0.0057
4 0.0118 0.0076 0.0090 0.0081 0.0114
5 0.0082 0.0097 0.0084 0.0088 0.0070
6 0.0066 0.0079 0.0078 0.0085 0.0072
7 0.0051 0.0051 0.0050 0.0057 0.0046
8 0.0084 0.0054 0.0051 0.0053 0.0044
9 0.0053 0.0064 0.0061 0.0069 0.0056
10 0.0057 0.0076 0.0075 0.0076 0.0057
11 0.0071 0.0097 0.0082 0.0083 0.0090
12 0.0098 0.0128 0.0108 0.0085 0.0102
13 0.0093 0.0098 0.0116 0.0091 0.0094
14 0.0039 0.0044 0.0050 0.0046 0.0035
15 0.0039 0.0056 0.0054 0.0053 0.0049
16 0.0051 0.0062 0.0063 0.0063 0.0054
17 0.0060 0.0059 0.0074 0.0067 0.0073
18 0.0073 0.0081 0.0061 0.0069 0.0072
19 0.0093 0.0158 0.0142 0.0160 0.0106
20 0.0039 0.0051 0.0063 0.0050 0.0038
21 0.0064 0.0055 0.0053 0.0054 0.0053
22 0.0071 0.0097 0.0083 0.0091 0.0082
23 0.0039 0.0046 0.0050 0.0049 0.0051
24 0.0044 0.0040 0.0041 0.0043 0.0036
25 0.0050 0.0069 0.0062 0.0066 0.0051
26 0.0044 0.0051 0.0051 0.0051 0.0045
27 0.0049 0.0060 0.0060 0.0066 0.0053
28 0.0077 0.0097 0.0087 0.0094 0.0079
29 0.0040 0.0056 0.0055 0.0056 0.0046
30 0.0049 0.0059 0.0058 0.0057 0.0049
31 0.0105 0.0076 0.0069 0.0095 0.0088
32 0.0046 0.0060 0.0067 0.0064 0.0057
33
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3.6 Classification

Once the predictors are calculated, the next step is to build the classifiers for

all the tasks.

3.6.1 Feature Grouping

In this research, in addition to building classifiers with all the EEG channels
as a whole, classifiers were also built for different parts of the brain. This
helps to identify sections of the brain that have more prominent brainwave
activation patterns that can differentiate a specific group from the other

with higher validation accuracies.

EEG channels are given unique names based on its position. Given below are

the brain lobes considered for the classifiers used and how it was

determined.

1. Brain Left Hemisphere - Channel names with ‘odd numbers’ at the end

2. Brain Right Hemisphere - Channel names with ‘even numbers’ at the end
3. Brain Center - Channel names with ‘z’ at the end

4. Frontal Lobe - Channel names starting with ‘F’

4.1. Frontal Pole - Channel names starting with ‘FP’

4.2. Anterior Frontal - Channel names starting with ‘AF’
5. Central Lobe - Channel names starting with ‘C’

5.1. Centro Parietal - Channel names starting with ‘Cp’
6. Parietal Lobe - Channel names starting with ‘P’

6.1. Parieto Occipital - Channel names starting with ‘PO’

7. Occipital Lobe - Channel names starting with ‘0’

The 32 channels were divided into the following groups as shown in Table
3.4. The EEG channel maps for each of the brain areas are depicted from
Figure 3.17 to Figure 3.30. The EEG channels pertaining to each group are
marked in green and the other EEG channels used in this research are

marked in grey.
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Table 3.4: EEG channel grouping according the brain sections

Brain Area EEG Channels

Brain Left Hemisphere Fpl, AF7, AF3, F5, F3, C5, C3, C1,
Cp5, P3,P7,P03, 01
Brain Right hemisphere Fp2, AF8, AF4, F4, F6, C2, C4, C6,
Cp6, P4, P8, P04, 02
Brain Center Fpz, Fz, Cz, Cpz, Pz, Oz
Frontal Pole Fp1, Fpz, Fp2
Frontal Lobe Anterior-Frontal | AF7, AF3, AF4, AF8
Frontal F5, F3, Fz, F4, F6
Central Lobe Central C5,C3,C1,Cz C2,C4, Co

Centro-Parietal Cp5, Cpz, Cp6

Parietal Lobe Parietal P7, P3, Pz, P4, P8
Parieto-Occipital | PO3, PO4
Occipital Lobe 01, 0z, 03

Figure 3.17: EEG channel map for brain left hemisphere
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Figure 3.30: EEG channel map for occipital lobe

3.6.2 Classifier

According to previous studies (Garrett et al., 2003; Lotte et al., 2007; Perera
et al, 2016a), one of the most suitable classifiers to be used for EEG
classifications is SVM. This has been discussed in detail in section 2.4.3.2.
The purpose of the classifier is to identify the validation accuracy between

the group with dyslexia and control group.

However, there are many types of SVM classifiers. In order to determine
which classifier to be used in our research, we conducted a preliminary
analysis using 6 types of SVM classifiers, namely, Linear Support Vector
Machine (LSVM), Quadratic Support Vector Machine (QSVM), Cubic Support
Vector Machine (CSVM), Fine Gaussian Support Vector Machine (FGSVM),
Median Gaussian Support Vector Machine (MGSVM) and Coarse Gaussian
Support Vector Machine (CGSVM). Further, we selected 3 unique tasks out of

the 9 tasks that were considerably different from each other, namely,
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nonsense-word reading, writing and typing. The results of the outcome of

this pilot analysis is described in section 4.2

The classifier was setup by importing the calculated predictors and
including the ‘type’ (dyslexic or non-dyslexic) as the response. The classifier
was validated using cross-validation of 10 folds. Since the dataset used for
this research is not large, to make efficient use of all the data, cross-

validation was selected over holdout-validation.

The SVM classifies group with dyslexia and control group by identifying the
best hyperplane that separates the data points of the group with dyslexia
from those of the control group. In this case, the best hyperplane would
mean the hyperplane with the biggest margin between the group with
dyslexia and the control group. Overview of this classification is depicted in

Figure 3.31.
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Figure 3.31: Overview of SVM classification
3.6.3 \Verification
3.6.3.1 Confusion matrix
The outcome of the classifiers was measured based on the Validation

Accuracy (VA), Sensitivity/True Positive Rate (TPR) and Specificity/True

Negative Rate (TNR). These values were calculated using the resulting
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confusion matrix of the classifier shown in Figure 3.32. The calculations are

shown in equations (1), (2), and (3).

False Negative
(FN)

True Class

dyslexic non-dysiexic
Predicted Class

Figure 3.32: Confusion matrix

(1)
TPR = ————— %100
(TP + FN)
T (2)
TNR = ————— %100
(TN + FP)
TP + TN (3)

x100

VA =
(TP + FP + FN + TN)

3.7 Summary

This chapter provided an elaboration of the methodology used in this
research in order to determine the unique EEG signal patterns between
adults with dyslexia and normal controls. This research uses a SVM based
classification framework on a total of 32 participants, which includes EEG
signal acquisition, signal preprocessing, frequency sub-band decomposition,
frequency domain transformation, feature extraction, classification and
verification. Classifiers are developed for different brain regions within each

task. The next chapter discusses the results of these classifiers.
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Chapter 4 Results

4.1 Overview

The main aim of this research is to identify unique brainwave signal
patterns in adults with dyslexia compared to normal controls when
performing tasks that are more challenging for individuals with dyslexia.

This chapter reports the results obtained from the classifiers for each task.

