pd

CISTER

Research Centre in

Computing Systems

BEng Thesis

Reengineering and development of loT
Systems for Home Automation

Rafael Rocha

CISTER-TR-171204

BEng Thesis CISTER-TR-171204 Reengineering and development of loT Systems for Home ...

Reengineering and development of loT Systems for Home Automation

Rafael Rocha

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail:

http://www.cister.isep.ipp.pt

Abstract

With the increasing adoption of technology in today 19s houses, electricity is at an all-time highdemand. In fact,
given the plethora of vital electricity-powered appliances used every day,such as refrigerators, washing machines,
and so forth, it has been proven difficult to evenhandle all devices 19 electric consumption. To reduce
consumption costs and turn it into a moremanageable process, the concept of flex-offers was created. A flex-offer
is built aroundscheduling energy usage in conjunction with the prices of electricity, as provided by an
energymarket. More specifically, a flex-offer is an energy consumption offer containing the user 19senergy
consumption flexibility, which is sent to an entity called the Aggregator, whoaggregates together flex-offers from
multiple parties, bargains with the energy market, andresponds to each flex-offer with a schedule that meets the
lowest prices for consumption,while still satisfying the users 19 needs. By using flex-offers on a house 19s
equipment, the idea ofFlexHousing was born. The aspired goal of the CISTER Research Center 19s FlexHousing
projectis to deliver a platform where users can register their smart appliances, regardless of its brandand
distributor, set up preferences for the devices 19 usage, and let the system manage theenergy consumption and
device activation schedules based on the energy market prices.A previous project had already built a prototype of
the FlexHousing system. Nevertheless, theoriginal platform had many limitations and lacked maturity from a
software engineering pointof view, and the goal of this internship is to apply a reengineering process on the
FlexHousingproject, while also adding new features to it. Thus, the project 19s domain model, its database,and
class structures were altered to satisfy the new requirements. Furthermore, its webplatform was rebuilt from the
ground up. Also, a new interface was developed to facilitatesupport for devices of different brands. As a proof of
concept for the benefits provided by thisnew interface, a connection with a new device (Sonoff Pow) was also
established. Moreover,a new functionality was developed to identify a device 19s type of appliance based on its
energyconsumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally,another new
feature was added in which, based on a device 19s type and its energy consumptionpattern, the flex-offer creation
is automated, minimizing user input.As planned, the FlexHousing platform now supports multiple types of devices,
and has asoftware interface to support more types in the future with minimal effort. The flex-offercreation process
has been simplified and is now partially automated. Finally, the webplatform 19s Ul has been updated, becoming
more intuitive and appealing to the user.

© CISTER Research Center 1
www.cister.isep.ipp.pt

-
B NFoRMATICA

Reengineering and development of loT Systems
for Home Automation

CISTER - Research Centre in Real-Time and Embedded Computing Systems

2016 / 2017

1140329 Rafael Teles da Rocha

|
I | Instituto Superior de
‘ Engenharia do Porto

Reengineering and development of loT Systems
for Home Automation

CISTER - Research Centre in Real-Time and Embedded Computing Systems

2016 /2017

1140329 Rafael Teles da Rocha

.
B NFoRMATICA

Degree in Informatics Engineering

October 2017

ISEP Advisor: Luis Lino Ferreira

External Supervisors: Michele Albano, José Bruno Silva

«To my parents, for all the love and support they have given me »

Reengineering and development of IoT Systems for Home Automation

Acknowledgments

First, | would like to thank my family for always supporting me and turning me into the person

| am today. Without your help and love, | wouldn’t have reached this far in my journey.

| also want to thank professor Luis Ferreira, my supervisors Michele Albano and José Silva, and
CISTER colleagues André Pedro, Pedro Santos, and Vincent Nelis for guiding me and assisting
me along this project’s development. It was a wonderful learning experience that helped me

become a more professional and pragmatic developer.

Furthermore, | have to thank everyone at CISTER and ISEP DEI for giving me the tools and

opportunity to pursue my goals.

And last, but certainly not least, | want to thank my friends and colleagues at ISEP for working
with me, sharing their knowledge with me, and helping me out when | most needed. | will

always cherish those moments.

Rafael Rocha

vii

Reengineering and development of loT Systems for Home Automation

Abstract

With the increasing adoption of technology in today’s houses, electricity is at an all-time high
demand. In fact, given the plethora of vital electricity-powered appliances used every day,
such as refrigerators, washing machines, and so forth, it has been proven difficult to even
handle all devices’ electric consumption. To reduce consumption costs and turn it into a more
manageable process, the concept of flex-offers was created. A flex-offer is built around
scheduling energy usage in conjunction with the prices of electricity, as provided by an energy
market. More specifically, a flex-offer is an energy consumption offer containing the user’s
energy consumption flexibility, which is sent to an entity called the Aggregator, who
aggregates together flex-offers from multiple parties, bargains with the energy market, and
responds to each flex-offer with a schedule that meets the lowest prices for consumption,
while still satisfying the users’ needs. By using flex-offers on a house’s equipment, the idea of
FlexHousing was born. The aspired goal of the CISTER Research Center’s FlexHousing project
is to deliver a platform where users can register their smart appliances, regardless of its brand
and distributor, set up preferences for the devices’ usage, and let the system manage the

energy consumption and device activation schedules based on the energy market prices.

A previous project had already built a prototype of the FlexHousing system. Nevertheless, the
original platform had many limitations and lacked maturity from a software engineering point
of view, and the goal of this internship is to apply a reengineering process on the FlexHousing
project, while also adding new features to it. Thus, the project’s domain model, its database,
and class structures were altered to satisfy the new requirements. Furthermore, its web
platform was rebuilt from the ground up. Also, a new interface was developed to facilitate
support for devices of different brands. As a proof of concept for the benefits provided by this
new interface, a connection with a new device (Sonoff Pow) was also established. Moreover,
a new functionality was developed to identify a device’s type of appliance based on its energy
consumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally,
another new feature was added in which, based on a device’s type and its energy consumption

pattern, the flex-offer creation is automated, minimizing user input.

As planned, the FlexHousing platform now supports multiple types of devices, and has a
software interface to support more types in the future with minimal effort. The flex-offer
creation process has been simplified and is now partially automated. Finally, the web

platform’s Ul has been updated, becoming more intuitive and appealing to the user.

Keywords (Theme): Internet of Things, Flex-offer, Home automation,

Energy saving, Smart Building.

Keywords (Technologies): Java, PHP, REST, Arrowhead Framework, Laravel

Framework.

Reengineering and development of loT Systems for Home Automation

Table of Contents

1 1419 To [7 Lo 1 (o T TR TP 1
1.1 oY T<To1 A0 41 =) RN 1
1.2 Project OVEIVIEWccceuiieeiiiieniiineiiieeicieniiiniiineisienisiessssssssssssssssssssnssssnssssnssssns 1
13 Organization OVEIVIEW......cccciieeiieeniieeiiiiniiiniiineisieniisesrsnsisrnssssssssssnssssnssssnsnss 4
1.4 Contributions from this projectccccciiiiiiiiiiiiiiiiinniiin 4
15 =T o Lo T o dY 1 0 ot 0 = 5

2 (00 T2 =3 ¢ U 8
2.1 Main Problem ... 8

2.1.1 Data and Device INteroperability.........ccueeriiiiiiniienieee e 9
2.1.2 Arrowhead IMplementationccccueiiiiiiieeecee e e e e 10
2.1.3 FlexHousing web platform’s user interfaceccoceeveeriinieieiieee e 18
2.1.4 Specifying a flex-offer’s energy consumption pattern........cccceceeriieeniieniieenieesieenieee 19
2.1.5 EXecutives’ Platform ... et 19
2.2 BUSINESS @r@as ...cceueuiiiiruuiiiiiruniiiiinuiiiiinuiitiisuieriesssiermesssermesssssreesssssrmesssssseens 19
2.2.1 Smart Buildings, Smart Cities, and SMart Gridscccccecevueeeiiiieeeiiee e 19
2.2.2 Energy analytics on businesses’ @qUIPMENtcocceerieeriiierieeniie e 20
2,23 ENEIEY IMArKEES .coueiiiiiiiiieiiieesitt ettt ettt sttt et e e st e st st e san e sbeesaree e 21
23 State of the art.......cceveeeiiiiiiiiiiii e 22
2.3.1 Flex-Offer-related ProjECtSccciieciee e cieeeeseee et e sstee e et e e e s e e e sbae e e s nnee e enees 22
2.3.2 Home Automation platforms and Device interoperabilityccccccocvvieeeecieeeccieee e, 26
2.4 SOIULION OVEIVIEW ...cccvverriiiiiiiiininneniiiisniiiiemnsssssisiiinesssssmssisiiimesssssssssssssssssssses 30
2.4.1 Data and Device INteroperability......ccccccciiiiiee i 30
2.4.2 Local communication between Arrowhead Modules.........cocveeeieeriieiniiieniieeniee e 34
2.43 FlexHousing web platform’s user interfacecooceeveeeiiiiieiniiee e 34
2.4.4 Specifying a flex-offer’s energy consumption pattern.........ccccovvieeeiinicciiieeee e, 39
2.4.5 EXecutives’ Platform ... e 40

3 WOrK ENVIrONMENtcccvueueiiivneiiiiinnesiiiisnesisiississssissessssssssssssssssssssssssssssssssssssssnans 41

3.1 Work Methodologyc..ciieiiieiiiiiiiiiiienirrcrrecereee e reaesensesenesssenssssasesenns 41
3.1.1 [DTSY ST Lo o g T=T o o o Yol Y13 41
3.1.2 VErSion CONEIOl.couiiiieiii ettt ettt sttt e st sabeesabe e sabeesabeesabeesareenas 42

3.2 Project Planning.........cceuuiiiimeeiiiiiieiciieneiesienenessennsessenassesesnsssssesnsssssesnssssenns 43

Xi

33 IMIEETINES ..cveviiiieiieeiiiiiiiiiniireeiiineieteestenssitnsssrnssrasssrsessransssenssssnsssssnsssensssanssns 44
3.4 Used TeChNOIOZIeScccuuueiiiieieiiiieccereicesreneecrrennees e e na e s e enns e seennssssesnnsnsnenns 47
4 TECHNICAI DESCIIPLIONc..eeeeeeeeeeeeeeeeeereeeeeereeeeeesreensseseeenssesseenssesssnsssesssnsssesssnnnsnns 49
4.1 Requirements ENGINEEIING ...cc.civvuiireeiiiiniiieiiiriiiiiiirieenieinrasireessnssssreasenenssns 49
.11 USEE ROIES ittt sttt et sttt st bt st e s ba e s ba e s bt e s ba e s nbbeebaeenabeebee s 49
41.2 LU) o] ¢ 1= T PP PP RUPPPPPPPO 50
4.13 FUuNCtional REQUINEMENTS.cccueiiiiiiiieriie ettt ettt et 53
414 NoN-FUNCLioNal REQUIFEMENTS.....cc.vviiiiiiieeecieee e e ere e e s e e e rra e e e eane e e snaeeean 54
4.2 ANAIYSIS ceeveiiiiiniiiiiieiieiiieiieiireeeiisssetrsasesttsasestessetestesnssssttsnssestesnsssssennsnsse 56
3 R o To Yo Y o I\ o o =1 O PO PRSP RTRPSR 56
4.3 [T = o TN 63
43.1 (D) =] o U ol O] = RPNt 63
4.3.2 L0 LS O 1= LSRRt 65
e TR T O - T B 1 =4 - o SRR 110
4.4 (3] o1 (=4 T=T 01 &= Y 4 oY I 126
o N D LY ol 0o T 4 e | =T O OO 126
B.4.2 VPS JBVICES ...ttt ettt e ettt e s sttt e sttt e e s sabbeeseabeeesaabeeesebreeenan 127
443 Y] gTe) i e [=1Vi T oY TP UUPPRRRORt 129
4.4.4 Automatic creation of a flex-offer’s energy consumption pattern............cccoceeeevveeennes 130
445 Device Type [dentificationccocveiieeiiieiiee e sbeesbee e 136
4.4.6 Verifying a Flex-offer’s effect on a device’s consumption pattern.........cccoeeeeeeeriveeenns 138
4.4.7 FIEXHOUSING SYSTEM SETUP .eeteiiiieieiiie sttt ettt e itee e e e et e e et e e s eaae e e e s baeeesnreeesnnes 139
4.5 LI PN 139
45.1 L0701 o =T £ PP PUPT PP 140
4.5.2 [N =Y <= Ao T o I =T PP PPPPPPPPPIRE 141
4.5.3 ACCEPTANCE TOSTS ittt e et e e e e e e e e e e e e e e e ee e e re e e e e e e e e e e eeeaereaeee 144

5 CONCIUSIONSeeeeeeeeeeeeeeeeeeeeeeereieeseteeeeesssenssessssnssesssnsssesssnsssssssnsssssssnnsssnssnnnnnns 152
5.1 =T o o] o dXY U4 0] 4 1 T 152
5.2 Accomplished goals......cccoueiiiiiiiiiiiircrrrrr e re s s e e e nes 154
5.3 Additional Work done........c.ccieeiiiieiiiieiiiiiiiiicrrrerreee e e ren e s e n e senennes 155
5.4 Limitations and future development...........ccoueiiiimiiiiiiciiiirercrrrrce e 155
5.5 Final appreciationciiieeiiiiieecciirccrrrecs e s rnee e s s e nn e s s e nnenanes 156

6 BiDlIOGIAPRAYeeeeeeeeeeeeeeeeeeeeeteeeeetteesteiaeerestasesssneese s sesesassaserassnsenasasnannn 158

Reengineering and development of loT Systems for Home Automation

APPCONAIXES ..cceueeiiivnerciiivniriiiirnisesiisniesiisniessismsesitssssestessssesssssssesssssssessssssssssssssssss 167
7.1 Appendix-A — Configuration Properties file for XMPP communication 167
7.2 Appendix-B — Sonoff Pow Custom Firmwareccceeeiiieeeniiiieneiinienessnnenenes 168
7.3 Appendix-C — FlexHousing System Setup Guide.......cccccorreeercirreeecirrenencrrnennnn. 173

7.3.1 FlexHousing MiddIEWareccovieriiiiiieeiit ettt 173

7.3.2 FlexHousing Web Platformooeoiiie et 175

Xiii

Reengineering and development of loT Systems for Home Automation

Table of Figures

Fig. 1 — Visual representation of the FlexHousing project. [81]........cccceeeuureeeierrrereeennrscisnnnns 2
Fig. 2 — A cloud-based 10T value cha@in. [5]...........ueeeueerreeeneerreeeriirreeecerreeecerreeeessrennnsessennns 9
Fig. 3 = Arrowhead OVerVIiEW [7]eeeueeeeeeeeeeeeueeeeeeneesenanisssesassesssnassssssnsssssssnssssssennns 11
Fig. 4 — Flex-offer eXample [9]ueeeeeeeeeeeeeeeeeeeeeeeeeseeenseeseeasiesseeassssssnsssssssnssssssennns 13
Fig. 5 — Flex-offer Scheduling ProCesseeeeeueeeeeeeneereeenisereeensesseeesssssenssssssenssssssennns 13
Fig. 6 — Virtual market of energy main actors and operations. [11]............cccc..ceeeeeueennee... 15
Fig. 7 — High level architecture for the virtual market of energy. [12]................cccuceue........ 16
Fig. 8 — Device Index Page in the original FlexHousing prototype’s web platform.............. 18
Fig. 9 — Flex-offer creation form in the original FlexHousing prototype’s web platform..... 18
Fig. 10 — Innovations in sustainability through smart systems. [19]..........ccceeereeeveeereereenn. 20
Fig. 11 — Balancing with and without the MIRABEL concept. [25].......ccceeeveeuereereenereerennnn. 23
Fig. 12 — Flex-offer lifecycle. [25]......cuuuuueereeuureeeerereererenseerenasseeeenassessensssesesnsssessensssessennns 23
Fig. 13 — The EDMS of the MIRABEL Project. [25]........cccuuueeeeereeeierreereeenenseisssnenneenssnsesssnnns 24
Fig. 14 — Arrowhead Framework System of Systems [30]cccceeeeeeeeercererrerrnennneessnnnns 25
Fig. 15 — Apple HOMEKit QPP Ul [32]eeeeeeeeeeeeeeeeeeenceeeeeiceeeeeaneesseeasessssnsssssssnnsssssnnnns 26
Fig. 16 — NeSt QPP Ul [33] ..eeeeeeeeeeeeiieeeeeetieeeeteiaeeeseeneesssasssssssnssssssesssssssnsssssssnssasssnnnns 27
Fig. 17 — Examples of applets for different web services in IFTTT. [35]......ccccceucerreeereeneneee. 27
Fig. 18 — VPS’S ClOOGY Ul.eeeeeeeeeeeeeeeeeeeteeeeeeinseeeseensessssasssssssnssssssssssssssnsssssssnnssssnnnns 28
Fig. 19 — One of many Uls available in OpenHAB. [38]........cceuueeeeeeueeeeeeeeerreeecerreeeneenennen. 29
Fig. 20 — Home Assistant app UL [39]........ueeueeeeeeeeeeeeeeeeeeeaceeeeenceseeeanessesnansesssnssssssnnnns 29
Fig. 21 — Component Diagram of the FlexHousing project.................cceeeueeeeeeereereeenneenennnn. 31
Fig. 22 — Deployment Diagram of the FlexHousing project...............ccceeeueereeeercereeennernnnnn. 33
Fig. 23 — Communication between modules through an XMPP server.cccceeveenneee.. 34
Fig. 24 — Dashboard page in the new FlexHousing web platformcceeeeueenn..... 35

XV

Fig. 25 - Side-Navigator in the new FlexHousing web platform...................cccueeveeeneenneee.. 35

Fig. 26 — "Add Device" form in the new FlexHousing web platform.................................. 36
Fig. 27 — Device index page in the new FlexHousing web platform....................cccccuueu...... 36
Fig. 28 - Flex-offer creation form in the new FlexHousing web platform 37
Fig. 29 — Scheduling a Flex-offer in the new FlexHousing web platform............................ 37

Fig. 30 — Manually creating the consumption pattern for a Flex-offer in the new FlexHousing

17771001 o 14 T o 1 PN 38

Fig. 31 — Automatically creating the consumption pattern for a Flex-Offer in the new

FlexHousing Web PIatfOrm.............eueueeeeueeeenireeeieeeniereeereenesresiseneseeeesssrasessnssesnssessasessnssnes 38
Fig. 32 — Checking a device's consumption in the new FlexHousing web platform............. 39
Fig. 33 — Verifying the effectiveness of a flexoffer in the new FlexHousing web platform.. 39
Fig. 34 — Executives’ platform Ul................ueeuueeeeeueeeeieenieeeeeinceeseeaniesseeassssssesssssssnssssssennns 40

Fig. 35 — Typical RUP chart, showing how the development process is structured along two

AIMENSIONS. [A2] oeueeeeeereeeeeeeiereuiereuierenrerenerensieresserensesenssssnssssnssesssssssnsssenssesnssesnssesansssen 42
Fig. 36 — Previous project's domain model [59].............cuueeeeeeeeereeencerrreencerreeencenreeenesneenens 57
Fig. 37 — Project’s new domain model.....................ueeeeeuueeeeeeneeeeeennceseeeeneessenansesseensesssnnnns 59
Fig. 38 — Database schema for the FlexHousing Middlewareccuueeueeereeneennnen.. 64
Fig. 39 - Use Cases for the FIexHOUSING Project...............ceeeeeriereeeniirsenesessseneesssenasssssenens 66
Fig. 40 — Sequence Diagram: UCO1 RegiSter USEr..........c.cccevvvuvrverereurireusirenessssnssrsesossnsnes 68
Fig. 41 — Sequence Diagram: UCO2 Create HOUSE............cccevvvuereererenrireusirenessrsnssssosossnsnes 71
Fig. 42 — Sequence Diagram: UCO2 Read HOUSE...............ceveeeuiereeensirseeerissnenesisssenesssssnnens 72
Fig. 43 — Sequence Diagram: UC02 Update HOUSEccceeuueeeeeurcirieeerisssenesisssenesesssnnens 73
Fig. 44 — Sequence Diagram: UCO2 Delete HOUSE.............cceeeeueeeeeeeniereeeenesreenescsssenesasssenens 74
Fig. 45 — Sequence Diagram: UCO3 Create ROOMccc.ceveuireenireenireenireensesenseseoscsncnnnn 77
Fig. 46 — Sequence Diagram: UCO3 Read ROOMcceeueveniireenireenireenireensesenseseoscsncnnnn 78
Fig. 47 — Sequence Diagram: UCO3 Update ROOM............c.ceeeuueevenireeniseenireensesenseseecsncnnnn 79

Fig. 48 — Sequence Diagram: UCO3 Delete ROOMcccceceveeiireenireeniseeniseenseresseseescnecnnnns 80

Reengineering and development of loT Systems for Home Automation

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

49 — Sequence Diagram:
50 - Sequence Diagram:
51 - Sequence Diagram:
52 - Sequence Diagram:
53 —-Sequence Diagram:
54 - Sequence Diagram:
55 —Sequence Diagram:
56 — Sequence Diagram:
57 — Sequence Diagram:
58 — Sequence Diagram:

59 - Sequence Diagram:

UCO4 Create DeVIiCe..........ceeeeueierieeneiirienssiriensisireenssssneensnes 83
UCO4 Update DevViCe..........ccceueeeeuereeeserensereenereenseresesennsasnnnes 84
UCO4 Delete DeViCe........ceeuuueeecirrrreeneesnesssirnrnnensussssssnssnnnnns 85
UCO5 Check All DEVICES..........cceevrrrveveenessiirnrinernasaisssinnsnnnnn. 87
UCOG6 Turn ONn/Off DEVICEcceeveveeeuuuereeeeeeeeeveeussssseeseeennns 89
UCO07 Check Device Consumptionccceeeeeereeeencernennnnnns 91
UCO08 & UCO09 Create FIEX-Offercouueeueeereeencerreeeneernennnnnns 94

UC10 Check a Device’s active Flex-offer and its effectiveness96

UC11 & UC12 Get Device and User metadata...................... 98
UC11 Start Measurement Requests............cceeevevrvesrnesinennns 100
UC13 Get Devices Consumption Values.............................. 100

Fig. 60 — Sequence Diagram: Left — UC14 Start Flex-offer Emissions; Right — UC14 Start

WYt 17701 4o 1 N 1 T=T U 102
Fig. 61 — Sequence Diagram: UC14 Execute FO EMISSiONccceeeeveeerenereneeesseeseensennens 103
Fig. 62 — Sequence Diagram: UC14 Execute ACtUQLIONS...........coceeereurireercrennirinnisrnesonnnnes 104
Fig. 63 — Sequence Diagram: UC15 Start Device Type Identification Timer...................... 106
Fig. 64 — Sequence Diagram: UC15 Identify Device TYPeS.........cceevuueerevereerevnssessenassennnns 107
Fig. 65 — Sequence Diagram: UC16 Provide Device's Consumption Data......................... 109
Fig. 66 — Simplified class diagram of the FlexHousing Middleware.................................. 111
Fig. 67 — Class Diagram of Models package.................eeuueeeeeeuneeeeeenseeeerenseesseensessesnnsenenes 112
Fig. 68 — Class Diagram Of DTO PACKAGEceeeeueeeeenneeerrenseererensesessenssesssanssssssnnssneees 114
Fig. 69 — Class Diagram of EXecution PACKAQGEccceuueeeeeenneeeeeenseeeeeenseesseensessesnnssneens 115
Fig. 70 — Class Diagram of org.arrowhead.wp5 packagec.eeeeeeueeeeeenceeeeeanenenes 117
Fig. 71 — Class Diagram of Controllers packageuueuueeeeeeneeeeeenseeeeeenseeseennsennens 118
Fig. 72 — Class Diagram of ThirdPartyServices package.............ccccceeeeeevereeerevenereenanennens 120
Fig. 73 — Class Diagram of FH_API PACKAGE...............eeeeeuueererereeeriranseererensesserassssssnasssnnens 121

XVii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

74 — Class Diagram of DAO PacCKAge............ceeeuueeeeeeeeereeenneererenseereeesssesssnsssesssnnssneens 123

75 — Class Diagram of FlexHousing Web Platform...............uueeeeeeeeeeeeerrrenncerevenneenene 124
76 — Class Diagram of Executives' Web Platfrom...............ccueeueeeeveeeeeererennceeenenneenne 125
77 — Code Snippet: DeviceController Interface................euueeeeeeueeereeeneerereneereennsennens 126
78 — Left: VPS Smart Plug; Right: VPS TranSmitter.............ccouuuuecerevnnsesrevnnsessennnsesnens 127
79 = VPS ClOOQGY ...ccuuueeiiruuesiirnniasiirnssosssnussossssmsssssssssssssssssssssnsssssssnsssssssnsssssssnsssssens 127
80 — Code Snippet: returnPowerMeasurements in VPSController............................. 128
81 — SONOSf POW SWILCRccuureiiiiniiiiiiiiiiiiiiiniiissisniisssssaiisssssasissesasssssesassssssnsssssssnons 129
82 - Code Snippet: returnPowerMeasurements in SonoffController......................... 130
83 - Algorithm: Pattern Sequence Matching (PSM) [66]...........cccuuueeeeeeereeeeeenreerennnn. 132
84 - Visual sketch explaining the PSM algorithm................cc.ueeeeeeneeeeeeencenneenneennnnan. 132
85 - Algorithm: Estimation of Energy Profile for a wet-device [67] 133
86 — Energy consumption data from a refrigerator, measured by a Sonoff............... 133
87 - Constant time segment of inactivity in between each activation...................... 134
88 — Energy consumption pattern of a refrigeratorceeeeeeueerveeeneerreenneennnnnn. 134
89 - Algorithm: Pattern Sequence Matching (PSM) for a refrigerator...................... 134
90 - Algorithm: Calculate Time of Inactivity of a refrigeratorccccc.......... 135
91 - Algorithm: Create Energy Consumption Pattern of a refrigerator..................... 135
92 — THe MAPE fOrmuUIQ............cueeuueeeeeencerirenesseeississeeisssssssassssssnasssssessssssssnsssssssnans 138
93 = The SMAPE fOrMUIQ...........cccuuueeeeeennierieenerieeiiiisseeisisssenasssssenesssssensssssssnsssssssnans 139
94 — Code Snippet: Models Unit TeSLScccuueereeeriereeeniisseeesiissenesisssenesssssenssssssennns 141
95 — Code Snippet: Middleware Integration Testscceeeeueereeeencereeeencereeeeseennnnens 144
96 — Code Snippet: Acceptance Test of UCO1 Register Usercceeeeereereeeereennaen. 145
97 — Code Snippet: Acceptance Test of UCO2 CRUD House...............cceeeeeueeeeeenneenenen.. 146
98 — Code Snippet: Acceptance Test of UCO3 CRUD Room............cc..eeeeeeeeeeeeenneenennnn. 147
99 — Code Snippet: Acceptance Test of UCO4 CRUD Device..............cceeeeeueeeeeenneenenen.. 148

100 - Code Snippet: Acceptance Test of UCO5 Turn On/Off Device..........ccceeveverevenan. 148

Reengineering and development of loT Systems for Home Automation

Fig. 101 — Code Snippet: Acceptance Test of UCO6 Check Device Consumption................ 149

Fig. 102 — Code Snippet: Acceptance Test of UC0O8 Create Flex-offer Automatically for a
L= Lo - PN 150

Fig. 103 — Code Snippet: Acceptance Test of UC09 Check total registered Users, Devices, and

Houses & UC10 Check End-Users’ Devices’ Frequency of Use and average Time of Use ... 151
Fig. 104 — Configuration Properties file (config.properties) for XMPP communication 167

Fig. 105 — Code: Sonoff Pow CUStOM FirMWQTre.............c..ueeeeeueeereeenneereeenseesssesssesennnssnnens 172

XiX

Reengineering and development of loT Systems for Home Automation

Table of Tables

Table 1 — Project PIANNINgcccceuuveiiieeeiesiienesesinnnsiosissmsesiismsessssssosssssssosssssssessessssens 43
TAbIEe 2 — Project MEELINGSceeveeueeereeeuereienniesereesiesseeessesssssssesssssssesssnsssesssnsssesssnnnsens 44
Table 3 — Used TeCHNOIOGIES..........cceeuueeeeeeeeeeeeeeereeeeneerseeensesssnensesssnnssesssnsssesssnsssesssnnnnens 47
Table 4 - User Stories: ENG USEreuueeeeeeeeeeeeeeeeeeueuesenesesesesesesesesesesssasssssssssssssssasasasans 51
Table 5 - User Stories: COMPANY EXCCULIVEceeeeeeeeereeenserrreeneerrenensesssnnssesssnsssessensnsens 52
Table 6 - Use Case 01: ReqiSLer USEer.............eeeeeeeueeeeeeneerreenneessenensessennssesssnsssesssnsssssssnnnsnes 67
Table 7 - Use Case 02: CRUD HOUSE.........cccceueuureeeisninenmnensssssssssssssssnsssssssssssssssssssssssssssssssns 69
Table 8 - Use Case 03: CRUD ROOMccccevuuuurveeissininvnenssssssssssssssssssssssssssesssssssssssssssssssnns 75
Table 9 - Use Case 04: CRUD DEVICEeeeeeeeeeeeeeeeeeeeeeeeseuesesusesssesesssesasasasasasasssssasasssasans 81
Table 10 — Use Case 05: CReCK All DEVICESeeuueeeeeueeeeeeeeeeueesesesusesesesesusesesesesasasasssasans 86
Table 11 - Use Case 06: TUIN ONJOSf DEVICEccceeeeeeeeuuereeeeereeeeeuurssseesseesesnnssssssssessssnnns 88
Table 12 - Use Case 07: Check Device CONSUMPLIONcccueeeeeerereneeeenereenereensnresssenennennnes 90
Table 13 - Use Case 08: Create Flex-offer Manually for a Device..............cceuevveeererneenneans 92

Table 14 — Use Case 09: Create Flex-offer Automatically for a Device, based on Energy

CONSUMPLION ..ceuueennireenireeniiriniireeieresisreeseseesissasessnssssesisssssssssssssnsesssssssnsssssssssnsssssnssssnssnee 93
Table 15 — Use Case 10: Check a Device’s active Flex-offer and its effectiveness................ 95

Table 16 — Use Case 11 & 12: Check total registered Users, Devices, and Houses & Check End

Users’ Devices’ Frequency of Use and Average Time Of USeccueuueeeeeeueeeveeenneeeeeenannns 97
Table 17 - Use Case 13: Get Devices’ Consumption Valuesueeuueeeeeeuerevenneernvennnnns 99
Table 18 - Use Case 14: Deploy Device’s FIEX-Offersuuuuueereeeneereeeneerreeneereeeneenennnn. 101
Table 19 — Use Case 15: Identify DeViCe TYPESccceeeueerreenreereeenneesseenseesseensessssnnssssennns 105
Table 20 - Use Case 16: Provide Device’s Consumption Datd................cceeeeeecereeeenennnnn. 108
Table 21 — Classes description of Models package................ccoueeueeereeeeiereeeecerneenncsnnnnnn. 113
Table 22 — Classes description of DTO pacKaQe..............eeeeeeueerreeercereeencereeeeisseeesnesssnnnns 114
Table 23 — Classes description of Execution packagecccueeereeeencereeeenirreeeencsnnnnnn. 116

XXi

Table 24 — Classes description of org.arrowhead.wp5 package.................ccc..eeeeeeueenn..... 117

Table 25 — Classes description of Controllers package................c..ceeeeeeueerreeercerneenneennenen. 118
Table 26 — Classes description of ThirdPartyServices package.................ccceeueerveeeneenee.. 120
Table 27 — Classes description of FH_API packagee..ceeeeeeueeereenneerreeenessneenneesnennns 121
Table 28 — Classes description of DAO pACKGQGEccvveeeriirieneiisienerisssencssssssncsessssnans 123
Table 29 — Acceptance Test: UCO1 RegiSter USer...........ccouuueriirivneriirieneessienesissssncssssenens 144
Table 30 — Acceptance Test: UCO2 CRUD HOUSE..........ccccueeeeeeerenereneserensernenessesserasessnssnsnns 145
Table 31 — Acceptance Test: UCO3 CRUD ROOM............cc.ceeeueeeenereneserensssneesncssssasessnssnsnns 146
Table 32 — Acceptance Test: UCOG CRUD DEVICEcceeueeeenervenereneserensernesereesssrasessnssnsnns 147
Table 33 — Acceptance Test: UCO5 Turn ON/Off DEVICEcccueeeeeeereeeeereeeeeeenussseeeeeeeennns 148
Table 34 — Acceptance Test: UC06 Check Device Consumptioncceeeeueerreenrennnnn. 149
Table 35 — Acceptance Test: UCO7 Create Flex-offer Manually for a Device 149
Table 36 — Acceptance Test: UCO8 Create Flex-offer Automatically for a Device 149

Table 37 — Acceptance Test: UC09 Check total registered Users, Devices, and Houses & UC10

Check End-Users’ Devices’ Frequency of Use and average Time of Use............cc..cceeeeeuuen. 150

Table 38 — Accomplished goalscueeuueeeeeeeneeereeeieereeeciereeenseesreenesssennesssennsssssennns 154

Reengineering and development of loT Systems for Home Automation

Notation and Glossary

API

Arrowhead Project

BNearlIT AB

(or BNearlT)

CISTER

CRUD

DTO

loT

ISA

Java

Multi-paradigm

programming language

Application Programming Interface. A set of clearly defined

methods of communication between various software

components.

An international project, developed in partnership with CISTER, to
address the technical and applicative challenges associated to

cooperative automation.

A company focused on advanced systems development, modern
software architectures, and service-based systems. BNeartIT is a

partner of the Arrowhead Project.

Research Centre in Real-Time and Embedded Computing Systems

Create, Read, Update, and Delete. CRUD are the four basic

functions of persistent storage [88].

A Data Transfer Object (DTO) is an object that is used to
encapsulate data, and send it from one subsystem of an application

to another.

Internet of Things. The inter-networking of physical devices,
vehicles, buildings, and other items embedded with electronics,
software, sensors, actuators, and network connectivity which

enable these objects to collect and exchange data.

Intelligent Sensing Anywhere, a Portuguese loT company for

Oil&Gas market.

General-purpose computer programming language that is

concurrent, class-based, object-oriented, and specifically designed

to have as few implementation dependencies as possible.

A programming language that supports more than one

programming paradigm (i.e. object-oriented programming,

functional programming, etc.).

xXiii

MvC

PHP

REST

SOA

System of Systems

Ul

UML

VME

VPN

VPS

XMPP

Model-View—Controller. A software architectural pattern for

implementing user interfaces on computers.

Server-side scripting language designed primarily for web
development but also used as a general-purpose programming

language.

Representational state transfer or RESTful Web services are a way
of providing interoperability between computer systems on the

Internet.

Service-Oriented Architecture. A style of software design where
services are provided to the other components by application

components, through a communication protocol over a network.

An assortment of task-oriented or dedicated systems that merge
their resources and capabilities together to create a new, more
complex system which offers more functionality and performance

than simply the sum of the constituent systems [80].

User Interface

Unified Modeling Language, a software modeling language.

Virtual Market of Energy

Virtual Private Network

Virtual Power Solutions, a Portuguese energy solutions company

related to ISA.

Extensible Messaging and Presence Protocol

1 Introduction

This chapter consists of an overview of the project’s context and its main goals.

1.1 Project Context

CISTER Research Center focuses its activity on the analysis, design and implementation of real-
time and embedded computing systems. These embedded systems play an important role in
loT due to their unique characteristics and features such as real-time computing, low power

consumption, low maintenance, and high availability.

In this context, CISTER has a project named FlexHousing that handles current loT themes, such
as home automation and smart device interoperability, with a focus on energy saving.
However, considering the many limitations of the project’s original prototype, it not only

requires a reengineering process, but also the development of new features.

Taking on a project of this scale can greatly benefit one’s research and engineering skills, while

also allowing one to be at the forefront of the future of technology.

1.2 Project Overview

With the increasing adoption of technology in today’s houses, electricity is at an all-time high
demand. In fact, given the plethora of vital electricity-powered appliances used every day,
such as refrigerators, lights, washing machines, water heaters, and so forth, it has been proven

difficult to even manage all their operations, especially when it comes to electric consumption.

To solve this problem, several innovations were introduced. One of them is the concept of the
Internet of Things (loT), which turned itself into a key component of home automation and
smart homes [1]. Home automation is automating the ability to control items around the
house with a simple push of a button [1]. However, simple automation is not enough to
effectively decrease energy costs, since prices in the energy market are constantly changing

for any given hour.

Thus, to reduce consumption costs and turn it into a more manageable process, the concept
of flex-offers was created [8]. A flex-offer is built around scheduling energy usage in
conjunction with the prices of electricity, as provided by an energy market. More specifically,
a flex-offer is an energy consumption offer containing the user’s energy consumption

flexibility, which is sent to an entity called the Aggregator, who aggregates together flex-offers

Rafael Teles da Rocha 1

Reengineering and development of loT Systems for Home Automation

from multiple parties, bargains with the energy market, and responds to each flex-offer with
a schedule that meets the lowest prices for consumption, while still satisfying the users’ needs.

By using flex-offers on a house’s equipment, the idea of FlexHousing was born.

