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ABSTRACT 

This study determined how productivity measures for a fish species in different water depths of an 

estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown 

to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, 

growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for 

the estuarine-resident Acanthopagrus butcheri in nearshore shallow (<2 m) and offshore deep waters (2-

6 m) of the upper Swan River Estuary in those two periods. Length and age compositions imply that the 

increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. 

butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, 

biomass and production in shallow waters of <0.02 fish m-2, 2-4 g m-2 and ~2 g m-2 y-1 in the earlier 

period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas 

the reverse trend occurred in deep waters, with values of  6-9 fish net-1, 2,000-3,900 g net-1, 900-1700 g 

net-1 y-1 in the earlier period vs <1.5 fish net-1, ~110 g net-1 and 27-45 g net-1 y-1 in the later period. 

Within the later period, and in contrast to the trends with annual abundance and biomass, the production 

in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that 

particularly cool year. The presence of substantial aggregations of both small and large fish in shallow 

waters accounts for the abundance, biomass and production in those waters increasing between those 

periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. 

In marked contrast to the trends with the other three production measures, annual production to biomass 

ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the 

later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the 

poor growth in that year. This emphasises the need to obtain data on P/B for a number of years when 

considering the implications of the typical P/B for a species in an estuary, in which environmental 

conditions and the growth of a species can fluctuate markedly between years.  

Keywords: biomass; productivity; production to biomass ratio; inter-annual variations in growth; 

environmental degradation; density-dependence. 
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1.0 INTRODUCTION  

The marked expansion of agriculture, urban and other developments in the catchments of estuaries during 

recent decades has led, through runoff from surrounding land, to increases in the amounts of nutrients and 

organic material in these systems (Lotze et al., 2006; Jennerjahn and Mitchell, 2013; Paerl et al., 2014). 

This has often resulted in a marked rise in primary production and thus of secondary production (Caddy, 

1993, 2000; Maceina and Bayne, 2001; Powers et al., 2005). However, the accumulation of organic 

material, derived from autochthonous production, and often to an even greater extent from allochthonous 

sources (Elliott and Whitfield, 2011), results in increased microbial action in the benthic habitats of these 

systems (Wu, 2002; Baird et al., 2004; Powers et al., 2005). In the deep waters of microtidal estuaries, 

which are poorly flushed, microbial oxygen demand often exceeds replenishment rates and thus these 

waters tend to become hypoxic, particularly when the water column is stratified (Breitburg, 2002; 

Tweedley et al., 2016).  

Work in the northern hemisphere has shown that, when the deep waters of estuaries become 

hypoxic, fish often tend to move to the better-oxygenated nearshore, shallow waters, thus leading to 

localised declines in the abundance of demersal fish in deep waters and increased densities of fish in 

nearshore refugia (Breitburg, 2002; Eby and Crowder, 2002; Eby et al., 2005; Craig, 2012; Campbell and 

Rice, 2014). Such habitat compression can lead to density-dependent effects, such as reductions in 

metabolic rate and growth (Eby et al., 2005; Breitburg et al., 2009; DeLong et al., 2014).  

The production of fauna is defined as the “amount of tissue elaborated per unit time per unit area, 

regardless of its fate” (Clarke, 1946) and typically expressed as increase in biomass per unit of area and 

time, e.g. g m-2 y-1 (Dolbeth et al., 2012). Since estimates of production combine data on abundance, 

biomass and growth, they provide a particularly useful measures of the ways in which environmental 

disturbances, such as those due to habitat modifications and the effects of climate change, influence fish 

populations and communities (Minns, 2009; Valentine-Rose et al., 2011). Although nutrient enrichment 

can lead to marked increases in the yield of key commercial fish species, as has occurred in the North Sea 

(Nixon & Buckley, 2002), extensive eutrophication and therefore marked increases in the extent of 
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hypoxia can result in localised declines in abundance, through causing mortality and emigration and 

implicitly reduced production in the directly-affected areas (Brietburg, 2002; Powers et al., 2005; Hughes 

et al., 2015). The relatively few studies of the production of fish species in an estuary have typically been 

based on marine taxa during their estuarine phase and, with estuarine residents, on small and short-lived 

species (Cowley and Whitfield, 2002; Pombo et al., 2007; Dolbeth et al., 2008) and there are no published 

data on how the production of a fish species changes following marked increases in hypoxia.    

The ratios of production to biomass (P/B), i.e. the rates at which biomass is potentially changing 

(Randall and Minns, 2000), vary markedly among species. For example, the P/B for fish species, which 

inhabit the freshwater systems of eastern Canada, ranged widely from 0.12 y-1 for the Atlantic Salmon 

Salmo salar to 4.0 y-1 for the much smaller Blacknose Shiner Notropis heterolepis (Randall and Minns, 

2000). Moreover, the annual P/Bs of species with short to medium longevity are likely to vary 

considerably among years, due to differences in age structure resulting from variations in recruitment and 

age-specific growth among years. Although the data of Dolbeth et al. (2010) demonstrate that the P/Bs of 

a range of fish species in estuaries can also range widely, none of those species was an estuarine resident, 

i.e. none completes its life cycle within its natal estuary.  

