

The EnerGAware Middleware Platform

Conference Paper

*CISTER Research Centre

CISTER-TR-170801

2017/10/29

Paulo Barbosa

António Barros*

Luis Miguel Pinho*

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/154176373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER-TR-170801 The EnerGAware Middleware Platform

© CISTER Research Center
www.cister.isep.ipp.pt

1

The EnerGAware Middleware Platform

Paulo Barbosa, António Barros*, Luis Miguel Pinho*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: 1130648@isep.ipp.pt, amb@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

More and more cyber-physical systems and the internet of things push for a multitude of devices and systems,
which need to work together to provide the services as required by the users. Nevertheless, the speed of
development and the heterogeneity of devices introduces considerable challenges in the development of such
systems. This paper describes a solution being implemented in the setting of a serious game scenario, connected
to real homes energy consumption. The solution provides a publish-subscribe middleware which is able to
seamlessly connect all the components of the system.

The EnerGAware Middleware Platform

Paulo Barbosa, António Barros, Luís Miguel Pinho

CISTER Research Center

School of Engineering of the Polytechnic Institute of Porto

Portugal

Abstract—More and more cyber-physical systems and the

internet of things push for a multitude of devices and systems,

which need to work together to provide the services as required

by the users. Nevertheless, the speed of development and the

heterogeneity of devices introduces considerable challenges in the

development of such systems. This paper describes a solution

being implemented in the setting of a serious game scenario,

connected to real homes energy consumption. The solution

provides a publish-subscribe middleware which is able to

seamlessly connect all the components of the system.

Keywords—internet of things; service-oriented architecture;

publish-subscribe; middleware

I. INTRODUCTION

The increasing pervasiveness of Cyber-Physical Systems
(CPS) and the Internet of Things (IoT), is transforming the
world we live in a set of highly dense and heterogenous
complex computing systems which are able to sense and
actuate the physical environment, connecting it with the virtual
world at our fingertips, on our computers or smartphones. This
pervasiveness is being pushed both by technological advances,
which allow cheap and widespread CPS/IoT devices, and by
increasing user demand for additional services. Although with
several advantages, this trend is leading to a multitude of
systems being deployed, most of the times using incompatible
technologies and communication systems.

In this regard, providing value requires that systems
integrate seamlessly, with an easy and quick access to the end
user, most of the times a non-expert on technology. This is
more and more important in several application domains, even
more in those targeting the general public, such as home
energy-efficiency systems and applications.

The EnerGAware project [1,2] tackles one of such cases
with a serious online game being used to enhance energy users’
behavioral change through education and training. This follows
from results that point out the effectiveness of serious games in
domestic energy consumption [3], which concluded that
gamification and serious game can be of value for energy
consumption, conservation and efficiency. The project
addresses existing houses, as the building sector currently
accounts for 40% of energy use in most countries [4] and has
the greatest energy saving potential [5]. As a consequence, the
cornerstone of the European energy policy has an explicit
orientation to the conservation and rational use of energy in
buildings [6]. As buildings tend to have long lifetimes, to

achieve significant impact in the short- and medium-term the
challenge must be focused on the existing buildings.

The project has deployed a real-life conditions pilot in a set
of houses located in Plymouth (United Kingdom). The energy
consumption of houses, as well as the awareness, attitudes,
engagement and self-reported behaviours of the tenants are
being assessed both before and after the implementation of the
serious game 1. Once the project is finished, it will provide
more quantitative empirical research on the effectiveness of
serious games within the domain of domestic energy reduction.

The serious game [7] is based on pseudo-realistic scenarios
(Figure 1); the requirements analysis phase [8] and focus
groups concluded that this would be better than a fantasy world
(or sci-fi, or cartoon) and better than a fully-realistic
simulation. The pilot includes energy (electricity and gas
consumption) monitoring through an infrastructure installed in
the homes, allowing the game to display to the user real energy
savings (weighted according to the climate severity). Players
making real energy savings receive rewards in the game.

The monitoring infrastructure uses a proprietary
communication system, being the data available through a
specific server (Concordia [9]). Considering that the energy
consumption is related to the weather conditions, daily weather
parameters, especially air temperature, are also retrieved from a
weather platform.

To connect all systems, and aggregate and distribute all the
data (energy consumption, weather and game experience), an
IoT middleware was designed. The middleware uses Web of
Things technologies providing generic and flexible REST-
based APIs with messages based on URIs/URLs (as web
services) [10]. This allows that a small number of generic
methods can create a consistent, interoperable API [11].

