

Reengineering and development of IoT
Systems for Home Automation

BEng Thesis

CISTER-TR-171204

Rafael Rocha

BEng Thesis CISTER-TR-171204 Reengineering and development of IoT Systems for Home ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Reengineering and development of IoT Systems for Home Automation

Rafael Rocha

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

With the increasing adoption of technology in today 19s houses, electricity is at an all-time highdemand. In fact,
given the plethora of vital electricity-powered appliances used every day,such as refrigerators, washing machines,
and so forth, it has been proven difficult to evenhandle all devices 19 electric consumption. To reduce
consumption costs and turn it into a moremanageable process, the concept of flex-offers was created. A flex-offer
is built aroundscheduling energy usage in conjunction with the prices of electricity, as provided by an
energymarket. More specifically, a flex-offer is an energy consumption offer containing the user 19senergy
consumption flexibility, which is sent to an entity called the Aggregator, whoaggregates together flex-offers from
multiple parties, bargains with the energy market, andresponds to each flex-offer with a schedule that meets the
lowest prices for consumption,while still satisfying the users 19 needs. By using flex-offers on a house 19s
equipment, the idea ofFlexHousing was born. The aspired goal of the CISTER Research Center 19s FlexHousing
projectis to deliver a platform where users can register their smart appliances, regardless of its brandand
distributor, set up preferences for the devices 19 usage, and let the system manage theenergy consumption and
device activation schedules based on the energy market prices.A previous project had already built a prototype of
the FlexHousing system. Nevertheless, theoriginal platform had many limitations and lacked maturity from a
software engineering pointof view, and the goal of this internship is to apply a reengineering process on the
FlexHousingproject, while also adding new features to it. Thus, the project 19s domain model, its database,and
class structures were altered to satisfy the new requirements. Furthermore, its webplatform was rebuilt from the
ground up. Also, a new interface was developed to facilitatesupport for devices of different brands. As a proof of
concept for the benefits provided by thisnew interface, a connection with a new device (Sonoff Pow) was also
established. Moreover,a new functionality was developed to identify a device 19s type of appliance based on its
energyconsumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally,another new
feature was added in which, based on a device 19s type and its energy consumptionpattern, the flex-offer creation
is automated, minimizing user input.As planned, the FlexHousing platform now supports multiple types of devices,
and has asoftware interface to support more types in the future with minimal effort. The flex-offercreation process
has been simplified and is now partially automated. Finally, the webplatform 19s UI has been updated, becoming
more intuitive and appealing to the user.

Reengineering and development of IoT Systems

for Home Automation
CISTER - Research Centre in Real-Time and Embedded Computing Systems

2016 / 2017

1140329 Rafael Teles da Rocha

iii

Reengineering and development of IoT Systems

for Home Automation
CISTER - Research Centre in Real-Time and Embedded Computing Systems

2016 / 2017

1140329 Rafael Teles da Rocha

Degree in Informatics Engineering

October 2017

ISEP Advisor: Luis Lino Ferreira

External Supervisors: Michele Albano, José Bruno Silva

v

«To my parents, for all the love and support they have given me»

Reengineering and development of IoT Systems for Home Automation

vii

Acknowledgments

First, I would like to thank my family for always supporting me and turning me into the person

I aŵ todaǇ. Without Ǉouƌ help aŶd loǀe, I ǁouldŶ’t have reached this far in my journey.

I also want to thank professor Luis Ferreira, my supervisors Michele Albano and José Silva, and

CISTER colleagues André Pedro, Pedro Santos, and Vincent Nelis for guiding me and assisting

ŵe aloŶg this pƌojeĐt’s deǀelopŵeŶt. It ǁas a wonderful learning experience that helped me

become a more professional and pragmatic developer.

Furthermore, I have to thank everyone at CISTER and ISEP DEI for giving me the tools and

opportunity to pursue my goals.

And last, but certainly not least, I want to thank my friends and colleagues at ISEP for working

with me, sharing their knowledge with me, and helping me out when I most needed. I will

always cherish those moments.

Rafael Rocha

Reengineering and development of IoT Systems for Home Automation

ix

Abstract

With the increasing adoption of technology in todaǇ’s houses, eleĐtƌiĐitǇ is at aŶ all-time high

demand. In fact, given the plethora of vital electricity-powered appliances used every day,

such as refrigerators, washing machines, and so forth, it has been proven difficult to even

handle all deǀiĐes’ eleĐtric consumption. To reduce consumption costs and turn it into a more

manageable process, the concept of flex-offers was created. A flex-offer is built around

scheduling energy usage in conjunction with the prices of electricity, as provided by an energy

market. More specifically, a flex-offer is aŶ eŶeƌgǇ ĐoŶsuŵptioŶ offeƌ ĐoŶtaiŶiŶg the useƌ’s

energy consumption flexibility, which is sent to an entity called the Aggregator, who

aggregates together flex-offers from multiple parties, bargains with the energy market, and

responds to each flex-offer with a schedule that meets the lowest prices for consumption,

ǁhile still satisfǇiŶg the useƌs’ Ŷeeds. BǇ usiŶg fleǆ-offeƌs oŶ a house’s eƋuipŵeŶt, the idea of

FlexHousing was born. The aspired goal of the CISTER ReseaƌĐh CeŶteƌ’s FleǆHousiŶg pƌojeĐt

is to deliver a platform where users can register their smart appliances, regardless of its brand

aŶd distƌiďutoƌ, set up pƌefeƌeŶĐes foƌ the deǀiĐes’ usage, and let the system manage the

energy consumption and device activation schedules based on the energy market prices.

A previous project had already built a prototype of the FlexHousing system. Nevertheless, the

original platform had many limitations and lacked maturity from a software engineering point

of view, and the goal of this internship is to apply a reengineering process on the FlexHousing

project, while also adding new features to it. Thus, the pƌojeĐt’s doŵaiŶ ŵodel, its database,

and class structures were altered to satisfy the new requirements. Furthermore, its web

platform was rebuilt from the ground up. Also, a new interface was developed to facilitate

support for devices of different brands. As a proof of concept for the benefits provided by this

new interface, a connection with a new device (Sonoff Pow) was also established. Moreover,

a new functionality ǁas deǀeloped to ideŶtifǇ a deǀiĐe’s tǇpe of appliaŶĐe ďased oŶ its eŶeƌgǇ

consumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally,

another new feature was added iŶ ǁhiĐh, ďased oŶ a deǀiĐe’s tǇpe aŶd its eŶeƌgǇ ĐoŶsuŵptioŶ

pattern, the flex-offer creation is automated, minimizing user input.

As planned, the FlexHousing platform now supports multiple types of devices, and has a

software interface to support more types in the future with minimal effort. The flex-offer

creation process has been simplified and is now partially automated. Finally, the web

platfoƌŵ’s UI has ďeeŶ updated, ďeĐoŵiŶg ŵoƌe iŶtuitiǀe aŶd appealiŶg to the useƌ.

Keywords (Theme): Internet of Things, Flex-offer, Home automation,

Energy saving, Smart Building.

Keywords (Technologies): Java, PHP, REST, Arrowhead Framework, Laravel

Framework.

Reengineering and development of IoT Systems for Home Automation

xi

Table of Contents

1 Introduction ... 1

1.1 Project Context .. 1

1.2 Project Overview ... 1

1.3 Organization Overview ... 4

1.4 Contributions from this project .. 4

1.5 Report structure .. 5

2 Context .. 8

2.1 Main Problem .. 8

2.1.1 Data and Device Interoperability .. 9

2.1.2 Arrowhead Implementation ... 10

2.1.3 FleǆHousiŶg ǁeď platfoƌŵ’s useƌ iŶteƌfaĐe .. 18

2.1.4 Specifying a flex-offeƌ’s eŶeƌgǇ ĐoŶsuŵptioŶ patteƌŶ.. 19

2.1.5 EǆeĐutiǀes’ platfoƌŵ ... 19

2.2 Business areas ... 19

2.2.1 Smart Buildings, Smart Cities, and Smart Grids .. 19

2.2.2 EŶeƌgǇ aŶalǇtiĐs oŶ ďusiŶesses’ eƋuipŵeŶt ... 20

2.2.3 Energy Markets ... 21

2.3 State of the art... 22

2.3.1 Flex-Offer-related Projects ... 22

2.3.2 Home Automation platforms and Device interoperability ... 26

2.4 Solution Overview ... 30

2.4.1 Data and Device Interoperability .. 30

2.4.2 Local communication between Arrowhead modules ... 34

2.4.3 FleǆHousiŶg ǁeď platfoƌŵ’s useƌ iŶteƌfaĐe .. 34

2.4.4 Specifying a flex-offeƌ’s eŶeƌgǇ ĐoŶsuŵptioŶ patteƌŶ.. 39

2.4.5 EǆeĐutiǀes’ platfoƌŵ ... 40

3 Work Environment ... 41

3.1 Work Methodology .. 41

3.1.1 Development Process ... 41

3.1.2 Version Control ... 42

3.2 Project Planning ... 43

3.3 Meetings ... 44

3.4 Used Technologies ... 47

4 Technical Description ... 49

4.1 Requirements Engineering ... 49

4.1.1 User Roles ... 49

4.1.2 User Stories ... 50

4.1.3 Functional Requirements .. 53

4.1.4 Non-Functional Requirements .. 54

4.2 Analysis ... 56

4.2.1 Domain Model .. 56

4.3 Design ... 63

4.3.1 Data structure ... 63

4.3.2 Use Cases .. 65

4.3.3 Class Diagram.. 110

4.4 Implementation ... 126

4.4.1 Device Controller .. 126

4.4.2 VPS devices ... 127

4.4.3 Sonoff devices ... 129

4.4.4 Automatic creation of a flex-offeƌ’s eŶeƌgǇ ĐoŶsuŵptioŶ patteƌŶ 130

4.4.5 Device Type Identification .. 136

4.4.6 Verifying a Flex-offeƌ’s effeĐt oŶ a deǀiĐe’s ĐoŶsuŵptioŶ patteƌŶ 138

4.4.7 FlexHousing System Setup .. 139

4.5 Tests .. 139

4.5.1 Unit Tests .. 140

4.5.2 Integration Tests ... 141

4.5.3 Acceptance Tests .. 144

5 Conclusions .. 152

5.1 Report summary .. 152

5.2 Accomplished goals .. 154

5.3 Additional work done... 155

5.4 Limitations and future development... 155

5.5 Final appreciation .. 156

6 Bibliography .. 158

Reengineering and development of IoT Systems for Home Automation

xiii

7 Appendixes .. 167

7.1 Appendix-A – Configuration Properties file for XMPP communication 167

7.2 Appendix-B – Sonoff Pow Custom Firmware ... 168

7.3 Appendix-C – FlexHousing System Setup Guide ... 173

7.3.1 FlexHousing Middleware .. 173

7.3.2 FlexHousing Web Platform ... 175

Reengineering and development of IoT Systems for Home Automation

xv

Table of Figures

Fig. 1 – Visual representation of the FlexHousing project. [81] ... 2

Fig. 2 – A cloud-based IoT value chain. [5] ... 9

Fig. 3 – Arrowhead Overview [7] .. 11

Fig. 4 – Flex-offer example [9] .. 13

Fig. 5 – Flex-offer scheduling process .. 13

Fig. 6 – Virtual market of energy main actors and operations. [11] 15

Fig. 7 – High level architecture for the virtual market of energy. [12] 16

Fig. 8 – DeǀiĐe IŶdeǆ Page iŶ the oƌigiŶal FleǆHousiŶg pƌototǇpe’s ǁeď platfoƌŵ 18

Fig. 9 – Flex-offer creatioŶ foƌŵ iŶ the oƌigiŶal FleǆHousiŶg pƌototǇpe’s ǁeď platfoƌŵ 18

Fig. 10 – Innovations in sustainability through smart systems. [19] 20

Fig. 11 – Balancing with and without the MIRABEL concept. [25] 23

Fig. 12 – Flex-offer lifecycle. [25]... 23

Fig. 13 – The EDMS of the MIRABEL project. [25] ... 24

Fig. 14 – Arrowhead Framework System of Systems [30] ... 25

Fig. 15 – Apple HomeKit app UI [32] ... 26

Fig. 16 – Nest app UI [33] ... 27

Fig. 17 – Examples of applets for different web services in IFTTT. [35] 27

Fig. 18 – VPS’s CloogǇ UI. ... 28

Fig. 19 – One of many UIs available in OpenHAB. [38] ... 29

Fig. 20 – Home Assistant app UI. [39] .. 29

Fig. 21 – Component Diagram of the FlexHousing project .. 31

Fig. 22 – Deployment Diagram of the FlexHousing project ... 33

Fig. 23 – Communication between modules through an XMPP server. 34

Fig. 24 – Dashboard page in the new FlexHousing web platform 35

Fig. 25 – Side-Navigator in the new FlexHousing web platform .. 35

Fig. 26 – "Add Device" form in the new FlexHousing web platform 36

Fig. 27 – Device index page in the new FlexHousing web platform 36

Fig. 28 – Flex-offer creation form in the new FlexHousing web platform 37

Fig. 29 – Scheduling a Flex-offer in the new FlexHousing web platform. 37

Fig. 30 – Manually creating the consumption pattern for a Flex-offer in the new FlexHousing

web platform. .. 38

Fig. 31 – Automatically creating the consumption pattern for a Flex-Offer in the new

FlexHousing web platform. ... 38

Fig. 32 – Checking a device's consumption in the new FlexHousing web platform 39

Fig. 33 – Verifying the effectiveness of a flexoffer in the new FlexHousing web platform .. 39

Fig. 34 – EǆeĐutiǀes’ platfoƌŵ UI ... 40

Fig. 35 – Typical RUP chart, showing how the development process is structured along two

dimensions. [42] .. 42

Fig. 36 – Previous project's domain model [59] .. 57

Fig. 37 – PƌojeĐt’s Ŷeǁ doŵain model ... 59

Fig. 38 – Database schema for the FlexHousing Middleware ... 64

Fig. 39 - Use Cases for the FlexHousing project .. 66

Fig. 40 – Sequence Diagram: UC01 Register User ... 68

Fig. 41 – Sequence Diagram: UC02 Create House ... 71

Fig. 42 – Sequence Diagram: UC02 Read House ... 72

Fig. 43 – Sequence Diagram: UC02 Update House ... 73

Fig. 44 – Sequence Diagram: UC02 Delete House ... 74

Fig. 45 – Sequence Diagram: UC03 Create Room ... 77

Fig. 46 – Sequence Diagram: UC03 Read Room ... 78

Fig. 47 – Sequence Diagram: UC03 Update Room .. 79

Fig. 48 – Sequence Diagram: UC03 Delete Room ... 80

Reengineering and development of IoT Systems for Home Automation

xvii

Fig. 49 – Sequence Diagram: UC04 Create Device .. 83

Fig. 50 – Sequence Diagram: UC04 Update Device ... 84

Fig. 51 – Sequence Diagram: UC04 Delete Device .. 85

Fig. 52 – Sequence Diagram: UC05 Check All Devices ... 87

Fig. 53 – Sequence Diagram: UC06 Turn On/Off Device ... 89

Fig. 54 – Sequence Diagram: UC07 Check Device Consumption .. 91

Fig. 55 – Sequence Diagram: UC08 & UC09 Create Flex-offer ... 94

Fig. 56 – SeƋueŶĐe Diagƌaŵ: UCϭϬ CheĐk a DeǀiĐe’s aĐtiǀe Fleǆ-offer and its effectiveness96

Fig. 57 – Sequence Diagram: UC11 & UC12 Get Device and User metadata 98

Fig. 58 – Sequence Diagram: UC11 Start Measurement Requests 100

Fig. 59 – Sequence Diagram: UC13 Get Devices Consumption Values 100

Fig. 60 – Sequence Diagram: Left – UC14 Start Flex-offer Emissions; Right – UC14 Start

Actuation Timer ... 102

Fig. 61 – Sequence Diagram: UC14 Execute FO Emission .. 103

Fig. 62 – Sequence Diagram: UC14 Execute Actuations .. 104

Fig. 63 – Sequence Diagram: UC15 Start Device Type Identification Timer 106

Fig. 64 – Sequence Diagram: UC15 Identify Device Types ... 107

Fig. 65 – Sequence Diagram: UC16 Provide Device's Consumption Data 109

Fig. 66 – Simplified class diagram of the FlexHousing Middleware 111

Fig. 67 – Class Diagram of Models package ... 112

Fig. 68 – Class Diagram of DTO package ... 114

Fig. 69 – Class Diagram of Execution package ... 115

Fig. 70 – Class Diagram of org.arrowhead.wp5 package ... 117

Fig. 71 – Class Diagram of Controllers package ... 118

Fig. 72 – Class Diagram of ThirdPartyServices package .. 120

Fig. 73 – Class Diagram of FH_API package ... 121

Fig. 74 – Class Diagram of DAO package ... 123

Fig. 75 – Class Diagram of FlexHousing Web Platform .. 124

Fig. 76 – Class Diagram of Executives' Web Platfrom .. 125

Fig. 77 – Code Snippet: DeviceController Interface ... 126

Fig. 78 – Left: VPS Smart Plug; Right: VPS Transmitter ... 127

Fig. 79 – VPS Cloogy ... 127

Fig. 80 – Code Snippet: returnPowerMeasurements in VPSController 128

Fig. 81 – Sonoff Pow switch .. 129

Fig. 82 – Code Snippet: returnPowerMeasurements in SonoffController 130

Fig. 83 – Algorithm: Pattern Sequence Matching (PSM) [66] .. 132

Fig. 84 – Visual sketch explaining the PSM algorithm .. 132

Fig. 85 – Algorithm: Estimation of Energy Profile for a wet-device [67] 133

Fig. 86 – Energy consumption data from a refrigerator, measured by a Sonoff 133

Fig. 87 – Constant time segment of inactivity in between each activation 134

Fig. 88 – Energy consumption pattern of a refrigerator ... 134

Fig. 89 – Algorithm: Pattern Sequence Matching (PSM) for a refrigerator 134

Fig. 90 – Algorithm: Calculate Time of Inactivity of a refrigerator 135

Fig. 91 – Algorithm: Create Energy Consumption Pattern of a refrigerator 135

Fig. 92 – The MAPE formula .. 138

Fig. 93 – The SMAPE formula .. 139

Fig. 94 – Code Snippet: Models Unit Tests ... 141

Fig. 95 – Code Snippet: Middleware Integration Tests ... 144

Fig. 96 – Code Snippet: Acceptance Test of UC01 Register User 145

Fig. 97 – Code Snippet: Acceptance Test of UC02 CRUD House 146

Fig. 98 – Code Snippet: Acceptance Test of UC03 CRUD Room .. 147

Fig. 99 – Code Snippet: Acceptance Test of UC04 CRUD Device 148

Fig. 100 – Code Snippet: Acceptance Test of UC05 Turn On/Off Device 148

Reengineering and development of IoT Systems for Home Automation

xix

Fig. 101 – Code Snippet: Acceptance Test of UC06 Check Device Consumption 149

Fig. 102 – Code Snippet: Acceptance Test of UC08 Create Flex-offer Automatically for a

Device.. 150

Fig. 103 – Code Snippet: Acceptance Test of UC09 Check total registered Users, Devices, and

Houses & UC10 Check End-Useƌs’ DeǀiĐes’ Frequency of Use and average Time of Use ... 151

Fig. 104 – Configuration Properties file (config.properties) for XMPP communication 167

Fig. 105 – Code: Sonoff Pow Custom Firmware .. 172

Reengineering and development of IoT Systems for Home Automation

xxi

Table of Tables

Table 1 – Project Planning .. 43

Table 2 – Project Meetings ... 44

Table 3 – Used Technologies ... 47

Table 4 - User Stories: End User .. 51

Table 5 - User Stories: Company Executive .. 52

Table 6 - Use Case 01: Register User.. 67

Table 7 - Use Case 02: CRUD House ... 69

Table 8 - Use Case 03: CRUD Room ... 75

Table 9 - Use Case 04: CRUD Device .. 81

Table 10 – Use Case 05: Check All Devices ... 86

Table 11 - Use Case 06: Turn On/Off Device .. 88

Table 12 - Use Case 07: Check Device Consumption .. 90

Table 13 - Use Case 08: Create Flex-offer Manually for a Device...................................... 92

Table 14 – Use Case 09: Create Flex-offer Automatically for a Device, based on Energy

Consumption ... 93

Table 15 – Use Case ϭϬ: CheĐk a DeǀiĐe’s aĐtiǀe Fleǆ-offer and its effectiveness 95

Table 16 – Use Case 11 & 12: Check total registered Users, Devices, and Houses & Check End

Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd Aǀeƌage Tiŵe of Use ... 97

Table 17 - Use Case ϭϯ: Get DeǀiĐes’ CoŶsuŵptioŶ Values .. 99

Table 18 - Use Case ϭϰ: DeploǇ DeǀiĐe’s Fleǆ-offers ... 101

Table 19 – Use Case 15: Identify Device Types ... 105

Table 20 - Use Case ϭ6: Pƌoǀide DeǀiĐe’s CoŶsuŵptioŶ Data ... 108

Table 21 – Classes description of Models package ... 113

Table 22 – Classes description of DTO package .. 114

Table 23 – Classes description of Execution package ... 116

Table 24 – Classes description of org.arrowhead.wp5 package 117

Table 25 – Classes description of Controllers package .. 118

Table 26 – Classes description of ThirdPartyServices package .. 120

Table 27 – Classes description of FH_API package ... 121

Table 28 – Classes description of DAO package ... 123

Table 29 – Acceptance Test: UC01 Register User .. 144

Table 30 – Acceptance Test: UC02 CRUD House ... 145

Table 31 – Acceptance Test: UC03 CRUD Room.. 146

Table 32 – Acceptance Test: UC04 CRUD Device .. 147

Table 33 – Acceptance Test: UC05 Turn On/Off Device .. 148

Table 34 – Acceptance Test: UC06 Check Device Consumption 149

Table 35 – Acceptance Test: UC07 Create Flex-offer Manually for a Device 149

Table 36 – Acceptance Test: UC08 Create Flex-offer Automatically for a Device 149

Table 37 – Acceptance Test: UC09 Check total registered Users, Devices, and Houses & UC10

Check End-Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd aǀeƌage Tiŵe of Use 150

Table 38 – Accomplished goals ... 154

Reengineering and development of IoT Systems for Home Automation

xxiii

Notation and Glossary

API Application Programming Interface. A set of clearly defined

methods of communication between various software

components.

Arrowhead Project An international project, developed in partnership with CISTER, to

address the technical and applicative challenges associated to

cooperative automation.

BNearIT AB

(or BNearIT)

A company focused on advanced systems development, modern

software architectures, and service-based systems. BNeartIT is a

partner of the Arrowhead Project.

CISTER Research Centre in Real-Time and Embedded Computing Systems

CRUD Create, Read, Update, and Delete. CRUD are the four basic

functions of persistent storage [88].

DTO A Data Transfer Object (DTO) is an object that is used to

encapsulate data, and send it from one subsystem of an application

to another.

IoT Internet of Things. The inter-networking of physical devices,

vehicles, buildings, and other items embedded with electronics,

software, sensors, actuators, and network connectivity which

enable these objects to collect and exchange data.

ISA Intelligent Sensing Anywhere, a Portuguese IoT company for

Oil&Gas market.

Java General-purpose computer programming language that is

concurrent, class-based, object-oriented, and specifically designed

to have as few implementation dependencies as possible.

Multi-paradigm

programming language

A programming language that supports more than one

programming paradigm (i.e. object-oriented programming,

functional programming, etc.).

MVC Model–View–Controller. A software architectural pattern for

implementing user interfaces on computers.

PHP Server-side scripting language designed primarily for web

development but also used as a general-purpose programming

language.

REST Representational state transfer or RESTful Web services are a way

of providing interoperability between computer systems on the

Internet.

SOA Service-Oriented Architecture. A style of software design where

services are provided to the other components by application

components, through a communication protocol over a network.

System of Systems An assortment of task-oriented or dedicated systems that merge

their resources and capabilities together to create a new, more

complex system which offers more functionality and performance

than simply the sum of the constituent systems [80].

UI User Interface

UML Unified Modeling Language, a software modeling language.

VME Virtual Market of Energy

VPN Virtual Private Network

VPS Virtual Power Solutions, a Portuguese energy solutions company

related to ISA.

XMPP Extensible Messaging and Presence Protocol

Rafael Teles da Rocha 1

1 Introduction

This chapter consists of an overview of the pƌojeĐt’s context and its main goals.

1.1 Project Context

CISTER Research Center focuses its activity on the analysis, design and implementation of real-

time and embedded computing systems. These embedded systems play an important role in

IoT due to their unique characteristics and features such as real-time computing, low power

consumption, low maintenance, and high availability.

In this context, CISTER has a project named FlexHousing that handles current IoT themes, such

as home automation and smart device interoperability, with a focus on energy saving.

However, considering the many limitations of the pƌojeĐt’s original prototype, it not only

requires a reengineering process, but also the development of new features.

Taking on a project of this scale can gƌeatlǇ ďeŶefit oŶe’s research and engineering skills, while

also allowing one to be at the forefront of the future of technology.

1.2 Project Overview

With the iŶĐƌeasiŶg adoptioŶ of teĐhŶologǇ iŶ todaǇ’s houses, electricity is at an all-time high

demand. In fact, given the plethora of vital electricity-powered appliances used every day,

such as refrigerators, lights, washing machines, water heaters, and so forth, it has been proven

difficult to even manage all their operations, especially when it comes to electric consumption.

To solve this problem, several innovations were introduced. One of them is the concept of the

Internet of Things (IoT), which turned itself into a key component of home automation and

smart homes [1]. Home automation is automating the ability to control items around the

house with a simple push of a button [1]. However, simple automation is not enough to

effectively decrease energy costs, since prices in the energy market are constantly changing

for any given hour.

Thus, to reduce consumption costs and turn it into a more manageable process, the concept

of flex-offers was created [8]. A flex-offer is built around scheduling energy usage in

conjunction with the prices of electricity, as provided by an energy market. More specifically,

a flex-offer is aŶ eŶeƌgǇ ĐoŶsuŵptioŶ offeƌ ĐoŶtaiŶiŶg the useƌ’s energy consumption

flexibility, which is sent to an entity called the Aggregator, who aggregates together flex-offers

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 2

from multiple parties, bargains with the energy market, and responds to each flex-offer with

a sĐhedule that ŵeets the loǁest pƌiĐes foƌ ĐoŶsuŵptioŶ, ǁhile still satisfǇiŶg the useƌs’ Ŷeeds.

By using flex-offeƌs oŶ a house’s eƋuipŵeŶt, the idea of FlexHousing was born.

FlexHousing (Fig. 1), project developed at CISTER and this iŶteƌŶship’s main theme, revolves

around the implementation of a pilot capable of applying the Flex Offer concept to a real-life

situation (using the Arrowhead framework), allowing control over the energy usage of a

hoŵe’s oƌ ďuildiŶg’s appliaŶĐes. The FlexHousing project is composed of two different

applications: one is the FlexHousing Middleware, which communicates with devices, manages

a database (which contains the registered users, houses, and devices), and provides its data

as a RESTful service to web applications; the other is a web application, known as FlexHousing

web platform, which seƌǀes as a gateǁaǇ to the Middleǁaƌe’s data aŶd seƌǀiĐes.