 The estuaries of south-western Australia are in a microtidal region in which rainfall and thus 

freshwater discharge are largely restricted to winter and early spring (Australian Bureau of Meteorology, 

2017; Western Australian Department of Water, 2017). These estuaries, such as the Swan River Estuary, 

are thus poorly flushed, particularly during the dry summer and autumn, and consequently large amounts 

of nutrients and organic material become retained in their deeper waters (Cottingham et al., 2014; 

Tweedley et al., 2014). Between the early 1990s and about 2010, the extent of such accumulations 

increased in deeper waters, largely due to declines in rainfall and thus a reduction in flushing, thereby 

leading to an increase in eutrophication and the extent of hypoxia in deeper waters (Cottingham et al., 

2014). Indeed, Cloern et al. (2014) found the Swan River Estuary to be the second most hypertrophic of 

the 131 estuarine coastal ecosystems worldwide for which they had collated data.  
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The Black Bream Acanthopagrus butcheri, which can attain total lengths of 500 mm and live for 

up to 30 years (Morison et al., 1998; Potter et al., 2008), is among the most important recreational and 

commercial finfish species in the estuaries of southern Australia (Lenanton and Potter, 1987; Jenkins et 

al., 2010; Cottingham et al., 2015). Because this sparid completes its life cycle within its natal estuary, it 

is exposed, throughout life, to the effects of any deleterious changes in its environment (Cottingham et al., 

2014; Valesini et al., 2017). Sparids, such as A. butcheri, have a remarkable ability to respond to changes 

in their environment (Chuwen et al., 2007; Gardner et al., 2013; Doubleday et al., 2015; Wakefield et al., 

2015). This is reflected in the finding that, although the extent of hypoxia has been shown to increase in 

the Swan River Estuary as freshwater discharge declined, A. butcheri continued to be represented by a 

substantial population (Cottingham et al., 2014). However, the growth, body condition and length at 

maturity declined and age at maturity increased, which represent the types of response that would be 

expected by a species with ‘plastic’ biological characteristics (Cottingham et al., 2014). Furthermore, the 

trends in catches imply that, as the extent of hypoxia in deep waters increased, the A. butcheri that would 

typically have occupied the deep waters tend to remain in the better oxygenated shallow waters. The 

resultant greatly increased density of this species in the nearshore, shallow environment would, in turn, 

help account for the overall reduction in growth.   

This study has determined the extent to which annual abundance, biomass and production, and 

thus P/B, of A. butcheri in the shallow and deep waters of the Swan River Estuary changed between 

1993-95 and 2007-11 as the growth and body condition of this sparid declined following marked 

increases in hypoxia in the deeper waters (Cottingham et al., 2014). Initially, the length and age 

compositions in shallow and deep waters in the two periods were analysed. The results were used to 

explore the hypothesis that the increase in density of A. butcheri in shallow waters was related to many 

older and larger fish tending to occupy the better oxygenated shallow waters, rather than the deep waters 

they would have typically occupied under less hypoxic conditions. The data were next used to determine 

the extents to which the decreases in abundance in deep water and increases in shallow water were 

accompanied by changes in biomass in those waters and to elucidate the extent of inter-annual variations 
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within each period. As the growth of A. butcheri had been shown previously to vary conspicuously 

between years (Cottingham et al., 2016), the annual productions and P/Bs were calculated to elucidate the 

extent to which they were influenced by age-specific growth between and within periods. The 

implications of the trends exhibited by the above production measures for fish species that inhabit 

estuaries are discussed. 

 

2.0 MATERIALS AND METHODS 

2.1 Sampling regime 

Acanthopagrus butcheri was sampled in nearshore, shallow (<2 m deep) and offshore, deep waters (2-6 m 

deep) of the upper region of the Swan River Estuary (Fig. 1), where this sparid typically resides for most 

of the year (Sarre and Potter, 1999, 2000; Cottingham et al., 2014). Although some A. butcheri are 

flushed downstream during winter, when freshwater discharge increases markedly as a result of the highly 

seasonal rainfall, they move back in spring to the upper estuary where they spawn. The data for 

A. butcheri in winter are thus not included in the analyses. Shallow water was sampled by seine and deep 

water by gill nets. 