This chapter first describes the results from the pilot analysis carried out to
determine the most suitable classifier to be used to classify the data
collected and concludes with the classifier selected. Next, we move on to
elaborate the results of each task explained in Chapter 3. Each section
allocated to describe a task shows multiple results from classifiers
pertaining to different regions of the brain. The classifier performance is
measured using VA, sensitivity and specificity. All these results are
demonstrated orderly in tables followed by the confusion matrix and the
validation predictions of the best performing classifier for the specific task’s
brain region. The following grey scale colour coding as shown in Table 4.1

was adapted to represent the validation predictions.

Table 4.1: Grey Scale colour coding for validation predictions

Colour Coding Representation

1 | Dyslexic TP
2 | Non-dyslexic FN
3 | Non-dyslexic TN

Dyslexic EP

‘

Lastly, a summary of the results is presented exhibiting the similarities and
differences between the task results and how the optimal classifier results

together contribute towards the final conclusions.
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4.2 SVM Classifier Selection

As discussed in detail in the literature review (Garrett et al., 2003; Lotte et
al, 2007; Perera et al.,, 2016a) SVM is recognised as one of the most suitable
classifiers specifically for EEG classifications, and as explained in the
methodology there are many types of SVM classifiers. In order to determine
which classifier to be used in our research, we conducted a preliminary
analysis using the SVM classifiers LSVM, QSVM, CSVM, FGSVM, MGSVM and
CGSVM on the tasks nonsense-word reading, writing and typing. Table 4.2
shows the VA obtained from each classifier. Through this pilot analysis,
CSVM was identified as the best performed SVM classifier. Therefore,

comprehensive analysis for each task was performed using the CSVM.

Table 4.2: Comparison of VA between different SVM classifiers

Task LSVM QSVM CSVM FGSVM MGSVM CGSVM

Nonsense-word 594 | 655 |71.9 |438 59.4 53.1
reading

Writing 50.0 |531 |56.2 |469 46.9 531
Typing 50.0 [594 |68.8 |53.1 65.6 531

4.3 Real-word Reading Task Results

Table 4.3 shows the results from 11 classifiers developed for the real-word
reading task. The classifier ‘All’, which consists of all the channels and
features calculated did not indicate significant differences between the 2

groups by achieving only a 56.25% VA.

Next, we created the classifiers for the left and right hemisphere brain
regions. Although these 2 classifiers also did not exhibit distinct brainwave
characteristics, it was observed that the VA of the brain right hemisphere
area was higher compared to the brain right hemisphere area. The frontal,
central and occipital lobes provided similar results. However, the parietal
lobe classifier stood out among the others by obtaining a VA accuracy of

68.75%.
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Thereafter, we drilled down into the sections around the parietal lobe by
developing classifiers for the parieto-occipital, parieto-occipital left region
and parieto-occipital right regions. A significant outcome was attained by
the left region of the parieto-occipital through a 71.88% VA, 70.59%
sensitivity and 73.33% specificity.

Table 4.3: Real-word reading classifier results

Brain Area Sensitivity%  Specificity%
All 56.25 64.71 46.67
Left Hemisphere 53.13 58.82 46.67
Right Hemisphere 62.50 70.59 53.33
Frontal Lobe 37.50 47.06 26.67
Central Lobe 62.50 76.47 46.67
Parietal Lobe 68.75 64.71 73.33
Occipital Lobe 46.88 58.82 33.33
Parieto-Occipital 68.75 70.59 66.67
Parieto-Occipital Left 71.88 70.59 73.33
Parieto-Occipital Right 65.63 70.59 60.00
Anterior-Frontal 43.75 58.82 26.67

Table 4.4: Confusion matrix of the best performance classifier for real-word reading

TP FN
12 5

FP TN
4 11
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Table 4.4 and Table 4.5 presents the confusion matrix and validation
predictions respectively, for the best performing classifier which in this case

is the parieto-occipital left.

Table 4.5: Validation predictions of the best performance classifier for real-word reading

Participant ID Prediction Results

1 Dyslexic

2 Dyslexic

3 Non-dyslexic
4 Dyslexic

5 Dyslexic

6 Dyslexic

7 Dyslexic

8 Dyslexic

9 Dyslexic
10 Dyslexic
11 Dyslexic
12 Non-dyslexic
13 Non-dyslexic
14 Dyslexic

15 Dyslexic
16 Non-dyslexic
17 Non-dyslexic
18 Non-dyslexic
19 Non-dyslexic
20 Non-dyslexic
21 Non-dyslexic
22 Non-dyslexic
23 Non-dyslexic
24 Non-dyslexic

Dyslexic

Dyslexic
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27 Non-dyslexic
28 Dyslexic
29 Non-dyslexic
30 Non-dyslexic
31 Non-dyslexic
32 Dyslexic

4.4 Nonsense-word Reading Task Results

Similar to the real-word reading task, the scores from the 11 classifiers
created for the nonsense-word reading task is set out in Table 4.6. The
classifier with all the EEG electrodes showed a significant VA of 78.13% as

opposed to the corresponding real-word reading classifier.

Subsequently, the EEG signal outcome of the left and right hemispheres
were analysed separately using classifiers. Although these results presented
less significance compared to all the sensors as a whole, interestingly, the
right hemisphere classifier VA was higher than the left hemisphere classifier

VA similar to the equivalent real-word reading classifiers.

Next, classifiers were built for the frontal, central, parietal and occipital
lobes, where the parietal and occipital lobes produced distinctive VA of
81.25% and 75.0% respectively. In consequence, we inspected the region
between the lobes, which is the parieto-occipital and was able to achieve a

higher VA of 84.38%.

Then we examined the left and right parieto-occipital individually, through
which we were able to reach a superior VA as high as 87.50% for the left

parieto-occipital.
The confusion matrix and the validation predictions for the best classifier in

the nonsense-word reading task are shown in Table 4.7 and Table 4.8

respectively.
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Table 4.6: Nonsense-word reading classifier results

Brain Area Sensitivity%  Specificity%
All 78.13 82.35 73.33
Left Hemisphere 65.63 76.47 53.33
Right Hemisphere 68.75 70.59 66.67
Frontal Lobe 50.00 64.71 33.33
Central Lobe 68.75 76.47 60.00
Parietal Lobe 81.25 82.35 80.00
Occipital Lobe 75.00 82.35 66.67
Parieto-Occipital 84.38 88.24 80.00
Parieto-Occipital Left 87.50 88.24 86.67
Parieto-Occipital Right 81.25 82.35 80.00
Anterior-Frontal 68.75 76.47 60.00

Table 4.7: Confusion matrix of the best performance classifier for nonsense-word reading

TP FN
15 2

FP TN
2 13

Table 4.8: Validation predictions of the best performance classifier for nonsense-word reading

Participant ID Prediction Results

1 Dyslexic
2 Dyslexic
3 Dyslexic
4 Dyslexic
5 Dyslexic

78



6 Dyslexic

7 Dyslexic

8 Dyslexic

9 Dyslexic

10 Dyslexic

11 Dyslexic
12 Non-dyslexic
13 Dyslexic

14 Dyslexic

15 Dyslexic

16 Non-dyslexic
17 Dyslexic

18 Dyslexic

19 Non-dyslexic
20 Non-dyslexic
21 Non-dyslexic
22 Non-dyslexic
23 Non-dyslexic
24 Non-dyslexic
25 Non-dyslexic
26 Non-dyslexic
27 Non-dyslexic
28 Dyslexic

29 Non-dyslexic
30 Non-dyslexic
31 Non-dyslexic
32 Non-dyslexic

4.5 Passage Reading Task Results

The classifier results from the final reading task being the passage reading
task is depicted in Table 4.9. The classifier results produced from the left

hemisphere, right hemisphere, frontal lobe, central lobe, occipital lobe as
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well as all the EEG channels as a whole did not show significant differences

in the brainwave signal patterns between the two groups.

