
Chapter 1
A routing/assignment problem in garden
maintenance services

J. Orestes Cerdeira, Manuel Cruz and Ana Moura

Abstract We address a routing/assignment problem posed by Neoturf, which is a
Portuguese company working in the area of project, buildingand garden’s main-
tenance. The aim is to define a procedure for scheduling and routing efficiently
its clients of garden maintenance services. The company hastwo teams available
throughout the year to handle all the maintenance jobs. Eachteam consists of two
or three employees with a fully-equipped vehicle capable ofcarrying out every kind
of maintenance service. At the beginning of each year, the number and frequency
of maintenance interventions to conduct during the year, for each client, are agreed.
Time windows are established so that visits to the client should occur only within
these periods. There are clients that are supposed to be always served by the same
team, but other clients can be served indifferently by any ofthe two teams. Since
clients are geographically spread over a wide region, the total distance traveled while
visiting clients is a factor that weighs heavily on the company costs. Neoturf is con-
cerned with reducing these costs, while satisfying agreements with its clients. We
give a mixed integer linear programming formulation for theproblem, discuss lim-
itations on the size of instances that can be solved to guarantee optimality, present
a modification of the Clarke and Wright heuristic for the vehicle routing with time
windows, and report preliminary computational results obtained with Neoturf data.

J. Orestes Cerdeira
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1.1 Introduction

In this paper we address a routing/assignment problem posedby Neoturf, which is
a Portuguese company working in the area of project, building and garden’s main-
tenance. One of the services provided by Neoturf is the maintenance of private gar-
dens of residential customers (about 60), whose demands aremainly periodic short
time interventions (usually 1 to 3 hours). In the beginning of each year, the num-
ber and the estimated frequency of maintenance interventions to conduct during the
year are accorded with each client. That estimate on frequency is then used to set-
tle, in regular conditions, a minimum and maximum periods oftime separating two
consecutive interventions on the same client. Consecutivedays of irregular condi-
tions (e.g., extreme weather conditions) may sporadicallychange those maximum
(or minimum) values.

The amount of work highly depends on seasonality. The company allocates to
this service two teams (each consists of two or three employees) during the whole
year, which may be reinforced with an additional third team during summer. Each
team has a van fully equipped with the tools needed to performthe maintenance
jobs. There are customers who should be always served by the same team, while
others can be served by any team.

Time windows were established so that visits to the client should occur only
within these periods. The clients are geographically spread along an area around
Oporto of approximately 10 000 km2. In 2011, these teams traveled more than
60 000 km, with a significant impact on the costs.

Neoturf aims at finding a procedure to scheduling and routingclients efficiently
so to reduce costs, while satisfying the agreements with theclients. The scheduling
of clients for each day should be planed on a basis of short periods of time (say ten
consecutive working days), since unforeseeable events (e.g., weather conditions,
client not available at the time previously arranged) may force to postpone planned
interventions and to re-settle the designed scheduling.

The routing of customers in each period is a vehicle routing problem (VRP).
VRP designates a large class of problems that deals with the design of optimal routes
for fleet of vehicles to serve customers. In part dictated by its practical relevance,
VRPs have attracted intense research in Combinatorial Optimization expressed by
some thousands of scientific and technical papers covering many aspects of the
topic. The books [11, 6, 12] provide an insight into the huge variety of the research
on this subject. The basic VRP is the problem of finding a set ofroutes minimizing
the total cost or distance traveled for a number of identicalvehicles, located at a
depot, to supply a set of geographically dispersed customers with known demands
subject to vehicle capacity constraints. A large number of variants and extensions
of the basic VRP were proposed to model specific applications, including pickup-
and-delivery, stochastic demands, online VRPs, multiple depots, ship routing. The
VRP with time windows (VRPTW) is a special case/generalization of VRP where
each customer can only be served within established time windows (see [3, 8, 5] for
recent surveys on the VRPTW). The problem that we address hereis a constrained
version of the VRPTW where (i) some customers, but not all, are to be visited by a
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certain vehicle (team); (ii) no more than one route is assigned on each day to each
vehicle (team) and (iii) each customer that is to be served ineach period is assigned
to exactly one route, in exactly one day of that period. We give a mixed integer lin-
ear programming formulation model for the problem, discusslimitations on the size
of instances that can be solved to guarantee optimality, present a modification of the
classic Clarke and Wright heuristic for the vehicle routing with time windows [4],
and report computational results obtained with Neoturf data.