FlexHousing (Fig. 1), project developed at CISTER and this internship’s main theme, revolves
around the implementation of a pilot capable of applying the Flex Offer concept to a real-life
situation (using the Arrowhead framework), allowing control over the energy usage of a
home’s or building’s appliances. The FlexHousing project is composed of two different
applications: one is the FlexHousing Middleware, which communicates with devices, manages
a database (which contains the registered users, houses, and devices), and provides its data
as a RESTful service to web applications; the other is a web application, known as FlexHousing

web platform, which serves as a gateway to the Middleware’s data and services.

o

Middleware
-

- @

\
I
I
I
I
'

-=\ // \\\ ="
‘- /l\ -
/// ' WK‘)\

-— -y

FlexHousing

Flexoffer . .
' = 960 !
i =

O O ¢

Fig. 1 — Visual representation of the FlexHousing project. [81]

Rafael Teles da Rocha

N

Reengineering and development of loT Systems for Home Automation

Yet, since loT is still at a very early stage, there aren’t many standards when it comes to the
process of controlling devices, leading to some companies using closed communication
protocols for their own appliances. Some devices send their data to a service provider’s
servers and are controlled through a web or mobile application. This app connects to the
service provider’s cloud, sending commands and requesting the device’s data from the
company’s servers. Whereas, other devices limit their access to the user’s local network,
meaning that the user must use the device’s proprietary app while connected to his private

network.

In this context, the goal of CISTER’s FlexHousing platform is to deliver a platform where users
can register their smart appliances, regardless of its brand and publisher, and manage their
energy consumption by scheduling energy usage based on the energy market prices. However,
the existing platform had many deficiencies: the web platform’s Ul could be heavily improved;
it was developed to only function with devices from VPS and none more; the concept of
multiple “Users” and “Houses” were not taken into account, meaning that, effectively, the
system only supported one user with one house; the flex-offers had to be manually created
through the user’s input, meaning that a user without any background knowledge would be

alienated; and its flex-offer implementation had dependencies to external servers.

Midway through development, this internship’s project also built a proof of concept for a
“client” (which cannot be identified in this report), namely, a multinational company in the
field of household appliances and consumer electronics, who is interested in offering a service,
whose basis can be built upon or based on the platform developed in this project. The client
currently has a vision for an after-sales service which consists of a remote maintenance
platform (for the purposes of this report, the client’s envisioned platform will be called
“DeviceFix”). Consequently, the client saw the Flex-offer concept as a feature that could add
value to their DeviceFix platform. So, given that the FlexHousing platform was already at an
advanced stage, the company proposed the merge of interests between both platforms, so
that FlexHousing would serve as its customers’ platform, and the company would have its own
platform to manage its customers’ appliances usage. As a result, the company wished for a
platform that, by integrating with FlexHousing, displayed some statistical information about

FlexHousing’s users.

Therefore, the goal of this internship is to apply a reengineering process on the FlexHousing

platform, while also adding new features to it. Thus, the project strives for six major goals:

¢ Rebuild and improve the FlexHousing web platform;

Rafael Teles da Rocha 3

Reengineering and development of loT Systems for Home Automation

e Reengineer the connection to loT devices, enabling compatibility with other types
of appliances of different brands and manufacturers. This will also allow the
FlexHousing project to connect to local generic devices, which in turn will

generate a lesser dependency to third-party service providers;
e Add support for multiple “Users” and “Houses” in the FlexHousing Middleware;

e Add a feature that enables the automatic creation of Flex-offers, based on a

device’s consumption pattern;

e Reengineer the FlexHousing Middleware so that its Arrowhead implementation
can also function locally (in servers under CISTER/ISEP responsibility), without

needing to connect to external servers;

e Develop a platform for company executives, which integrates with FlexHousing

and displays some basic analyses of user data.

1.3 Organization Overview

CISTER (Research Centre in Real-Time and Embedded Computing Systems) is a Research Unit
based at the School of Engineering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal.
CISTER was, in 2004 and 2007, awarded the classification of Excellent in the FCT evaluations.
CISTER has a strong and solid international reputation, built upon a robust track record of
publications, a continuous presence on program and organizing committees of international

top conferences [2].

CISTER — like its name entails — has been focusing its activity in the analysis, design and
implementation of Real-Time and Embedded Computing Systems. CISTER has, mostly,
provided advances in architectures for distributed embedded real-time systems, real-time
wireless sensor networks, cyber-physical systems, middleware for embedded systems and on

the usage of multicore processors on real-time systems [2].

1.4 Contributions from this project

The FlexHousing project presents a platform that offers not only the innovative flex-offer
concept as a feature to minimize energy costs, but also the compatibility with different smart
appliances, allowing its users to have the information to understand and know what is going

on in their facility, this being either a house or an industrial site.

Rafael Teles da Rocha 4

Reengineering and development of loT Systems for Home Automation

Furthermore, this platform could even be valuable to companies that want to better

understand their energy usage and costs in real-time, identify malfunctioning equipment and

overlay data sets to draw previously invisible insights that can increase efficiency and reduce

operating costs. If being used commercially, the project could even offer data to businesses

about their customer’s device usage.

Ultimately, this project also serves as a proof of concept for a company who is interested in

developing their own services that deal with loT devices and energy management, and want

to know all the potential setbacks, as well as opportunities, in developing one.

1.5 Report structure

This report is composed of four main chapters, each divided into sub-chapters:

2 Context: This chapter focuses on explaining the problem the project is trying to
solve, while also detailing the business areas where its results can be useful, and
mention other projects or competing products that may have tackled the same issue
or were important/influential for this project’s development. More importantly, it

also describes the proposed solution to the project’s main problems;

o 2.1 Main Problem: This subchapter describes the problems that this project

tries to solve;

o 2.2 Business Areas: This subchapter identifies and describes the business

areas associated with the problem being addressed;

o 2.3 State of the Art: Based on the addressed problems, this subchapter
identifies known components or approaches that contribute to the

development of a viable solution;

o 2.4 Solution Overview: This subchapter outlines a solution for the project’s

main problems.

3 Work Environment: This chapter describes how the work was planned, what kind
of work methodology was used for development, all the attended meetings in the

internship, and the technologies used to achieve the proposed solution;

o 3.1 Work Methodology: This subchapter documents the integration of
version control systems into the working methodology, while also referring

the development process, in this case, based on RUP;

Rafael Teles da Rocha 5

Reengineering and development of loT Systems for Home Automation

o 3.2 Project Planning: This subchapter describes the project’s planning,

identifying relevant tasks and sub-tasks;

o 3.3 Meetings: This subchapter mentions all project meetings that were

important for the project’s development;

o 3.4 Used Technologies: This subchapter describes the chosen technologies

for the project’s development.

e 4 Technical description: This chapter specifies how the project was developed, its
requirements, use cases, all the required diagrams for its features, the analysis of its
overall structure, and the implementation of its more interesting and/or complex

features;

o 4.1 Requirements Engineering: This subchapter delves into the project’s user

roles, user stories, and its functional and non-functional requirements;

o 4.2 Analysis: This subchapter analyses the previous project’s domain model,
while determining all the changes that must be made. Next, it presents the
new domain model for this current project, and describes every conceptual

class in the model;

o 4.3 Design: This subchapter describes the design documentation for every use
case/feature in the project, while also specifying the changes made to the

structure of the previous project’s database;

o 4.4 Implementation: This subchapter gives an in-depth description of the
implementation of the more interesting and/or complex features developed

in the project;

o 4.5 Tests: This subchapter describes the methods used to test the developed
system, to ensure that all requirements are met and to guarantee accuracy

and quality in the results presented by it.

e 5 Conclusions: This chapter focuses on the final results of the project and whether it
was a success or a failure. It also reviews all the encountered difficulties, and
summarizes the final product’s advantages and its usefulness for the organization.
Finally, the chapter ends by mentioning the overall project/internship experience, the

training received from it, and the ease and difficulties experienced over time.

Rafael Teles da Rocha 6

Reengineering and development of loT Systems for Home Automation

o 5.1 Report Summary: This subchapter serves as a summary of the most

important details focused on the previous chapters;

o 5.2 Accomplished Goals: In this subchapter, for each objective presented in
the introductory chapter, a degree of accomplishment is described for its

implementation;

o 5.3 Additional work done: This subchapter describes other minor works
carried out during the project/internship and not part of the objectives or

main work;

o 5.4 Limitations and future development: This subchapter identifies the
limitations of the developed project, making a self-critical analysis of the
whole work, as well as extrapolating possible directions of future

development;

o 5.5 Final Appreciation: This subchapter provides a personal opinion on the

whole internship and its project.

Rafael Teles da Rocha 7

2 Context

This chapter will allow the reader to understand the origin and theoretical stand-point of the
project, how the solution will be tackled and its design. Therefore, to understand the problem

at hand, there needs to be a clear understanding of the context.

2.1 Main Problem

The main problem of this project is divided into two parts: apply a reengineering process on
the original FlexHousing prototype, in order to solve its many limitations; add new features to
the FlexHousing platform to both satisfy CISTER’s original goal for the project and to meet the

new requirements of the client’s intended vision.

Regarding the reengineering process, we first need to check the original prototype’s main

limitations and identify their problems:

e The Middleware only functions with VPS/ISA devices and their REST API. To solve this
problem, the solution must address a big hindrance in the loT/Home Automation
industry in general, which is the lack of data and device interoperability standards.

Section 2.1.1 explains this problem in detail.

e The Middleware’s Arrowhead implementation has dependencies to external servers
when handling flex-offers. To develop a solution for this, the Arrowhead architecture
and the Flex-offer energy flexibility framework must be understood. Section 2.1.2

focuses on these themes.

e The Ul of the original prototype’s web platform is not very appealing, nor practical,
nor intuitive, and could be heavily improved. Section 2.1.3 addresses the original

prototype’s Ul problems.
Concerning the addition of new features, the most important ones are the following:

e The original FlexHousing prototype required the flex-offers to be manually created
through the user’s input, which meant that a user without any background knowledge

would be alienated. Section 2.1.4 goes more in-depth into this problem.

e The client requested a web platform for executives that, by integrating with
FlexHousing, displays some basic analyses of the platform’s users’ data. Section 2.1.5

goes into more detail about this new platform.

Rafael Teles da Rocha 8

Reengineering and development of loT Systems for Home Automation

2.1.1 Data and Device Interoperability

Currently, one of the biggest setbacks in 10T is the lack of standards when it comes to user
data access and device management. Some brands offer access to their devices through a
cloud service, requiring users to request data and send device commands to the company’s
servers, on the cloud, through a proprietary mobile/web app. In these cases, the loT
communication chain is comprised of three key components: sensors or actuators in a house,

a gateway, a cloud infrastructure and an end-user application.

Typically, it begins with a sensor network, which consists of sensor nodes (low power devices)
with different capabilities, spread over a physical location [3]. These nodes are linked to a
gateway device — a more powerful node — that connects to the core network, and sends the
sensors’ data to the Service Provider’s network cloud [3] [4]. Once the Service Provider gathers
the data, it is then able to deliver it to the customer, be it through a standard web app, a
smartphone app, or even directly into the customer’s ERP/billing/customer care software [4].

This means that to access the sensors’ data, the app must use the service provider’s API.

This sequence of events can be easily understood through Fig. 2:

Edge devices Gateway devices = Comm Svc Provider Data center Applications
Data Center Layer

Fig. 2 — A cloud-based IoT value chain. [5]

As we can see, there is a big dependency to third-party service providers when it comes to the
process of accessing the sensors’ data. This can prove to be a big disadvantage to the app’s

user and developer, if, at any point, the service provider’s servers are down.

On the other hand, other manufacturers offer direct access to their devices, but only through

the user’s local network, and by only using a proprietary mobile app.

Thus, as was previously explained in the project’s goals, one of the main objectives is to enable
both connection types from the application to a device, turning it into a flexible and generic

platform. This will, in turn, provide easier access to data and improve device interoperability.

Rafael Teles da Rocha 9

Reengineering and development of loT Systems for Home Automation

2.1.2 Arrowhead Implementation

Some of the components used in this project have been built upon the Arrowhead Framework,
therefore this sub-chapter provides a concise description of how the Arrowhead framework
is structured. Thus, an explanation of the Arrowhead framework will be given (sections 2.1.2.1

and 2.1.2.2), followed by the main problems to be tackled (section 2.1.2.3).

2.1.2.1 The Arrowhead Framework

The following explanation of the Arrowhead Framework [74] and its flex-offer implementation
was mostly based on the papers “Making System of Systems Interoperable - the Core
Components of the Arrowhead Framework” and “Arrowhead Compliant Virtual Market of
Energy”. Moreover, this report was given permission by their respective authors to use the
information and text available in the papers to prove the project’s concept and worth,

provided that the original works and authors [6] [75] were properly referenced.

The objective of the Arrowhead Framework is to efficiently support the development,
deployment and operation of interconnected, cooperative systems. It is based on the SOA
philosophy. The building elements of the framework are systems that provide and consume
services, and cooperate as systems of systems. With some commonly used systems, such as
Service Discovery, Authorization and Orchestration services, it is possible to design and

implement a minimal local automation cloud (Fig. 3).

Rafael Teles da Rocha 10

Reengineering and development of loT Systems for Home Automation

Core Systems

s

o
=
E
b o

AggregatorResource

HTTP_XMPP

O—D HTTP_XMPP
—{

FlexibleResource MarketResource

HTTP_XMPP

HTTP_XMPP

@

XMPP Network

Application Systems

Fig. 3 — Arrowhead Overview [7]

This section outlines some of the core systems that are made available within the Arrowhead

Framework.
2.1.21.1 Service Registry System

The Service Registry System keeps track of all active producing services within the network. It
is used to ensure that all systems can find each other — even if endpoints are dynamically
changed. It supports a service registry functionality based on DNS and DNS Service Discovery
(DNS-SD); since the Arrowhead Framework is a domain-based infrastructure. All Systems
within the network that have services producing information to the network shall publish its

producing service within the Service Registry by using the Service Discovery service.

Within a system of systems, the Service Registry further supports system interoperability
through its capability of searching for specific service producer features, i.e. an application
service producer with a specific type of output. In short, it enables systems to publish their

own application services and lookup others’.

Rafael Teles da Rocha 11

Reengineering and development of loT Systems for Home Automation

2.1.21.2 Authorization System

The Authorization system stipulates that a service can only be accessed by an authorized
consumer. It consists of two service producers and one service consumer and it maintains a
list of access rules to system resources (i.e. services). The Authorization Management service
provides the possibility to manage the access rules for specific resources. The Authorization
Control service provides the possibility of managing the access for an external service to a
specific resource. The system uses the Service Discovery service to publish all its producing

services within the Service Registry system.
2.1.2.1.3 Orchestration System

The Orchestration system is a central component of the Arrowhead Framework and in any
SOA-based architecture [76]. Orchestration is used to control how systems are deployed and
in what way should they be interconnected. Orchestration in the context of SOA can be viewed
as the system that supports the establishment of all other systems through providing

coordination, control and deployment services.

In industrial applications, the use of SOA for massive distributed system of systems requires
Orchestration. It is utilized to dynamically allow the re-use of existing services and systems to

create new services and functionalities [77].

The application systems’ services are initially seen as passive and being on standby. They are
not connected at deployment or even during start-up of the system of systems. Their services

can be managed to connect, or be connected to others — to fulfill a specific need.

The Arrowhead Framework currently supports REST-based Orchestration of services using for

example REST or CoAP.

2.1.2.2 Energy Flexibility Framework
2.1.22.1 The Flex-Offer Concept

Flex-offer is the concept has been developed in the EU FP7 project MIRABEL [8]. It allows
exposing demand and supply electric loads with associated flexibilities in time and amount for
energy trading, load balancing, and other use-cases. Flex-offers are generic entities, and can
accommodate various types of consumers (e.g., electric vehicles, heat pumps, household
equipment, industry, etc.) and producers (decharging electric vehicles, solar panels, etc.). In
its simplest form, a flex-offer specifies an amount of energy, a duration, an earliest start time,
a latest end time, and a price, e.g., “I need 10 KWh over 2 hours between 1 AM and 5 AM, for

a price of 0.35 DKK/kWh”. A visual representation of this example is shown in Fig. 4:

Rafael Teles da Rocha 12

Reengineering and development of loT Systems for Home Automation

5 == Pl:lﬂ_iﬂ ﬂfmf SO Seart time flexibility
kW [0 Minimum required energy Physically consurned/
. Energy flexibllity scheduled enesgy
2h >

..
1AM, etart 3AM, 5AM,
earliest time letest latest
start fime start tine end time

Fig. 4 — Flex-offer example [9]

Flex-offers can be aggregated and disaggregated (Fig. 5) irrespectively to a type of
consumption or production they represent. Both aggregated and non-aggregated flex-offers
can be mixed and dealt uniformly. A flex-offer can be seen as a kind of “option” that a
consumer/producer puts out on a market. The flex-offer may be rejected, for example if the
price is not right. If the option is accepted, the flex-offer is given an initial schedule, e.g., the
flex-offer is scheduled at 2 AM, and the consumer control system is notified. On the simplest
case, the schedule is carried out as specified. However, one of the strengths of the concept
only comes into play when things do not go as foreseen, for instance due to a sudden drop in
wind energy. In this case, the flex-offer can be rescheduled, shifted to 3 AM, when the wind

has returned.

Aggregated Scheduled

\ Disaggregated

-:I Z amount (micro) = -
.:| amount(macro) .

— W
I —

Collected from prosumers Distributed back to prosumers

Fig. 5 — Flex-offer scheduling process

Rafael Teles da Rocha 13

Reengineering and development of loT Systems for Home Automation

2.1.2.2.2 Virtual Market of Energy

For managing flex-offers, a Danish project named TotalFlex [10] proposed the use of the
general Virtual Market of Energy system (see Fig. 6) that, by providing a set of Service Oriented
Architecture (SOA) interfaces, interconnecting several (existing and new) European Electricity

Market Actors.

Prosumers are entities, also named Distributed Energy Resources (DERs) that can both
consume and produce electricity. Examples of Prosumers are residential houses, commercial
buildings, manufacturing, and process industries. These generate flex-offers and consume

schedules.

Aggregators are specialized entities capable of aggregating several (micro) flex-offers from
Prosumers into larger (macro) flex-offers. It is also capable of disaggregating (macro) flex-offer
schedules, e.g., received from the Electricity Market. An aggregator might be an integrated

part of a Balance Responsible Party (BRP).

Balance Responsible Parties are European electricity market entities that secure the balance
in a logical sub-domain within the grid, i.e. ensure that consumption is equal to production. It
utilizes the aggregated flex-offers from Aggregators for an internal energy balancing and
placing flex-offers on a so-called Flexibility Market for trading with other BRPs or Distribution

System Operators (DSOs).

Distribution System Operators are entities responsible for uninterrupted supply of energy in
the distribution grid. Flexibilities represented by flex-offers and offered on the market enable
DSOs new ways to smoothen loads on the distribution grid by buying and then controlling the

timing of loads.

Flexibility Market offers BRPs and DSOs the common place for trading flex-offers. It minimizes
total costs by scheduling energy loads while respecting the constraints contained in the flex-
offers (minimum/maximum power, earliest/latest start of energy consumption, etc.).

Flexibility Market may also interface other traditional markets of energy.

Rafael Teles da Rocha 14

Reengineering and development of loT Systems for Home Automation

Electricity

Electric
company

BRP’s

.’/

//(

.

L

7" magro flexoffefs

CVPP! ! CVPP
3 ,

flexoffers

Ej-cypp

Aggregators

~_ migro flexoffefs

Pro s_g,mec&/-/

Fig. 6 — Virtual market of energy main actors and operations. [11]

21.223

System Architecture and Communication Interfaces

The block diagram in Fig. 7 introduces the main actors and shows the operation of

Arrowhead's Virtual Market of Energy. The architecture described in this report is built upon

the Arrowhead Common Framework. The Arrowhead Common Framework thus acts as an

enabler for systems from different areas (e.g.: industrial automation, airplane maintenance,

energy production, home automation, smart grids) to facilitate their interaction and exchange

information. This multi-area approach can enable large savings in terms of energy, efficiency

and interoperability.

Rafael Teles da Rocha

15

Reengineering and development of loT Systems for Home Automation

/| &

Aggregator provides
Address & available
services

Request service
from regator

4

Flex-offer Agent (FOA)

FOA requests

Service Regist
connenction rules gy

keeps track of the
Orchestration
module

Module
Communicates with
the System
Operator to get
FOAs profile

Authorization

FOA communicates with
Authorization Module to
be authenticated and

authorized

FOA gets connection rules

Fig. 7 — High level architecture for the virtual market of energy. [12]

The described architecture is structured upon five modules, where three belong to the core
Arrowhead framework — Service Registry, Authorization, and Orchestration, and the other two

modules exchange business logic data — the Aggregator and the Flex-Offer Agent (FOA).

Flex-Offer Agents are basically software modules that offer the main functionalities to support
the flex-offer concept. Its architecture already provides functionalities for getting information
about the power consumption profile of specific devices, generate a flex-offer, and control
the execution of a scheduled flex-offer. The design of this software also provides the necessary
means to adapt to any platform by developing adequate interfaces among: 1) local and
remote FOA modules; 2) with the controlled devices' hardware; 3) with other needed devices
(e.g. a remote power meter) through a network; and 4) with external services (e.g. to obtain
weather forecasts). Flex-Offer Agents are very flexible, its design allows for its total
implementation to be running on a single device or distributed through several devices. As an
example, the company providing the flex-offer service might give the user a specific hardware
device, exclusively for the FOA, alternatively the FOA modules can be executed on existing
devices on the prosumer premises. The main objective of the design being presented in this

paper is to enable a high level of flexibility on the FOA implementation.

Rafael Teles da Rocha 16

Reengineering and development of loT Systems for Home Automation

The Aggregators work by receiving flex-offers from FOAs, aggregating with flex-offers from
other FOAs, into larger macro flex-offers and placing them to the Virtual Market of Energy.
Note that only flex-offers larger than certain amount can be negotiated on existing electricity
markets. Afterwards, the Aggregator receives a response from the Virtual market of Energy,
disaggregates the response and sends a consumption schedule to the FOA. Several types of
Aggregators might exist, and some Aggregators can be more specific for the control of electric
motors while others can be more adequate for the control of heating systems. Additionally,

choosing the most adequate Aggregator also depends on the geographical area.

To obtain the address of a proper Aggregator, a FOA uses the Service Registry module, to
register itself, and the Orchestration module (to obtain an Aggregator that matches its
criteria), both services are provided by the Arrowhead framework. The Service Discovery
service has already two implementations, one using DNS Service Discovery (DNS-SD) [13] and

another using Berkeley Internet Name Domain (BIND) [14].

The communication between the Aggregator and the FOA is implemented using XMPP, and
exploits the existing Arrowhead framework services and their specific protocols to establish

connection.

The main advantage of XMPP relies on its capabilities to support the Publish/Subscribe
communication paradigm, which provides an asynchronous and highly scalable many-to-many
communication model. The resulting decoupling between Publishers and Subscribers, in time,
space and synchronization, simplifies the implementation of its associated software.
Additionally, XMPP is also in a process of being standardized as a protocol for the control of
Demand Response applications for OpenADR [15] and on the ISO/IEC/IEEE 21451-1-4 [16]

standards.
2.1.2.3 Communication between Arrowhead modules

Despite the previous version of the FlexHousing project already implementing the Arrowhead
framework, the prototype had a severe dependency to servers, belonging to BNearIT, which
were located in Denmark and offered a connection to the Aggregator module, the Service
Registry, and the Virtual Market of Energy. For the FOA to communicate with the Aggregator,
the machine running the prototype had to be connected to a VPN where the servers were

found.

To prevent from situations where the VPN would be unavailable, it was decided that one of
the major goals of the project had to be a local implementation and communication between

the Aggregator module and the VME. With that, an XMPP server also had to be set up.

Rafael Teles da Rocha 17

Reengineering and development of loT Systems for Home Automation

2.1.3 FlexHousing web platform’s user interface

As mentioned before, the Ul of the original prototype’s web platform is not very appealing,

nor elegant, nor intuitive, as seen in Figs. 8 and 9.

FlexHousing Rooms Devices About Contact

Index
Device ID Name Room Name
37UNVGC-N3J-NWK-9P test easurems

@ 2016 - FlexHousing

Fig. 8 — Device Index Page in the original FlexHousing prototype’s web platform
FlexHousing Rooms Devices About Contact

Flexoffer

Device

Name test

FlexOffer Name:

Select the earliest hour

5 dd/mm/aaaa --:--
the pattern can begin.

Select the latest time

5 dd/mm/aaaa --:--
the pattern can begin

Remeber that the pattern can BEGIN at the lastest time. You may have a schedule outside of the period you selected above
rattern
Remove Pattern
You can also pick the floxoffer pattern from the measurements of the device

From
dd/mm/aaaa --:--

To
dd/mm/aaaa --:--

Get measurements

Export pattern to flexoffer
Send Flexoffer | Back to List

© 2016 - FlexHousing

Fig. 9 — Flex-offer creation form in the original FlexHousing prototype’s web platform

The web platform should be able to easily convey all the necessary steps elegantly, without
becoming bloated with various Ul elements. Given that the concepts of energy management
and flex-offer scheduling can be hard to grasp by an uninformed user, the Ul should make the

process more attractive, spontaneous, and easier to work with.

Rafael Teles da Rocha 18

Reengineering and development of loT Systems for Home Automation

2.1.4 Specifying a flex-offer’s energy consumption pattern

In the original prototype of FlexHousing platform, for the user to create a flex-offer and apply
it to a device, the user would have to manually specify the energy consumption pattern of said

device.

Naturally, if users do not know the device’s usual consumption pattern, or do not want to be
overly specific about the device’s consumption, they will be confused and puzzled by the

complexity of creating a flex-offer.

A solution to this issue is to develop a feature to make the system automatically create flex-

offers, based on a device’s energy consumption pattern.

2.1.5 Executives’ platform

As mentioned before, the client proposed the idea of a platform for executives, to provide
them some statistics about FlexHousing’s users. These statistics could be the total amount of
registered users, houses, and devices, or the number of times a brand of devices is used, or

an average of the duration of use for every device brand, and so forth.

Additionally, another suggested feature for this platform was the ability to check the

geolocation of every registered device.

2.2 Business areas

2.2.1 Smart Buildings, Smart Cities, and Smart Grids

The FlexHousing project, through the flex-offer concept, could have a profound impact on
energy management as more intelligent devices are incorporated into buildings. As these
devices can connect with each other while feeding data into analytics software, users gain a
more complete picture of their energy usage. This insight might reveal that certain areas
within a building are underutilized, so heating or cooling should only take place immediately

before and during periods of occupancy [17].

Moreover, |oT devices could even start to communicate with external devices, such as a smart
city’s devices and the smart grid. These two areas are a hot topic in energy management
throughout the last years. According to data published by the New Jersey Institute of

Technology (NJIT), the smart city technology industry will generate revenues of more than

Rafael Teles da Rocha 19

Reengineering and development of loT Systems for Home Automation

$27.5 billion by 2023. In addition, 88 cities worldwide will have adopted smart city
technologies by 2025 [18].

To illustrate the advantages brought by smart cities, Fig. 10 describes some cases where a

smart city system can improve a country’s economics and sustainability.

LIFE IN A SMART CITY

¢

JMART WATER

SMART
TRANSPORTATIDN

JMART
PUBLIC SAFETY

Dubugue, IA
implemented this
project in 2010
and has helped
local households
Save an average
of 7% in water
consumption

JMART ENERGY

Major cities stand

to gain around $800
billion per year of
economic opportunity
from 2030 by
upgrading

their public
transportation
networks

JMART TRAFFIC
MANAGEMENT

These technologies
help firefighters,
emergency responders,
traffic control and
sanitation workers

as well as police
officers keep

citizens safe

g

JMART
BUILDINGS

INNOVATIONS ACROSS THE GLOBE

Santander, Spain has
installed 12,500 IEEE,
GPRS and RFID
sensors around the
city that have cut
energy costs hy as
much as 25% and
waste management
costs by 20%

San Francisco’s 1-80
Smart Corridor project
will feature 133
high-tech signs
communicating
information gathered
from a network of
Sensors and cameras

Seattle is a global
leader in their smart
buildings efforts and
in 2013 launched the
High-Performance
Building program to
reduce power
consumption
through real-time
data analysis

Fig. 10 — Innovations in sustainability through smart systems. [19]

In relation to Smart Grids, according to Chris King (Chief Regulatory Officer for eMeter, a
Siemens Business), these empower consumers to save money by using less electricity or
reducing peak consumption (studies indicate conservation of 5-10% and peak reduction of 10-
20%). Furthermore, these can improve system reliability through reduced outages and faster

restoration [20].
2.2.2 Energy analytics on businesses’ equipment

In addition, areas like Retail, Industrial Production, Health Care, among others, can also

benefit from this project’s energy management solutions. For instance, smart devices and

Rafael Teles da Rocha 20

Reengineering and development of loT Systems for Home Automation

integrated systems can enable businesses to better understand their energy usage and costs
in real-time, identify malfunctioning equipment and overlay data sets to draw previously
invisible insights that can increase efficiency and reduce operating costs. In other words, an
office building with smart lighting may look at the data and notice that conference room
lighting is contributing to an unexpectedly high portion of the electricity bill. The company
could then take steps such as installing sensors to activate the heating system in a conference
room only when someone is in the room or create an intelligent schedule (in this case, a flex-
offer schedule) that automatically turns the heating off when meetings are not scheduled.
Without this type of data and reporting, companies lack the visibility required to realize
efficiencies like this [17]. In summary, companies can employ energy analytics on their

buildings to gather data and insights on their own operations.
2.2.3 Energy Markets

The energy markets consist of producers, transmitters and distributors, and consumers. The
producers create the energy on power stations, which can operate on fossil or green origins.
Furthermore, there are two types of electricity network: transmission and distribution [89].
Transmission networks carry electricity long distances around the country at high voltages.
Distribution networks run at lower voltages and take electricity from the transmission system

into homes and businesses [89].

According to the paper “Convergence to the European energy policy in European countries:
Case Studies and Comparison” [21], society, as a consumer, is nowadays headed into
becoming a low consumption economy, driven to use more competitive prices and greener
energy. A European agreement of commitments known as “20/20/20” has set three new

targets regarding energy for 2020:
e A minimum of 20% reduction in GHG emissions.
e 20% of energy production coming from renewable resources.
e 20% reduction in energy usage, by upping energy efficiency.

Since the focus of the FlexHousing project is about energy management, it could contribute

to the goals of “20/20/20".

Furthermore, by 2020, under EU legislation, 80% of consumers will need to have smart meters
installed as part of a larger plan to help European nations meet energy-efficiency targets [21].
Once again, the FlexHousing project has the potential to help European nations to make profit

of such infrastructure, when applied to consumers’ appliances.

Rafael Teles da Rocha 21

Reengineering and development of loT Systems for Home Automation

2.3 State of the art

2.3.1 Flex-Offer-related Projects

The flex-offer concept used in this project has previously been explored in projects like
MIRABEL (a European smart grid project that presents energy related data management
solutions) [22], TotalFlex (a project under the ForskEL program — Energinet.dk's programme
for supporting research and development within eco-friendly electricity production

technologies) [10] [23], and, of course, Arrowhead [24].

Since this project uses Arrowhead as its framework, and because the report already goes in
detail of Arrowhead’s specifics, there will be a bigger focus on the other two projects

mentioned than on Arrowhead.
2.3.1.1 MIRABEL

The EU-funded research project MIRABEL (Micro Request-Based Aggregation, Forecasting and
Scheduling of Energy Demand, Supply and Distribution) aims at developing a conceptual and
infrastructural demand/supply response approach to enable a better utilization of renewable
energy sources and a more flexible demand management. The core idea is that market players
may express acceptable flexibilities for their energy demand and even specific supplies of so-
called micro-request [25]. These micro-requests are called flex-offers. This system processes
large amounts of flex-offers to balance electricity supply and demand in near real-time and
thus supports the integration of non-schedulable renewable energy sources much better than

earlier approaches [26].

Fig. 11 illustrates the advantages of the MIRABEL system. There, we see the energy
consumption situation without and with the MIRABEL flexibility concept. The dark grey and
shaded areas visualize the non-flexible and flexible demand respectively. The dotted line
depicts the renewable energy production. With the help of the MIRABEL flex-offers,
renewable energy sources can be better utilized by shifting energy demand through time to

positions of large renewable production [25].

Rafael Teles da Rocha 22

Reengineering and development of loT Systems for Home Automation

Production Non-Flexible gem Flexible
‘MW Renewables Demand Demand

Production Non-Flexible ,oe Flexible
‘MW
Renewables Demand Demand
e P

Fig. 11 — Balancing with and without the MIRABEL concept. [25]

Moreover, Fig. 12 exemplifies the lifecycle of a flex-offer from its inception to its execution
and beyond. A flex-offer is submitted to the utility company and depending on its capacity,
the utility company might accept or reject the flex-offer. In the case of acceptance, the utility
company starts to schedule the flex-offer and, as time of execution approaches, assigns a fixed
execution time slot. After the execution, the billing is conducted and depending on the benefit
of the flex-offer for the utility company, an incentive is provided to the consumer, producer,

or prosumer [25].

i ~ ™ g W
Negotiation | Planning Control Billing

FiexOfler Acooptance Asssgnment Execusion Imoantive

e | SNH T || F
a1 -

Biilling

Schedulng

I_ - I_ AN AR A

Fig. 12 — Flex-offer lifecycle. [25]

To realize the developed concepts, the MIRABEL project involves the design and
implementation of an energy data management system, the EDMS. The EDMS exhibits a
hierarchical architecture that is based on the hierarchy of the European electricity market.
Each level of the hierarchy requires specific data in a certain granularity. This architecture can

be seen in Fig. 13 [25].

Rafael Teles da Rocha 23

Reengineering and development of loT Systems for Home Automation

[TS0 1 150 2

level 3
Pranss BRPSEDMS | 1o BRP’s EDMS gl

e | -

= =

t
ll.rmy Company 1 Utility Company ?]

Lewel 2
Balance Respons BRPMSEDMS | (= BRP'SEDMS | 1o
Forty '.‘.-‘——4 "—_d

==y e

= =D

J Balance Group 1 Balance Group IJ
i Scheduling Scheduling
Forecasting | | Aggregation i Forecasting | | Aggregation
Level 1
Consume - & / \
prog rr prosumer .
Prosumer's :
FEDMS
Supply Demand

Fig. 13 — The EDMS of the MIRABEL project. [25]

Furthermore, the EDMS is designed to work as part of a single European electricity market,

spanning the system over all European countries.
2.3.1.2 TotalFlex

The TotalFlex project aims to design a flexible, cost-effective power market system, which
includes both flexible power consumption and flexible power production, all the while
creating balance in the power distribution grid, making sure to avert bottlenecks and

overloads [27].

TotalFlex implements a mechanism to express and utilize the notion of flexibility, using the
concept of flex-offer proposed in the EU project MIRABEL. However, the vision of the TotalFlex
project is that for users having a flex-offer contract with an energy supplier, their flexibility is
not stated by the user, but instead predicted within the TotalFlex architecture based on past

users’ behavior [28].

Therefore, the TotalFlex project focuses on accurate flex-detection, flex-prediction, load-
prediction, and automated generation of flex-offers. Flex-detection refers to the detection of
available flexibility in device level energy consumption. Similarly, flex-prediction refers to the
prediction of flexibility, for example, an EV with a max charging power level of 5kW is
predicted to need 15kWh of energy with a time flexibility of 8 hours starting at 20:00 and
ending at 04:00 of the next day. Finally, load-prediction refers to the prediction of aggregated

and device level demand for the house, for instance, the predicted energy demand for house

Rafael Teles da Rocha 24

Reengineering and development of loT Systems for Home Automation

X at 20:00 is 2kWh or the predicted energy demand for an oven in house X at 20:00 is 1.2 kWh
[28].

2.3.1.3 Arrowhead

The Arrowhead project targets five business domains; Production (process and
manufacturing), Smart Buildings and infrastructures, Electro mobility, Energy production and
Virtual Markets of Energy. In these domains, there are several technological architectures
used for implementing SOA solutions. One of the grand challenges of Arrowhead is to enable
interoperability between systems that are natively based on different technologies. Naturally,

one of its main objectives is to achieve that, thus keeping the advantages of SOA [29].

The Arrowhead framework (Fig. 14) includes a set of Core Services which can support the
interaction between Application Services. The Core Services handle the support functionality

within the Arrowhead framework to enable Application Services to exchange information.

Included in the Arrowhead Framework

Service
Registry

-——

providing
| system

Orchestration
System

Application Systems and Services

| Service

- consuming

._system

Fig. 14 — Arrowhead Framework System of Systems [30]

Rafael Teles da Rocha

25

Reengineering and development of loT Systems for Home Automation

2.3.2 Home Automation platforms and Device interoperability

The home automation ecosystem has continually become more relevant and popular, with an
increasing number of manufacturers developing devices for the loT space. However, the smart
home business is currently in a fractured state when it comes to compatibility between

different third-party devices.

For starters, on Apple’s end, there is HomeKit (Fig. 15): a framework for communicating with
and controlling connected accessories in a user's home, built into the OS of any Apple device
since i0S 8.1. HomeK:it’s goal is to give device makers a set of standards to build around. Users
that comply with Apple's system will be able to enjoy seamless integration with Apple's mobile
products, with other HomeKit-compatible gadgets, and with Siri, Apple's voice-activated Al
assistant. Unfortunately, this is an approach that leaves out Android users, not to mention

that many of those HomeKit gadgets won't work directly with non-HomeKit gadgets [31].

Kitehon
Fon

oft

- : o - ‘ 9 |

Fig. 15 — Apple HomeKit app Ul [32]

From the Google-owned Nest Labs, there is the Nest Learning Thermostat, with more and
more products joining up with it. Products willing to fall in line with Nest, and extend the
thermostat's usefulness, get a share of its popularity, and many of them integrate directly into
the Nest app (Fig. 16), which is available on iOS and Android. However, like with HomeKit, not

every device is compatible with Nest [31].