Fig. 1 – Visual representation of the FlexHousing project. [81]

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 3

Yet, siŶĐe IoT is still at a ǀeƌǇ eaƌlǇ stage, theƌe aƌeŶ’t ŵaŶǇ staŶdaƌds ǁheŶ it Đoŵes to the

process of controlling devices, leading to some companies using closed communication

protocols for their own appliances. Some devices send their data to a seƌǀiĐe pƌoǀideƌ’s

servers and are controlled through a web or mobile application. This app connects to the

seƌǀiĐe pƌoǀideƌ’s Đloud, seŶdiŶg ĐoŵŵaŶds aŶd ƌeƋuestiŶg the deǀiĐe’s data fƌoŵ the

ĐoŵpaŶǇ’s servers. Whereas, other devices limit their aĐĐess to the useƌ’s loĐal Ŷetǁoƌk,

ŵeaŶiŶg that the useƌ ŵust use the deǀiĐe’s pƌopƌietaƌǇ app ǁhile ĐoŶŶeĐted to his pƌiǀate

network.

In this context, the goal of CI“TER’s FleǆHousiŶg platform is to deliver a platform where users

can register their smart appliances, regardless of its brand and publisher, and manage their

energy consumption by scheduling energy usage based on the energy market prices. However,

the existing platform had many defiĐieŶĐies: the ǁeď platfoƌŵ’s UI Đould ďe heaǀilǇ iŵpƌoǀed;

it was developed to only function with devices from VPS and none more; the concept of

ŵultiple ͞Useƌs͟ aŶd ͞Houses͟ were not taken into account, meaning that, effectively, the

system only supported one user with one house; the flex-offers had to be manually created

through the useƌ’s iŶput, meaning that a user without any background knowledge would be

alienated; and its flex-offer implementation had dependencies to external servers.

Midway through development, this iŶteƌŶship’s pƌojeĐt also built a proof of concept for a

͞ĐlieŶt͟ (which cannot be identified in this report), namely, a multinational company in the

field of household appliances and consumer electronics, who is interested in offering a service,

whose basis can be built upon or based on the platform developed in this project. The client

currently has a vision for an after-sales service which consists of a remote maintenance

platform ;foƌ the puƌposes of this ƌepoƌt, the ĐlieŶt’s envisioned platform will be called

͞DeviceFix͟Ϳ. Consequently, the client saw the Flex-offer concept as a feature that could add

value to their DeviceFix platform. So, given that the FlexHousing platform was already at an

advanced stage, the company proposed the merge of interests between both platforms, so

that FlexHousing would serve as its Đustoŵeƌs’ platfoƌŵ, aŶd the ĐoŵpaŶǇ ǁould haǀe its oǁŶ

platfoƌŵ to ŵaŶage its Đustoŵeƌs’ appliaŶĐes usage. As a result, the company wished for a

platform that, by integrating with FlexHousing, displayed some statistical information about

FleǆHousiŶg’s useƌs.

Therefore, the goal of this internship is to apply a reengineering process on the FlexHousing

platform, while also adding new features to it. Thus, the project strives for six major goals:

• Rebuild and improve the FlexHousing web platform;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 4

• Reengineer the connection to IoT devices, enabling compatibility with other types

of appliances of different brands and manufacturers. This will also allow the

FlexHousing project to connect to local generic devices, which in turn will

generate a lesser dependency to third-party service providers;

• Add suppoƌt foƌ ŵultiple ͞Useƌs͟ aŶd ͞Houses͟ in the FlexHousing Middleware;

• Add a feature that enables the automatic creation of Flex-offers, based on a

deǀiĐe’s ĐoŶsuŵptioŶ patteƌŶ;

• Reengineer the FlexHousing Middleware so that its Arrowhead implementation

can also function locally (in servers under CISTER/ISEP responsibility), without

needing to connect to external servers;

• Develop a platform for company executives, which integrates with FlexHousing

and displays some basic analyses of user data.

1.3 Organization Overview

CISTER (Research Centre in Real-Time and Embedded Computing Systems) is a Research Unit

based at the School of Engineering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal.

CISTER was, in 2004 and 2007, awarded the classification of Excellent in the FCT evaluations.

CISTER has a strong and solid international reputation, built upon a robust track record of

publications, a continuous presence on program and organizing committees of international

top conferences [2].

CISTER — like its name entails — has been focusing its activity in the analysis, design and

implementation of Real-Time and Embedded Computing Systems. CISTER has, mostly,

provided advances in architectures for distributed embedded real-time systems, real-time

wireless sensor networks, cyber-physical systems, middleware for embedded systems and on

the usage of multicore processors on real-time systems [2].

1.4 Contributions from this project

The FlexHousing project presents a platform that offers not only the innovative flex-offer

concept as a feature to minimize energy costs, but also the compatibility with different smart

appliances, allowing its users to have the information to understand and know what is going

on in their facility, this being either a house or an industrial site.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 5

Furthermore, this platform could even be valuable to companies that want to better

understand their energy usage and costs in real-time, identify malfunctioning equipment and

overlay data sets to draw previously invisible insights that can increase efficiency and reduce

operating costs. If being used commercially, the project could even offer data to businesses

aďout theiƌ Đustoŵeƌ’s deǀiĐe usage.

Ultimately, this project also serves as a proof of concept for a company who is interested in

developing their own services that deal with IoT devices and energy management, and want

to know all the potential setbacks, as well as opportunities, in developing one.

1.5 Report structure

This report is composed of four main chapters, each divided into sub-chapters:

• 2 Context: This chapter focuses on explaining the problem the project is trying to

solve, while also detailing the business areas where its results can be useful, and

mention other projects or competing products that may have tackled the same issue

or were important/influential foƌ this pƌojeĐt’s deǀelopŵeŶt. More importantly, it

also desĐƌiďes the pƌoposed solutioŶ to the pƌojeĐt’s ŵaiŶ pƌoďleŵs;

o 2.1 Main Problem: This subchapter describes the problems that this project

tries to solve;

o 2.2 Business Areas: This subchapter identifies and describes the business

areas associated with the problem being addressed;

o 2.3 State of the Art: Based on the addressed problems, this subchapter

identifies known components or approaches that contribute to the

development of a viable solution;

o 2.4 Solution Overview: This suďĐhapteƌ outliŶes a solutioŶ foƌ the pƌojeĐt’s

main problems.

• 3 Work Environment: This chapter describes how the work was planned, what kind

of work methodology was used for development, all the attended meetings in the

internship, and the technologies used to achieve the proposed solution;

o 3.1 Work Methodology: This subchapter documents the integration of

version control systems into the working methodology, while also referring

the development process, in this case, based on RUP;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 6

o 3.2 Project Planning: This subchapter describes the project’s plaŶŶiŶg,

identifying relevant tasks and sub-tasks;

o 3.3 Meetings: This subchapter mentions all project meetings that were

iŵpoƌtaŶt foƌ the pƌojeĐt’s deǀelopŵeŶt;

o 3.4 Used Technologies: This subchapter describes the chosen technologies

foƌ the pƌojeĐt’s deǀelopŵeŶt.

• 4 Technical description: This chapter specifies how the project was developed, its

requirements, use cases, all the required diagrams for its features, the analysis of its

overall structure, and the implementation of its more interesting and/or complex

features;

o 4.1 Requirements Engineering: This subchapteƌ delǀes iŶto the pƌojeĐt’s useƌ

roles, user stories, and its functional and non-functional requirements;

o 4.2 Analysis: This suďĐhapteƌ aŶalǇses the pƌeǀious pƌojeĐt’s doŵaiŶ ŵodel,

while determining all the changes that must be made. Next, it presents the

new domain model for this current project, and describes every conceptual

class in the model;

o 4.3 Design: This subchapter describes the design documentation for every use

case/feature in the project, while also specifying the changes made to the

structure of the pƌeǀious pƌojeĐt’s dataďase;

o 4.4 Implementation: This subchapter gives an in-depth description of the

implementation of the more interesting and/or complex features developed

in the project;

o 4.5 Tests: This subchapter describes the methods used to test the developed

system, to ensure that all requirements are met and to guarantee accuracy

and quality in the results presented by it.

• 5 Conclusions: This chapter focuses on the final results of the project and whether it

was a success or a failure. It also reviews all the encountered difficulties, and

summarizes the final product’s adǀaŶtages and its usefulness for the organization.

Finally, the chapter ends by mentioning the overall project/internship experience, the

training received from it, and the ease and difficulties experienced over time.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 7

o 5.1 Report Summary: This subchapter serves as a summary of the most

important details focused on the previous chapters;

o 5.2 Accomplished Goals: In this subchapter, for each objective presented in

the introductory chapter, a degree of accomplishment is described for its

implementation;

o 5.3 Additional work done: This subchapter describes other minor works

carried out during the project/internship and not part of the objectives or

main work;

o 5.4 Limitations and future development: This subchapter identifies the

limitations of the developed project, making a self-critical analysis of the

whole work, as well as extrapolating possible directions of future

development;

o 5.5 Final Appreciation: This subchapter provides a personal opinion on the

whole internship and its project.

Rafael Teles da Rocha 8

2 Context

This chapter will allow the reader to understand the origin and theoretical stand-point of the

project, how the solution will be tackled and its design. Therefore, to understand the problem

at hand, there needs to be a clear understanding of the context.

2.1 Main Problem

The main problem of this project is divided into two parts: apply a reengineering process on

the original FlexHousing prototype, in order to solve its many limitations; add new features to

the FleǆHousiŶg platfoƌŵ to ďoth satisfǇ CI“TER’s oƌiginal goal for the project and to meet the

Ŷeǁ ƌeƋuiƌeŵeŶts of the ĐlieŶt’s iŶteŶded ǀisioŶ.

Regarding the ƌeeŶgiŶeeƌiŶg pƌoĐess, ǁe fiƌst Ŷeed to ĐheĐk the oƌigiŶal pƌototǇpe’s main

limitations and identify their problems:

• The Middleware only functions with VPS/ISA devices and their REST API. To solve this

problem, the solution must address a big hindrance in the IoT/Home Automation

industry in general, which is the lack of data and device interoperability standards.

Section 2.1.1 explains this problem in detail.

• The Middleǁaƌe’s Aƌƌoǁhead iŵpleŵeŶtatioŶ has dependencies to external servers

when handling flex-offers. To develop a solution for this, the Arrowhead architecture

and the Flex-offer energy flexibility framework must be understood. Section 2.1.2

focuses on these themes.

• The UI of the oƌigiŶal pƌototǇpe’s web platform is not very appealing, nor practical,

nor intuitive, and could be heavily improved. Section 2.1.3 addresses the original

pƌototǇpe’s UI problems.

Concerning the addition of new features, the most important ones are the following:

• The original FlexHousing prototype required the flex-offers to be manually created

thƌough the useƌ’s iŶput, which meant that a user without any background knowledge

would be alienated. Section 2.1.4 goes more in-depth into this problem.

• The client requested a web platform for executives that, by integrating with

FlexHousing, displays some basic analyses of the platfoƌŵ’s users’ data. Section 2.1.5

goes into more detail about this new platform.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 9

2.1.1 Data and Device Interoperability

Currently, one of the biggest setbacks in IoT is the lack of standards when it comes to user

data access and device management. Some brands offer access to their devices through a

Đloud seƌǀiĐe, ƌeƋuiƌiŶg useƌs to ƌeƋuest data aŶd seŶd deǀiĐe ĐoŵŵaŶds to the ĐoŵpaŶǇ’s

servers, on the cloud, through a proprietary mobile/web app. In these cases, the IoT

communication chain is comprised of three key components: sensors or actuators in a house,

a gateway, a cloud infrastructure and an end-user application.

Typically, it begins with a sensor network, which consists of sensor nodes (low power devices)

with different capabilities, spread over a physical location [3]. These nodes are linked to a

gateway device – a more powerful node – that connects to the core network, and sends the

seŶsoƌs’ data to the “eƌǀiĐe Pƌoǀideƌ’s Ŷetǁoƌk cloud [3] [4]. Once the Service Provider gathers

the data, it is then able to deliver it to the customer, be it through a standard web app, a

sŵaƌtphoŶe app, oƌ eǀeŶ diƌeĐtlǇ iŶto the Đustoŵeƌ’s ERP/billing/customer care software [4].

This means that to aĐĐess the seŶsoƌs’ data, the app ŵust use the service provider’s API.

This sequence of events can be easily understood through Fig. 2:

Fig. 2 – A cloud-based IoT value chain. [5]

As we can see, there is a big dependency to third-party service providers when it comes to the

pƌoĐess of aĐĐessiŶg the seŶsoƌs’ data. This ĐaŶ pƌoǀe to ďe a ďig disadǀaŶtage to the app’s

useƌ aŶd deǀelopeƌ, if, at aŶǇ poiŶt, the seƌǀiĐe pƌoǀideƌ’s seƌǀeƌs aƌe doǁŶ.

On the other hand, other manufacturers offer direct access to their devices, but only through

the useƌ’s loĐal Ŷetǁoƌk, aŶd ďǇ oŶlǇ usiŶg a pƌopƌietaƌǇ ŵoďile app.

Thus, as ǁas pƌeǀiouslǇ eǆplaiŶed iŶ the pƌojeĐt’s goals, oŶe of the ŵaiŶ oďjeĐtiǀes is to enable

both connection types from the application to a device, turning it into a flexible and generic

platform. This will, in turn, provide easier access to data and improve device interoperability.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 10

2.1.2 Arrowhead Implementation

Some of the components used in this project have been built upon the Arrowhead Framework,

therefore this sub-chapter provides a concise description of how the Arrowhead framework

is structured. Thus, an explanation of the Arrowhead framework will be given (sections 2.1.2.1

and 2.1.2.2), followed by the main problems to be tackled (section 2.1.2.3).

2.1.2.1 The Arrowhead Framework

The following explanation of the Arrowhead Framework [74] and its flex-offer implementation

was mostly based on the papers ͞MakiŶg “Ǉsteŵ of “Ǉstems Interoperable - the Core

CoŵpoŶeŶts of the Aƌƌoǁhead Fƌaŵeǁoƌk͟ and ͞Arrowhead Compliant Virtual Market of

Energy͟. Moreover, this report was given permission by their respective authors to use the

information and text available in the papers to prove the pƌojeĐt’s ĐoŶĐept aŶd ǁoƌth,

provided that the original works and authors [6] [75] were properly referenced.

The objective of the Arrowhead Framework is to efficiently support the development,

deployment and operation of interconnected, cooperative systems. It is based on the SOA

philosophy. The building elements of the framework are systems that provide and consume

services, and cooperate as systems of systems. With some commonly used systems, such as

Service Discovery, Authorization and Orchestration services, it is possible to design and

implement a minimal local automation cloud (Fig. 3).

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 11

Fig. 3 – Arrowhead Overview [7]

This section outlines some of the core systems that are made available within the Arrowhead

Framework.

2.1.2.1.1 Service Registry System

The Service Registry System keeps track of all active producing services within the network. It

is used to ensure that all systems can find each other – even if endpoints are dynamically

changed. It supports a service registry functionality based on DNS and DNS Service Discovery

(DNS-SD); since the Arrowhead Framework is a domain-based infrastructure. All Systems

within the network that have services producing information to the network shall publish its

producing service within the Service Registry by using the Service Discovery service.

Within a system of systems, the Service Registry further supports system interoperability

through its capability of searching for specific service producer features, i.e. an application

service producer with a specific type of output. In short, it enables systems to publish their

own application services and lookup otheƌs’.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 12

2.1.2.1.2 Authorization System

The Authorization system stipulates that a service can only be accessed by an authorized

consumer. It consists of two service producers and one service consumer and it maintains a

list of access rules to system resources (i.e. services). The Authorization Management service

provides the possibility to manage the access rules for specific resources. The Authorization

Control service provides the possibility of managing the access for an external service to a

specific resource. The system uses the Service Discovery service to publish all its producing

services within the Service Registry system.

2.1.2.1.3 Orchestration System

The Orchestration system is a central component of the Arrowhead Framework and in any

SOA-based architecture [76]. Orchestration is used to control how systems are deployed and

in what way should they be interconnected. Orchestration in the context of SOA can be viewed

as the system that supports the establishment of all other systems through providing

coordination, control and deployment services.

In industrial applications, the use of SOA for massive distributed system of systems requires

Orchestration. It is utilized to dynamically allow the re-use of existing services and systems to

create new services and functionalities [77].

The appliĐatioŶ sǇsteŵs’ seƌǀiĐes aƌe iŶitiallǇ seeŶ as passiǀe aŶd ďeiŶg on standby. They are

not connected at deployment or even during start-up of the system of systems. Their services

can be managed to connect, or be connected to others – to fulfill a specific need.

The Arrowhead Framework currently supports REST-based Orchestration of services using for

example REST or CoAP.

2.1.2.2 Energy Flexibility Framework

2.1.2.2.1 The Flex-Offer Concept

Flex-offer is the concept has been developed in the EU FP7 project MIRABEL [8]. It allows

exposing demand and supply electric loads with associated flexibilities in time and amount for

energy trading, load balancing, and other use-cases. Flex-offers are generic entities, and can

accommodate various types of consumers (e.g., electric vehicles, heat pumps, household

equipment, industry, etc.) and producers (decharging electric vehicles, solar panels, etc.). In

its simplest form, a flex-offer specifies an amount of energy, a duration, an earliest start time,

a latest eŶd tiŵe, aŶd a pƌiĐe, e.g., ͞I Ŷeed ϭϬ KWh oǀeƌ Ϯ houƌs ďetǁeeŶ ϭ AM aŶd ϱ AM, foƌ

a pƌiĐe of Ϭ.ϯϱ DKK/kWh͟. A visual representation of this example is shown in Fig. 4:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 13

Fig. 4 – Flex-offer example [9]

Flex-offers can be aggregated and disaggregated (Fig. 5) irrespectively to a type of

consumption or production they represent. Both aggregated and non-aggregated flex-offers

can be mixed and dealt uniformly. A flex-offer can be seeŶ as a kiŶd of ͞optioŶ͟ that a

consumer/producer puts out on a market. The flex-offer may be rejected, for example if the

price is not right. If the option is accepted, the flex-offer is given an initial schedule, e.g., the

flex-offer is scheduled at 2 AM, and the consumer control system is notified. On the simplest

case, the schedule is carried out as specified. However, one of the strengths of the concept

only comes into play when things do not go as foreseen, for instance due to a sudden drop in

wind energy. In this case, the flex-offer can be rescheduled, shifted to 3 AM, when the wind

has returned.

Fig. 5 – Flex-offer scheduling process

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 14

2.1.2.2.2 Virtual Market of Energy

For managing flex-offers, a Danish project named TotalFlex [10] proposed the use of the

general Virtual Market of Energy system (see Fig. 6) that, by providing a set of Service Oriented

Architecture (SOA) interfaces, interconnecting several (existing and new) European Electricity

Market Actors.

Prosumers are entities, also named Distributed Energy Resources (DERs) that can both

consume and produce electricity. Examples of Prosumers are residential houses, commercial

buildings, manufacturing, and process industries. These generate flex-offers and consume

schedules.

Aggregators are specialized entities capable of aggregating several (micro) flex-offers from

Prosumers into larger (macro) flex-offers. It is also capable of disaggregating (macro) flex-offer

schedules, e.g., received from the Electricity Market. An aggregator might be an integrated

part of a Balance Responsible Party (BRP).

Balance Responsible Parties are European electricity market entities that secure the balance

in a logical sub-domain within the grid, i.e. ensure that consumption is equal to production. It

utilizes the aggregated flex-offers from Aggregators for an internal energy balancing and

placing flex-offers on a so-called Flexibility Market for trading with other BRPs or Distribution

System Operators (DSOs).

Distribution System Operators are entities responsible for uninterrupted supply of energy in

the distribution grid. Flexibilities represented by flex-offers and offered on the market enable

DSOs new ways to smoothen loads on the distribution grid by buying and then controlling the

timing of loads.

Flexibility Market offers BRPs and DSOs the common place for trading flex-offers. It minimizes

total costs by scheduling energy loads while respecting the constraints contained in the flex-

offers (minimum/maximum power, earliest/latest start of energy consumption, etc.).

Flexibility Market may also interface other traditional markets of energy.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 15

Fig. 6 – Virtual market of energy main actors and operations. [11]

2.1.2.2.3 System Architecture and Communication Interfaces

The block diagram in Fig. 7 introduces the main actors and shows the operation of

Arrowhead's Virtual Market of Energy. The architecture described in this report is built upon

the Arrowhead Common Framework. The Arrowhead Common Framework thus acts as an

enabler for systems from different areas (e.g.: industrial automation, airplane maintenance,

energy production, home automation, smart grids) to facilitate their interaction and exchange

information. This multi-area approach can enable large savings in terms of energy, efficiency

and interoperability.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 16

Fig. 7 – High level architecture for the virtual market of energy. [12]

The described architecture is structured upon five modules, where three belong to the core

Arrowhead framework – Service Registry, Authorization, and Orchestration, and the other two

modules exchange business logic data – the Aggregator and the Flex-Offer Agent (FOA).

Flex-Offer Agents are basically software modules that offer the main functionalities to support

the flex-offer concept. Its architecture already provides functionalities for getting information

about the power consumption profile of specific devices, generate a flex-offer, and control

the execution of a scheduled flex-offer. The design of this software also provides the necessary

means to adapt to any platform by developing adequate interfaces among: 1) local and

remote FOA modules; 2) with the controlled devices' hardware; 3) with other needed devices

(e.g. a remote power meter) through a network; and 4) with external services (e.g. to obtain

weather forecasts). Flex-Offer Agents are very flexible, its design allows for its total

implementation to be running on a single device or distributed through several devices. As an

example, the company providing the flex-offer service might give the user a specific hardware

device, exclusively for the FOA, alternatively the FOA modules can be executed on existing

devices on the prosumer premises. The main objective of the design being presented in this

paper is to enable a high level of flexibility on the FOA implementation.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 17

The Aggregators work by receiving flex-offers from FOAs, aggregating with flex-offers from

other FOAs, into larger macro flex-offers and placing them to the Virtual Market of Energy.

Note that only flex-offers larger than certain amount can be negotiated on existing electricity

markets. Afterwards, the Aggregator receives a response from the Virtual market of Energy,

disaggregates the response and sends a consumption schedule to the FOA. Several types of

Aggregators might exist, and some Aggregators can be more specific for the control of electric

motors while others can be more adequate for the control of heating systems. Additionally,

choosing the most adequate Aggregator also depends on the geographical area.

To obtain the address of a proper Aggregator, a FOA uses the Service Registry module, to

register itself, and the Orchestration module (to obtain an Aggregator that matches its

criteria), both services are provided by the Arrowhead framework. The Service Discovery

service has already two implementations, one using DNS Service Discovery (DNS-SD) [13] and

another using Berkeley Internet Name Domain (BIND) [14].

The communication between the Aggregator and the FOA is implemented using XMPP, and

exploits the existing Arrowhead framework services and their specific protocols to establish

connection.

The main advantage of XMPP relies on its capabilities to support the Publish/Subscribe

communication paradigm, which provides an asynchronous and highly scalable many-to-many

communication model. The resulting decoupling between Publishers and Subscribers, in time,

space and synchronization, simplifies the implementation of its associated software.

Additionally, XMPP is also in a process of being standardized as a protocol for the control of

Demand Response applications for OpenADR [15] and on the ISO/IEC/IEEE 21451–1-4 [16]

standards.

2.1.2.3 Communication between Arrowhead modules

Despite the previous version of the FlexHousing project already implementing the Arrowhead

framework, the prototype had a severe dependency to servers, belonging to BNearIT, which

were located in Denmark and offered a connection to the Aggregator module, the Service

Registry, and the Virtual Market of Energy. For the FOA to communicate with the Aggregator,

the machine running the prototype had to be connected to a VPN where the servers were

found.

To prevent from situations where the VPN would be unavailable, it was decided that one of

the major goals of the project had to be a local implementation and communication between

the Aggregator module and the VME. With that, an XMPP server also had to be set up.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 18

2.1.3 FlexHousing web platform’s user interface

As mentioned before, the UI of the oƌigiŶal pƌototǇpe’s web platform is not very appealing,

nor elegant, nor intuitive, as seen in Figs. 8 and 9.

Fig. 8 – Device Index Page in the original FlexHousing prototype’s ǁeď platfoƌŵ

Fig. 9 – Flex-offer creation form in the original FlexHousing prototype’s ǁeď platfoƌŵ

The web platform should be able to easily convey all the necessary steps elegantly, without

becoming bloated with various UI elements. Given that the concepts of energy management

and flex-offer scheduling can be hard to grasp by an uninformed user, the UI should make the

process more attractive, spontaneous, and easier to work with.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 19

2.1.4 Specifying a flex-offer’s energy consumption pattern

In the original prototype of FlexHousing platform, for the user to create a flex-offer and apply

it to a device, the user would have to manually specify the energy consumption pattern of said

device.

NatuƌallǇ, if useƌs do Ŷot kŶoǁ the deǀiĐe’s usual ĐoŶsuŵptioŶ patteƌŶ, oƌ do Ŷot ǁaŶt to ďe

oǀeƌlǇ speĐifiĐ aďout the deǀiĐe’s ĐoŶsuŵptioŶ, theǇ ǁill ďe ĐoŶfused aŶd puzzled ďǇ the

complexity of creating a flex-offer.

A solution to this issue is to develop a feature to make the system automatically create flex-

offeƌs, ďased oŶ a deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ patteƌŶ.

2.1.5 Executives’ platform

As mentioned before, the client proposed the idea of a platform for executives, to provide

them some statistiĐs aďout FleǆHousiŶg’s useƌs. These statistics could be the total amount of

registered users, houses, and devices, or the number of times a brand of devices is used, or

an average of the duration of use for every device brand, and so forth.

Additionally, another suggested feature for this platform was the ability to check the

geolocation of every registered device.

2.2 Business areas

2.2.1 Smart Buildings, Smart Cities, and Smart Grids

The FlexHousing project, through the flex-offer concept, could have a profound impact on

energy management as more intelligent devices are incorporated into buildings. As these

devices can connect with each other while feeding data into analytics software, users gain a

more complete picture of their energy usage. This insight might reveal that certain areas

within a building are underutilized, so heating or cooling should only take place immediately

before and during periods of occupancy [17].

Moreover, IoT devices could even start to communicate with external devices, such as a smart

ĐitǇ’s deǀiĐes aŶd the smart grid. These two areas are a hot topic in energy management

throughout the last years. According to data published by the New Jersey Institute of

Technology (NJIT), the smart city technology industry will generate revenues of more than

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 20

$27.5 billion by 2023. In addition, 88 cities worldwide will have adopted smart city

technologies by 2025 [18].

To illustrate the advantages brought by smart cities, Fig. 10 describes some cases where a

sŵaƌt ĐitǇ sǇsteŵ ĐaŶ iŵpƌoǀe a ĐouŶtƌǇ’s eĐoŶoŵiĐs aŶd sustaiŶaďilitǇ.

Fig. 10 – Innovations in sustainability through smart systems. [19]

In relation to Smart Grids, according to Chris King (Chief Regulatory Officer for eMeter, a

Siemens Business), these empower consumers to save money by using less electricity or

reducing peak consumption (studies indicate conservation of 5-10% and peak reduction of 10-

20%). Furthermore, these can improve system reliability through reduced outages and faster

restoration [20].