1.2 Formulation

We consider the year partitioned into consecutive short periods of time (say 10 con-
secutive working days) and, for each periodP of m consecutive working days, we
classify clients as

• mandatory, those for which an intervention has to take placeduring periodP,
i.e., the number of days since the last visit till the end of period P exceeds the
maximum number of consecutive days which can elapse withoutany intervention
taking place, according to what has been agreed with the client;

• discarded, those for which no intervention is expected to take place during pe-
riod P, i.e., the number of days since the last visit till the end of periodP is lower
than the number of consecutive days that were agreed to elapse before a new
intervention takes place;

• admissible, those for which an intervention may or may not take place during
periodP.

Let C be the set of clients to be served in periodP. We start withC consisting
of all mandatory and admissible clients. If no feasible scheduling is found, the de-
cision maker may consider, among other options, to redefineC removing some or
all admissible clients from the periodP. If no feasible solution exists even whenC
only includes mandatory customers, then services to some ofthese customers have
to be postponed to the next period. The customers to be removed from the current
period may be selected according to some ranking on customers.

Our problem can be viewed as a VRPTW in which certain clients in C have to
be visited by (vehicle) teamE0, other clients have to be visited by teamE1, and the
remaining clients can be served indifferently either by team E0 or by teamE1. We
denote the sets of those clients byC0, C1 andC0,1, respectively.

We based our formulation on the so-calledbig M formulationof the traveling
salesman problem with time windows (model 1 in [2]).

We construct a directed weighted graphG= (V,A,ρ) as follows (see Figure 1.2).
The set of verticesV is equal toC∪B, where each vertexbk

i of B, with i = 0, · · · ,m
andk= 0,1, is thei-th “day (fictitious) copy” of the depot for teamEk. There is an
arc(u,v) linking clientu to clientv if there is any possibility to servev immediately
after visitingu, by a same team. Arcs with both directions link each vertexbk

i , i =
1, · · · ,m−1, with every client ofCk ∪C0,1, for k = 0,1. There is an arc frombk

0 to



4 J. Orestes Cerdeira, Manuel Cruz and Ana Moura

every vertex inCk∪C0,1, for k = 0,1, but there is no arc with headbk
0. There is an

arc from every vertex inCk∪C0,1 to bk
m, k= 0,1, but no arc with tailbk

m. The other
arcs in setA are (bk

0,b
k
1),(b

k
1,b

k
2), · · · ,(b

k
m−1,b

k
m), with k = 0,1, and no more arcs

exist linking pairs of vertices inB. Forv∈V, we useV+
v andV−

v to denote the out-
neighborhood and in-neighborhood ofv, respectively, i.e.,V+

v = {u∈V : (v,u)∈ A}
andV−

v = {u∈V : (u,v) ∈ A}.

b1
0 b1

1 b1
2

c1 c2

c3 c4 c5

c6

b0
0 b0

1 b0
2

Fig. 1.1 An example of a directed graphG, and a feasible solution for a two days period. Ver-
tices b0

0,b
0
1,b

0
2 and b1

0,b
1
1,b

1
2 are the “fictitious copies” of the depot for teamE0 and teamE1,

respectively. The subsets of the set of clientsC = {c1, . . . ,c6} areC0 = {c1,c2}, C1 = {c6} and
C0,1 = {c3,c4,c5}. The scheduling of clients assigned to teamE0 is represented by the directed path
consisting of continuous (blue) arcsQ0 = (b0

0,c1,c4,b0
1,c5,c2,b0

2). Clientsc1,c4 andc5,c2 are vis-
ited by that order on days one and two, respectively. The scheduling of clients assigned to teamE1
is represented by the directed path consisting of continuous (red) arcsQ1 = (b1

0,c3,c6,b1
1,b

1
2).

Clientsc3,c6 are visited by that order on day one and no client is visited on day two.

A scheduling of clients assigned to teamEk will be read on graphG as a directed
pathQk from bk

0 to bk
m. The clients that are to be visited on dayi are the vertices ofC

on the subpath ofQk linking bk
i−1 to bk

i . The order of vertices on that path specifies
the order by which the corresponding clients should be visited. If arc(bk

i−1,b
k
i ) is

included in pathQk it means that no interventions on clients of setC will occur on
day i for teamEk.
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We define the weightρuv of every arc(u,v) ∈ A as the time to travel on arc(u,v),
except whenu,v∈ B, whereρuv = 0.