However, the parietal lobe showed slightly positive results. Since the two
previous reading tasks revealed substantial VA levels in the parieto-occipital
region, we attempted to examine this region using a classifier. As expected, a

significant VA of 71.88% was obtained.

Table 4.9: Passage reading classifier results

Brain Area Sensitivity% | Specificity%
All 53.13 52.94 53.33
Left Hemisphere 59.38 64.71 53.33
Right Hemisphere 59.38 64.71 53.33
Frontal Lobe 59.38 58.82 60.00
Central Lobe 53.13 70.59 33.33
Parietal Lobe 62.50 64.71 60.00
Occipital Lobe 56.25 52.94 60.00
Parieto-Occipital 71.88 76.47 66.67
Parieto-Occipital Left 75.00 88.24 60.00
Parieto-Occipital Right 62.50 58.82 66.67
Anterior Frontal 68.75 70.59 66.67

Table 4.10: Confusion matrix of the best performance classifier for passage reading

TP FN
12 5

FP TN
5 10
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Next, the left and right of the parieto-occipital region were analysed, and the

left parieto-occipital region showed the highest VA of 75.00% for this task,

which yet again was in parallel with the two previous reading tasks.

The best performance confusion matrix and prediction validations are

showing through Table 4.10 and Table 4.11.

Table 4.11: Validation predictions of the best performance classifier for passage reading

Participant ID Prediction Results

1 Dyslexic

2 Dyslexic

3 Dyslexic

4 Dyslexic

5 Dyslexic

6 Dyslexic

7 Dyslexic

8 Dyslexic

9 Dyslexic
10 Non-dyslexic
11 Dyslexic
12 Dyslexic

13 Dyslexic
14 Non-dyslexic
15 Dyslexic

16 Dyslexic

17 Dyslexic
18 Dyslexic

19 Non-dyslexic
20 Dyslexic
21 Non-dyslexic
22 Non-dyslexic
23 Non-dyslexic
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24 Non-dyslexic

Dyslexic
Dyslexic
Dyslexic
28 Non-dyslexic
29 Non-dyslexic
30 Non-dyslexic
31 Non-dyslexic
32 Dyslexic

4.6 RAN Task Results

The results from all the classifiers created for the RAN task are summarised
in Table 4.12. In can be seen from the table that the first seven classifiers fail
to obtain sufficient VA in order to be able to distinguish the group with

dyslexia compared to the normal control group.

Although at this point we assumed that may be the RAN task does not show
adequate differences in the brainwave patterns, surprisingly, the parieto-

occipital showed a VA of 75.00%.

Overall, the results of RAN were not as promising in comparison to the real-
word reading task and the nonsense-word reading task. However, the region
with the high VA was consistent with those tasks. The lowest VA was shown

in the brain left hemisphere classifier.
Table 4.13 depicts the confusion matrix relevant to the highest performance

classifier with the RAN task, and Table 4.14 depicts the validation

predictions relevant to the highest performance classifier with the RAN task.
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Table 4.12: RAN classifier results

Brain Area Sensitivity%  Specificity%
All 40.63 41.18 40.00
Left Hemisphere 34.38 41.18 26.67
Right Hemisphere 40.63 41.18 40.00
Frontal Lobe 43.75 41.18 46.67
Central Lobe 53.13 58.82 46.67
Parietal Lobe 56.25 70.59 40.00
Occipital Lobe 56.25 52.94 60.00
Parieto-Occipital 75.00 82.35 66.67
Parieto-Occipital Left 59.38 70.59 46.67
Parieto-Occipital Right 68.75 70.59 66.67
Anterior Frontal 40.63 35.29 46.67

Table 4.13: Confusion matrix of the best performance classifier for RAN

TP FN

14 3

FP TN
5 10

Table 4.14: Validation predictions of the best performance classifier for RAN

Participant ID Prediction Results

1 Dyslexic
2 Non-dyslexic
3 Dyslexic
4 Dyslexic
5 Dyslexic
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6 Dyslexic
7 Dyslexic
8 Dyslexic
9 Dyslexic
10 Dyslexic
11 Dyslexic
12 Non-dyslexic
13 Dyslexic
14 Dyslexic
15 Non-dyslexic
16 Dyslexic
17 Dyslexic
18 Non-dyslexic

Dyslexic

Dyslexic

Non-dyslexic

22 Non-dyslexic
23 Non-dyslexic
24 Dyslexic

25 Non-dyslexic
26 Non-dyslexic
27 Non-dyslexic
28 Non-dyslexic
29 Non-dyslexic
30 Non-dyslexic

Dyslexic

Dyslexic
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4.7 Writing Task Results

Table 4.15 provides the summary statistics for all the classifier results
relating to the writing task. The outcomes of this task were quite different
compared to the other tasks discussed above. Although up to now the
parieto-occipital region portrayed significant results, for this task the

parieto-occipital region classifier did not produce significant results.

However, the anterior frontal attained a VA of 71.88%, a sensitivity of

76.47% and specificity of 66.67%.

Table 4.16 and Table 4.17 display the confusion matrix and validation

predictions for the anterior frontal.

Table 4.15: Writing classifier results

Brain Area VA% Sensitivity%  Specificity%

59.38 64.71 53.33
Left Hemisphere 65.63 70.59 60.00
Right Hemisphere 50.00 64.71 33.33
Frontal Lobe 56.25 64.71 46.67
Central Lobe 59.38 64.71 53.33
Parietal Lobe 59.38 64.71 53.33
Occipital Lobe 62.50 64.71 60.00
Parieto-Occipital 46.88 58.82 33.33
Parieto-Occipital Left 46.88 52.94 40.00
Parieto-Occipital Right 59.38 58.82 60.00
Anterior Frontal 71.88 76.47 66.67

85



Table 4.16: Confusion matrix of the best performance classifier for writing

TP FN
13 4

FP TN
5 10

Table 4.17: Validation predictions of the best performance classifier for writing

Participant ID Prediction Results

1 Non-dyslexic
2 Non-dyslexic
3 Dyslexic
4 Dyslexic
5 Dyslexic
6 Dyslexic
7 Dyslexic
8 Dyslexic
9 Dyslexic
10 Dyslexic
11 Dyslexic
12 Non-dyslexic
13 Dyslexic
14 Dyslexic
15 Dyslexic
16 Non-dyslexic
17 Dyslexic
18 Non-dyslexic
19 Non-dyslexic

86



20

Dyslexic

21 Non-dyslexic
Y Dyslexic
23 Non-dyslexic
24 Non-dyslexic
25 Dyslexic
26 Non-dyslexic
27 Non-dyslexic
28 Dyslexic
29 Non-dyslexic
30 Non-dyslexic
31 Non-dyslexic
32 Dyslexic

4.8 Typing Task results

Table 4.18 illustrates the behaviour of seventeen classifiers built to analyse
the typing task. The classifier with all the EEG sensors collectively produced
a VA of 78.13%.