Rafael Teles da Rocha 26

Reengineering and development of loT Systems for Home Automation

Thermostat

6’-\\\\\\\\\\\\“\ I

HEATING

68

Fig. 16 — Nest app Ul [33]

Aside from these two, there are also smaller control platforms like IFTTT, Insteon,
SmartThings, among others. IFTTT, for instance, is a popular one. IFTTT is a free web-based
service used to create chains of simple conditional statements, called applets (Fig. 17) [34]. An
applet is triggered by changes that occur within other web services, from more social oriented
ones such as Gmail, Twitter, LinkedIn, or Facebook, to more appliance specific web services
like LG Washer, Whirlpool Refrigerator, WeMo Coffeemaker, WeMo Smart Plug, or Philips Hue
lights. For example, by tapping into the Nest IFTTT service, we can sync up Nest devices with
other IFTTT-compatible devices that wouldn’t work directly with Nest otherwise [31].
However, IFTTT, like other platforms, only works with devices that are part of distributor

partnerships.

A 31
t Always be T mo Every day at 6
Tell Alexa to prepared for Tweet your Step up your AM, add today's
start the party the weather Instagrams as b ogle Money Game weather report
with a Hue light native photos Hom with Fitbit to your calendar
color show on Twitter

Turn on Turnon

Turn on Turm on

Fig. 17 — Examples of applets for different web services in IFTTT. [35]

Then there are also Amazon Echo and Google Home smart speakers, which offer voice-

activated control of certain smart-home gadgets by way of Al assistants, Alexa and Google

Rafael Teles da Rocha 27

Reengineering and development of loT Systems for Home Automation

Assistant (respectively). These are continuing to work with more and more devices,

positioning these assistants as rivals to Apple’s Siri.

Beyond all these platforms, many home automation devices like Portugal-based VPS’s Cloogy
(Fig. 18) or other low-cost devices can only be accessed by their own interfaces (website or
mobile app), with no compatibility with other services.

&3 Cloogy Tomadas

£\ Dashboard

8 rowerrLuc &

+ Electricidade

Tomadas 0.00€ 8W

Definicoes

Fig. 18 — VPS’s Cloogy UI.

Lastly, there are also many open-source platforms like OpenHAB or Home Assistant with an
increasing number of compatible devices, and with options to run on everything, from an
always-on personal computer to a Raspberry Pi. However, some of the device compatibility
bindings could have been implemented by reverse engineering protocols, which might cause

some legal risks when being used commercially [36].

OpenHAB (Fig. 19), written in Java, is designed to be device-agnostic while making it easier for
developers to add their own devices or plugins to the system. It also ships iOS and Android
apps for device control, as well as a design tools so you can create your own Ul for your home

system [37].

Rafael Teles da Rocha 28

Reengineering and development of loT Systems for Home Automation

= First Floor

Master Bedroom Child's Room

Temperature

Fig. 19 — One of many Uls available in OpenHAB. [38]

Home Assistant (Fig. 20), running on Python 3, integrates with several open-source as well as
commercial offerings, allowing the user to link, for example, IFTTT, weather information, or

an Amazon Echo device, to controls from locks to lights to even a command line notifier [37].

— HOME DOWNSTAIRS UPSTAIRS \!a
v Y - -
6) 2 D 0) (54)(156) W @-\ 5
\7 W AWAY j = &
Sun = android- android- Alarm QOutside Outside Basement Movement Switchon Toggle
5646b3d2.. 94d22745, Humidity Temperat.. Floor Wet Backyard andoff bed_light
Bedroom T ¥ Kitchen ® Lliving Room @
Kitchen Lights Ceiling Lights
Bed Light - @ o @ i &
' 3 » = 7 minutes ago 7 minutes ago
- / minutes ago .
. . Kitchen Window ® AC
Decorative Lights L I’ B - HihiEsags 4 a7 7minutes ago B
7 minutes ago
. Kitchen D o . Living Room... : o
@ Bedroom Epic Sax Guy 10 H... o LS Ago » = JRinRes56s Visitors
7 minutes ago YouTube
E lei‘ng‘; ?09T WI T~ n
/ minutes ago
Automations Media Player Living Room ¥¥ The Best Fire...
7 minutes ago YouTube
Lounge Room Chapter 1
= Who Cooks T e Therese /minutesago House of Cards S1.. rm Romantic Lights g
/ minutes ago —_—m |) 7 min s 300 ‘ > ‘
7 minutes ago __/
. @ - Walkman | Wanna Be A Hipp...
Notify:Anne Thereseds Hom:, = L3 7 minutes aco Terhnnheard

Fig. 20 — Home Assistant app Ul. [39]

In conclusion, currently it isn’t possible to have a unified setup that one could program from
a single app or control from a single voice-control platform, thus no single home automation

platform can claim to function with every device (at least not yet).

Rafael Teles da Rocha 29

Reengineering and development of loT Systems for Home Automation

2.4 Solution Overview

2.4.1 Data and Device Interoperability

To handle the communication process between software applications and smart devices, APls
(Application Programming Interfaces) are the mainstay solution. In fact, APIs are strongly
linked to loT because they can securely expose connected devices to customers and other
applications in an IT infrastructure [78]. The use of APls makes working with 1oT a more
accessible experience, as software developers can work with connected “things” without
needing to know its intricacies or protocol [79]. APIs solve this challenge successfully, since

they abstract the “thing” and expose it as an interface.

However, there are numerous different types of APls. In this case, several communication
protocols like HTTP, MQTT, XMPP, could be a possible choice for the communication interface
between the FlexHousing Middleware and the multiple types of devices. Since the original
FlexHousing prototype already used the REST (HTTP) architectural style as a basis for device
interactions, this groundwork was reused for the development of the new version of
FlexHousing, so it could be expanded upon. Nevertheless, the use of other communication

protocols is always a possibility.

Anyhow, REST, while just a concept and not a protocol, is the foundation of the most widely
used form of API today [40]. REST is a good model for IoT because each device can easily make
its state information available, and can standardize on a way to create, read, update, and
delete that data [40]. It also does not maintain a constantly open connection, so it is very

scalable [40].

Additionally, the past version of the FlexHousing Middleware would only be able to operate
with devices from VPS, this version of the Middleware has been modified to easily support

other types of devices without having to change the main source code.

To add support to another device, the new device only has to have APl endpoints to these
basic features: actuate and read consumption values. Through those endpoints, the

Middleware will be able to connect to the device and carry out its methods.

Therefore, to implement and truly test this feature, two generic customizable switches
(named Sonoff Pow), in conjunction with the Cloogy smart plug and transmitter, were used
on multiple devices. This way, the Middleware can display its ability to handle both situations:
a connection to a device via its service provider’s cloud; and direct access to a specific device

in the local network. Regarding the Sonoff sensors, to acquire specific energy consumption

Rafael Teles da Rocha 30

Reengineering and development of loT Systems for Home Automation

data and provide them through a REST API, a custom firmware was developed and deployed

into these switches.

So, given the proposed solution, the project’s structure can be observed in the Component

Diagram present in Fig. 21, followed by a description of every component in the diagram.

sual Parasigm Standarefinstivio Subrior de Foprpinutndnfede) $:|
Virtual Energy Market

Market
response

the Flexoffer Agent contacts any
available Aggregator.

<<component>> @
Arrowhead Aggregator

Through the DNS Senice Discovery,

]

XMPP i XMPP
Flexoffer
Schedule Flexoffer
1
<<component>> gl
FlexHousing Middleware

Arrowhead Flexoffer Agent

¢ Flexoffer Schedule
<<component>> €| \fc <<gomponent>> El
Execution DAO
Stored Flexoffer

<<component>> |

<<component: @
IHuuseConlroller —)

Stored Device Data

<<gomponent>>
FlexHousing API

T

Device Data
<<component>> E
Device Controller

=

Data

<<component>> gl XMPP ;r\: MQELT <<component>> E
Device X Device Y
] REST Sensor REST f
Data

<<component>>

<<component>>
Sonoff Pow API

1
i
\
,
! ISA API
1
1
i
1

[Other possible devices and [N - _____ '
potential communication protocols

-Registered Devices
- Energy Consumption Data
- Flexoffers

T
I
I
! <<gcomponent=> E
: FlexHousing
:| REST I Web Platform
FlexHousing <<component>> E
Data Executive Web

Platform

Fig. 21 — Component Diagram of the FlexHousing project

e FlexHousing Middleware: This component is responsible for bridging the users’ house

devices with the Arrowhead Framework’s flex-offer system, while also being able to

perform operations like device actuations and acquiring their consumption data, and

provide this information to the FlexHousing web platform.

Rafael Teles da Rocha

31

Reengineering and development of loT Systems for Home Automation

o FlexHousing API: Provides the system’s data (registered devices, energy
consumption data, flexoffers) to the FlexHousing web platform through a

REST interface;

o House Controller: Controls every house, including its associated rooms and

devices, and provides their data to the FlexHousing API;

o Device Controller: Manages the communication between the FlexHousing
Middleware and the users’ devices. Although this project will focus on
communication via REST (HTTP), additional communication protocols could

be implemented in the future;

o DAO: Manages the database, storing every necessary data and providing it to

other components in the system;

o Execution: Carries out the system’s automatic processes such as flexoffer

emission and flexoffer schedule execution;

o Arrowhead Flexoffer Agent: Offers the main functionalities to support the
flex-offer concept, handling the generation of Flex-offers and sending them

to the Aggregator via XMPP.

¢ FlexHousing Web Platform: Accesses the data from the FlexHousing Middleware (via

REST) and presents it to the users;

e Executive Web Platform: Like the FlexHousing web platform, it accesses the data from
the FlexHousing Middleware (via REST), however this data is specifically for company

executives;

e ISA API: Provides data from all VPS devices’ sensors via a RESTful API, through their

remote servers;

e Sonoff Pow API: Provides the Sonoff sensor’s data via a RESTful API (through the

Sonoff’'s embedded web server) available in the local network;

e Device X/Y: Other potential devices with different communication protocols, that

could be added in the future;

e Arrowhead Aggregator: Once given a flex-offer, this component handles the flex-

offer’s scheduling, based on the Virtual Energy Market’s response;

e Virtual Energy Market: Handles the energy market prices, informing the Aggregator

of their current state (through XMPP).

Rafael Teles da Rocha 32

Reengineering and development of loT Systems for Home Automation

Furthermore, in view of the presented Component Diagram, a Deployment Diagram

pertaining to the project’s structure can be seen in Fig. 22.

\genharia do Porto)

<< device >>
:ApplicationServer

<<component>>
Virtual Energy Market

XMPP

<< device >>
:ApplicationServer

<< device >>
Sscomponient=> :ApplicationServer
Arrowhead Aggregator AP
<<component>> El
Device X
XMPP XMPP
<< device >>
:WebServer
P HTTP <<component>>
<< device >> 5% davica = ISA API
:EmbeddedWebServer :ApplicationServer
HTTP
<<component>> <<component>>
Sonoff Pow API FlexHousing
Middleware << device >>
:ApplicationServer
MQTT
<<component>> E—_]
Device Y
HTTP HTTP
<< device >> << device >>
:WebServer :WebServer
<<component>> <<component>>
FlexHousing Web Executive Web
Platform Platform
HTTP:80 HTTP:80
\
<< device >> << device >>
:UserClient :ExecutiveClient

<< device >>
:Browser

<<artifact>> [
HTML 5

<< device >>
:Browser

<<artifact>> [
HTML 5

Fig. 22 — Deployment Diagram of the FlexHousing project

Rafael Teles da Rocha

33

Reengineering and development of loT Systems for Home Automation

2.4.2 Local communication between Arrowhead modules

As mentioned before, the past version of the project had a severe dependency on servers
outside of Portugal (located on Denmark) that offered a connection to the Aggregator module,

the Service Registry, and the Virtual Market of Energy (VME).

In order to break from that dependency, the solution was to locally implement the Aggregator
and VME modules (even though the local VME only serves as a test module, since it just sends
dummy data and not actual energy market data). Moreover, it was also necessary to install an
XMPP server so that these modules could be able to communicate with each other and with
the FlexHousing Middleware. A representation of the communication procedures between

these modules can be viewed in Fig. 23:

Aggregator

Virtual Market of

Flex-offer Agent (FOA)
FlexHousing Middleware

XMPP Server

Fig. 23 — Communication between modules through an XMPP server.

Furthermore, this system should follow a configuration file (Appendix-A) that specifies the
XMPP server’s hostname, port, resource, and service name, and each module’s XMPP client

account’s ID and password.

2.4.3 FlexHousing web platform’s user interface

For the FlexHousing web platform’s Ul and overall user experience, the focus is to make the
device/energy management and the flex-offer creation process as appealing and intuitive as
possible. To demonstrate this approach, this section presents a guided tour throughout the

new platform.

First, after logging in, the user will be shown the Dashboard page (Fig. 24). Here, the user can
check the current number of registered houses, rooms, and devices, check the energy

consumption percentage of each room, and activate/deactivate a registered device.

Rafael Teles da Rocha 34

Reengineering and development of loT Systems for Home Automation

= FlexHousing

= Dashboard
cister
@ £ lem RO ~
55 Oashboard i 2
M Houses
[> T
£ Devices
CISTER
Room Name Energy Percentage
%
0 4%
oe 8 : .
Device State Device State Device State Device State
3 Legowt
Lamp1 m Water Hester ()] Lsmpz (o) Refrigerato [0

Fig. 24 — Dashboard page in the new FlexHousing web platform

Next, the user can then use the side-navigator (Fig. 25) to add a house, room, or device, as
well as to check all the registered devices. As an example, Fig. 26 presents the “Add Device”

form, while Fig. 27 shows the page displaying all registered devices.

2

cister
83 Dashboard
Houses >
[t= Rooms >
ﬁ Devices ~
Add Device

Check all Devices

Fig. 25 — Side-Navigator in the new FlexHousing web platform

Rafael Teles da Rocha 35

Reengineering and development of loT Systems for Home Automation

Add New Device

Name Select a house... v

Select a sensor brand.

Fig. 26 — "Add Device" form in the new FlexHousing web platform

Devices

CISTER

v v v ©

Lamp 1 Lamp 2 Water Heater Refrigerator

Sala Quarto Principal Casa de Banho Cozinha

000000 O000OCBO 000060 0000006

Fig. 27 — Device index page in the new FlexHousing web platform

When checking all devices, the user can select to create a flex-offer for the device. In the Flex-

Offer creation form (Fig. 28), the schedule and the definition of the time window of a flex-

Rafael Teles da Rocha 36

Reengineering and development of loT Systems for Home Automation

offer is set by dragging and dropping the flex-offer event in a calendar with the mouse (Fig.

29).

Water Heater

Create Flexoffer

Flexoffer Name Flexoffer Date 3

day | Week | Month September 2017 Today « »

=
Fig. 28 — Flex-offer creation form in the new FlexHousing web platform
Flexoffer Date
Day Week | Month 24 Jul 2017 — 30 Jul 2017 Today < >
Mon, July 24 Tue, July 25 Wed, July 26 Thu, July 27 Fri, July 25 Sat, July 29 Sun, July 30
00:00 - 05:00
00:00 Flexoffer

01:00

02:00

03:00

04:00

05:00

06:00

Fig. 29 — Scheduling a Flex-offer in the new FlexHousing web platform.

As for the creation of the energy consumption pattern for the flex-offer, the user has two
options, a more experienced or expert user can do it manually or other users will do it

automatically by running advanced pattern discovery algorithms.

By deciding to do it manually, the user can determine the duration of the pattern by clicking
on a dropdown menu, and then define the energy consumption of each time segment by

dragging the bars in a chart with the mouse (Fig. 30).

Rafael Teles da Rocha 37

Reengineering and development of loT Systems for Home Automation

If doing it automatically, the user only has to specify the hour the device is usually activated,

and then the system will present him with a flex-offer, which can be accepted, rejected or

changed by the user (Fig. 31).

Pattern Duration

01:30 ¥
FlexOffer

30

20 Minimum Energy Interval: 18
= e W
3 —_—
=
= —
=
o
=
w

10 —

0 I

00:00- 00215 00:15-00:30 00:30 - 00:45 00:45 - 01:00 01.00-01:15 01:15-01:30
@ Maximum Energy Interval @ Minimum Energy Interval

Fig. 30 — Manually creating the consumption pattern for a Flex-offer in the new FlexHousing

web platform.

Select the time when this device is usually activated:

18:00 v

FlexHousing will apply a flexoffer with this consumption pattern:

FlexOffer

—_ Minimum Energy Interval: 0.00760
0.0075 =
0.005
0.0025
0

00:00-00:15 00:15-00:30 00:30 - 00:45

Energy in KW

00:45-01:00 01:00-01:15 01:15-01:30

@ Maximum Energy Interval @ Minimum Energy Interval

Fig. 31 — Automatically creating the consumption pattern for a Flex-Offer in the new

FlexHousing web platform.

Rafael Teles da Rocha 38

Reengineering and development of loT Systems for Home Automation

Besides the Flex-offer creation, the user can also check the device’s energy consumption (Fig.
32), and check a device’s active flexoffer (Fig. 33) to see if it has had an effect in the device's

consumption pattern.

Refrigerator

Power by Day (kW)

Fig. 32 — Checking a device's consumption in the new FlexHousing web platform

Verify Flexoffer

Flexoffer vs. Energy Consumption

Flexoffer Praje ion

ction @ Actual Consumpts

Fig. 33 — Verifying the effectiveness of a flexoffer in the new FlexHousing web platform

2.4.4 Specifying a flex-offer’s energy consumption pattern

To solve the issue of users being discouraged due to the complex process of creating a flex-
offer, it was decided to develop a feature to make the system automatically create the flex-

offer’s energy pattern, based on the device’s consumption pattern.

To do so, certain algorithms from the paper “Generation and Evaluation of Flex-Offers from
Flexible Electrical Devices” [65] will be used to implement a way to identify energy patterns.
For the full explanation of these algorithms, section 4.4.4 in the Implementation chapter

explains every step of the entire process.

Rafael Teles da Rocha 39

Reengineering and development of loT Systems for Home Automation

2.4.5 Executives’ platform

For the executives’ platform (Fig. 34), the Ul will be similar to FlexHousing’s with some slight
changes. As mentioned before, the client was interested in seeing if it was possible to have a
platform that could show some statistics and metadata about the registered users and

devices.

Thus, the developed platform displays the total number of registered houses, devices, and
users, while also showing the total number of times a device brand is used and its average
hours of use. Since this project wants to provide proof of concepts for all interesting
capabilities of a FlexHousing implementation, while the device geolocation feature was not

part of a use case, a placeholder demonstration was added to the platform.

= [EXECUTIVES PLATFORM

[)
ad Dashboard

executive

Mapa Satsii

‘‘‘‘‘‘

Lisboa

Fig. 34 — Executives’ platform Ul

Rafael Teles da Rocha 40

3 Work Environment

This chapter describes how the work was planned, what kind of work methodology was used
for development, all the attended meetings in the internship, and the technologies used to

achieve the proposed solution.

3.1 Work Methodology

3.1.1 Development Process

For the development of this project, an iterative work methodology similar to the Rational

Unified Process (RUP) was used.

Essentially, RUP is a Software Engineering Process. According to IBM Rational Software
Corporation, “it provides a disciplined approach to assigning tasks and responsibilities within
a development organization. Its goal is to ensure the production of high-quality software that

meets the needs of its end-users, within a predictable schedule and budget” [41].

RUP provides the guidelines, templates and tool mentors necessary for a team to take full

advantage of among others the following best practices [41]:
1. Develop software iteratively
2. Manage requirements

3. Use component-based architectures

e

Visually model software

v

Verify software quality
6. Control changes to software
According to the 4 phases of RUP, the project was distributed in the following way:

1. Inception — Research and code analysis. A study was employed to search for viable

technologies to implement for the project.

2. Elaboration — Code design, such as documentation for functional and non-functional

requirements.

3. Construction — Implementation of all the use cases, with continuous testing.

Rafael Teles da Rocha 41

Reengineering and development of loT Systems for Home Automation

4. Transition — Some prototypes were developed and showcased to multiple
stakeholders, resulting in updates, improvements, and the implementation of new

features.

The development process can be described in Fig. 35. The horizontal axis represents time and
shows the dynamic aspect of the process as it is enacted, and it is expressed in terms of cycles,
phases, iterations, and milestones. The vertical axis represents the static aspect of the process:

how it is described in terms of activities, artifacts, workers and workflows [41].

—;ma_

DISCIPLINES Inception | Elaboration ‘ Construction Transition

BUSINESS MODELLING

I
|
|
I
REQUIREMENTS :
I

ANALYSIS & DESIGN W

|
IMPLEMENTATION , ’/,L/ﬂ/v-——x%/k

TEST

DEPLOYMENT

CONFIGURATION & CHANGE MANAGEMENT

PROJECT MANAGEMENT

ENVIRONMENT e oo S . P. |
| | 1
| | |

Elab #1 Elab #2 Const #1| |Const #2| |Const#3 Tran #1 Tran #2

| Initial |

Fig. 35 — Typical RUP chart, showing how the development process is structured along two

dimensions. [42]
3.1.2 Version Control

Version control systems are a category of software tools that help a software team manage
changes to source code over time. Version control software keeps track of every modification
to the code in a database. If a mistake is made, developers can turn back the clock and
compare earlier versions of the code to help fix the mistake while minimizing disruption to all

team members [43].

In the case of the development of this project, the tools used for version control were primarily
Git, using Bitbucket as the web-based hosting service. Through this, Issues were employed to

keep track of tasks, enhancements, and bugs for the project.

Rafael Teles da Rocha 42

Reengineering and development of loT Systems for Home Automation

3.2 Project Planning

Given the investigative and incremental nature of this project, it suffered several changes in
its requirements and planning throughout development, due to the shareholders’ feedback.

Nevertheless, Table 1 displays an approximation of its overall planning.

Table 1 — Project Planning

Tasks/Events Begin date End date
Investigation of the project's theme - l1oT and Home 17/02/17 22/02/17
Automation
Introduction to the FlexHousing project and Arrowhead 23/02/17 03/03/17
Framework
Stakeholder Meetings and Requirements Engineering 06/03/17 17/03/17
Software Engineering - Requirements, Analysis, and 16/03/17 27/03/17
Design
Development of the FlexHousing Web Platform 27/03/17 21/06/17
FlexHousing Web Platform Tests 27/03/17 21/06/17
Requirement Updates 05/04/17 24/04/17
Improvements and implementation of new features on 05/04/17 25/07/17

the FlexHousing Middleware

FlexHousing Middleware Tests 05/04/17 25/07/17
Vacation Break 26/07/17 17/08/17
Remaining time to fulfill incomplete tasks 18/08/17 08/09/17
Project Report 23/02/17 08/09/17

Rafael Teles da Rocha 43

Reengineering and development of loT Systems for Home Automation

3.3 Meetings

Date

06/02/17

10/02/17

17/02/17

24/02/17

02/03/17

03/03/17

08/03/17

10/03/17

27/03/17

01/04/17

12/04/17

Table 2 — Project Meetings

Participants

Rafael Rocha, Luis Lino

Ferreira, José Bruno Silva

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, Luis Lino
Ferreira, Michele Albano,

José Bruno Silva

Rafael Rocha, Luis Lino

Ferreira, Joss Santos

Rafael Rocha, Michele

Albano

Rafael Rocha, Michele

Albano

Rafael Rocha, Michele

Albano

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, José Bruno

Silva

Rafael Rocha, Luis Lino
Ferreira, Michele Albano,

José Bruno Silva

Location

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

ISEP

CISTER

CISTER

CISTER

Description

Introduction and discussion

about the project’s theme.

Discussion about the project’s

state of the art.

Presentation by Rafael Rocha

about Home Automation.

Introduction to the FlexHousing

project.

Introduction to the Arrowhead

Framework.

Discussion about the project.

Troubleshooting equipment

(Cloogy and smart plug).

Further discussion about the

project.

Project planning.

Discussion about the project’s

implementation.

Discussion about the project.

Rafael Teles da Rocha

44

Reengineering and development of loT Systems for Home Automation

18/04/17

19/04/17

24/04/17

05/05/17

11/05/17

15/05/17

17/05/17

06/06/17

12/06/17

26/06/17

28/06/17

29/06/17

08/07/17

Rafael Rocha, Luis Lino
Ferreira, Michele Albano,

José Bruno Silva

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, André Pedro,

Pedro Santos

Rafael Rocha, Luis Lino

Ferreira, André Pedro

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, Luis Lino
Ferreira, Michele Albano,

André Pedro

Rafael Rocha, Michel

Albano, José Bruno Silva

Rafael Rocha, Michel

Albano, José Bruno Silva

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

Discussion about the project’s

status.

Presentation by Rafael Rocha

about the project’s status.

Discussion about the acquisition

of new equipment.

Discussion about the

implementation of the new

equipment.

Discussion about the limitations

of the new equipment.

Discussion about the project’s

use cases.

Discussion about the project

report.

Discussion about the acquisition

of new equipment.

Discussion about the

implementation of the new

equipment.

Discussion about the project’s

implementation.

Discussion about the project’s

use cases.

Discussion about the project’s

status.

Discussion about the project’s

status.

Rafael Teles da Rocha

45

Reengineering and development of loT Systems for Home Automation

11/07/17

18/07/17

20/07/17

21/07/17

24/07/17

17/08/17

21/08/17

31/08/17

04/09/17

15/09/17

27/09/17

04/10/17

09/10/17

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, Luis Lino

Ferreira, Michele Albano

Rafael Rocha, José Bruno

Silva

Rafael Rocha, Michele
Albano

Rafael Rocha, Luis Lino

Ferreira, Vincent Nelis

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha. Luis Lino

Ferreira, Michele Albano,

Vincent Nelis

Rafael Rocha, Michele

Albano

Rafael Rocha, Michele

Albano

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, Luis Lino

Ferreira

Rafael Rocha, Luis Lino

Ferreira, Vincent Nelis

Rafael Rocha, Luis Lino

Ferreira

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

CISTER

Presentation by Rafael Rocha

about the project’s status.

Discussion about the project and

the project report.

Discussion about the project’s

implementation

Discussion about algorithms to

detect energy consumption

patterns.

Discussion about device type

identification.

Discussion about the project’s

status and the project report.

Discussion about device type
identification and the
implementation of data mining

algorithms.

Discussion about the project’s

status and the project report.

Discussion about the project

report.

Discussion about the project

report.

Discussion about the project’s

status and the project report.

Discussion about the device type
identification section in the

project report.

Discussion about the project

report.

Rafael Teles da Rocha

46

Reengineering and development of loT Systems for Home Automation

11/10/17 Rafael Rocha, Luis Lino CISTER Discussion about the project
Ferreira report.

12/10/17 Rafael Rocha, Michele CISTER Discussion about the project
Albano report.

3.4 Used Technologies

This section will briefly mention every technology used along the project.

As mentioned before, the FlexHousing project is composed of two different applications: the
FlexHousing Middleware, which communicates with a devices’ or a service provider’s API,
manages the database, and provides its data as a RESTful service to web applications, and the

FlexHousing web platform, which serves as a gateway to the Middleware’s data and services.

Table 3 — Used Technologies
Technology What it is and where it was used

Java Java is an object-oriented programming
language. The Middleware, and the local
Aggregator and VME implementations
developed in the Arrowhead project [44] are

built in Java.

Jersey and Grizzly These two Java libraries are used in the
FlexHousing Middleware to consume
resources from RESTful APIs, and to host the

Middleware’s own resources.

Apache Derby An open source relational database
implemented entirely in Java and available
under the Apache License, Version 2.0. The
Middleware’s data persistence is

guaranteed by this database.

Rafael Teles da Rocha 47

Reengineering and development of loT Systems for Home Automation

ejabberd (XMPP Server) XMPP is a communications protocol for
message-oriented middleware based on
XML, allowing for a secure message
exchange between the FlexHousing
Middleware and the other Arrowhead
modules. ejabberd is a free XMPP
application server, and was selected as the

project’s local XMPP server.

Laravel 5.4 (PHP) Laravel is a free, open-source PHP web
framework, intended for the development
of web applications following the MVC
architectural pattern. The web app’s
backend is built in PHP, using Laravel 5.4 as

its framework.

HTML5, CSS3, JavaScript The web app’s frontend is built in HTMLS5,
CSS3, and JavaScript, using the Materialize

Framework.

Arduino (C/C++) The Arduino language consists of a set of
C/C++ functions. Arduino was used to
develop a custom firmware for the Sonoff

sensors.

Arrowhead Framework The Middleware (which is a Flex-Offer
Agent), uses the Service Registry and
Orchestration modules, provided by the
Arrowhead framework, to find the remote

Aggregator’s address.

Python A multi-paradigm programming language.
Python was used to develop scripts for

identifying device types.

Rafael Teles da Rocha 48

4 Technical Description

This chapter describes all the work done throughout the project’s development, from

requirements engineering, analysis and design, to implementation and tests.

4.1 Requirements Engineering

Software requirements are descriptions of features and functionalities of the requested
system; therefore, these requirements convey the users’ expectations of the final product.
Some requirements can be obvious, known, or expected, while others can be hidden,

unknown, or unexpected from the client’s point of view [45].

The process of gathering these software requirements from the client, analyzing and

documenting them, is known as requirements engineering.

4.1.1 User Roles

A user role is a collection of defining attributes that characterize a population of users and
their intended interactions with the system [47]. These are roles that are significant to the
success of a system and will occur over and over in the user stories that make up a system’s

product backlog [48].
Thus, the defined user roles for this project, and their respective interactions, are as follows:
User Role: End User

e Standard users that can only access their information and data.

e (Can access the data of their houses, rooms, and devices through the FlexHousing web

platform.
e Can check their devices’ energy consumption through the FlexHousing web platform.
e Can turn their devices on and off through the FlexHousing web platform.

e (Can create Flex-offers for their devices, manually or automatically, through the

FlexHousing web platform.

«Autor» 49

Reengineering and development of loT Systems for Home Automation

User Role: Company Executive
e Users that can access an information summary of their clients’ data.
e Can check the total number of registered users, devices, and houses.

e Can check the number of times a device brand was used and its average time of use.

4.1.2 User Stories

User stories are short, simple descriptions of a feature told from the perspective of the person
who desires the new capability, usually a user or customer of the system [49]. At times, there
might exist a disconnection between what the user needs and what the system actually offers.
This is the reason why requirements specification is so important to software development,

and why user stories help align the system’s features with the user’s vision.

It should be noted that this project’s user stories were made in conjunction with a mockup of
the final application, hence their respective acceptance tests are so specific. Thus, this project

allowed to define the following user stories and acceptance tests:

Rafael Teles da Rocha 50

Reengineering and development of loT Systems for Home Automation

Table 4 - User Stories: End User

End User

Acceptance Test

| want to access the FlexHousing platform.

I want to check my devices in their respective

house and room.

| want to check if my devices are turned on

or off.

I want to control my devices remotely.

I want to check my devices’ energy

consumption.

The user must access the platform’s web
address and login (or register first, and then

login).

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

The user must select the “Devices” option on

the FlexHousing platform’s navigator panel.

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

The user must check the color on the
device’s “On/Off” button in the “Devices”

page, on the FlexHousing platform.

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

The user must click the device’s “On/Off”
button in the “Devices” page, on the

FlexHousing platform.

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

Rafael Teles da Rocha

51

Reengineering and

development of loT Systems for Home Automation

| want to apply a flex-offer to one of my

devices.

| want to check my device’s active flexoffer
and see if it was effective on the device’s

consumption pattern.

Table 5 - User Stories:

Company Executive

The user must click on the device’s
“Consumption” button in the “Devices”

page, on the FlexHousing platform.

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

The user must click on the device’s “Create
Flex-offer” button in the “Devices” page, on

the FlexHousing platform.

The user must fill out the form for the Flex-

offer creation, on the FlexHousing platform.

The user must fill out the required forms for
the device registry: first the house form,
then the room form, and finally the device

form, on the FlexHousing platform.

The user must fill out the form for the Flex-

offer creation, on the FlexHousing platform.

The user must click on the device’s “Check
Flex-offer” button in the “Devices” page, on

the FlexHousing platform.

Company Executive

Acceptance Tests

| want to check basic information about the
system and a customer device usage analysis
(e.g., number of times used, average hours

of use, etc.).

The user must access the platform’s web
address and login (or register first, and then

login).

The information will be displayed in the

main page.

Rafael Teles da Rocha

52

Reengineering and development of loT Systems for Home Automation

4.1.3 Functional Requirements

Functional requirements specify functionalities (use cases) that a system or system

component must be able to perform [50].

In this case, the functional requirements of the project are as follows:

4.1.3.1 FlexHousing platform

1.

2.

The system should be able to handle multiple users and houses;

The system should be able to register users, and grant access to a user after they

provide the correct username and password;

The system should be able to browse, read, edit, add, and delete houses (in other

words, perform a CRUD operation);
a. When filling out the form to register a house, the user should specify:
i. House name;
ii. House address.

The system should be able to browse, read, edit, add, and delete rooms (in other

words, perform a CRUD operation);
a. When filling out the form to register a room, the user should specify:
i. Room name;
ii. House where the room belongs to.

The system should be able to browse, read, edit, add, and delete devices (in other

words, perform a CRUD operation);

a. When filling out the form to register a device, the user should, at least,

specify:
i. Device name;
ii. House where the device is located;
iii. Room where the device is located;
iv. Device brand;
v. Device model;

vi. Sensor brand;

Rafael Teles da Rocha 53

Reengineering and development of loT Systems for Home Automation

10.

11.

12.

13.

14.

vii. Sensor’s REST API address.

The system should be prepared for the addition of devices from different brands,

using different communication protocols;

The system should be able to turn a device on and off;

The system should be able to register or access the device’s energy consumption data;
The system should be able to show the current energy consumption of a device;

The system should be able to connect to local or external Aggregator modules;

The system should be able to allow the user to create Flex-offers manually;

The system should be able to create Flex-offers automatically;

The system should be able to show a device’s active flexoffer and demonstrate if it

was effective on the device’s consumption pattern;

The system should be able to identify the types of devices registered (wet-devices,

refrigerators, and so on).

4.1.3.2 Executives’ platform

1.

The system should be able to display the total number of registered users, devices and

houses;

The system should be able to register and display the end users’ devices’ frequency of

use and average time of use;

4.1.3.3 Custom switch (Sonoff)

1.

4.1.4

The system should be able to turn the energy on and off;

The system should be able to acquire energy consumption data (Active Power,

Voltage, Current);

The system should be able to provide energy consumption data via REST or other

protocols.

Non-Functional Requirements

Non-functional requirements are not related to functional aspects of the software. They are

implicit or expected characteristics of the system. Thus, the main non-functional requirements

of the project are as follows:

Rafael Teles da Rocha 54

Reengineering and development of loT Systems for Home Automation

4.1.4.1 Usability

Usability is the degree to which a software can be used by specified consumers to achieve

quantified objectives with effectiveness, efficiency, and satisfaction [51].

This project’s platforms must have an intuitive and appealing interface, using responsive
layouts, to guarantee the adequate and useful presentation of information. More specifically,
the FlexHousing platform must be able to adequately display information for both expert and
inexperienced users, by being simple enough to use and understand while offering additional

features for more in-depth information.
4.1.4.2 Performance
Performance pertains to the amount of work accomplished by a computer system [52].

Since this project’s platforms aim to be interactive and could be used on mobile devices, which
mostly use low-speed download-upload connections, certain precautions should be taken. For
instance, images should be reduced in size and, if possible, converted to .jpg format, CSS
should be minified, and requests to the server should mostly use AJAX technology, thus

avoiding the entire page refresh.

Moreover, in the case of the FlexHousing platform, interaction with other devices should be
seamless and as quick as possible, for instance, the response time when turning on/off a

device should be less than one second.
4.1.4.3 Portability
Portability consists in the usability of the same software in different environments [53].

The portability of these platforms must be ensured, since they will be accessed through any
device with an internet connection. For example, the project’s platforms should use
responsive layouts, which will in turn dynamically adapt their content to any device’s display

without the need to zoom.
4.1.4.4 Interoperability

Interoperability is a characteristic of a system, whose interfaces are completely understood,
to work with other products or systems, at present or future, in either implementation or

access, without any restrictions [54].

As mentioned before, interoperability is a big focus in the FlexHousing platform, since one of
its goals is to develop a generic interface, able to work with different implementation modules

for different devices.

Rafael Teles da Rocha 55

Reengineering and development of loT Systems for Home Automation

4.2 Analysis

Domain Analysis is a process by which information used in developing software systems is
identified, captured, and organized, producing a domain model with the purpose of making
the information reusable when creating new systems [56]. A domain model is a conceptual
model of the domain that incorporates both behavior and data [57]. It represents real-word

concepts, and not software components [58].

Through the gathered functional requirements and use cases, and based on the previous
project’s domain model, it was possible to develop a domain model that captured the

envisioned system.

Since these improvements are relevant to understanding the proposed solution, a domain

analysis was made, and the changes resulting from it were documented.

4.2.1 Domain Model

As a starting point for the analysis, the previous project’s domain model will be presented (Fig.
36). This will allow us to juxtapose it with the new requirements, and determine what can be

kept, what must change, and what needs to be added.

Next, a domain model considering the new requirements will be displayed (with the new
elements highlighted in red) in Fig. 37, as well as a detailed description of every domain object

present in the new model.