2.2.2 Energy analytics on businesses’ equipment

In addition, areas like Retail, Industrial Production, Health Care, among others, can also

benefit froŵ this pƌojeĐt’s eŶeƌgǇ ŵaŶageŵeŶt solutioŶs. Foƌ iŶstaŶĐe, smart devices and

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 21

integrated systems can enable businesses to better understand their energy usage and costs

in real-time, identify malfunctioning equipment and overlay data sets to draw previously

invisible insights that can increase efficiency and reduce operating costs. In other words, an

office building with smart lighting may look at the data and notice that conference room

lighting is contributing to an unexpectedly high portion of the electricity bill. The company

could then take steps such as installing sensors to activate the heating system in a conference

room only when someone is in the room or create an intelligent schedule (in this case, a flex-

offer schedule) that automatically turns the heating off when meetings are not scheduled.

Without this type of data and reporting, companies lack the visibility required to realize

efficiencies like this [17]. In summary, companies can employ energy analytics on their

buildings to gather data and insights on their own operations.

2.2.3 Energy Markets

The energy markets consist of producers, transmitters and distributors, and consumers. The

producers create the energy on power stations, which can operate on fossil or green origins.

Furthermore, there are two types of electricity network: transmission and distribution [89].

Transmission networks carry electricity long distances around the country at high voltages.

Distribution networks run at lower voltages and take electricity from the transmission system

into homes and businesses [89].

AĐĐoƌdiŶg to the papeƌ ͞CoŶǀeƌgeŶĐe to the EuƌopeaŶ eŶeƌgǇ poliĐǇ iŶ EuƌopeaŶ ĐouŶtƌies:

Case Studies and Comparison͟ [21], society, as a consumer, is nowadays headed into

becoming a low consumption economy, driven to use more competitive prices and greener

energy. A European agreement of commitments known as ͞ϮϬ/ϮϬ/ϮϬ͟ has set three new

targets regarding energy for 2020:

• A minimum of 20% reduction in GHG emissions.

• 20% of energy production coming from renewable resources.

• 20% reduction in energy usage, by upping energy efficiency.

Since the focus of the FlexHousing project is about energy management, it could contribute

to the goals of ͞ϮϬ/ϮϬ/ϮϬ͟.

Furthermore, by 2020, under EU legislation, 80% of consumers will need to have smart meters

installed as part of a larger plan to help European nations meet energy-efficiency targets [21].

Once again, the FlexHousing project has the potential to help European nations to make profit

of such infrastructure, when applied to ĐoŶsuŵeƌs’ appliaŶĐes.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 22

2.3 State of the art

2.3.1 Flex-Offer-related Projects

The flex-offer concept used in this project has previously been explored in projects like

MIRABEL (a European smart grid project that presents energy related data management

solutions) [22], TotalFlex (a project under the ForskEL program – Energinet.dk's programme

for supporting research and development within eco-friendly electricity production

technologies) [10] [23], and, of course, Arrowhead [24].

Since this project uses Arrowhead as its framework, and because the report already goes in

detail of Aƌƌoǁhead’s speĐifiĐs, theƌe ǁill ďe a ďiggeƌ foĐus oŶ the otheƌ tǁo pƌojeĐts

mentioned than on Arrowhead.

2.3.1.1 MIRABEL

The EU-funded research project MIRABEL (Micro Request-Based Aggregation, Forecasting and

Scheduling of Energy Demand, Supply and Distribution) aims at developing a conceptual and

infrastructural demand/supply response approach to enable a better utilization of renewable

energy sources and a more flexible demand management. The core idea is that market players

may express acceptable flexibilities for their energy demand and even specific supplies of so-

called micro-request [25]. These micro-requests are called flex-offers. This system processes

large amounts of flex-offers to balance electricity supply and demand in near real-time and

thus supports the integration of non-schedulable renewable energy sources much better than

earlier approaches [26].

Fig. 11 illustrates the advantages of the MIRABEL system. There, we see the energy

consumption situation without and with the MIRABEL flexibility concept. The dark grey and

shaded areas visualize the non-flexible and flexible demand respectively. The dotted line

depicts the renewable energy production. With the help of the MIRABEL flex-offers,

renewable energy sources can be better utilized by shifting energy demand through time to

positions of large renewable production [25].

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 23

Fig. 11 – Balancing with and without the MIRABEL concept. [25]

Moreover, Fig. 12 exemplifies the lifecycle of a flex-offer from its inception to its execution

and beyond. A flex-offer is submitted to the utility company and depending on its capacity,

the utility company might accept or reject the flex-offer. In the case of acceptance, the utility

company starts to schedule the flex-offer and, as time of execution approaches, assigns a fixed

execution time slot. After the execution, the billing is conducted and depending on the benefit

of the flex-offer for the utility company, an incentive is provided to the consumer, producer,

or prosumer [25].

Fig. 12 – Flex-offer lifecycle. [25]

To realize the developed concepts, the MIRABEL project involves the design and

implementation of an energy data management system, the EDMS. The EDMS exhibits a

hierarchical architecture that is based on the hierarchy of the European electricity market.

Each level of the hierarchy requires specific data in a certain granularity. This architecture can

be seen in Fig. 13 [25].

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 24

Fig. 13 – The EDMS of the MIRABEL project. [25]

Furthermore, the EDMS is designed to work as part of a single European electricity market,

spanning the system over all European countries.

2.3.1.2 TotalFlex

The TotalFlex project aims to design a flexible, cost-effective power market system, which

includes both flexible power consumption and flexible power production, all the while

creating balance in the power distribution grid, making sure to avert bottlenecks and

overloads [27].

TotalFlex implements a mechanism to express and utilize the notion of flexibility, using the

concept of flex-offer proposed in the EU project MIRABEL. However, the vision of the TotalFlex

project is that for users having a flex-offer contract with an energy supplier, their flexibility is

not stated by the user, but instead predicted within the TotalFlex architecture based on past

useƌs’ ďehaǀioƌ [28].

Therefore, the TotalFlex project focuses on accurate flex-detection, flex-prediction, load-

prediction, and automated generation of flex-offers. Flex-detection refers to the detection of

available flexibility in device level energy consumption. Similarly, flex-prediction refers to the

prediction of flexibility, for example, an EV with a max charging power level of 5kW is

predicted to need 15kWh of energy with a time flexibility of 8 hours starting at 20:00 and

ending at 04:00 of the next day. Finally, load-prediction refers to the prediction of aggregated

and device level demand for the house, for instance, the predicted energy demand for house

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 25

X at 20:00 is 2kWh or the predicted energy demand for an oven in house X at 20:00 is 1.2 kWh

[28].

2.3.1.3 Arrowhead

The Arrowhead project targets five business domains; Production (process and

manufacturing), Smart Buildings and infrastructures, Electro mobility, Energy production and

Virtual Markets of Energy. In these domains, there are several technological architectures

used for implementing SOA solutions. One of the grand challenges of Arrowhead is to enable

interoperability between systems that are natively based on different technologies. Naturally,

one of its main objectives is to achieve that, thus keeping the advantages of SOA [29].

The Arrowhead framework (Fig. 14) includes a set of Core Services which can support the

interaction between Application Services. The Core Services handle the support functionality

within the Arrowhead framework to enable Application Services to exchange information.

Fig. 14 – Arrowhead Framework System of Systems [30]

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 26

2.3.2 Home Automation platforms and Device interoperability

The home automation ecosystem has continually become more relevant and popular, with an

increasing number of manufacturers developing devices for the IoT space. However, the smart

home business is currently in a fractured state when it comes to compatibility between

different third-party devices.

Foƌ staƌteƌs, oŶ Apple’s eŶd, theƌe is HomeKit (Fig. 15): a framework for communicating with

and controlling connected accessories in a user's home, built into the OS of any Apple device

since iOS 8.1. HomeKit’s goal is to giǀe device makers a set of standards to build around. Users

that comply with Apple's system will be able to enjoy seamless integration with Apple's mobile

products, with other HomeKit-compatible gadgets, and with Siri, Apple's voice-activated AI

assistant. Unfortunately, this is an approach that leaves out Android users, not to mention

that many of those HomeKit gadgets won't work directly with non-HomeKit gadgets [31].

Fig. 15 – Apple HomeKit app UI [32]

From the Google-owned Nest Labs, there is the Nest Learning Thermostat, with more and

more products joining up with it. Products willing to fall in line with Nest, and extend the

thermostat's usefulness, get a share of its popularity, and many of them integrate directly into

the Nest app (Fig. 16), which is available on iOS and Android. However, like with HomeKit, not

every device is compatible with Nest [31].

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 27

Fig. 16 – Nest app UI [33]

Aside from these two, there are also smaller control platforms like IFTTT, Insteon,

SmartThings, among others. IFTTT, for instance, is a popular one. IFTTT is a free web-based

service used to create chains of simple conditional statements, called applets (Fig. 17) [34]. An

applet is triggered by changes that occur within other web services, from more social oriented

ones such as Gmail, Twitter, LinkedIn, or Facebook, to more appliance specific web services

like LG Washer, Whirlpool Refrigerator, WeMo Coffeemaker, WeMo Smart Plug, or Philips Hue

lights. For example, by tapping into the Nest IFTTT service, we can sync up Nest devices with

other IFTTT-compatible devices that ǁouldŶ’t work directly with Nest otherwise [31].

However, IFTTT, like other platforms, only works with devices that are part of distributor

partnerships.

Fig. 17 – Examples of applets for different web services in IFTTT. [35]

Then there are also Amazon Echo and Google Home smart speakers, which offer voice-

activated control of certain smart-home gadgets by way of AI assistants, Alexa and Google

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 28

Assistant (respectively). These are continuing to work with more and more devices,

positioning these assistants as rivals to Apple’s Siri.

Beyond all these platforms, many home automation devices like Portugal-ďased VP“’s CloogǇ

(Fig. 18) or other low-cost devices can only be accessed by their own interfaces (website or

mobile app), with no compatibility with other services.

Fig. 18 – VP“’s CloogǇ UI.

Lastly, there are also many open-source platforms like OpenHAB or Home Assistant with an

increasing number of compatible devices, and with options to run on everything, from an

always-on personal computer to a Raspberry Pi. However, some of the device compatibility

bindings could have been implemented by reverse engineering protocols, which might cause

some legal risks when being used commercially [36].

OpenHAB (Fig. 19), written in Java, is designed to be device-agnostic while making it easier for

developers to add their own devices or plugins to the system. It also ships iOS and Android

apps for device control, as well as a design tools so you can create your own UI for your home

system [37].

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 29

Fig. 19 – One of many UIs available in OpenHAB. [38]

Home Assistant (Fig. 20), running on Python 3, integrates with several open-source as well as

commercial offerings, allowing the user to link, for example, IFTTT, weather information, or

an Amazon Echo device, to controls from locks to lights to even a command line notifier [37].

Fig. 20 – Home Assistant app UI. [39]

IŶ ĐoŶĐlusioŶ, ĐuƌƌeŶtlǇ it isŶ’t possiďle to haǀe a uŶified setup that oŶe Đould program from

a single app or control from a single voice-control platform, thus no single home automation

platform can claim to function with every device (at least not yet).

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 30

2.4 Solution Overview

2.4.1 Data and Device Interoperability

To handle the communication process between software applications and smart devices, APIs

(Application Programming Interfaces) are the mainstay solution. In fact, APIs are strongly

linked to IoT because they can securely expose connected devices to customers and other

applications in an IT infrastructure [78]. The use of APIs makes working with IoT a more

accessible experience, as software developers can work with connected ͞things͟ without

needing to know its intricacies or protocol [79]. APIs solve this challenge successfully, since

they abstract the ͞thing͟ and expose it as an interface.

However, there are numerous different types of APIs. In this case, several communication

protocols like HTTP, MQTT, XMPP, could be a possible choice for the communication interface

between the FlexHousing Middleware and the multiple types of devices. Since the original

FlexHousing prototype already used the REST (HTTP) architectural style as a basis for device

interactions, this groundwork was reused for the development of the new version of

FlexHousing, so it could be expanded upon. Nevertheless, the use of other communication

protocols is always a possibility.

Anyhow, REST, while just a concept and not a protocol, is the foundation of the most widely

used form of API today [40]. REST is a good model for IoT because each device can easily make

its state information available, and can standardize on a way to create, read, update, and

delete that data [40]. It also does not maintain a constantly open connection, so it is very

scalable [40].

Additionally, the past version of the FlexHousing Middleware would only be able to operate

with devices from VPS, this version of the Middleware has been modified to easily support

other types of devices without having to change the main source code.

To add support to another device, the new device only has to have API endpoints to these

basic features: actuate and read consumption values. Through those endpoints, the

Middleware will be able to connect to the device and carry out its methods.

Therefore, to implement and truly test this feature, two generic customizable switches

(named Sonoff Pow), in conjunction with the Cloogy smart plug and transmitter, were used

on multiple devices. This way, the Middleware can display its ability to handle both situations:

a connection to a deǀiĐe ǀia its seƌǀiĐe pƌoǀideƌ’s Đloud; and direct access to a specific device

in the local network. Regarding the Sonoff sensors, to acquire specific energy consumption

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 31

data and provide them through a REST API, a custom firmware was developed and deployed

into these switches.

So, giǀeŶ the pƌoposed solutioŶ, the pƌojeĐt’s stƌuĐtuƌe ĐaŶ ďe observed in the Component

Diagram present in Fig. 21, followed by a description of every component in the diagram.

Fig. 21 – Component Diagram of the FlexHousing project

• FlexHousing Middleware: This component is ƌespoŶsiďle foƌ ďƌidgiŶg the useƌs’ house

devices with the Arrowhead Fƌaŵeǁoƌk’s flex-offer system, while also being able to

perform operations like device actuations and acquiring their consumption data, and

provide this information to the FlexHousing web platform.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 32

o FlexHousing API: Pƌoǀides the sǇsteŵ’s data ;ƌegisteƌed deǀiĐes, eŶeƌgǇ

consumption data, flexoffers) to the FlexHousing web platform through a

REST interface;

o House Controller: Controls every house, including its associated rooms and

devices, and provides their data to the FlexHousing API;

o Device Controller: Manages the communication between the FlexHousing

Middleǁaƌe aŶd the useƌs’ deǀiĐes. Although this pƌojeĐt ǁill foĐus oŶ

communication via REST (HTTP), additional communication protocols could

be implemented in the future;

o DAO: Manages the database, storing every necessary data and providing it to

other components in the system;

o Execution: Carries out the sǇsteŵ’s autoŵatiĐ processes such as flexoffer

emission and flexoffer schedule execution;

o Arrowhead Flexoffer Agent: Offers the main functionalities to support the

flex-offer concept, handling the generation of Flex-offers and sending them

to the Aggregator via XMPP.

• FlexHousing Web Platform: Accesses the data from the FlexHousing Middleware (via

REST) and presents it to the users;

• Executive Web Platform: Like the FlexHousing web platform, it accesses the data from

the FlexHousing Middleware (via REST), however this data is specifically for company

executives;

• ISA API: Provides data from all VPS devices’ seŶsoƌs via a RESTful API, through their

remote servers;

• Sonoff Pow API: Provides the Sonoff sensor’s data via a RESTful API (through the

“oŶoff’s eŵďedded ǁeď seƌǀeƌͿ aǀailaďle in the local network;

• Device X/Y: Other potential devices with different communication protocols, that

could be added in the future;

• Arrowhead Aggregator: Once given a flex-offer, this component handles the flex-

offeƌ’s scheduling, based on the Virtual EŶeƌgǇ Maƌket’s ƌespoŶse;

• Virtual Energy Market: Handles the energy market prices, informing the Aggregator

of their current state (through XMPP).

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 33

Furthermore, in view of the presented Component Diagram, a Deployment Diagram

peƌtaiŶiŶg to the pƌojeĐt’s stƌucture can be seen in Fig. 22.

Fig. 22 – Deployment Diagram of the FlexHousing project

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 34

2.4.2 Local communication between Arrowhead modules

As mentioned before, the past version of the project had a severe dependency on servers

outside of Portugal (located on Denmark) that offered a connection to the Aggregator module,

the Service Registry, and the Virtual Market of Energy (VME).

In order to break from that dependency, the solution was to locally implement the Aggregator

and VME modules (even though the local VME only serves as a test module, since it just sends

dummy data and not actual energy market data). Moreover, it was also necessary to install an

XMPP server so that these modules could be able to communicate with each other and with

the FlexHousing Middleware. A representation of the communication procedures between

these modules can be viewed in Fig. 23:

Fig. 23 – Communication between modules through an XMPP server.

Furthermore, this system should follow a configuration file (Appendix-A) that specifies the

XMPP seƌǀeƌ’s hostŶaŵe, poƌt, ƌesouƌĐe, aŶd seƌǀiĐe Ŷaŵe, aŶd eaĐh ŵodule’s XMPP ĐlieŶt

aĐĐouŶt’s ID aŶd passǁoƌd.

2.4.3 FlexHousing web platform’s user interface

For the FlexHousing ǁeď platfoƌŵ’s UI and overall user experience, the focus is to make the

device/energy management and the flex-offer creation process as appealing and intuitive as

possible. To demonstrate this approach, this section presents a guided tour throughout the

new platform.

First, after logging in, the user will be shown the Dashboard page (Fig. 24). Here, the user can

check the current number of registered houses, rooms, and devices, check the energy

consumption percentage of each room, and activate/deactivate a registered device.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 35

Fig. 24 – Dashboard page in the new FlexHousing web platform

Next, the user can then use the side-navigator (Fig. 25) to add a house, room, or device, as

well as to check all the registered devices. As an example, Fig. Ϯϲ pƌeseŶts the ͞Add DeǀiĐe͟

form, while Fig. 27 shows the page displaying all registered devices.

Fig. 25 – Side-Navigator in the new FlexHousing web platform

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 36

Fig. 26 – "Add Device" form in the new FlexHousing web platform

Fig. 27 – Device index page in the new FlexHousing web platform

When checking all devices, the user can select to create a flex-offer for the device. In the Flex-

Offer creation form (Fig. 28), the schedule and the definition of the time window of a flex-

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 37

offer is set by dragging and dropping the flex-offer event in a calendar with the mouse (Fig.

29).

Fig. 28 – Flex-offer creation form in the new FlexHousing web platform

Fig. 29 – Scheduling a Flex-offer in the new FlexHousing web platform.

As for the creation of the energy consumption pattern for the flex-offer, the user has two

options, a more experienced or expert user can do it manually or other users will do it

automatically by running advanced pattern discovery algorithms.

By deciding to do it manually, the user can determine the duration of the pattern by clicking

on a dropdown menu, and then define the energy consumption of each time segment by

dragging the bars in a chart with the mouse (Fig. 30).

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 38

If doing it automatically, the user only has to specify the hour the device is usually activated,

and then the system will present him with a flex-offer, which can be accepted, rejected or

changed by the user (Fig. 31).

Fig. 30 – Manually creating the consumption pattern for a Flex-offer in the new FlexHousing

web platform.

Fig. 31 – Automatically creating the consumption pattern for a Flex-Offer in the new

FlexHousing web platform.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 39

Besides the Flex-offer creation, the user can also check the deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ ;Fig.

32), aŶd ĐheĐk a deǀiĐe’s aĐtiǀe fleǆoffeƌ ;Fig. ϯϯͿ to see if it has had an effect in the device's

consumption pattern.

Fig. 32 – Checking a device's consumption in the new FlexHousing web platform

Fig. 33 – Verifying the effectiveness of a flexoffer in the new FlexHousing web platform

2.4.4 Specifying a flex-offer’s energy consumption pattern

To solve the issue of users being discouraged due to the complex process of creating a flex-

offer, it was decided to develop a feature to make the system automatically create the flex-

offer’s eŶeƌgǇ patteƌŶ, based on the deǀiĐe’s consumption pattern.

To do so, certain algorithms froŵ the papeƌ ͞GeŶeƌatioŶ aŶd EǀaluatioŶ of Fleǆ-Offers from

Fleǆiďle EleĐtƌiĐal DeǀiĐes͟ [ϲϱ] will be used to implement a way to identify energy patterns.

For the full explanation of these algorithms, section 4.4.4 in the Implementation chapter

explains every step of the entire process.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 40

2.4.5 Executives’ platform

For the eǆeĐutiǀes’ platform (Fig. 34), the UI ǁill ďe siŵilaƌ to FleǆHousiŶg’s ǁith soŵe slight

changes. As mentioned before, the client was interested in seeing if it was possible to have a

platform that could show some statistics and metadata about the registered users and

devices.

Thus, the developed platform displays the total number of registered houses, devices, and

users, while also showing the total number of times a device brand is used and its average

hours of use. Since this project wants to provide proof of concepts for all interesting

capabilities of a FlexHousing implementation, while the device geolocation feature was not

part of a use case, a placeholder demonstration was added to the platform.

Fig. 34 – EǆeĐutiǀes’ platfoƌŵ UI

Rafael Teles da Rocha 41

3 Work Environment

This chapter describes how the work was planned, what kind of work methodology was used

for development, all the attended meetings in the internship, and the technologies used to

achieve the proposed solution.

3.1 Work Methodology

3.1.1 Development Process

For the development of this project, an iterative work methodology similar to the Rational

Unified Process (RUP) was used.

Essentially, RUP is a Software Engineering Process. According to IBM Rational Software

CoƌpoƌatioŶ, ͞it provides a disciplined approach to assigning tasks and responsibilities within

a development organization. Its goal is to ensure the production of high-quality software that

meets the needs of its end-users, within a predictable schedule and budget͟ [41].

RUP provides the guidelines, templates and tool mentors necessary for a team to take full

advantage of among others the following best practices [41]:

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software

According to the 4 phases of RUP, the project was distributed in the following way:

1. Inception – Research and code analysis. A study was employed to search for viable

technologies to implement for the project.

2. Elaboration – Code design, such as documentation for functional and non-functional

requirements.

3. Construction – Implementation of all the use cases, with continuous testing.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 42

4. Transition – Some prototypes were developed and showcased to multiple

stakeholders, resulting in updates, improvements, and the implementation of new

features.

The development process can be described in Fig. 35. The horizontal axis represents time and

shows the dynamic aspect of the process as it is enacted, and it is expressed in terms of cycles,

phases, iterations, and milestones. The vertical axis represents the static aspect of the process:

how it is described in terms of activities, artifacts, workers and workflows [41].

Fig. 35 – Typical RUP chart, showing how the development process is structured along two

dimensions. [42]

3.1.2 Version Control

Version control systems are a category of software tools that help a software team manage

changes to source code over time. Version control software keeps track of every modification

to the code in a database. If a mistake is made, developers can turn back the clock and

compare earlier versions of the code to help fix the mistake while minimizing disruption to all

team members [43].

In the case of the development of this project, the tools used for version control were primarily

Git, using Bitbucket as the web-based hosting service. Through this, Issues were employed to

keep track of tasks, enhancements, and bugs for the project.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 43

3.2 Project Planning

Given the investigative and incremental nature of this project, it suffered several changes in

its requirements and planning throughout development, due to the shaƌeholdeƌs’ feedďaĐk.

Nevertheless, Table 1 displays an approximation of its overall planning.

Table 1 – Project Planning

Tasks/Events Begin date End date

Investigation of the project's theme - IoT and Home

Automation

17/02/17 22/02/17

Introduction to the FlexHousing project and Arrowhead

Framework

23/02/17 03/03/17

Stakeholder Meetings and Requirements Engineering 06/03/17 17/03/17

Software Engineering - Requirements, Analysis, and

Design

16/03/17 27/03/17

Development of the FlexHousing Web Platform 27/03/17 21/06/17

FlexHousing Web Platform Tests 27/03/17 21/06/17

Requirement Updates 05/04/17 24/04/17

Improvements and implementation of new features on

the FlexHousing Middleware

05/04/17 25/07/17

FlexHousing Middleware Tests 05/04/17 25/07/17

Vacation Break 26/07/17 17/08/17

Remaining time to fulfill incomplete tasks 18/08/17 08/09/17

Project Report 23/02/17 08/09/17

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 44

3.3 Meetings

Table 2 – Project Meetings

Date Participants Location Description

06/02/17 Rafael Rocha, Luis Lino

Ferreira, José Bruno Silva

CISTER Introduction and discussion

aďout the pƌojeĐt’s theŵe.

10/02/17 Rafael Rocha, Luis Lino

Ferreira

CISTER DisĐussioŶ aďout the pƌojeĐt’s

state of the art.

17/02/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano,

José Bruno Silva

CISTER Presentation by Rafael Rocha

about Home Automation.

24/02/17 Rafael Rocha, Luis Lino

Ferreira, Joss Santos

CISTER Introduction to the FlexHousing

project.

02/03/17 Rafael Rocha, Michele

Albano

CISTER Introduction to the Arrowhead

Framework.

03/03/17 Rafael Rocha, Michele

Albano

CISTER Discussion about the project.

08/03/17 Rafael Rocha, Michele

Albano

CISTER Troubleshooting equipment

(Cloogy and smart plug).

10/03/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

ISEP Further discussion about the

project.

27/03/17 Rafael Rocha, Luis Lino

Ferreira

CISTER Project planning.

01/04/17 Rafael Rocha, José Bruno

Silva

CISTER DisĐussioŶ aďout the pƌojeĐt’s

implementation.

12/04/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano,

José Bruno Silva

CISTER Discussion about the project.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 45

18/04/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano,

José Bruno Silva

CISTER Discussion about the pƌojeĐt’s

status.

19/04/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER Presentation by Rafael Rocha

aďout the pƌojeĐt’s status.

24/04/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER Discussion about the acquisition

of new equipment.

05/05/17 Rafael Rocha, André Pedro,

Pedro Santos

CISTER Discussion about the

implementation of the new

equipment.

11/05/17 Rafael Rocha, Luis Lino

Ferreira, André Pedro

CISTER Discussion about the limitations

of the new equipment.

15/05/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER DisĐussioŶ aďout the pƌojeĐt’s

use cases.

17/05/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER Discussion about the project

report.

06/06/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano,

André Pedro

CISTER Discussion about the acquisition

of new equipment.

12/06/17 Rafael Rocha, Michel

Albano, José Bruno Silva

CISTER Discussion about the

implementation of the new

equipment.

26/06/17 Rafael Rocha, Michel

Albano, José Bruno Silva

CISTER Discussion about the pƌojeĐt’s

implementation.

28/06/17 Rafael Rocha, Luis Lino

Ferreira

CISTER DisĐussioŶ aďout the pƌojeĐt’s

use cases.

29/06/17 Rafael Rocha, Luis Lino

Ferreira

CISTER DisĐussioŶ aďout the pƌojeĐt’s

status.

08/07/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER DisĐussioŶ aďout the pƌojeĐt’s

status.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 46

11/07/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER Presentation by Rafael Rocha

aďout the pƌojeĐt’s status.

18/07/17 Rafael Rocha, Luis Lino

Ferreira, Michele Albano

CISTER Discussion about the project and

the project report.

20/07/17 Rafael Rocha, José Bruno

Silva

CISTER Discussion about the pƌojeĐt’s

implementation

21/07/17 Rafael Rocha, Michele

Albano

CISTER Discussion about algorithms to

detect energy consumption

patterns.

24/07/17 Rafael Rocha, Luis Lino

Ferreira, Vincent Nelis

CISTER Discussion about device type

identification.

17/08/17 Rafael Rocha, Luis Lino

Ferreira

CISTER DisĐussioŶ aďout the pƌojeĐt’s

status and the project report.

