
Full Stack Application Generation for
Insurance Sales based on Product Models

CARLOS FILIPE DA SILVA LIMA
Outubro de 2016

Full Stack Application Generation for Insurance

Sales based on Product Models

Carlos Filipe da Silva Lima

Thesis to obtain the Master of Science Degree in

Computer Science - Information and Knowledge

Systems

Supervisor: Prof. Dr. Paulo Gandra de Sousa

October 2016

Acknowledgments

I am grateful to my mentor, Dr. Paulo Sousa for his expertise, sincere and valuable guidance during

the overall project.

Additionally, I would like to thank my parents, my sister and my girlfriend for their unceasing en-

couragement and support for completion of this project.

Finally, I also place on record, my sense of gratitude to one and all who, directly or indirectly, have lent

their helping hand in this venture. Especially to Eng. Gabriel Santos, Eng. Mario Sousa, and Marketeer

Cátia Baião for reviewing this document, and Eng. Nuno Alves for helping me in a brainstorming session

to get a solution approach for discovering the root object of a domain model.

Abstract

The insurance market is segregated in various lines-of-business such as Life, Health, Property &

Casualty, among others. This segregation allows product engineers to focus on the rules and details of a

specific insurance area. However, having different conceptual models leads to an additional complexity

when a generic presentation layer application has to be continuously adapted to work with these distinct

models.

With the objective to streamline these continuous adaptations in an existent presentation layer, this

work investigates and proposes the usage of code generators to allow a complete application genera-

tion, able to communicate with the given insurance product model. Therefore, this work compares and

combines different code generation tools to accomplish the desired application generation.

During this project, it is chosen an existing framework to create several software layers and respective

components such as necessary classes to represent the Domain Model ; database mappings; Service layer;

REST Application Program Interface (API); and a rich javascript-based presentation layer.

As a conclusion, this project demonstrates that the proposed tool can generate the application already

adapted and able to communicate with the provided conceptual model. Proving that this autonomous

process is faster than the current manual development processes to adapt a presentation layer to an

Insurance product model.

Keywords

Insurance, Line-of-Business, Different conceptual models, Adaptation, Code Generation.

iii

iv

Resumo

O mercado segurador encontra-se dividido em várias linhas-de-negócio (e.g. Vida, Saúde, Propriedade)

que têm naturalmente, diferentes modelos conceptuais para a representação dos seus produtos. Esta

panoplia de modelos leva a uma dificuldade acrescida quando o software de camada de apresentação

tem que ser constantemente adaptado aos novos modelos bem como às alterações efetuadas aos modelos

existentes.

Com o intuito de suprimir esta constante adaptação a novos modelos, este trabalho visa a exploração

e implementação de geradores de código de forma a permitir gerar toda uma aplicação que servirá de

camada de apresentação ao utilizador para um dado modelo.

Assim, este trabalho expõe e compara várias ferramentas de geração de código actualmente disponiveis,

de forma a que seja escolhida a mais eficaz para responder aos objectivos estabelecidos. É então sele-

cionada a ferramenta mais promissora e capaz de gerar vários componentes de software, gerando o seu

modelo de domı́nio, mapeamento com as respectivas tabelas de base de dados, uma camada de lógica de

negócio, serviços REST bem como uma camada de apresentação.

Como conclusão, este trabalho apresenta uma solução que é capaz de se basear num modelo proveniente

do sistema de modelação de produto e assim gerar completamente a aplicação de camada de apresentação

desejada para esse mesmo modelo. Permitindo assim, um processo mais rápido e eficaz quando comparado

com os processos manuais de desenvolvimento e de adaptação de código-fonte existentes.

Palavras Chave

Seguros, Linhas-de-negócio, Diferentes modelos conceptuais, Adaptação, Geradores de código.