We next examined the left hemisphere, right hemisphere, frontal lobe,
central lobe, parietal lobe and the occipital lobe. Except for the parietal lobe,
others showed a substantial difference between the sensitivity and
specificity rates, which is not preferable. The classifiers from parietal and
parieto-occipital performed fairly well. However, it was not the best

performing region similar to most the tasks.
The frontal classifier showed the top VA of 78.13% and the confusion matrix

and validation predictions particular to the classifier are shown in Table

4.19 and Table 4.20 respectively.
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Table 4.18: Typing classifier results

Brain Area Sensitivity% = Specificity%
All 78.13 88.24 66.67
Left Hemisphere 71.88 94.12 46.67
Right Hemisphere 62.50 76.47 46.67
Frontal Lobe 68.75 88.24 46.67
Central Lobe 68.75 82.35 53.33
Parietal Lobe 65.63 76.47 53.33
Occipital Lobe 56.25 82.35 26.67
Parieto-Occipital 62.50 70.59 53.33
Parieto-Occipital Left 68.75 76.47 60.00
Parieto-Occipital Right 68.75 76.47 60.00
Anterior Frontal 65.63 88.24 40.00
Central 68.75 76.47 60.00
Centro Parietal 59.38 76.47 40.00
Frontal Pole 68.75 94.12 40.00
Frontal 78.13 88.24 66.67
Frontal Left 68.75 82.35 53.33
Frontal Right 68.75 82.35 53.33

Table 4.19: Confusion matrix of the best performance classifier for typing

TP FN
15 2

FP TN
5 10
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Table 4.20: Validation predictions of the best performance classifier for typing

Participant ID Prediction Results

1 Dyslexic
2 Dyslexic
3 Dyslexic
4 Dyslexic
5 Dyslexic
6 Dyslexic
7 Dyslexic
8 Dyslexic
9 Dyslexic
10 Dyslexic
11 Dyslexic
12 Dyslexic
13 Dyslexic
14 Non-dyslexic
15 Dyslexic
16 Non-dyslexic
17 Dyslexic
18 Non-dyslexic
19 Non-dyslexic
20 Non-dyslexic
21 Dyslexic
22 Non-dyslexic
23 Dyslexic
24 Non-dyslexic
Dyslexic
26 Non-dyslexic
27 Non-dyslexic

Dyslexic

Dyslexic

Non-dyslexic
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31 Non-dyslexic

32 Non-dyslexic

4.9 Web Browsing Task Results

The results from web browsing; one of the everyday tasks incorporated in
our experiment is shown in Table 4.21. The table shows that the brain
regions shown from the first seven rows do not display significant results
and a closer inspection shows that right hemisphere, frontal lobe, central
lobe, and the occipital lobe when considered individually do not appear to

have balanced sensitivities and specificities.

However, the left parieto-occipital classifier obtained a VA of 68.75% with
fairly balanced values for sensitivity and specificity of 70.59% and 66.67%

respectively.

The confusion matrix and prediction validations for the left parieto-occipital

are shown in Table 4.22 and Table 4.23.

Table 4.21: Web browsing classifier results

Brain Area Sensitivity% | Specificity%
All 46.88 41.18 53.33
Left Hemisphere 62.50 52.94 73.33
Right Hemisphere 53.13 29.41 80.00
Frontal Lobe 56.25 70.59 40.00
Central Lobe 59.38 41.18 80.00
Parietal Lobe 56.25 47.06 66.67
Occipital Lobe 56.25 29.41 86.67
Parieto-Occipital 68.75 64.71 73.33
Parieto-Occipital Left 68.75 70.59 66.67
Parieto-Occipital Right 62.50 41.18 86.67
Anterior Frontal 50.00 52.94 46.67
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Table 4.22: Confusion matrix of the best performance classifier for web browsing

TP FN
12 5

FP TN
5 10

Table 4.23: Validation predictions of the best performance classifier for web browsing

Participant ID Prediction Results

1 Dyslexic

2 Dyslexic

3 Dyslexic

4 Dyslexic

5 Dyslexic

6 Dyslexic

7 Dyslexic

8 Non-dyslexic
9 Dyslexic
10 Dyslexic
11 Non-dyslexic
12 Non-dyslexic
13 Dyslexic
14 Non-dyslexic
15 Dyslexic
16 Non-dyslexic
17 Dyslexic
18 Non-dyslexic
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Dyslexic

Dyslexic

21 Non-dyslexic
Y Dyslexic

23 Non-dyslexic
24 Non-dyslexic
25 Non-dyslexic
26 Non-dyslexic
27 Non-dyslexic
28 Dyslexic

29 Non-dyslexic
30 Dyslexic

31 Non-dyslexic
32 Non-dyslexic

4.10 Table Interpretation Task Results

The results obtained from the table interpretation tasks are set out in Table

4.24. Although the classifier with all the EEG sensors as a whole did not

show a promising number to confirm significant differences between the

two groups, the parietal lobe, parieto-occipital, right of the parieto-occipital

and the centro parietal showed comparatively promising results.

Even though the parieto-occipital and the centro parietal obtained the same

VA of 71.88%), the sensitivity and specificity ratios were more balanced in

the parieto-occipital; affirming to be the better classifier. The resulting

confusion matrix is shown in Table 4.25 and the resulting validation

predictions are shown in Table 4.26.




Table 4.24: Table interpretation classifier results

Brain Area Sensitivity% Specificity%
All 50.00 64.71 33.33
Left Hemisphere 65.63 76.47 53.33
Right Hemisphere 53.13 64.71 40.00
Frontal Lobe 53.13 76.47 26.67
Central Lobe 59.38 70.59 46.67
Parietal Lobe 68.75 70.59 66.67
Occipital Lobe 53.13 58.82 46.67
Parieto-Occipital 71.88 70.59 73.33
Parieto-Occipital Left 53.13 64.71 40.00
Parieto-Occipital Right 68.75 64.71 73.33
Anterior Frontal 62.50 70.59 53.33
Central 62.50 76.47 46.67
Centro Parietal 71.88 82.35 60.00
Frontal Pole 43.75 52.94 33.33
Frontal 53.13 70.59 33.33
Frontal Left 65.63 82.35 46.67
Frontal Right 56.25 58.82 53.33

Table 4.25: Confusion matrix of the best performance classifier for table interpretation

TP FN
12 5

FP TN
4 11
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Table 4.26: Validation predictions of the best performance classifier for table interpretation

Participant ID Prediction Results

1 Dyslexic

2 Dyslexic

3 Dyslexic

4 Dyslexic

5 Dyslexic

6 Dyslexic

7 Dyslexic

8 Dyslexic

9 Dyslexic
10 Non-dyslexic
11 Non-dyslexic
12 Non-dyslexic
13 Dyslexic

14 Dyslexic

15 Dyslexic
16 Non-dyslexic
17 Non-dyslexic
18 Non-dyslexic
19 Dyslexic
20 Non-dyslexic
21 Non-dyslexic
22 Non-dyslexic
23 Non-dyslexic
24 Non-dyslexic
25 Non-dyslexic

Dyslexic

Dyslexic

28 Non-dyslexic
29 Non-dyslexic
30 Non-dyslexic
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31 Non-dyslexic

4.11 Typing Random Number Task Results

The results from the final task, typing random number is presented in Table
4.27. As can be seen from the table, except for the brain regions around the

parieto-occipital, the other classifiers portrayed disappointing results.

However, it is apparent from this table that the one region that is significant
is following the same pattern as most of the tasks. In this task, the parieto-
occipital right was able to acquire a VA of 68.75%, a sensitivity of 76.47%
and specificity of 60.00% derived from the classifier resulting confusion
matrix shown in Table 4.28. The validation predictions relating to this task

is presented in Table 4.29.