Rafael Teles da Rocha 56

Reengineering and development of loT Systems for Home Automation

4.2.1.1 Previous Domain Model

Visuz Pamdgm Stndard Edton{lnsstui Supenor de Engechana do Pork) is created from

communicates

<<doriv>
is an operation

Fig. 36 — Previous project's domain model [59]

Rafael Teles da Rocha

57

Reengineering and development of loT Systems for Home Automation

4.2.1.1.1 What can be kept

The flex-offer process (particularly the behavior between Flex-Offer Agent, Flex-offer,
Measurements, Schedule, Actuation Schedule, and Actuation) can be reused, since it follows
the established requirements. While the implementation of this feature did suffer some

changes, the domain model itself does not merit any major tinkering on this front.
4.2.1.1.2 What must change

First, the previous project was focused on functioning only with VPS devices, which meant
FlexHousing’s Operations were tied to the VPS services’ framework. Given that one of the
project requirements specifies that the system should be prepared for the addition of other
kind of devices from different brands, the process of requesting “Measurements” and sending

“Actuations” to a “Device” must be abstracted.

In other words, the object “VPS Services” should implement the behavior specified by an
interface named “Third-Party Service”. This way, device operations (Measurements and
Actuations) will be subject to different implementations of the “Third-Party Service” interface,

depending on a given device.

Second, in the previous project, the concept of multiple “Users” or multiple “Houses” was not
taken into account. Since one of the project requirements requests that the system can have
multiple users, and these users can have multiple houses, the domain model will have to be

changed to accommodate these features.
4.2.1.1.3 What needs to be added

Given that the system has to connect to local or external Aggregator and VME modules, the

Virtual Market should not be omitted, and must be added as a domain object in the model.

Furthermore, since one of the project requirements specifies the existence of the “Company
Executive” role, this role should also be added as a domain class. Moreover, because a project
requirement stipulates that the system has to identify the type of a device, the Device class
will also have a Device Type. Also, because of the added support for different kinds of device
brands, it should be acknowledged that some device services do not store measurements.
Thus, the FlexHousing system itself should be able to register measurements from devices
that do not offer this feature. Lastly, since the FlexHousing system must verify the

effectiveness of a flexoffer, this operation should also be displayed in the domain model.

Rafael Teles da Rocha 58

Reengineering and development of loT Systems for Home Automation

4.2.1.2 New Domain Model

= is created from

-
VPS
Virtual Market Measurements < stores -
e _ | ¢
0.* B ‘ !
==derives= ! .| Third-Party Service]--
0.* 1 is an operafion A 1.
1 H
* communicates with uses A acquires : .q,‘:
H > | Sonoff
1 H p o
1. 1 T grants
Aggregator Schedule Sensor 0. Operation 1 has 1
sends back S
1 1 . Authorization
— - i
i i
) * communicates with A has M has I
|
1. 1 1) :
; : |
FlexOffer Agent = Flexoffer ’ is applied to . Device 5 0.1 Actuator ;
sends ! ==derives>
\is an operafion
1 verifies the effectiveness of J 0.* 1 0.* 1 ,
J e
tisa stores g
1 1 1 Device Type 1
= i of receives |
FlexHousing 1 identifies _m_ :
J i
; i 1 execUtes §.e :
Actuation :
_ et
registers
provides user data to 1.
1.+
* uses) . w A gands
D - * has 1
End User Company Executive {)
Actuation Schedule »
T
manages 1 Legend
o=
House ; - Room No changes made
Containg - New or modified

Fig. 37 — Project’s new domain model

Rafael Teles da Rocha

59

Reengineering and development of loT Systems for Home Automation

FlexHousing

This conceptual class represents the FlexHousing middleware. The FlexHousing middleware is
responsible for bridging the users’ houses, rooms and devices, with the Flex-Offer Agent, while

also being able to perform operations like actuations and acquiring measurements.
Flex-Offer Agent

A Flex-Offer Agent is responsible for generating and sending the Flex-offers to the Aggregator.
As explained before, Flex-Offer Agents are basically software modules that offer the main
functionalities to support the flex-offer concept. In this regard, the FlexHousing middleware is

effectively a Flex-Offer Agent.
Aggregator

The Aggregator, once having aggregated enough flex-offers from the Flex-offer Agents, will
send these to the Virtual Market (of Energy). Afterwards, the Aggregator receives a response
from the Virtual Market, disaggregates the response and sends a consumption schedule to

the Flex-Offer Agent.
Virtual Market

The Virtual Market, after receiving a flex-offer larger than a certain amount, will then
negotiate with existing electricity markets, and acquire the cheapest consumption schedule

for these to be deployed. Finally, it then sends the schedule to the Aggregator.
End User and Company Executive

These conceptual classes represent the two types of user roles that will make use of the
FlexHousing system. While the End User uses FlexHousing to manage his houses’ appliances,

the Company Executive uses it to analyze user data.
House

A House belongs an End User and contains Rooms. The House class will serve as a software

class to store the Rooms belonging to the End User’s house.
Room

A Room belongs a House and contains Devices. The Room class will serve as a software class

to store the Devices belonging to the End User’s room.

Rafael Teles da Rocha 60

Reengineering and development of loT Systems for Home Automation

Device

A Device has one or more Sensors connected to it, so that the FlexHousing middleware can
store the Device’s energy consumption data (or other types of data in the future), and an

Actuator, so that the FlexHousing middleware can turn the Device on and off.

The Device class will serve as a structure to store the device’s name, brand and model, and its

Sensors.
Device Type

The Device Type class identifies what kind of device a Device is: either a wet-device, or a

refrigerator, or an electric vehicle, and so forth.
Sensor

A Sensor has the purpose of acquiring a Device’s Measurements, which, in this case, are
energy consumption values. However, in the future, additional Sensors could be installed to

obtain other types of Measurements.
Measurement

The Measurement class serves as a structure to store any kind of Measurement obtained by
a Sensor. A Measurement is composed of three attributes: the type of measurement, the
measurement value, and the date the measurement was taken. Currently, however,

Measurements are only used to represent energy consumption values.
Actuator

The Actuator is a conceptual class that represents the Device’s actuator, which has the

responsibility of turning the Device on and off.
Actuation

The Actuation class represents the action of turning on and off a Device. This class serves as a
structure to store the ID of the device the actuation is for, and the start time and end time of

an actuation.
Operation

An Operation is only a conceptual class that represents the action of requesting
Measurements from a Device or performing an Actuation on a Device. These types of
operations may have to undergo an Authorization process, depending on the Third-Party

Service that regulates the Device.

Rafael Teles da Rocha 61

Reengineering and development of loT Systems for Home Automation

Third-Party Service

The Third-Party Service class depicts the service that controls the Device’s smart plug/switch.
This could be a service provider’s API arranged by their servers, or it could just be an API
available in the local network, provided by the smart plug/switch. Either way, these services

may have different processes of executing the same operation.
Authorization

The Authorization class is a conceptual class that represents the authorization process granted
by the Third-Party Service to perform operations. However, an Authorization process might

not be required by the Third-Party Service.
Flex-offer

The Flex-offer class represents the flex-offers sent by the FlexHousing Middleware. This class
can be used as a structure to store the start time and end time of the flex-offer, the minimum
and maximum energy consumption for each time section, and its actuation schedule. At first,
the flex-offer doesn’t have a Schedule for the device actuations, until the Aggregator responds

with a Schedule. Only then can it be applied to a device.
Schedule

The Schedule class represents the Flex-offer’s schedule. At first, the flex-offer doesn’t have a

Schedule for the device actuations, until the Aggregator replies with one.
Actuation Schedule

The Actuation Schedule is a conceptual class created from the Flex-offer’s Schedule, where it

executes the scheduled actuations based on the time determined by the Schedule.

Rafael Teles da Rocha 62

Reengineering and development of loT Systems for Home Automation

4.3 Design

After a careful analysis of the information gathered from the project requirements and
domain model, comes the development process of designing a model of the software to be

implemented.

In other words, the conceptual model is developed further into an object-oriented model
using Object-Oriented Design (O0D) [60]. In OOD, the domain concepts in the analysis model
are translated into software classes, constraints are identified, and interfaces are designed,

resulting in a model for the solution domain [61].

In this case, the models designed in this section were ultimately implemented, with the project

implementation being available on the Bitbucket repository.

4.3.1 Data structure

The database used in the previous project was an Apache Derby relational database. For the
development of the current project, the same database was used, but its structure suffered
some alterations because of the new requirements. This section will describe the schema for

the new database.

First, the full database schema will be displayed in Fig. 38, with the new elements highlighted

in red. Then, a brief explanation of these added elements will be given.

Rafael Teles da Rocha 63

Reengineering and development of loT Systems for Home Automation

4.3.1.1 Database schema

€Tl Paradgm

e Jsg o Superr 8 Engenya da Porta)
integer(10)

warchar(255) [
warchar(255)

varchar(255) [

| b
Username

Password
Token

A
B UserlD integer(10)
'%‘,Hnuseﬂﬂ varchar(255)

varchar(255)
wvarchar(255)
varchar(255)

Name
Address

Legend

No changes made

New or heavily
modified

[User_ThirdPartyService \

(ThirdPartyService \

B UseriD integer(10) o integer(10) U
_ hirdPartyServicelD integer(16) Name varchar(255)
Usemame varchar(255) AP|_Address varchar(255)
Password varchar(255)

(Device_ThirdPartyService

Actuation

'%1 ThirdPartySeivicelD integer(10)

¥ DevicelD varchar(255)

integer(10) 1)
> DevicelD varchar(255)
StartTime timestamp

EndTime timestamp [
TotalTime doubleis2) [

I N
(Device) Measurements
integer(10) i o varchar(255) V] o integer(10) U]
- i - i
= HouselD _varhar(255) o = RoomID integer(10) DevigeiD varchar(255) |
Noms erhaig Name varchar(255) Name varchar(256) |
SensorBrand varchar(255) Value double(52)
DeviceBrand varchar(255) Time timeslamp(28)
| (] pevicemodel varchar(255)
] oeviceType varchar(255)
‘ SensorlD varchar(255) [N]
BY A
;” '
.
& 2 o™
[Scheduls Flexoffer \ T Sensor \
D integer{10) u I integer(10) U ! ID integer(10) 1]
= DevicelD varchar(255) = DevicalD varchar(256) = DevicelD varchar(255)
StartTime timestamp{29) StartTime timestamp(29) Name varehar(255) Dﬂ
Day date(10) EndTime timestamp(29)
FlexofferName integer(10) integer(10} [N]
ae H integer(10) U
T i
I Name varchar(255)
I
T
I &
T
i
'
I
'
I
'
ScheduleSlice Slice]
7 D integer(10) U D integer(10) U
SchedulelD integer(10) FlexofferlD integer(10)
Sequence integer(10) (3] Sequence integer(10)
EnergyValue double(52) [} Lowload double(52)

HighLoad

double(52)

Fig. 38 — Database schema for the FlexHousing Middleware

Rafael Teles da Rocha

64

Reengineering and development of loT Systems for Home Automation

4.3.1.2 Database Explanation

To address the requirements for multiple users and houses, the tables User, House, and
User House were created. Most of their attributes are self-explanatory, with the exception
of the attribute Token in User, which serves as a randomly generated access token given to

users when they log in, to control user access on the platform.

Furthermore, regarding the third-party service solution, the tables ThirdPartyService,
User ThirdPartyService, and Device ThirdPartyService were conceived.
The attribute APT Address stores the web address of the service’s API, while Username
and Password in User ThirdPartyService pertain to the user’s credentials of a

specific service.

Lastly, to satisfy the requirements related to the Company Executive role, where the platform
would present basic data about the End Users’ device usage, some new attributes were added
to the Device table, and the table Actuation was created, so that the system would be
able to register every time a device is used (a device is considered “used” once when it is

turned on, and then turned off, in this sequence).

4.3.2 Use Cases

Use cases are a list of actions or event steps, typically defining the interactions between a role

(known in the UML as an actor) and a system, to achieve a goal [55].

Given the specified functional requirements, the following use cases were determined:

Rafael Teles da Rocha 65

Reengineering and development of loT Systems for Home Automation

UCO01 - Register User

Unregistered
End-User

UC02 - CRUD House

UC10 - Check a Device's
Active Flexoffer and its
effectiveness

UC08 - Check All Devices

Registered
End-User

UCO8 - Create Flexoffer
Automatically for a Device, based
on Energy Consumption

UCO7 - Create Flexoffer
Manuallly for a Device

UC11 - Check total registered
Users, Devices, and Houses

Corporate
Executive

UCO03 - CRUD Room

UCO06 - Check Device
Censumption

UC12 - Check End-Users’
Devices' Frequency of Use and
average Time of Use

<<actor=>
FlexHousing Middleware

UC13 - Get Devices'
Consumption Values

UCA15 - Identify Device
Types

UC16 - Provide Device's
Consumption Data

<<actors>>
Sonoff Sensor

UC04 - CRUD Device

UCO5 - Turn On/Off
Device

UC14 - Deploy Devices'
Flexoffers

Fig. 39 - Use Cases for the FlexHousing project

Rafael Teles da Rocha

66

Reengineering and development of loT Systems for Home Automation

Next, all the use cases present in Fig. 34 will be specified. The specification will be carried out
in detail, mentioning the pre- and postconditions, as well as the basic flow and sequence
diagram of each operation. A sequence diagram is used primarily to show the interactions

between objects in the sequential order that those interactions occur [64].

4.3.2.1 Use Case 01 — Register User

Table 6 - Use Case 01: Register User

Use Case 01 — Register User

Description The user intends to register him/herself in the
system, so that he/she can access the platform.
Actor(s) Unregistered End User

Preconditions 1. Have access to the platform website
(“http://flexhousing.app”).

Postconditions 1. The user is registered in the system and
allowed to access the platform, given
he/she inputs the right credentials.

Basic Flow of Events
Actions of the actor Clicks the option “Register”.
Inserts required information.
Clicks on the button “Register”.

Actions of the system Redirects to the user register form.

ol P P P

Validates if form was completed and

registers user with the given information.

Rafael Teles da Rocha 67

Reengineering and development of loT Systems for Home Automation

Register User

FlexHousing Web App FlexHousing Middleware
O. Q I—O <<Singleton=>
L 7 4 B 4 UserPath Gson | UserDTO | DAD
Client Contrloller Model View j - - i -

1
L |

In the "Register User" form. j

The client clicks the "Register" button,
submitting the user information.

User Info {
Username: String
Password: String

http Request: auth register{useripfo)

-

userinfo = base64_encode(userinfo)

T
| |
| i
| |
| i
| |
| i
| 1
| |
| |
| i
| |
| i
| |
| i
| |
| i
| |
| i
| |
| |
| |
| i
| |
| i
| |
| i
| 1
| |
| |
| i
| |
| i
| |
| i
| |
| i

-

view = updatel)

T
I
| -
¥ Lo
! user = new User{userinfo)
' >
! api_pest("User/Register", user)
] I { o
| ! I jsonUser = json_encaedeluser) |
1 1 1
1 1 1 1
! : | http POST: registerUser(jsonUser)
] 1 | I e
: ! [| user = from|sonljsonUser)
] I 1 I | I
! ! ! : | username = Basefd .decodelgetUsernamel(]) "
] I I] | I
I I I I | password = Basef4.decode(getPassword()) o
] I | I r T -~
i i i | | hash = getPasswordHash(password) |
] 1 1 I
1 1 1 1
] | | I
! ! ! : insertUser(username, hash) o
] 1 1 1
k

| | - :
] 1,] i
] I 1 I
] | I I
I I I >
] | I I

I

i

1 I i
Client Controller Mode (e UserPath | Gson | | UserDTO | <<Singleton==>
)) Q |—O ! L j DAO

Fig. 40 — Sequence Diagram: UCO1 Register User

Rafael Teles da Rocha 68

Reengineering and development of loT Systems for Home Automation

4.3.2.2 Use Case 02 — CRUD House

Table 7 - Use Case 02: CRUD House
Use Case 02 — CRUD House

Description The user intends to create/read/update/delete a
house.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).

2. Be authenticated in the system as a user.

3. For the Update process, a house must be
registered in the system.

Postconditions 1. The house is

created/read/updated/deleted

successfully. If the house is deleted, all its
registered rooms and devices are deleted
as well.

Basic Flow of Events

Actions of the actor 1. Clicks the option “Add/Check/Edit/Delete
House”.

2. If the option was

a. Add/Edit, then the user inserts the
required information and clicks on
the button “Register/Edit House”.

b. Delete, then the user confirms the
deletion process.

Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects
to the “Create/Edit House” form.

b. Delete, then the system requests
confirmation for the deletion
process.

c. Check, then the system redirects to

the Houses index webpage.

Rafael Teles da Rocha 69

Reengineering and development of loT Systems for Home Automation

2. |If the selected option was
a. Add/Edit, then the system validates
the information and
registers/updates the house.
b. Delete, then the system deletes the

house, its rooms and devices.

Rafael Teles da Rocha 70

Reengineering and development of loT Systems for Home Automation

4.3.2.2.1 UCO02 - Create House

Create House

FlexHousing Web App FlexHousing Middleware

O Q |_O <<Singletan>> <<Singletons>>
4 et Gson ‘ SecurityContext | | Principal | HouseContraller DAC
T

Client cantroller Model View
1 " 1

In the "Create House" form
The client clicks the "Register House" button,
submitting the house information

House Infa {
House Name: String
Address: String

!

i
! http Request: house.register(houselpfo)

house = new House(houselnfo)

api_post("House", house)

jsonHouse = json_encode(house)
]

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|

http POST: regislerNEWHnuse(jSur%Huu e, security Cjontext)
!
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

house = fromJsonijsonHouse)

1 Principal principal = getUserFrmé\pa\O
T T

1 String username = getName() :
T T

|
User user = returnUserByUsername(username)

addMewHouse(user.getld(), house getName(), hnuse:gelAddresso)‘
T

R e

|
i
T
i
1 ;
i ' '
I ' ' new (userlD, name, address) Haouse
| ' '
| ' '
| ' ' I
: i : generateUID())
i ' ' i
1 : : insertHouse(userlD, house) }
| ' '
|
| ' ' ' | |
ok ! ' ' ' I i
' ' ' | i
' ' ' ' i |
' ' ' ' ' i |
' ' ' ' ' i |
I | ' ' ' i |
I 1 ' ' ' i |
' ' ' ' ' | |
' ' ' ' ' |
Client Cantroller Madel Wiew

Gsan ‘ SecurityContext | | Principal | <<Singleton>>
= HouseCantroller

<<3ingleton>>
DAD

Fig. 41 — Sequence Diagram: UC02 Create House

Rafael Teles da Rocha 71

Reengineering and development of loT Systems for Home Automation

4.3.2.2.2 UCO02 - Read House

Read House

FlexHousing Web App FlexHousing Middleware

O Q I_O <<Singleton>>
[- N HousePath | Gson || HouseController
Client Contrloller Mogel \ngw - | —

| http Request: house.show(housglD) ‘I

api_get('House/RoomsByHouselD/" + houselD) _

I
I
I
I
}
http GET: rooms = getRoomsByHotﬁseﬂ'ou elD)

-

getRoomsByHouselD(houselD)

!

house = houses.getlhouselD)

-

jsonRooms = tojson(houseRooms) !
>

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- i
|
|

rooms = json_decode(jsonRooms)

index = view(rooms)

I
I
3 |
I
I

o rasesssesesasossesecssesesesasasesesaseseracess BN 1

I
I
| |
B i ! el "
Client Controller Mode| Y HousePath | Gsonl <<Singleton>> House \
/ 07 Q I—O) HouseController b
-’ - |

1
|
|
|
|
|
|
|
|
|
|
!
T
|
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
> |
|
|

T
|
I
|
I
|
I
|
I
|
|
|
[
|
]
|
| getRooms()
r
|
I
|
I
I
I
|
I
I
I
|
I
I
I
]

Fig. 42 — Sequence Diagram: UC0O2 Read House

Rafael Teles da Rocha 72

Reengineering and development of loT Systems for Home Automation

4.3.2.2.3 UCO02 - Update House

Update House

FlexHousing Weh App FlexHousing Middleware
O Q I_O <<Singletan>> <<Singletan>>
. 4 i HouseCantroller House DAD
Client Contraller Model View T ; "
1 i i i T T T
I i i ' i i i i '
I http Request: houses.edit(houselD) | 1 : 1 1 1 1 :
' | | ' | | | | '
! | api_get("House/" + houselD); ! ! ! I | ! !
' i i ' i i i i '
! i I http GET: getHouse(houselD) ! | i I } i
' i i ' i | i i '
i } } : | house = getHouseBylD(devicelD}; ! } :
' i i ' i i i i '
[! | { | housedson = toJson(house) ! ! ! !
' i i ' i i i i '
! l ! houseJson { { ! ! ! !
' | i ' i i i i '
' i i ' i i i i '
i | vizw = update(| | | i | | i
< - | | | | | | |
i i ' i i i i '
The client changes the infarmation 1 1 : 1 1 1 1 :
and clicks the "Update House" button, ! h f) l ! ! !
submitting the updated house information : ; i i 1 : : :
T i i ' i i i i '
i i ' i i i i '
House Info { | I ' i | ' ' '
House Name: String } } : } } } } :
Address: String ; ; : ; ; ; ; :
1 i i | i i i i 1
i i ' i i i i '
i i i ' i i i i '
| http Request: house.edit(houselnfo, housglD) ! ! i) ! ; ; L
I i i ' i i i i '
1 \ house = new House(houselnfa) | L l i ! ! !
' [T OHA8 = B0 L BRI IO SRIIG) o
' i i ' i i i i '
! | api_post('"House", house) | f i i | | |
' Ed RERO AU 2B T IaUSE) Sl
' i i ' i i i i '
' i i - ' i i i i '
i JjsonHouse = json_encode(house)
i i [i i i i i i
' i ' i i i i '
1 ; | http POST: ednHauseUsanHause): | | | | |
' i T T 1 i i i '
1 | | i | house = fromJson(jsonHouse) | | | i
' i i ' e i i '
H | | i) editHouse(house. getld(), hUuse.g‘elNamEO‘ house.getAddress(); | | i
' i i ' T T d i '
i | | | | | i setMName(name) | i
' | I i | | —l '
H i | i) | | setAddress(addrass) : i
' i i ' i i = '
1 i i E i i 1 updateHouse(userlD, hn‘use) :
i i | I |) i i i
' i i ' i i i i '
: : < : ; : : : :
i < =y | | | | | |
I i i ' i i i i '
| | view = update() i | i i i i i
' T T 1 i i i i '
S | ' | | | | '
I i i ' i i i i '
Clle il gl L <<Singletan>> House <<Singletan>>
Q I—O HouseController ’ DAD

Fig. 43 — Sequence Diagram: UCO2 Update House

Rafael Teles da Rocha 73

Reengineering and development of loT Systems for Home Automation

4.3.2.2.4 UCO02 - Delete House

Delete House

O

FlexHousing Weh App

deleteHouse(houselD)

FlexHousing Middleware

<=5ingleton==
HouseController

<=3ingleton==>
DAC

deleteHouse(houselD)

_ Q I_Q HousePath

Client COﬂtl’IO”EI’ MD?E| VIEIW |
1 1 1 1 |
After the houses are displayed, : : : :
the user selects the "Delete House" button | ! ! !
of a house i i i i
5 i i i I
| I I I |
! http Request: houses.delete(housglD) }: i i :
i I i i |
: E api_delete("House/" + houselD); }E i i
i i ! http DELETE] deleteHouse(hjuselD) }:
| : i |
1 1 1 1 |
1 [} 1 1 |
1 1 [} [} |
1 I 1 1 |

1 1 1 1 I"

1 I 1 1 -
| | L :
. : T @2 1
i I{ i i |
i I I I |
! ! view = update() i o !
i i i i i
[S Em e s I I I |
: i I i i L

Client Controller Model Wiew HousePath
) Q FQ

1
|
|
!
|
|
I
I
I
I
I
I
I
I
I
|
|
|
I
!
"—l
|
L
|
1
|
|
!
I
I
I
I
I
I
1

—
>

<=5ingleton==
HouseCaontraoller

<=3ingleton=>
DAC

Fig. 44 — Sequence Diagram: UCO2 Delete House

Rafael Teles da Rocha

74

Reengineering and development of loT Systems for Home Automation

4.3.2.3 Use Case 03 — CRUD Room

Table 8 - Use Case 03: CRUD Room
Use Case 03 — CRUD Room

Description The user intends to create/read/update/delete a
room.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.
3. Have aregistered house.
4. For the Update process, a room must be
registered in the system.
Postconditions 1. Theroom is created/read/updated/deleted
successfully. If the room is deleted, all its

registered devices are deleted as well.

Basic Flow of Events
Actions of the actor 1. Clicks the option “Add/Check/Edit/Delete
Room”.
2. If the option was
a. Add/Edit, then the user inserts the
required information and clicks on
the button “Register/Edit Room”.
b. Delete, then the user confirms the
deletion process.
Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects
to the “Create/Edit Room” form.

b. Delete, then the system requests
confirmation for the deletion
process.

c. Check, then the system redirects to
the Rooms index webpage.

2. If the selected option was

Rafael Teles da Rocha 75

Reengineering and development of loT Systems for Home Automation

a. Add/Edit, then the system validates
the information and
registers/updates the room.

b. Delete, then the system deletes the

room and its devices.

Rafael Teles da Rocha 76

Reengineering and development of loT Systems for Home Automation

4.3.2.3.1 UCO03 - Create Room

Create Room

FlexHousing Weh App FlexHousing Middleware

O Q I_O <<Singleton>> <<Singleton=>

- - HousePath Gson HouseCantraller DAD

Client Cantroller Monljel \fulaw - '
i

In the "Create Room" farm
The client clicks the "Register Room" buttan,
submitting the room information

Room Info {
Room Name: String
House |D: String

!

http Request: room. register(roomlpfa)

api_post("House/Room", roominfo)

!
I
I
I
!
I
I
I
!
I
I
I
!
I
I
I
1
!
I
room = new Room{roominfo) o
>
!
I
i
I
!

jsonRoom = json_encode(room)

=

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'
|
|
|
'
|
|
|
|
|
|
|
|
1]

i http POST: registerMewRoom{jsanRogm)

0

|
i
|
I
|
I
|
i : : =
i i i room = framdsaon(jsonRoom)
1 1 1 I
i : : addMewRoom{room getHouseIﬁJ , room. getNamea())
1 1 1 T
i i i | new (roomMame, houselD) Room l
] 1 i |
| | | | i
i i 0 I insertRoom(room) ! -
| | | < 1 i
] |] | 1
| 1 ok | | |
] ~ T | 1
1 < 1 1 I 1
] I] | 1
! view = update() ; I } !
| SO— 4 ! ! I !

:] | I i L L

client Cont:roller ol Wiy HousePath Gson <<Singleton>> Roam <<Singleton>>
Q‘ | O DAOC

HouseCantraller

Fig. 45 — Sequence Diagram: UC03 Create Room

Rafael Teles da Rocha 77

Reengineering and development of loT Systems for Home Automation

4.3.2.3.2 UCO03 - Read Room

Read Room

FlexHousing Web App FlexHousing Middleware
O, Q I_O <<Singleton=>>
- gl DevicePath Gson | HouseController

Client Controller Model V@w - — ~ : - ~ i
1 I !
] I] I I i] I]
1 http Request: room.show{roomiD) _ | ! ! ! ! ! ! !
] I I I i I i
| 1 api_get("Device/ByRoom/" + roomiD) ‘: I | i i ! !
1 T Fal I 1 1 1
i i | http GET: devices = getDevicesByRoam(reomID) i i i | i
1 I T T 1 1 1 1 1
| } : } : getDevicesByRoomiDiroomID) : : : :
1 I 1 I 1 1 1 1 1
: 1 : 1 : : loo [for every housel | |
| I 1 1 1 1 1
i i i i i | i room = getRoomBylD(roomiD] !
| I I | i i F o I
i i i i i i 1 h .
! } : } : : alt [if room != null] ! 1
| |) | ! 1 ! devices = getDevices() I]
] I
i | | | | | - :
] I] I 4 + I I
| i | i I X | | | |
i ; | ; | jsonDevices = toJson(houseDevices) !] b]
] I . J.] 1 i I i
1 I 1 I 1 1 1 1 1
;] ! devices = json_decode(jsonDevices) !]] | ! |
| |] | | | | | |
] I) I 1 1 I I I
1 - 1 | I I | | |
: s : _ | | | ' I I |
I | index = view[devices) l I ! ! ! ! !
[SUUEEE———————— : i : ! i : i :

i | | i h i
clisnt Al e i DevicePath Gson | <<Singleton=>> _
Q. I—O J ‘ HouseController J

Fig. 46 — Sequence Diagram: UCO3 Read Room

Rafael Teles da Rocha 78

Reengineering and development of loT Systems for Home Automation

4.3.2.3.3 UCO03 - Update Room

Update Room

h i
i |
view = update() i |

FlexHousing Web App FlexHousing Middieware
client Controller Model View

i ! i] T T T
I | | i i H i
| http Request: rooms editireomiD) : | i i , |

; | | H |
| | api_get("House/Reomy/" + roomiD); _i i i 1 |
i i] | | 1 |
| i | http GET: getRoom(roomiD) | | | i
i i T T] i i
i] i | | getRoomByIB(roomiD)]]
i | i j ; f]
i i i i i i Too Tfor every housel T
| | i | i H i H
| i | | | | | room = getRoomBylD{roomiD) _i
I I 1 I 1 1 —_—— 3=
! | i I 1 1
i i i |
i | i i h 1
! : ! ; | roomjsen = tojsonfroorn) !
i | 1 i
i i | roomjson i i
i i
i h
| i

and clicks the '"Update Room® button,
submitting the updated room information

The client changes the information T

Room Info {
Room Name: String
House ID: String

| http Request: rooms edit{roominfo, roorhiD)

room = new Roomn(roominfo)

api_post(*House/Room", raom)

1
i
|
i
|
|
i
i
i
|
i
|
|
|
i
|
]
|
| jsonReom = json_encode(room)

| http POST; editRoom(jsonRoom)

i i
i |
| !
i i
i T
i |
| i
i i
i i
i I
i i
i i H i | room = fromjsen(jsonRoom)
i I i I
|) |) | editRoom(room.getid(). room.getiamel(), room.getHouselp();
i I H I T T
i i ! i i i 1oo] for every housel " | |
| ! ' ! ! ' ! room = getRoomBylD{roomiD) _ ' '
i i i i i | H 1 . h
' ! ! l ! 0 alt__J [Gf room t= nulll H] !
; ; ' ! ! ' ! setName(namel ! | !
i i i i i | h i d i
! ! ! ! ! { | setHouselD(address) ! ! I
| i H i I | h) d i
: ! ' i i 0 ! updateRoom(room) H i !
I I i I I i
i I | I | i T T :
i i H i i i
i i i ok i i i i i
I I i I I
i . i i I | |
| h \ i | i |
! ! view = update() 0 ! | | i
| I | | i I I
h | | I | I |
i | | i

Client Controller Model View

Fig. 47 — Sequence Diagram: UCO3 Update Room

Rafael Teles da Rocha 79

Reengineering and development of loT Systems for Home Automation

4.3.2.3.4 UCO03 - Delete Room

Delete Room

FlexHousing Web App FlexHousing Middleware
O Q I_Q <<Singleton=> <<Singleton>>
: / N HousePath | HouseController House DAQ
Client Contrloller Model View = j = - - = = i
1 !

After the rooms are displayed,

the user selects the "Delete Room" button

of a room

http Request: rooms.delete(roomiD)

api_delete("House/Room/" + roomiD);

L
F

http DELETE} deleteRoom{rpomiD)

deleteRoomiroomiD)

|

=
loop / [for every house]
i

I room = getRoomBylD{roomiD)
T >

I
alt [if room != null]
! deleteRoom{roomiD)

! deleteRoom{roomiD)

L

view = update()

T
|
|
|
|
I
I
I
I

R === i :

L

;

I

I

I

I

|

|

|

|

l :

zl | l !

Client Controller Model View HousePathl A s, Sasigenye |
O- Q I—O. HouseController — DAO

Fig. 48 — Sequence Diagram: UC03 Delete Room

Rafael Teles da Rocha 80

Reengineering and development of loT Systems for Home Automation

4.3.2.4 Use Case 04 — CRUD Device

Table 9 - Use Case 04: CRUD Device
Use Case 04 — CRUD Device

Description The user intends to create/read/update/delete a
device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.
3. Have aregistered house and room.
4. For the Update process, a device must be
registered in the system.
Postconditions 1. The device is
created/read/updated/deleted
successfully. If the device is deleted, its
registered energy consumption data is

deleted as well.

Basic Flow of Events
Actions of the actor 1. Clicks the option “Add/Edit/Delete Device”.
2. If the option was
a. Add/Edit, then the user inserts the
required information and clicks on
the button “Register/Edit Device”.
b. Delete, then the user confirms the
deletion process.
Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects
to the “Create/Edit Device” form.

b. Delete, then the system requests
confirmation for the deletion
process.

2. If the selected option was

Rafael Teles da Rocha 81

Reengineering and development of loT Systems for Home Automation

a. Add/Edit, then the system validates
the information and
registers/updates the device.

b. Delete, then the system deletes the
device and its registered energy

consumption values.

Rafael Teles da Rocha 82

Reengineering and development of loT Systems for Home Automation

4.3.2.4.1 UCO04 - Create Device

GCreate Device

Fiantiousing Widdisware
(o) <<Singletons> e
A I i | evceCont I
a0 o = 040 SecurtyContest DeviceCantroter
I the *4d Naw Dasics” fam. : H | H ' i
The clisn clicks the *Register Davica” button, ! i ¥ i : L : !
aubmtting e device omation] H : : H ; :

o infa | ' H : i ' !
Dewce Name: Sting ' ' 1 : b |
Room ID: Strivg : : : ! : : : : '

o : ' : H : ' H ' i ; :
Dewce Mods!. String ' { i !) i ' ! :]
Sensor Brand: String : : : ' : ; ' : : :
Sensor Erand. St] i] i ! i ' 1 ; !
Sansor Addiess: Streg i H H i i H H f H |

jon) Sunsar D, Sting : | H ! ! H ' g !
{Cptlna) Thie Pasty Usermame: Sting | i i 1 4
(Options) Third-Party Password: String | ! H i i ' | H ' i
s Tag N STy | | H i i H i H f |

1 ' : H | ! ! :) ¢ |
 hetp Requsst: devices. egistentdmicalple) i : : : : : : '
' | device = new Devics(dovicslnfo) ! : H i I :

Lapposi(Devca et deice) | : : : | { : 3
: oDk = o it ! ; ; i i 3
i {nitp FosT I i } i i !
: H) :dlnw:ivwnllmﬂmemw f i) : i
: : * addblenOice(!] : !

: : * device getUIUID], devic geitamaD, :

4 i | deice. get SensorBrand), device i
i | | davice gotDencaBrand), i A i
! H * derice getSemsoriD), dece i ' : ;
| H H desice = new (D, Name, H | H ' ' i
| ' H ‘sengorBrand, roomi0, devicsBrand, m ' | H ' |
: : davcaModsl, ssnsoriD) ; : ; ; '
: ; N i I | MR H : H : |
! i ' oo = gy aom) : ! : i : 1
H H | = \ H H H H |
i ! ! houss = houses getroom getHouselDg) | : ; :
] i i ! a3k) et ' i ; !
] : : : = ! i)
: H : i inariDavica(davics) il ; |
' ! : ' ingertTh ; !
! ¢ i e : i ' i
' : : otsacPrincipal]) : : ! !
: ! usemame = gathiamed) : : : '
| H H davice galThirdPartyUssmams(), | | ' |
] : : dunice gotThirdP sty Passward]) | o : : !
‘ : :] ! i sThins e atyPassund) ! '
' s T T * us u ” H
¥ PTI TTr r ! H] 1 1 !
H AULD], device. | H H H H |
< : ; j]] { : : : | :

Ciiert (Comtroter Mozl Vitw @ cesingitons> |secumy:mml cantertace>> I
Q QI 0D, I o |

Fig. 49 — Sequence Diagram: UCO4 Create Device

Rafael Teles da Rocha 83

Reengineering and development of loT Systems for Home Automation

4.3.24.2 UC04 - Update Device

e

2

Devestar G s
anm o] D
ey H H :
[— . i
rescet) H
deice = bt i
< Hnimin i
e i
o= gty H
>
>
>l
e i P S i, s B, P b, il P,
R
e geTantr ,
con
. .
>

Fig. 50 — Sequence Diagram: UC04 Update Device

Rafael Teles da Rocha 84

Reengineering and development of loT Systems for Home Automation

4.3.24.3 UCO04 - Delete Device

Delete Device

FlexHousing Web App FlexHousing Middleware

o. Q I_o <<Singletan>> <<singletan>>
= 4 = DevicePath | HouseCaontraller DAO
Client Caontroller Mogel Vit?w] - -

After the devices are displayed,
the user selects the "Delete Device" button
of a device

http Request: devices. delete(devicelD)

api_delete("Device/" + devicelD); |
=i

| http DELETE] delsteDevice(dgvicelD)
I

<

| view = update()

I

I

1

|

I

| ‘ 5

I |

i ! ; deleteDevice(devicelD)

[l | I I

i } i] deleteDevice(devicelD) =

i | I I

: : : : loo 1 [for every house] | | |

! | i 1]]]]

i } i : 1 deleteDevice(devicelD) 1 | i

| —_— T T T i |

I | I I I] | |

i : : : ! ﬂu [for every room] : !

i | i i ' | deleteDevice(devicelD) i
e

| | I I I i I I

I | I I I I

| | | | | | alt [if devices contains devicelD]

! | ! |]]]

i i ! : i ! ! devices.remove(devicelD) !