Shallow and deep water were both sampled monthly between the austral spring of 1993 and 

austral autumn of 1995, thus representing the two ‘years’ comprising 1993/94 and 1994/95 (Sarre and 

Potter, 2000). Shallow waters were later sampled seasonally between spring 2007 and autumn 2011, thus 

representing the four ‘years’ comprising 2007/08, 2008/09, 2009/10 and 2010/11 (Cottingham et al., 

2014). Deep waters were also sampled between spring and autumn in 2007/08 and 2008/09, but not 

subsequently as few A. butcheri were being caught. Note that independent sampling in deep waters in 

recent years has also yielded few A. butcheri (Hallett, 2016). As A. butcheri spawns in spring 

(Cottingham et al., 2014), the individuals in each age class in each of the above ‘years’ encompassed the 

full range from youngest to oldest fish within that age class. The 1993/94 and 1994/95 years are 

subsequently referred to collectively as the “earlier period” and those between 2007/08 and 2010/11 as 

the “later period”.  
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Shallow water was sampled during the day at six sites (Fig. 1) using a 41.5 m seine, which 

contained a 1.5 m wide bunt made of 9 mm mesh and two 20 m long wings comprising 25 mm mesh. 

This seine, which swept an area of 274 m2, was deployed in a semi-circle from the bank, using a small 

boat, and then hauled on to the shore. Deep water was sampled at nine sites using sunken composite gill 

nets, with six of these each located offshore from a seine sampling site. The gill net consisted of eight 20 

m long and 2 m high panels, each with a different stretched mesh size of either 38, 51, 63, 76, 89, 102, 

115 or 127 mm. It was set parallel to the shore in water depths of 2-6 m, just after sunset, and retrieved 3 

h later.  

Following their capture, A. butcheri were euthanised in an ice slurry and transported to the 

laboratory, where they were sexed and their total length (TL) and mass recorded to the nearest 1 mm and 

0.1 g, respectively. The growth zones in the otoliths of each A. butcheri, which had previously been 

shown to be formed annually in this species (Sarre and Potter, 2000), were counted and used for ageing 

that fish. Full details of the ageing procedures are given in Sarre and Potter (2000) and Cottingham et al. 

(2014). von Bertalanffy growth curves were constructed for females and males of A. butcheri in the Swan 

River Estuary using lengths at age, previously determined for each sex in 1993-95 (Sarre and Potter, 

2000) and in 2007-11 (Cottingham et al., 2014).  A likelihood-ratio test was used to determine whether 

the growth curves of each sex differed significantly between those two periods (see Cottingham et al. 

(2014) for further details). 

 

2.2 Densities in shallow waters and catch rates in deep waters 

Annual indices of abundance of A. butcheri in shallow and deep waters were calculated from the seine 

and gill net catches in each of the three seasons sampled in a year and expressed as fish m-2 and fish net-1 

h-1, respectively. However, as the seine and gill net catches of A. butcheri were highly skewed and often 

zero in seine catches in 1993-95 and in gill net catches in 2007-09, the catches in shallow and deep waters 

were assumed to conform to delta log-normal distributions (Pennington, 1996). Thus, the number of 

samples containing A. butcheri in each season at each depth was assumed to have a binomial distribution, 
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whereas the number of fish in each of those samples that contain A. butcheri in that seasonal sample was 

assumed to have a log-normal distribution. The mean and standard deviation for the log-normal 

distribution for each season, year and depth category were derived from a GLM analysis relating the 

natural logarithms of the catches containing A. butcheri to season and year.  

Uncertainty of the annual abundance estimates was explored by calculating (boot-strapped 

estimates of) densities and catch rates using 1000 parametrically-resampled (Haddon, 2011; Efron, 2012) 

sets of number of fish caught in each season. First, for each water depth, a random number, representing 

the number of catches containing A. butcheri for a given season, was drawn from the binomial 

distribution, in which the probability of a catch containing A. butcheri was set equal to the observed 

proportion of catches containing A. butcheri. Second, for each catch containing A. butcheri within each 

season and year, a random number, representing the number of fish caught, was drawn from the log-

normal distribution of such catches for that season derived from the GLM analysis. All analyses 

employed R (R Core Team, 2016). 

 

2.3 Annual biomass, production and P/B 

The boot-strapped catches determined when estimating annual abundances and their uncertainties were 

also employed when calculating estimates of biomass and production. For this, each fish in each catch 

containing A. butcheri in each of the above 1000 random seasonal samples for each year in shallow and 

deep waters, was assigned a random age, which was drawn by resampling, with replacement, i.e. boot 

strapping, from the age composition for the corresponding season and year. The estimated length of each 

fish (at its age of capture) was calculated from its resampled age, using the year-effects growth model 

fitted to the lengths at age of A. butcheri in the Swan River Estuary for the years encompassing the 

present study (Cottingham et al., 2016; see also brief summary in Supplementary Materials). For this 

calculation of expected length at age, each of the 1000 samples for each season was paired with a random 

set of year-specific growth parameter estimates, i.e. asymptotic lengths and von Bertalanffy growth 

coefficients, which had been obtained by boot strapping in that growth study.   
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The body mass and instantaneous rate of increase in body mass of each fish in the samples for 

each season and year employed estimates of its expected mass and a forward difference approximation of 

the derivative of expected mass at age, calculated using the year effects growth model (Cottingham et al., 

2016). The mass of each fish was back-transformed, with bias correction (Beauchamp and Olson, 1973), 

from the value predicted by linear regression of the natural logarithms of mass vs length for A. butcheri in 

its year of capture.  

