
A UNIFIED SOLUTION FOR THE INTEGRATION OF MEDIA
APPLICATIONS AND PRODUCTS IN BROADCASTER

ENVIRONMENTS – THE ASSET ARCHITECTURE

PAULA VIANA1, 2, MARIO CORDEIRO1, VITOR RODRIGUES1, 1INESC Porto (2ISEP), Portugal

DAMIEN BOMMART, Compaq-HP, France

GIULIA FERRARI, MASSIMO STRAMBINI, SHS, Italy

INGO HOENTSCH, TOBIAS MARX, IRT, Germany

WALTER BERNET, EDGAR MÜLLER, Dalet a.n.n, Germany

BERNARD COUSIN, MATHURIN BODY, INRIA, France

SERGE DAULARD, THOMSON, France

BERNARD ALGAYRES, MARC LAURENTIN, FPDI, France

ABSTRACT

The ASSET project, an European funded project, is
defining and developing a software architecture that
will be made available to manufacturers for allowing
easy interfacing between digital television equipment
and applications. The project partners (Compaq-HP
Group, THOMSON, Dalet a.n.n, INESC Porto, INRIA,
Institut fuer Rundfunktechnik, Front Porch Digital
International, SHS Multimedia) are creating an
universal and unified system architecture that shall
make the integration of different systems easier. This
paper gives an overview of the project approach,
describes the system architecture and the prototype
under development.

INTRODUCTION

The introduction of IT concepts and technologies has
been opening the possibility for new approaches on the
implementation of digital television facilities covering
the whole workflow: acquisition, creation, editing,
control, storage, broadcasting, publishing and archiving
of digital TV content.

This approach hasn’t however yet solved the problems
that Broadcasters and System Integrators face due to
lack of connectivity and interoperability between
equipment and applications: solutions available in the
market are still vertically integrated or proprietary,
requiring specific and costly development, relying
typically on a single manufacturer or system integrator.

The ASSET project [1] (IST-2001-37379 Architectural
Solutions for Services Enhancing digital Television)
main goal is to overcome these problems by creating an
universal and unified system architecture that will

provide a set of software tools and APIs that shall make
the integration of different systems independent from
the device manufacturer, programming language and
underlying middleware platform.

The project is exploiting opened standards and
emerging technologies (like MXF [2], standard data
models for describing essence, XML [3] and distributed
systems technologies) for defining the concept of an
Asset Middleware that will wrap the standard software
layered architecture into a software middleware which
proposes:
• The abstraction of broadcast software and

hardware devices as logical resources
• Generic, openly defined and simple interfaces to

control devices and data distribution
• Added value for system logic: decisions to

configure the devices and to convert/move data

SYSTEM ARCHITECTURE

The ASSET architecture is based upon a software
Framework - the ASSET Framework - composed by a
set of standard interfaces and protocols for applications
and products working together in an integrated
environment.

Once applications are connected to the Framework,
they can communicate with any other application.

Products from different manufacturers can be natively
connected to the ASSET Framework or through a
software adaptor – the ASSET agent or ASSET proxy –
enabling their control and management by any ASSET
compliant application connected to the Framework.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/154176303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Adding a new application or a new product to the
system simply requires the writing and integration of a
small software adaptor.

Figure 1 illustrates the different components of the
ASSET architecture.

Using the MAB
Generic API

ASSET Agent ASSET Proxy

Legacy product

ASSET Agent

ASSET
Aggregated

Service

ASSET
Function
Service

ASSET
Compliant

product

ASSET
Compliant

product

ASSET Data

ASSET
Aggregated

Service

Common services

•Service Repository

•Security

•Notification

•Debug/logging

•Management

•Monitoring

•Transaction

•Licence

ASSET Framework

Service API

ASSET Compliant
Application

Business Layer

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

Using the MAB
Generic API

ASSET Agent ASSET ProxyASSET Proxy

Legacy product

ASSET Agent

ASSET
Aggregated

Service

ASSET
Aggregated

Service

ASSET
Function
Service

ASSET
Function
Service

ASSET
Compliant

product

ASSET
Compliant

product

ASSET Data

ASSET
Aggregated

Service

Common services

•Service Repository

•Security

•Notification

•Debug/logging

•Management

•Monitoring

•Transaction

•Licence

ASSET Framework

ASSET services library

ASSET Compliant
Application

Business Layer

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

Figure 1 – ASSET Architecture

ASSET Architecture components

The ASSET Architecture defines a number of concepts
and functions that enable the implementation of an
ASSET Compliant Framework:

• The ASSET Common Services provide
implementation of key infrastructure requirements
such as security, logging, notification, resource
management, etc. This allows a uniform and single
implementation of these services throughout the
solution.