! | i i]]]

| | I |]]

] | i i |

I | I I T

] | I

I | I

] | I

! ir

i

I

|

T
I
I
I
I
I
I
|
|
|
|
|

I___________‘.
I___________‘. ¥

Room <<Singleton=»
- DAD

| |
Client Controller Model View DevicePath I e o
O' Q I_O HouseCantraller

Fig. 51 — Sequence Diagram: UCO4 Delete Device

Rafael Teles da Rocha 85

Reengineering and development of loT Systems for Home Automation

4.3.2.5 Use Case 05 — Check All Devices

Table 10 — Use Case 05: Check All Devices
Use Case 05 — Check All Devices

Description The user intends to check all registered devices.
Actor(s) Registered End User
Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.

3. Have aregistered house and room.

Postconditions 1. All registered devices are successfully
displayed.

Basic Flow of Events

Actions of the actor 1. Selects the option “Check Devices”.

Actions of the system 1. Redirects to the Devices index webpage

and displays the registered devices.

Rafael Teles da Rocha 86

Reengineering and development of loT Systems for Home Automation

Check All Devices

FlexHousing Web App FlexHousing Middleware
O‘ Q I (} <<Singleton==
‘ = SecurityContext | | Principal | ‘ HouseController DAD ‘ House | | Room | ‘ Gson |
Client COHU’IOHEI’ MO?E\ V\EIW T T T i i T T T
' ' ' ' ' ' ' ' ' ' ' '
1 http Request: devices.indgx() ! b d 0) ! [b i I)
] 1 1]] |]]]]] |
f 1 devices = api_get(Device) ! ! ! I ! ! ! b I I
i 1 1 1] i]] i]]
] 1 http GET: jsonDevices = allDevices(securifyContext) _ 1 ! ! ! I | I !
] 1 1 1]] I] I]]
I ! ; ! Principal principal = getUserPrincipal() _ ! ; [; ! ! !
] 1 1 1]]]]]]]
! ! ! ! String usermame = gethame() ! ! | ! ! ! !
' ' ' ' ' ' ' ' ' ' '
! ! ! ! User user = returnUserByUsername(userhame) ! ! ! ! | !
' ' ' ' ' ' ' ' ' ' '
| 1 ! ! houseDevices = getDevicesByUserlD{usdr. getID{) L L ! | | !
] 1 1 1 I]]] i] I
! / i i i i ! houselDs = returnHousesByUserlD{userlD) ! { i i
] 1 1 1]] | | | |]
i) | | | i loo Ifor every house] | | | |
: : : : : : | raoms = getRooms() | i i :
| I] I 1 1 r T d]]
I 0 0 0 0 0 '
! ! : : : : Tuop | o cvery oo ! ! | :
{) { !) { | roomDevices = getDevices() ! ! !)
' ' ' ' ' ' I " | | '
' ! ! | i i | devices. add{roomDevices) ! i i |
| i | | | i ; ; ; ; |
1]]]]] T T T T]
{ L ! | ! ! | houseDevices putihouse getMama(), devices) | ! ! !
| i i | | i : , | ; |
] 1 1 1 |] v v i i |
| i i | jsonDevices = toJson(houseDevices) i i i i [i ;
i ; ' . i i i i i i i
' ' ' ' ' ' ' ' ' ' '
! 1 devices = json_decode(jsonDevices) ! ! ! 0 ! i i C)
' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' '
] 1 1 |]]]]] |
] 1 1 1]]]]]]]
] 1] 1 I] I] i] I
i T 1 1] I I] 1]]
(= S | I I | 1 1 | 1 ' '
] ! | | 1 1 | | | | |
Ellent iR e e SecurityContext | | Principal | ‘ HouseContraller <<Singletons> ‘ House | | Room |’ ‘ Gson l
! ' = o g DAO = i

Fig. 52 — Sequence Diagram: UCO5 Check All Devices

Rafael Teles da Rocha 87

Reengineering and development of loT Systems for Home Automation

4.3.2.6 Use Case 06 — Turn On/Off Device

Table 11 - Use Case 06: Turn On/Off Device
Use Case 06 — Turn On/Off Device

Description The user intends to turn on/off a device.
Actor(s) Registered End User
Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.
3. Have aregistered house, room, and device.
4. The device’s REST APl address must be

correct and accessible.

Postconditions 1. The device is turned on/off successfully.
Basic Flow of Events
Actions of the actor 1. Selects the option “Check Devices”.

2. Clicks the button “Turn On/Off” of a
specific device.

Actions of the system 1. Redirects to the Devices index webpage.

2. Sends a request to actuate the specified

device, turning it on/off.

Rafael Teles da Rocha 88

Reengineering and development of loT Systems for Home Automation

Turn on/off device

(e
<
S
5
c
5
(7]

VPS API

SonaffController
i
i
I
i
I
|
| http POST: actuate
e Ok
i
SonoffCantroller |

actuate(sensor.getTag(), command)

o 2
H 8
] E
5 =
i H
= =
n w
= H = =
3 2 = e 3
B 5 g s 5
15 | N M. &, /) S, [, (PR ISP (SSRR— 0000 E
5 5
[&] (8]
@ @
g g
5 =
@ B B
g m— £ - £ - —
I K] = E T R
i 2 S Z 5 2| & a2
3 |=z8 H B 3 g 35
o L = @© c o a2 r
2|8 s
=N to b S e e e e e e G W LRy t3
D | B Lo
= =) =1
I v
2|Vv3 v3
2 a a
£
3
T
e e
is 58
s 5k S | RN IS I | S @5
50 50
2% 2%
n g i
3 E
va va
2 2

SONOFF]

1 deviceController = new (devics)

[device.getSensorBrand() == ISA]
! deviceController = new (device)

s
]
o H |
a [=
£ il E} ™
2 S e x
5 H 8
H H g
\\\\\\\\\\\\\\\\\\\\\\\\\\\ - . S — @a_ SRS.-| .
3
s
2
= £
s H
=
@w
e ettty St Wit
> ST
2
s 2
2 £
s £
&
c
g 2
i 5
w2
s 8
=
® e
E o
T o
<M e

FlexHousing Web App
Mnge\
i
I
i
i
I
I
i
i
I
i
i
I
]
i
i

tl
i
I
L
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
i
i
I
I
i
i
I
:
i
odel

1 act = new Actuation (devicelD)
1 api_post (‘Device/Actuate”, act);

Contraller
I
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

ntroll

Cliert

After the devices are displayed

hitp Request: devices.actuate(devic¢ID)

Client

ice

: UCO6 Turn On/Off Dev

Fig. 53 — Sequence Diagram

89

Rafael Teles da Rocha

Reengineering and development of loT Systems for Home Automation

4.3.2.7 Use Case 07 — Check Device Consumption

Table 12 - Use Case 07: Check Device Consumption

Use Case 07 — Check Device Consumption

Description

Actor(s)

Preconditions

Postconditions

Basic Flow of Events

Actions of the actor

Actions of the system

The user intends to check a device’s energy
consumption data.
Registered End User
1. Have access to the platform website
(“http://flexhousing.app”).
2. Be authenticated in the system as a user.
3. Have aregistered house, room, and device.
1. The device’s energy consumption data is
displayed in multiple charts, each with

different granularity and functionality.

1. Selects the option “Check Devices”.

2. Clicks the button “Check Consumption” of
a specific device.

3. Selects a date or time window (depending
on the chart) to check the energy
consumption data.

1. Redirects to the Devices index webpage.

2. Sends a request to get the current energy
consumption data of the specified device.
Redirects the user to the Energy
Consumption page and displays the charts.

3. Sends a request to get the data from the
specified date or time window and updates

the charts (based on the acquired data).

Rafael Teles da Rocha

90

on

d development of IoT Systems for Home Automat

Ineering an

Reeng

Check device consumption

FlexHousing Middieware

5
£
:
2

= toJson{devics)

devicelson

(sensor getTagl, from, to)

gelSansor])

etMeasurements;

B

sensor

PSController

new [device)

yID(device|O);
. to}

= new [davics)

= getSensorrandi) - SA]

device
device.
d

hitp GET

DevicelDARAT:

Sonoftontroller

! new device)

o)

= new [davics)

= ratum

measursments

messuremants

SonaffCantraller

2 E
4B
g8
bl

<<Singleton>>
HouseContralier

tadson[measursments]

measurementsdson

5
®
H
H
£
5
§
=

day)

. from. to)

IT™L

FiexHousing Web App

devicadson

© craateh

MR

Client

Aftar the devicas are displayed

on

Consumpt

ice

UCO7 Check Devi

iagram

Fig. 54 — Sequence D

91

Rafael Teles da Rocha

Reengineering and development of loT Systems for Home Automation

4.3.2.8 Use Cases 08 & 09 — Create Flex-offer
4.3.2.8.1 Use Case 08 — Create Flex-offer Manually for a Device

Table 13 - Use Case 08: Create Flex-offer Manually for a Device

Use Case 08 — Create Flexoffer Manually for a Device

Description The user intends to create a flex-offer and apply it
to a device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.

3. Have aregistered house, room, and device.

Postconditions 1. The flex-offer is registered successfully.
Basic Flow of Events
Actions of the actor 1. Selects the option “Check Devices”.

2. Clicks the button “Create Flex-offer” of a
specific device.

3. Fills out the Flex-offer form.

4. Selects the option to manually create the

flexoffer.

Continues to fill out the Flex-offer form.

Clicks the button “Finish”.

Actions of the system Redirects to the Devices index webpage.

A & @

Redirects to the “Create Flex-offer” form

webpage.

3. Validates the information being entered by
the user.

4. Displays the “manual flex-offer creation”
form.

5. Validates the information being entered by

the user.

6. Registers the flex-offer.

Rafael Teles da Rocha 92

Reengineering and development of loT Systems for Home Automation

4.3.2.8.2 Use Case 09 - Create Flex-offer Automatically for a Device, based on Energy
Consumption
Table 14 — Use Case 09: Create Flex-offer Automatically for a Device, based on Energy
Consumption

Use Case 09 - Create Flex-offer Automatically for a Device, based on Energy Consumption

Description The user intends to create a flex-offer and apply it
to a device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(“http://flexhousing.app”).
2. Be authenticated in the system as a user.

3. Have aregistered house, room, and device.

Postconditions 2. The flexoffer is registered successfully.
Basic Flow of Events
Actions of the actor 1. Selects the option “Check Devices”.

2. Clicks the button “Create Flex-offer” of a
specific device.

3. Fills out the Flex-offer form.

4. Selects the option to automatically create

the flex-offer.

Continues to fill out the Flex-offer form.

Clicks the button “Finish”.

Actions of the system Redirects to the Devices index webpage.

N & W

Redirects to the “Create Flex-offer” form

webpage.

3. Validates the information being entered by
the user.

4. Displays the “automatic flex-offer creation”
form.

5. Validates the information being entered by

the user.

6. Registers the flex-offer.

Rafael Teles da Rocha 93

Reengineering and development of loT Systems for Home Automation

Create Flexoffer

FlexHousing Web App FlexHousing Middleware
O Q l () <<Singletan>> <<Singleton=>

‘ i S Gson HouseCantraller DAO
Client Contr‘oller Mmge\ Vle‘w : : - - =
I i i i ' i ' '
In the "Create Flexoffer” form. } } } : } : :
The client clicks the "Finish" button, } } } : } : :
submitting the flexoffer information | | | | | | 1
‘ i i i i i i i
i i i ' i ' '
Flexoffer Info { | | | ! | | |
Flexoffer Name: String 1 i i i i f f
Start Time: long : . ! ; : ; !
End Time: long | | i | | | 1
Lawer Energy Values: double ! ! i ! ! ! !
Upper Energy Values: double | } ; ! } : :
} | | | | | | |
™ I I I] I] I
i i i I ' i ' '
! http Request: flexoffers. send(flexofferinfo, devicelD) _ ! ! : ! :) !
I I I I] I] I
i ! flexoffer = new Flexoffer(flexofferinfo)]] ; i ! |
iy I I i] i]]
! ! api_post("Flexoffer/" + devicelD, flexoffer) _ ! ; i i i "
I} I I I I il] i
! ! | JsonFlexoffer = json_encode(flexoffer) | 1 i | !
| i i | | | | |
i 1 1 http POST: pustFO(devwce\D‘JsonFIe)q‘uﬁer) : 1 : :
I i 7 T | i ' '
i } } } : flexoffer = fromJsonijsonFlexoffer) } : :
I I I I] I] I
! ; i] | device = getDeviceBylD{devicalD), | | i
iy I I i] T [}]
| i] i | deviceCantroller = new (device) j i <<interfacess i
| i i i i | | DeviceController |
| | | | | | | |
I I I I ! I 1] !
! : : : ! addFO(flexoffar) ! ! i !
| | | | 1 |]] 1
: } ! I i ! ; ! deactivateF O(devicelD) !
i I I I I I 1 ! I
! : i] ; i ! ! insertFO(flexaffer, devicelD) !
I I%l
| i i i i i i | i
| | ook | | | i | |
iy I I} i [} I 1] I
i I 1 I I ! I
| | | | [| [] 1
! | view = update() ! | 0 ! ! i !
e | | ! : : : j :
I | | | . H L h

Client Controller Mode| view Gson <<Singletan>> <<interface>> <<Singletan=>
. Q |—o . : HouseCantraller DeviceCantroller DAC

Fig. 55 — Sequence Diagram: UCO8 & UC09 Create Flex-offer

Rafael Teles da Rocha 94

Reengineering and development of loT Systems for Home Automation

4.3.2.9 Use Case 10 — Check a Device’s active Flex-offer and its effectiveness

Table 15 — Use Case 10: Check a Device’s active Flex-offer and its effectiveness

Use Case 10 - Check a Device’s active Flex-offer and its effectiveness

Description The user intends to check a device’s active flex-offer

and see if it had an effect on the device’s

consumption pattern.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website
(“http://flexhousing.app”).

2. Be authenticated in the system as a user.

3. Have aregistered house, room, and device.

4. Have already created a flex-offer for a
device.

Postconditions 1. The active flex-offer’s information is

displayed successfully.

Basic Flow of Events
Actions of the actor 1. Selects the option “Check Devices”.
2. Clicks the button “Check Flex-offer” of a
specific device.
Actions of the system 1. Redirects to the Devices index webpage.

2. Redirects to the “Check Flex-offer”
webpage.

3. Displays the active flex-offer, its schedule,
and the mean absolute percentage error
between the flex-offer’s projection and the

device’s actual consumption.

Rafael Teles da Rocha 95

Reengineering and development of loT Systems for Home Automation

Check a Device’s active Flex-offer and its effectiveness

FlexHousing Web App FlexHousing Middleware
Q I O <<Singleton>> <<Singleton>>
- HouseController DAO
Client Controller Madel View —
i v ' T T T T
' ' i i i i i
After the devices are displaye: 5 2 ; |] 5 !
- ' ' I I I I I
T ' ' i i i i I
i http Request: flexoffers show(devictiD) _i i i i 1 1 1
| ' I I I I I
1 api_get (*Devices” + devicelD): | i i i } }
' . I I I I
1 http GET: getD D) _! ! ! !
i I . I I I
! ! 1 device = getDeviceByID(devicelD) i i
' i i | i
' ! 1 deviceJson = toJsan(device) i
' i i
1 devicedson !

et (Flexoffer/Activel’ + devicelD)

|

|
: |
e ™ |

i
|
|
i

| hitp GET: et igeoffer(device D)

b

flexofferdson = toJson(activeFO)

h 1
1 api_get (F " +devicelD) !

I
i
i
i
i
i
i
i
I
]
| activeFO = retumActiveFlexOfferDTOByDevicelD(devicelD)
T
|
|
T
i
I
i
i
i
|
i
I

i
|
|
|
|

flexoferso i
i
|
|
i
i
i

scheduls = retumnActiveFOSByDevicelD(devicelD)

i
I
i
| i
! http GET: D)
i
i
I
|
I
i

scheduleJson = taJson(scheduls)

I
schedyleJsgn
T

h 1
i i
H |
1 i
H i
i i
H |
H i
h T
] i |
| | |
] i i
| | hitp GET: verifyF D)
| T T 7
H | | | schedule = retumActiveFOSByDevicelD (devicelD)
H H i i
) | i i startDate = getStart(
H H | i
| | i i | energyAmounts = getEnsrgyAmounts) i i i i
H H | i
i 5 } i | consumptionDuration = energyAmaunts.size() * 15 i i
| | i | o i i
H 1 | i |)
H H | i h | i
b 0 i i | endDate = statDate + consumptionDuration))
H H | i | i |
H H | | h | i
| | | | | new(dsuicsID)) <dintertaces> |
H 1 i i | | DeviceController i
H H i i | i i
H H i i | | |
; ; ; ; | = Date, BndDats) !
' ' i i I b i i ! 0}
' ' I I i = new Li I I i ! I
H H | i | i i i
H 1 | | <]) i) | i
!]) ! ! scheduleMsasuramentsJsan = toJsan(scheduleMeasurements) _ ! ! ! i i
)
; i sched fon|] | 3 | : |
1 h i T]] i i | i
H H i i |) i i i i
| view = updata() | | ; ; ; ; ; 1 ;
i i i i i i i ! i
h f H i i i i i i i
Client Cantraller Madel

<<interface»>
DeviceContraller

<<Singleton>>
HouseController

<<Singleton>>
DAO

ScheduleDTO

Fig. 56 — Sequence Diagram: UC10 Check a Device’s active Flex-offer and its effectiveness

Rafael Teles da Rocha 96

Reengineering and development of loT Systems for Home Automation

4.3.2.10 Use Cases 11 & 12 — Get Device and User metadata

Table 16 — Use Case 11 & 12: Check total registered Users, Devices, and Houses & Check End
Users’ Devices’ Frequency of Use and Average Time of Use
Use Case 11 & 12 - Check total registered Users, Devices, and Houses & Check End Users’

Devices’ Frequency of Use and Average Time of Use

Description The user intends to check the total number of

registered users, devices, and houses, and check

how many times a device brand is used, as well as

its average time of use.

Actor(s) Company Executive

Preconditions 1. Have access to the platform website
(“http.//executives-data.app”).

2. Be authenticated in the system as a user.

Postconditions 1. The requested information is displayed

successfully.

Basic Flow of Events

Actions of the actor 1. Accesses the platform and goes to the
dashboard.

Actions of the system 1. Acquires the requested data and displays it

in the dashboard.

Rafael Teles da Rocha 97

Reengineering and development of loT Systems for Home Automation

Get Device and User Metadata

Executives Platform Web App FlexHousing Middleware

O_ Q I_O <<Singleton>x
¢ & B 4 AnalyticsPath DAO Gson |
Client Contr‘oller Model View .] j : |

When the Client accesses the main page... Iﬁ

http Request: overview.indgxl) _

Y

I T
] I
] I
] |
I i
] I
] I
| |
I i
] I
I I
http GET: getTotalHousesAndDevicesAndUsers(i
]

I

]

]

I

]

I

I

I

I

|

I

)

housesTotals = returnallHouses() size()

-
>

devicesTotal = returnAllDevices() size()

usersTotal = returnAllUsers().size() =

totals[] = {housesTotals, devicesTotal, usersTotal}

jsonTotals = tojsonltotals)

s !
- I
api_get("Analytics/DeviceStats") _ |
il
| http GET: getDeviceAnalytics() !
>
jsonAnalytics = tojson(analytics) il

]
I
I
I
I
I
I
I
I
I
I
i
I
I
I
i
I
totals = json_decode(jsonTotals) i
I
I
!
i
!
I
!
i
]
I
!
i
|
I
!
]
!
I
I

analytics = json_decode(jsonAnalytics)

index = view(totals, analytics)

i

I
]
I
I
i
I
I
!
i
!
I
!
i
!
I
| analytics = getAnalyticsForEachDevice
!
I
i
!
I
I
i
I
I
I
i
I
I
I

|
I
I
| | | | 2
Client Controller Model it AnalyticsPath <<=Singleton== Gson
© Q FQ | o

Fig. 57 — Sequence Diagram: UC11 & UC12 Get Device and User metadata

Rafael Teles da Rocha 98

Reengineering and development of loT Systems for Home Automation

4.3.2.11 Use Case 13 — Get Devices’ Consumption Values

Table 17 - Use Case 13: Get Devices’ Consumption Values

Use Case 13 — Get Devices’ Consumption Values

Description The system intends to periodically acquire its
registered devices’ energy consumption values and

register them.

Actor(s) FlexHousing Middleware
Preconditions 1. Have at least one device registered on the
system.

2. The device’s REST APl address must be
correct and accessible.
Postconditions 1. The device’s energy consumption values

are registered successfully.

Basic Flow of Events

Actions of the actor 1. Requests energy consumption values from
the device’s REST API endpoint and
registers them.

Actions of the system (Device) 1. Receives request and sends the requested

data.

Rafael Teles da Rocha 99

Reengineering and development of loT Systems for Home Automation

Start Measurement Requests

FlexHousing Middleware

' Calendar
[|
| timerTask = new () ,I MeasurementRequestTimer I |

i

" 1
Timer I |
1

1

I

1

I

I

new ()

I

I

I

I
1
I
1
1

time = getTime()

I

| scheduleAtFixedRate(timerTask, time, 5* 1000)
+ [

I

| MeasurementReguestTimer I | Timer I | Calendar I

Fig. 58 — Sequence Diagram: UC11 Start Measurement Requests

Get Devices Consumption Values

FlexHousing Middleware

< <Singleton>=> < <Device=>
| MeasurementRequestTimer I HouseController DAO APl

1
I
MeasurementRequestTimer requests
all devices' measurement every 5 seconds

1
! List<Device> devicelist = getDevices()
1

I 1 1

1 1 1

I 1 1

| i i

1 1 1

1 1 1

I 1 1

| i i

] 1 !

1 1 1

loop / [for every device] i i \
| new {device.getiD()) i < <Interface==> i |
! i DeviceController ! !
! : : | |
i getMeasurements() i ' i |
T T 1 1
| L i consumptionvalue = http GET: consumption ! !
i i ' T]
: : : measurement = new (measurementUnit, consumptionValue, new Date()) Measurement : :
; : i : " |
' ' I ' ' '
I I LinsertMeasurement(measurement. devicelD) !]]
! ! U ! ! !

MeasurementRequegtTimerl HouseController I <<Interface>= Measurement I <<Singleton== <<Device=>
DeviceController DAO AP

Fig. 59 — Sequence Diagram: UC13 Get Devices Consumption Values

Rafael Teles da Rocha 100

Reengineering and development of loT Systems for Home Automation

4.3.2.12 Use Case 14 — Deploy Device’s Flex-offers

Table 18 - Use Case 14: Deploy Device’s Flex-offers
Use Case 14 — Deploy Device’s Flex-offers

Description The system intends to periodically deploy its

registered flex-offers to their respective devices.

Actor(s) FlexHousing Middleware
Preconditions 1. Have at least one device registered on the
system.

2. Have at least one flex-offer registered on
the system.

3. The device’s REST APl address must be
correct and accessible.

Postconditions 1. The device’s flex-offer is deployed

successfully.

Basic Flow of Events
Actions of the actor 1. Sends the device’s flexoffer to the
Aggregator module. Waits until it receives
a schedule to begin the device’s actuations
2. Actuates the device on the determined
schedule.
Actions of the system (Aggregator) 1. Receives flex-offer, aggregates it with

other flex-offers, and sends them to the
VME module. Then, responds with a

schedule to begin the actuations.

Rafael Teles da Rocha 101

Reengineering and development of loT Systems for Home Automation

Start Flexoffer Emissions

Main l

FlexHousing Middleware

Starts flexoff

at 23:00

Calendar l

(. |
| timerTask = new () __I FlexofferTimer I !
L Ea
| I |
L new () : o Timer |
1 e |
| | . :
|
er emissions everyday, Im : : :
: l :
! | : |
| set(Calendar HOUR_OF DAY, 23) i i
| ; T o
! set(Calendar.MINUTE, 0) [| !
| ! ! £
| set(Calendar.SECOND, 0) i : ol
N . i] g
I time = getTimel() | ! el
i : ! =
| scheduleAtFixedRate(timerTask. time, 24 * 60 * 60 * 1000) ! :
| : 2] |
‘ Timer ‘ Calendar

Main !

FlexofferTimer

Start Actuation Timer

FlexHousing Middleware

Main
timerTask = new () _| actuationTimer
,! I

new ()

Starts the Ac

tuationTimer everyday,
at 00:00

I
set(Calendar.DAY_OF_MONTH, 1)

| Timer
>

1

I

L L

I | Cat

! set(calendar, HOUR_OF_DAY, 0} | o

| ; =

! set(Calendar.MINUTE, 0) | X
T o

I

i set(Calendar.SECOND, 0) j ol
T o

| I

| time = getTime()] -

I i =

| scheduleAtFixedRate(timerTask, time, 24 * 60 * 60 * 1000)

F T

' ActuationTimer |

SN e e

‘ Timer “ ‘ Calendari

Fig. 60 — Sequence Diagram: Left — UC14 Start Flex-offer Emissions; Right — UC14 Start Actuation Timer

Rafael Teles da Rocha

102

Reengineering and development of loT Systems for Home Automation

Execute FO Emission

FlexHousing Middleware

<<Singleton>> <<Singleton»»
HouseContraller DAO ‘ MyFlexibleResource | | ScheduleAssignmentTimer | | HouseDER | ‘ F\EXOWE?’AQEHII

. . ‘
| List<String> devicelDs = retrisveDevicesWithActiveF 0 i

. .
loop). [for every device with an active flexoffer] [
| device = getDeviceBylD(devicelD) _ |

F\exnﬁerl

L e

flexoffer = retumActiveF lexCfferBy Dvic e (devicelD) i

E worker = new ExecuteF OF:] device) ExecuteFOEmission '

execute() !

; !
alt) [whenlthe runnable (ExecuteFOEmission) is Exﬁcmed]
| flexibleResource = 0 !

houseDER = getFlexDERQ i

Generates a flexoffer and returns its external ID Iﬁ
T
ferTime(), flexoffer. eforeTimed), flexaffer. getSlices()

createFlaxOffsr(flexoffer)
>

sends the flexoffer to the Aggregator through XMPP

| flexafierlD = generatef

flexofferlD

‘
! !
| |
| |
| |
‘ ‘
| |
| |
| |
| |
| |
‘ ‘
| |
| |
| |
| |
| |
| |
| |
| |
| |
‘ ‘
: |

T
|
|
I
I
'
1
I
|
i
I
I
1
1
1
|
I
i
I
I
|
L
o

| setiDfiexafferD) |

| updateF OID(flexoffer, devicelD) | | I |
e | | |

ScheduleAssignmentTimer requests to the Aggregator the schedules for the flexoffers ﬁ

| POST hitp request i

i createFlexOfferSchedule(flexOfferSchedule)

setFlexOfferSchedule(flexOfferScheduls)

setState(FlexOfferState. Assigned))

loo [while Flexoffer state == FlexOfferState.Ini

| state = getf 0 | i i i I i

i 1 | getState()
| | _—

alt [if Btate == FlexOfferState.Initial] !

[‘ ExecuteF OEmission waits until a schedule is assigned to the flexoffer %
I T
T

sleep(1000) i

lex0ffer State.Assigned]

When a scheduls is finally assigned to a flexofier,
ExecuteFOEmission saves the schedulz in the database

[if state ==

schedule = getiDg) i

insenSchedule(schedule, devicelD) ! ! ' '
((NSEMOCNECUEISENECUE, BEVIEE™) 5., | | | |

T T i

T T i T T
<<8ingleton=> ExecuteF OEmission <<8ingleton>> ‘ MyFlexibleResource | | ScheduleAssignmentTimer | | HouseDER | ‘ F\ExufferAgEﬂtl F\Exufferl
HouseController o DAO - = <

Fig. 61 — Sequence Diagram: UC14 Execute FO Emission

Rafael Teles da Rocha 103

Reengineering and development of loT Systems for Home Automation

Execute Actuations

FlexHousing Middleware

<<Singleton=> < <Singleton=> < <Interface=>
ActuationTimer HouseController DAO DeviceController Schedule |

.
After the schedules are assigned to the flexoffers,
the ActuationTimer activates,

gets the flexoffer schedules from the database
and sets a runnable for every schedule.

!
| List<Device> devicelist = getDevices()

I |
| List=String= devicelDs = retrieveDevicesWithActiveFO()

L
>
|
T

|
loop /| [for every devicel [
| ScheduleDT0 schedule = returnFOSByDayByDevice(device.getiD, new Date())

| worker = new ExecuteActuations({new NextDaySchedule(schedule), 1, device) ExecuteActuations '

|
alt [if device.getSensorBrand == 15A]
| deviceController = new WPSCdntroller{device .getiD())

!
|
|
|
|
|
|
|
|
|
|
! |
> i
|
|
|
y
|
|
|
|
|
|
|
|
|

i
[if device.getSensorBrand == SONOFF] |
i deviceController = new Sonuf‘FCuntroller(dev\ce.getIDm

execute() i
Foa
u i |
alt / [when the runnable {(ExecuteActuations) is executed] !
L run() | !
| commutations = getCommutations() i
r [[
loo [fPr every commutation]
alt [if commutation != currentState]

| actuatel)

-
s

A detailed representation of the actuate() method
can be found in UCO5

commutation = currentState

| sleeplinterval*1000)

ActuationTimer <<Singleton>> ExecuteActuations < <Singleton== < <Interface==> Schedule |
J DAOC

: HouseController DeviceController

Fig. 62 — Sequence Diagram: UC14 Execute Actuations

Rafael Teles da Rocha 104

Reengineering and development of loT Systems for Home Automation

4.3.2.13 Use Case 15 — Identify Device Types

Table 19 — Use Case 15: Identify Device Types
Use Case 15 — Identify Device Types

Description The system intends to periodically identify the type
of every registered device, based on their energy

consumption values.

Actor(s) FlexHousing Middleware
Preconditions 1. Have at least one device registered on the
system.

2. Have enough energy consumption data to
properly determine the device’s type.

Postconditions 1. All devices will be identified with their

correspondent type.

Basic Flow of Events

Actions of the actor 1. Checks if it already has a trained model to
predict the device’s type.

a. If not, then the actor creates and
trains a model for the device type
identification.

2. Identifies the device’s type, through the

trained model.

Rafael Teles da Rocha 105

Reengineering and development of loT Systems for Home Automation

Start Device Type Identification Timer

FlexHousing Middleware

timerTask = new (] DeviceldentificationTimer

new ()
I
I
I
I
|
|
:
I
|
I

Starts the DeviceldentificationTimer everyday j

time = getTimel)

>

scheduleAtFixedRate(timerTask, time,|24 * 60 * 60 * 1000) >
|

Main I DeviceldentificatinnTimerI Timer I Calendar I

Fig. 63 —Sequence Diagram: UC15 Start Device Type Identification Timer

Rafael Teles da Rocha 106

Reengineering and development of loT Systems for Home Automation

Identify Device Types

FlexHousing Middleware

<<Singleton==> <<Singleton==>
| DeviceldentificationTimer n HouseController | Device " ‘ DeviceTypeIdentiﬂcatorn | Runtime I DAC

List<Device> devices = getDevices()
>

n
IouE / [for every device]

| DeviceType type = getDeviceType()

|
alt [if type, == UNKNOWN]
| String devicelD = getiD()

>

1 i
| |
| |
| |
L I
" |
| |
| |

) |

>
| |
T T
' |
| |
| |
i |
| |
! |

|

Checks in the project's directory if there already is
a trained model for the prediction
T T

alt / [if the model doesn't exist] ;
I

1
I
1
1
.
1
i
1
|
1
1
|
1
]
1
i
1
1
0
|
trainModel() !
]

|
I

| exportMeasurermnentsToCswv(]
| 1

executes a python command:
‘pythen train_model.py measurements.csv "Active Power (W)" 5000 5000 100 100 MyMode| DevicelDs'

s
2

7 7
1 I |
i | execlcommand) i
| . |
1 !

executes a python command:
'python identify_device.py data\' + devicelD + "walidisample_6.sample MyModel DevicelDs'

.
I
I
|
I
i

| DeviceType deviceType = identify{devicgID]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

output = exec(command)

alt / [if output == Refrigerator] |
i I

! return REFRIGERATOR !

! return WETDEVICE 4y

new (devicelD) <<Interface=>

DeviceController

setDeviceType(deviceType)

setDeviceTypeldeviceType)

updateDeviceldevice)

DeviceldentificationTimer " <<Singleton==> <<Interface=> | Device “ ‘ DeviceTypeIdentiﬂcatorn | Runtime l <<Singleton==>
HouseContraoller DeviceController DAO

Fig. 64 — Sequence Diagram: UC15 Identify Device Types

Rafael Teles da Rocha 107

Reengineering and development of loT Systems for Home Automation

4.3.2.14 Use Case 16 — Provide Device’s Consumption Data

Table 20 - Use Case 16: Provide Device’s Consumption Data

Use Case 16 — Provide Device’s Consumption Data

Description The system intends to provide the current energy
consumption values of a device via REST, updating

its data every 2 seconds.

Actor(s) Sonoff switch
Preconditions
Postconditions 2. The device’s current energy consumption

values are available via REST.
Basic Flow of Events
Actions of the actor 3. Acquires energy consumption values from
the device, every 2 seconds.

Actions of the system (Sensor) 1. Provides energy consumption values from

the device, updating every 2 seconds.

Rafael Teles da Rocha 108

Reengineering and development of loT Systems for Home Automation

Provide Device’s Consumption Data
Sonoff

REST_API | HLW8012 | | aRESTl | WiFi | ‘ WiFiServerl

= ! I
1

setup() :
= !

T

I

I

]

|

I

| Initialize sensor HLWBD12 B': h
0 I
]

I

|

I

]

|

beginl...)

L

T
I
I
]
|
I
|
I
I
I
|
|
setResistors(...) |
|

L

Initialize variables and expose them to REST API Br

variable("consumption", &consumptionvariables);

!

variable('state", &state);

>

[
|‘ Expose function to REST API Iﬁ

function("actuate", actuate) -
’I]

| Connect to WiFi and start the server ﬁ

begin(ssid, password)

s A

i begin()

=

.
loop / [linfinite loopl

In this case, the UPDATE_TIME is set to 2000,
which means it checks values every 2 seconds
T

alt / [if (elapsedTime > UPDATE_TIME)] [
activePower = getActivePower() !

voltage = getvoltage() !

|
|
I
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

current = getCurrent()

apparentPower = getApparentPower()

powerFactor = (100 * getPowerFactor(})

consumptionvariables = buildString(
activePower, voltage, current, apparentPower, powerFactor)

i
Handle REST calls ™

i client = available()

alt): Tif (tchient)]

! return

el

<

i i

i i

i i

’ | |

I()(JE / [while client is unavailable] ! i
| |

i i

i i

i i

| delay(1)

| handle(client)

2
1 1 1 1 1

REST_API ‘ HLW8012 | ‘ aRESTl ‘ WiF | ‘ WiFiServerl

Fig. 65 — Sequence Diagram: UC16 Provide Device's Consumption Data

Rafael Teles da Rocha 109

Reengineering and development of loT Systems for Home Automation

4.3.3 Class Diagram

A class diagram is a type of diagram that describes the structure of a system by showing the

system's classes, their attributes, operations, and the relationships among objects [62].

In this section, a simplified class diagram of the FlexHousing Middleware will be presented
(with the new classes and heavily altered ones highlighted in red) in Fig. 66, followed by a
more detailed diagram and description of every package in the Middleware. Next, a class

diagram of the FlexHousing web platform will also be displayed.

Rafael Teles da Rocha 110

Reengineering and development of loT Systems for Home Automation

4.3.3.1 FlexHousing Middleware

Legend

No changes made

New or heavily
modified

—

Models.

sensorBrand

‘ ScheduleDTO | ‘ SensorDTO ‘ ‘ ActuationFH |

MeasurementsDTO

‘ ActuationVPS |

‘ NewDeviceDTO

rg
arrowhead
wps

MyFlexibleResource

HouseDER

FH_API

‘ AuthenticationFilter ‘ ‘

Secured
‘ AnalyticsPath ‘ ‘ UserPath
‘ FlexofferPath | ’ DevicePath

DeviceTypeldentificator

CORSFilter

ren ‘ ‘ - ‘ ‘ s \
sensors <<enumeralions>
i DeviceType Actuation
House NextDaySchedule S e
UNKNOWN
REFRIGERATOR
<=<enumerstion>>
SensorBrand
InfraD: ‘ Schedui Device -sensorBrand |SONOFF
L ‘ 1SA
fos
ol S device
Execution
ExecuteActuations ExecuteFOEmission

ActuationTimer |

FlexofferTimer

Controllers

‘ ’ UserDTO ‘ ‘ Login_Session ‘

ThirdPartyServices

VPSController

deviceCantraller

<<Interface>>
DeviceController

FlexofferController

-sonoff | -isa

HouseController

SonoffCantroller

[database

DAO

-database -database

f

Fig. 66 — Simplified class diagram of the FlexHousing Middleware

Rafael Teles da Rocha

111

Reengineering and development of loT Systems for Home Automation

4.3.3.1.1 Models

The Models package refers to the domain objects, in other words, the business layer

containing all objects that model problem domain objects. These Model objects are data-

centric classes that usually map roughly to the records of a corresponding database table and,

thus, are often used as return values for Data Access Object (DAO) methods.