For each vertexv∈ C, let T j
v = [ej

v, l
j
v] be the j-th time-window of clientv, j =

1, · · · ,nTv, wherenTv is the number of time-windows of vertexv, ej
v < l j

v < e( j+1)
v ,

andej
v and l j

v are the release time and the deadline time of thej-th time-window
of client v, respectively. The release time and deadline time specify minimum and
maximum instants for the start of the intervention at the client. For vertices ofB,
defineT1

bk
0
= [ST,ST] andT1

bk
i
= [EN+24(i −1),EN+24(i −1)], for i = 1, · · · ,m

andk= 0,1, whereST andEN are, respectively, the daily service start hour and the
daily service end hour.

For v ∈ C, let tv be the processing time on clientv, and settbk
0
= 0 andtbk

i
=

ST+24−EN, for i = 1, . . . ,m.
The formulation that we present below uses the following indices, sets, parame-

ters and variables.

Indices
i - days
k - teams
u,v - clients
j - j-th time-windows

Sets
C - clients
Ck - clients to be visited by teamk
C0,1 - clients served by any of the teams
B - “day (fictitious) copies” of the depot,bk

i
V - verticesC∪B of the graph
A - arcs inV ×V

Parameters
m - number of days in the period
ρuv - time to travel on arc(u,v)
tv - processing time on clientv
T j

v - j-th time-window[ej
v, l

j
v] of clientv

nTv - number of time windows of clientv
ej

v - release time of thej-th time-window of clientv
l j
v - deadline time of thej-th time-window of clientv

ST - daily service start hour
EN - daily service end hour
∆uv - weight to minimize the number of working days
M - a large number
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Variables
xuv - binary variables that are equal to 1 if clientv is served immediately after

clientu, by a same team
y j

v - binary variables that are equal to 1 if clientv is served in time-windowT j
v

av - binary variables that assigned clientv to teamEav

sv - time-instant in which the service starts at clientv
wv - waiting-time to start the service at clientv

We deem minimize the sum of travel-time, waiting-time on clients, and number
of working days. We thus have the following objective function.

Min ∑
(u,v)∈A

(ρuv+∆uv)xuv+ ∑
v∈C

wv (1.1)

where∆uv = EN−ST if u∈C andv= b∈ B\{b0
0,b

1
0}, and∆uv = 0 for the remain-

ing arcs(u,v), to ensure that optimal solutions will have the minimum number of
working days (i.e., the maximum number of arcs(bk

i−1,b
k
i )).

The following equations

∑
u∈V

xvu = 1, ∀v∈V\{b0
m,b

1
m}, (1.2)

∑
u∈V

xuv = 1, ∀v∈V\{b0
0,b

1
0}, (1.3)

ensure there will be exactly one arc leaving every vertexv 6= bk
m, and exactly one arc

entering every vertexv 6= bk
0.

To force that each client is visited exactly in one of its time-windows, we add
equations

∑
j≤nTv

y j
v = 1, ∀v∈V. (1.4)

To guarantee that the start time occurs within the selected time-window and that
vehicle has enough time to travel fromu to v, we use the following constraints

∑
j≤nTv

ej
vy

j
v ≤ sv ≤ ∑

j≤nTv

l j
vy j

v, ∀v∈V, (1.5)

su+ tu+ρuv− (1−xuv)M ≤ sv, ∀(u,v) ∈ A, (1.6)

whereM > 0 is large enough (sayM = 24m) to guarantee that the left hand side
is non positive wheneverxuv = 0, and thus making constraint (1.6) not active when
xuv = 0.

Note that constraints (1.2), (1.3) together with (1.6), ensure that the set of selected
arcs defines a directed path linkingbk

0 to bk
m, for k= 0,1, where every vertex ofV is

included exactly once in exactly one of the two paths.
The following inequalities define upper bounds on the waiting-times on clients.
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wv ≥ sv− (su+ tu+ρuv)− (1−xuv)M, ∀(u,v) ∈ A,v∈C, (1.7)

whereM > 0 is large enough (sayM = 24m) to guarantee that the right hand side
is non positive wheneverxuv = 0, thus turning the constraint (1.7) redundant when
xuv = 0.