Table 4.27: Typing random number classifier results

Brain Area Sensitivity% Specificity%
All 43.75 52.94 33.33
Left Hemisphere 43.75 58.82 26.67
Right Hemisphere 53.13 64.71 40.00
Frontal Lobe 46.88 64.71 26.67
Central Lobe 53.13 58.82 46.67
Parietal Lobe 56.25 64.71 46.67
Occipital Lobe 65.63 70.59 60.00
Parieto-Occipital 65.63 64.71 66.67
Parieto-Occipital Left 59.38 52.94 66.67
Parieto-Occipital Right 68.75 76.47 60.00
Anterior Frontal 53.13 64.71 40.00
Central 59.38 58.82 60.00
Centro Parietal 53.13 52.94 53.33
Frontal Pole 65.63 70.59 60.00
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Frontal 56.25 64.71 46.67
Frontal Left 50.00 64.71 33.33
Frontal Right 62.50 70.59 53.33

Table 4.28: Confusion matrix of the best performance classifier for typing random number

TP FN

13 4

FP TN
6 9

Table 4.29: Validation predictions of the best performance classifier for typing random

number

1 Dyslexic

2 Non-dyslexic
3 Dyslexic

4 Dyslexic

5 Dyslexic

6 Dyslexic

7 Dyslexic

8 Dyslexic

9 Dyslexic
10 Non-dyslexic
11 Dyslexic
12 Dyslexic
13 Dyslexic
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14 Non-dyslexic
15 Non-dyslexic
16 Dyslexic
17 Dyslexic

Dyslexic

Dyslexic

20 Non-dyslexic
21 Dyslexic
22 Non-dyslexic
23 Non-dyslexic
24 Non-dyslexic
25 Non-dyslexic
26 Dyslexic
27 Non-dyslexic
28 Non-dyslexic
29 Non-dyslexic
30 Dyslexic
31 Non-dyslexic
32 Dyslexic

4.12 Summary

The results of this chapter indicate that adults with dyslexia have unique
brainwave signal patterns compared to normal controls while performing
the nine tasks selected in this research. It was evident that classifying brain
regions separately instead of classifying all the regions together as a whole
could increase the classification accuracy levels. The results revealed that
the optimal brain regions suitable for classification were dependent on the
task. The summary of the findings is presented in Table 4.30, and according
to our discoveries, the best task suitable for classification was nonsense-
word reading with a VA of 87.50% and the least suitable tasks were web

browsing and typing random number having only a VA of 68.75%. Further,



it was also apparent that left of the parieto-occipital stood out as the region

that attained the highest VA levels.

Table 4.30: Summary of optimal brain regions suitable for classification for each task

Optimal Brain Region for

Classification
Real-word reading (RW) Parieto-occipital left 71.88
Nonsense-word reading (NW) | Parieto-occipital left 87.50
RAN Parieto-occipital 75.00
Passage reading (PR) Parieto-occipital left 75.00
Web browsing (WB) Parieto-occipital left 68.75
Writing (W) Anterior Frontal 71.88
Typing (T) Frontal 78.13
Table interpretation (TI) Parieto-occipital 71.88
Tying random number (TRN) | Parieto-occipital right 68.75

Table 4.31 shown below summarises the prediction validations obtained
from the optimal brain region classifier for each task. The first column
shows the participant ID (PID), where PID 1 to 17 corresponds to the group
with dyslexia and PID 18 to 32 corresponds to the control group. Columns 2
to 10 show the predictions for the 9 tasks, and where the prediction is
correct is it represented as 1 and if the prediction is wrong it is represented
as 0. Column 11 presents the total of the correct predictions for each
participant and column 12 shows the accuracy percentage for each
participant. Taken together, this table helps understand the association of
the results towards finally concluding whether a person can be identified as
having a significant amount of brainwave signal patterns relating to dyslexia

or not and vice versa.
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Table 4.31: Summary of prediction validations obtained from the optimal brain region

classifiers for each task

PID RW NW RAN PR WB W T TI TRN Total %

1 0 8 88.89
2 0 0 0 6 66.67
3 0 8 88.89
4 9 100.00
5 9 100.00
6 9 100.00
7 9 100.00
8 0 8 88.89
9 9 100.00
10 0 0 0 6 66.67
11 0 0 7 77.78
12 |0 0 0 0 0 0 3 33.33
13 |0 8 88.89
14 0 0 0 0

15 0 0 7 77.78
16 |0 0 0 0 0 0 3 33.33
17 |0 0 7 77.78
18 |1 0 1 0 1 1 1 1 0 6 66.67
19 |1 1 0 1 0 1 1 0 0 5 55.56
20 |1 1 0 0 0 0 1 1 1 5 55.56
21 |1 1 1 1 1 1 0 1 0 7 77.78
22 |1 1 1 1 0 0 1 1 1 7 77.78
23 |1 1 1 1 1 1 0 1 1 8 88.89
24 |1 1 0 1 1 1 1 1 1 8 88.89
25 |0 1 1 0 1 0 0 1 1 5 55.56
26 |0 1 1 0 1 1 1 0 0 5 55.56
27 |1 1 1 0 1 1 1 0 1 7 77.78
28 |0 0 1 1 0 0 0 1 1 4 44.44
29 |1 1 1 1 1 1 0 1 1 8 88.89
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30 0 0 7 77.78

31 0 8 88.89

32 |0 0 0 0 0 |0 3 33.33
‘23 28 ‘24 ‘24 ‘22 ‘23 25 23 22

The interpretation of the prediction accuracy total and accuracy percentage
is given in Table 4.32. In the group with dyslexia, we found 9 participants
falling into the very good criteria out of which 5 had 100% accurate
predictions. Further, there were 5 in the criteria marked as good and 1
marked as moderate. There were only 2 participants in the poor category
and no participants in the very poor category. Interestingly, the 2
participants in the poor category had also been diagnosed as having ADHD.
This finding possibly indicates that individuals with dyslexia having
overlapping symptoms of ADHD have different brainwave signal patterns.
However, further analyses with more participants with such symptoms are
required to confirm this assumption, which would be a part of future work.
On the other hand, the normal control group indicated 4 in very good, 5 in
good and 4 in moderate category respectively. There were only 2
participants in the poor category. Fortunately, the normal control group too

had no participants marked as very poor categorization.

Table 4.32: Prediction total interpretation

‘ Accuracy as a Total Accuracy as a Percentage ‘ Interpretation
0-2 0-22.22 Very poor
3-4 33.33-44.44 Poor
5 55.56 Moderate
6-7 66.67 - 77.78 Good
8-9 88.89-100 Very good

The results of this chapter are elaborated in detail in Chapter 5 with

reference to the literature review and the research questions and objectives.
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Chapter 5 Discussion

5.1 Overview

The present research was designed to determine unique patterns in the EEG

signals in adults with dyslexia compared to normal controls when

performing tasks that are more challenging for individuals with dyslexia

using machine learning classification. In this chapter, we discuss how the

insights of our findings relate to the research questions and objectives.

Table 5.1 given below shows an overview of the relationships.