21/08/17 Rafael Rocha. Luis Lino

Ferreira, Michele Albano,

Vincent Nelis

CISTER Discussion about device type

identification and the

implementation of data mining

algorithms.

31/08/17 Rafael Rocha, Michele

Albano

CISTER DisĐussioŶ aďout the pƌojeĐt’s

status and the project report.

04/09/17 Rafael Rocha, Michele

Albano

CISTER Discussion about the project

report.

15/09/17 Rafael Rocha, Luis Lino

Ferreira

CISTER Discussion about the project

report.

27/09/17 Rafael Rocha, Luis Lino

Ferreira

CISTER Discussion about the project’s

status and the project report.

04/10/17 Rafael Rocha, Luis Lino

Ferreira, Vincent Nelis

CISTER Discussion about the device type

identification section in the

project report.

09/10/17 Rafael Rocha, Luis Lino

Ferreira

CISTER Discussion about the project

report.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 47

3.4 Used Technologies

This section will briefly mention every technology used along the project.

As mentioned before, the FlexHousing project is composed of two different applications: the

FlexHousing Middleware, which communicates with a devices’ or a seƌǀiĐe pƌoǀideƌ’s API,

manages the database, and provides its data as a RESTful service to web applications, and the

FlexHousing web platform, which serves as a gatewaǇ to the Middleǁaƌe’s data aŶd seƌǀiĐes.

Table 3 – Used Technologies

Technology What it is and where it was used

Java Java is an object-oriented programming

language. The Middleware, and the local

Aggregator and VME implementations

developed in the Arrowhead project [44] are

built in Java.

Jersey and Grizzly These two Java libraries are used in the

FlexHousing Middleware to consume

resources from RESTful APIs, and to host the

Middleǁaƌe’s oǁŶ ƌesouƌĐes.

Apache Derby An open source relational database

implemented entirely in Java and available

under the Apache License, Version 2.0. The

Middleǁaƌe’s data persistence is

guaranteed by this database.

11/10/17 Rafael Rocha, Luis Lino

Ferreira

CISTER Discussion about the project

report.

12/10/17 Rafael Rocha, Michele

Albano

CISTER Discussion about the project

report.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 48

ejabberd (XMPP Server) XMPP is a communications protocol for

message-oriented middleware based on

XML, allowing for a secure message

exchange between the FlexHousing

Middleware and the other Arrowhead

modules. ejabberd is a free XMPP

application server, and was selected as the

pƌojeĐt’s loĐal XMPP seƌǀeƌ.

Laravel 5.4 (PHP) Laravel is a free, open-source PHP web

framework, intended for the development

of web applications following the MVC

architectural pattern. The ǁeď app’s

backend is built in PHP, using Laravel 5.4 as

its framework.

HTML5, CSS3, JavaScript The ǁeď app’s fƌoŶteŶd is ďuilt iŶ HTMLϱ,

CSS3, and JavaScript, using the Materialize

Framework.

Arduino (C/C++) The Arduino language consists of a set of

C/C++ functions. Arduino was used to

develop a custom firmware for the Sonoff

sensors.

Arrowhead Framework The Middleware (which is a Flex-Offer

Agent), uses the Service Registry and

Orchestration modules, provided by the

Arrowhead framework, to find the remote

Aggƌegatoƌ’s addƌess.

Python A multi-paradigm programming language.

Python was used to develop scripts for

identifying device types.

«Autor» 49

4 Technical Description

This chapter describes all the work done throughout the project’s development, from

requirements engineering, analysis and design, to implementation and tests.

4.1 Requirements Engineering

Software requirements are descriptions of features and functionalities of the requested

system; theƌefoƌe, these ƌeƋuiƌeŵeŶts ĐoŶǀeǇ the useƌs’ eǆpeĐtatioŶs of the final product.

Some requirements can be obvious, known, or expected, while others can be hidden,

unknown, or unexpected from the ĐlieŶt’s poiŶt of ǀieǁ [45].

The process of gathering these software requirements from the client, analyzing and

documenting them, is known as requirements engineering.

4.1.1 User Roles

A user role is a collection of defining attributes that characterize a population of users and

their intended interactions with the system [47]. These are roles that are significant to the

success of a system and will occur over and over in the user stories that make up a sǇsteŵ’s

product backlog [48].

Thus, the defined user roles for this project, and their respective interactions, are as follows:

User Role: End User

• Standard users that can only access their information and data.

• Can access the data of their houses, rooms, and devices through the FlexHousing web

platform.

• CaŶ ĐheĐk theiƌ deǀiĐes’ eŶeƌgǇ ĐoŶsuŵption through the FlexHousing web platform.

• Can turn their devices on and off through the FlexHousing web platform.

• Can create Flex-offers for their devices, manually or automatically, through the

FlexHousing web platform.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 50

User Role: Company Executive

• Users that can access an information summary of theiƌ ĐlieŶts’ data.

• Can check the total number of registered users, devices, and houses.

• Can check the number of times a device brand was used and its average time of use.

4.1.2 User Stories

User stories are short, simple descriptions of a feature told from the perspective of the person

who desires the new capability, usually a user or customer of the system [49]. At times, there

might exist a disconnection between what the user needs and what the system actually offers.

This is the reason why requirements specification is so important to software development,

aŶd ǁhǇ useƌ stoƌies help aligŶ the sǇsteŵ’s featuƌes ǁith the useƌ’s ǀisioŶ.

It should ďe Ŷoted that this pƌojeĐt’s useƌ stoƌies ǁeƌe made in conjunction with a mockup of

the final application, hence their respective acceptance tests are so specific. Thus, this project

allowed to define the following user stories and acceptance tests:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 51

Table 4 - User Stories: End User

End User Acceptance Test

I want to access the FlexHousing platform. The user must access the platfoƌŵ’s web

address and login (or register first, and then

login).

I want to check my devices in their respective

house and room.

The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

The useƌ ŵust seleĐt the ͞ DeǀiĐes͟ optioŶ oŶ

the FleǆHousiŶg platfoƌŵ’s Ŷaǀigatoƌ paŶel.

I want to check if my devices are turned on

or off.

The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

The user must check the color on the

deǀiĐe’s ͞OŶ/Off͟ ďuttoŶ iŶ the ͞DeǀiĐes͟

page, on the FlexHousing platform.

I want to control my devices remotely. The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

The user must ĐliĐk the deǀiĐe’s ͞OŶ/Off͟

button iŶ the ͞DeǀiĐes͟ page, on the

FlexHousing platform.

I ǁaŶt to ĐheĐk ŵǇ deǀiĐes’ eŶeƌgǇ

consumption.

The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 52

The user must click on the device’s

͞CoŶsuŵptioŶ͟ button iŶ the ͞DeǀiĐes͟

page, on the FlexHousing platform.

I want to apply a flex-offer to one of my

devices.

The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

The useƌ ŵust ĐliĐk oŶ the deǀiĐe’s ͞Cƌeate

Flex-offeƌ͟ ďuttoŶ iŶ the ͞DeǀiĐes͟ page, oŶ

the FlexHousing platform.

The user must fill out the form for the Flex-

offer creation, on the FlexHousing platform.

I ǁaŶt to ĐheĐk ŵǇ deǀiĐe’s aĐtiǀe fleǆoffeƌ

aŶd see if it ǁas effeĐtiǀe oŶ the deǀiĐe’s

consumption pattern.

The user must fill out the required forms for

the device registry: first the house form,

then the room form, and finally the device

form, on the FlexHousing platform.

The user must fill out the form for the Flex-

offer creation, on the FlexHousing platform.

The useƌ ŵust ĐliĐk oŶ the deǀiĐe’s ͞Check

Flex-offeƌ͟ ďuttoŶ iŶ the ͞DeǀiĐes͟ page, oŶ

the FlexHousing platform.

Table 5 - User Stories: Company Executive

Company Executive Acceptance Tests

I want to check basic information about the

system and a customer device usage analysis

(e.g., number of times used, average hours

of use, etc.).

The user must access the platfoƌŵ’s web

address and login (or register first, and then

login).

The information will be displayed in the

main page.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 53

4.1.3 Functional Requirements

Functional requirements specify functionalities (use cases) that a system or system

component must be able to perform [50].

In this case, the functional requirements of the project are as follows:

4.1.3.1 FlexHousing platform

1. The system should be able to handle multiple users and houses;

2. The system should be able to register users, and grant access to a user after they

provide the correct username and password;

3. The system should be able to browse, read, edit, add, and delete houses (in other

words, perform a CRUD operation);

a. When filling out the form to register a house, the user should specify:

i. House name;

ii. House address.

4. The system should be able to browse, read, edit, add, and delete rooms (in other

words, perform a CRUD operation);

a. When filling out the form to register a room, the user should specify:

i. Room name;

ii. House where the room belongs to.

5. The system should be able to browse, read, edit, add, and delete devices (in other

words, perform a CRUD operation);

a. When filling out the form to register a device, the user should, at least,

specify:

i. Device name;

ii. House where the device is located;

iii. Room where the device is located;

iv. Device brand;

v. Device model;

vi. Sensor brand;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 54

vii. “eŶsoƌ’s REST API address.

6. The system should be prepared for the addition of devices from different brands,

using different communication protocols;

7. The system should be able to turn a device on and off;

8. The sǇsteŵ should ďe aďle to ƌegisteƌ oƌ aĐĐess the deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ data;

9. The system should be able to show the current energy consumption of a device;

10. The system should be able to connect to local or external Aggregator modules;

11. The system should be able to allow the user to create Flex-offers manually;

12. The system should be able to create Flex-offers automatically;

13. The system should be able to shoǁ a deǀiĐe’s aĐtiǀe fleǆoffeƌ aŶd deŵoŶstƌate if it

ǁas effeĐtiǀe oŶ the deǀiĐe’s ĐoŶsuŵptioŶ patteƌŶ;

14. The system should be able to identify the types of devices registered (wet-devices,

refrigerators, and so on).

4.1.3.2 Executives’ platform

1. The system should be able to display the total number of registered users, devices and

houses;

2. The system should be able to register and displaǇ the eŶd useƌs’ deǀiĐes’ frequency of

use and average time of use;

4.1.3.3 Custom switch (Sonoff)

1. The system should be able to turn the energy on and off;

2. The system should be able to acquire energy consumption data (Active Power,

Voltage, Current);

3. The system should be able to provide energy consumption data via REST or other

protocols.

4.1.4 Non-Functional Requirements

Non-functional requirements are not related to functional aspects of the software. They are

implicit or expected characteristics of the system. Thus, the main non-functional requirements

of the project are as follows:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 55

4.1.4.1 Usability

Usability is the degree to which a software can be used by specified consumers to achieve

quantified objectives with effectiveness, efficiency, and satisfaction [51].

This pƌojeĐt’s platforms must have an intuitive and appealing interface, using responsive

layouts, to guarantee the adequate and useful presentation of information. More specifically,

the FlexHousing platform must be able to adequately display information for both expert and

inexperienced users, by being simple enough to use and understand while offering additional

features for more in-depth information.

4.1.4.2 Performance

Performance pertains to the amount of work accomplished by a computer system [52].

Since this pƌojeĐt’s platforms aim to be interactive and could be used on mobile devices, which

mostly use low-speed download-upload connections, certain precautions should be taken. For

instance, images should be reduced in size and, if possible, converted to .jpg format, CSS

should be minified, and requests to the server should mostly use AJAX technology, thus

avoiding the entire page refresh.

Moreover, in the case of the FlexHousing platform, interaction with other devices should be

seamless and as quick as possible, for instance, the response time when turning on/off a

device should be less than one second.

4.1.4.3 Portability

Portability consists in the usability of the same software in different environments [53].

The portability of these platforms must be ensured, since they will be accessed through any

device with an internet connection. For example, the pƌojeĐt’s platforms should use

responsive layouts, which will in turn dynamically adapt their content to any device’s displaǇ

without the need to zoom.

4.1.4.4 Interoperability

Interoperability is a characteristic of a system, whose interfaces are completely understood,

to work with other products or systems, at present or future, in either implementation or

access, without any restrictions [54].

As mentioned before, interoperability is a big focus in the FlexHousing platform, since one of

its goals is to develop a generic interface, able to work with different implementation modules

for different devices.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 56

4.2 Analysis

Domain Analysis is a process by which information used in developing software systems is

identified, captured, and organized, producing a domain model with the purpose of making

the information reusable when creating new systems [56]. A domain model is a conceptual

model of the domain that incorporates both behavior and data [57]. It represents real-word

concepts, and not software components [58].

Through the gathered functional requirements and use cases, and based on the previous

pƌojeĐt’s doŵaiŶ ŵodel, it was possible to develop a domain model that captured the

envisioned system.

Since these improvements are relevant to understanding the proposed solution, a domain

analysis was made, and the changes resulting from it were documented.

4.2.1 Domain Model

As a starting point for the analysis, the pƌeǀious pƌojeĐt’s doŵaiŶ ŵodel ǁill ďe pƌeseŶted (Fig.

36). This will allow us to juxtapose it with the new requirements, and determine what can be

kept, what must change, and what needs to be added.

Next, a domain model considering the new requirements will be displayed (with the new

elements highlighted in red) in Fig. 37, as well as a detailed description of every domain object

present in the new model.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 57

4.2.1.1 Previous Domain Model

Fig. 36 – Previous project's domain model [59]

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 58

4.2.1.1.1 What can be kept

The flex-offer process (particularly the behavior between Flex-Offer Agent, Flex-offer,

Measurements, Schedule, Actuation Schedule, and Actuation) can be reused, since it follows

the established requirements. While the implementation of this feature did suffer some

changes, the domain model itself does not merit any major tinkering on this front.

4.2.1.1.2 What must change

First, the previous project was focused on functioning only with VPS devices, which meant

FleǆHousiŶg’s OpeƌatioŶs ǁeƌe tied to the VP“ seƌǀiĐes’ fƌaŵeǁoƌk. Given that one of the

project requirements specifies that the system should be prepared for the addition of other

kind of devices from different brands, the process of requesting ͞Measurements͟ and sending

͞Actuations͟ to a ͞Device͟ must be abstracted.

In other words, the oďjeĐt ͞VP“ “eƌǀiĐes͟ should iŵpleŵeŶt the ďehaǀioƌ speĐified ďǇ aŶ

iŶteƌfaĐe Ŷaŵed ͞Thiƌd-PaƌtǇ “eƌǀiĐe͟. This way, device operations (Measurements and

Actuations) will be subject to different implementations of the ͞ Thiƌd-PaƌtǇ “eƌǀiĐe͟ interface,

depending on a given device.

Second, in the previous project, the concept of multiple ͞Users͟ or multiple ͞Houses͟ was not

taken into account. Since one of the project requirements requests that the system can have

multiple users, and these users can have multiple houses, the domain model will have to be

changed to accommodate these features.

4.2.1.1.3 What needs to be added

Given that the system has to connect to local or external Aggregator and VME modules, the

Virtual Market should not be omitted, and must be added as a domain object in the model.

Fuƌtheƌŵoƌe, siŶĐe oŶe of the pƌojeĐt ƌeƋuiƌeŵeŶts speĐifies the eǆisteŶĐe of the ͞Company

Executive͟ ƌole, this ƌole should also be added as a domain class. Moreover, because a project

requirement stipulates that the system has to identify the type of a device, the Device class

will also have a Device Type. Also, because of the added support for different kinds of device

brands, it should be acknowledged that some device services do not store measurements.

Thus, the FlexHousing system itself should be able to register measurements from devices

that do not offer this feature. Lastly, since the FlexHousing system must verify the

effectiveness of a flexoffer, this operation should also be displayed in the domain model.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 59

4.2.1.2 New Domain Model

Fig. 37 – PƌojeĐt’s new domain model

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 60

FlexHousing

This conceptual class represents the FlexHousing middleware. The FlexHousing middleware is

responsible for bridging the useƌs’ houses, rooms and devices, with the Flex-Offer Agent, while

also being able to perform operations like actuations and acquiring measurements.

Flex-Offer Agent

A Flex-Offer Agent is responsible for generating and sending the Flex-offers to the Aggregator.

As explained before, Flex-Offer Agents are basically software modules that offer the main

functionalities to support the flex-offer concept. In this regard, the FlexHousing middleware is

effectively a Flex-Offer Agent.

Aggregator

The Aggregator, once having aggregated enough flex-offers from the Flex-offer Agents, will

send these to the Virtual Market (of Energy). Afterwards, the Aggregator receives a response

from the Virtual Market, disaggregates the response and sends a consumption schedule to

the Flex-Offer Agent.

Virtual Market

The Virtual Market, after receiving a flex-offer larger than a certain amount, will then

negotiate with existing electricity markets, and acquire the cheapest consumption schedule

for these to be deployed. Finally, it then sends the schedule to the Aggregator.

End User and Company Executive

These conceptual classes represent the two types of user roles that will make use of the

FlexHousing system. While the End User uses FlexHousiŶg to ŵaŶage his houses’ appliaŶĐes,

the Company Executive uses it to analyze user data.

House

A House belongs an End User and contains Rooms. The House class will serve as a software

Đlass to stoƌe the Rooŵs ďeloŶgiŶg to the EŶd Useƌ’s house.

Room

A Room belongs a House and contains Devices. The Room class will serve as a software class

to stoƌe the DeǀiĐes ďeloŶgiŶg to the EŶd Useƌ’s ƌooŵ.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 61

Device

A Device has one or more Sensors connected to it, so that the FlexHousing middleware can

store the Device’s eŶeƌgǇ ĐoŶsuŵptioŶ data ;oƌ otheƌ tǇpes of data iŶ the futuƌeͿ, aŶd aŶ

Actuator, so that the FlexHousing middleware can turn the Device on and off.

The DeǀiĐe Đlass ǁill seƌǀe as a stƌuĐtuƌe to stoƌe the deǀiĐe’s Ŷaŵe, ďƌaŶd aŶd ŵodel, aŶd its

sensors.

Device Type

The Device Type class identifies what kind of device a Device is: either a wet-device, or a

refrigerator, or an electric vehicle, and so forth.

Sensor

A “eŶsoƌ has the puƌpose of aĐƋuiƌiŶg a DeǀiĐe’s MeasuƌeŵeŶts, ǁhiĐh, iŶ this Đase, aƌe

energy consumption values. However, in the future, additional Sensors could be installed to

obtain other types of Measurements.

Measurement

The Measurement class serves as a structure to store any kind of Measurement obtained by

a Sensor. A Measurement is composed of three attributes: the type of measurement, the

measurement value, and the date the measurement was taken. Currently, however,

Measurements are only used to represent energy consumption values.

Actuator

The Actuator is a conceptual class that represeŶts the DeǀiĐe’s aĐtuatoƌ, ǁhiĐh has the

responsibility of turning the Device on and off.

Actuation

The Actuation class represents the action of turning on and off a Device. This class serves as a

structure to store the ID of the device the actuation is for, and the start time and end time of

an actuation.

Operation

An Operation is only a conceptual class that represents the action of requesting

Measurements from a Device or performing an Actuation on a Device. These types of

operations may have to undergo an Authorization process, depending on the Third-Party

Service that regulates the Device.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 62

Third-Party Service

The Third-Party Service class depicts the service that controls the Device’s sŵaƌt plug/sǁitĐh.

This Đould ďe a seƌǀiĐe pƌoǀideƌ’s API aƌƌaŶged ďǇ their servers, or it could just be an API

available in the local network, provided by the smart plug/switch. Either way, these services

may have different processes of executing the same operation.

Authorization

The Authorization class is a conceptual class that represents the authorization process granted

by the Third-Party Service to perform operations. However, an Authorization process might

not be required by the Third-Party Service.

Flex-offer

The Flex-offer class represents the flex-offers sent by the FlexHousing Middleware. This class

can be used as a structure to store the start time and end time of the flex-offer, the minimum

and maximum energy consumption for each time section, and its actuation schedule. At first,

the flex-offeƌ doesŶ’t haǀe a “Đhedule for the device actuations, until the Aggregator responds

with a Schedule. Only then can it be applied to a device.

Schedule

The Schedule class represents the Flex-offeƌ’s schedule. At first, the flex-offeƌ doesŶ’t haǀe a

Schedule for the device actuations, until the Aggregator replies with one.

Actuation Schedule

The Actuation Schedule is a conceptual class created from the Flex-offeƌ’s “Đhedule, ǁheƌe it

executes the scheduled actuations based on the time determined by the Schedule.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 63

4.3 Design

After a careful analysis of the information gathered from the project requirements and

domain model, comes the development process of designing a model of the software to be

implemented.

In other words, the conceptual model is developed further into an object-oriented model

using Object-Oriented Design (OOD) [60]. In OOD, the domain concepts in the analysis model

are translated into software classes, constraints are identified, and interfaces are designed,

resulting in a model for the solution domain [61].

In this case, the models designed in this section were ultimately implemented, with the project

implementation being available on the Bitbucket repository.

4.3.1 Data structure

The database used in the previous project was an Apache Derby relational database. For the

development of the current project, the same database was used, but its structure suffered

some alterations because of the new requirements. This section will describe the schema for

the new database.

First, the full database schema will be displayed in Fig. 38, with the new elements highlighted

in red. Then, a brief explanation of these added elements will be given.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 64

4.3.1.1 Database schema

Fig. 38 – Database schema for the FlexHousing Middleware

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 65

4.3.1.2 Database Explanation

To address the requirements for multiple users and houses, the tables User, House, and

User_House were created. Most of their attributes are self-explanatory, with the exception

of the attribute Token in User, which serves as a randomly generated access token given to

users when they log in, to control user access on the platform.

Furthermore, regarding the third-party service solution, the tables ThirdPartyService,

User_ThirdPartyService, and Device_ThirdPartyService were conceived.

The attribute API_Address stores the web address of the seƌǀiĐe’s API, ǁhile Username

and Password in User_ThirdPartyService peƌtaiŶ to the useƌ’s ĐƌedeŶtials of a

specific service.

Lastly, to satisfy the requirements related to the Company Executive role, where the platform

would present basic data aďout the EŶd Useƌs’ deǀiĐe usage, some new attributes were added

to the Device table, and the table Actuation was created, so that the system would be

able to register every time a device is used (a deǀiĐe is ĐoŶsideƌed ͞used͟ oŶĐe ǁheŶ it is

turned on, and then turned off, in this sequence).

4.3.2 Use Cases

Use cases are a list of actions or event steps, typically defining the interactions between a role

(known in the UML as an actor) and a system, to achieve a goal [55].

Given the specified functional requirements, the following use cases were determined:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 66

Fig. 39 - Use Cases for the FlexHousing project

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 67

Next, all the use cases present in Fig. 34 will be specified. The specification will be carried out

in detail, mentioning the pre- and postconditions, as well as the basic flow and sequence

diagram of each operation. A sequence diagram is used primarily to show the interactions

between objects in the sequential order that those interactions occur [64].

4.3.2.1 Use Case 01 – Register User

Table 6 - Use Case 01: Register User

Use Case 01 – Register User

Description The user intends to register him/herself in the

system, so that he/she can access the platform.

Actor(s) Unregistered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

Postconditions 1. The user is registered in the system and

allowed to access the platform, given

he/she inputs the right credentials.

Basic Flow of Events

Actions of the actor 1. CliĐks the optioŶ ͞Registeƌ͟.

2. Inserts required information.

3. CliĐks oŶ the ďuttoŶ ͞Registeƌ͟.

Actions of the system 1. Redirects to the user register form.

3. Validates if form was completed and

registers user with the given information.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 68

Fig. 40 – Sequence Diagram: UC01 Register User

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 69

4.3.2.2 Use Case 02 – CRUD House

Table 7 - Use Case 02: CRUD House

Use Case 02 – CRUD House

Description The user intends to create/read/update/delete a

house.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. For the Update process, a house must be

registered in the system.

Postconditions 1. The house is

created/read/updated/deleted

successfully. If the house is deleted, all its

registered rooms and devices are deleted

as well.

Basic Flow of Events

Actions of the actor 1. CliĐks the optioŶ ͞Add/CheĐk/Edit/Delete

House͟.

2. If the option was

a. Add/Edit, then the user inserts the

required information and clicks on

the ďuttoŶ ͞Registeƌ/Edit House͟.

b. Delete, then the user confirms the

deletion process.

Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects

to the ͞Cƌeate/Edit House͟ foƌŵ.

b. Delete, then the system requests

confirmation for the deletion

process.

c. Check, then the system redirects to

the Houses index webpage.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 70

2. If the selected option was

a. Add/Edit, then the system validates

the information and

registers/updates the house.

b. Delete, then the system deletes the

house, its rooms and devices.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 71

4.3.2.2.1 UC02 – Create House

Fig. 41 – Sequence Diagram: UC02 Create House

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 72

4.3.2.2.2 UC02 – Read House

Fig. 42 – Sequence Diagram: UC02 Read House

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 73

4.3.2.2.3 UC02 – Update House

Fig. 43 – Sequence Diagram: UC02 Update House

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 74

4.3.2.2.4 UC02 – Delete House

Fig. 44 – Sequence Diagram: UC02 Delete House

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 75

4.3.2.3 Use Case 03 – CRUD Room

Table 8 - Use Case 03: CRUD Room

Use Case 03 – CRUD Room

Description The user intends to create/read/update/delete a

room.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house.

4. For the Update process, a room must be

registered in the system.

Postconditions 1. The room is created/read/updated/deleted

successfully. If the room is deleted, all its

registered devices are deleted as well.

Basic Flow of Events

Actions of the actor 1. CliĐks the optioŶ ͞Add/CheĐk/Edit/Delete

Rooŵ͟.

2. If the option was

a. Add/Edit, then the user inserts the

required information and clicks on

the ďuttoŶ ͞Registeƌ/Edit Rooŵ͟.

b. Delete, then the user confirms the

deletion process.

Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects

to the ͞Cƌeate/Edit Rooŵ͟ foƌŵ.

b. Delete, then the system requests

confirmation for the deletion

process.

c. Check, then the system redirects to

the Rooms index webpage.

2. If the selected option was

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 76

a. Add/Edit, then the system validates

the information and

registers/updates the room.

b. Delete, then the system deletes the

room and its devices.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 77

4.3.2.3.1 UC03 – Create Room

Fig. 45 – Sequence Diagram: UC03 Create Room

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 78

4.3.2.3.2 UC03 – Read Room

Fig. 46 – Sequence Diagram: UC03 Read Room

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 79

4.3.2.3.3 UC03 – Update Room

Fig. 47 – Sequence Diagram: UC03 Update Room

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 80

4.3.2.3.4 UC03 – Delete Room

Fig. 48 – Sequence Diagram: UC03 Delete Room

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 81

4.3.2.4 Use Case 04 – CRUD Device

Table 9 - Use Case 04: CRUD Device

Use Case 04 – CRUD Device

Description The user intends to create/read/update/delete a

device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house and room.

4. For the Update process, a device must be

registered in the system.

Postconditions 1. The device is

created/read/updated/deleted

successfully. If the device is deleted, its

registered energy consumption data is

deleted as well.

Basic Flow of Events

Actions of the actor 1. CliĐks the optioŶ ͞Add/Edit/Delete DeǀiĐe͟.

2. If the option was

a. Add/Edit, then the user inserts the

required information and clicks on

the ďuttoŶ ͞Registeƌ/Edit DeǀiĐe͟.

b. Delete, then the user confirms the

deletion process.

Actions of the system 1. If the selected option was

a. Add/Edit, then the system redirects

to the ͞Cƌeate/Edit DeǀiĐe͟ foƌŵ.

b. Delete, then the system requests

confirmation for the deletion

process.