The total biomass for resampled fish in shallow and deep waters in each year was calculated by 

summing the estimated body masses of the fish in each random seasonal sample for that year. Production 

was calculated using the ‘instantaneous growth method’ (Waters, 1977), i.e. by summing the 

instantaneous increases in body masses of those fish in the corresponding seasonal samples for that year. 

For each of the 1000 samples in each year, indices of annual biomass and production in shallow and deep 

waters were then calculated by dividing the totals for biomass and instantaneous rates of change by the 

corresponding sampling effort in that year. The biomass and production in shallow waters were thus 

expressed as g m-2 and g m-2 y-1, respectively, and, in deep waters, as g net-1 and g net-1 y-1, respectively.  

Annual estimates of production to biomass ratio (P/B y-1) in shallow and deep waters were 

calculated for each of the 1000 boot-strapped samples by dividing the production for that year by its 

biomass.  

As the above calculations of production combine the effects of growth and abundance over size 

and age classes, the instantaneous rates of increase in the mass of fish, with an initial TL of 115 mm, from 

different years, were calculated to provide a length-standardised description of the effect of changes in 

growth and body condition among years for a specific size class. This was achieved using the boot-

strapped growth parameters derived for the year-effects growth model (Cottingham et al., 2016), 

combined with the annual mass-length relationships. The initial length of 115 mm approximates the 

length of A. butcheri at the beginning of the second year of life (Cottingham et al., 2016).  

 

2.4 Comparisons among years and periods 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

The 1,000 point estimates for abundance, biomass, production and P/B in each year were compared with 

the corresponding point estimates in each of the other years. The values in the different years for each 

variable were considered to differ significantly at the 0.05, 0.01 and 0.001 levels if the number of 

comparisons, in which the first value was less than the second was ≤ 25 or ≥ 975, ≤ 5 or ≥ 995, and 0 or 1, 

respectively. For biomass, production and P/B, the point estimates for each bootstrapped sample for each 

year were calculated using the parameters derived from fitting the year-effect growth model. The above 

analytical approach thus acknowledges the inter-dependence of growth among years. It was also applied 

when analysing the increase in mass in the different years.  

 

3.0 RESULTS 

3.1 Length and age-frequency distributions and overall growth 

The TLs of A. butcheri caught in 1993/94 by seine in shallow waters ranged from 67 to 402 mm, with the 

majority between 70 and 149 mm, within which they produced a broad mode at 100-129 mm (Fig. 2). In 

contrast, the TLs of A. butcheri caught in that year by the composite gill net in deep waters ranged from 

104 to 439, and produced a unimodal distribution with fish being most abundant in the length classes 

between 230 and 289 mm. The length distributions for the shallow and deep water samples in 1994/95 

had essentially both shifted to the right of those for the preceding year (Fig. 2).  

The TLs of A. butcheri caught by seine in shallow waters in each of the four years between 

2007/08 and 2010/11 represented the same wide range of ~40-349 mm, with the distribution in 2007/08 

producing a broad mode at 130-179 mm (Fig. 2). While few fish with lengths <120 mm were caught in 

the shallows in 2007/08, such fish were abundant in catches in these waters in 2008/09, 2009/10 and 

2010/11. Substantial numbers of fish with TLs >120 mm were caught in the shallows in each year 

between 2007/08 and 2010/11, producing well defined peaks at 139 to 179 mm in the first of those years 

and at 170-199 mm in the second of those years.  

Sampling the same gill net sites in 2007/08 and 2008/09 as in 1993/94 and 1994/95, yielded few 

A. butcheri (Fig. 2) and, thus, gill netting was not continued after 2008/09 (Cottingham et al., 2014).  
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Although the majority of A. butcheri caught in 1993/94 and 1994/95 were less than 5 years old, 

those <2 years old were obtained predominantly by seining in nearshore, shallows, whereas those greater 

than this age were taken very largely by gill netting in offshore, deep waters (Fig. 2). In contrast to the 

situation with seining in the above two years, this sampling method in 2007/08 to 2010/11 yielded 

substantial numbers of 3+ and 4+ fish, as well as younger fish and, in some years, appreciable numbers of 

5+ or older fish. The fish caught in deep water in 2007/08 and 2008/09 belonged collectively to age 

classes ranging from 1+ to 4+ and were in such small numbers that they are only just detectable as a 

thickening at the tops of the bars for their respective age classes (Fig. 2). 

A likelihood-ratio test demonstrated that, on the basis of the von Bertalanffy curves for females 

and males of A. butcheri, the growth of both sexes was far greater in 1993-95 than 2007-11 (both 

P<0.001, in Cottingham et al., 2014). This difference in growth between the two periods is reflected in 

the females and males of A. butcheri typically requiring three further years to attain 250 mm, the 

minimum legal length for retention of this species (Fig. 3).  