Table 5.1: Mapping tasks, RP, RQ, RO and results

‘ Tasks RP RQ RO ‘ Results Tables
Real-word Reading | RP1, RQ1, RO1, Table 4.3, Table 4.4,
RP2 RQ2 RO2 Table 4.5
Nonsense-word RP1, RQ1, RO1, Table 4.6, Table 4.7,
Reading RP2 RQ2 RO2 Table 4.8
Passage Reading RP1, RQ1, RO1, Table 4.9, Table 4.10,
RP2 RQ2 RO2 Table 4.11
RAN RP1, RQ1, RQ1, Table 4.12, Table
RP3 RQ3 RQ3 4.13, Table 4.14
Writing RP1, RQ1, RQ1, Table 4.15, Table
RP4 RQ4 RQ4 4.16, Table 4.17
Typing RP1, RQ1, RQ1, Table 4.18, Table
RP5 RQ5 RQ5 4.19, Table 4.20
Web browsing RP1, RQ1, RQ1, Table 4.21, Table
RP6 RQ6 RQ6 4.22, Table 4.23
Interpreting Table RP1, RQ1, RQ1, Table 4.24, Table
RP6 RQ6 RQ6 4.25, Table 4.26
Typing Random RP1, RQ1, RQ1, Table 4.27, Table
Number RP6 RQ6 RQ6 4.28, Table 4.29
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The discussion is structured in a manner where we first discuss each sub
research question at a time, namely, RQ2, RQ3, RQ4, RQ5 and RPQ6 and
finally discuss how the main research question RQ1 is answered through all

the results of the sub-questions.

5.2 Discussion of RQ2 and RO2

RQ2: Do EEG signals generated while reading produce unique brainwave
signal patterns in adults with dyslexia compared to normal controls?
Do reading real-words, nonsense-words and passages activate the same
brainwave patterns?

ROZ2: Identify brain regions and EEG electrodes that produce unique EEG
signal patterns in adults with dyslexia compared to normal controls during
reading related tasks. Compare patterns during real-word, nonsense-word and
passage reading.

This research included 3 experiments focused directly on reading tasks,
which were real-word reading, nonsense-word reading and passage reading.
These tasks have been described in sections 3.4.4.2.2, 3.4.4.2.3 and 3.4.4.2.4
respectively. As per the results shown in Table 4.3, Table 4.6 and Table 4.9
all these tasks implied that there is a difference in the brainwave patterns

while reading.

As discussed in the literature review past studies have proven that people
with dyslexia have a greater level of difficulty in reading nonsense-words
compared to real-words. Interestingly, our findings showed that for both the
real-word reading and nonsense-word reading tasks, the most significant
brain region was the left parieto-occipital. Further, the nonsense-word
reading classifier presented a higher VA of 87.50% where as the real-word
reading classifier VA was 71.88%. It can therefore be assumed that the
greater level of difficulty seen in individuals with dyslexia when reading
nonsense-words reflected in the brainwave signals through significant
differences, enabling the classifier to distinguish between the two groups
with higher VA. Deficiency of phonological decoding skills is a commonly

seen symptom in individuals with dyslexia, and the capability to read
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nonsense-words is known to be one of the best ways to measure
phonological decoding skills (Facoetti et al., 2010; Shaywitz, 2003; Ziegler et
al, 2014). Studies have shown that the temporo-parieto-occipital brain
regions show differences between the readers with dyslexia and non-
impaired readers, and more specifically in the left temporo-parieto during
phonological processing through brain imaging (Peyrin et al, 2012;
Shaywitz & Shaywitz, 2005). Although this region is not available in the EEG
channels used for this research, as can be seen in Figure 5.1, the temporo-
parieto is very close to the parieto-occipital, which lies between the parietal
and the occipital lobes. Therefore, it can be implied that the results of this
EEG classification obtained from this research coincides with the past
research conducted using fMRI and confirming difficulties in phonological
decoding skills seen in individuals with dyslexia are reflected in the

brainwave patterns.

Figure 5.1: Temporo-parieto (Carter, n.d.)

The passage-reading task also achieved the highest VA of 75.00% from the
left parieto-occipital classifier. Therefore this supports that all reading tasks

activate somewhat the same regions of the brain.

The EEG channel that produced the most significant unique brainwave
activation patterns for the real-word reading, nonsense-word reading and
passage reading was on PO3, which lies in the left parieto -occipital. Figure

5.2 depicts the position of PO3.
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Figure 5.2: Optimal EEG channel PO3 for real-word reading, nonsense-word reading and
passage reading tasks

5.3 Discussion of RQ3 and RO3

RQ3: Do EEG signals generated during RAN produce unique brainwave signal
patterns in adults with dyslexia compared to normal controls?

RO3: Identify brain regions and EEG electrodes that produce unique EEG

signal patterns in adults with dyslexia compared to normal controls during
RAN.

RAN helps measure how quick familiar things for example letters, digits,
objects or colours can be named. As explained in section 3.4.4.2.5 in the
methodology, our experiment relating the RAN included the naming of
colours as quickly as possible. The results for the RAN classifiers as shown
in Table 4.12 prove that RAN produces unique brainwave signal patterns in

adults with dyslexia compared to normal controls.

104



The highest VA of 75.00% for RAN was shown in the parieto-occipital
classifier, thereby exhibiting PO3 and PO4 EEG channels to being the most
significant EEG channels capable of distinguishing the group with dyslexia
from the control group. Figure 5.3 depicts the positions of PO3 and PO4. Past
studies show activations in the parietal lobe using rCBF (regional cerebral
blood flow) (Wiig et al., 2002) and activations in the left superior parietal
gyri using fMRI (J. Cummine, Chouinard, Szepesvari, & Georgiou, 2015;
Jacqueline Cummine, Szepesvari, Chouinard, Hanif, & Georgiou, 2014)
during RAN by adults. Further, differences in the parieto-occipital regions
have also been found in ERP studies between individuals with dyslexia and

control groups (Araujo, Faisca, Reis, Marques, & Petersson, 2016).

Figure 5.3: Optimal EEG channels PO3 and PO4 for RAN task

According to the literature, research confirms that RAN is related to reading
(Georgiou et al., 2013) and that it is impaired in individuals with dyslexia
(Jones et al, 2010). Interestingly, the parieto-occipital brain region was

identified as the most prominent region for RAN and all reading related
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tasks, which were real-word reading, nonsense-word reading and passage

reading the left parieto-occipital were identified as the most prominent.

5.4 Discussion of RQ4 and RO4

RQ4: Do EEG signals generated while writing produce unique brainwave
signal patterns in adults with dyslexia compared to normal controls?

RO4: Identify brain regions and EEG electrodes that produce unique EEG
signal patterns in adults with dyslexia compared to normal controls while
writing.

Poor writing skills are one of the commonly seen difficulties in individuals
with dyslexia. The results depicted in Table 4.15 verify that adults with
dyslexia produce unique brainwave signal patterns during the writing task

as explained in section 3.4.4.2.6 compared to normal controls.

03333"0
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Figure 5.4: Optimal EEG channels AF7, AF3, AF4 and AF8 for writing task

The peak VA of 71.88% was produced from the anterior frontal classifier,

which included the EEG electrodes AF7, AF3, AF4 and AF8. However, this
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outcome has not previously been reported in previous similar studies, and a
possible explanation for this might be that because those studies had not
used the EEG electrodes AF7, AF3, AF4 and AF8. The channels used in these
similar studies were C3, C4, P3 and P4 (Che Wan Fadzal, Mansor, & Khuan,
2011; Fuad et al, 2013; Zabidi, Mansor, Lee, & Che Wan Fadzal, 2012).
Therefore, these results contribute towards to the pool of knowledge as a

new finding. Figure 5.4 depicts the positions of AF7, AF3, AF4 and AF8.