The following conditions guarantee that the team assigned to every clientv in
C0,1 is the same team that has visited vertexu, whenever arc(u,v) is in the solution.

av ≤ 1−xuv+au, ∀(u,v) ∈ A (1.8)

av ≥ xuv−1+au, ∀(u,v) ∈ A (1.9)

av = k, ∀v∈Ck∪{bk
0,b

k
1, . . . ,b

k
m}, k= 0,1 (1.10)

Indeed, ifxuv = 1, av = au, and ifxuv = 0, the inequalities (1.8) and (1.9) are redun-
dant.

The range of the variables is established as follows.

av ∈ {0,1}, ∀v∈C0,1 (1.11)

xuv ∈ {0,1}, ∀(u,v) ∈ A (1.12)

y j
v ∈ {0,1}, ∀v∈V, and j ≤ nTv (1.13)

sv ≥ 0, ∀v∈V (1.14)

wv ≥ 0, ∀v∈C (1.15)

The above model (1.1)-(1.15) gives a mixed integer linear programming formu-
lation for the problem of routing clients ofC on a given period ofm days, by two
teams. The objective function (1.1) was defined to minimize travel-time and waiting-
time on clients in the minimal number of days. Other alternative goals could be
considered. For instance, minimizing the total completion-time, i.e., the time of the
last service on periodP. This could be achieved introducing variableF , imposing
the constraintsF ≥ sv+ tv,∀v∈ C, and defining as objective function: minF . This
would give solutions with a minimum number of consecutive working days, and
leaving the non working days, if any, at the end of periodP. Solutions that define a
sequence of consecutive non working days finishing at the endof periodP permit to
anticipate the next period. However, the objective function (1.1) expresses the goals
specified by Neoturf. The existence of intermittent non working days is not a issue
for Neoturf, as it permits to assign the members of the team toother activities.

1.3 Heuristic approach

Given the limitations on the size of the instances that couldbe solved exactly
with the formulation (1.1)-(1.15) above (see Section 1.4 below), we decided to
waive from optimality guaranteed, and use an implementation of Clarke and Wright
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(C&W) [4] heuristic for the vehicle routing problem with multiple time windows
(VRPMTW) available in MATLAB [9] .

There are two main issues in applying C&W heuristic to our problem. First,
C&W algorithm does not distinguish between clients fromC0,C1 andC0,1. Thus, so-
lutions may include in the same routes clients fromC0 together with clients fromC1.

The second issue follows from the assumption behind C&W algorithm that there
are enough vehicles available for the routes determined by the algorithm. Thus,
the same team may be assigned, on the same day, to more than oneroute with
incompatible time windows (i.e., services to clients in different routes overlap in
time).

To handle the first issue we proceeded as follows.

• We duplicated the numberm of days of periodP.
• For all clients inC1, we added 24×m hours to the release and deadline times of

every time-window.
• For all clients inC0,1 we duplicated the number of time-windows and, beside the

original ones, we also added 24×m hours to the release and deadline times of
every original time window.

Since each client is visited exactly once, in the whole period (now with 2mdays),
within one of its time-windows, setting the time windows of clientsC0 on the first
mdays and the time-windows of clientsC1 on daysm+1 to 2m, ensures that clients
from C0 will not be put together in the same routes with clients fromC1.

Duplicating as described above the number of time-windows of clientsC0,1, and
given that each will be served exactly once, defines a partition of these clients into
those that will be served in the firstm days (together with clients ofC0), and those
that will be served in daysm+1 to 2m (together with clients ofC0,1).

To address the second issue we use matchings in bipartite graphs.
Suppose the number of routes assigned to a team is less than orequal tom, and

there is more than one route on the same day. We consider a bipartite graph (see
Figure 1.3) where vertices of bi-classR represent routes and vertices of the other
bi-classD represent themdays. There is an edge[r,d], with r ∈ Randd ∈ D, if and
only if router can be done (w.r.t time-windows) in dayd.