2. If the selected option was

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 82

a. Add/Edit, then the system validates

the information and

registers/updates the device.

b. Delete, then the system deletes the

device and its registered energy

consumption values.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 83

4.3.2.4.1 UC04 – Create Device

Fig. 49 – Sequence Diagram: UC04 Create Device

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 84

4.3.2.4.2 UC04 – Update Device

Fig. 50 – Sequence Diagram: UC04 Update Device

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 85

4.3.2.4.3 UC04 – Delete Device

Fig. 51 – Sequence Diagram: UC04 Delete Device

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 86

4.3.2.5 Use Case 05 – Check All Devices

Table 10 – Use Case 05: Check All Devices

Use Case 05 – Check All Devices

Description The user intends to check all registered devices.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house and room.

Postconditions 1. All registered devices are successfully

displayed.

Basic Flow of Events

Actions of the actor 1. “eleĐts the optioŶ ͞CheĐk DeǀiĐes͟.

Actions of the system 1. Redirects to the Devices index webpage

and displays the registered devices.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 87

Fig. 52 – Sequence Diagram: UC05 Check All Devices

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 88

4.3.2.6 Use Case 06 – Turn On/Off Device

Table 11 - Use Case 06: Turn On/Off Device

Use Case 06 – Turn On/Off Device

Description The user intends to turn on/off a device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house, room, and device.

4. The deǀiĐe’s RE“T API addƌess ŵust ďe

correct and accessible.

Postconditions 1. The device is turned on/off successfully.

Basic Flow of Events

Actions of the actor 1. “eleĐts the optioŶ ͞CheĐk DeǀiĐes͟.

2. CliĐks the ďuttoŶ ͞TuƌŶ OŶ/Off͟ of a

specific device.

Actions of the system 1. Redirects to the Devices index webpage.

2. Sends a request to actuate the specified

device, turning it on/off.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 89

Fig. 53 – Sequence Diagram: UC06 Turn On/Off Device

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 90

4.3.2.7 Use Case 07 – Check Device Consumption

Table 12 - Use Case 07: Check Device Consumption

Use Case 07 – Check Device Consumption

Description The useƌ iŶteŶds to ĐheĐk a deǀiĐe’s eŶeƌgǇ

consumption data.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house, room, and device.

Postconditions 1. The deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ data is

displayed in multiple charts, each with

different granularity and functionality.

Basic Flow of Events

Actions of the actor 1. “eleĐts the optioŶ ͞CheĐk DeǀiĐes͟.

2. CliĐks the ďuttoŶ ͞CheĐk CoŶsuŵptioŶ͟ of

a specific device.

3. Selects a date or time window (depending

on the chart) to check the energy

consumption data.

Actions of the system 1. Redirects to the Devices index webpage.

2. Sends a request to get the current energy

consumption data of the specified device.

Redirects the user to the Energy

Consumption page and displays the charts.

3. Sends a request to get the data from the

specified date or time window and updates

the charts (based on the acquired data).

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 91

Fig. 54 – Sequence Diagram: UC07 Check Device Consumption

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 92

4.3.2.8 Use Cases 08 & 09 – Create Flex-offer

4.3.2.8.1 Use Case 08 – Create Flex-offer Manually for a Device

Table 13 - Use Case 08: Create Flex-offer Manually for a Device

Use Case 08 – Create Flexoffer Manually for a Device

Description The user intends to create a flex-offer and apply it

to a device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house, room, and device.

Postconditions 1. The flex-offer is registered successfully.

Basic Flow of Events

Actions of the actor 1. “eleĐts the optioŶ ͞CheĐk DeǀiĐes͟.

2. CliĐks the ďuttoŶ ͞Cƌeate Fleǆ-offeƌ͟ of a

specific device.

3. Fills out the Flex-offer form.

4. Selects the option to manually create the

flexoffer.

5. Continues to fill out the Flex-offer form.

6. CliĐks the ďuttoŶ ͞FiŶish͟.

Actions of the system 1. Redirects to the Devices index webpage.

2. RediƌeĐts to the ͞Cƌeate Fleǆ-offeƌ͟ foƌŵ

webpage.

3. Validates the information being entered by

the user.

4. DisplaǇs the ͞ŵaŶual fleǆ-offeƌ ĐƌeatioŶ͟

form.

5. Validates the information being entered by

the user.

6. Registers the flex-offer.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 93

4.3.2.8.2 Use Case 09 – Create Flex-offer Automatically for a Device, based on Energy

Consumption

Table 14 – Use Case 09: Create Flex-offer Automatically for a Device, based on Energy

Consumption

Use Case 09 – Create Flex-offer Automatically for a Device, based on Energy Consumption

Description The user intends to create a flex-offer and apply it

to a device.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house, room, and device.

Postconditions 2. The flexoffer is registered successfully.

Basic Flow of Events

Actions of the actor 1. Selects the optioŶ ͞CheĐk DeǀiĐes͟.

2. CliĐks the ďuttoŶ ͞Cƌeate Fleǆ-offeƌ͟ of a

specific device.

3. Fills out the Flex-offer form.

4. Selects the option to automatically create

the flex-offer.

5. Continues to fill out the Flex-offer form.

6. CliĐks the ďuttoŶ ͞FiŶish͟.

Actions of the system 1. Redirects to the Devices index webpage.

2. RediƌeĐts to the ͞Cƌeate Fleǆ-offeƌ͟ foƌŵ

webpage.

3. Validates the information being entered by

the user.

4. DisplaǇs the ͞autoŵatiĐ fleǆ-offeƌ ĐƌeatioŶ͟

form.

5. Validates the information being entered by

the user.

6. Registers the flex-offer.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 94

Fig. 55 – Sequence Diagram: UC08 & UC09 Create Flex-offer

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 95

4.3.2.9 Use Case 10 – Check a Device’s active Flex-offer and its effectiveness

Table 15 – Use Case 10: CheĐk a DeǀiĐe’s active Flex-offer and its effectiveness

Use Case 10 – CheĐk a DeǀiĐe’s aĐtiǀe Fleǆ-offer and its effectiveness

Description The user intends to ĐheĐk a deǀiĐe’s aĐtiǀe flex-offer

and see if it had aŶ effeĐt oŶ the deǀiĐe’s

consumption pattern.

Actor(s) Registered End User

Preconditions 1. Have access to the platform website

(͞http://fleǆhousiŶg.app͟).

2. Be authenticated in the system as a user.

3. Have a registered house, room, and device.

4. Have already created a flex-offer for a

device.

Postconditions 1. The active flex-offer’s iŶfoƌŵatioŶ is

displayed successfully.

Basic Flow of Events

Actions of the actor 1. “eleĐts the optioŶ ͞CheĐk DeǀiĐes͟.

2. CliĐks the ďuttoŶ ͞Check Flex-offeƌ͟ of a

specific device.

Actions of the system 1. Redirects to the Devices index webpage.

2. RediƌeĐts to the ͞Check Flex-offeƌ͟

webpage.

3. Displays the active flex-offer, its schedule,

and the mean absolute percentage error

between the flex-offeƌ’s pƌojeĐtioŶ aŶd the

deǀiĐe’s aĐtual ĐoŶsuŵptioŶ.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 96

Fig. 56 – Sequence Diagram: UC10 CheĐk a DeǀiĐe’s aĐtiǀe Fleǆ-offer and its effectiveness

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 97

4.3.2.10 Use Cases 11 & 12 – Get Device and User metadata

Table 16 – Use Case 11 & 12: Check total registered Users, Devices, and Houses & Check End

Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use and Average Time of Use

Use Case 11 & 12 – Check total registered Users, Devices, and Houses & CheĐk EŶd Useƌs’

DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd Aǀeƌage Tiŵe of Use

Description The user intends to check the total number of

registered users, devices, and houses, and check

how many times a device brand is used, as well as

its average time of use.

Actor(s) Company Executive

Preconditions 1. Have access to the platform website

(͞http://executives-data.app͟).

2. Be authenticated in the system as a user.

Postconditions 1. The requested information is displayed

successfully.

Basic Flow of Events

Actions of the actor 1. Accesses the platform and goes to the

dashboard.

Actions of the system 1. Acquires the requested data and displays it

in the dashboard.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 98

Fig. 57 – Sequence Diagram: UC11 & UC12 Get Device and User metadata

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 99

4.3.2.11 Use Case 13 – Get Devices’ Consumption Values

Table 17 - Use Case 13: Get DeǀiĐes’ CoŶsuŵptioŶ Values

Use Case 13 – Get DeǀiĐes’ CoŶsuŵptioŶ Values

Description The system intends to periodically acquire its

ƌegisteƌed deǀiĐes’ eŶeƌgǇ ĐoŶsuŵptioŶ ǀalues aŶd

register them.

Actor(s) FlexHousing Middleware

Preconditions 1. Have at least one device registered on the

system.

2. The deǀiĐe’s RE“T API addƌess ŵust ďe

correct and accessible.

Postconditions 1. The deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ ǀalues

are registered successfully.

Basic Flow of Events

Actions of the actor 1. Requests energy consumption values from

the deǀiĐe’s RE“T API eŶdpoiŶt aŶd

registers them.

Actions of the system (Device) 1. Receives request and sends the requested

data.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 100

Fig. 58 – Sequence Diagram: UC11 Start Measurement Requests

Fig. 59 – Sequence Diagram: UC13 Get Devices Consumption Values

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 101

4.3.2.12 Use Case 14 – Deploy Device’s Flex-offers

Table 18 - Use Case 14: DeploǇ DeǀiĐe’s Fleǆ-offers

Use Case 14 – DeploǇ DeǀiĐe’s Fleǆ-offers

Description The system intends to periodically deploy its

registered flex-offers to their respective devices.

Actor(s) FlexHousing Middleware

Preconditions 1. Have at least one device registered on the

system.

2. Have at least one flex-offer registered on

the system.

3. The deǀiĐe’s RE“T API addƌess ŵust ďe

correct and accessible.

Postconditions 1. The deǀiĐe’s fleǆ-offer is deployed

successfully.

Basic Flow of Events

Actions of the actor 1. “eŶds the deǀiĐe’s fleǆoffeƌ to the

Aggregator module. Waits until it receives

a sĐhedule to ďegiŶ the deǀiĐe’s aĐtuatioŶs

2. Actuates the device on the determined

schedule.

Actions of the system (Aggregator) 1. Receives flex-offer, aggregates it with

other flex-offers, and sends them to the

VME module. Then, responds with a

schedule to begin the actuations.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 102

Fig. 60 – Sequence Diagram: Left – UC14 Start Flex-offer Emissions; Right – UC14 Start Actuation Timer

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 103

Fig. 61 – Sequence Diagram: UC14 Execute FO Emission

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 104

Fig. 62 – Sequence Diagram: UC14 Execute Actuations

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 105

4.3.2.13 Use Case 15 – Identify Device Types

Table 19 – Use Case 15: Identify Device Types

Use Case 15 – Identify Device Types

Description The system intends to periodically identify the type

of every registered device, based on their energy

consumption values.

Actor(s) FlexHousing Middleware

Preconditions 1. Have at least one device registered on the

system.

2. Have enough energy consumption data to

pƌopeƌlǇ deteƌŵiŶe the deǀiĐe’s tǇpe.

Postconditions 1. All devices will be identified with their

correspondent type.

Basic Flow of Events

Actions of the actor 1. Checks if it already has a trained model to

pƌediĐt the deǀiĐe’s tǇpe.

a. If not, then the actor creates and

trains a model for the device type

identification.

2. IdeŶtifies the deǀiĐe’s tǇpe, thƌough the

trained model.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 106

Fig. 63 – Sequence Diagram: UC15 Start Device Type Identification Timer

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 107

Fig. 64 – Sequence Diagram: UC15 Identify Device Types

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 108

4.3.2.14 Use Case 16 – Provide Device’s Consumption Data

Table 20 - Use Case 16: Proǀide DeǀiĐe’s CoŶsuŵptioŶ Data

Use Case 16 – Pƌoǀide DeǀiĐe’s CoŶsuŵptioŶ Data

Description The system intends to provide the current energy

consumption values of a device via REST, updating

its data every 2 seconds.

Actor(s) Sonoff switch

Preconditions ----

Postconditions 2. The deǀiĐe’s ĐuƌƌeŶt eŶeƌgǇ ĐoŶsuŵptioŶ

values are available via REST.

Basic Flow of Events

Actions of the actor 3. Acquires energy consumption values from

the device, every 2 seconds.

Actions of the system (Sensor) 1. Provides energy consumption values from

the device, updating every 2 seconds.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 109

Fig. 65 – Sequence Diagram: UC16 Provide Device's Consumption Data

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 110

4.3.3 Class Diagram

A class diagram is a type of diagram that describes the structure of a system by showing the

system's classes, their attributes, operations, and the relationships among objects [62].

In this section, a simplified class diagram of the FlexHousing Middleware will be presented

(with the new classes and heavily altered ones highlighted in red) in Fig. 66, followed by a

more detailed diagram and description of every package in the Middleware. Next, a class

diagram of the FlexHousing web platform will also be displayed.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 111

4.3.3.1 FlexHousing Middleware

Fig. 66 – Simplified class diagram of the FlexHousing Middleware

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 112

4.3.3.1.1 Models

The Models package refers to the domain objects, in other words, the business layer

containing all objects that model problem domain objects. These Model objects are data-

centric classes that usually map roughly to the records of a corresponding database table and,

thus, are often used as return values for Data Access Object (DAO) methods.

Fig. 67 – Class Diagram of Models package

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 113

Table 21 – Classes description of Models package

Class Name Description

User Represents the system user.

House Represents a user’s house.

Room Represents a room of a useƌ’s house.

Device RepƌeseŶts the ŵoŶitoƌed deǀiĐe, ĐoŶtaiŶiŶg the deǀiĐe’s details

but also the sensors that are monitoring it.

Sensor Representation of the sensors attached to a Device.

SensorBrand Represents the brand of the sensors attached to the device. For

the time being, these can only be ISA branded or Sonoff branded.

Schedule Abstract class for the actuation schedule.

InfraDaySchedule Implementation of the Schedule for same day flex-offers.

NextDaySchedule Implementation of the Schedule for periodic flex-offers.

Measurement Entity representing the data collected from the Sensors.

Actuation EŶtitǇ ƌepƌeseŶtiŶg a deǀiĐe’s aĐtuatioŶ, ƌegisteƌiŶg aŶ iŶstaŶĐe

of use.

DeviceType Represents the type of appliance the device is. For the time

being, it can only be identified either as or not as a Refrigerator.

4.3.3.1.2 DTO

The DTO package, following the DTO pattern, acts as a layer between the domain objects and

the API. It creates representational objects, originating from the ones in the Models package,

but only containing relevant information for the operation it was requested for.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 114

Fig. 68 – Class Diagram of DTO package

Table 22 – Classes description of DTO package

Class Name Description

ActuationFH Used to demand the actuation on a given device.

ActuationVPS Object used by the VPSController for the actuations on devices.

Flex-offerDTO Representation of the flex-offer only containing the fields

configurable by the end user.

LoginSession Object used by the VPSController to log into the VPS API.

MeasurementsDTO Represents the relevant information gathered from the

measurements received after a request for such on the

VPSController and SonoffController.

NewDeviceDTO Object containing the information of a new device to be added

to the system.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 115

ScheduleDTO Contains the fields of the schedules that are relevant to the end

user.

SensorDTO Used when a request involving a sensor is received. Contains the

sensor name and ID.

UserDTO OďjeĐt ĐoŶtaiŶiŶg a useƌ’s ĐƌedeŶtials. Used iŶ aĐĐouŶt

registrations and logins.

Statistics Object containing the statistical information of the system.

4.3.3.1.3 Execution

The Execution package ĐoŶtaiŶs all Đlasses that eǆeĐute the sǇsteŵ’s autoŵatiĐ pƌoĐesses, as

well as the Main class that sets up the system itself (initializing all timer tasks and starting the

HTTP server for the FlexHousing API).

Fig. 69 – Class Diagram of Execution package

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 116

Table 23 – Classes description of Execution package

Class Name Description

Main Class executed when initiating the system. Starting point for

every component.

FlexofferTimer Class responsible for keeping track of the time of day for the

emission of flex-offers.

ExecuteFOEmission A runnable thread created for every flex-offer. Responsible

for emitting the flex-offer, retrieve the schedules, and their

respective persistence.

ActuationTimer Class responsible for keeping track of the time of day for the

creation of the actuations schedules.

ExecuteActuations A runnable thread for the creation of the actuation

schedules. Retrieves the schedule for the flex-offers and

monitors the energy usage programed for the device.

ScheduleAssigmentTimer Class responsible for requesting the Aggregator module a

schedule assignment for the flex-offers sent.

MeasurementRequestTimer Class responsible for requesting the current measurements

of a device, for the cases where its service provider does not

store measurements.

CORSFilter Class responsible for dealing with Cross-Origin Resource

Sharing (CORS).

DeviceTypeIdentificator Class responsible for identifying the type of appliance a

Device is.

DeviceIdentificatorTimer Class responsible for executing DeviceTypeIdentificator

every day.

4.3.3.1.4 org.arrowhead.wp5

The WP5 package, short for org.arrowhead.wp5, has Arrowhead’s implementation of a

Distributed Energy System (DER). WPϱ’s responsibilities consist of emitting flex-offers,

retrieving schedules, and handling the connection to the Flex-offer Services. The

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 117

MyFlexibleResource class is a singleton to make sure that the emission of the flex-offer

originates for the same agent.

Fig. 70 – Class Diagram of org.arrowhead.wp5 package

Table 24 – Classes description of org.arrowhead.wp5 package

Class Name Description

HouseDER The HouseDER class extends the AbstractDER class. It

contains an implementation of the generateFlexOffer()

method, tailored to this system.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 118

MyFlexibleResource Entity responsible for the connection to the Flex-offer

Services, containing methods for the XMPP connection and

the Service Discovery for the Aggregator.

4.3.3.1.5 Controllers

The Controllers package includes the major controllers in the system. The controller pattern

assigns the responsibility of dealing with system events to a class that represents the overall

system or a use case scenario, in other words, a controller object is an object responsible for

receiving or handling a system event. A controller should delegate the work that needs to be

done to other objects; however, it should not do much work itself [63].

Fig. 71 – Class Diagram of Controllers package

Table 25 – Classes description of Controllers package

Class Name Description

HouseController Manages every house, and their corresponding room and

device.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 119

DeviceController Responsible for every action on a Device object. As an

interface, the DeviceController defines all the required

methods to control a device.

FlexofferController Allows flex-offer management. Has access to every flex-

offer.

4.3.3.1.6 ThirdPartyServices

The ThirdPartyServices package contains the controllers corresponding to the service provider

of each device. Every controller implements the DeviceController class, however these

controllers have a specific implementation of each abstract method to their subsequent

service. Essentially, this corresponds to the Strategy design pattern where each

implementation is encapsulated in a separate (strategy) object.

In this case, there are two separate controllers for each implementation: one for VPS, and one

for Sonoff.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 120

Fig. 72 – Class Diagram of ThirdPartyServices package

Table 26 – Classes description of ThirdPartyServices package

Class Name Description

VPSController Handles every VPS related device. Builds HTTP requests

aimed at the VPS API, and handles their responses.

SonoffController Handles the Sonoff devices. Builds HTTP requests aimed at

the “oŶoff sǁitĐh’s API, aŶd haŶdles theiƌ ƌespoŶses.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 121

4.3.3.1.7 FH_API

The FH_API package contains the definition of the services and resources hosted by the

sǇsteŵ’s API thƌough the HTTP seƌǀeƌ iŶitialized iŶ the MaiŶ Đlass.

Fig. 73 – Class Diagram of FH_API package

Table 27 – Classes description of FH_API package

Class Name Description

FlexofferPath Definition of the services and resources attached to the

Flexoffer route.

DevicePath Definition of the services and resources attached to the

Device route.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 122

UserPath Definition of the services and resources attached to the User

route.

HousePath Definition of the services and resources attached to the

House route.

AnalyticsPath Definition of the services and resources attached to the

Analytics route.

MeasurementPath Definition of the services and resources attached to the

Measurements route.

AuthenticationFilter Implements the ContainerRequestFilter class, which allows

it to handle a request.

Verifies the access permissions for a user based on the

username and password provided in the request.

Secured Defines the name-binding annotation @Secured, used to

decorate the AuthenticationFilter class, allowing the system

to handle a request.

4.3.3.1.8 DAO

The DAO package acts as a layer between the database and the system, being responsible for

interacting with the database through queries. The DAO is a singleton to insure concurrence

and to establish only one connection to the database at any given moment.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 123

Fig. 74 – Class Diagram of DAO package

Table 28 – Classes description of DAO package

Class Name Description

DAO Handles every database-related operation. Responsible for

both storing and retrieving objects from the database.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 124

4.3.3.2 FlexHousing Web Platform

Like the Middleware, the FlexHousing web platform was developed following the single

responsibility principle, in order to avoid a class having more than one responsibility,

unwanted coupling, resistance to change or incompatibilities when introducing code changes.

It should also be noted that inheritance was used for code reuse, and that this implementation

did not cause any coupling problems.

Fig. 75 – Class Diagram of FlexHousing Web Platform

The web platform’s ŵodel Đlasses aƌe siŵilaƌ to the Middleǁaƌe’s iŶ teƌŵs of theiƌ

responsibilities and data structure. In regard to the controllers, most share the usual type of

functions present in web apps: index(), create(), show(), and edit().

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 125

4.3.3.3 Executives’ Web Platform

The eǆeĐutiǀes’ platfoƌŵ is stƌuĐtuƌed ǀeƌǇ siŵilaƌlǇ to the FleǆHousiŶg ǁeď platfoƌŵ, albeit

much more simplified, since the only features required from it are accessing data from the

FlexHousing Middleware. Thus, aside from the register and login pages, only the Overview

page is needed.

Fig. 76 – Class Diagram of Executives' Web Platfrom

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 126

4.4 Implementation

This section describes the implementation of the more interesting and/or complex features

developed in the project, namely, the management of the two types of devices used in the

project (VPS and Sonoff), the automatic creation of flex-offers, the identification of device

types, the verification of the effectiveness of a flex-offeƌ oŶ a deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ

pattern, and the setup of the FlexHousing system in a development environment.

4.4.1 Device Controller

As mentioned before, the previous version of the FlexHousing project was only developed to

support VPS devices. This lead to its DeviceController being designed to exclusively

opeƌate ǁith those deǀiĐes’ aƌĐhiteĐtuƌe.

To solve this problem, the Strategy design pattern was used. This meant that each

implementation of a specific device (in this case, VPSController and

SonoffController) must be encapsulated in a separate object, with the

DeviceController serving as an interface for every device implementation.

Thus, the implementation of the DeviceController interface can be viewed in Fig. 77:

public interface DeviceController {

 public void addMeasurement(String Measuring, double Value, Date Date);

 public void getMeasurements();

 public boolean actuate();

 public void addFO(FlexOffer fo, String Name);

 public Object returnPowerMeasurements(long start, long end);

 public Object returnPowerMeasurementsByDay(long start, long end);

 public FlexOffer getFO();

 public boolean getToken(String email, String password);

 public void addSensorToDevice(String name);

 public boolean getState();

 public Object returnMeasurementDifference(long day);

 public Object returnPowerMeasurementsByQuarter(long start, long end);
}

Fig. 77 – Code Snippet: DeviceController Interface

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 127

4.4.2 VPS devices

Regarding the VPS devices, two different kinds were used in the project: a smart plug (Left

part of Fig. 78) and a transmitter (Right part of Fig. 78). While the smart plug can read a

deǀiĐe’s ĐoŶsuŵed eŶeƌgǇ aŶd tuƌŶ oŶ/off the deǀiĐe’s poǁeƌ, the transmitter is only able to

read a deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ.

Fig. 78 – Left: VPS Smart Plug; Right: VPS Transmitter

These two devices send their data to a gateway named Cloogy (Fig. 79Ϳ, ǁhiĐh seŶds it to I“A’s

servers. Thus, foƌ the FleǆHousiŶg platfoƌŵ to aĐĐess these data, it ŵust ƌeƋuest it fƌoŵ I“A’s

web API.

Fig. 79 – VPS Cloogy

In the case of VP“ deǀiĐes, eǀeƌǇ seŶsoƌ iŶ it has aŶ ID tag. Foƌ iŶstaŶĐe, the seŶsoƌ ͞AĐtuatoƌ͟

;ǁhiĐh tuƌŶs the poǁeƌ oŶ/offͿ has aŶ ID, the saŵe ǁaǇ the seŶsoƌ ͞AĐtiǀe eŶeƌgǇ+͟ ;ǁhiĐh

reads the energy consumption) has an ID. This means that, on I“A’s web API, to request any

kiŶd of aĐtioŶ fƌoŵ a deǀiĐe, the ƌeƋuest ŵust speĐifǇ the ID tag of the deǀiĐe’s seŶsoƌ.

To demonstrate this, Fig. 80 displays a code snippet of VPSController’s iŵpleŵeŶtatioŶ

of the returnPowerMeasurements method:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 128

private static final String ADDRESS_MEASUREMENTS =
 "http://innov.isaenergy.pt:6600/api/1.4/consumptions/instant?from=";

private static final String SENSOR_MEASUREMENTS = "Active energy+";

@Override
public Object returnPowerMeasurements(long start, long end) {
 Sensor sensor = getSensorByName(SENSOR_MEASUREMENTS);
 return getMeasurement(sensor, start, end);
}

public List<MeasurementsDTO> getMeasurement(Sensor sensor, long from, long to){
 HttpGet getRequest = new HttpGet(
 ADDRESS_MEASUREMENTS + from + "&to=" + to + "&tags=[" + sensor.getId() +
"]");

 getRequest.addHeader(HttpHeaders.AUTHORIZATION, "ISA " + Token);
 HttpResponse response = null;
 try {
 response = httpClient.execute(getRequest);

 } catch (IOException ex) {
 Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);
 }
 Document doc = null;
 HttpEntity entity = response.getEntity();
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 doc = builder.parse(entity.getContent());

 } catch (ParserConfigurationException | IllegalStateException | SAXException e) {
 e.printStackTrace();
 } catch (IOException ex) {
 Logger.getLogger(VPSController.class.getName()).log(Level.SEVERE, null, ex);
 }
 Node list = doc.getFirstChild();
 List<MeasurementsDTO> measures = new ArrayList<>();
 NodeList measurements = list.getChildNodes();
 for (int i = 0; i < measurements.getLength(); i++) {
 long dateDTO = 0;
 double energyValueDTO = 0.0;
 NodeList nodes = (NodeList) measurements.item(i).getChildNodes();

 for (int temp = 0; temp < nodes.getLength(); temp++) {
 Node node = nodes.item(temp);
 Element eElement = (Element) node;

 if ("Date".equals(eElement.getNodeName())) {
 dateDTO = Long.parseLong(eElement.getTextContent());
 }

 if ("Read".equals(eElement.getNodeName())){
 energyValueDTO = Double.parseDouble(eElement.getTextContent());
 }
 }
 measures.add(new MeasurementsDTO(dateDTO, energyValueDTO));
 }

 return measures;
}

Fig. 80 – Code Snippet: returnPowerMeasurements in VPSController

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 129

4.4.3 Sonoff devices

In relation to the Sonoff devices (Fig. 81), these are cheap, generic, energy switches that, aside

from switching the power on and off, and reading the current energy consumption, allow

users to upload their own custom firmware on the sǁitĐh’s board. These boards are composed

of a ESP8266 module (a low-cost Wi-Fi chip with full TCP/IP stack) to access the Wi-Fi network,

and a HLW8012 current sensor to monitor the energy consumption.