5.5 Discussion of RQ5 and RO5

RQ5: Do EEG signals generated while typing produce unique brainwave signal

patterns in adults with dyslexia compared to normal controls?

ROS5: Identify brain regions and EEG electrodes that produce unique EEG

signal patterns in adults with dyslexia compared to normal controls while

typing.

Typing can be considered as the modern day replacement to writing and is
yet another task found more challenging by individuals with dyslexia. The
typing task given for all the participants is explained in section 3.4.4.2.7. A
total of 17 classifiers were developed for this task and the results are
represented in Table 4.18. As explained in detail in the results section 4.8,
although most of the classifiers showed fairly high VA, the results

sensitivities were rather higher than the specificities.

However, the frontal classifier was able to obtain the highest VA of 78.13%
with a fairly balanced specificity and sensitivity. Interestingly, this was close
to the most significant region identified for writing, which was the anterior-
frontal. The most significant EEG channels responsible for producing unique
brainwave signals in individuals with dyslexia compared to normal controls
were F5, F3, Fz, F4 and F6. Figure 5.5 depicts the position of these four
channels. All these findings show that EEG signals generated while typing
produce unique brainwave signal patterns in adults with dyslexia compared

to normal controls. Further, as explained in the literature review,
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comparison of EEG signals patterns between persons with and without
dyslexia during typing was a gap to be filled; therefore, we did not find any

research results that could be directly compared against our results.

Figure 5.5: Optimal EEG channels F5, F3, Fz, F4 and F6 for typing task

5.6 Discussion of RQ6 and RO6

RQ6: Do EEG signals generated during the following everyday tasks produce
unique brainwave signal patterns in adults with dyslexia compared to normal
controls?

Browsing the web
Interpreting tables

Keying in an unfamiliar number
ROG6: Identify brain regions and EEG electrodes that produce unique EEG

signal patterns in adults with dyslexia compared to normal controls during the

following everyday tasks.
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Browsing the web
Interpreting tables

Keying in an unfamiliar number

Realistic everyday tasks performed by humans do not consist of reading or
writing tasks in isolation and it is in fact a combination of these tasks
together. In this section we selected 3 of such everyday tasks in order to
compare the brainwave activity between individuals with dyslexia
compared to normal controls. The tasks web browsing, interpreting tables
and keying in an unfamiliar number are elaborated in sections 3.4.4.2.8,

3.4.4.2.9 and 3.4.4.2.10 respectively.

Figure 5.6: Optimal EEG channel PO3 for web browsing task

The results from the web browsing task as presented in Table 4.21 and
showed the maximum VA of 68.75% at the left parieto-occipital classifier.
Further, this result has not been previously reported as there were no
similar studies to perform a comparison. Overall the classifier results from

the web browsing task helped determined that adults with dyslexia produce
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unique brainwave patterns compared to normal controls during browsing
the web and the prominent EEG channel was PO3. The position of this

channel is depicted in Figure 5.6.

The next task being the table interpretation is yet another everyday task
selected which has not been covered in previous research for brainwave
activity comparison between adults with dyslexia and a control group. This
task too showed differences in the brainwave signal patterns in adults with
dyslexia compared to normal controls and the best VA was produced by the
parieto-occipital classifier as shown in the results Table 4.24. The EEG
electrodes responsible for most unique brainwave signals were PO3 and

P04, and the positions of these channels are depicted in Figure 5.7.

Figure 5.7: Optimal EEG channels PO3 and PO4 for table interpretation task

Keying in an unfamiliar number was the final task of this research. This task
too contributed towards confirming that adults with dyslexia show

exclusive brainwave signal patterns compared to normal controls as
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illustrated in the results Table 4.27. These exclusive brainwave patterns
were more apparent in EEG electrode PO4 that falls into the right of the
parieto-occipital. The position of sensor PO4 depicted in Figure 5.8. This
classifier pertaining to this region achieved the highest VA of 68.75%.

Figure 5.8: Optimal EEG channel PO4 for typing random number task

Overall, all the everyday tasks selected in this research showed unique EEG

signal patterns in adults with dyslexia compared to normal controls.

5.7 Discussion of RQ1 and RO1

RQ1: Do EEG signals generated while performing specific tasks that are more
challenging for individuals with dyslexia produce unique brainwave signal
patterns in adults with dyslexia compared to normal controls?

Can these EEG signal patterns be detected using machine learning

classification?
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Do these EEG signal patterns differ according to the tasks and EEG sensors

spanned across each brain region?

RO1: The main aim of this research is to identify unique patterns in the EEG
signals in adults with dyslexia compared to normal controls when performing
tasks that are more challenging for individuals with dyslexia. These unique
patterns will be identified using an EEG-based machine learning classification

framework and derived through the sub-objectives.

The main goal of this research was to determine if performing specific tasks
that are more challenging for individuals with dyslexia produce unique
brainwave signal patterns in adults with dyslexia compared to normal
controls, and through the sub research questions and research objectives
discussed above, it was evident that these tasks activated unique brainwave
signal patterns. The next question answered through our findings was as to
whether machine learning classifiers could identify these patterns. In our
research, we adapted the machine learning classifier CSVM, and were able to
successfully obtain positive results, and thereby proving machine learning
classification can differentiate between EEG signal patterns from adults with
dyslexia and the control group. Finally, the research revealed that the
optimal brain regions and the EEG sensors differed according to the task as
summarised in Table 4.30. The left of the parieto-occipital was the most
significant for real-word reading, nonsense-word reading, passage reading
and web browsing with the optimal EEG sensor being PO3. The parieto-
occipital revealed to be the best brain region with channels PO3 and P04 for
RAN and table interpretation, and the right of the parieto-occipital region
for typing random numbers with channel PO4. The anterior frontal with EEG
electrodes AF7, AF3, AF4, AF8 and the frontal with F5, F3, FZ, F4, and Fé6

exhibited to be the paramount regions for writing and typing respectively.

5.8 Summary
This chapter presented the discussion of the results of all tasks conducted in

this research. All findings were elaborated by, linking the research questions

and comparing against past similar studies. RQ2, which relates to results
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from real-word reading, nonsense-word reading and passage reading
showed similar result patterns although it was detected using other
techniques such as fMRI. RQ3, which relates to RAN also coincided with past
research. The writing task, which is related to RQ4 showed different brain
regions compared to prior similar results and lastly RQ5 and RQ6 which
includes typing, web browsing, table interpretation and typing of random
numbers presented novel findings to the pool of knowledge as it was not
previously been reported. Finally, RQ1 summarized all the discussions and
concluded that EEG signal patterns show unique differences in adults with

dyslexia compared to normal controls.
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Chapter 6 Conclusions

6.1 Research Summary and Contributions

The main objective of the current research was to determine if there were
differences in EEG signal patterns generated between adults with dyslexia
compared to normal controls while performing tasks that were more
challenging for individuals with dyslexia. This was evaluated through sub
objectives where machine learning classifiers were developed for separate
brain regions of each specified task. The tasks include real-word reading,
nonsense-word reading, passage reading, RAN, writing, typing, web
browsing, table interpretation and typing of random numbers. Ultimately,
the optimal brain regions and EEG electrodes responsible for generating the
most unique patterns between the two groups were identified and reported

in this thesis.

This research has shown that the selected tasks exhibited unique brainwave
signal patterns in adults with dyslexia compared to normal controls.
Further, it was also determined that the brain regions that generate unique
brainwave signal patterns are dependent on the task. We identified 5 brain
regions that were optimal among the 9 tasks evaluated as illustrated in

Table 6.1.