T pAaE o T Ergeas 0o Para
Room Actuation User
<<Property>> ~Nam : String <<Property>> -devicelD : String <sProperty>> ~maasuring : String <<Property>> ~ID : String
<<Properly>> ~houselD : Slring <<Properly>> -star{Time : Dale <<Property>> ~value : double <<Properly>> -usemname : String
<<Property=> ~ID : int <<Property>> -endTime : Date <<Property>> ~date : Date <<Property>> -passwordHash : String
<<Property>> -devices : Map<Siring, Device> D : String, startTime : Date, endTime : Date) | |+Measurement{measuring : String, Value : double, Date : Date) | |+User(ID : String, username : Siring, passwordHash : Siring)
e : String) +Actuation(device|D : String, startTime : Date) +oString() : String
+Room(Name : String, houselD : String)
+addDevice{device : Device) : vaid
+toString() : String
+gelDeviceByIDiid : String) - Device Sensor
+deleteDevice(devigelD : Sring) : void [<<Proparty>> ~id : int <<enumeralion>>
|<<Property>> ~Name : String : DeviceType
- ; - -deviceType
e [+SensarDevicelD : String, Name : String) UNKNOWN
» 2
<<Property>>-id : String *:’i:ggge'(f’[:':f REFRIGERATOR
<<Property>> -name : String g
+equalsiobj : Object) : boolean
<<Properly>> -address : Slring T
<<Property>> -rooms : Map<Integer, Room>
+House(id : String, name : String, address : String. roomMap : Map<integer, Room=)
+House(id : String, name : String, address : String) Device
+House(name : Slring, address : Slring) [<<Property>> ~ID : String
+generataUUIDY) : void -roomd : int
+getRoomBylD({id : int} : Room [<<Property=> ~raomName : String
+addRoom(reom : Room) : void |<<Property>> ~Name : String
+deleteReom(roomlD : int) ; void <<Property=> ~schedule : FlexOfferSchedule
+deleteDevica(devicelD : String) : void [<<Property=> ~deviceBrand : String
[<<Property=> ~deviceModel : String
[<<Property>> ~sensorlD : String
[<<Property>> -sensorBrand : SensorBrand
NextD: [<<Property>> ~sensors : Sensor = new ArrayList<>()
~comutationsList : ArrayList<Integer> = new ArayList<>() |<<Property=> -devica Type : DevicaType
Lt i intl] = new intf96] +Device(ID : Siring, name : String, sensorBrand : roomld : int, d : String, + String, sensoriD ; String)
+NextDaySchedule(fos : FlexOfferSchedule) [+getRoomID() : int
+NexiDaySchedule(fo : ScheduleDTO) +1oStringl) : String
+toString() : String +addNewSensorisensar : Sensar) : void
[+hasActuatar() : boolean
device ~device device
InfraDaySchedule Schedule
~comutations : ArrayList<Integer> = new ArrayList<>(} +gefCommutationsf) -sensorBrand
+InfraDaySchedule(fos : FlexOfferSchedule) <<gnumeration=>
+getCommutations() : int]] o SensorBrand
SONOFF
ISA
sensorBrand
Exeoution ThirdPartyServiods D1O
ExecuteActuations ‘ | ExecuteFOEmission | ‘ SonofiController ‘ ‘ VPSController ‘ AR LT

Fig. 67 — Class Diagram of Models package

Rafael Teles da Rocha

112

Reengineering and development of loT Systems for Home Automation

Table 21 — Classes description of Models package

Class Name Description

User Represents the system user.

House Represents a user’s house.

Room Represents a room of a user’s house.

Device Represents the monitored device, containing the device’s details
but also the sensors that are monitoring it.

Sensor Representation of the sensors attached to a Device.

SensorBrand Represents the brand of the sensors attached to the device. For
the time being, these can only be ISA branded or Sonoff branded.

Schedule Abstract class for the actuation schedule.

InfraDaySchedule Implementation of the Schedule for same day flex-offers.

NextDaySchedule Implementation of the Schedule for periodic flex-offers.

Measurement Entity representing the data collected from the Sensors.

Actuation Entity representing a device’s actuation, registering an instance
of use.

DeviceType Represents the type of appliance the device is. For the time
being, it can only be identified either as or not as a Refrigerator.

4.3.3.1.2 DTO

The DTO package, following the DTO pattern, acts as a layer between the domain objects and

the API. It creates representational objects, originating from the ones in the Models package,

but only containing relevant information for the operation it was requested for.

Rafael Teles da Rocha

113

Reengineering and development of loT Systems for Home Automation

racia T StandardIns [Q3 pe o 6 Engeniaria oo Para)

Login_Session

ActuationFH

Statistics <<Property>> ~Login : String

<<Property>> ~ID : String [<<Property=> ~numberOfDevicesWithFO : int perty String ActuationVPS

<<Property>> int |<<Property>> ~numberOfFOApplied : int +Login_Session(Login : String, Password : String) <<Property>> ~Command : String

+ActuationFH(ID : String, command : int) Propert

~moneySaved : double

+Login_Session() <<Property>> ~Taglds : ArrayList<Integer> = new ArrayList<>()

+ActuationFH() +Statistics() +taString() : String +ActuationVVPS{Command : String, Taglds : int)

ScheduleDTO

<<Property>> ~name : String
<<Property>> ~Start : Date

<<Property>> ~energyAmounts : ArrayList<Double> = new ArrayList<>() <<Property>> -password : String <<Property>> ~value : double

UserDTO MeasurementsDTO
<<Property>> -username : $tring <<Property>> ~date : long

+ScheduleDTO(fos : FlexOfferSchedule)
+ScheduleDTO()

+UserDTO(username : String, password : String) +MeasurementsDTO(date : long, value : double)
+UserDTO() +MeasurementsDTO()

FlexOfferDTO

<<Property>> ~name - String

<<Property>> ~startTime : long

<<Property>> ~endTime : long

<<Property>> ~upperEnergyValues : ArrayList<Double>
<<Property>> ~lowerEnergyValues - Arraylist<Double>

SensorDTO
<<Property>> ~sensorlD : int
<<Property>> ~devicelD : String
<<Property>> ~tagName : String

+FlexOfferDTO)
+toArrowheadFO() : FlexOffer

+FlexOfferDTO(startTime : long, endTime : long, upperEnergyValues : ArrayList<Double>, lowerEnergyValues : ArayList<Double>) +SensorDTO(devicelD @ String, tagName : String)

+SensorDTO(sensorlD : int, devicelD : String, tagName : String)
+SensorDTO()

NewDeviceDTO

~uuid : String

<<Property>> ~sensor|D : String
<<Property>> ~Name : Slring
<<Property>> ~room : String

<<Property>> ~deviceBrand : String
<<Property>> ~deviceModel - String
<<Property>> ~sensorAddress : String
<<Property>> ~thirdPartyUsername : String
<<Property>> ~thirdPartyPassward : String
<<Property>> ~tagName : String
<<Property>> ~sensorBrand : SensorBrand

+NewDeviceDTO(Name : String, room : String,

: String, String, 1d : String, sensorAddress : String, sensorlD : String, thirdPartyUsemarme : String, thirdPartyPassword : String, tagName : String)

+NewDeviceDTO()
+getUUID() : String
+generateUUID() : void

Models

sensorBrand
<<enumeration>>
SensorBrand
SONOFF
I1SA

Fig. 68 — Class Diagram of DTO package

Table 22 — Classes description of DTO package

Class Name

Description

ActuationFH
ActuationVPS

Flex-offerDTO

LoginSession

MeasurementsDTO

NewDeviceDTO

Used to demand the actuation on a given device.
Object used by the VPSController for the actuations on devices.

Representation of the flex-offer only containing the fields

configurable by the end user.
Object used by the VPSController to log into the VPS API.

Represents the relevant information gathered from the
measurements received after a request for such on the

VPSController and SonoffController.

Object containing the information of a new device to be added

to the system.

Rafael Teles da Rocha

114

Reengineering and development of loT Systems for Home Automation

ScheduleDTO Contains the fields of the schedules that are relevant to the end
user.

SensorDTO Used when a request involving a sensor is received. Contains the
sensor name and ID.

UserDTO Object containing a user’s credentials. Used in account
registrations and logins.

Statistics Object containing the statistical information of the system.

4.3.3.1.3 Execution

The Execution package contains all classes that execute the system’s automatic processes, as

well as the Main class that sets up the system itself (initializing all timer tasks and starting the

HTTP server for the FlexHousing API).

Execution

Models

Schedule

fos

Device
device

Main

ExecuteActuations

+BASE URI : String = "http:/10.10.10.203:8081/FlexHousing"

+startServer() : HitpServer
+main(args : String[]) : void
+startF OEmissions() : void

~interval

~currentState : int = 0

int

~fos : Schedule

~deviceController : DeviceController

ExecuteFOEmission
~fo : FlexOffer
~device : Device

+ExecuteActuations(fos : Schedule, interval : int, dev : Device)

~ExecuteFOEmission(fo : FlexOffer, Dev : Device)
+run() : void

#startScheduleAssignment() : void
+startActuations() : void +run() : void
+startMeasurementRequests() : void

DeviceT: dentificator Devit ificationTimer
+rainModel() : void +DeviceldentificationTimer()
+dentify(devicelD : String) +run() : void
[CORSFilter |

+Hilter(request : ContainerRequestContext, response : ContainerResponseContext) : void |

ssignmentTimer

Timer

+ScheduleAssignmentTimer()
+run() : void

+MeasurementRequestTimer()

+run(} : void

ActuationTimer
+ActuationTimer()
+run() : void

FlexofferTimer

+FlexofferTimer()
+run() : veid

Controllers

deviceController

<<Interface>>
DeviceController

Fig. 69 — Class Diagram of Execution package

Rafael Teles da Rocha

115

Reengineering and development of loT Systems for Home Automation

Table 23 — Classes description of Execution package

Class Name Description

Main Class executed when initiating the system. Starting point for
every component.

FlexofferTimer Class responsible for keeping track of the time of day for the
emission of flex-offers.

ExecuteFOEmission A runnable thread created for every flex-offer. Responsible
for emitting the flex-offer, retrieve the schedules, and their
respective persistence.

ActuationTimer Class responsible for keeping track of the time of day for the
creation of the actuations schedules.

ExecuteActuations A runnable thread for the creation of the actuation

ScheduleAssigmentTimer

MeasurementRequestTimer

CORSFilter

DeviceTypeldentificator

DeviceldentificatorTimer

schedules. Retrieves the schedule for the flex-offers and

monitors the energy usage programed for the device.

Class responsible for requesting the Aggregator module a

schedule assignment for the flex-offers sent.

Class responsible for requesting the current measurements
of a device, for the cases where its service provider does not

store measurements.

Class responsible for dealing with Cross-Origin Resource

Sharing (CORS).

Class responsible for identifying the type of appliance a

Device is.

Class responsible for executing DeviceTypeldentificator

every day.

4.3.3.1.4 org.arrowhead.wp5

The WP5 package, short for org.arrowhead.wp5, has Arrowhead’s implementation of a

Distributed Energy System (DER). WP5’s responsibilities consist of emitting flex-offers,

retrieving schedules, and handling the connection to the Flex-offer Services. The

Rafael Teles da Rocha

116

Reengineering and development of loT Systems for Home Automation

MyFlexibleResource class is a singleton to make sure that the emission of the flex-offer

originates for the same agent.

Visual F’::Luﬁrgéh:' dard(Inftituto Superior de Engenharia do Porto)

arrowhead

wpS

HouseDER

~foa : FlexOfferAgent

+HouseDER(foa : FlexOfferAgent)

+generateFlexOffer(start : Date, end : Date) : void

+updateSchedule(fo : FlexOffer) : void

+generateFlexOffer() : void

+generateFlexOfferDemo() : void

+generateFlexOffer(start : Date, end : Date, slices : FlexOfferSlice[]) : int

MyFlexibleResource
~prop : Properties = new Properties()
~input : InputStream = null
~logger : Logger = LoggerFactory.getlLogger(this.getClass())
<<Property>> -agent : FlexOfferAgent
<<Property>> -flexDER : AbstractDER
-id : String
-aggld : String
-password : String
-xmppServer : String -instance
-xmppPort : int
-xmppService : String
-xmppResource : String
-hoxtWrapper : HOXTWrapper
-xfosc : XFlexOfferSubscriberClient
-foServiceManager : ArrowheadXMPPServiceManager
-instance : MyFlexibleResource

+MyFlexibleResource()

+returnFR() : MyFlexibleResource
-doAggregatorSD() : void

+initXmpp() : void

+deinitXmpp() : void
+onFlexOfferScheduleUpdate(fo : FlexOffer) : void
+onFlexOfferCreate(fo : FlexOffer) : void

Fig. 70 — Class Diagram of org.arrowhead.wp5 package

Table 24 — Classes description of org.arrowhead.wp5 package

Class Name Description

HouseDER The HouseDER class extends the AbstractDER class. It
contains an implementation of the generateFlexOffer()

method, tailored to this system.

Rafael Teles da Rocha 117

Reengineering and development of loT Systems for Home Automation

MyFlexibleResource Entity responsible for the connection to the Flex-offer
Services, containing methods for the XMPP connection and

the Service Discovery for the Aggregator.

4.3.3.1.5 Controllers

The Controllers package includes the major controllers in the system. The controller pattern
assigns the responsibility of dealing with system events to a class that represents the overall
system or a use case scenario, in other words, a controller object is an object responsible for
receiving or handling a system event. A controller should delegate the work that needs to be

done to other objects; however, it should not do much work itself [63].

Execulion

O wPsContraller
ExacuteActuations 1
L SenoffCentroller

Conrotlers

davicaGanlroilor

<lnteracers

-houses : Map<String, Houses
<<Property=> +10 : FlexOffer <<Property= -sorisariames ; Lisk
Armays asListi"Voltage RMS

"Aciiva energy+* "Ac
i "RSSILAIY

w AtrayList<>{
* "Active Power”

+eddhsasUramant(Measuring : Sting, Value : double, Dale - Dale) - void
+peteasurementsi) - void
+actusta(] : boolean

DAD

-detabaze - DAG

+2ddFO{lo : FloxOflor, Name : Slring) void
-isa « DevicaConimller

sreumPoweessuramentsistart - long, end : long) ; Object

+ratumPowe TiessuramertsByDay(start - lang, end : long) : Object -sanoff -sonoff: DeviceController

+getTokentemail : Sting, passwars ; String) : bodlean +HouseGanoller()
+addSensoToDeviceiname : String) : waid | +addNewHouse(useriD - String, name : String, adaress : Sting) : voin
+gulSlate(} - bociean +patRoomByID(id : int) : Room

sretumMeasurementDifiersnce(day : long) : Object -+ getRoomsByUseriD{useriD : String) - Map=Stiing, ListsRaoms=

+getRoomal) : List=Roam>
+gulDeviceByID{ID : Siring) : Dovics
+getDevicesByHouselD{house!D ; Stiing] ; List=Devive>
-+geiDevicesByUserlD{userD - Siring) : Map<String, List=Davices>

+gelDovicosi) : Lisl=Devico>
+FlexoferController() +getHousesByliseriD{useriD - String) : Map<String, House>
+convertListTaDTOLIst]ist : ArrayList<FlexOffer=] : ArrayList<FlexOferDTC +galHouse|DsByUsariD{usariD - Slring) ; Lisl<Siing>
+converTaDTO{fo - FlexOlfer) - FlexOlieD TQ +getSensorBrmnds() | ArrayList=SensorBrand=
+corvertlisiTaDTOListFi hedule(list ; Amaylist<Flex0! Avrayl [< String, raomMame: : String) : void
Rom) : void

+deleteDevice{devicelD ; Sting) ; ot
+addNewDercallD - String. Name : Sing, sensorBrand : SensorBrand, roamiama - String, deviceBrand : Sting, davissltodel : String, sansorD : Smng) woid
+2ddDeuice|savica : Devica) : void
+paulateHouses() : void
+thircParty Tokens(usemame - String) - hoolean
+gelDovicesByRoamiD{roumiD : ini) : List<Devieer
AraytistsString=] - void
“getRoomIDByName|momMName : String) - int
+buldStals{) Stalslics

Fig. 71 — Class Diagram of Controllers package

Table 25 — Classes description of Controllers package

Class Name Description

HouseController Manages every house, and their corresponding room and

device.

Rafael Teles da Rocha 118

Reengineering and development of loT Systems for Home Automation

DeviceController Responsible for every action on a Device object. As an
interface, the DeviceController defines all the required

methods to control a device.

FlexofferController Allows flex-offer management. Has access to every flex-

offer.

4.3.3.1.6 ThirdPartyServices

The ThirdPartyServices package contains the controllers corresponding to the service provider
of each device. Every controller implements the DeviceController class, however these
controllers have a specific implementation of each abstract method to their subsequent
service. Essentially, this corresponds to the Strategy design pattern where each

implementation is encapsulated in a separate (strategy) object.

In this case, there are two separate controllers for each implementation: one for VPS, and one

for Sonoff.

Rafael Teles da Rocha 119

Reengineering and development of loT Systems for Home Automation

stiuzo Superor de Engenharia ¢o Pofl— T Pary Sarvices,

VPSController

~Taken : Siring
+TURN ON:int=0

-device -device

+ogged : bo n ue
+NotLogged : boolean = false

DAO

-apiAddress : String = ™
device : Device
-database : DAO /-‘ bDAO

+VPSController()
+VPSController(DevicelD : String)

+gelToken{email : String, password : String) : boclean
+getDateDiff(date1 : Date, date2 : Date, timeUnit : TimeUnit) : long.
+actuate(actuationTag : int, operation : int) : boolean

+getState() : boolean

+getMeasurement(Tag : Sensor, from : long, 10 : long) : List<MeasurementsDTO>
+getTag(sensorlD : String, TagName : String) : int
+addSensorToDevice(Name : String) : vaid
+addMeasurement(Measuring : String, Value * double, Date : Date) - void
+getSensorByName(name : String) : Sensor
+getMeasurements(sensorlD : int, from : long, to : long) : void

+actuate() : boolean

+addFO(fo : FlexOffer, Name : String) : void

+removeSensor(sensorlD : int) : void

+getSensorBylD(sensorlD : int) : Sensar

+returnSensors() : ArrayList<Sensor>
+returnPowerMeasurements(start : long, end : long) : Object

+getFO() : FlexOffer

+getMeasurements() : void

+isSameDay(date1 : Date, date2 : Date) : boolean
+retumPowerhMeasurementsByDaylstart : long, end : long) : Object
+returnMeasurementDifference(day : long} : Object
+returnPowerhMeasurementsFarOneDay(start : long, end - long) - Object
+returnPo 1entsDifferanceByDay(dar 1ant - double, start * long, end * long) : ListsMeasurementsDTO>

-database

SoncffController
~httpClient : CloseableHttpClient = HttpClients.custom(). build
-apiAddress : String = ™"

-device : Device
-database : DAC

+SonoffController()
+SonoffController(devicelD : String)
AV +getMeasurements() : void
<<Interface>> +addMeasurement(Measuring : String, Value : double, Date : Date) : void
DeviceController +actuate() : boolean
A +addFO(fo : FlexOffer, Name : String) : void
+getDateDiff{date : Dale, date2 : Date, timeUnit : TimeUnit) : long

| +returnPowerhMeasurements(start : long, end : long) : Object
; +isSameDay(date1 : Date, date2 : Date) : boolean
I
|
I

+returnPo ner Day(start : long, end : long) : Object
+getFO() : FlexOffer
Lo oo - - - |+addSensorToDevice(name : String) : void

+getToken(emalil : String, password : String) : boclean

+getStale() : boolean

+retumMeasurementDifference(day : long} : Object

+returnPowerMeasurementsForOneDay(start : long, end : long) : Object

+returr entsDifferenceByDay(da ent : double, start - lang, end : long) : List<MeasurementsDTO>

Fig. 72 — Class Diagram of ThirdPartyServices package

Table 26 — Classes description of ThirdPartyServices package

Class Name Description

VPSController Handles every VPS related device. Builds HTTP requests

aimed at the VPS API, and handles their responses.

SonoffController Handles the Sonoff devices. Builds HTTP requests aimed at

the Sonoff switch’s API, and handles their responses.

Rafael Teles da Rocha 120

Reengineering and development of loT Systems for Home Automation

4.3.3.1.7 FH_API

The FH_API package contains the definition of the services and resources hosted by the

system’s API through the HTTP server initialized in the Main class.

sual Paradigm EE‘FH'_'AM""‘ 3 Superic rl har
FlexofferPath DevicePath
+allFO() : String +allDevices(securityContext : SecurityContext) : String
+allActiveFO() : String +deleteDevice(devicelD : String) : void
+getit(msg : String) : String +getDevice(msg : String) : String
+getSchedule(msg : String) : String +getDevicesByRoom(msg : String) : String
+getFlexofferByDevicelD(msg : String) : String +getSupportedDeviceOrigins() : String
+getFlexofferByDay(msg : String, day : String) : String +actuate(devicelDJSON : String) : Response
+getScheduleByDay(msg : String, day : String) : String +state(devicelD : String) : Response
+postFO(DevicelD : String, JSON : String) : Response +removeSensor(devicelD : String, sensorlD : int) : String
+deleteFO(devicelD : String) : void +registerDevice(devicelDJSON : String, securityContext : SecurityContext) : String
+addSensor(devicelD : String, tagName : String) : void
+getSensorsByDevice(msg : String) : String
+getSensorsTypes() : String
UserPath HousePath
+registerUser(userlDJSON : String) : Response +allHouses(securityContext : SecurityContext) : String
+authenticateUser(userlDJSON : String) : Response +registerNewHouse(JSON : String, securityContext : SecurityContext) : String
+authenticate(userDto : UserDTO) : void +deleteHouse(houselD : String) : void
-isValidUser(username : String, password : String) : boolean +getStats() : String
+issueToken(user : UserDTO) : String +deleteRoom(roomID : int) : void
+getPasswordHash(password : String) : String +registerNewRoom(JSON : String) : String
+initializeUser(user : UserDTO) : void +getAllIRooms(securityContext : SecurityContext) : String
+getAllDeviceByRoom(msg : String) : String
AnalyticsPath MeasurementPath
+getDeviceAnalytics() : String +deleteMeasurements(devicelD : String, MType : String) : void
+getTotalHousesAndDevicesAndUsers() : String +getMeasurementsFromDateAnd Type(devicelD : String, from : String, to : String) : String
+getMeasurementsByDay(devicelD : String, from : String, to : String) : String
+getMeasurementDifference(devicelD : String, day : String) : String
AuthenticationFilter Secured
+ilter(requestContext : ContainerRequestContext) : void
-validate Token(token : String) : void

Fig. 73 — Class Diagram of FH_API package

Table 27 — Classes description of FH_API package

Class Name Description

FlexofferPath Definition of the services and resources attached to the

Flexoffer route.

DevicePath Definition of the services and resources attached to the

Device route.

Rafael Teles da Rocha 121

Reengineering and development of loT Systems for Home Automation

UserPath Definition of the services and resources attached to the User
route.
HousePath Definition of the services and resources attached to the

House route.

AnalyticsPath Definition of the services and resources attached to the

Analytics route.

MeasurementPath Definition of the services and resources attached to the

Measurements route.

AuthenticationFilter Implements the ContainerRequestFilter class, which allows

it to handle a request.

Verifies the access permissions for a user based on the

username and password provided in the request.

Secured Defines the name-binding annotation @Secured, used to
decorate the AuthenticationFilter class, allowing the system

to handle a request.

4.3.3.1.8 DAO

The DAO package acts as a layer between the database and the system, being responsible for
interacting with the database through queries. The DAO is a singleton to insure concurrence

and to establish only one connection to the database at any given moment.

Rafael Teles da Rocha 122

Reengineering and development of loT Systems for Home Automation

ThirdPartyServices

finstuto Superior de Engenharia do Portol

DAO

DAO

1527/F| ing”

[~pass : String = "cister"
[=con : Connection

VPSC

-database

SonoffC

Controllers

-database

+DAO()

[+populateHouses() : void

tinsertUser{username : String, password : String) : void

[+insertHouse(userlD : String, house : House) : void

[+insertEndUser(user : User) : void

+insertUserToken(token : String, username : String} : void

+insertUserCredentialsThirdPartyService(username : String, thirdPartyServiceName : String, thirdPartyUsername : String, thirdPartyPassword - String) : void
+returnThirdParty ServiceIDByName(thirdPartyServiceName : String) : int

[+ratumUserByl String, password : String) : User

[+returnUserByUsermame(username : String) : User

[+returnUserByToken(foken : String) : User

[+returnThirdPartyCredentialsByUsername(userame : String) : ArrayList<Device>

[+retumAliHouses() : Map<String, House>

+returnHousesByUser|D(userlD : String) : List<String>

[+ratumnAliDevices() : AmayList<Device>

[+returnAllUsers() : ArrayList<User>

+returnDevicesByRoom(room : Siring) : ArrayList<Device>

[+returnDevicesWithActuators() : ArrayList<Device>

[+retumnDeviceByID(ID : String) : Device

+insertDevice(device : Device) : void

+insertDevice ThirdPartyService(devicel D : String, apiAddress : String) : void

[+returnThirdPar ice|DByApi i : 8tring) : int

[+returnApiAddressByDevicelD(devicelD : String) : String
[+updateDevice(Device : Device) : void

[+retreiveDevi iveFO() : Arrayl ing
+deleteHouselhouselD : String) : vaid

+deleteDevice ThirdPartyService(device|D : String) : void
+deleteDevice(devicelD : String) : void
[+returnLastActuation(device D : Sting) : Actuation

HouseC

Class Name

-database

astAct D : String, endTime : Date, totalTime : double) : void
[+insertActuation{actuation : Actuation) : void

[+insertRoam({room : Room) : vaid

+returnRoom|DByNameAndHouselD(name : String, houselD : String) : int

+insert Thi i i - String, api String) : void
[+cleleteRoom(room|D : int) : void

[+updateRoom{room : Room) : void

[+retumAliSensors() : ArrayList<Sensor>
+returnSensorsByDevicelD(devicelD : String) : List<Sensar>
+insertSensar(sensor : Sensor, DevicslD : String) : void

[+deleteSensor(sensoriD : int) : void

+updateSensor(sensor : Sensor) : void

+returnMeasurementsByDeviceAndBy Type(DevicelD - String, measureType - String) - ArrayLisi<Measurements>

DevicelD : String) : String
+deleteMeasurement{DevicelD : String, measureType : String) : void
+returniMeasurementsByDevicelDAnd Timelnterval(device|D : String, startDate : long, endDate : long) : List<MeasurementsDTO>
[+retumAlFO() « ArrayList<FlexOffer=

+retumnFOByDevice|D{DevicelD : String) : FlexOffer
[+retumAlIFOByDevicslD{DevicelD - String) - ArrayList<FlexOfferDTO>
+returnFOByName(flexofferName : String) : FlexOffer
+relurnFOByDeviceIDByDay(DevicelD : Siring, date : Date) : ArrayList<FlexOfferDTO>
[+insertFO(fo : FlexOffer, deviceid : String, name : String) - String

[+deleteFO(devicelD : String) - void

+retumnF OSByDevicelD(dev : String) : FlexOffe hedul
[+retumFOScheduleByDevicelD{devicelD - String) * Arraylist<ScheduleDTO>
[+returnF OSByDayByDevice(dev : String, date : Date) : ArrayList<ScheduleDTO>
+inserlSchedule(fo : FlexOferSchedule, dev : Device) : String

+deleteSchedule(fos : FlexOfferSchedule, devicelD : String) : void
[+returnAllActiveFO() : ArayList<FlexOffer>

+updateFOID(fo : FlexOffer, id : String) : void

[+deactivaleFO(id - String) - void

turActiveFlexOfferByDevi icelD : String) : lterable<FlexOffer>
[+ret P vicename : String) : String
+getThirdPartyServiceC i name : String, servicename : Siring} : String[]
g iesForEachDevice() : Map<String, double[J>

Fig. 74 — Class Diagram of DAO package

Table 28 — Classes description of DAO package

Description

DAO

Handles every database-related operation. Responsible for

both storing and retrieving objects from the database.

Rafael Teles da Rocha

123

Reengineering and development of loT Systems for Home Automation

4.3.3.2 FlexHousing Web Platform

Like the Middleware, the FlexHousing web platform was developed following the single
responsibility principle, in order to avoid a class having more than one responsibility,

unwanted coupling, resistance to change or incompatibilities when introducing code changes.

It should also be noted that inheritance was used for code reuse, and that this implementation

did not cause any coupling problems.

Visual Paradigm Standard(Instituto Superior de Engenharia do Porto) Actuation
-ID
-command
A Device
Flexoffer : N
-startTime FlexoffersController DevicesController -roiTnelD
-endTime +send() ggexy -roomName
-upperEnergyValues k< - - - -{+create() +create() F--> S ceRany
.:?;Nr:;EnergyValues 15};?W() :sl;?w() _deviceModel
B edit() +e itot -sensorBrand
actuate() -sensorAddress
House HousesController -ss{nsorID
e e - - - Joindexo) -th!rdPartyUsername
_address +craatal) -thirdPartyPassword
+edit) -tagName
Controller
RoomsController -
Room | _ +index() 1> < 9vew:ewController
-Name +create() +index()
-houselD +show()
+edit()
LoginSession
-username
User RegisterController LoginController [- - -~ - — > -password
fillable KZ - - - {-redirectTo +login()
-hidden +__construct() +|OQ(_3IJt() RegisterUser
#validator() AEGEE | -username
#create() -password

Fig. 75 — Class Diagram of FlexHousing Web Platform

The web platform’s model classes are similar to the Middleware’s in terms of their
responsibilities and data structure. In regard to the controllers, most share the usual type of

functions present in web apps: index (), create (), show (),andedit ().

Rafael Teles da Rocha 124

Reengineering and development of loT Systems for Home Automation

4.3.3.3 Executives’ Web Platform

The executives’ platform is structured very similarly to the FlexHousing web platform, albeit
much more simplified, since the only features required from it are accessing data from the
FlexHousing Middleware. Thus, aside from the register and login pages, only the Overview

page is needed.

Visual Paradigm Standard(Instituto Superior dﬁ@fé‘érﬁ:jﬁﬁ%"er
-redirectTo
User +__construct()
fillable << ------ #validator()
-hidden #create()
OverviewController
Controller

<}——+index()

LoginController
LoginSession : gll RegisterUser
-username < ------- :Igglon(z ------- > -username
-password +regislie(2 0 -password

Fig. 76 — Class Diagram of Executives' Web Platfrom

Rafael Teles da Rocha 125

Reengineering and development of loT Systems for Home Automation

4.4 Implementation

This section describes the implementation of the more interesting and/or complex features
developed in the project, namely, the management of the two types of devices used in the
project (VPS and Sonoff), the automatic creation of flex-offers, the identification of device
types, the verification of the effectiveness of a flex-offer on a device’s energy consumption

pattern, and the setup of the FlexHousing system in a development environment.

4.4.1 Device Controller

As mentioned before, the previous version of the FlexHousing project was only developed to
support VPS devices. This lead to its DeviceController being designed to exclusively

operate with those devices’ architecture.

To solve this problem, the Strategy design pattern was used. This meant that each
implementation of a specific device (in this case, VPSController and
SonoffController) must be encapsulated in a separate object, with the

DeviceController serving as an interface for every device implementation.

Thus, the implementation of the DeviceController interface can be viewed in Fig. 77:
public interface DeviceController {
public void addMeasurement(String Measuring, double Value, Date Date);
public void getMeasurements();
public boolean actuate();
public void addFO(FlexOffer fo, String Name);
public Object returnPowerMeasurements(long start, long end);
public Object returnPowerMeasurementsByDay(long start, long end);
public FlexOffer getFO();
public boolean getToken(String email, String password);
public void addSensorToDevice(String name);
public boolean getState();
public Object returnMeasurementDifference(long day);

public Object returnPowerMeasurementsByQuarter(long start, long end);

Fig. 77 — Code Snippet: DeviceController Interface

Rafael Teles da Rocha 126

Reengineering and development of loT Systems for Home Automation

4.4.2 VPS devices

Regarding the VPS devices, two different kinds were used in the project: a smart plug (Left
part of Fig. 78) and a transmitter (Right part of Fig. 78). While the smart plug can read a
device’s consumed energy and turn on/off the device’s power, the transmitter is only able to

read a device’s energy consumption.

Fig. 78 — Left: VPS Smart Plug; Right: VPS Transmitter

These two devices send their data to a gateway named Cloogy (Fig. 79), which sends it to ISA’s
servers. Thus, for the FlexHousing platform to access these data, it must request it from ISA’s

web API.

Fig. 79 — VPS Cloogy

In the case of VPS devices, every sensor in it has an ID tag. For instance, the sensor “Actuator”
(which turns the power on/off) has an ID, the same way the sensor “Active energy+” (which
reads the energy consumption) has an ID. This means that, on ISA’s web API, to request any

kind of action from a device, the request must specify the ID tag of the device’s sensor.

To demonstrate this, Fig. 80 displays a code snippet of VPSController’s implementation

of the returnPowerMeasurements method:

Rafael Teles da Rocha 127

Reengineering and development of loT Systems for Home Automation

private static final String ADDRESS_MEASUREMENTS =
"http://innov.isaenergy.pt:6600/api/1.4/consumptions/instant?from=";

private static final String SENSOR_MEASUREMENTS = "Active energy+";

@Override

public Object returnPowerMeasurements(long start, long end) {
Sensor sensor = getSensorByName(SENSOR_MEASUREMENTS);
return getMeasurement(sensor, start, end);

}

public List<MeasurementsDTO> getMeasurement(Sensor sensor, long from, long to){
HttpGet getRequest = new HttpGet(
ADDRESS_MEASUREMENTS + from + "&to=" + to + "&tags=[" + sensor.getId() +
"1y

getRequest.addHeader (HttpHeaders.AUTHORIZATION, "ISA " + Token);
HttpResponse response = null;

try {
response = httpClient.execute(getRequest);

} catch (IOException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);
}
Document doc = null;
HttpEntity entity = response.getEntity();
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
try {
DocumentBuilder builder = factory.newDocumentBuilder();
doc = builder.parse(entity.getContent());

} catch (ParserConfigurationException | IllegalStateException | SAXException e) {
e.printStackTrace();
} catch (IOException ex) {
Logger.getLogger(VPSController.class.getName()).log(Level .SEVERE, null, ex);
}
Node list = doc.getFirstChild();
List<MeasurementsDTO> measures = new ArraylList<>();
NodelList measurements = list.getChildNodes();
for (int i = @; i < measurements.getLength(); i++) {
long dateDTO = ©;
double energyValueDTO = 0.0;
NodelList nodes = (NodelList) measurements.item(i).getChildNodes();

for (int temp = @; temp < nodes.getlLength(); temp++) {
Node node = nodes.item(temp);
Element eElement = (Element) node;

if ("Date".equals(eElement.getNodeName())) {
dateDTO = Long.parseLong(eElement.getTextContent());

}

if ("Read".equals(eElement.getNodeName())){
energyValueDTO = Double.parseDouble(eElement.getTextContent());

}

¥
measures.add(new MeasurementsDTO(dateDTO, energyValueDTO));

}

return measures;

Fig. 80 — Code Snippet: returnPowerMeasurements in VPSController

Rafael Teles da Rocha 128

Reengineering and development of loT Systems for Home Automation

4.4.3 Sonoff devices

In relation to the Sonoff devices (Fig. 81), these are cheap, generic, energy switches that, aside
from switching the power on and off, and reading the current energy consumption, allow
users to upload their own custom firmware on the switch’s board. These boards are composed
of a ESP8266 module (a low-cost Wi-Fi chip with full TCP/IP stack) to access the Wi-Fi network,

and a HLW8012 current sensor to monitor the energy consumption.

Fig. 81 — Sonoff Pow switch

The Sonoffs were primarily chosen for the project to help develop a direct connection from
the FlexHousing platform to a different device in a local network, without having to request
data to a third-party service. Given that the Sonoff switches’ firmware can be entirely
customized, this allows us to have full control of the sensor. Thus, a firmware for the Sonoffs
was developed in Arduino (Appendix-B), to make the Sonoffs provide, through their REST API,

their respective device’s consumption values (updating every two seconds).

Since Sonoff devices don’t send any data to external servers, the FlexHousing Middleware has
to constantly request data from them (in which, every message has a length of around 128
bytes), every five seconds, and save it into its database. Whenever the FlexHousing web app

requests data from the Middleware, the Middleware accesses its own database to deliver it.

To demonstrate this process, Fig. 82 displays a code snippet of SonoffController’s

implementation of the returnPowerMeasurements method:

Rafael Teles da Rocha 129

Reengineering and development of loT Systems for Home Automation

// - SonoffController class -

@Override
public Object returnPowerMeasurements(long start, long end) {

List<MeasurementsDTO> allMeasurements =
DAO.getInstance().returnMeasurementsByDeviceIDAndTimeInterval(this.device.getID(), start,
end);

return allMeasurements;

}

// - DAO class -

public List<MeasurementsDTO> returnMeasurementsByDeviceIDAndTimeInterval
(String deviceID, long startDate, long endDate) {
List<MeasurementsDTO> allMeasurements = new ArraylList<>();
String statement = "";
PreparedStatement st = null;

try {
statement = "SELECT * FROM MEASUREMENTS "

+ "WHERE MEASUREMENTS.DEVICEID = ? "
"AND MEASUREMENTS.NAME = ? "
"AND MEASUREMENTS.TIME >= ? "
"AND MEASUREMENTS.TIME < ? "
"ORDER BY MEASUREMENTS.TIME";
st = con.prepareStatement(statement);
st.setString(1, deviceID);
st.setString(2, "Energy (kWh)");
st.setTimestamp(3, new java.sql.Timestamp(startDate));
st.setTimestamp(4, new java.sql.Timestamp(endDate));
ResultSet rs = st.executeQuery();
while (rs.next()) {
allMeasurements.add(
new MeasurementsDTO(rs.getTimestamp(4).getTime(),
rs.getDouble(3)));

+
+
+
+

}
} catch(SQLException err){
System.out.println(err.getMessage());
b

return allMeasurements;

Fig. 82 — Code Snippet: returnPowerMeasurements in SonoffController

4.4.4 Automatic creation of a flex-offer’s energy consumption pattern

For the automatic creation of a flex-offer, the system itself defines the device’s energy
consumption pattern based on its past consumption data. To do so, certain algorithms from
the paper “Generation and Evaluation of Flex-Offers from Flexible Electrical Devices” [65]
were used to implement a way to identify energy patterns. However, the algorithm for

identifying an energy pattern depends on what kind of device it is.