1 Preliminary results show a daily electricity saving ranging

from 3 to 10% [1]

Fig. 1. Game scenarios

With respect to service management, the middleware
considers an architecture consisting of a set of interconnected
components which may be co-located and/or distributed over a
network of communicating computer nodes. The approach
tackles the limitation of Service Oriented Architectures (SOA)
using a Publish-Subscribe approach, removing the strong
coupling of the client/server paradigm [12].

Although the middleware was specified and built for the
purpose of the project, it was designed to be generic and
support a multitude of house devices, and multiple applications
or games, being also scalable in terms of load. This paper
provides an overview of the main components of this
middleware and how it is being used in the scope of the
EnerGAware pilot.

The paper is structured as follows. Section II presents an
overview of the architecture of the middleware. Afterwards,
Section III describes the publish-subscribe approach used,
while Sections IV and V describe the core and application
modules. Section VI provides an evaluation of the
implementation. Finally, Section VII concludes the paper.

II. THE ENERGAWARE MIDDLEWARE

A. Project Requiremnts

The EnerGAware Middleware is required to maintain a
repository of different types of data, retrieved from different
sources (as represented in Figure 2):

• Energy consumption readings, available from the
Concordia Proprietary Server. This server is
responsible to collect data received from the
monitoring infrastructure and provides a set of services
to export the energy consumption.

• Local (in this case Plymouth) weather data, available
from weather services (currently Weather
Underground). The weather data can be provided by
automatic online sources or by periodic files.

• Pilot households’ game experience are available from
the Serious Game Server. This server harvests the
gaming experience data, and provides a set of services
that aggregates and exports the relevant game
experience data.

Besides collecting and storing the mentioned sets of data,
the Middleware must export the same data in a suitable format
for a post analysis conducted by the specialist partners of the
EnerGAware consortium. These data are anonymized, such
that it allows partners to discriminate between pilot homes, but
it is impossible to identify the physical houses to which the
data refers to.

The game incorporates a system of player rewards
determined by energy savings in the real, physical world, such
that these rewards can be used by the player to improve his
progress in the game. The EnerGAware Middleware must
compute these real-world energy savings and provide this data
to the Game Server.

Furthermore, the EnerGAware Middleware must provide
web services to conveniently export relevant data:

• To the Game Server: computed values of energy
savings for each individual home.

• To the EnerGAware consortium partners: aggregated
energy meter readings, weather data and game play
experience.

Finally, data such as overall energy consumption and
achieved reduction may be displayed to the general public,
after being anonymized and aggregated, such that individual
homes cannot be discerned nor identified.

B. Technical Architecture

The Middleware is built upon a FIWARE platform [13]
which establishes a set of Application Programming Interfaces
(API) which facilitates the development of applications for the
IoT. The FIWARE platform is supported by the Future Internet
Public-Private Partnership (FI-PPP) project of the European
Union [14], and provides in public access an open-source
reference implementation of each of its components. Typical
IoT applications acquire data from multiple and diverse sources
types but all related to a specific context, which is then
processed and registered, such that applications can answer
requests on the working context. Nevertheless, and although
FIWARE provides a multitude of components, the scalability
and interoperability requirements considered for the
middleware required the development of a set of new service
modules.

Therefore, the EnerGAware Middleware functionality is
achieved by several components (represented in Figure 3):

• FIWARE modules: the Orion context broker (manages
the information including registrations and
subscriptions of publishers/subscribers of data), the
mongoDB persistent database and the Wirecloud web
user interface;

• Service modules, specific to the middleware, handling
connections and data acquisition and export.

Fig. 2. System Architecture

The service modules are responsible for the acquisition and
processing of data from the energy meter readings, the game
experience and the weather conditions. In addition, they handle
the requests of specific data (either bulk data for energy
consumption behaviour analysis or game rewards based on
energy savings). These services execute on top of a Node.js
[15] runtime environment. The Node.js is an open-source
event-driven Javascript runtime that executes on the server
side. Node.js executes on a single thread, and I/O calls are
treated asynchronously (non-blocking), such that other
concurrent operations can be executed; when a call finishes, a
callback function is called to process the results. This
characteristic allows Node.js to support multiple concurrent
requests without the execution cost of thread context switching
and the possibility of deadlock, as no locks are used.