• The ASSET Function Services provide an
abstraction layer at the function level (encoder,
recorder, player, etc.) hiding the specificities of
products connected through agents and proxies (eg:
at that level a VTR output or a Video Server output
are just considered as 2 system-wide logical output
ports).

• ASSET Aggregated Services implement additional
logic on top of lower layer services (provided by
ASSET function services, ASSET common
services or even by other aggregated services). An

example of an ASSET aggregated service can be
an ingest service that is built on top of a recorder
function service, a transcoder function service and
the ASSET notification common service (to notify
applications connected to the Framework that a
new asset has been acquired).

• An ASSET compliant application is a top level
ASSET software component. It uses the services
provided by common services and aggregated
services registered to the Framework.

• The ASSET framework software adaptor enables
the connection of an application or a product to the
ASSET framework. It allows also sending and
receiving messages to/from other software
components connected to the ASSET framework.

• The ASSET services library is a software
component that must be included into (or linked
with) the Application software code in order to use
the services provided by the ASSET framework (an
ASSET framework software adaptor is one of the
components of the ASSET services library).

• A product is a manageable hardware or software
component implementing one or several common
functions: most of the Video Server products
implement a Recorder function (handling the
Audio/Video input ports), a Player function
(handling the Audio/Video output ports) and a
Storage function (managing the storage repository
where Media assets are recorded to or played
from).

• An ASSET compliant product is a product that is
managed by the framework through a built-in
ASSET agent (which includes an ASSET
framework software adaptor).

• A legacy product is a product that has no built-in
ASSET agent. Nevertheless, this product can still
be managed by the ASSET framework via an
external software module called an ASSET proxy
(which includes also an ASSET framework
software adaptor).

THE MEDIA ASSET BUS CONCEPT

The ASSET architecture is implemented through a
software bus called the Media ASSET Bus or MAB.

The goal of the MAB is to provide support for the
widest range of applications and products integration
within the ASSET framework, independently from the
underlying protocols (RS-422, TCP, UDP, HTTP or
SOAP) or the operating system environments.



The MAB is a set of standard interfaces and protocols,
for applications and products, working together in an
integrated environment. It defines:
• a message based Transport Abstraction Layer

(TAL), with XML format message exchange over
the transport layers. The abstraction provides both
synchronous as well as asynchronous call
semantics.

• an interface that allows any third party media
application or product to integrate into the Media
ASSET Bus by developing a simple software
adapter. Application developers or Agent or Proxy
developers use the MAB Software Development
Kit (SDK) in order to connect to the MAB and
exchange messages with other MAB components.

The concept of MAB is illustrated in Figure 2 -
different Media ASSET Bus components are connected
via software adaptors built on top of the MAB SDK.

Figure 2 – The Media ASSET Bus

ASSET DATA MODEL

Within the ASSET framework, three data models,
independent of each other and serving different
purposes, were defined:
• A Structural and Control Data Model for the

control and management of products and services
available through the ASSET framework

• A Descriptive Data Model for the description of
essence

• A Content Management Data Model for locating
media assets

Only the first data model is maintained internally by the
ASSET framework. The other two categories reside
outside the MAB and are accessed through an
abstraction layer on top of the corresponding metadata
service. This approach guarantees that existing Media

Asset Management systems can be integrated in the
ASSET framework.

Structural and Control Data Model

The Structural and Control Data Model is the repository
for the information related to all the services available
through products in the ASSET framework. This data
model is strictly tailored to the ASSET framework and
represents the topology of the system and resources.

Descriptive Data Model

Almost every broadcaster or production company may
have its own workflow and its own proprietary set of
metadata describing essence, workflows and processes.

Hence, it is impossible to introduce a descriptive data
model within ASSET that would meet all the different
requirements. As a result, ASSET does not prescribe a
fixed and universal data model, but provides facilities
that allow users to implement their own descriptive data
model. The idea of the descriptive data model within
ASSET is not the storage of descriptive metadata, but
the capability of exchanging and understanding
descriptive metadata.