Rafael Teles da Rocha 130

Reengineering and development of loT Systems for Home Automation

4441 Wet-devices

A device that has a certain daily routine (e.g. dishwashers, washing machines) is commonly
known as wet-device. A wet device usually has a consistent activation hour. In this case, the

system requests the user to input the hour when they typically turn it on.

With that predicted activation hour, the system goes through every consumption entry and
tries to perform a Pattern Sequence Matching (PSM). The PSM is used to predict values for

various attributes of FOs, e.g., the number of time slices, energy profile, etc.

First, all the changes in consumption values in the historical time series X are detected and are
transformed into energy consumption patterns. Since a device activation causes a noticeable
increase in power consumption, the PSM algorithm (Fig. 83) works under the premise that
these patterns are correlated to the time of activation, e.g., a dishwasher activated at 20:00

always operates for two-time units and has an average energy profile of (1.2,1)kWh [65].

Therefore, to estimate the energy profile for a predicted device activation at hour h of day k,
the PSM first searches device activations triggered at hour h in the time series X. Then, for
each activation the algorithm extracts the energy demand et for the duration of the device
operation. This search outputs a set of indices of the device activation timestamps and profiles
P =(p1, ..., pn), where each pi is an energy profile of the device activation at the timestamp /
and n is the number of device activations at the hour h [65]. This algorithm returns an array

of energy profiles for matching device activations.

Rafael Teles da Rocha 131

Reengineering and development of loT Systems for Home Automation

Pattern Sequence Matching (PSM)

Input: = X — {el, ..., et} a time series.
h — a predicted device activation hour.
Output: = P — a list of all demand patterns.
I — alist of index for the patterns.
function demandPattern(X, h)
P «— 0; p « 0O; active « false
fort<—1:Tdo
if et >= thres then
if t%24 = h then
p<—pU {et};
active <« true;
11U {t}
else if active = true then
p—pU {et};
endif
else
if active = true then
P—PU {p}
endif
p<0;
active < false
endif
endfor
Return P, TimeDiffs

Fig. 83 — Algorithm: Pattern Sequence Matching (PSM) [66]

For further clarification of the PSM algorithm, Fig. 84 displays this process in a visual manner:

01/01/2017 02/01/2017

kw o /N

Threshold

T T
23:00 23:00

= N

p1 p2

Fig. 84 — Visual sketch explaining the PSM algorithm

After collecting all energy profiles in P, for each respective time slice in every profile, the
system calculates the average value and considers the result as the emin (minimum energy

consumption) and emax (maximum energy consumption) for that time slice.

The algorithm for this estimation of the energy profile is displayed in Fig. 85:

Rafael Teles da Rocha 132

Reengineering and development of loT Systems for Home Automation

Estimation of Energy Profile for a wet-device

Input: = P — the extracted demand patterns from PSM.
d — an operation duration.
Output: = p — an energy profile for forecasted activation.
function estimateProfile-wet(P, d)
p < 0; n < length of p
forj«—1:ddo

e(min,j) « %Z?ﬂ pi * e(min, j)

e(maxj) — = N7, pi x e(max, j)
sj «<— [e(min,j), e(max,j)];
p<—pU {sj}

endfor

Return p

Fig. 85 — Algorithm: Estimation of Energy Profile for a wet-device [67]

Finally, the result of this algorithm comes in the form of a model energy profile p that
represents the usual consumption behavior of a device. However, this process only fits the

situation of a wet-device, a device that only activates at a certain hour.

4.4.4.2 Refrigerators

If the device in question were to be a refrigerator, the wet-device process wouldn’t work
because the refrigerator is constantly activating and deactivating throughout the day, as seen

in Fig. 86.

Fig. 86 — Energy consumption data from a refrigerator, measured by a Sonoff

So, for this case, the PSM algorithm was modified and new algorithms were developed to

accommodate the situation.

First, looking at Fig. 87, there is a constant time segment of inactivity in between each

activation of the refrigerator.

Rafael Teles da Rocha 133

Reengineering and development of loT Systems for Home Automation

Threshold e e GL¢> @L‘?

Fig. 87 — Constant time segment of inactivity in between each activation

If we were to calculate the average value of these time segments (“AT) and use the PSM
algorithm to determine the refrigerator’s model energy profile (p), we can create an energy

pattern for a full day, like so:

Fig. 88 — Energy consumption pattern of a refrigerator

Therefore, first we modify the PSM algorithm so we can get the time segments of inactivity:

Pattern Sequence Matching (PSM) for a refrigerator

Input: = X — {el, ..., et} a time series.
Output: = P — a list of all demand patterns.
TimeDiffs — a list of inactive times (in seconds) in between patterns
function demandPattern(X)
P «— 0; p « 0; active « false; measurementTimes < O
fort<—1:Tdo
if et >= thres then
if active = false & measurementTimes length > O then
index < measurementTimes length - 1;
diff < (t - measurementTimes[index]) / 1000;
timeDiffs «— timeDiff U {diff}
endif
measurementTimes «— measurementTmes U {t};
p<—pU {et}
active «— true
else
if active = true then
P—PU {p}
endif
p<0;
active « false
endif
endfor
Return P, TimeDiffs

Fig. 89 — Algorithm: Pattern Sequence Matching (PSM) for a refrigerator

Rafael Teles da Rocha 134

Reengineering and development of loT Systems for Home Automation

Then, we calculate the average value of the time segments to get the average time of

inactivity, convert the time to minutes, and check how many 15-minutes slices it represents:

Calculate Time of Inactivity of a refrigerator

Input: = TimeDiffs — a list of inactive times (in seconds) in between patterns
Output: = timeSlices — number of slices the time of inactivity consists of.
function getTimeSlices(TimeDiffs)

timeSlices < 0; averageTimeBetweenPatterns «— 0; averageTimeInMinutes «— 0; sum « 0

for diff « 1 : TimeDiffs do

sum «— sum + diff

endfor

averageTimeBetweenPatterns «— sum / TimeDiffs length;

averageTimeInMinutes «— averageTimeBetweenPatterns / 60;

timeSlices «— averageTimeInMinutes / 15;

Return timeSlices

Fig. 90 — Algorithm: Calculate Time of Inactivity of a refrigerator

Next, we use the same “Estimation of Energy Profile” algorithm to get the refrigerator’s energy
profile. Lastly, we can finally create the energy consumption pattern with the energy profile

and the time slices:

Create Energy Consumption Pattern of a refrigerator

Input: = p — an energy profile,
timeSlices — number of slices the time of inactivity consists of.
Output: = Epattern — the energy consumption pattern of the refrigerator.
function createEnergyPattern(p, timeSlices)
Epattern < 0, index « 0
// a day is composed of 96 slices of 15 minutes
while index <= 96 do
forsj«— 1:pdo
if index <= 96 do
break
endif
Epattern < Epattern U {sj[0]};
index « index + 1
endfor
for slice «<— 1 : timeSlices do
if index <= 96 do
break
endif
Epattern < Epattern U {0};
index «— index + 1
endfor
endwhile
Return Epattern

Fig. 91 — Algorithm: Create Energy Consumption Pattern of a refrigerator

Rafael Teles da Rocha 135

Reengineering and development of loT Systems for Home Automation

4.4.5 Device Type ldentification

Regarding the identification of device types, an interesting solution to this was to use data

mining models to predict a device’s type, by discovering patterns in its energy consumption

values.

To do so, two Python scripts were developed by CISTER colleague Vincent Nelis: one

(train_model.py) to create and train the data mining model; the other (identify_device.py) to

identify the device’s type, through the trained model. Essentially, this solution consists of a

simple classifier based on a supervised machine-learning model. A more detailed explanation

of the two scripts is as follows:

train_model.py creates the model and trains it based on a labeled set of energy
consumption traces (one trace for each device). That is, the script is fed with one
consumption trace for each device (there is no constraints on the number of devices
that the script must identify). Each trace is simply a sequence of tuples <timestamp,
consumption> formatted in a 2-columns CSV file. In our experiments, the
consumption of every device has been monitored by intervals of 5000 milliseconds,
meaning that every trace contains at least 5000 data-points. The script starts by
generating two datasets from the trace of each device: one for training and one for
testing purposes. For each device, both datasets contain randomly picked fixed-length
“slices” of the corresponding trace, i.e. every sample in both datasets is a cropped
portion (selected randomly and of fixed length) of the consumption trace of the
device. The number of samples in both the training and testing datasets, as well as
the length of each sample, are user-defined parameters given as input to the script.
After generating these two datasets from every input consumption trace, all the
training sets are merged into a single labeled set (i.e. every sample is labeled with the
name of the device it comes from) and that aggregated set is used to train a classifier
and save its parameters into a file. We used the model from the pyAudioAnalysis
Python library [87]. The trick to be able to use that simplified library was to treat every
randomly generated sample of the training sets as a WAV sound (the library is

designed to classify sounds).

identify_device.py is much simpler that the first script. It loads the parameters of the
model (computed in the previous step using train_model.py) and then, given a trace
to be identified, it outputs the predicted name of the device. Once again, the model

parameters are loaded and used automatically by the pyAudioAnalysis library that

Rafael Teles da Rocha 136

Reengineering and development of loT Systems for Home Automation

outputs a prediction in a single line of python code. It turned out that this library that
was initially designed to classify sounds work remarkably well for recognizing energy

consumption traces as long as they are saved into WAV files.

With these two scripts, the FlexHousing Middleware must export the device’s consumption

data to a CSV file (in this case, “measurements.csv”) and run the scripts with Python. The first

one is run like so:

python train_model.py measurements.csv "Active Power (W)" 5000 5000 100 100 MyModel DeviceIDs

The parameters for train_model.py are, respectively:

raw_data file (measurements.csv): The file that contains the traces;

The Measure of Interest ("Active Power (W)"): The name of the column that must be

retrieved in the raw data file;

sample size (5000): Number of consecutive timestamps in each generated

sample;

n train samples per device (5000): Number of samples generated in the

training set for each device;

n test samples per device (100): Number of samples generated in the

testing set for each device;

n valid samples per device (100): Number of samples generated in the

validation set for each device;
model file (MyModel): The file in which the model will be saved;

device ids_ file (DevicelDs): The file in which the device IDs are saved.

The script, running for about 15 minutes or more (depending on the machine running it), will

create the following files:

MyModel . *: A few files describing the model after training;
DeviceIDS: The file in which the device IDs are saved;

The folder data, with one subfolder for each device, and 3 subfolders for each:

train, test,and valid:

o The train folder contains the 5000 samples generated to train the model;

Rafael Teles da Rocha 137

Reengineering and development of loT Systems for Home Automation

o The test folder holds the 100 samples generated to test the model. The tests

are carried out at the end of the execution of the script;

o The valid folder comprises of some samples that are generated to test the

next script “identify_device.py”.
Afterwards, to identify a specific device, the Middleware runs the second script like so:
python identify _device.py data\\{device ID}\\valid\\sample 6.sample MyModel DeviceIDs
The inputs are, respectively:

e The sample file to identify. This file is a trace that holds 5000 rows and 2 columns
(timestamps and active power). Any sample in the valid folder is adequate for the

identification;
e The model to load for the prediction;
e The list of devices.

The output consists of the model’s prediction of the device’s type, which the Middleware will

then store it in its database.

4.4.6 Verifying a Flex-offer’s effect on a device’s consumption pattern

In relation to UC10, the system must display how effective a device’s active flex-offer was,

relative to the device’s energy consumption pattern.

To do so, once the system has both the Flex-offer projected energy values and the device’s
actual consumption values, it uses a mean percent error formula to measure the size of the

inaccuracies between these two data sets in percentage terms.

At first, the Mean Absolute Percent Error (MAPE) [82; 83] was chosen as the solution to
measure forecast errors. MAPE (Fig. 92) is the average absolute percent error for each time

period or forecast minus actuals divided by actuals.

n

100 |Forecast; — Actual,|
MAPE = Z
n Actual,

t=1

Fig. 92 — The MAPE formula

Rafael Teles da Rocha 138

Reengineering and development of loT Systems for Home Automation

However, MAPE has been argued to be asymmetric, in which it puts a heavier penalty on
forecasts that exceed the actual than those that are less than the actual [84]. Furthermore,
with zeros or near-zeros, MAPE can give a distorted picture of error. The error on a near-zero
item can be infinitely high, causing a distortion to the overall error rate when it is averaged in

[85].

For forecasts of items that are near or at zero volume, Symmetric Mean Absolute Percent
Error (SMAPE) is a better measure [86]. SMAPE (Fig. 93) is a modified MAPE in which the

divisor is the sum of forecasts and actuals.

100 © |Forecast, — Actual|

SMAPE =
Forecast, + Actual,

Fig. 93 — The SMAPE formula

Thus, the SMAPE formula was ultimately chosen for the calculation of the percentage of
inaccuracy between the estimated pattern in the active flexoffer and the actual consumption

pattern of the device.

4.4.7 FlexHousing System Setup

Regarding the setup of the FlexHousing system on a development environment, some
specifics must be considered. Appendix-C presents a setup guide that goes into detail about

these particularities.

4.5 Tests

This section describes the methods used to test the FlexHousing system (both Middleware
and Web App), to ensure that all requirements are met and to guarantee accuracy and quality

in the results presented by it.

For this project, three different levels of software testing were used: unit testing, integration

testing, and acceptance testing.

Rafael Teles da Rocha 139

Reengineering and development of loT Systems for Home Automation

4.5.1 Unit Tests

Unit testing concentrates on testing the internal processing logic of an application’s
components. For this project, these tests were applied on the FlexHousing Middleware’s

domain objects, which are the classes located in the Models package.

Fig. 94 depicts a code snippet of the Models unit tests, using Junit. This snippet shows some
tests done to assess the relationships between the classes House, Room, and Device, and to

check if the actuation schedule is created correctly when the flex-offer schedule is received.

public class ModelsTest {

private static Device device;

private static Room room;

private static House house;

private static ArrayList<Double> upper, lower;

@Before
public void setUp() {
this.device = new Device("testID", "Test Device", SensorBrand.SONOFF,
0, "Test Brand", "Test Model", "");
this.room = new Room("Test Room");
this.room.setID(9);
this.house = new House("testID", "Test House", "Test Address");

upper = new ArraylList<>();
upper.addAll(Arrays.asList(
100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0));

lower = new ArraylList<>();
lower.addAll(Arrays.asList(
100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0));
}

/**
* Assert that a Room adds a Device correctly.
*/
@Test
public void ensureRoomAddsDeviceCorrectly() {
this.room.addDevice(this.device);
Device otherDevice = this.room.getDeviceByID("testID");
assertEquals(this.device, otherDevice);

}

/**
* Assert that a House adds a Room correctly.
*/
@Test
public void ensureHouseAddsRoomCorrectly() {
this.house.addRoom(this.room);
Room otherRoom = this.house.getRoomByID(@);
assertEquals(this.room, otherRoom);

}

/**
* Assert that a Room deletes a Device correctly.
*/
@Test
public void ensureRoomDeletesDeviceCorrectly() {
this.room.deleteDevice("testID");
Device noDevice = this.room.getDeviceByID("testID");
assertEquals(null, noDevice);

// added the device again for the next test
this.room.addDevice(this.device);

/**

Rafael Teles da Rocha 140

Reengineering and development of loT Systems for Home Automation

* Assert that a House deletes a Device correctly.
*/
@Test
public void ensureHouseDeletesDeviceCorrectly() {
this.house.deleteDevice("testID");
Device noDevice = this.room.getDeviceByID("testID");
assertEquals(null, noDevice);

}

/**
* Assert that a House deletes a Room correctly.
*/
@Test
public void ensureHouseDeletesRoomCorrectly() {
this.house.deleteRoom(0);
Room noRoom = this.house.getRoomByID(9);
assertEquals(null, noRoom);

}

/**
* Assert that NextDaySchedule registers commutations correctly.
*/
@Test
public void ensureNextDayScheduleRegistersCommutationsCorrectly() {
Date date = new Date();
Calendar cal = Calendar.getInstance();
cal.setTime(date);

cal.add(Calendar.HOUR_OF_DAY, 1);

cal.set(Calendar.MINUTE, ©);

Date start = cal.getTime();

cal.add(Calendar.HOUR_OF_DAY, 4);

Date end = cal.getTime();

FlexOfferDTO fodto = new FlexOfferDTO(start.getTime(), end.getTime(),
upper, lower);

FlexOffer flexoffer = fodto.toArrowheadFO();
FlexOfferSchedule flexofferSchedule = new FlexOfferSchedule(flexoffer);

NextDaySchedule nextDay = new NextDaySchedule(flexofferSchedule);
int[] commutations = nextDay.getCommutations();

boolean turnsOnCorrectly = false;

int turnOn = 0;

for (int commutation : commutations) {
if (commutation == 1) {

turnOn++;

¥
3

if (turnOn == 6) {
turnsOnCorrectly = true;

}

assertTrue(turnsOnCorrectly);

Fig. 94 — Code Snippet: Models Unit Tests
4.5.2 Integration Tests

Upon conclusion of unit testing, the modules are to be integrated, which leads to integration
testing. The purpose of integration testing is to verify the functionality and reliability between
the integrated modules [68]. There are two types of integration testing: top-down integration

and bottom-up integration.

Rafael Teles da Rocha 141

Reengineering and development of loT Systems for Home Automation

In this case, top-down integration was used, allowing to quickly find errors and failures in high-
level logic and data flow. Consequently, to simulate the behavior of lower-level modules, stubs
must be used [69] [70]. Thus, to replicate the database, a mockup database was created
through Apache Derby’s in-memory database facility [71] (a feature specifically for testing and
developing applications, in which the database resides completely in main memory, and not

in the file system).

Fig. 95 shows a code snippet of the Middleware integration tests, using JUnit. This snippet
shows a few tests done to assess the relationships between House, Room, and Device in the

database.

public class MiddlewareIntegrationTest {

private HouseController controller;
private Device device, otherDevice;
private Room room, otherRoom;

private House house, otherHouse;
private Map<String, House> housesMap;
private User user;

private DAO testDAO;

@Before
public void setUp() throws SQLException {
this.testDAO = DAO.getInstance("test");

Connection con = this.testDAO.getConnection();

// Creating the necessary tables
Statement sta = con.createStatement();
sta.executeUpdate(
"create table HOUSE\n" +
"(\n" +
" ID VARCHAR(255) primary key not null,\n" +
" NAME VARCHAR(255) not null,\n" +
" ADDRESS VARCHAR(255) not null\n" +
mym
)
System.out.println("HOUSE Table created.");

sta.close();
this.controller = new HouseController(this.testDAO);

this.testDAO.insertUser("testUser", "testPassword");
this.user = this.testDAO.returnUserByUsername("testUser");

this.device = new Device("testID1", "Test Device 1", SensorBrand.SONOFF,
0, "Test Brandl", "Test Modell", "");

}

/**
* Assert a house, its room and devices are added and removed correctly.
*/

@Test

public void assertHouseAndRoomAndDeviceAreAddedAndRemovedCorrectly() {

// Add house and room
this.controller.addNewHouse(this.user.getID(), "New Test House",
"Test Address");

Map<String, House> houses = this.controller.

Rafael Teles da Rocha 142

Reengineering and development of loT Systems for Home Automation

getHousesByUserID(this.user.getID());
boolean hasHouse = false;

if (houses != null) {
hasHouse = true;
}

String houseID =

for (Map.Entry<String, House> entry : houses.entrySet()) {
if (entry.getValue().getName().equals("New Test House")) {
houseID = entry.getKey();
break;

}
this.controller.addNewRoom(houseID, "New Test Room");
int roomID = -1;
roomID = this.controller.
getRoomIDByName("New Test Room");

boolean hasRoom = false;

if (roomID != -1) {
hasRoom = true;

}

this.room = this.controller.getRoomByID(roomID);
this.room.addDevice(this.device);

List<Device> devices = this.controller.getDevices();
boolean hasDevice = false;

if (!devices.isEmpty()) {
hasDevice = true;

}

// Delete house and room
this.controller.deleteHouse(houseID);

houses = null;
houses = this.controller.
getHousesByUserID(this.user.getID());

boolean hasHouseBeenRemoved = false;

if (houses != null) {
hasHouseBeenRemoved = true;

}

roomID = -1;

roomID = this.controller.

getRoomIDByName("New Test Room");

boolean hasRoomBeenRemoved = false;

if (roomID == -1) {
hasRoomBeenRemoved = true;

}

devices = this.controller.getDevices();

boolean hasDeviceBeenRemoved = false;

if (devices.isEmpty()) {
hasDeviceBeenRemoved = true;

}

boolean hasFunctionedCorrectly = hasHouse & hasRoom & hasDevice &

hasHouseBeenRemoved & hasRoomBeenRemoved & hasDeviceBeenRemoved;

assertTrue(hasFunctionedCorrectly);

Rafael Teles da Rocha 143

Reengineering and development of loT Systems for Home Automation

Fig. 95 — Code Snippet: Middleware Integration Tests

4.5.3 Acceptance Tests

Acceptance testing consists of a testing technique performed to determine whether or not

the software system has met the requirement specifications. The main purpose of this test is

to evaluate the system's compliance with the business requirements and verify if it is has met

the required criteria for delivery to end users [72]. Therefore, these tests focus on visible

actions with user inputs and system outputs.

In this case, the required features translate into use cases. Thus, for every use case, an

acceptance test was developed. These tests were performed on the FlexHousing web

application, using Laravel Dusk (a browser automation and testing API, based on the open

source tools ChromeDriver and Facebook Php-webdriver [73]).

Feature:
Scenario

The unregistered
End-User registers

into the system.

Table 29 — Acceptance Test: UCO1 Register User

1 Register User

Test Expected result Validation

Fill out the user creation = End-User can now login in Success

form and submit. FlexHousing.

Rafael Teles da Rocha

144

Reengineering and development of loT Systems for Home Automation

public function testRegisterSuccessfully()

$this->browse(function (Browser $browser) {
$browser->visit('/")

->assertSee('FlexHousing")
->clickLink('Register")
->type('#name', 'cister')
->type('#password', '123456789")
->type('#password-confirm','123456789")
->press('Register")
->waitForText('FlexHousing"')
->assertSee('FlexHousing');

3
}
public function testLoginSuccessfully()
{
$this->browse(function (Browser $browser) {
$browser->visit('/")
->assertSee('FlexHousing')
->type('#username’, 'cister')
->type('#password', '123456789")
->press('Login')
->waitForText('Dashboard")
->assertSee('Dashboard');
1
}
Fig. 96 — Code Snippet: Acceptance Test of UCO1 Register User
Table 30 — Acceptance Test: UCO2 CRUD House
Feature: 2 CRUD House
Scenario Test Expected result Validation
The End-User Fill out the house The house is now registered @ Success

registers a house. | creation form and inthe system.

submit.

The End-User edits Change values in the The house details are Success

a house. fields of the house form = updated.
and submit.
The End-User Click the “Remove The house, its rooms, and Success
deletes a house. House” button of the devices are removed from
respective house. the system.

Rafael Teles da Rocha 145

Reengineering and development of loT Systems for Home Automation

public function testAddHouseSuccessfully()

$this->browse(function (Browser $browser) {

$browser->visit('/houses/create’)
->waitForText('Add New House')
->type('#houseName', 'Test House')
->type('#houseAddress', 'Test Address')
->click('#register")
->waitForText('Houses")
->assertSee('Test House');

s
}
public function testRemoveHouseSuccessfully()
{
$this->browse(function (Browser $browser) {
$browser->visit('/houses")
->waitForText('Test House')
->click('[title="Delete Test House"]");
$browser->driver->switchTo()->alert()->accept();
s
}
Fig. 97 — Code Snippet: Acceptance Test of UCO2 CRUD House
Table 31 — Acceptance Test: UCO3 CRUD Room
Feature: 3 CRUD Room
Scenario Test Expected result Validation
The End-User Fill out the room The room is now registered @ Success
registers a room. creation form and inthe system.

submit.

The End-User edits Change values in the The room details are Success

aroom. fields of the room form = updated.

and submit.
The End-User Click the “Remove The room and its devices are @ Success
deletes a room. Room” button of the removed from the system.

respective room.

Rafael Teles da Rocha 146

Reengineering and development of loT Systems for Home Automation

public function testAddRoomSuccessfully()

$this->browse(function (Browser $browser) {
$browser->visit('/rooms/create’)
->waitForText('Add New Room")
->type('#roomName"', 'Test Room")
->script("document.getElementById('houseList').value = 'Test House';");

$browser->click('#register")
->waitForText('Rooms")
->assertSee('Test Room');

3
}
public function testRemoveRoomSuccessfully()
{
$this->browse(function (Browser $browser) {
$browser->visit('/rooms")
->waitForText('Test House')
->click('[title="Delete Test Room"]');
$browser->driver->switchTo()->alert()->accept();
3
}
Fig. 98 — Code Snippet: Acceptance Test of UCO3 CRUD Room
Table 32 — Acceptance Test: UC04 CRUD Device
Feature: 4 CRUD Device
Scenario Test Expected result Validation
The End-User Fill out the device The device is now registered @ Success

registers a device. | creation form and in the system.

submit.

The End-User edits Change values in the The device details are Success

a device. fields of the device form = updated.

and submit.
The End-User Click the “Remove The device is removed from & Success
deletes a device. Device” button of the @ the system.

respective device.

Rafael Teles da Rocha 147

Reengineering and development of loT Systems for Home Automation

public function testAddDeviceSuccessfully()

$this->browse(function (Browser $browser) {
$browser->visit('/devices/create')
->waitForText('Add New Device')
->type('#deviceName', 'Test Device')
->script("document.getElementById('houseList').value = 'Test House';");

$browser->script("document.getElementById('Test House').style.display = 'true';");

$browser->script("document.getElementById('Test House rooms').value = 'Test
Room';");

$browser->type('#deviceBrand', 'Brand Test')
->type('#deviceModel’, 'Test Model')
->script("document.getElementById('sensorBrandList").value = 'SONOFF';");

$browser->type('#sensorAddress’, 'http://172.16.0.253/")
->press('#register")
->waitForText('Devices"')
->assertSee('Test Device');

1
}
public function testRemoveDeviceSuccessfully()
{
$this->browse(function (Browser $browser) {
$browser->visit('/devices")
->waitForText('Devices")
->click('a.removeDevice');
$browser->driver->switchTo()->alert()->accept();
1
}
Fig. 99 — Code Snippet: Acceptance Test of UCO4 CRUD Device
Table 33 — Acceptance Test: UCO5 Turn On/Off Device
Feature: 5 Turn On/Off Device
Scenario Test Expected result Validation

The End-User clicks | Click on the “On/Off” The device is turned on/off. Success
on the “On/Off” button of a device.

button of a device.

public function testActuateDeviceSuccessfully()
{
$this->browse(function (Browser $browser) {
$browser->visit('/devices"')
->waitForText('Devices")
->click('a.actuate') // turn on
->pause('3000")
->click('a.actuate'); // turn off
3

Fig. 100 — Code Snippet: Acceptance Test of UCO5 Turn On/Off Device

Rafael Teles da Rocha 148

Reengineering and development of loT Systems for Home Automation

Table 34 — Acceptance Test: UCO6 Check Device Consumption

Feature: 6 Check Device Consumption

Scenario Test Expected result Validation
The End-User clicks = Click on the The device's energy Success
on the “Consumption” button consumption history s
“Consumption” of a device. displayed

button of a device.

public function testCheckDeviceConsumptionSuccessfully()

{
$this->browse(function (Browser $browser) {
$browser->visit('/devices")
->waitForText('Devices")
->click('a.checkConsumption")
->waitFor('#containerEnergy')
->waitFor('#containerEnergyByDay")
->waitFor('#containerEnergyDifferenceByDay');
s
}
Fig. 101 — Code Snippet: Acceptance Test of UCO6 Check Device Consumption
Table 35 — Acceptance Test: UCO7 Create Flex-offer Manually for a Device
Feature: 7 Create Flex-offer Manually for a Device
Scenario Test Expected result Validation
The End-User | Fill out the flex-offer The flex-offer is created and Success

manually creates a | creation form, manually = registered in system.
Flex-offer for a define the energy
device. consumption pattern,

and submit.
Table 36 — Acceptance Test: UCO8 Create Flex-offer Automatically for a Device

Feature: 8 Create Flex-offer Automatically for a Device, based on Energy

Consumption

Scenario Test Expected result Validation

Rafael Teles da Rocha 149

Reengineering and development of loT Systems for Home Automation

The End-User Fill out the flex-offer The flex-offer is created and Success
automatically creation form, let the registered in system.

creates a Flex-offer system define the

for a device. energy consumption

pattern, and submit.

public function testCreateFlexofferSuccessfully()
$this->browse(function (Browser $browser) {
$browser->visit('/devices")
->waitForText('Devices")
->click('a.createFlexoffer")
->waitFor('#scheduler_here')
->type("#flexofferName", "Flexoffer Test");
$browser->script("’
scheduler.addEvent ({
start_date: "16-06-2019 00:00",

end_date: "16-06-2019 23:00",
text: "Flexoffer"

3

")

$browser->click("Next")
->radio('patternChoice', 'automaticPattern')
->select('activationHour', '12:00')
->click("Finish")
->assertSee('Devices');

s

Fig. 102 — Code Snippet: Acceptance Test of UCO8 Create Flex-offer Automatically for a

Device

Table 37 — Acceptance Test: UCO9 Check total registered Users, Devices, and Houses & UC10

Check End-Users’ Devices’ Frequency of Use and average Time of Use
Feature: 9 Check total registered Users, Devices, and Houses.

10 Check End-Users’ Devices’ Frequency of Use and average Time of

Use.
Scenario Test Expected result Validation

The Company Login in the Executive’s The total registered Users, Success
Executive checks platform and check the Devices, and Houses are
the Executive’s main page. displayed in the main page,
platform. as well as the Frequency of

Use and average Time of Use.

Rafael Teles da Rocha 150

Reengineering and development of loT Systems for Home Automation

public function testLoginSuccessfully()

$this->browse(function (Browser $browser) {
$browser->visit('/")

->assertSee('Executive platform')
->type('#username’, 'executive')
->type('#password’, 'executive')
->clickLink('Login")
->assertSee('Overview');

3

}

Fig. 103 — Code Snippet: Acceptance Test of UCO9 Check total registered Users, Devices, and

Houses & UC10 Check End-Users’ Devices’ Frequency of Use and average Time of Use

Rafael Teles da Rocha 151

5 Conclusions

This chapter recaps the most relevant points of this work, describes the end-results obtained
from the project’s development, mentions additional work done, explains the project’s
limitations and future improvements, and, lastly, gives a final appreciation of the project and

internship.

5.1 Report summary

This project’s goals were to improve CISTER’s FlexHousing system on multiple aspects. First, a
full reengineering process of the FlexHousing system was performed, to make it more usable,

stable, maintainable and extendable. Moreover, new features were developed.

As explained in section 1.2, the Flex-offer concept consists in the exposure of the users’
electrical power consumption flexibility to the energy market. An energy consumption offer
containing the user’s consumption flexibility, in time and power, is sent to an aggregator,
which responds with a schedule that meets the best prices (lowest price) for consumption,

while still satisfying the users’ needs.

Furthermore, the FlexHousing project consists of a pilot capable of applying the flex-offer
concept to a real-life situation (supported by the Arrowhead framework), allowing control
over the energy usage of home appliances. FlexHousing is composed of two different
applications: one is the FlexHousing Middleware, which communicates with devices, manages
a database (which contains the registered users, houses, and devices), and provides its data
through a RESTful service to web applications; the other is a web application, known as
FlexHousing web platform, which serves as a gateway to the Middleware’s data and services.
This project also serves as a proof of concept for a multinational company that is interested in
the concept of the project’s platform infrastructure to support the maintenance of home

appliances at their costumers’ houses.
The goals of the project are to:
e Rebuild and improve the FlexHousing web platform;

e Reengineer the connection to loT devices, enabling compatibility with other types of

appliances of different brands and manufacturers;

Rafael Teles da Rocha 152

Reengineering and development of loT Systems for Home Automation

e Reengineer the FlexHousing Middleware (add support for multiple “Users” and
“Houses”, and modify its Arrowhead implementation so that it can also function

locally);

e Add a feature that automates the flex-offer creation, based on the device’s energy

consumption, minimizing user input;
e Add the functionality of verifying the execution of a flex-offer;

e Develop a platform for company executives that integrates with FlexHousing and

displays some basic data analyses of user data.

In the analysis and design phase (sections 4.2 and 4.3), the project’s domain model, database
structure, and class diagram were altered to satisfy the new requirements gathered in the

requirements engineering stage (section 4.1).

In the implementation phase (section 4.4), to support different types of devices, a generic
interface for device modules was implemented (section 4.4.1). Then, the existing module for
the VPS devices in the Middleware was altered in order to implement it (section 4.4.2). Next,
to connect to a new device that communicates through the local network, a generic
customizable switch, named Sonoff Pow, was chosen (section 4.4.3). To acquire specific
energy consumption data and provide them through a REST API, a custom firmware
(Appendix-B) was developed and deployed into the Sonoffs. After that, a module for it was

developed and implemented in the Middleware.

In relation to the automatic creation of flex-offers (section 4.4.4), some of the algorithms
published in [65] were used to implement a way to identify energy patterns. However, the
algorithm for identifying an energy pattern depends on what kind of device it is. Therefore,
different algorithms were developed for different kinds of devices (in this case, one for wet-

devices and the other for refrigerators).

Regarding the Arrowhead implementation (section 2.4.2), the past version of the project had
a severe dependency on servers running in Denmark, which also supported the connection to
the Aggregator module, the Service Registry, and the Virtual Market of Energy. The solution
to this was to locally implement the Aggregator and VME modules. Moreover, it was also
necessary to install an XMPP server so that these modules could be able to communicate with
each other and with the FlexHousing Middleware, through XMPP. Furthermore, the system
must follow a configuration file (Appendix-A) that specifies the XMPP server’s hostname, port,

resource, and service name, and each module’s XMPP client account’s ID and password.

Rafael Teles da Rocha 153

Reengineering and development of loT Systems for Home Automation

In the testing phase (section 4.5), three different levels of software testing were used: unit

testing, integration testing, and acceptance testing.

5.2 Accomplished goals

In this section, a degree of accomplishment is specified for each objective presented in the

introduction chapter.

Table 38 — Accomplished goals

Goal Degree of Accomplishment
Rebuild and improve the FlexHousing web Complete
platform.
Develop a generic interface for future device Complete
implementations.
Add support for a new device that Complete

communicates through a local network, and

not through external servers.

Add support for multiple “Users” and Complete

“Houses” in the FlexHousing Middleware.

Develop a feature for automatic creation of Complete
Flex-offers for wet-devices, based on their

consumption patterns.

Develop a feature for automatic creation of Complete
Flex-offers for refrigerators, based on their

consumption patterns.

Reengineer the FlexHousing Middleware so Complete
that its Arrowhead implementation can also
function locally, without needing to connect

to external servers.

Develop a platform for company executives Complete
that integrates with FlexHousing and

displays some basic analyses of user data.

Rafael Teles da Rocha 154

Reengineering and development of loT Systems for Home Automation

5.3 Additional work done

During the project’s development, a contribution was made for the (yet to be published) paper
“FlexHousing: FlexOffer concept for the energy manager” [90]. Additionally, some

presentations and context diagrams were made for meetings with the customers.

5.4 Limitations and future development

Although the project achieved all the initially planned goals, as well as those that have been
added during development, it is possible to enumerate some limitations that may arise, along

with a few solutions and new features that could be implemented in the future.

First, although the web platform’s frontend has been heavily improved, some further
enhancements could be made to enrich the User Experience. For instance, the process of
registering a new device on the platform requires a great deal of user input, when it should
be a simpler procedure. Required details like the device sensor API’'s web address or the device
sensors’ brand are specifics that the user shouldn’t have to know or find out. One solution for
this problem would be the use of QR codes for each device sensor, where one QR code would
contain all the details and metadata of a specific device sensor. If a device only communicates

through the local network, then the Middleware would search for its IP.

Second, when creating a new flex-offer on the web platform, the flex-offer is always scheduled
to be activated every day in the time window specified by the user. This could be a problem
if, for example, the user only wants it to run once, or once every two days, or once a week,
and so forth. As such, the platform should support and allow different scheduling periods

specified by the user.

Third, while the concept of multiple “Users” and “Houses” was implemented in the
FlexHousing system, there is no functionality in the web platform for one user to add another
user to their house. Although it is completely possible to do so directly in the database, in
practical situations, this currently isn’t conceivable through the web platform. The reason for

this is because it would require more development time to implement a system where:

e Auserselects an already registered house, and requests to have permission to access
it; the house’s owner would then be notified that someone wants to access their

house and would allow or deny access permission;

e A house owner would search for specific users registered in the system, and allow

them to have access permission.

Rafael Teles da Rocha 155

Reengineering and development of loT Systems for Home Automation

In a future iteration though, this feature could be certainly achievable.

Fourth, although HTTP/REST was the chosen communication method between the
FlexHousing Middleware and its registered devices, in the case of devices like Sonoff, where
their data has to be stored in the Middleware’s database, a more ideal communication
protocol could be AMQP using the publish/subscribe pattern. In a REST environment, the
Middleware must create a thread for each device, continually requesting data from each one’s
REST API. Alternatively, in a AMQP environment with publish/subscribe, the devices, as
publishers, would send their data through a message broker to their subscribers, in this case,
the Middleware. Thus, in a situation where there are hundreds of registered devices, the
Middleware wouldn’t have to request data from each one, instead it would receive all

messages from a single broker.