The Middleware stores the acquired data persistently in a
MongoDB [16] database. MongoDB is an open-source
document-oriented Database Management System (DBMS).
Unlike traditional relational databases that organise data into
tables and relations, MongoDB organises data in JSON
documents (i.e. records) that are gathered in collections,
instead. Furthermore, MongoDB allows dynamic schemas,
such that documents in the same collection do not need to
present the same format. The middleware is independent of the
database configuration (centralized, decentralized, clustered,
etc.) although for the specific implementation of the project, a
centralized databased (accessed by all services) is used.

The web user interface is built upon Wirecloud [17], a
FIWARE application mashup component. Wirecloud is a web
mashup platform that allows an end user to create a personal
dashboard from independent widgets. Wirecloud widgets are
developed in HTML and Javascript, and must comply with a
set of rules, such that they can be registered into a Wirecloud
widget repository where users can select and load preferred
widgets into his/her dashboard.

Services that compute large quantities of data necessarily
have to manage each client request effectively and distribute
computational tasks to provide a decent response-time. As
such, the idea of the proposed system architecture is to transfer
the responsibility of solving these problems from each service
system to a single system, to ease the development of services.

The designed architecture provides different services, such
as energy consumption to weather statistics, from different sub-
systems in a centralized manner. Acting as a platform, the
architecture allows an effective management of service
requests recurring to load-balancing operations.

The service modules architecture, depicted in Figure 3, is
composed by two types of modules:

• Core: the core modules (gateway, servicemanager)
enable all the inherent features of the architecture,
mainly the management of service requests and inter-
operability of services.

• Applicational: the applicational modules (currently
inhouse, game, weather) provide the domain logic for
the end-user, such as energy consumption or game
statistics. The services provided by the applicational
modules are provided through the core systems.

Since the core modules act as proxies and are capable of
interrupting and modifying services, they hold fundamental
responsibilities for the services consumption. Therefore, it is
important to guarantee the security (integrity and availability)
of the services.

The designed solution divides the deployment of all
modules in two environments:

• Intra-network: this environment is inaccessible to the
end-user, and only the deployed modules in the
demilitarized zone have access to this environment.
The servicemanager and the publish/subscribe module,

Fig. 3. Midddleware architecture

context-broker and the remaining applicational
modules are deployed in the intra-network
environment. By restricting the access from the end-
users, especially malicious users, to this environment it
limits the exposure of vulnerabilities.

• Demilitarized Zone: this is the only environment
accessible to the end-user and exposes only the front-
end modules, in this case the gateway and wirecloud
modules.

The middleware supports security both by HTTP over TLS
(HTTPS), with configured accounts, as well as IP filtering, for
more restricted accesses.

III. PUBLISH-SUBSCRIBE ARCHITECTURE

The proposed architecture incentives the deployment of the
same application modules in different machines, which
requires ensuring the data consistency between these databases.
By using the FIWARE publish/subscribe context-broker, the
application components do not have the responsibility of
updating their databases.

When the servicemanager integrates new services, it
automatically subscribes the service’s module to the context-
broker if it is necessary. In case of an inhouse module,
whenever it is integrated into the servicemanager, it will
automatically receive daily request posts with the most recent
energy consumption measurements.

Regarding subscription, as represented in Figure 4, only the
servicemanager has the responsibility of subscribing modules
in the context-broker. Whenever a new module joins the
servicemanager, if necessary, the servicemanager
automatically subscribes the joined module to the context-
broker.

Scripts, deployed in the service-manager module, request
the most recent content from their content providers (e.g: the
content provider of the inhouse module is the meter data
collection system) and in success immediately update the
context-broker with the new values. Finally, the context-broker
notifies every subscribed module, as represented in Figure 5.

Currently there are three available publication services:

• Energy publication service: every inhouse module
needs to be subscribed;

• Game publication service: every game module needs to
be subscribed;

• Weather publication service: every weather module
needs to be subscribed.

IV. CORE MODULES

As explained, there are two core modules, the gateway and
servicemanager, both acting as proxies, rerouting all service
requests from the user to the requested service module.

A. Gateway Module Description

The gateway consists in a reverse proxy and consequently
is the only module that is directly interacted by the user. Each
service request received is rerouted to the servicemanager
module deployed in a different machine than the gateway. The
main purpose of the gateway is to hide the existence of the
other modules, including the servicemanager to avoid any
security vulnerability exposure.