In order to offer an added value and to guide users
implementations, ASSET provides a default data
model. DMS-1 [7][8] is not compulsory and may be
replaced by any other data model. However, only a
single data model can be used within one ASSET
system.

Content Management Data Model

Neither the Structural and Control Data Model nor the
Descriptive Data Model provides a mean to:
• Define the structure of a Media asset (is it made of

1 physical file?, a collection of files?). For one
existing Video Server, a Media Asset can be made
of 1 file for storing the video essence, 4 files for
storing the audio essence, 2 time-code files and 1
extra metadata file while for another video server a
Media Asset will be stored in a single file (e.g.
MPEG-2 Transport Stream file).

• Find the physical location of a Media Asset in the
different storage repositories present in the system.

• Link derived Media Assets (same clip encoded at a
different bit rate or using different compression
techniques) from the origin Media asset.

The goal of the Content Management Data Model is to
address this functional need.

MAB SDK MAB SDK MAB SDK

MAB
Common
Services

Newsroom
Application

Ingest
Aggregated

Service

Player
Function
Service

Recorder
Function
ServiceASSET services

library

MAB Transport Abstraction Layer

Storage
Function
Service

MAB SDK

Video Server
Proxy

MAB SDK
Video Server

Adaptor

Video Server
Proxy

MAB SDK
Archive Server

Adaptor

VTR
Proxy

MAB SDK
VTR Adaptor

XML messages

Legacy
Protocols

MAB SDKMAB SDK MAB SDKMAB SDK MAB SDKMAB SDK

MAB
Common
Services

Newsroom
Application

Ingest
Aggregated

Service

Player
Function
Service

Recorder
Function
ServiceASSET services

library

MAB Transport Abstraction Layer

Storage
Function
Service

MAB SDK

Storage
Function
Service

MAB SDK

Video Server
Proxy

MAB SDK
Video Server

Adaptor

Video Server
Proxy

MAB SDK
Video Server

Adaptor

Video Server
Proxy

MAB SDK
Archive Server

Adaptor

Video Server
Proxy

MAB SDK
Archive Server

Adaptor

VTR
Proxy

MAB SDK
VTR Adaptor

VTR
Proxy

MAB SDK
VTR Adaptor

XML messages

Legacy
Protocols



CONTENT EXCHANGE

The requirement to share/exchange content files
between broadcast facilities, using non-proprietary
formats, has been emphasised by user organisations like
EBU. Aspects like, multiple users to simultaneously
and independently access the same content; various and
adaptable speed transfer across Local and/or Wide Area
Network; common "container" for data, metadata and
essences organised in data models; simple and direct
access to the content through standardised network
protocols and interfaces and unified formats for
manipulating, managing, sharing, storing and
distributing essences and metadata are priorities that
must be satisfied by emerging content exchange
technologies.

The Pro-MPEG Forum [4] and the Advanced Authoring
Format (AAF) Association [5] developed an open
standard that ensures the interoperability among the
different vendor systems involved in production
environments.

MXF - Material eXchange Format

MXF [6][2] has been designed to meet user demands. It
is being put forward as an Open Standard that is not
compression-scheme-specific, simplifying the
integration of systems using MPEG and DV as well as
future, yet unspecified, compression strategies.
Transportation of these different files is then
independent of content, and does not dictate the use of
specific manufacturers’ equipment. Any required
processing can simply be achieved by automatically
invoking the appropriate hardware or software codec.

MXF in ASSET Framework

According to the ASSET Framework, content exchange
(audio-visual material and associated metadata) shall
rely on a file format that provides full interoperability
between different equipment and different applications.
The exchange format should be open and standardised,
compression-independent, cross-platform and support
streaming/transfer bridging.

Due to its characteristics, MXF is being used as the
ASSET solution for Content Exchange. Two different
scenarios were defined:
• the native interchange file within the same ASSET

framework
• the import/export of both Essence and Metadata

between different ASSET architecture based
systems or simply external ASSET MXF compliant
products.

The difference between these two approaches does not
reside in the file format being used (both cases use
MXF) but in the content of the MXF file:
• for the Exchange between ASSET compliant

products connected to the same ASSET
framework, only the essence and the structural
metadata will be included in the file as the
correspondent descriptive metadata is stored inside
the ASSET metadata function services, shared by
both products.