Finally, the idea of detecting equipment malfunctions through energy consumption was
considered, since it was also suggested by the client. However, its implementation was not
carried through, because not only can it prove difficult to establish through energy
consumption data that a malfunction has actually happened, but abnormal consumption data
also wouldn’t be proof enough for some situations. A good example for these kinds of
situations would be for a refrigerator. A refrigerator’s energy consumption hinges on the
ambient temperature of its surroundings: if it’s cold, the refrigerator won’t consume much
energy; if it’s hot, then the refrigerator will have to consume more energy than usual. To
establish that a refrigerator is malfunctioning, then the best approach would be to install
another sensor, specifically, a temperature sensor. This way, the system could match
consumption values with temperature values (through their measurements’ timestamps) and
determine if there are any long-term discrepancies between the two. If so, then a malfunction

may be likely.

5.5 Final appreciation

Considering the web platforms developed and the Middleware reengineering, the
documentation produced, the deadlines related to planning, and the new features requested,
this project can be considered a success. All client meetings, where a new iteration of the
FlexHousing project is presented, were met with satisfaction and furthered the client’s

interest in the subject.

However, while the presented solution reflects a good understanding of the main subject,

there are obvious improvements to be made, as suggested in section 5.4.

Rafael Teles da Rocha 156

Reengineering and development of loT Systems for Home Automation

On a more personal note, working at CISTER on a proof of concept for a big multinational
company was a great learning experience. The work environment is very flexible, any requests
for equipment or other demands are met within a short time, and all the people working at
CISTER are very friendly and always able to help. From working with multicultural teams to
learning different technologies in IoT, this internship has contributed to an incredible

experience that helps one develop their technical and social skills.

Rafael Teles da Rocha 157

6 Bibliography

1. Griffith, E., & Colon, A. (2017, May 08). The Best Smart Home Devices of 2017.
Retrieved February 17, 2017, from
http://www.pcmag.com/article2/0,2817,2410889,00.asp.

2. CISTER Research Unit. (n.d.). Retrieved February 17, 2017, from

http://www.cister.isep.ipp.pt/info/

3. P., Barnaghi. (2016, July 2). Internet of Things: Concepts and Technologies [Scholarly
project]. In SlideShare. Retrieved February 17, 2017, from

https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-

technologies

4. Automatic Meter Reading. (n.d.). Retrieved February 17, 2017, from

http://www.isasensing.com/solutions/automatic-meter-reading/

5. T., Angelucci. (2014, July). A Typical loT Value Chain [Digital image]. Retrieved

February 18, from http://rtcmagazine.com/articles/view/103677

6. L. L., Ferreira, L., Siksnys, P., Pedersen, P., Stluka, C., Chrysoulas, T. L., Guilly, T.,
Pedersen. (2015). Arrowhead compliant virtual market of energy (Barcelona, Spain,
2014). Barcelona. Retrieved February 18, from

http://ieeexplore.ieee.org/document/7005193/

7. Le Guilly, Thibaut, et al. "An Energy Flexibility Framework on The Internet of Things."
The Success of European Projects using New Information and Communication

Technologies (2016): 17-37

8. M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B. Filipic, U. Fischer, W. Lehner, T. B.
Pedersen, Y. Pitarch, L. Siksnys, and T. Tusar, "Data management in the mirabel smart

grid system," in EnDM, 2012, pp.95-102.

9. Flex-offer example [Digital image]. (2015, January 12). Retrieved February 23, 2017,
from

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193fig-

1-large.gif

10. TotalFlex. (n.d.). Retrieved February 23, 2017, from http://www.totalflex.dk/

Rafael Teles da Rocha 158

http://www.pcmag.com/article2/0,2817,2410889,00.asp
http://www.cister.isep.ipp.pt/info/
https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-technologies
https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-technologies
http://www.isasensing.com/solutions/automatic-meter-reading/
http://rtcmagazine.com/articles/view/103677
http://ieeexplore.ieee.org/document/7005193/
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-1-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-1-large.gif
http://www.totalflex.dk/

Reengineering and development of loT Systems for Home Automation

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Virtual market of energy main actors and operations [Digital image]. (2015, January
12). Retrieved February 23, 2017, from
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-

2-large.gif

High level architecture for the virtual market of energy [Digital image]. (2015, January
12). Retrieved February 23, 2017, from
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-

3-large.gif

E. Guttman, "Autoconfiguration for IP Networking: Enabling Local Communication",

IEEE Internet Computing 5 (3), 2001, pp. 81-86.

D. B. Terry, M. Painter, D. W. Riggle and S. Zhou, "The Berkeley Internet Name Domain
Server", Proceedings of USENIX Summer Conference, Salt Lake City, Utah, 1984, pp.
23-31.

OpenADR Alliance. (n.d.). Retrieved from http://www.openadr.org/

"ISO/IEC/IEEE P21451-1-4 Standard for a Smart Transducer Interface for Sensors,
Actuators, and Devices based on the eXtensible Messaging and Presence Protocol
(XMPP) for Networked Device Communication," Available online:

Http://wiki.xmpp.org/web/Tech/loT.pages-Sensei, accessed April 2014.

Pieper, C. (n.d.). How the Internet of Things Intersects with Energy Management.

Retrieved March 5, 2017, from https://www.artisenergy.com/blog/how-the-internet-

of-things-intersects-with-energy-management

A., Willis. (November 13). The Benefits of Becoming a Smart City - Infographic.

Retrieved March 5, 2017, from https://datafloq.com/read/the-benefits-of-becoming-

a-smart-city/1644

Big Data and the loT: The Future of the Smart City. (n.d.). Retrieved March 5, 2017,

from http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-

data-and-the-iot-the-future-of-the-smart-city/

Smart Grid Watch Team. (n.d.). Smart Grid Watch. Retrieved March 05, 2017, from

https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-

benefits-for-consumers-service-providers.html

Rafael Teles da Rocha 159

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-3-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-3-large.gif
http://www.openadr.org/
https://www.artisenergy.com/blog/how-the-internet-of-things-intersects-with-energy-management
https://www.artisenergy.com/blog/how-the-internet-of-things-intersects-with-energy-management
https://datafloq.com/read/the-benefits-of-becoming-a-smart-city/1644
https://datafloq.com/read/the-benefits-of-becoming-a-smart-city/1644
http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-data-and-the-iot-the-future-of-the-smart-city/
http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-data-and-the-iot-the-future-of-the-smart-city/
https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-benefits-for-consumers-service-providers.html
https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-benefits-for-consumers-service-providers.html

Reengineering and development of loT Systems for Home Automation

21. C,, Teixeira, M., Albano, A., Skou, L. P., Duefias, F., Antonacci, R., Ferreira, ... S., Scalari.
(2014). CONVERGENCE TO THE EUROPEAN ENERGY POLICY IN EUROPEAN
COUNTRIES: CASE STUDIES AND COMPARISON.

22. Castellanos, M., Dayal, U., & Rundensteiner, E. A. (2013). Enabling Real-Time Business
Intelligence 6th International Workshop, BIRTE 2012, Held at the 38th International
Conference on Very Large Databases, VLDB 2012, Istanbul, Turkey, August 27, 2012,

Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg.

23. TotalFlex demonstration. (n.d.). http://smart-cities-centre.org/wp-

content/uploads/Per-Pedersen.pdf

24. Arrowhead — Ahead of the future. (n.d.). Retrieved March 12, 2017, from

http://www.arrowhead.eu/

25. Dannecker, L. (2015). Energy time series forecasting: efficient and accurate
forecasting of evolving time series from the energy domain. Wiesbaden: Springer
Vieweg. Retrieved March 12, 2017, from
https://books.google.pt/books?id=ufhUCgAAQBAI&pg=PA41&Ipg=PA41&dg=mirabe

|+flex-offer&source=bl&ots=POXuTSOWDE&sig=ALBoGLO43RI 9h6-IX-

Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-

8ZTUAhUJVXxoKHWfRD6UQ6AEIMzACHv=0nepage&qg=mirabel%20flex-offer&f=true

26. A., Doms, Z., Marinzek, & T. B., Pedersen. (2013). MIRABEL - Efficiently managing more
renewable energy using explicit demand and supply flexibilities (Doctoral dissertation,
Aalborg University, 2013). Berlin. Retrieved March 12, 2017, from
http://vbn.aau.dk/files/160236283/MIRABEL Efficiently managing more renewabl

e _energy using explicit demand and supply flexibilities.pdf

27. TotalFlex. (n.d.). Retrieved March 19, 2017, from

http://neogrid.dk/portfolio/totalflex-new/

28. Woon, W. L., Aung, Z., Kramer, O., & Madnick, S. (2017). Data Analytics for Renewable
Energy Integration: 4th ECML PKDD Workshop, DARE 2016, Riva del Garda, Italy,
September 23, 2016, Revised Selected Papers. Cham: Springer International
Publishing. Retrieved March 19, 2017, from
https://books.google.pt/books?id=scSPBQAAQBAJ& pg=PA2&Ipg=PA2&dqg=total+flex

+energy&source=bl&ots= xDwT386jc&sig=M|KfEdOxU35IPnsmVIKyGaObH-0&hl=pt-

Rafael Teles da Rocha 160

http://smart-cities-centre.org/wp-content/uploads/Per-Pedersen.pdf
http://smart-cities-centre.org/wp-content/uploads/Per-Pedersen.pdf
http://www.arrowhead.eu/
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
http://vbn.aau.dk/files/160236283/MIRABEL_Efficiently_managing_more_renewable_energy_using_explicit_demand_and_supply_flexibilities.pdf
http://vbn.aau.dk/files/160236283/MIRABEL_Efficiently_managing_more_renewable_energy_using_explicit_demand_and_supply_flexibilities.pdf
http://neogrid.dk/portfolio/totalflex-new/
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false

Reengineering and development of loT Systems for Home Automation

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=0nepage&q=

total%20flex%20energy&f=false

Arrowhead framework — Arrowhead. (n.d.). Retrieved March 19, 2017, from

http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-

framework/

Arrowhead Framework [Digital image]. (n.d.). Retrieved March 19, 2017, from

http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-

framework.png

Ry Crist October 14, 2015 5:00 AM PDT @rycrist. (2015, October 14). A smart home
divided: Can it stand? Retrieved March 26, 2017, from

https://www.cnet.com/news/a-smart-home-divided-can-it-stand/

Apple HomeKit App [Digital image]. (n.d.). Retrieved March 26, 2017, from

http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-i0S-10-HomeKit-

App5.png

Nest [Digital image]. (n.d.). Retrieved March 26, 2017, from

http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-

iPhone-screenshot-001.jpg

IFTTT. (2017, May 25). Retrieved May 26, 2017, from
https://en.wikipedia.org/wiki/IFTTT

IFTTT. (n.d.). Retrieved May 26, 2017, from https.//ifttt.com/

Kreuzer, K. (2015, August 15). Re: Openhab for business purposes? [Web log
comment]. Retrieved April 2, 2017, from

https://community.openhab.org/t/openhab-for-business-purposes/1460/2

Baker, J., (Red Hat). (2016, March 29). 5 open source home automation tools.

Retrieved April 2, 2017, from https://opensource.com/life/16/3/5-open-source-

home-automation-tools

HABPanel. (n.d.). Retrieved April 2, 2017, from

http://demo.openhab.org:8080/habpanel/index.html#/view/first-floor

[Digital image]. (n.d.). Retrieved from
https://www.mysensors.org/uploads/57bel15b86b0aealb61746265/394/homeassist

ant_devices.png

Rafael Teles da Rocha 161

https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-framework.png
http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-framework.png
https://www.cnet.com/news/a-smart-home-divided-can-it-stand/
http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-iOS-10-HomeKit-App5.png
http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-iOS-10-HomeKit-App5.png
http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-iPhone-screenshot-001.jpg
http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-iPhone-screenshot-001.jpg
https://en.wikipedia.org/wiki/IFTTT
https://ifttt.com/
https://community.openhab.org/t/openhab-for-business-purposes/1460/2
https://opensource.com/life/16/3/5-open-source-home-automation-tools
https://opensource.com/life/16/3/5-open-source-home-automation-tools
http://demo.openhab.org:8080/habpanel/index.html#/view/first-floor
https://www.mysensors.org/uploads/57be15b86b0aea1b61746265/394/homeassistant_devices.png
https://www.mysensors.org/uploads/57be15b86b0aea1b61746265/394/homeassistant_devices.png

Reengineering and development of loT Systems for Home Automation

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Alexandra. (2016, September 30). loT is eating the world: APls and REST — Alexandra
- Medium. Retrieved April 2, 2017, from

https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-

9e0321bcbebf

Rational Unified Process: Best Practices for Software Development Teams [PDF].
(1998). IBM Rational Software Corporation.

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/

1251 bestpractices TP026B.pdf

[Digital image]. (n.d.). Retrieved April 17, 2017, from http://wm2info.com.br/wp-

content/uploads/2012/01/RUPSummaryDiag.gif

Atlassian. (n.d.). What is version control | Atlassian Git Tutorial. Retrieved April 17,

2017, from https://www.atlassian.com/git/tutorials/what-is-version-control

Lawrizs. (n.d.). Lawrizs/ARROWHEAD_VME. Retrieved February 24, 2017, from
https://github.com/lawrizs/ARROWHEAD VME

Software Requirements. (n.d.). Retrieved May 1, 2017, from

https://www.tutorialspoint.com/software engineering/software requirements.htm

Sommerville, lan (2009). Software Engineering (9th ed.). Addison-Wesley. ISBN 978-
0-13-703515-1.

Cohn, M. (2004, May 21). Telling Stories and User Role Modeling. Retrieved May 1,

2017, from http://www.informit.com/articles/article.aspx?p=170964

Cohn, M. (2014, July 1). Adding Decorated User Roles to Your User Stories. Retrieved

May 1, 2017, from https://www.mountaingoatsoftware.com/blog/adding-decorated-

user-roles-to-your-user-stories

Cohn, M. (n.d.). User Stories and User Story Examples by Mike Cohn. Retrieved May

1, 2017, from https://www.mountaingoatsoftware.com/agile/user-stories

LBushkin. (2013, May 10). What is functional and non functional requirement? [Online
forum comment]. Retrieved May 7, 2017, from

https://stackoverflow.com/questions/16475979/what-is-functional-and-non-

functional-requirement

Ergonomic Requirements for Office Work with Visual Display Terminals, ISO 9241-11,
ISO, Geneva, 1998.

Rafael Teles da Rocha 162

https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-9e0321bc6cbf
https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-9e0321bc6cbf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://wm2info.com.br/wp-content/uploads/2012/01/RUPSummaryDiag.gif
http://wm2info.com.br/wp-content/uploads/2012/01/RUPSummaryDiag.gif
https://www.atlassian.com/git/tutorials/what-is-version-control
https://github.com/lawrizs/ARROWHEAD_VME
https://www.tutorialspoint.com/software_engineering/software_requirements.htm
http://www.informit.com/articles/article.aspx?p=170964
https://www.mountaingoatsoftware.com/blog/adding-decorated-user-roles-to-your-user-stories
https://www.mountaingoatsoftware.com/blog/adding-decorated-user-roles-to-your-user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
https://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
https://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement

Reengineering and development of loT Systems for Home Automation

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Computer performance. (2017, August 31). Retrieved August 31, 2017, from

https://en.wikipedia.org/wiki/Computer performance

Software portability. (2017, August 06). Retrieved August 29, 2017, from

https://en.wikipedia.org/wiki/Software portability

Definition of Interoperability. (n.d.). Retrieved August 29, 2017, from

http://interoperability-definition.info/en/

Use case. (2017, August 22). Retrieved August 22, 2017, from

https://en.wikipedia.org/wiki/Use case

W. Tracz. Domain analysis working group report. In First International Workshop on

Software Reusability, 1991.

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison Wesley,

2003, p. 116.

G., Sunyé. (2015, April 13). Domain Analysis [Scholarly project]. In SlideShare.

Retrieved May 15, 2017, from https://pt.slideshare.net/sunye/domain-analysis

Santos, J. (2016). Creation of a pilot for the FlexOffer concept. 55. Retrieved from

http://www.cister.isep.ipp.pt/docs/creation of a pilot for the flexoffer concept/

1256/view.pdf

Object Oriented Design. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/object oriented analysis design/ooad object orie

nted design.htm

Object Oriented Design. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/object oriented analysis design/ooad object orie

nted design.htm

Class diagram. (2017, August 24). Retrieved August 27, 2017, from

https://en.wikipedia.org/wiki/Class diagram

GRASP (object-oriented design). (2017, March 06). Retrieved June 16, 2017, from

https://en.wikipedia.org/wiki/GRASP (object-oriented design)#Controller

Bell, D. (2004, February 16). The sequence diagram. Retrieved July 17, 2017, from

https://www.ibm.com/developerworks/rational/library/3101.html

Rafael Teles da Rocha 163

https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Software_portability
http://interoperability-definition.info/en/
https://en.wikipedia.org/wiki/Use_case
https://pt.slideshare.net/sunye/domain-analysis
http://www.cister.isep.ipp.pt/docs/creation_of_a_pilot_for_the_flexoffer_concept/1256/view.pdf
http://www.cister.isep.ipp.pt/docs/creation_of_a_pilot_for_the_flexoffer_concept/1256/view.pdf
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)#Controller
https://www.ibm.com/developerworks/rational/library/3101.html

Reengineering and development of loT Systems for Home Automation

65

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

. B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers
from Flexible Electrical Devices. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers
from Flexible Electrical Devices. 12. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers
from Flexible Electrical Devices. 5. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

Integration Testing. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/software testing dictionary/integration testing.ht

m

Integration Testing Tutorial: Big Bang, Top Down & Bottom Up. (n.d.). Retrieved

August 17, 2017, from https://www.guru99.com/integration-testing.html|

Stub. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/software testing dictionary/stub.htm

Using in-memory databases. (n.d.). Retrieved August 17, 2017, from
https://db.apache.org/derby/docs/10.11/devguide/cdevdvipinmemdb.html

Acceptance Testing. (2017, July 23). Retrieved August 20, 2017, from

https://www.tutorialspoint.com/software testing dictionary/acceptance testing.ht

m

Otwell, T. (n.d.). Browser Tests (Laravel Dusk). Retrieved August 18, 2017, from
https://laravel.com/docs/5.4/dusk

SOAAD Forge: Arrowhead Framework: Source Code Repository for Arrowhead
Framework. (n.d.). Retrieved September 15, 2017, from

https://forge.soadd.org/scm/?group id=58

P., Varga, F., Blomstedt, L. L., Ferreira, J., Eliasson, M., Johansson, J., Delsing, 1.,
Martinez de Soria. (2016, August 28). Making System of Systems Interoperable - the
Core Components of the Arrowhead Framework. Retrieved February 18, from

http://www.arrowhead.eu/wp-

content/uploads/2013/03/Arrowhead core Elsevier-cr2.pdf

Rafael Teles da Rocha 164

http://dl.acm.org/citation.cfm?id=3077850
http://dl.acm.org/citation.cfm?id=3077850
http://dl.acm.org/citation.cfm?id=3077850
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.guru99.com/integration-testing.html
https://www.tutorialspoint.com/software_testing_dictionary/stub.htm
https://db.apache.org/derby/docs/10.11/devguide/cdevdvlpinmemdb.html
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm
https://laravel.com/docs/5.4/dusk
https://forge.soa4d.org/scm/?group_id=58
http://www.arrowhead.eu/wp-content/uploads/2013/03/Arrowhead_core_Elsevier-cr2.pdf
http://www.arrowhead.eu/wp-content/uploads/2013/03/Arrowhead_core_Elsevier-cr2.pdf

Reengineering and development of loT Systems for Home Automation

76

77.

78.

79.

80.

81.

82.

83.

84.

85.

. T. Erl, SOA Principles of Service Design (The Prentice Hall Service Oriented Computing
Series from Thomas Erl), Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

K. Nagorny, R. Harrison, A. Colombo, G. Kreutz, A formal engineering approach for
control and monitoring systems in a service-oriented environment, in: IEEE

International Conference on Industrial Informatics (INDIN), 2013, pp. 480-487.

APIs for |Internet of Things (loT). (n.d.). Retrieved April 2, 2017, from

http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-

things-iot

Rele, A. (2015, August 26). How APIs Unlock Value from the loT. Retrieved April 2,

2017, from https://apigee.com/about/blog/digital-business/how-apis-unlock-value-

iot

Dersin, P. (2014, October 15). Systems of Systems. Retrieved September 21, 2017,

from http://rs.ieee.org/tech-activities/77-systems-of-systems

“Flat design style modern vector illustration concept of smart..”. Adapted from Flat
design style modern vector illustration concept of smart.., by bloomua. Retrieved

from http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-

content/uploads/2017/06/05094407/smarty-home-1.jpg

Stellwagen, E. (n.d.). Forecasting 101: A Guide to Forecast Error Measurement
Statistics and How to Use Them. Retrieved September 28, 2017, from

http://www.forecastpro.com/Trends/forecastingl01August2011.html

Mean absolute percentage error. (2017, July 27). Retrieved September 28, 2017, from

https://en.wikipedia.org/wiki/Mean absolute percentage error#Alternative MAPE

definitions

Tim. (2017, May 9). Is MAPE a good error measurement statistic? And what
alternatives are there? [Online forum comment]. Retrieved September 28, 2017, from

https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-

measurement-statistic-and-what-alternatives-are-there

Mean Absolute Percent Error (MAPE). (n.d.). Retrieved September 28, 2017, from

http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-

error/

Rafael Teles da Rocha 165

http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-things-iot
http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-things-iot
https://apigee.com/about/blog/digital-business/how-apis-unlock-value-iot
https://apigee.com/about/blog/digital-business/how-apis-unlock-value-iot
http://rs.ieee.org/tech-activities/77-systems-of-systems
http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-content/uploads/2017/06/05094407/smarty-home-1.jpg
http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-content/uploads/2017/06/05094407/smarty-home-1.jpg
http://www.forecastpro.com/Trends/forecasting101August2011.html
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#Alternative_MAPE_definitions
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#Alternative_MAPE_definitions
https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-measurement-statistic-and-what-alternatives-are-there
https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-measurement-statistic-and-what-alternatives-are-there
http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-error/
http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-error/

Reengineering and development of loT Systems for Home Automation

86. Symmetric Mean Absolute Percent Error (SMAPE). (n.d.). Retrieved September 28,

2017, from http://www.vanguardsw.com/business-forecasting-101/symmetric-

mean-absolute-percent-error-smape/

87. Giannakopoulos, T. (n.d.). pyAudioAnalysis. Retrieved August 25, 2017, from

https://github.com/tyiannak/pyAudioAnalysis

88. Heller, M. (2007, January 29). REST and CRUD: the Impedance Mismatch. Retrieved

October 09, 2017, from https://www.infoworld.com/article/2640739/application-

development/rest-and-crud--the-impedance-mismatch.html

89. The energy market explained. (5, March 2017). Retrieved October 10, 2017, from

http://www.energy-uk.org.uk/energy-industry/the-energy-market.html

90. Santos, J., Albano, M., Ferreira, L.L., Silva, J., Rocha, R., Olsen, P., Matos, L. (2017).

FlexHousing: FlexOffer concept for the energy manager. Manuscript in preparation.

Rafael Teles da Rocha 166

http://www.vanguardsw.com/business-forecasting-101/symmetric-mean-absolute-percent-error-smape/
http://www.vanguardsw.com/business-forecasting-101/symmetric-mean-absolute-percent-error-smape/
https://github.com/tyiannak/pyAudioAnalysis
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
http://www.energy-uk.org.uk/energy-industry/the-energy-market.html

Reengineering and development of loT Systems for Home Automation

7 Appendixes

7.1 Appendix-A - Configuration Properties file for XMPP

communication

aggregatorid=aggregator
aggregatorpassword=aggregator

flexoffermanagerid=admin
flexoffermanagerpassword=password

marketid=market
marketpassword=market

xmpphostname=192.168.60.110
xmppport=5222
Xmppresource=demo
xmppservicename=localhost

Fig. 104 — Configuration Properties file (config.properties) for XMPP communication

Rafael Teles da Rocha 167

Reengineering and development of loT Systems for Home Automation

7.2 Appendix-B — Sonoff Pow Custom Firmware

// Import required libraries
#include <Arduino.h>

#include <ESP8266WiFi.h>
#include <aREST.h>
#include “HLW8012.h”

#tdefine SERIAL_BAUDRATE

// GPIOs

#define RELAY_PIN
#define SEL_PIN
#define CF1_PIN
#define CF_PIN

115200

12

13
14

// Check values every 2 seconds

#tdefine UPDATE_TIME

2000

// Set SEL_PIN to HIGH to sample current

// This is the case for Itead’s Sonoff POW, where a
// the SEL_PIN drives a transistor that pulls down
// the SEL pin in the HLW8012 when closed

#tdefine CURRENT_MODE

HIGH

// These are the nominal values for the resistors in the circuit

#tdefine CURRENT_RESISTOR 0.001
#tdefine VOLTAGE_RESISTOR_UPSTREAM (5 * 470000) // Real: 2280k
#tdefine VOLTAGE_RESISTOR_DOWNSTREAM (1000) // Real 1.009k

HLW8012 hlw8012;
int gpiol3Led = 13;
int gpiol2Relay = 12;

// Create aREST instance
aREST rest = aREST();

// WiFi parameters
const char* ssid = “CISTER”;

const char* password = “2ae7a525d4882ed2a8ee1890968932f6™;

// The port to listen for incoming TCP connections

#define LISTEN_PORT

// Create an instance of the

80

server

WiFiServer server(LISTEN_PORT);

// Variables to be exposed to the API

int activePower = 0;
int voltage = 9;

double current = 0;

int apparentPower = 0;
double powerFactor = 0;

String consumptionVariables = “”;

String state = “Off”;

// Auxiliary variable
int auxInt = 0;
double auxDouble = 0;

// Define the number of samples to keep track of. The higher the number,

// the more the readings will be smoothed, but the slower the output will

// respond to the input. Using a constant rather than a normal variable lets
// use this value to determine the size of the readings array.

const int numReadings = 30;

int readings[numReadings];
int readIndex = 9;

int total = ©;

int average = 0;

// the readings from the analog input
// the index of the current reading
// the running total

// the average

// Declare functions to be exposed to the API

Rafael Teles da Rocha

168

Reengineering and development of loT Systems for Home Automation

int ledControl(String command);
int actuate(String param);

void unblockingDelay(unsigned long mseconds) {
unsigned long timeout = millis();
while ((millis() - timeout) < mseconds) delay(1);

}

void calibrate() {
// Let's first read power, current and voltage
// with an interval in between to allow the signal to stabilise:

hlw8012.getActivePower();

hlw8012.setMode (MODE_CURRENT);
unblockingDelay(2000);
hlw8012.getCurrent();

hlw8012.setMode (MODE_VOLTAGE);
unblockingDelay(2000);
hlw8012.getVoltage();

// Calibrate using a 60W bulb (pure resistive) on a 230V line
hlw8012.expectedActivePower(60.0);
hlw8012.expectedVoltage(230.0);

hlw8012.expectedCurrent(60.0 / 230.0);

// Show corrected factors

//Serial.print("[HLW] New current multiplier : ");
Serial.println(hlw8012.getCurrentMultiplier());

//Serial.print("[HLW] New voltage multiplier : ");
Serial.println(hlw8012.getVoltageMultiplier());

//Serial.print("[HLW] New power multiplier N
Serial.println(hlw8012.getPowerMultiplier());

//Serial.println();

}

void setup(void)

{
// Start Serial port and clean garbage
Serial.begin(SERIAL_BAUDRATE);
Serial.println();
Serial.println();

// Close the relay to switch on the load
pinMode (RELAY_PIN, OUTPUT);
digitalWrite(RELAY_PIN, HIGH);
pinMode(CF_PIN, INPUT_PULLUP);

// Initialize HLW8012

// void begin(unsigned char cf_pin, unsigned char cfl_pin, unsigned char sel_pin,
unsigned char currentWhen = HIGH, bool use_interrupts = false, unsigned long pulse_timeout
= PULSE_TIMEOUT);

// * cf_pin, cfl_pin and sel_pin are GPIOs to the HLW8012 IC

// * currentWhen is the value in sel_pin to select current sampling

// * set use_interrupts to false, we will have to call handle() in the main loop to do
the sampling

// * set pulse_timeout to 500ms for a fast response but losing precision (that's ~24W
precision :()

h1w8012.begin(CF_PIN, CF1_PIN, SEL_PIN, CURRENT_MODE, false, 500000);

// These values are used to calculate current, voltage and power factors as per
datasheet formula

// These are the nominal values for the Sonoff POW resistors:

// * The CURRENT_RESISTOR is the 1milliOhm copper-manganese resistor in series with the
main line

// * The VOLTAGE_RESISTOR_UPSTREAM are the 5 470kOhm resistors in the voltage divider
that feeds the V2P pin in the HLW8012

// * The VOLTAGE_RESISTOR_DOWNSTREAM is the 1kOhm resistor in the voltage divider that
feeds the V2P pin in the HLW8012

hlw8012.setResistors(CURRENT_RESISTOR, VOLTAGE_RESISTOR_UPSTREAM,
VOLTAGE_RESISTOR_DOWNSTREAM) ;

Rafael Teles da Rocha 169

Reengineering and development of loT Systems for Home Automation

//calibrate();

// Init variables and expose them to REST API
consumptionVariables = "";
rest.variable("consumption",&consumptionvariables);

rest.variable("state",&state);

// Function to be exposed
rest.function("led",ledControl);
rest.function("actuate",actuate);

// Give name & ID to the device (ID should be 6 characters long)
rest.set_id("1");
rest.set_name("esp8266");

// Connect to WiFi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");

Serial.println("WiFi connected");

// Start the server
server.begin();
Serial.println("Server started");

// Print the IP address
Serial.println(WiFi.localIP());

// initialize all the readings to ©:

for (int thisReading = ©; thisReading < numReadings; thisReading++) {
readings[thisReading] = 0;

}

checkState();
}

void loop() {
static unsigned long last = millis();

// This UPDATE_TIME should be at least twice the minimum time for the current or
voltage

// signals to stabilize. Experimentally that's about 1 second.

if ((millis() - last) > UPDATE_TIME) {

last = millis();

// subtract the last reading:

total = total - readings[readIndex];

// read from the sensor:

readings[readIndex] = hlw8012.getActivePower();
// add the reading to the total:

total = total + readings[readIndex];

// advance to the next position in the array:
readIndex = readIndex + 1;

// if we're at the end of the array...
if (readIndex >= numReadings) {
// ...wrap around to the beginning:
readIndex = 0;

}

// calculate the average:
average = total / numReadings;

// Active power

Serial.print("[HLW] Active Power (W) : ")
activePower = hlw8012.getActivePower();
Serial.println(activePower);

Rafael Teles da Rocha 170

Reengineering and development of loT Systems for Home Automation

// Average Active power

Serial.print("[HLW] Average Active Power (W) ")

Serial.println(average);

// Voltage

Serial.print("[HLW] Voltage (V)
voltage = hlw8012.getVoltage();
Serial.println(voltage);

// Current

Serial.print("[HLW] Current (A)
current = hlw8012.getCurrent();
Serial.println(current);

// Apparent Power

Serial.print("[HLW] Apparent Power (VA) :

")

")s

")s

apparentPower = hlw8012.getApparentPower();

Serial.println(apparentPower);

// Power Factor
Serial.print("[HLW] Power Factor (%)

")s

powerFactor = (int) (100 * hlw8012.getPowerFactor());

Serial.println(powerFactor);

consumptionVariables =

consumptionVariables += "Active Power (W)=";

consumptionVariables += activePower;

consumptionVariables += ",";

consumptionVariables += "Average Active Power (W)=";

consumptionVariables += average;
consumptionVariables += ",";
consumptionVariables += "Voltage (V)=";
consumptionVariables += voltage;
consumptionVariables += ",";
consumptionVariables += "Current (A)=";
consumptionVariables += current;
consumptionVariables += ",";

) B
consumptionVariables += "Apparent Power (VA)=";

consumptionVariables += apparentPower;
consumptionVariables +=

) B
consumptionVariables += "Power Factor (%)=";

consumptionVariables += powerFactor;

Serial.println();

// When not using interrupts we have to manually switch to current or voltage

monitor

// This means that every time we get into the conditional we only update one of

them

// while the other will return the cached value.

hlw8012.toggleMode();
¥

checkState();

// Handle REST calls
WiFiClient client = server.available();
if (!client) {

return;

while(!client.available()){
delay(1);

rest.handle(client);

}

// Custom function accessible by the API
int ledControl(String command) {

// Get state from command
int state = command.toInt();

digitalWrite(6,state);
return 1;

Rafael Teles da Rocha

171

Reengineering and development of loT Systems for Home Automation

}

// Custom function accessible by the API
int actuate(String param) {

int command = param.toInt();

// Turn Off

if (command == @) {
digitalWrite(gpiol3Led, HIGH);
digitalWrite(gpiol2Relay, LOW);
state = "Off";
return 0;

// Turn On

} else if (command == 1) {
digitalWrite(gpiol3Led, LOW);
digitalWrite(gpiol2Relay, HIGH);
state = "On";
return 1;

// Actuate

} else if (command == 2) {
digitalWrite(gpiol3Led, !digitalRead(gpiol3Led));
digitalWrite(gpiol2Relay, !digitalRead(gpiol2Relay));
checkState();
return 2;

}

return 3;

}

void checkState(){
if (digitalRead(gpiol3Led) == LOW && digitalRead(gpiol2Relay) == HIGH){
state = "On";
} else if (digitalRead(gpiol3Led) == HIGH && digitalRead(gpiol2Relay) == LOW){
state = "Off";
}
}

Fig. 105 — Code: Sonoff Pow Custom Firmware

Rafael Teles da Rocha 172

Reengineering and development of loT Systems for Home Automation

7.3 Appendix-C — FlexHousing System Setup Guide

7.3.1 FlexHousing Middleware

To run the FlexHousing Middleware, it is recommended to use a Java IDE (the NetBeans IDE
was the one chosen for the development of this project) and run the Apache Derby database

“FlexHousing”.

In case you want the Middleware to communicate with the BNearIT servers to access an
Aggregator that links to the real Virtual Market of Energy (VME), please read section 7.3.1.1

Remote Access.

If you wish to use the local Aggregator and VME modules and make the Middleware connect

to those, please read section 7.3.1.2 Local Access.
7.3.1.1 Remote Access

First, you will have to connect to BNearlT’s VPN (for more details, visit the link

https://forge.soadd.org/svn/arrowhead/WP5/FlexTutorial/arrowhead-benearit.html):

e |P:77.53.53.44

e Port: 45678

e Username: guest

e Password: Guest5678&&

Next, you will have to configure the Middleware’s XMPP client settings. To do so, you have to
edit the properties file (full name: config.properties) in the resources folder located in the

FlexHousing project.

In this case, you should focus on the flexoffermanager and xmpp properties. The

following info should be useful for the XMPP configuration:

e The flexoffermanagerid property refers to the XMPP server’s account

username/id for the Middleware;

e The flexoffermanagerpassword property refers to the XMPP server’s account

password for the Middleware;
e The xmpphostname property refers to the XMPP server’s IP address or DNS;
e The xmppport property refers to the XMPP server’s listening port;

e The xmppresource property must be the same as the Aggregator’s;

Rafael Teles da Rocha 173

https://forge.soa4d.org/svn/arrowhead/WP5/FlexTutorial/arrowhead-benearit.html

Reengineering and development of loT Systems for Home Automation

e The xmppservicename property refers to the XMPP domain.

7.3.1.2 Local Access

First, you need to set up an XMPP server:

e Create three accounts: one for the VME, one for the Aggregator, and one for the

FlexofferAgent (the Middleware);

e The current XMPP server (running on Ubuntu 16.04 LTS) is using ejabberd for the

server and has these three accounts registered:

O

O

@)

ID: market; Password: market
ID: aggregator; Password: aggregator

ID: admin; Password: password

Next, you must configure the XMPP client settings in the MarketManager and

AggregatorManager classes (both are in the Wp5 project), and in the FlexofferManager class

(located in the FlexHousing project).

While you could manually edit these three classes, the recommended way is to edit the

properties file (full name: config.properties) placed in the Wp5 and FlexHousing project

folders. Either way, the following info should be useful for the XMPP configuration:

e These three classes use the Smack library as their XMPP client service;

e Important things to take note:

O

The id properties refer to the XMPP server’s account username/id;
The password properties refer to the XMPP server’s account password;
The xmpphostname property refers to the XMPP server’s IP address or DNS;

The xmppport property refers to the XMPP server’s listening port (on
ejabberd, the port is 5222);

The service name refers to the XMPP domain;

= A jabber account is identified like this: username@domain. For
instance, the Aggregator account is identified as

aggregator@localhost;

The xmppresource property must be the same for all classes;

Rafael Teles da Rocha 174

Reengineering and development of loT Systems for Home Automation

o Itisrecommended to set Security Mode to disabled to avoid any authorization

“annoyances”;

o The FlexofferManager must identify the AggregatorManager
(aggregatorid variable), and the AggregatorManager must identify the

MarketManager (marketid variable).

7.3.2 FlexHousing Web Platform

To run the FlexHousing web platform, it is necessary to install Laravel 5.4 or higher and the
Laravel Homestead virtual machine (for more details, visit the link

https://laravel.com/docs/5.4/installation).

After the Laravel installation, you should look into the .env file located in the FlexHousing
web platform folder, and check if the value of the APT URL property corresponds to the

FlexHousing Middleware’s REST APl web address.

Lastly, input the command “homestead up” in your terminal and the FlexHousing web

platform shall then be available through the web address “flexhousing.app”.

Rafael Teles da Rocha 175

https://laravel.com/docs/5.4/installation