Furthermore, the gateway can also have features like:

• Monitoring of client requests: by having an history of
IP addresses it is possible to monitor the behaviour of
each user;

• Application Firewall: since all requests pass through
the same point, in order to avoid common cyber-
attacks, like Denial of Service, the gateway can protect
the applicational modules in run-time by blocking IP
addresses;

• Encryption: the gateway can also encrypt (SSL) the
data retrieved from the applicational modules, like
inhouse, guaranteeing integrity and confidentiality
security properties.

Fig. 4. Subscription sequence diagram

Fig. 5. Publish sequence diagram.

B. Service Manager Module Description

The most relevant module of the architecture is the
servicemanager. It is the module that aggregates all
applicational modules, and distributes all service requests
recurring to load-balancing operations. At the same time, it
allows the integration of new REST services without the need
of interrupting itself.

Regarding the calculations made for load balancing,
currently the servicemanager uses Round-Robin load balancing
algorithm. Though it is not one of the most accurate
distribution methods of traffic, it is a very simple method to
implement. The applicational service’s modules are grouped in
a list and the algorithm loops the list and distributes each
request from the top module to the lower module located in the
list. Whenever the algorithm finally distributes the requests to
every module located in the list, it loops again the list, always
in the same order (top-down). It should be noted that other load
balancing algorithms can be used in the service-manager.

Regarding the interoperability of services, the
servicemanager can aggregate any REST service without any
restriction and interruptions. This is done using the Dynamic
Routing characteristic of the Node.js web application
framework, Express [18]. Periodically, the module searches for
any “json” file, to dynamically add and update the services
rerouted by the servicemanager.

V. APPLICATIONAL MODULES

As the middleware is currently deployed to support the
EnerGAware pilot, it provides three application modules to
handle the different types of data services: inhouse, game and
weather.

A. Inhouse Module Description

The inhouse module (Figure 6) provides the readings of
real energy consumption, both electricity and gas, which are
automatically collected periodically. With this data, the module
is capable of providing consumption analysis such as the
evolution of energy consumption over time, for each house.

Regarding data persistency, the consumption readings are
collected every 15 minutes for each house, collecting at the end
of each day around 100 signals per house. When dealing with
only 100 houses, in just over a month there will be around 300
thousand signals that should be stored and rapidly processed by
the inhouse module. To guarantee scalability, each time period
signal of each house is stored in a separate document.

The EnerGAware project operates with two different
consumption readings: electricity and gas consumption. Both
signals are collected at the same instant and therefore are stored
in the same database document. Average size of a stored
document is 500 bytes, thus one year of collected readings of
only one house accounts for 17.52 megabytes (MB). Since the
EnerGAware project monitors 80 dwellings, each month the
database size expands 119 MB and currently holds
consumption readings since 2015. The data size of the services
can range from few hundred bytes to larger values, dependent
on the requested period (e.g., the service getConsumption has a
data size of 27KB per requested day).

B. Game Module Description

The game module (Figure 7) is responsible for registering
the overall progression of each user on the game by home.
Every day this module updates its collection with the most
recent game progressions of all users.

Regarding data persistency, the module stores each user’s
game progression in a separate document, in the MongoDB
database.

C. Weather Module Description

The weather module (Figure 8) has the responsibility of
providing weather data of every day, such as temperature and
humidity, from a specific location.

Fig. 8. Services provided by the weather module

Fig. 7. Services provided by the game module

Fig. 6. Services provided by the inhouse module

Regarding data persistency, the module stores daily weather
measurements, mandatory for the service
getSelectedHouseECR of the inhouse module, to compensate
the effect of outside temperature in the energy consumption of
a house. Each daily weather data is stored in separate database
documents.

VI. EVALUATION

In order to showcase the feasibility and scalability of the
middleware, an evaluation was performed by increasingly add
servers to process incoming requests. The evaluation was
performed in a Google Cloud Platform2 virtualized
environment with:

• The service manager service is provided by one
instance (8 cores @ 2.3 GHz)

• The applicational services are provided by 1 to 9
virtualized servers (each with 2 Intel Xeon @ 2.30
GHz)

Requests were simulated using the Apache Benchmark
tool 3, configured for 100K requests (1K simultaneous);
multiple runs were executed, with mean values for processed
request/second being presented in Figure 9 (standard deviation
ranging from 1 to 8%).