Fig. 81 – Sonoff Pow switch

The Sonoffs were primarily chosen for the project to help develop a direct connection from

the FlexHousing platform to a different device in a local network, without having to request

data to a third-party service. Given that the “oŶoff sǁitĐhes’ fiƌŵǁaƌe ĐaŶ ďe entirely

customized, this allows us to have full control of the sensor. Thus, a firmware for the Sonoffs

was developed in Arduino (Appendix-B), to make the Sonoffs provide, through their REST API,

their respective deǀiĐe’s ĐoŶsuŵptioŶ ǀalues (updating every two seconds).

“iŶĐe “oŶoff deǀiĐes doŶ’t seŶd aŶǇ data to eǆteƌŶal seƌǀeƌs, the FleǆHousiŶg Middleǁaƌe has

to constantly request data from them (in which, every message has a length of around 128

bytes), every five seconds, and save it into its database. Whenever the FlexHousing web app

requests data from the Middleware, the Middleware accesses its own database to deliver it.

To demonstrate this process, Fig. 82 displays a code snippet of SonoffController’s

implementation of the returnPowerMeasurements method:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 130

// - SonoffController class -

@Override
public Object returnPowerMeasurements(long start, long end) {
 List<MeasurementsDTO> allMeasurements =
DAO.getInstance().returnMeasurementsByDeviceIDAndTimeInterval(this.device.getID(), start,
end);
 return allMeasurements;
}

// - DAO class -

public List<MeasurementsDTO> returnMeasurementsByDeviceIDAndTimeInterval
 (String deviceID, long startDate, long endDate) {
 List<MeasurementsDTO> allMeasurements = new ArrayList<>();
 String statement = "";
 PreparedStatement st = null;

 try {
 statement = "SELECT * FROM MEASUREMENTS "
 + "WHERE MEASUREMENTS.DEVICEID = ? "
 + "AND MEASUREMENTS.NAME = ? "
 + "AND MEASUREMENTS.TIME >= ? "
 + "AND MEASUREMENTS.TIME < ? "
 + "ORDER BY MEASUREMENTS.TIME";
 st = con.prepareStatement(statement);
 st.setString(1, deviceID);
 st.setString(2, "Energy (kWh)");
 st.setTimestamp(3, new java.sql.Timestamp(startDate));
 st.setTimestamp(4, new java.sql.Timestamp(endDate));
 ResultSet rs = st.executeQuery();
 while (rs.next()) {
 allMeasurements.add(
 new MeasurementsDTO(rs.getTimestamp(4).getTime(),
 rs.getDouble(3)));
 }
 } catch(SQLException err){
 System.out.println(err.getMessage());
 }

 return allMeasurements;
}

Fig. 82 – Code Snippet: returnPowerMeasurements in SonoffController

4.4.4 Automatic creation of a flex-offer’s energy consumption pattern

For the automatic creation of a flex-offer, the sǇsteŵ itself defiŶes the deǀiĐe’s eŶeƌgǇ

consumption pattern based on its past consumption data. To do so, certain algorithms from

the papeƌ ͞Generation and Evaluation of Flex-Offers from Flexible Electrical Devices͟ [65]

were used to implement a way to identify energy patterns. However, the algorithm for

identifying an energy pattern depends on what kind of device it is.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 131

4.4.4.1 Wet-devices

A device that has a certain daily routine (e.g. dishwashers, washing machines) is commonly

known as wet-device. A wet device usually has a consistent activation hour. In this case, the

system requests the user to input the hour when they typically turn it on.

With that predicted activation hour, the system goes through every consumption entry and

tries to perform a Pattern Sequence Matching (PSM). The PSM is used to predict values for

various attributes of FOs, e.g., the number of time slices, energy profile, etc.

First, all the changes in consumption values in the historical time series X are detected and are

transformed into energy consumption patterns. Since a device activation causes a noticeable

increase in power consumption, the PSM algorithm (Fig. 83) works under the premise that

these patterns are correlated to the time of activation, e.g., a dishwasher activated at 20:00

always operates for two-time units and has an average energy profile of 1.2,1ۧۦkWh [65].

Therefore, to estimate the energy profile for a predicted device activation at hour h of day k,

the PSM first searches device activations triggered at hour h in the time series X. Then, for

each activation the algorithm extracts the energy demand et for the duration of the device

operation. This search outputs a set of indices of the device activation timestamps and profiles

P = ۦp1, ..., pnۧ, where each pi is an energy profile of the device activation at the timestamp I

and n is the number of device activations at the hour h [65]. This algorithm returns an array

of energy profiles for matching device activations.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 132

Pattern Sequence Matching (PSM)

Input: = X – {e1, …, et} a time series.

 h – a predicted device activation hour.

Output: = P – a list of all demand patterns.

 I – a list of index for the patterns.

function demandPattern(X, h)

 P ← 0; p ← 0; active ← false

 for t ← 1 : T do

 if et >= thres then

 if t%24 = h then

 p ← p U {et};

 active ← true;

 I ← I U {t}

 else if active = true then

 p ← p U {et};

 endif

 else

 if active = true then

 P ← P U {p}

 endif

 p ← 0;

 active ← false

 endif

 endfor

 Return P, TimeDiffs

Fig. 83 – Algorithm: Pattern Sequence Matching (PSM) [66]

For further clarification of the PSM algorithm, Fig. 84 displays this process in a visual manner:

Fig. 84 – Visual sketch explaining the PSM algorithm

After collecting all energy profiles in P, for each respective time slice in every profile, the

system calculates the average value and considers the result as the emin (minimum energy

consumption) and emax (maximum energy consumption) for that time slice.

The algorithm for this estimation of the energy profile is displayed in Fig. 85:

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 133

Estimation of Energy Profile for a wet-device

Input: = P – the extracted demand patterns from PSM.

 d – an operation duration.

Output: = p – an energy profile for forecasted activation.

function estimateProfile-wet(P, d)

 p ← 0; n ← length of p

 for j ← 1 : d do

 e(min,j) ← 1� ∑ ݅݌ ∗ �ሺ݉݅݊, ݆ሻ��=1

 e(max,j) ← 1� ∑ ݅݌ ∗ �ሺ݉��, ݆ሻ��=1

 sj ← [e(min,j), e(max,j)];

 p ← p U {sj}

 endfor

 Return p

Fig. 85 – Algorithm: Estimation of Energy Profile for a wet-device [67]

Finally, the result of this algorithm comes in the form of a model energy profile p that

represents the usual consumption behavior of a device. However, this process only fits the

situation of a wet-device, a device that only activates at a certain hour.

4.4.4.2 Refrigerators

If the device in question were to be a refrigerator, the wet-device pƌoĐess ǁouldŶ’t ǁoƌk

because the refrigerator is constantly activating and deactivating throughout the day, as seen

in Fig. 86.

Fig. 86 – Energy consumption data from a refrigerator, measured by a Sonoff

So, for this case, the PSM algorithm was modified and new algorithms were developed to

accommodate the situation.

First, looking at Fig. 87, there is a constant time segment of inactivity in between each

activation of the refrigerator.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 134

Fig. 87 – Constant time segment of inactivity in between each activation

If we were to calculate the average value of these time segments (¯ΔT) and use the PSM

algoƌithŵ to deteƌŵiŶe the ƌefƌigeƌatoƌ’s model energy profile (p), we can create an energy

pattern for a full day, like so:

Fig. 88 – Energy consumption pattern of a refrigerator

Therefore, first we modify the PSM algorithm so we can get the time segments of inactivity:

Pattern Sequence Matching (PSM) for a refrigerator

Input: = X – {e1, …, et} a time series.

Output: = P – a list of all demand patterns.

 TimeDiffs – a list of inactive times (in seconds) in between patterns

function demandPattern(X)

 P ← 0; p ← 0; active ← false; measurementTimes ← 0

 for t ← 1 : T do

 if et >= thres then

 if active = false & measurementTimes length > 0 then

 index ← measurementTimes length - 1;

 diff ← (t - measurementTimes[index]) / 1000;

 timeDiffs ← timeDiff U {diff}

 endif

 measurementTimes ← measurementTmes U {t};

 p ← p U {et};

 active ← true

 else

 if active = true then

 P ← P U {p}

 endif

 p ← 0;

 active ← false

 endif

 endfor

 Return P, TimeDiffs

Fig. 89 – Algorithm: Pattern Sequence Matching (PSM) for a refrigerator

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 135

Then, we calculate the average value of the time segments to get the average time of

inactivity, convert the time to minutes, and check how many 15-minutes slices it represents:

Calculate Time of Inactivity of a refrigerator

Input: = TimeDiffs – a list of inactive times (in seconds) in between patterns

Output: = timeSlices – number of slices the time of inactivity consists of.

function getTimeSlices(TimeDiffs)

 timeSlices ← 0; averageTimeBetweenPatterns ← 0; averageTimeInMinutes ← 0; sum ← 0

 for diff ← 1 : TimeDiffs do

 sum ← sum + diff

 endfor

 averageTimeBetweenPatterns ← sum / TimeDiffs length;

 averageTimeInMinutes ← averageTimeBetweenPatterns / 60;

 timeSlices ← averageTimeInMinutes / 15;

 Return timeSlices

Fig. 90 – Algorithm: Calculate Time of Inactivity of a refrigerator

Next, we use the same ͞ Estimation of Energy Profile͟ algoƌithŵ to get the ƌefƌigeƌatoƌ’s eŶeƌgǇ

profile. Lastly, we can finally create the energy consumption pattern with the energy profile

and the time slices:

Create Energy Consumption Pattern of a refrigerator

Input: = p – an energy profile,

 timeSlices – number of slices the time of inactivity consists of.

Output: = Epattern – the energy consumption pattern of the refrigerator.

function createEnergyPattern(p, timeSlices)

 Epattern ← 0, index ← 0

 // a day is composed of 96 slices of 15 minutes

 while index <= 96 do

 for sj ← 1 : p do

 if index <= 96 do

 break

 endif

 Epattern ← Epattern U {sj[0]};

 index ← index + 1

 endfor

 for slice ← 1 : timeSlices do

 if index <= 96 do

 break

 endif

 Epattern ← Epattern U {0};

 index ← index + 1

 endfor

 endwhile

 Return Epattern

Fig. 91 – Algorithm: Create Energy Consumption Pattern of a refrigerator

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 136

4.4.5 Device Type Identification

Regarding the identification of device types, an interesting solution to this was to use data

ŵiŶiŶg ŵodels to pƌediĐt a deǀiĐe’s tǇpe, by discovering patterns in its energy consumption

values.

To do so, two Python scripts were developed by CISTER colleague Vincent Nelis: one

(train_model.py) to create and train the data mining model; the other (identify_device.py) to

ideŶtifǇ the deǀiĐe’s tǇpe, through the trained model. Essentially, this solution consists of a

simple classifier based on a supervised machine-learning model. A more detailed explanation

of the two scripts is as follows:

• train_model.py creates the model and trains it based on a labeled set of energy

consumption traces (one trace for each device). That is, the script is fed with one

consumption trace for each device (there is no constraints on the number of devices

that the script must identify). Each trace is simply a sequence of tuples <timestamp,

consumption> formatted in a 2-columns CSV file. In our experiments, the

consumption of every device has been monitored by intervals of 5000 milliseconds,

meaning that every trace contains at least 5000 data-points. The script starts by

generating two datasets from the trace of each device: one for training and one for

testing purposes. For each device, both datasets contain randomly picked fixed-length

͞sliĐes͟ of the ĐoƌƌespoŶdiŶg tƌaĐe, i.e. eǀeƌǇ saŵple iŶ ďoth datasets is a Đƌopped

portion (selected randomly and of fixed length) of the consumption trace of the

device. The number of samples in both the training and testing datasets, as well as

the length of each sample, are user-defined parameters given as input to the script.

After generating these two datasets from every input consumption trace, all the

training sets are merged into a single labeled set (i.e. every sample is labeled with the

name of the device it comes from) and that aggregated set is used to train a classifier

and save its parameters into a file. We used the model from the pyAudioAnalysis

Python library [87]. The trick to be able to use that simplified library was to treat every

randomly generated sample of the training sets as a WAV sound (the library is

designed to classify sounds).

• identify_device.py is much simpler that the first script. It loads the parameters of the

model (computed in the previous step using train_model.py) and then, given a trace

to be identified, it outputs the predicted name of the device. Once again, the model

parameters are loaded and used automatically by the pyAudioAnalysis library that

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 137

outputs a prediction in a single line of python code. It turned out that this library that

was initially designed to classify sounds work remarkably well for recognizing energy

consumption traces as long as they are saved into WAV files.

With these two scripts, the FlexHousing Middleware must eǆpoƌt the deǀiĐe’s ĐoŶsuŵptioŶ

data to a CSV file ;iŶ this Đase, ͞ŵeasuƌeŵeŶts.Đsǀ͟Ϳ aŶd run the scripts with Python. The first

one is run like so:

python train_model.py measurements.csv "Active Power (W)" 5000 5000 100 100 MyModel DeviceIDs

The parameters for train_model.py are, respectively:

• raw_data_file (measurements.csv): The file that contains the traces;

• The Measure of Interest ("Active Power (W)"): The name of the column that must be

retrieved in the raw data file;

• sample_size (5000): Number of consecutive timestamps in each generated

sample;

• n_train_samples_per_device (5000): Number of samples generated in the

training set for each device;

• n_test_samples_per_device (100): Number of samples generated in the

testing set for each device;

• n_valid_samples_per_device (100): Number of samples generated in the

validation set for each device;

• model_file (MyModel): The file in which the model will be saved;

• device_ids_file (DeviceIDs): The file in which the device IDs are saved.

The script, running for about 15 minutes or more (depending on the machine running it), will

create the following files:

• MyModel.*: A few files describing the model after training;

• DeviceIDS: The file in which the device IDs are saved;

• The folder data, with one subfolder for each device, and 3 subfolders for each:

train, test, and valid:

o The train folder contains the 5000 samples generated to train the model;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 138

o The test folder holds the 100 samples generated to test the model. The tests

are carried out at the end of the execution of the script;

o The valid folder comprises of some samples that are generated to test the

next script ͞ideŶtifǇ_deǀiĐe.pǇ͟.

Afterwards, to identify a specific device, the Middleware runs the second script like so:

python identify_device.py data\\{device ID}\\valid\\sample_6.sample MyModel DeviceIDs

The inputs are, respectively:

• The sample file to identify. This file is a trace that holds 5000 rows and 2 columns

(timestamps and active power). Any sample in the valid folder is adequate for the

identification;

• The model to load for the prediction;

• The list of devices.

The output ĐoŶsists of the ŵodel’s pƌediĐtioŶ of the deǀiĐe’s tǇpe, ǁhiĐh the Middleǁaƌe ǁill

then store it in its database.

4.4.6 Verifying a Flex-offer’s effect on a device’s consumption pattern

In relation to UC10, the system must displaǇ hoǁ effeĐtiǀe a deǀiĐe’s aĐtiǀe fleǆ-offer was,

relatiǀe to the deǀiĐe’s eŶeƌgǇ ĐoŶsuŵptioŶ patteƌŶ.

To do so, once the system has both the Flex-offeƌ pƌojeĐted eŶeƌgǇ ǀalues aŶd the deǀiĐe’s

actual consumption values, it uses a mean percent error formula to measure the size of the

inaccuracies between these two data sets in percentage terms.

At first, the Mean Absolute Percent Error (MAPE) [82; 83] was chosen as the solution to

measure forecast errors. MAPE (Fig. 92) is the average absolute percent error for each time

period or forecast minus actuals divided by actuals.

ܧ��� = ͳͲͲ݊ ∑ �ݐݏ���ݎ݋ܨ| − �݈�ݑݐ��|�݈�ݑݐ��
�

�=1

Fig. 92 – The MAPE formula

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 139

However, MAPE has been argued to be asymmetric, in which it puts a heavier penalty on

forecasts that exceed the actual than those that are less than the actual [84]. Furthermore,

with zeros or near-zeros, MAPE can give a distorted picture of error. The error on a near-zero

item can be infinitely high, causing a distortion to the overall error rate when it is averaged in

[85].

For forecasts of items that are near or at zero volume, Symmetric Mean Absolute Percent

Error (SMAPE) is a better measure [86]. SMAPE (Fig. 93) is a modified MAPE in which the

divisor is the sum of forecasts and actuals.

ܧ���� = ͳͲͲ݊ ∑ �ݐݏ���ݎ݋ܨ| − �ݐݏ���ݎ݋ܨ|�݈�ݑݐ�� + �݈�ݑݐ��
�

�=1

Fig. 93 – The SMAPE formula

Thus, the SMAPE formula was ultimately chosen for the calculation of the percentage of

inaccuracy between the estimated pattern in the active flexoffer and the actual consumption

pattern of the device.

4.4.7 FlexHousing System Setup

Regarding the setup of the FlexHousing system on a development environment, some

specifics must be considered. Appendix-C presents a setup guide that goes into detail about

these particularities.

4.5 Tests

This section describes the methods used to test the FlexHousing system (both Middleware

and Web App), to ensure that all requirements are met and to guarantee accuracy and quality

in the results presented by it.

For this project, three different levels of software testing were used: unit testing, integration

testing, and acceptance testing.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 140

4.5.1 Unit Tests

Unit testing concentrates on testing the internal processing logic of aŶ appliĐatioŶ’s

components. For this project, these tests were applied on the FleǆHousiŶg Middleǁaƌe’s

domain objects, which are the classes located in the Models package.

Fig. 94 depicts a code snippet of the Models unit tests, using Junit. This snippet shows some

tests done to assess the relationships between the classes House, Room, and Device, and to

check if the actuation schedule is created correctly when the flex-offer schedule is received.

public class ModelsTest {

 private static Device device;
 private static Room room;
 private static House house;
 private static ArrayList<Double> upper, lower;

 @Before
 public void setUp() {
 this.device = new Device("testID", "Test Device", SensorBrand.SONOFF,
 0, "Test Brand", "Test Model", "");
 this.room = new Room("Test Room");
 this.room.setID(0);
 this.house = new House("testID", "Test House", "Test Address");

 upper = new ArrayList<>();
 upper.addAll(Arrays.asList(
 100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0));

 lower = new ArrayList<>();
 lower.addAll(Arrays.asList(
 100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0,100.0,0.0));
 }

 /**
 * Assert that a Room adds a Device correctly.
 */
 @Test
 public void ensureRoomAddsDeviceCorrectly() {
 this.room.addDevice(this.device);
 Device otherDevice = this.room.getDeviceByID("testID");
 assertEquals(this.device, otherDevice);
 }

 /**
 * Assert that a House adds a Room correctly.
 */
 @Test
 public void ensureHouseAddsRoomCorrectly() {
 this.house.addRoom(this.room);
 Room otherRoom = this.house.getRoomByID(0);
 assertEquals(this.room, otherRoom);
 }

 /**
 * Assert that a Room deletes a Device correctly.
 */
 @Test
 public void ensureRoomDeletesDeviceCorrectly() {
 this.room.deleteDevice("testID");
 Device noDevice = this.room.getDeviceByID("testID");
 assertEquals(null, noDevice);

 // added the device again for the next test
 this.room.addDevice(this.device);
 }

 /**

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 141

 * Assert that a House deletes a Device correctly.
 */
 @Test
 public void ensureHouseDeletesDeviceCorrectly() {
 this.house.deleteDevice("testID");
 Device noDevice = this.room.getDeviceByID("testID");
 assertEquals(null, noDevice);
 }

 /**
 * Assert that a House deletes a Room correctly.
 */
 @Test
 public void ensureHouseDeletesRoomCorrectly() {
 this.house.deleteRoom(0);
 Room noRoom = this.house.getRoomByID(0);
 assertEquals(null, noRoom);
 }

 /**
 * Assert that NextDaySchedule registers commutations correctly.
 */
 @Test
 public void ensureNextDayScheduleRegistersCommutationsCorrectly() {
 Date date = new Date();
 Calendar cal = Calendar.getInstance();
 cal.setTime(date);

 cal.add(Calendar.HOUR_OF_DAY, 1);
 cal.set(Calendar.MINUTE, 0);
 Date start = cal.getTime();

 cal.add(Calendar.HOUR_OF_DAY, 4);
 Date end = cal.getTime();
 FlexOfferDTO fodto = new FlexOfferDTO(start.getTime(), end.getTime(),
 upper, lower);
 FlexOffer flexoffer = fodto.toArrowheadFO();
 FlexOfferSchedule flexofferSchedule = new FlexOfferSchedule(flexoffer);

 NextDaySchedule nextDay = new NextDaySchedule(flexofferSchedule);
 int[] commutations = nextDay.getCommutations();

 boolean turnsOnCorrectly = false;

 int turnOn = 0;

 for (int commutation : commutations) {
 if (commutation == 1) {
 turnOn++;
 }
 }

 if (turnOn == 6) {
 turnsOnCorrectly = true;
 }

 assertTrue(turnsOnCorrectly);
 }
}

Fig. 94 – Code Snippet: Models Unit Tests

4.5.2 Integration Tests

Upon conclusion of unit testing, the modules are to be integrated, which leads to integration

testing. The purpose of integration testing is to verify the functionality and reliability between

the integrated modules [68]. There are two types of integration testing: top-down integration

and bottom-up integration.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 142

In this case, top-down integration was used, allowing to quickly find errors and failures in high-

level logic and data flow. Consequently, to simulate the behavior of lower-level modules, stubs

must be used [69] [70]. Thus, to replicate the database, a mockup database was created

thƌough ApaĐhe DeƌďǇ’s in-memory database facility [71] (a feature specifically for testing and

developing applications, in which the database resides completely in main memory, and not

in the file system).

Fig. 95 shows a code snippet of the Middleware integration tests, using JUnit. This snippet

shows a few tests done to assess the relationships between House, Room, and Device in the

database.

public class MiddlewareIntegrationTest {

 private HouseController controller;
 private Device device, otherDevice;
 private Room room, otherRoom;
 private House house, otherHouse;
 private Map<String, House> housesMap;
 private User user;
 private DAO testDAO;

 @Before
 public void setUp() throws SQLException {
 this.testDAO = DAO.getInstance("test");

 Connection con = this.testDAO.getConnection();

 // Creating the necessary tables
 Statement sta = con.createStatement();
 sta.executeUpdate(
 "create table HOUSE\n" +
 "(\n" +
 " ID VARCHAR(255) primary key not null,\n" +
 " NAME VARCHAR(255) not null,\n" +
 " ADDRESS VARCHAR(255) not null\n" +
 ")"
);
 System.out.println("HOUSE Table created.");

 …

 sta.close();

 this.controller = new HouseController(this.testDAO);

 this.testDAO.insertUser("testUser", "testPassword");
 this.user = this.testDAO.returnUserByUsername("testUser");

 this.device = new Device("testID1", "Test Device 1", SensorBrand.SONOFF,
 0, "Test Brand1", "Test Model1", "");

 }

 /**
 * Assert a house, its room and devices are added and removed correctly.
 */
 @Test
 public void assertHouseAndRoomAndDeviceAreAddedAndRemovedCorrectly() {

 // Add house and room
 this.controller.addNewHouse(this.user.getID(), "New Test House",
 "Test Address");

 Map<String, House> houses = this.controller.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 143

 getHousesByUserID(this.user.getID());

 boolean hasHouse = false;

 if (houses != null) {
 hasHouse = true;
 }

 String houseID = "";

 for (Map.Entry<String, House> entry : houses.entrySet()) {
 if (entry.getValue().getName().equals("New Test House")) {
 houseID = entry.getKey();
 break;
 }
 }

 this.controller.addNewRoom(houseID, "New Test Room");

 int roomID = -1;
 roomID = this.controller.
 getRoomIDByName("New Test Room");

 boolean hasRoom = false;

 if (roomID != -1) {
 hasRoom = true;
 }

 this.room = this.controller.getRoomByID(roomID);
 this.room.addDevice(this.device);

 List<Device> devices = this.controller.getDevices();

 boolean hasDevice = false;

 if (!devices.isEmpty()) {
 hasDevice = true;
 }

 // Delete house and room
 this.controller.deleteHouse(houseID);

 houses = null;
 houses = this.controller.
 getHousesByUserID(this.user.getID());

 boolean hasHouseBeenRemoved = false;

 if (houses != null) {
 hasHouseBeenRemoved = true;
 }

 roomID = -1;
 roomID = this.controller.
 getRoomIDByName("New Test Room");

 boolean hasRoomBeenRemoved = false;
 if (roomID == -1) {
 hasRoomBeenRemoved = true;
 }

 devices = this.controller.getDevices();

 boolean hasDeviceBeenRemoved = false;

 if (devices.isEmpty()) {
 hasDeviceBeenRemoved = true;
 }

 boolean hasFunctionedCorrectly = hasHouse & hasRoom & hasDevice &
 hasHouseBeenRemoved & hasRoomBeenRemoved & hasDeviceBeenRemoved;

 assertTrue(hasFunctionedCorrectly);

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 144

 }
}

Fig. 95 – Code Snippet: Middleware Integration Tests

4.5.3 Acceptance Tests

Acceptance testing consists of a testing technique performed to determine whether or not

the software system has met the requirement specifications. The main purpose of this test is

to evaluate the system's compliance with the business requirements and verify if it is has met

the required criteria for delivery to end users [72]. Therefore, these tests focus on visible

actions with user inputs and system outputs.

In this case, the required features translate into use cases. Thus, for every use case, an

acceptance test was developed. These tests were performed on the FlexHousing web

application, using Laravel Dusk (a browser automation and testing API, based on the open

source tools ChromeDriver and Facebook Php-webdriver [73]).

Table 29 – Acceptance Test: UC01 Register User

Feature: 1 Register User

Scenario Test Expected result Validation

The unregistered

End-User registers

into the system.

Fill out the user creation

form and submit.

End-User can now login in

FlexHousing.

Success

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 145

public function testRegisterSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/')
 ->assertSee('FlexHousing')
 ->clickLink('Register')
 ->type('#name','cister')
 ->type('#password','123456789')
 ->type('#password-confirm','123456789')
 ->press('Register')
 ->waitForText('FlexHousing')
 ->assertSee('FlexHousing');
 });
}

public function testLoginSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/')
 ->assertSee('FlexHousing')
 ->type('#username','cister')
 ->type('#password','123456789')
 ->press('Login')
 ->waitForText('Dashboard')
 ->assertSee('Dashboard');
 });
}

Fig. 96 – Code Snippet: Acceptance Test of UC01 Register User

Table 30 – Acceptance Test: UC02 CRUD House

Feature: 2 CRUD House

Scenario Test Expected result Validation

The End-User

registers a house.

Fill out the house

creation form and

submit.

The house is now registered

in the system.

Success

The End-User edits

a house.

Change values in the

fields of the house form

and submit.

The house details are

updated.

Success

The End-User

deletes a house.

CliĐk the ͞Remove

House͟ button of the

respective house.

The house, its rooms, and

devices are removed from

the system.