 

3.2 Abundance, biomass, production and P/B 

Median estimates of abundance of A. butcheri in shallow waters were <0.02 fish m-2 in both 1993/94 and 

1994/95 and thus far less than in any year between 2007/08 and 2010/11, for which they ranged from 0.1 

to 0.2 fish m-2 (Fig. 4a). These trends were paralleled by the median estimates of biomass in shallow 

waters, with the values of <4 g m-2 in both 1993/94 and 1994/95 markedly less than in any year between 

2007/08 to 2010/11, among which values ranged from 8 to 15 g m-2 (Fig. 4b). Likewise, the median 

production of 1.7 and 2.0 g m-2 y-1 for A. butcheri in shallow waters in 1993/94 and 1994/95, respectively, 

lie below the range of 2.8 to 9.7 g m-2 y-1 for the four years between 2007/08 and 2010/11 (Fig. 4c).  

In striking contrast to the situation in shallow waters in the two periods, the abundance, biomass 

and production in deep waters were each far greater in the earlier than later periods (Fig. 4d, e, f). Thus, 

for example, the median estimates of 872 and 1719 g net-1 y-1 for production in deep waters in 1993/94 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

and 1994/95, respectively, greatly exceeded the corresponding values of only 36 and 22 g net-1 y-1 in 

2007/08 and 2008/09, respectively (Fig. 4f).  

The abundance, biomass and production in shallow waters in 1993/94 did not differ significantly 

from the values for the corresponding variable in 1994/95 (P>0.05) and the same lack of a significant 

difference applied to those three variables in the four years between 2007/08 and 2010/11 (P>0.05). 

However, the abundance and biomass in shallow waters in 1993/94 and 1994/95 did differ significantly 

from the corresponding and greater values for each year from 2007/08 to 2010/11 (P< 0.01 or <0.001). 

The same was true for production in all inter-annual comparisons except for 1993/94 and 1994/95 vs 

2008/09 (P>0.05), recognising, however, that the value for production in the first two of those years was 

still less than that for 2008/09. 

As with shallow waters, the values for abundance, biomass and production in deep waters in 

1993/94 did not differ significantly from those for their corresponding variable in 1994/95 and the same 

lack of a significant difference was true for those variables in 2007/08 vs 2008/09 (P>0.05). The values 

for these three biotic variables in the two years in the earlier period were significantly different, however, 

from those for the corresponding variables in the two years in the later period (P< 0.05 to <0.001).   

In shallow waters, the median P/B in 1993/94 and 1994/95, and in each of the four years between 

2007/08 and 2010/11, ranged from ~0.6 to 0.8 y-1, except in 2008/09 when it was far lower, i.e. 0.2 y-1 

(Fig. 4g). In deep waters, the median P/Bs in 1993/94 and 1994/95 were both ~0.45 y-1 (Fig. 4h). 

However, as the abundance, biomass and production were each very low in deep waters in 2007/08 and 

2008/09, it was considered inappropriate to place emphasis on calculations for P/Bs for those years. 

The overall median values of 95 g y-1 in 1993/94 and 125 g y-1 in 1994/95 for the instantaneous 

rate of increase in mass by A. butcheri, with an initial length of 115 mm, far exceeded those for the four 

years between 2007/08 and 2010/11, which ranged from 25 to 60 g y-1 (Fig. 5).   

 

4.0 DISCUSSION 
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This study provides the first detailed analyses of the extents to which the length and age compositions, 

abundances (densities or catch rates), biomass, production and P/B of a fish species in the shallow and 

deep waters of an estuary changed after its environment had undergone pronounced deleterious changes. 

The data derived for those variables for the sparid Acanthopagrus butcheri in the microtidal Swan River 

Estuary are considered against the background of the pronounced increase that, between 1993-95 and 

2007-11, had been demonstrated statistically to occur in the extent of hypoxia in the deep waters of the 

region in which this species typically resides (Cottingham et al., 2014). As pointed out in the introduction, 

the changes shown to have taken place between these two periods in the biological characteristics of A. 

butcheri such as growth, body condition and distribution within the estuary are consistent with the 

recorded responses of fishes to hypoxia elsewhere (cf Thiel et al., 1995; Pichavant et al., 2000, 2001; Eby 

et al., 2005; Cottingham et al., 2014). Moreover, the reduction in the length at maturity and increase in 

age at maturity of A. butcheri in the Swan River Estuary between the two periods are also consistent with 

the trends that would be anticipated with declines in growth associated with deleterious environmental 

changes (Stearns, 1992).  