The analysis shows how the system is able to scale linearly
with the number of applicational services up to the limit of full
occupancy of the service manager server (when 9 applicational
servers are used).

VII. CONCLUSIONS

This paper provided an overview of the architecture and

implementation of the EnerGAware Middleware, a scalable
service-oriented system which is used to interoperate between
energy monitoring systems and a serious online game.
Although implemented for a specific application it has been
designed to be generic, allowing easy extension and scalability
to be able to handle, even if simultaneously a multitude of
systems and applications. The middleware is currently being

2 https://cloud.google.com/
3 https://httpd.apache.org/docs/2.4/programs/ab.html

used to support a pilot for a European R&D project for energy
efficiency.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme, under grant
agreement No 649673 (EnerGAware); also supported by
National Funds through FCT/MEC (Portuguese Foundation for
Science and Technology) and co-financed by ERDF (European
Regional Development Fund) under the Portugal2020 Program,
within the CISTER Research Unit (CEC/04234).

REFERENCES

[1] M. Casals, M. Gangolells, M. Macarulla, A. Fuertes, V. Vimont, L.M.
Pinho, “A serious game enhancing social tenants’ behavioral change
towards energy efficiency”, 2017 GIoTS Workshop on Energy Efficient
Solutions Based on IoT - EESIoT 2017, June 2017

[2] EnerGAware project, “Energy Game for Awareness of energy efficiency
in social housing communities”, EU funded project, contract number:
649673, 2016. Available at: http://energaware.eu/, last accessed
September 2017.

[3] D. Johnson, E. Horton, R. Mulcahy, M. Foth, “Gamification and serious
games within the domain of domestic energy consumption: A systematic
review”, Renewable and Sustainable Energy Reviews, vol. 73, pp. 249-
264, 2017

[4] European Union, “Directive 2012/27/EU of the European Parliament
and of the Council of 25 October 2012 on energy efficiency, amending
Directives 2009/125/EC and 2010/30/EU and repealing Directives
2004/8/EC and 2006/32/EC”, 2012. Available at: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027, last
accessed September 2017.

[5] International Energy Agency, “Energy performance certification of
buildings. A policy tool to improve energy efficiency”, 2010. Available
at: http://www.iea.org/publications/freepublications/publication/
buildings_certification.pdf, last accessed September 2017.

[6] E. Asadi, M. Gameiro da Silva, C. Henggeler Antunes, and L. Dias,
“Multi-objective optimization for building retrofit strategies: A model
and an application”, Energy and Buildings, vol. 44, pp. 81-87, 2012

[7] Energy Cat: the House of Tomorrow, http://energycatgame.com, last
accessed September 2017.

[8] EnerGAware project, “D2.3. Game requirements”, 2016. Available at:
http://www.energaware.eu/downloads/EnerGAware_D2.3_Game_Requi
rements_r1.pdf, last accessed September 2017.

[9] Concordia Cloud Platform, https://www.advanticsys.com/services/lot-
of-options/, last accessed September 2017.

[10] Erik Wilde, "Putting Things to REST", UCB iSchool Report 2007-015,
School of Information, UC Berkeley, November 2007

[11] D. Guinard, I. Ion, S. Mayer, “In Search of an Internet of Things Service
Architecture: REST or WS-*?” A Developers’ Perspective”, Mobile and
Ubiquitous Systems: Computing, Networking, and Services. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering Volume 104, 2012.

[12] Albano, M, Ferreira, L, Sousa, J, "Extending publish/subscribe
mechanisms to SOA applications", Work in Progress Session, 12th IEEE
World Conference on Factory Communication Systems (WFCS 2016). 3
to 6, May, 2016. Aveiro, Portugal.

[13] FIWARE, http://www.fiware.org, last accessed September 2017.

[14] Future Internet Public-Private Partnership Programme,
http://www.fi-ppp.eu/, last accessed September 2017.

[15] Node.js runtime, https://nodejs.org/, last accessed September 2017.

[16] MongoDB, https://www.mongodb.com, last accessed September 2017.

[17] Application Mashup – Wirecloud, https://catalogue.fiware.org/enablers/
application-mashup-wirecloud, last accessed September 2017.

[18] ExpressJS, https://expressjs.com/, last accessed September 2017.

Fig. 9. Evaluation of middleware scalability