Success

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 146

public function testAddHouseSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/houses/create')
 ->waitForText('Add New House')
 ->type('#houseName','Test House')
 ->type('#houseAddress','Test Address')
 ->click('#register')
 ->waitForText('Houses')
 ->assertSee('Test House');
 });
}

public function testRemoveHouseSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/houses')
 ->waitForText('Test House')
 ->click('[title="Delete Test House"]');

 $browser->driver->switchTo()->alert()->accept();
 });
}

Fig. 97 – Code Snippet: Acceptance Test of UC02 CRUD House

Table 31 – Acceptance Test: UC03 CRUD Room

Feature: 3 CRUD Room

Scenario Test Expected result Validation

The End-User

registers a room.

Fill out the room

creation form and

submit.

The room is now registered

in the system.

Success

The End-User edits

a room.

Change values in the

fields of the room form

and submit.

The room details are

updated.

Success

The End-User

deletes a room.

CliĐk the ͞Reŵoǀe

Rooŵ͟ ďuttoŶ of the

respective room.

The room and its devices are

removed from the system.

Success

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 147

public function testAddRoomSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/rooms/create')
 ->waitForText('Add New Room')
 ->type('#roomName','Test Room')
 ->script("document.getElementById('houseList').value = 'Test House';");

 $browser->click('#register')
 ->waitForText('Rooms')
 ->assertSee('Test Room');
 });
}

public function testRemoveRoomSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/rooms')
 ->waitForText('Test House')
 ->click('[title="Delete Test Room"]');

 $browser->driver->switchTo()->alert()->accept();
 });
}

Fig. 98 – Code Snippet: Acceptance Test of UC03 CRUD Room

Table 32 – Acceptance Test: UC04 CRUD Device

Feature: 4 CRUD Device

Scenario Test Expected result Validation

The End-User

registers a device.

Fill out the device

creation form and

submit.

The device is now registered

in the system.

Success

The End-User edits

a device.

Change values in the

fields of the device form

and submit.

The device details are

updated.

Success

The End-User

deletes a device.

CliĐk the ͞Reŵoǀe

Device͟ ďuttoŶ of the

respective device.

The device is removed from

the system.

Success

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 148

public function testAddDeviceSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/devices/create')
 ->waitForText('Add New Device')
 ->type('#deviceName','Test Device')
 ->script("document.getElementById('houseList').value = 'Test House';");

 $browser->script("document.getElementById('Test House').style.display = 'true';");

 $browser->script("document.getElementById('Test House rooms').value = 'Test
Room';");

 $browser->type('#deviceBrand','Brand Test')
 ->type('#deviceModel','Test Model')
 ->script("document.getElementById('sensorBrandList').value = 'SONOFF';");

 $browser->type('#sensorAddress','http://172.16.0.253/')
 ->press('#register')
 ->waitForText('Devices')
 ->assertSee('Test Device');
 });
}

public function testRemoveDeviceSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/devices')
 ->waitForText('Devices')
 ->click('a.removeDevice');

 $browser->driver->switchTo()->alert()->accept();
 });
}

Fig. 99 – Code Snippet: Acceptance Test of UC04 CRUD Device

Table 33 – Acceptance Test: UC05 Turn On/Off Device

Feature: 5 Turn On/Off Device

Scenario Test Expected result Validation

The End-User clicks

oŶ the ͞OŶ/Off͟

button of a device.

CliĐk oŶ the ͞OŶ/Off͟

button of a device.

The device is turned on/off. Success

public function testActuateDeviceSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/devices')
 ->waitForText('Devices')
 ->click('a.actuate') // turn on
 ->pause('3000')
 ->click('a.actuate'); // turn off
 });
}

Fig. 100 – Code Snippet: Acceptance Test of UC05 Turn On/Off Device

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 149

Table 34 – Acceptance Test: UC06 Check Device Consumption

Feature: 6 Check Device Consumption

Scenario Test Expected result Validation

The End-User clicks

on the

͞CoŶsuŵptioŶ͟

button of a device.

Click on the

͞CoŶsuŵptioŶ͟ ďuttoŶ

of a device.

The deǀiĐe’s eŶeƌgǇ

consumption history is

displayed

Success

public function testCheckDeviceConsumptionSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/devices')
 ->waitForText('Devices')
 ->click('a.checkConsumption')
 ->waitFor('#containerEnergy')
 ->waitFor('#containerEnergyByDay')
 ->waitFor('#containerEnergyDifferenceByDay');
 });
}

Fig. 101 – Code Snippet: Acceptance Test of UC06 Check Device Consumption

Table 35 – Acceptance Test: UC07 Create Flex-offer Manually for a Device

Feature: 7 Create Flex-offer Manually for a Device

Scenario Test Expected result Validation

The End-User

manually creates a

Flex-offer for a

device.

Fill out the flex-offer

creation form, manually

define the energy

consumption pattern,

and submit.

The flex-offer is created and

registered in system.

Success

Table 36 – Acceptance Test: UC08 Create Flex-offer Automatically for a Device

Feature: 8 Create Flex-offer Automatically for a Device, based on Energy

Consumption

Scenario Test Expected result Validation

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 150

The End-User

automatically

creates a Flex-offer

for a device.

Fill out the flex-offer

creation form, let the

system define the

energy consumption

pattern, and submit.

The flex-offer is created and

registered in system.

Success

public function testCreateFlexofferSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/devices')
 ->waitForText('Devices')
 ->click('a.createFlexoffer')
 ->waitFor('#scheduler_here')
 ->type("#flexofferName", "Flexoffer Test");

 $browser->script('
 scheduler.addEvent({
 start_date: "16-06-2019 00:00",
 end_date: "16-06-2019 23:00",
 text: "Flexoffer"
 });
 ');

 $browser->click("Next")
 ->radio('patternChoice', 'automaticPattern')
 ->select('activationHour', '12:00')
 ->click("Finish")
 ->assertSee('Devices');
 });
}

Fig. 102 – Code Snippet: Acceptance Test of UC08 Create Flex-offer Automatically for a

Device

Table 37 – Acceptance Test: UC09 Check total registered Users, Devices, and Houses & UC10

Check End-Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd aǀeƌage Tiŵe of Use

Feature: 9 Check total registered Users, Devices, and Houses.

10 Check End-Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd aǀeƌage Tiŵe of

Use.

Scenario Test Expected result Validation

The Company

Executive checks

the EǆeĐutiǀe’s

platform.

LogiŶ iŶ the EǆeĐutiǀe’s

platform and check the

main page.

The total registered Users,

Devices, and Houses are

displayed in the main page,

as well as the Frequency of

Use and average Time of Use.

Success

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 151

public function testLoginSuccessfully()
{
 $this->browse(function (Browser $browser) {
 $browser->visit('/')
 ->assertSee('Executive platform')
 ->type('#username','executive')
 ->type('#password','executive')
 ->clickLink('Login')
 ->assertSee('Overview');
 });
}

Fig. 103 – Code Snippet: Acceptance Test of UC09 Check total registered Users, Devices, and

Houses & UC10 Check End-Useƌs’ DeǀiĐes’ FƌeƋueŶĐǇ of Use aŶd aǀeƌage Tiŵe of Use

Rafael Teles da Rocha 152

5 Conclusions

This chapter recaps the most relevant points of this work, describes the end-results obtained

from the pƌojeĐt’s development, mentions additional work done, eǆplaiŶs the pƌojeĐt’s

limitations and future improvements, and, lastly, gives a final appreciation of the project and

internship.

5.1 Report summary

This pƌojeĐt’s goals were to iŵpƌoǀe CI“TER’s FleǆHousiŶg sǇsteŵ oŶ ŵultiple aspeĐts. First, a

full reengineering process of the FlexHousing system was performed, to make it more usable,

stable, maintainable and extendable. Moreover, new features were developed.

As explained in section 1.2, the Flex-offer concept consists in the exposure of the users’

electrical power consumption flexibility to the energy market. An energy consumption offer

containing the useƌ’s ĐoŶsuŵptioŶ fleǆiďilitǇ, in time and power, is sent to an aggregator,

which responds with a schedule that meets the best prices (lowest price) for consumption,

while still satisfying the users’ needs.

Furthermore, the FlexHousing project consists of a pilot capable of applying the flex-offer

concept to a real-life situation (supported by the Arrowhead framework), allowing control

over the energy usage of home appliances. FlexHousing is composed of two different

applications: one is the FlexHousing Middleware, which communicates with devices, manages

a database (which contains the registered users, houses, and devices), and provides its data

through a RESTful service to web applications; the other is a web application, known as

FlexHousing web platform, which seƌǀes as a gateǁaǇ to the Middleǁaƌe’s data aŶd seƌǀiĐes.

This project also serves as a proof of concept for a multinational company that is interested in

the ĐoŶĐept of the pƌojeĐt’s platfoƌŵ infrastructure to support the maintenance of home

appliances at their costumers’ houses.

The goals of the project are to:

• Rebuild and improve the FlexHousing web platform;

• Reengineer the connection to IoT devices, enabling compatibility with other types of

appliances of different brands and manufacturers;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 153

• Reengineer the FlexHousing Middleware (add suppoƌt foƌ ŵultiple ͞Useƌs͟ aŶd

͞Houses͟, and modify its Arrowhead implementation so that it can also function

locally);

• Add a feature that automates the flex-offer creation, ďased oŶ the deǀiĐe’s eŶeƌgǇ

consumption, minimizing user input;

• Add the functionality of verifying the execution of a flex-offer;

• Develop a platform for company executives that integrates with FlexHousing and

displays some basic data analyses of user data.

In the analysis and design phase (sections 4.2 and 4.3), the pƌojeĐt’s doŵaiŶ ŵodel, dataďase

structure, and class diagram were altered to satisfy the new requirements gathered in the

requirements engineering stage (section 4.1).

In the implementation phase (section 4.4), to support different types of devices, a generic

interface for device modules was implemented (section 4.4.1). Then, the existing module for

the VPS devices in the Middleware was altered in order to implement it (section 4.4.2). Next,

to connect to a new device that communicates through the local network, a generic

customizable switch, named Sonoff Pow, was chosen (section 4.4.3). To acquire specific

energy consumption data and provide them through a REST API, a custom firmware

(Appendix-B) was developed and deployed into the Sonoffs. After that, a module for it was

developed and implemented in the Middleware.

In relation to the automatic creation of flex-offers (section 4.4.4), some of the algorithms

published in [65] were used to implement a way to identify energy patterns. However, the

algorithm for identifying an energy pattern depends on what kind of device it is. Therefore,

different algorithms were developed for different kinds of devices (in this case, one for wet-

devices and the other for refrigerators).

Regarding the Arrowhead implementation (section 2.4.2), the past version of the project had

a severe dependency on servers running in Denmark, which also supported the connection to

the Aggregator module, the Service Registry, and the Virtual Market of Energy. The solution

to this was to locally implement the Aggregator and VME modules. Moreover, it was also

necessary to install an XMPP server so that these modules could be able to communicate with

each other and with the FlexHousing Middleware, through XMPP. Furthermore, the system

must follow a configuration file (Appendix-AͿ that speĐifies the XMPP seƌǀeƌ’s hostŶaŵe, poƌt,

ƌesouƌĐe, aŶd seƌǀiĐe Ŷaŵe, aŶd eaĐh ŵodule’s XMPP ĐlieŶt aĐĐouŶt’s ID aŶd passǁoƌd.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 154

In the testing phase (section 4.5), three different levels of software testing were used: unit

testing, integration testing, and acceptance testing.

5.2 Accomplished goals

In this section, a degree of accomplishment is specified for each objective presented in the

introduction chapter.

Table 38 – Accomplished goals

Goal Degree of Accomplishment

Rebuild and improve the FlexHousing web

platform.

Complete

Develop a generic interface for future device

implementations.

Complete

Add support for a new device that

communicates through a local network, and

not through external servers.

Complete

Add suppoƌt foƌ ŵultiple ͞Useƌs͟ aŶd

͞Houses͟ iŶ the FleǆHousiŶg Middleǁaƌe.

Complete

Develop a feature for automatic creation of

Flex-offers for wet-devices, based on their

consumption patterns.

Complete

Develop a feature for automatic creation of

Flex-offers for refrigerators, based on their

consumption patterns.

Complete

Reengineer the FlexHousing Middleware so

that its Arrowhead implementation can also

function locally, without needing to connect

to external servers.

Complete

Develop a platform for company executives

that integrates with FlexHousing and

displays some basic analyses of user data.

Complete

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 155

5.3 Additional work done

DuƌiŶg the pƌojeĐt’s deǀelopŵeŶt, a ĐoŶtƌiďutioŶ ǁas ŵade foƌ the (yet to be published) paper

͞FlexHousing: FlexOffer concept for the energy manager͟ [90]. Additionally, some

presentations and context diagrams were made for meetings with the customers.

5.4 Limitations and future development

Although the project achieved all the initially planned goals, as well as those that have been

added during development, it is possible to enumerate some limitations that may arise, along

with a few solutions and new features that could be implemented in the future.

First, although the ǁeď platfoƌŵ’s frontend has been heavily improved, some further

enhancements could be made to enrich the User Experience. For instance, the process of

registering a new device on the platform requires a great deal of user input, when it should

be a simpler procedure. Required details like the device sensor API’s ǁeď addƌess or the device

seŶsoƌs’ ďƌaŶd are specifics that the user shouldŶ’t have to know or find out. One solution for

this problem would be the use of QR codes for each device sensor, where one QR code would

contain all the details and metadata of a specific device sensor. If a device only communicates

through the local network, then the Middleware would search for its IP.

Second, when creating a new flex-offer on the web platform, the flex-offer is always scheduled

to be activated every day in the time window specified by the user. This could be a problem

if, for example, the user only wants it to run once, or once every two days, or once a week,

and so forth. As such, the platform should support and allow different scheduling periods

specified by the user.

Third, ǁhile the ĐoŶĐept of ŵultiple ͞Useƌs͟ aŶd ͞Houses͟ ǁas iŵpleŵeŶted iŶ the

FlexHousing system, there is no functionality in the web platform for one user to add another

user to their house. Although it is completely possible to do so directly in the database, in

practical situations, this ĐuƌƌeŶtlǇ isŶ’t ĐoŶĐeiǀaďle through the web platform. The reason for

this is because it would require more development time to implement a system where:

• A user selects an already registered house, and requests to have permission to access

it; the house’s oǁŶeƌ ǁould theŶ ďe Ŷotified that soŵeoŶe ǁaŶts to access their

house and would allow or deny access permission;

• A house owner would search for specific users registered in the system, and allow

them to have access permission.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 156

In a future iteration though, this feature could be certainly achievable.

Fourth, although HTTP/REST was the chosen communication method between the

FlexHousing Middleware and its registered devices, in the case of devices like Sonoff, where

their data has to ďe stoƌed iŶ the Middleǁaƌe’s dataďase, a more ideal communication

protocol could be AMQP using the publish/subscribe pattern. In a REST environment, the

Middleware must create a thread for each device, continually requesting data from each one’s

REST API. Alternatively, in a AMQP environment with publish/subscribe, the devices, as

publishers, would send their data through a message broker to their subscribers, in this case,

the Middleware. Thus, in a situation where there are hundreds of registered devices, the

Middleǁaƌe ǁouldŶ’t haǀe to ƌeƋuest data fƌoŵ eaĐh oŶe, instead it would receive all

messages from a single broker.

Finally, the idea of detecting equipment malfunctions through energy consumption was

considered, since it was also suggested by the client. However, its implementation was not

carried through, because not only can it prove difficult to establish through energy

consumption data that a malfunction has actually happened, but abnormal consumption data

also ǁouldŶ’t ďe pƌoof eŶough foƌ soŵe situations. A good example for these kinds of

situations would be for a refrigerator. A ƌefƌigeƌatoƌ’s eŶeƌgǇ consumption hinges on the

aŵďieŶt teŵpeƌatuƌe of its suƌƌouŶdiŶgs: if it’s Đold, the ƌefƌigeƌatoƌ ǁoŶ’t consume much

eŶeƌgǇ; if it’s hot, theŶ the ƌefƌigeƌatoƌ ǁill haǀe to ĐoŶsuŵe ŵoƌe eŶeƌgǇ thaŶ usual. To

establish that a refrigerator is malfunctioning, then the best approach would be to install

another sensor, specifically, a temperature sensor. This way, the system could match

consumption values with temperature values ;thƌough theiƌ ŵeasuƌeŵeŶts’ tiŵestaŵpsͿ aŶd

determine if there are any long-term discrepancies between the two. If so, then a malfunction

may be likely.

5.5 Final appreciation

Considering the web platforms developed and the Middleware reengineering, the

documentation produced, the deadlines related to planning, and the new features requested,

this project can be considered a success. All client meetings, where a new iteration of the

FlexHousing project is presented, ǁeƌe ŵet ǁith satisfaĐtioŶ aŶd fuƌtheƌed the ĐlieŶt’s

interest in the subject.

However, while the presented solution reflects a good understanding of the main subject,

there are obvious improvements to be made, as suggested in section 5.4.

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 157

On a more personal note, working at CISTER on a proof of concept for a big multinational

company was a great learning experience. The work environment is very flexible, any requests

for equipment or other demands are met within a short time, and all the people working at

CISTER are very friendly and always able to help. From working with multicultural teams to

learning different technologies in IoT, this internship has contributed to an incredible

experience that helps one develop their technical and social skills.

Rafael Teles da Rocha 158

6 Bibliography

1. Griffith, E., & Colon, A. (2017, May 08). The Best Smart Home Devices of 2017.

Retrieved February 17, 2017, from

http://www.pcmag.com/article2/0,2817,2410889,00.asp.

2. CISTER Research Unit. (n.d.). Retrieved February 17, 2017, from

http://www.cister.isep.ipp.pt/info/

3. P., Barnaghi. (2016, July 2). Internet of Things: Concepts and Technologies [Scholarly

project]. In SlideShare. Retrieved February 17, 2017, from

https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-

technologies

4. Automatic Meter Reading. (n.d.). Retrieved February 17, 2017, from

http://www.isasensing.com/solutions/automatic-meter-reading/

5. T., Angelucci. (2014, July). A Typical IoT Value Chain [Digital image]. Retrieved

February 18, from http://rtcmagazine.com/articles/view/103677

6. L. L., Ferreira, L., Siksnys, P., Pedersen, P., Stluka, C., Chrysoulas, T. L., Guilly, T.,

Pedersen. (2015). Arrowhead compliant virtual market of energy (Barcelona, Spain,

2014). Barcelona. Retrieved February 18, from

http://ieeexplore.ieee.org/document/7005193/

7. Le Guilly, Thibaut, et al. "An Energy Flexibility Framework on The Internet of Things."

The Success of European Projects using New Information and Communication

Technologies (2016): 17-37

8. M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B. Filipic, U. Fischer, W. Lehner, T. B.

Pedersen, Y. Pitarch, L. Siksnys, and T. Tusar, "Data management in the mirabel smart

grid system," in EnDM, 2012, pp.95-102.

9. Flex-offer example [Digital image]. (2015, January 12). Retrieved February 23, 2017,

from

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-

1-large.gif

10. TotalFlex. (n.d.). Retrieved February 23, 2017, from http://www.totalflex.dk/

http://www.pcmag.com/article2/0,2817,2410889,00.asp
http://www.cister.isep.ipp.pt/info/
https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-technologies
https://pt.slideshare.net/PayamBarnaghi/internet-of-things-concepts-and-technologies
http://www.isasensing.com/solutions/automatic-meter-reading/
http://rtcmagazine.com/articles/view/103677
http://ieeexplore.ieee.org/document/7005193/
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-1-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-1-large.gif
http://www.totalflex.dk/

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 159

11. Virtual market of energy main actors and operations [Digital image]. (2015, January

12). Retrieved February 23, 2017, from

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-

2-large.gif

12. High level architecture for the virtual market of energy [Digital image]. (2015, January

12). Retrieved February 23, 2017, from

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-

3-large.gif

13. E. Guttman, "Autoconfiguration for IP Networking: Enabling Local Communication",

IEEE Internet Computing 5 (3), 2001, pp. 81-86.

14. D. B. Terry, M. Painter, D. W. Riggle and S. Zhou, "The Berkeley Internet Name Domain

Server", Proceedings of USENIX Summer Conference, Salt Lake City, Utah, 1984, pp.

23-31.

15. OpenADR Alliance. (n.d.). Retrieved from http://www.openadr.org/

16. "ISO/IEC/IEEE P21451-1-4 Standard for a Smart Transducer Interface for Sensors,

Actuators, and Devices based on the eXtensible Messaging and Presence Protocol

(XMPP) for Networked Device Communication," Available online:

Http://wiki.xmpp.org/web/Tech/IoT.pages-Sensei, accessed April 2014.

17. Pieper, C. (n.d.). How the Internet of Things Intersects with Energy Management.

Retrieved March 5, 2017, from https://www.artisenergy.com/blog/how-the-internet-

of-things-intersects-with-energy-management

18. A., Willis. (November 13). The Benefits of Becoming a Smart City - Infographic.

Retrieved March 5, 2017, from https://datafloq.com/read/the-benefits-of-becoming-

a-smart-city/1644

19. Big Data and the IoT: The Future of the Smart City. (n.d.). Retrieved March 5, 2017,

from http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-

data-and-the-iot-the-future-of-the-smart-city/

20. Smart Grid Watch Team. (n.d.). Smart Grid Watch. Retrieved March 05, 2017, from

https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-

benefits-for-consumers-service-providers.html

http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-3-large.gif
http://ieeexplore.ieee.org/ielx7/6994138/7005023/7005193/html/img/7005193-fig-3-large.gif
http://www.openadr.org/
https://www.artisenergy.com/blog/how-the-internet-of-things-intersects-with-energy-management
https://www.artisenergy.com/blog/how-the-internet-of-things-intersects-with-energy-management
https://datafloq.com/read/the-benefits-of-becoming-a-smart-city/1644
https://datafloq.com/read/the-benefits-of-becoming-a-smart-city/1644
http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-data-and-the-iot-the-future-of-the-smart-city/
http://graduatedegrees.online.njit.edu/resources/mscs/mscs-infographics/big-data-and-the-iot-the-future-of-the-smart-city/
https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-benefits-for-consumers-service-providers.html
https://blogs.siemens.com/en/smart-grid-watch.entry.html/1782-smart-grid-benefits-for-consumers-service-providers.html

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 160

21. C., Teixeira, M., Albano, A., Skou, L. P., Dueñas, F., Antonacci, R., Ferreira, . . . S., Scalari.

(2014). CONVERGENCE TO THE EUROPEAN ENERGY POLICY IN EUROPEAN

COUNTRIES: CASE STUDIES AND COMPARISON.

22. Castellanos, M., Dayal, U., & Rundensteiner, E. A. (2013). Enabling Real-Time Business

Intelligence 6th International Workshop, BIRTE 2012, Held at the 38th International

Conference on Very Large Databases, VLDB 2012, Istanbul, Turkey, August 27, 2012,

Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg.

23. TotalFlex demonstration. (n.d.). http://smart-cities-centre.org/wp-

content/uploads/Per-Pedersen.pdf

24. Arrowhead — Ahead of the future. (n.d.). Retrieved March 12, 2017, from

http://www.arrowhead.eu/

25. Dannecker, L. (2015). Energy time series forecasting: efficient and accurate

forecasting of evolving time series from the energy domain. Wiesbaden: Springer

Vieweg. Retrieved March 12, 2017, from

https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabe

l+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-

Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-

8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true

26. A., Doms, Z., Marinzek, & T. B., Pedersen. (2013). MIRABEL - Efficiently managing more

renewable energy using explicit demand and supply flexibilities (Doctoral dissertation,

Aalborg University, 2013). Berlin. Retrieved March 12, 2017, from

http://vbn.aau.dk/files/160236283/MIRABEL_Efficiently_managing_more_renewabl

e_energy_using_explicit_demand_and_supply_flexibilities.pdf

27. TotalFlex. (n.d.). Retrieved March 19, 2017, from

http://neogrid.dk/portfolio/totalflex-new/

28. Woon, W. L., Aung, Z., Kramer, O., & Madnick, S. (2017). Data Analytics for Renewable

Energy Integration: 4th ECML PKDD Workshop, DARE 2016, Riva del Garda, Italy,

September 23, 2016, Revised Selected Papers. Cham: Springer International

Publishing. Retrieved March 19, 2017, from

https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex

+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-

http://smart-cities-centre.org/wp-content/uploads/Per-Pedersen.pdf
http://smart-cities-centre.org/wp-content/uploads/Per-Pedersen.pdf
http://www.arrowhead.eu/
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
https://books.google.pt/books?id=ufhUCgAAQBAJ&pg=PA41&lpg=PA41&dq=mirabel+flex-offer&source=bl&ots=P0xuTSOwDE&sig=ALBoGLO43RI_9h6-lX-Z7NHPviw&hl=pt-PT&sa=X&ved=0ahUKEwitmoT-8ZTUAhUJVxoKHWfRD6UQ6AEIMzAC#v=onepage&q=mirabel%20flex-offer&f=true
http://vbn.aau.dk/files/160236283/MIRABEL_Efficiently_managing_more_renewable_energy_using_explicit_demand_and_supply_flexibilities.pdf
http://vbn.aau.dk/files/160236283/MIRABEL_Efficiently_managing_more_renewable_energy_using_explicit_demand_and_supply_flexibilities.pdf
http://neogrid.dk/portfolio/totalflex-new/
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 161

PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=

total%20flex%20energy&f=false

29. Arrowhead framework — Arrowhead. (n.d.). Retrieved March 19, 2017, from

http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-

framework/

30. Arrowhead Framework [Digital image]. (n.d.). Retrieved March 19, 2017, from

http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-

framework.png

31. Ry Crist October 14, 2015 5:00 AM PDT @rycrist. (2015, October 14). A smart home

divided: Can it stand? Retrieved March 26, 2017, from

https://www.cnet.com/news/a-smart-home-divided-can-it-stand/

32. Apple HomeKit App [Digital image]. (n.d.). Retrieved March 26, 2017, from

http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-iOS-10-HomeKit-

App5.png

33. Nest [Digital image]. (n.d.). Retrieved March 26, 2017, from

http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-

iPhone-screenshot-001.jpg

34. IFTTT. (2017, May 25). Retrieved May 26, 2017, from

https://en.wikipedia.org/wiki/IFTTT

35. IFTTT. (n.d.). Retrieved May 26, 2017, from https://ifttt.com/

36. Kreuzer, K. (2015, August 15). Re: Openhab for business purposes? [Web log

comment]. Retrieved April 2, 2017, from

https://community.openhab.org/t/openhab-for-business-purposes/1460/2

37. Baker, J., (Red Hat). (2016, March 29). 5 open source home automation tools.

Retrieved April 2, 2017, from https://opensource.com/life/16/3/5-open-source-

home-automation-tools

38. HABPanel. (n.d.). Retrieved April 2, 2017, from

http://demo.openhab.org:8080/habpanel/index.html#/view/first-floor

39. [Digital image]. (n.d.). Retrieved from

https://www.mysensors.org/uploads/57be15b86b0aea1b61746265/394/homeassist

ant_devices.png

https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
https://books.google.pt/books?id=scSPBQAAQBAJ&pg=PA2&lpg=PA2&dq=total+flex+energy&source=bl&ots=_xDwT386jc&sig=MjKfEdOxU35lPnsmVJKyGaObH-0&hl=pt-PT&sa=X&ved=0ahUKEwjIxN2dgJXUAhUB2BoKHVULB6YQ6AEIOTAD#v=onepage&q=total%20flex%20energy&f=false
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-framework.png
http://www.arrowhead.eu/wp-content/uploads/2014/10/arrowhead-framework.png
https://www.cnet.com/news/a-smart-home-divided-can-it-stand/
http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-iOS-10-HomeKit-App5.png
http://dispatchweekly.com/wp-content/uploads/2016/09/Apple-iOS-10-HomeKit-App5.png
http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-iPhone-screenshot-001.jpg
http://media.idownloadblog.com/wp-content/uploads/2015/06/Nest-5.0-for-iOS-iPhone-screenshot-001.jpg
https://en.wikipedia.org/wiki/IFTTT
https://ifttt.com/
https://community.openhab.org/t/openhab-for-business-purposes/1460/2
https://opensource.com/life/16/3/5-open-source-home-automation-tools
https://opensource.com/life/16/3/5-open-source-home-automation-tools
http://demo.openhab.org:8080/habpanel/index.html#/view/first-floor
https://www.mysensors.org/uploads/57be15b86b0aea1b61746265/394/homeassistant_devices.png
https://www.mysensors.org/uploads/57be15b86b0aea1b61746265/394/homeassistant_devices.png

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 162

40. Alexandra. (2016, September 30). IoT is eating the world: APIs and REST – Alexandra

– Medium. Retrieved April 2, 2017, from

https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-

9e0321bc6cbf

41. Rational Unified Process: Best Practices for Software Development Teams [PDF].

(1998). IBM Rational Software Corporation.