 

4.1 Length and age-frequency distributions  

Length-frequency distributions clearly demonstrate that, in 1993-95, small fish dominated the catches in 

shallow waters and large fish those in deep waters, whereas, in 2007-11, the catches in shallow waters 

contained substantial numbers of fish encompassing a wide range of lengths, with few fish caught in deep 

waters. The proportion of larger fish in the samples obtained collectively by seine and gill netting in 

1993/94 and in 1994/95 was conspicuously far greater than in those obtained by those same methods in 

2007/08 and 2008/09, the two years in which gill netting was conducted in the later period. From the 

lengths at age in von Bertalanffy growth curves, these differences can be largely attributed to greater 

overall growth in the earlier than later period (Fig. 3).  

The trends exhibited by the length-frequency distributions in seine samples reflect differences in 

age compositions. Thus, the latter distributions emphasise that the A. butcheri in shallow waters of the 
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Swan River Estuary in the earlier period consisted predominantly of fish in their first two years of life, 

whereas those in the later period contained substantial numbers of a wide range of age classes. In contrast, 

while fish of two years in age and older were relatively abundant in deep waters in the earlier period, few 

fish of any age were present in those waters in 2007/08 and 2008/09, after which gill netting was 

discontinued. As gill netting in another study in 2012-16 still yielded low numbers of A. butcheri in the 

upper Swan River Estuary, the abundance of this species in deep water continued to remain low (Hallett, 

2016).  

 

4.2 Abundance, biomass and production 

As shallow waters were sampled by seine and deep waters by gill net, the estimates of abundance, 

biomass and production in those two habitats cannot be directly compared. It is appropriate, however, to 

compare the values, in 1993-95 and 2007-11, for each of those biotic variables within shallow and deep 

waters separately and then to compare the resultant inter-period trends in each water depth.  

Abundances of A. butcheri in shallow and deep waters of the upper Swan River Estuary in 

1993/94 and 1994/95 both differed markedly from those in the four years between 2007/08 and 2010/11. 

More specifically, the median values in deep waters were far greater in the earlier than later period, 

whereas precisely the opposite trend occurred in shallow waters. These trends parallel those of mean 

densities, derived previously using the same base data for those waters, but which employed only year, 

rather than both year and season, as a fixed factor in the GLM (Cottingham et al., 2014).  

The above marked inter-period differences between the trends exhibited by the length and age 

compositions and relative abundances in nearshore, shallow waters and those in offshore, deep waters 

clearly imply the following. As the deep waters of the Swan River Estuary became increasingly hypoxic 

as freshwater discharge declined, the larger and older A. butcheri showed a very pronounced tendency to 

occupy the better oxygenated shallow waters. The shift in distribution of the older and larger fish from 

offshore, deep to nearshore, shallow waters, where the younger and smaller fish still reside, accounts for 

the marked increase in densities in nearshore waters. Likewise, the Spot Leiostomus xanthurus, Atlantic 
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Croaker Micropogonias undulatus, Hogchoker Trinectes maculatus and juvenile Weakfish Cynoscion 

regalis also congregate in the better oxygenated shallow waters of other estuaries when the deeper waters 

become hypoxic (Pihl et al., 1991; Tyler and Targett, 2007; Campbell and Rice, 2014).   

As with densities, the biomass and production in shallow waters in each of the four years between 

2007/08 and 2010/11 exceeded those in 1993/94 and 1994/95, which was reflected in overall inter-period 

increases of three to four times in both biomass and production. The trends exhibited by the median 

values for production in those waters in the later period did not track, however, those of density and 

biomass. Thus, the samples in 2008/09 yielded the greatest densities and biomass, but the lowest 

production, which, from data derived from the year-effect growth model (Fig. 5), was attributable to 

particularly slow growth in that year, which, in turn was related to the especially low temperatures 

(Cottingham et al., 2016).  

The very marked decline that occurred in the biomass and production in deep waters, between the 

earlier period (1993/94 and 1994/95) and the two years sampled in the later period (2007/08 and 2008/09) 

was even more pronounced than that of catch rates. Indeed, biomass and production fell precipitously by 

over 30 times between those two periods.  

 

4.3 P/B 

Although growth in the later period, 2007-11, was less than in the earlier period, 1993-95, the ranges in 

the values for annual P/Bs in nearshore, shallow waters in the two periods were similar, i.e. ~0.6 to 0.9 

y-1, except in 2008/09, when it was far lower, i.e. ~0.2 y-1. This broad comparability of P/Bs in all years, 

apart from 2008/09, reflects the strong influence on the P/B of the relatively smaller numbers and faster 

growth in the earlier period being offset by the marked effect of the presence, in the later period, of 

relatively greater numbers of small fish, which grow faster than larger fish. The slower growth of fish in 

the later period is demonstrated by the growth of fish of a standard size being slower in that period than 

the earlier period, both in terms of mass (Fig. 5) as well as length (Cottingham et al., 2016). The far lower 

P/B of fish in 2008/09 reflects the poor growth of A. butcheri in that particularly cool year (Cottingham et 
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al., 2016). The fact that the very similar P/Bs of just over 0.4 y-1 in deep waters in 1993/94 and 1994/95 

were less than those in shallow waters in all years of both periods, except 2008/09, presumably reflects 

the presence, in deeper waters during the earlier period, of relatively greater numbers of large fish, which 

grow slower than small fish.  