• For Importing/exporting to/from outside
ASSET, descriptive metadata can be included in
the MXF file. The import process must extract the
descriptive metadata and update the ASSET
metadata function services. The export process
must build MXF files with both structural and
descriptive metadata (available from the ASSET
metadata common services) allowing external
applications and systems to access essence and
metadata (structural and descriptive) in just one file
transfer.

DEMONSTRATION PLATFORM

Figure 3 shows the currently planned demonstrator for
IBC 2003. This demonstrator will be a deployment
example of the ASSET framework in the common
situation of TV production, where devices and
applications of different manufacturers are integrated
into one system. The demonstrator does not focus on
the particular workflow that has been chosen, but on
how the functionalities of the system are supported by
the ASSET middleware and how integration of the
system is simplified by the ASSET technology.

Figure 3 – ASSET demonstration scenario

The demonstrator uses two clients and several providers
of different manufacturers to emulate a simple
workflow of a News Platform. The clients are a media
control application and a news system. The media
control application is used to control the ingest

Ingest Encoder Metadata Archive Playout MXF-
Encoder

Near Line
Storage OnLine

Storage

LowRes
Storage

ASSET Framework

Media
Control Newsroom

M
X

F
B

u
sA/V Feed

Command&Control
Structural&Control Metadata

Descriptive Metadata
Content Management Metadata
HighRes Essence
LowRes Essence

Structural&Control
Metadata

MXF
Import/Export

MXF Exchange

Ingest Encoder Metadata Archive Playout MXF-
Encoder

Near Line
Storage OnLine

Storage

LowRes
Storage

ASSET Framework

Media
Control Newsroom

M
X

F
B

u
sA/V Feed

Command&Control
Structural&Control Metadata

Descriptive Metadata
Content Management Metadata
HighRes Essence
LowRes Essence

Structural&Control
Metadata

MXF
Import/Export

MXF Exchange



processes, to delete content, to copy content or to move
content between devices. The newsroom application
provides the creation of a programme (rundown)
referencing essence located on the online storage, offers
a preview of the material and the metadata, and triggers
the playout of the videos.

The providers are an ingest server, a transcoding
device, an archive system (near-line storage), a online
storage system, a playout server, a MXF encoder and a
database containing metadata describing all content
stored in the system.

In the demonstration system, content can be previewed
and played out via the newsroom application. The
media control application can initiate content transfers
between the archive server, the online storage or the
playout server. Content can be ingested into the system
via A/V- feed to the ingest server or via MXF file
transfer. In both cases, descriptive metadata is created
by the system or, if it already exists, extracted from the
ingested content. A low-resolution browse stream is
generated to support the pre-view functionality of the
newsroom system.

Using the ASSET framework within the above scenario
allows both easy integration and collaboration of
various proprietary applications and devices within a
broadcast environment and transparent exchange of
essence through the aid of MXF.

The ASSET demonstrator can also serve as a reference
system where end-users, administrators and integrators
are able to test and to verify the implemented
functionality against the requirements.

CONCLUSIONS

This paper presents the work under development in the
IST ASSET Project. The project defined an architecture
and APIs that will be made available to manufacturers,
so that interconnection between equipment in a digital
television environment is easier. The architecture,
concepts and demonstration scenario, have already been
defined by the partners. The project is currently
working towards the development of a newsroom
platform that will demonstrate the ASSET concepts.

REFERENCES
[1] ASSET web site – http://www.ist-asset.com

[2] Pro-MPEG Forum, Material eXchange Format
(MXF) 10b, http://www.pro-mpeg.org/mxf.htm,
October 16, 2002

[3] Extensible Markup Language (XML) 1.0 (Second
Edition). W3C Recommendation. World Wide
Web Consortium, http://www.w3c.org/TR/REC-
xml, October 6, 2000

[4] Pro-MPEG Forum - http://www.pro-mpeg.org
[5] AAF Association – http://www.aafassociation.org
[6] Bruce Devlin, MXF – the Material exchange

Format, EBU Technical Review, July 2002
[7] Pro-MPEG Forum, A guide to MXF Descriptive

Metadata Schemes and their application, August
2002

[8] Pro-MPEG Forum, Material Exchange Format
(MXF) - Descriptive Metadata Scheme (DMS-1),
October 2002