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/

1251_bestpractices_TP026B.pdf

42. [Digital image]. (n.d.). Retrieved April 17, 2017, from http://wm2info.com.br/wp-

content/uploads/2012/01/RUPSummaryDiag.gif

43. Atlassian. (n.d.). What is version control | Atlassian Git Tutorial. Retrieved April 17,

2017, from https://www.atlassian.com/git/tutorials/what-is-version-control

44. Lawrizs. (n.d.). Lawrizs/ARROWHEAD_VME. Retrieved February 24, 2017, from

https://github.com/lawrizs/ARROWHEAD_VME

45. Software Requirements. (n.d.). Retrieved May 1, 2017, from

https://www.tutorialspoint.com/software_engineering/software_requirements.htm

46. Sommerville, Ian (2009). Software Engineering (9th ed.). Addison-Wesley. ISBN 978-

0-13-703515-1.

47. Cohn, M. (2004, May 21). Telling Stories and User Role Modeling. Retrieved May 1,

2017, from http://www.informit.com/articles/article.aspx?p=170964

48. Cohn, M. (2014, July 1). Adding Decorated User Roles to Your User Stories. Retrieved

May 1, 2017, from https://www.mountaingoatsoftware.com/blog/adding-decorated-

user-roles-to-your-user-stories

49. Cohn, M. (n.d.). User Stories and User Story Examples by Mike Cohn. Retrieved May

1, 2017, from https://www.mountaingoatsoftware.com/agile/user-stories

50. LBushkin. (2013, May 10). What is functional and non functional requirement? [Online

forum comment]. Retrieved May 7, 2017, from

https://stackoverflow.com/questions/16475979/what-is-functional-and-non-

functional-requirement

51. Ergonomic Requirements for Office Work with Visual Display Terminals, ISO 9241-11,

ISO, Geneva, 1998.

https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-9e0321bc6cbf
https://medium.com/@AlexandraBowen/iot-is-eating-the-world-apis-and-rest-9e0321bc6cbf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://wm2info.com.br/wp-content/uploads/2012/01/RUPSummaryDiag.gif
http://wm2info.com.br/wp-content/uploads/2012/01/RUPSummaryDiag.gif
https://www.atlassian.com/git/tutorials/what-is-version-control
https://github.com/lawrizs/ARROWHEAD_VME
https://www.tutorialspoint.com/software_engineering/software_requirements.htm
http://www.informit.com/articles/article.aspx?p=170964
https://www.mountaingoatsoftware.com/blog/adding-decorated-user-roles-to-your-user-stories
https://www.mountaingoatsoftware.com/blog/adding-decorated-user-roles-to-your-user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
https://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
https://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 163

52. Computer performance. (2017, August 31). Retrieved August 31, 2017, from

https://en.wikipedia.org/wiki/Computer_performance

53. Software portability. (2017, August 06). Retrieved August 29, 2017, from

https://en.wikipedia.org/wiki/Software_portability

54. Definition of Interoperability. (n.d.). Retrieved August 29, 2017, from

http://interoperability-definition.info/en/

55. Use case. (2017, August 22). Retrieved August 22, 2017, from

https://en.wikipedia.org/wiki/Use_case

56. W. Tracz. Domain analysis working group report. In First International Workshop on

Software Reusability, 1991.

57. Fowler, Martin. Patterns of Enterprise Application Architecture. Addison Wesley,

2003, p. 116.

58. G., Sunyé. (2015, April 13). Domain Analysis [Scholarly project]. In SlideShare.

Retrieved May 15, 2017, from https://pt.slideshare.net/sunye/domain-analysis

59. Santos, J. (2016). Creation of a pilot for the FlexOffer concept. 55. Retrieved from

http://www.cister.isep.ipp.pt/docs/creation_of_a_pilot_for_the_flexoffer_concept/

1256/view.pdf

60. Object Oriented Design. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_orie

nted_design.htm

61. Object Oriented Design. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_orie

nted_design.htm

62. Class diagram. (2017, August 24). Retrieved August 27, 2017, from

https://en.wikipedia.org/wiki/Class_diagram

63. GRASP (object-oriented design). (2017, March 06). Retrieved June 16, 2017, from

https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)#Controller

64. Bell, D. (2004, February 16). The sequence diagram. Retrieved July 17, 2017, from

https://www.ibm.com/developerworks/rational/library/3101.html

https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Software_portability
http://interoperability-definition.info/en/
https://en.wikipedia.org/wiki/Use_case
https://pt.slideshare.net/sunye/domain-analysis
http://www.cister.isep.ipp.pt/docs/creation_of_a_pilot_for_the_flexoffer_concept/1256/view.pdf
http://www.cister.isep.ipp.pt/docs/creation_of_a_pilot_for_the_flexoffer_concept/1256/view.pdf
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_design.htm
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)#Controller
https://www.ibm.com/developerworks/rational/library/3101.html

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 164

65. B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers

from Flexible Electrical Devices. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

66. B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers

from Flexible Electrical Devices. 12. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

67. B. Neupane, L. Siksnys, T. Pedersen. (2017). Generation and Evaluation of Flex-Offers

from Flexible Electrical Devices. 5. Retrieved July 21, from

http://dl.acm.org/citation.cfm?id=3077850

68. Integration Testing. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.ht

m

69. Integration Testing Tutorial: Big Bang, Top Down & Bottom Up. (n.d.). Retrieved

August 17, 2017, from https://www.guru99.com/integration-testing.html

70. Stub. (2017, August 15). Retrieved August 17, 2017, from

https://www.tutorialspoint.com/software_testing_dictionary/stub.htm

71. Using in-memory databases. (n.d.). Retrieved August 17, 2017, from

https://db.apache.org/derby/docs/10.11/devguide/cdevdvlpinmemdb.html

72. Acceptance Testing. (2017, July 23). Retrieved August 20, 2017, from

https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.ht

m

73. Otwell, T. (n.d.). Browser Tests (Laravel Dusk). Retrieved August 18, 2017, from

https://laravel.com/docs/5.4/dusk

74. SOA4D Forge: Arrowhead Framework: Source Code Repository for Arrowhead

Framework. (n.d.). Retrieved September 15, 2017, from

https://forge.soa4d.org/scm/?group_id=58

75. P., Varga, F., Blomstedt, L. L., Ferreira, J., Eliasson, M., Johansson, J., Delsing, I.,

Martinez de Soria. (2016, August 28). Making System of Systems Interoperable - the

Core Components of the Arrowhead Framework. Retrieved February 18, from

http://www.arrowhead.eu/wp-

content/uploads/2013/03/Arrowhead_core_Elsevier-cr2.pdf

http://dl.acm.org/citation.cfm?id=3077850
http://dl.acm.org/citation.cfm?id=3077850
http://dl.acm.org/citation.cfm?id=3077850
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.guru99.com/integration-testing.html
https://www.tutorialspoint.com/software_testing_dictionary/stub.htm
https://db.apache.org/derby/docs/10.11/devguide/cdevdvlpinmemdb.html
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm
https://laravel.com/docs/5.4/dusk
https://forge.soa4d.org/scm/?group_id=58
http://www.arrowhead.eu/wp-content/uploads/2013/03/Arrowhead_core_Elsevier-cr2.pdf
http://www.arrowhead.eu/wp-content/uploads/2013/03/Arrowhead_core_Elsevier-cr2.pdf

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 165

76. T. Erl, SOA Principles of Service Design (The Prentice Hall Service Oriented Computing

Series from Thomas Erl), Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

77. K. Nagorny, R. Harrison, A. Colombo, G. Kreutz, A formal engineering approach for

control and monitoring systems in a service-oriented environment, in: IEEE

International Conference on Industrial Informatics (INDIN), 2013, pp. 480–487.

78. APIs for Internet of Things (IoT). (n.d.). Retrieved April 2, 2017, from

http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-

things-iot

79. Rele, A. (2015, August 26). How APIs Unlock Value from the IoT. Retrieved April 2,

2017, from https://apigee.com/about/blog/digital-business/how-apis-unlock-value-

iot

80. Dersin, P. (2014, October 15). Systems of Systems. Retrieved September 21, 2017,

from http://rs.ieee.org/tech-activities/77-systems-of-systems

81. ͞Flat design style modern vector illustration concept of smart..͟. Adapted fƌoŵ Flat

design style modern vector illustration concept of smart.., by bloomua. Retrieved

from http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-

content/uploads/2017/06/05094407/smarty-home-1.jpg

82. Stellwagen, E. (n.d.). Forecasting 101: A Guide to Forecast Error Measurement

Statistics and How to Use Them. Retrieved September 28, 2017, from

http://www.forecastpro.com/Trends/forecasting101August2011.html

83. Mean absolute percentage error. (2017, July 27). Retrieved September 28, 2017, from

https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#Alternative_MAPE

_definitions

84. Tim. (2017, May 9). Is MAPE a good error measurement statistic? And what

alternatives are there? [Online forum comment]. Retrieved September 28, 2017, from

https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-

measurement-statistic-and-what-alternatives-are-there

85. Mean Absolute Percent Error (MAPE). (n.d.). Retrieved September 28, 2017, from

http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-

error/

http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-things-iot
http://www.axway.com/en/enterprise-solutions/api-management/api-internet-of-things-iot
https://apigee.com/about/blog/digital-business/how-apis-unlock-value-iot
https://apigee.com/about/blog/digital-business/how-apis-unlock-value-iot
http://rs.ieee.org/tech-activities/77-systems-of-systems
http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-content/uploads/2017/06/05094407/smarty-home-1.jpg
http://s3-us-west-2.amazonaws.com/simplicitywebstorage/wp-content/uploads/2017/06/05094407/smarty-home-1.jpg
http://www.forecastpro.com/Trends/forecasting101August2011.html
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#Alternative_MAPE_definitions
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#Alternative_MAPE_definitions
https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-measurement-statistic-and-what-alternatives-are-there
https://stats.stackexchange.com/questions/280464/is-mape-a-good-error-measurement-statistic-and-what-alternatives-are-there
http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-error/
http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-error/

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 166

86. Symmetric Mean Absolute Percent Error (SMAPE). (n.d.). Retrieved September 28,

2017, from http://www.vanguardsw.com/business-forecasting-101/symmetric-

mean-absolute-percent-error-smape/

87. Giannakopoulos, T. (n.d.). pyAudioAnalysis. Retrieved August 25, 2017, from

https://github.com/tyiannak/pyAudioAnalysis

88. Heller, M. (2007, January 29). REST and CRUD: the Impedance Mismatch. Retrieved

October 09, 2017, from https://www.infoworld.com/article/2640739/application-

development/rest-and-crud--the-impedance-mismatch.html

89. The energy market explained. (5, March 2017). Retrieved October 10, 2017, from

http://www.energy-uk.org.uk/energy-industry/the-energy-market.html

90. Santos, J., Albano, M., Ferreira, L.L., Silva, J., Rocha, R., Olsen, P., Matos, L. (2017).

FlexHousing: FlexOffer concept for the energy manager. Manuscript in preparation.

http://www.vanguardsw.com/business-forecasting-101/symmetric-mean-absolute-percent-error-smape/
http://www.vanguardsw.com/business-forecasting-101/symmetric-mean-absolute-percent-error-smape/
https://github.com/tyiannak/pyAudioAnalysis
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
http://www.energy-uk.org.uk/energy-industry/the-energy-market.html

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 167

7 Appendixes

7.1 Appendix-A – Configuration Properties file for XMPP

communication

aggregatorid=aggregator
aggregatorpassword=aggregator

flexoffermanagerid=admin
flexoffermanagerpassword=password

marketid=market
marketpassword=market

xmpphostname=192.168.60.110
xmppport=5222
xmppresource=demo
xmppservicename=localhost

Fig. 104 – Configuration Properties file (config.properties) for XMPP communication

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 168

7.2 Appendix-B – Sonoff Pow Custom Firmware

// Import required libraries
#include <Arduino.h>

#include <ESP8266WiFi.h>
#include <aREST.h>
#include ũHLW8012.hŪ

#define SERIAL_BAUDRATE 115200

// GPIOs
#define RELAY_PIN 12
#define SEL_PIN 5
#define CF1_PIN 13
#define CF_PIN 14

// Check values every 2 seconds
#define UPDATE_TIME 2000

// Set SEL_PIN to HIGH to sample current
// This is the case for Itead’s Sonoff POW, where a
// the SEL_PIN drives a transistor that pulls down
// the SEL pin in the HLW8012 when closed
#define CURRENT_MODE HIGH

// These are the nominal values for the resistors in the circuit
#define CURRENT_RESISTOR 0.001
#define VOLTAGE_RESISTOR_UPSTREAM (5 * 470000) // Real: 2280k
#define VOLTAGE_RESISTOR_DOWNSTREAM (1000) // Real 1.009k

HLW8012 hlw8012;
int gpio13Led = 13;
int gpio12Relay = 12;

// Create aREST instance
aREST rest = aREST();

// WiFi parameters
const char* ssid = ũCISTERŪ;
const char* password = ũ2ae7a525d4882ed2a8ee1890968932f6Ū;

// The port to listen for incoming TCP connections
#define LISTEN_PORT 80

// Create an instance of the server
WiFiServer server(LISTEN_PORT);

// Variables to be exposed to the API
int activePower = 0;
int voltage = 0;
double current = 0;
int apparentPower = 0;
double powerFactor = 0;
String consumptionVariables = ũŪ;
String state = ũOffŪ;

// Auxiliary variable
int auxInt = 0;
double auxDouble = 0;

// Define the number of samples to keep track of. The higher the number,
// the more the readings will be smoothed, but the slower the output will
// respond to the input. Using a constant rather than a normal variable lets
// use this value to determine the size of the readings array.
const int numReadings = 30;

int readings[numReadings]; // the readings from the analog input
int readIndex = 0; // the index of the current reading
int total = 0; // the running total
int average = 0; // the average

// Declare functions to be exposed to the API

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 169

int ledControl(String command);
int actuate(String param);

void unblockingDelay(unsigned long mseconds) {
 unsigned long timeout = millis();
 while ((millis() - timeout) < mseconds) delay(1);
}

void calibrate() {
 // Let's first read power, current and voltage
 // with an interval in between to allow the signal to stabilise:

 hlw8012.getActivePower();

 hlw8012.setMode(MODE_CURRENT);
 unblockingDelay(2000);
 hlw8012.getCurrent();

 hlw8012.setMode(MODE_VOLTAGE);
 unblockingDelay(2000);
 hlw8012.getVoltage();

 // Calibrate using a 60W bulb (pure resistive) on a 230V line
 hlw8012.expectedActivePower(60.0);
 hlw8012.expectedVoltage(230.0);
 hlw8012.expectedCurrent(60.0 / 230.0);

 // Show corrected factors
 //Serial.print("[HLW] New current multiplier : ");
Serial.println(hlw8012.getCurrentMultiplier());
 //Serial.print("[HLW] New voltage multiplier : ");
Serial.println(hlw8012.getVoltageMultiplier());
 //Serial.print("[HLW] New power multiplier : ");
Serial.println(hlw8012.getPowerMultiplier());
 //Serial.println();

}

void setup(void)
{
 // Start Serial port and clean garbage
 Serial.begin(SERIAL_BAUDRATE);
 Serial.println();
 Serial.println();

 // Close the relay to switch on the load
 pinMode(RELAY_PIN, OUTPUT);
 digitalWrite(RELAY_PIN, HIGH);
 pinMode(CF_PIN, INPUT_PULLUP);

 // Initialize HLW8012
 // void begin(unsigned char cf_pin, unsigned char cf1_pin, unsigned char sel_pin,
unsigned char currentWhen = HIGH, bool use_interrupts = false, unsigned long pulse_timeout
= PULSE_TIMEOUT);
 // * cf_pin, cf1_pin and sel_pin are GPIOs to the HLW8012 IC
 // * currentWhen is the value in sel_pin to select current sampling
 // * set use_interrupts to false, we will have to call handle() in the main loop to do
the sampling
 // * set pulse_timeout to 500ms for a fast response but losing precision (that's ~24W
precision :()
 hlw8012.begin(CF_PIN, CF1_PIN, SEL_PIN, CURRENT_MODE, false, 500000);

 // These values are used to calculate current, voltage and power factors as per
datasheet formula
 // These are the nominal values for the Sonoff POW resistors:
 // * The CURRENT_RESISTOR is the 1milliOhm copper-manganese resistor in series with the
main line
 // * The VOLTAGE_RESISTOR_UPSTREAM are the 5 470kOhm resistors in the voltage divider
that feeds the V2P pin in the HLW8012
 // * The VOLTAGE_RESISTOR_DOWNSTREAM is the 1kOhm resistor in the voltage divider that
feeds the V2P pin in the HLW8012
 hlw8012.setResistors(CURRENT_RESISTOR, VOLTAGE_RESISTOR_UPSTREAM,
VOLTAGE_RESISTOR_DOWNSTREAM);

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 170

 //calibrate();

 // Init variables and expose them to REST API
 consumptionVariables = "";
 rest.variable("consumption",&consumptionVariables);
 rest.variable("state",&state);

 // Function to be exposed
 rest.function("led",ledControl);
 rest.function("actuate",actuate);

 // Give name & ID to the device (ID should be 6 characters long)
 rest.set_id("1");
 rest.set_name("esp8266");

 // Connect to WiFi
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");

 // Start the server
 server.begin();
 Serial.println("Server started");

 // Print the IP address
 Serial.println(WiFi.localIP());

 // initialize all the readings to 0:
 for (int thisReading = 0; thisReading < numReadings; thisReading++) {
 readings[thisReading] = 0;
 }

 checkState();
}

void loop() {

 static unsigned long last = millis();

 // This UPDATE_TIME should be at least twice the minimum time for the current or
voltage
 // signals to stabilize. Experimentally that's about 1 second.
 if ((millis() - last) > UPDATE_TIME) {

 last = millis();

 // subtract the last reading:
 total = total - readings[readIndex];
 // read from the sensor:
 readings[readIndex] = hlw8012.getActivePower();
 // add the reading to the total:
 total = total + readings[readIndex];
 // advance to the next position in the array:
 readIndex = readIndex + 1;

 // if we're at the end of the array...
 if (readIndex >= numReadings) {
 // ...wrap around to the beginning:
 readIndex = 0;
 }

 // calculate the average:
 average = total / numReadings;

 // Active power
 Serial.print("[HLW] Active Power (W) : ");
 activePower = hlw8012.getActivePower();
 Serial.println(activePower);

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 171

 // Average Active power
 Serial.print("[HLW] Average Active Power (W) : ");
 Serial.println(average);

 // Voltage
 Serial.print("[HLW] Voltage (V) : ");
 voltage = hlw8012.getVoltage();
 Serial.println(voltage);

 // Current
 Serial.print("[HLW] Current (A) : ");
 current = hlw8012.getCurrent();
 Serial.println(current);

 // Apparent Power
 Serial.print("[HLW] Apparent Power (VA) : ");
 apparentPower = hlw8012.getApparentPower();
 Serial.println(apparentPower);

 // Power Factor
 Serial.print("[HLW] Power Factor (%) : ");
 powerFactor = (int) (100 * hlw8012.getPowerFactor());
 Serial.println(powerFactor);

 consumptionVariables = "";
 consumptionVariables += "Active Power (W)=";
 consumptionVariables += activePower;
 consumptionVariables += ",";
 consumptionVariables += "Average Active Power (W)=";
 consumptionVariables += average;
 consumptionVariables += ",";
 consumptionVariables += "Voltage (V)=";
 consumptionVariables += voltage;
 consumptionVariables += ",";
 consumptionVariables += "Current (A)=";
 consumptionVariables += current;
 consumptionVariables += ",";
 consumptionVariables += "Apparent Power (VA)=";
 consumptionVariables += apparentPower;
 consumptionVariables += ",";
 consumptionVariables += "Power Factor (%)=";
 consumptionVariables += powerFactor;

 Serial.println();

 // When not using interrupts we have to manually switch to current or voltage
monitor
 // This means that every time we get into the conditional we only update one of
them
 // while the other will return the cached value.
 hlw8012.toggleMode();
 }

 checkState();

 // Handle REST calls
 WiFiClient client = server.available();
 if (!client) {
 return;
 }
 while(!client.available()){
 delay(1);
 }
 rest.handle(client);
}

// Custom function accessible by the API
int ledControl(String command) {

 // Get state from command
 int state = command.toInt();

 digitalWrite(6,state);
 return 1;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 172

}

// Custom function accessible by the API
int actuate(String param) {

 int command = param.toInt();

 // Turn Off
 if (command == 0) {
 digitalWrite(gpio13Led, HIGH);
 digitalWrite(gpio12Relay, LOW);
 state = "Off";
 return 0;

 // Turn On
 } else if (command == 1) {
 digitalWrite(gpio13Led, LOW);
 digitalWrite(gpio12Relay, HIGH);
 state = "On";
 return 1;

 // Actuate
 } else if (command == 2) {
 digitalWrite(gpio13Led, !digitalRead(gpio13Led));
 digitalWrite(gpio12Relay, !digitalRead(gpio12Relay));
 checkState();
 return 2;
 }

 return 3;
}

void checkState(){
 if (digitalRead(gpio13Led) == LOW && digitalRead(gpio12Relay) == HIGH){
 state = "On";
 } else if (digitalRead(gpio13Led) == HIGH && digitalRead(gpio12Relay) == LOW){
 state = "Off";
 }
}

Fig. 105 – Code: Sonoff Pow Custom Firmware

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 173

7.3 Appendix-C – FlexHousing System Setup Guide

7.3.1 FlexHousing Middleware

To run the FlexHousing Middleware, it is recommended to use a Java IDE (the NetBeans IDE

was the one chosen for the development of this project) and run the Apache Derby database

͞FleǆHousiŶg͟.

In case you want the Middleware to communicate with the BNearIT servers to access an

Aggregator that links to the real Virtual Market of Energy (VME), please read section 7.3.1.1

Remote Access.

If you wish to use the local Aggregator and VME modules and make the Middleware connect

to those, please read section 7.3.1.2 Local Access.

7.3.1.1 Remote Access

First, Ǉou ǁill haǀe to ĐoŶŶeĐt to BNeaƌIT’s VPN ;foƌ ŵoƌe details, ǀisit the liŶk

https://forge.soa4d.org/svn/arrowhead/WP5/FlexTutorial/arrowhead-benearit.html):

• IP: 77.53.53.44

• Port: 45678

• Username: guest

• Password: Guest5678&&

Neǆt, Ǉou ǁill haǀe to ĐoŶfiguƌe the Middleǁaƌe’s XMPP ĐlieŶt settiŶgs. To do so, Ǉou haǀe to

edit the properties file (full name: config.properties) in the resources folder located in the

FlexHousing project.

In this case, you should focus on the flexoffermanager and xmpp properties. The

following info should be useful for the XMPP configuration:

• The flexoffermanagerid property ƌefeƌs to the XMPP seƌǀeƌ’s aĐĐouŶt

username/id for the Middleware;

• The flexoffermanagerpassword property ƌefeƌs to the XMPP seƌǀeƌ’s aĐĐouŶt

password for the Middleware;

• The xmpphostname property ƌefeƌs to the XMPP seƌǀeƌ’s IP addƌess oƌ DN“;

• The xmppport property ƌefeƌs to the XMPP seƌǀeƌ’s listeŶiŶg poƌt;

• The xmppresource property ŵust ďe the saŵe as the Aggƌegatoƌ’s;

https://forge.soa4d.org/svn/arrowhead/WP5/FlexTutorial/arrowhead-benearit.html

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 174

• The xmppservicename property refers to the XMPP domain.

7.3.1.2 Local Access

First, you need to set up an XMPP server:

• Create three accounts: one for the VME, one for the Aggregator, and one for the

FlexofferAgent (the Middleware);

• The current XMPP server (running on Ubuntu 16.04 LTS) is using ejabberd for the

server and has these three accounts registered:

o ID: market; Password: market

o ID: aggregator; Password: aggregator

o ID: admin; Password: password

Next, you must configure the XMPP client settings in the MarketManager and

AggregatorManager classes (both are in the Wp5 project), and in the FlexofferManager class

(located in the FlexHousing project).

While you could manually edit these three classes, the recommended way is to edit the

properties file (full name: config.properties) placed in the Wp5 and FlexHousing project

folders. Either way, the following info should be useful for the XMPP configuration:

• These three classes use the Smack library as their XMPP client service;

• Important things to take note:

o The id properties ƌefeƌ to the XMPP seƌǀeƌ’s aĐĐouŶt useƌŶaŵe/id;

o The password properties ƌefeƌ to the XMPP seƌǀeƌ’s aĐĐouŶt passǁoƌd;

o The xmpphostname property ƌefeƌs to the XMPP seƌǀeƌ’s IP addƌess oƌ DN“;

o The xmppport property ƌefeƌs to the XMPP seƌǀeƌ’s listeŶiŶg poƌt ;oŶ

ejabberd, the port is 5222);

o The service name refers to the XMPP domain;

▪ A jabber account is identified like this: username@domain. For

instance, the Aggregator account is identified as

aggregator@localhost;

o The xmppresource property must be the same for all classes;

Reengineering and development of IoT Systems for Home Automation

Rafael Teles da Rocha 175

o It is recommended to set Security Mode to disabled to avoid any authorization

͞aŶŶoǇaŶĐes͟;

o The FlexofferManager must identify the AggregatorManager

(aggregatorid variable), and the AggregatorManager must identify the

MarketManager (marketid variable).

7.3.2 FlexHousing Web Platform

To run the FlexHousing web platform, it is necessary to install Laravel 5.4 or higher and the

Laravel Homestead virtual machine (for more details, visit the link

https://laravel.com/docs/5.4/installation).

After the Laravel installation, you should look into the .env file located in the FlexHousing

web platform folder, and check if the value of the API_URL property corresponds to the

FleǆHousiŶg Middleǁaƌe’s RE“T API ǁeď addƌess.

Lastly, input the command ͞homestead up͟ iŶ Ǉouƌ teƌŵiŶal aŶd the FleǆHousiŶg ǁeď

platfoƌŵ shall theŶ ďe aǀailaďle thƌough the ǁeď addƌess ͞flexhousing.app͟.

https://laravel.com/docs/5.4/installation