 As A. butcheri typically require three additional years to attain the MLL of 250 mm, the 

proportion of legal-sized fish within the population will have declined. Although P/B in the shallows has 

typically remained relatively stable over most years, the proportion of P/B associated with legal-sized 

fish, which reflects the proportion of production available to fishers, is markedly reduced.    

 

4.4 Comparisons with other estuarine studies 

As a range of different types of method have been employed for catching fish in estuaries, it is crucial to 

recognise that estimates of the abundances and biomass of species, and hence their production and P/B 

can differ markedly among studies according to fishing mode (Whitfield, 2016). The fishing method may 

be active or passive and, when using nets, employ gear with different dimensions and mesh sizes and 

consequently have different selectivities. While, in broad terms, the catches obtained using active fishing 

methods, e.g. seining and otter trawling, yield densities in terms of area sampled, those derived from 

passive techniques, such as gill netting and trapping, typically provide catch rates in terms of time 

sampled. Thus, when sampling technique varies, caution has to be exercised when making direct 

comparisons of production measures for a species or among species. Furthermore, and in contrast to A. 

butcheri, most of the longer-lived fish species found in estuaries are typically marine and present for a 

restricted period and predominantly as juveniles (Potter et al., 2015). Consequently, comparisons between 

the relative abundances, biomass, production and P/B of those species with those of A. butcheri will often 

not be based on a complete range of their sizes and life-cycle stages.  

As with A. butcheri in the Swan River Estuary and many other estuaries in southern Australia 

(Loneragan and Potter, 1990; Sarre and Potter, 2000; Jenkins et al., 2010; Williams et al., 2012), another 

sparid, Rhabdosargus holubi, makes a very substantial contribution to the ichthyofauna in temperate 
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estuaries of southern Africa (James et al., 2007). In one of those estuaries, the East Kleinemonde, the 

biomass and production of R. holubi, derived from data from seining throughout this very short estuary, 

was 16.1 g m-2 and 41.4 g m-2 y-1, respectively (Cowley and Whitfield, 2002). These values exceed the 

corresponding annual values, derived for A. butcheri by seining throughout the far longer length of the 

upper Swan River Estuary, i.e. 1.5 g m-2 and 2 g m-2 y-1 in 1993/94 and 2 g m-2 in and 3.5 g m-2 y-1 in 

1994/95 and the 10-12.5 g m-2 and 2.5-7 g m -2 y-1, respectively, for the four years between 2007/08 and 

2010/11. The exceptional value for production by R. holubi is reflected in this species contributing as 

much as 74% to total fish production in the East Kleinemonde Estuary (Cowley and Whitfield, 2002). It is 

reiterated, however, that, unlike A. butcheri, which is confined to estuaries for the whole of its life cycle, 

R. holubi is a marine species that uses estuaries predominantly as a nursery area (Cowley and Whitfield, 

2002) and thus the above estimates for R. holubi are restricted, by necessity, to young and relatively fast-

growing fish. 

The values derived for biomass and production in the East Kleinemonde Estuary for the 13 marine 

species (other than R. holubi), which, like R. holubi and A. butcheri, are relatively long-lived, ranged from 

0.002 to 2.2 g m-2 and 0.012 to 3.3 g m-2 y-1, respectively. They were thus far lower than those for R. 

holubi, with the upper end of their range approximating those of A. butcheri in 1993/94 and 1994/95, but 

typically less than those of A. butcheri in the four years in 2007-11. In the Embley Estuary in tropical 

Australia, the biomass of 1.3 g m-2, determined from seine data for the sparid Acanthopagrus berda, 

which spawns in or near the estuary mouth with its eggs transported out to sea (Garratt, 1993), was 

substantially less than for A. butcheri (Blaber et al., 1989). This implies that the density of this similarly-

sized sparid in this estuary is less than those of A. butcheri and also R. holubi in the above estuaries. The 

biomass and production values for A. butcheri exceeded those for each of the five species studied by 

Dolbeth et al. (2010) in two Portuguese estuaries. 