Table 6.1: Summary of optimal brain regions and EEG sensors of each task

‘ Optimal Brain Region EEG Sensors ‘ JENS

Parieto-occipital left P03 Real-word reading
Nonsense-word reading
Passage Reading
Web browsing

Parieto-occipital P03, PO4 Table interpretation
RAN

Parieto-occipital right P04 Tying random number
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Frontal

F5,F3, Fz, F4, F6

Typing

Anterior frontal

AF7, AF3, AF4, AF8

Writing

The optimal EEG sensors have been marked in green in the channel map

shown below in Figure 6.1. The other EEG sensors used in this research are

marked in grey.

Figure 6.1: Optimal EEG sensors channel map

One of the most major findings of this research was that the nonsense-

words classifiers produced higher VA compared to real-words classifiers,

confirming difficulties in phonological decoding skills seen in individuals

with dyslexia are reflected in the brainwave patterns.

The research also revealed some fascinating insights into the brainwave

signal patterns. We found that all 3 reading related tasks which were real-

word reading, nonsense-word reading and passage reading displayed the

same optimal brain region left parieto-occipital and EEG sensor PO3.
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Further, RAN, which is related to reading also demonstrated a wider region
of the parieto-occipital with sensors PO3 and PO4 to be the optimal region
producing unique brainwave signal patterns in adults with dyslexia
compared to normal controls. Hence, indicating the possibility that the
relationship between reading and RAN reflects in the brainwave patterns.
All these insights coincided with previous studies that were conducted using
other techniques, and thereby these findings complement those of earlier

studies.

On the other hand, the research results also uncovered novel findings for
typing, web browsing, table interpretation and typing of random numbers.
These were tasks that had not been analysed in past similar studies. Finally,
although similar writing tasks had been investigated in past studies, the
current research was conducted with additional EEG sensors and
discovered a new optimal brain region anterior frontal, which has not been

reported in past studies.

This research contributes vital insights to the pool of knowledge about the
unique brainwave patterns of adults with dyslexia, which could serve as a
base for future studies, and could even one day help complement the
conventional dyslexia diagnosis process by giving a better view of the

disability through the introduction of neurological aspects.

6.2 Recommendations for Future Research

The current research presented important knowledge relating to the unique
brainwave signal patterns of individuals with dyslexia that can serve as the
base for more extensive future work. This section highlights such questions

raised in need of further investigation.
The scope of this research was limited to adults 18 years and above who

were right-handed. Further studies can be carried out in order to compare

signal patterns of individuals below the age of 18 years and left-handed
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individuals. Further, comparisons of the brainwave patterns could also be
made between males and females. Gender comparisons were not possible in
the current research, as the participants used in the research did not have

equal number of males and females between the two groups.

This research was conducted on adults who have been diagnosed as having
dyslexia. This research can be extended in order to examine the differences
between other specific learning disabilities such as dysgraphia and

dyscalculia.

The outcomes of this research can be explored further for more perspectives
by making variations in parameters such as input features, channels,
frequency sub-bands, kernels and other classifiers such as Fuzzy SVM. This
could perhaps lead to improvement of accuracies similar to how the current
research obtained higher accuracies by making variations in the brain

regions.

Finally, the function of each brain region needs to be mapped with the

results and identify the neurological reason behind each finding.
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Appendix A Rapid Automatized Naming Task
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Appendix B Web Browsing Task
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Web Browsing Task - Male

* Type, "target australia” on the search bar and hit enter

* Navigate to the Target home page - http://www.target.com.au/ by

selecting the search result "Target Australia: Target Online Shopping"

* Type "men's tops" on the search bar and hit enter

* Scroll down and search for a top that you like

* Select your size

e Add to basket

* Type "men's pants"” on the search bar and hit enter

* Scroll down and search for a pant that you like

* Selectyour size

e Add to basket
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Web Browsing Task - Female

Type, "target australia” on the search bar and hit enter

Navigate to the Target home page - http://www.target.com.au/ by

selecting the search result "Target Australia: Target Online Shopping"

Type "women's tops" on the search bar and hit enter

Scroll down and search for a top that you like

Select your size

Add to basket

Type "women's pants” on the search bar and hit enter

Scroll down and search for a pant that you like

Select your size

Add to basket
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Appendix C  Table Interpretation Task
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Interpreting Table Task

Question
Most number of visitors to Australia comes from

Tourists to Australia

Country of origin of visitors Number of visitors Average length of stay (nights)
Italy 51737 42
China 308 452 48
United States of America 456 084 24
United Kingdom 734 244 34
Canada 109 843 42
New Zealand 1075797 14
Answers
Italy
China

United States of America
United Kingdom

Canada

New Zealand
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Appendix D  Data Collection Instructions Presented on

the Computer Screen Prior to Each Test
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Instructions to follow throughout all the tests

Stay relaxed and avoid body movements as much as possible (unless

otherwise specified)

Why avoid movements? Have a look at the EEG while blinking your

eyes, clenching your jaw and moving your legs/hands

Movements are kept to a minimum to avoid unwanted artefacts in

the brainwaves being recorded

Each EEG recording will start once you have reached the relaxed
state - the researcher will explain this further by showing you the

EEG

Once you have completed the instructions of each test which appear
on the computer screen, remain in the relaxed state till the
researcher informs you that the recording is complete

No communication will take place during each test

You can have as much as breaks you want in-between tests
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Relaxed Position Instructions

* Youare required to stay seated in the relaxed position for 1 minute at

a stretch

* During this time close your eyes, avoid body movements including

jaw clenches

* No communication will take place during the test
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Real-word Reading Instructions

Read aloud all the words

* Each word will flash on the screen every 10 seconds

* If you find it difficult to read a word, skip that particular word and

move on to the next

* Once you have read a word, stay relaxed till the next word appears

* No communication will take place during the test
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Nonsense-word Reading Instructions

Read aloud all the nonsense-words

Each word will flash on the screen every 10 seconds

If you find it difficult to read a word, skip that particular word and

move on to the next

Once you have read a word, stay relaxed till the next word appears

No communication will take place during the test
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Passage Reading Instructions

* You will be given a paragraph to read

* No communication will take place during the test
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Rapid Automatized Naming Instructions

* You are required to name aloud the colours in the colour card as

quickly as possible
* No communication will take place during the test

* Below given is an example
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Writing Instructions

You will be given a topic to write about

* You are required to write a simple short paragraph

You will be given a paper and a pen

* No communication will take place during the test
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Typing Instructions

* No communication will take place during the test

* A text box will be presented on the computer screen to perform the

test

* You are required to type a simple short paragraph about the topic

given
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Interpreting Table Instructions

* You will be given a simple table to interpret and answer 2 questions

* No communication will take place during the test

e Procedure

o System displays the question

o Participant reads the question

o System displays the table and answers (with radio buttons)

o Participant interprets the table

o Participant clicks the radio button for the correct answer

* Trythe example

1. Question

The least favourite sport is

2. Table
Sport People
Swimming 108
Tennis 45
Soccer 186
Gymnastics 54

3. Answers
Tennis
Gymnastics
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Typing Random Number Instructions

*  You will be given a randomly generated number to key in to a text

box

* No communication will take place during the test

e Procedure

o System displays the random number and the text box on screen

o Participant clicks on the text box and types the number

o Participant hits the "enter/return” key once its completed

* Trythe example

Random Number: 6551
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