We then find the maximum matching [7] of this graph. If it has|R| edges, then
it indicates how routes should be distributed by them days of the period, with no
more than one route per day. If the maximum matching has less than|R| edges, or
|R|> m, we propose that the decision maker considers: assigning anextra-team for
this period; increasing the number of days in the forecast period, or reducing the
number of admissible clients for the period, and repeat the whole process. Quite
often the matching obtained had cardinality|R|, which permitted to distribute the
|R| routes by them days. Only in few cases the number of days and/or the set of
customers of the period had to be redefined.
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Fig. 1.2 Bipartite graph with|R| = 3 routes assigned to the same team for a period of four days.
Blue edges (continuous lines on the left picture) indicate the assignment of routes to days on the
solution obtained with the modified C&W heuristic. Edges[r i ,d j ] indicate that router i can done
(w.r.t time-windows) on dayd j . Red edges (continuous lines on the right picture) are the edges of
a maximum matching. On the left picture, all routes were assigned to the first day. On the right,
the maximum matching (red edges) defines a feasible assignment of the three routes to three days
of the period.

1.4 Computational results

Here we report some computational experiments carried out with Neoturf data. We
call total time to the sum of travel-time and waiting-times,i.e., the values of the
objective function not accounting for parameters∆ .

We used the NEOS Server [10] platform to test the model (1.1)-(1.15). The im-
plementation was made in AMPL [1] modeling language and ran using the commer-
cial solver Gurobi. On the tests that we carried out, only forperiods not exceeding
five days Gurobi produced the optimal solutions. On two instances with periods of
five days and thirteen customers, with|C0,1| = 2 in one instance, and|C0,1| = 3 in
the other instance, the optimal solutions were obtained. However, on an instance
with all parameters with the same size except|C0,1| = 4, NEOS Server returned
either “timeout” or “out of memory”. The same happen for all the instances that
we considered with periods of more than five consecutive working days, and no
improvements were achieved when we used different parameterization onthreads,
mipgapor timelimit.

For the small instances for which Gurobi determined optimalsolutions, the gap
of total routing times of the solutions obtained with C&W heuristic w.r.t. the optimal
values (i.e., (T(C&W)-OPT)/OPT, where T(C&W) and OPT are the total time of the
solution obtained with C&W heuristic and the optimal total time, respectively) did
not exceed 5%.

We then compared the planning that Neoturf had established for a 14 days period
(18-Feb-2013 till 3-Mar-2013) with the one produced with C&W heuristic. The
solution produced with C&W has an total time of 8h54m (waiting-time = 0h00,
and 105h24m if working time is also considered) to serve the 27 clients in 7 and 9
working days for teamsE0 andE1, respectively. The planning of Neoturf consisted
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of 14h02m total time (waiting-time=1h00, and 110h32m considering working time),
8 days for teamE0 and 11 days for teamE1.

This gives a reduction on total time (100× (14h02m - 8h54m)/14h02m) around
37%, that significantly decreases costs resulting from distances traveled, specially
because the two teams travel around 60 000 km/year.

1.5 Conclusion

We considered a routing/location problem arising in the context of garden mainte-
nance services. For each day of each period of time (consisting of some consecutive
working days) routes are to be designed, starting and endingat a same point, so
that every customer is visited only once during that period,by exactly one vehi-
cle and within predefined time-windows. Customers may require a fixed team or be
assigned indifferently to any team.

For this new variant of the VRPTW we constructed a directed graph and pre-
sented a compact formulation to minimize travel-time and waiting-time on clients
that consists of finding vertex-independent paths of the graph, where every vertex
is included in exactly one path, and vertices representing customers that require the
same team are included in the same path.

The computational tests that we carried out showed that onlyfor periods not ex-
ceeding five days we could obtain the optimal solutions. To deal with this limitation
we presented a heuristic approach that uses an adaptation ofthe classic Clarke and
Wright (C&W) heuristic for the VRPTW followed by a procedure tofind a max-
imum matching in a bipartite graphs. The adaptation of the C&W heuristic was
devised to satisfy the constraint that customers will be served by the team they re-
quired. The maximum matching will check, and possibly repair, infeasibilities on
the solution obtained from the C&W heuristics regarding theexistence of more than
one route assigned to the same vehicle, in the same day. The procedure ran quickly
on data provide by Neoturf and the solutions produced significantly improved the
solutions that were conceived and implemented by Neoturf. Yet we believe that re-
sults may be improved using heuristics for routing more sophisticated than C&W,
and exploring models alternative to (1.1)-(1.15). We intend to pursuit on this direc-
tion.
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