The P/B of 2.6 y-1, calculated for the assemblage of R. holubi in the East Kleinemonde Estuary, 

using the production and biomass values in Cowley and Whitfield (2002), is far greater than the ~0.2-0.9 

y-1, derived for A. butcheri from data across its life cycle. Similarly, the P/Bs were substantially greater 
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for the marine species Dicentrarchus labrax and Platichthys flesus in the Minho and Mondego estuaries 

in Portugal than for A. butcheri, with values ranging from as low as 1.3 to as high as 6.9 y-1 (Dolbeth et 

al., 2010). Furthermore, the P/Bs for Solea solea ranged from 1.6 to 3.9 y-1 when the first two age classes 

were present in an estuary, and from 5.4 to 11.6 y-1 when only the first age class was present (Dolbeth et 

al., 2010).  The far greater values, when data are restricted to just 0+ fish, reflects the more rapid growth 

and lower body mass of the youngest fish and emphasises the extreme caution when drawing conclusions 

from comparisons between the P/B values for marine species that essentially use that estuary as a nursery 

areas and those of estuarine residents. Furthermore, it is reiterated that, among the P/Bs for the six years 

for A. butcheri in shallow waters, the value for one year, 2008/09, was far lower than in each of the other 

years reflecting the slow growth in that year.      

 

4.4 Conclusions 

In summary, this unique study has integrated data for the length and age compositions, abundance, 

growth and body condition of an estuarine fish species of moderate longevity in the nearshore, shallow 

and offshore, deep waters of an estuary in two periods (1993/94 and 1994/95, and 2007/08 to 2010/11), 

between which the deep waters of that system became far more hypoxic. As hypothesised, the abundance, 

biomass and production of A. butcheri increased markedly in shallow waters and declined precipitously in 

deep waters. Comparisons of the length and age compositions imply that, between the two periods, the 

older and larger fish showed a far greater tendency to occupy the shallows, where the smaller fish live. 

The increased density in those shallow waters would help account for the decline in growth between those 

periods. Although, in the later period, abundance and biomass in shallow waters rose to a maximum in 

2008/09, production fell to a minimum in that year, as a result of particularly slow growth. That slow 

growth also accounts for the P/B in shallow water in 2008/09 declining to ~0.2 y-1, a value far less than 

those in the range of ~0.6-0.9y-1 for the other three years in the later period and the two years in the 

earlier period. The markedly lower P/B in the shallow waters in one year emphasises that it is important 

to obtain values for at least a few years when basing generalisations on this production measure for a 
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species in an estuary, in which environmental conditions and the growth of species can vary naturally and 

markedly between years. Furthermore, such marked environmental variations inevitably lead to 

pronounced variations in annual recruitment, as has been shown to occur in A. butcheri (Morison et al., 

1998; Cottingham et al., 2015) and this can also influence the P/B. The proportion of legal-sized fish in 

the population and their contribution to P/B declined markedly between 1993-95 and 2007-11.     
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Figure 1  Map showing sites (closed circles) at which Acanthopagrus butcheri was sampled by seine and 

gill nets in the upper Swan River Estuary. Arrow in insert map shows the location of the Swan River 

Estuary in Western Australia. 

 

Figure 2  Length and age-frequency distributions for Acanthopagrus butcheri collected in the Swan River 

Estuary in each year of 1993/94, 1994/95 and 2007/08 to 2010/11. Grey bars denote data derived from 

seine catches and white bars from gill net catches. Gill netting was discontinued in 2009/10. 

 

Figure 3  von Bertalanffy growth curves for females and males of Acanthopagrus butcheri in the Swan 

River Estuary in 1993-95 and 2007-11. Figure modified from Fig. 5 in Cottingham et al. (2014). Arrows 

denote minimum legal length for retention of Acanthopagrus butcheri.  

  

Figure 4  Box and whisker plots showing model-derived estimates of (a, d) abundance, (b, e) biomass, (c, 

f) production and (g, h) production to biomass ratio for Acanthopagrus butcheri in (a-c, g) the nearshore 

waters and (d-f, h) the offshore waters of the upper Swan River Estuary in each year of 1993/94, 1994/95 

and 2007/08 to 2010/11. Horizontal line inside each box represents the median value, the bottom and top 

of each box the 25 and 75 percentiles, and the lower and upper bars the 10 and 90 percentiles, produced 

when the model was fitted to 1000 bootstrapped data sets. Note offshore, deeper waters were not sampled 

in 2009/10 and 2010/11. 

 

Figure 5  Box and whisker plots showing predicted annual increases in the mass of one year old 

Acanthopagrus butcheri in the Swan River Estuary during each year of 1993/94, 1994/95 and 2007/08 to 

2010/11, using the expected mass at a common starting total length of 115 mm, the approximate length at 

the commencement of the second year of life. For each scenario the line inside the box shows the median 

values, the bottom and top of the box show the 25th and 75th percentiles, and the lower and upper bars the 
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10 and 90 percentiles, produced using year/sex specific mass-length relationships and the 2000 model-

derived estimates of the year-specific growth for females and males. 
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Highlights 

An increase in hypoxia in deep waters of the Swan Estuary between early 1990s and mid-

2000s resulted in Black Bream congregating in the shallow waters. Between 1993-95 and 

2007-11 growth declined markedly and varied among years within periods. Consequently, 

biomass and production fell by over 30 times in the deep waters, whereas they increased by 

three to four times in the shallow waters. Production to biomass ratios were similar among 

periods except in one particularly cool year. 

 