v

vi

Contents

1 Introduction 1

1.1 Problem Statement . 4

1.2 Project Objectives . 5

1.3 Project Constraints . 6

1.4 Hypothesis Test . 6

1.5 Contribution to Knowledge . 7

1.6 Document Organization . 8

2 Value proposition 9

2.1 Perceived Value - A Theoretical Introduction . 11

2.2 Application Generator - The Perceived Value . 12

2.3 Obstacles in Insurance Sector . 13

2.3.1 Dynamic Tools . 13

2.3.2 Time-to-Market: Launching of Commercial Offers 14

2.4 Business Opportunities . 15

2.4.1 Business Opportunities - Sales & Service . 16

2.4.2 Business Opportunities - A Dynamic Generated Application 17

2.5 Business Model . 17

3 Context 19

3.1 Insurance Industry . 21

3.1.1 Property Insurance . 22

3.1.2 Life Insurance . 22

3.2 Product Machine . 22

3.2.1 Modeling Workbench . 24

3.2.2 Testing Workbench . 28

3.2.3 Data Workbench . 28

3.2.4 Reporting Workbench . 29

3.3 Sales & Service . 29

vii

3.4 PM and S&S - Communication . 31

4 Code Generation 33

4.1 Introduction . 35

4.1.1 Passive Code Generators . 35

4.1.2 Active Code Generators . 36

4.2 Code Generation Approaches . 36

4.2.1 Template-based Code Generation . 36

4.2.2 Code Generation based on regular expression substitutions 37

4.2.3 Code Generation in a Model-Driven Environment 37

4.3 Related work . 38

4.4 Conclusions . 39

5 Application Code Generators 41

5.1 Application Code Generators - Frameworks . 43

5.1.1 AndroMDA . 43

5.1.2 Celerio . 44

5.1.3 JHipster . 45

5.1.4 ModelJ . 49

5.1.5 Sculptor Framework . 49

5.2 Frameworks Comparison . 51

5.2.1 Desired Features . 51

5.2.1.A Miscellaneous Characteristics . 51

5.2.1.B Code Generation Capabilities . 52

5.2.2 Advantages and Disadvantages . 52

5.3 Conclusions . 54

6 Proposed solution 55

6.1 Overview . 57

6.2 Conception . 57

6.2.1 Choosing the PM Model . 57

6.2.2 Interpreting the PM Domain Model . 58

6.2.3 Generating the JHipster Domain Model . 59

6.3 Development . 60

6.3.1 Choosing the PM Model . 60

6.3.2 PM Model Interpretation . 62

6.3.3 Generate Application Skeleton . 68

6.3.4 Generating the Domain Model . 71

viii

6.3.5 Database . 73

6.3.6 Application generation and initialization . 73

6.4 Validation . 75

6.4.1 Generated Entities . 75

6.4.1.A P&C Model . 75

6.4.1.B Life Model . 76

6.4.2 Generated REST Services . 77

6.4.3 Generated Database Mappings . 78

6.4.4 Generated Database Tables . 80

6.4.5 Generated Client-Side . 81

6.4.5.A Generated Functionalities . 82

6.4.5.B Interacting with application domain model 83

6.5 Conclusions . 84

7 JHipster - Custom Extensions 87

7.1 JHipster Modules . 90

7.2 Inject PM Model Dependency . 90

7.3 Applying BOAdaptable to the Generated Entities . 92

7.4 Validation . 94

7.5 Conclusions . 94

8 Experiments 95

8.1 Generation of Multiple Software Layers . 97

8.2 Generation Time . 98

9 Conclusions 99

9.1 Code Generation vs Current Manual Processes . 101

9.1.1 Current Manual Processes . 101

9.1.1.A Adapting: New Attribute . 101

9.1.1.B Adapting: New Entity . 101

9.1.1.C Adapting: New Domain Model . 102

9.1.2 Adopting Code Generation . 102

9.1.2.A Advantages . 102

9.1.2.B Disadvantages . 103

9.2 Switching to Code Generation in the Organization . 103

9.3 Objectives Assessment . 104

9.4 Limitations and Future Work . 105

ix

A From PM to S&S Overview 113

B CANVAS : Business Model 117

C Related Technologies 121

C.1 DDD - Domain Driven Design . 123

C.1.1 Domain . 123

C.1.2 Model . 124

C.1.3 Building Blocks . 124

C.1.4 Model Driven Design - Sterotypes . 126

C.1.4.A Entities . 126

C.1.4.B Value Objects . 126

C.1.4.C Services . 127

C.1.4.D Modules . 127

C.1.4.E Aggregates . 127

C.1.4.F Factories . 128

C.1.4.G Repositories . 128

C.2 DSL - Domain Specific Languages . 129

C.2.1 Why use a DSL? . 130

C.2.2 Visualization . 131

D Sculptor: Domain Driven Design sample 133

E Diagrams 137

x

List of Figures

1.1 Project objective overview . 5

2.1 Selling to Customer and Selling Business . 12

2.2 Selling Business . 12

3.1 PM: Centralization of all Product Rules . 22

3.2 Product Machine - Overview . 23

3.3 Combining elements to create conceptual models . 26

3.4 Unified Product Platform Ecosystem . 27

3.5 Sales and Services - State of the Art . 30

4.1 An example of design model (a class diagram) . 38

5.1 AndroMDA: From UML Model to multiple cartridge generation 43

5.2 Celerio: Overview . 45

5.3 JHipster: Generating the application from command-line 46

5.4 JHipster: Generating the application - An example of a domain model design 48

5.5 Example: Health App - Dashboard . 48

5.6 Example: Health App - Actions log . 48

5.7 Sculptor: Target Implementation . 50

6.1 Sequence Diagram: PM model introspection . 63

6.2 Sequence Diagram: Relationship analysis . 64

6.3 Partial signatures of the BOAdaptableContractBO class: Relationship analysis 65

6.4 Class Diagram - Business Object . 67

6.5 Activity Diagram - Building domain model hierarchy . 68

6.6 Class Diagram - JHipster Entity . 71

6.7 Code Generation Time . 74

6.8 System Metrics . 82

xi

6.9 Application Health Check . 82

6.10 System Metrics . 83

6.11 Managing Domain Entities . 84

6.12 Creating a Domain Entity . 84

7.1 Overall Project Overview . 89

A.1 Unified Product Platform Ecosystem . 115

B.1 CANVAS Business Model . 119

C.1 Domain-Driven Design - Patterns and Relationships . 125

D.1 Sculptor: DDD Sample Model . 135

E.1 Sequence Diagram - Creating JDL model . 139

xii

List of Tables

5.1 Advantages and Disadvantages of: AndroMDA . 52

5.2 Advantages and Disadvantages of: ModelJ . 53

5.3 Advantages and Disadvantages of: Celerio . 53

5.4 Advantages and Disadvantages of: JHipster . 53

5.5 Advantages and Disadvantages of: Sculptor . 53

5.6 Frameworks Comparison - Solution Required Features . 54

6.1 P&C Model - Entity Comparison : PM Model vs Generated Entities 75

6.2 Life Model - Entity Comparison : PM Model vs Generated Entities 77

6.3 Generated REST Services : Resource for IllustrationBO Entity 77

6.4 Generated Database Tables . 81

8.1 Number of Generated Files and Folders . 97

8.2 Generated Source-code Lines . 97

8.3 Solution Generation Times . 98

xiii

xiv

List of Algorithms

6.1 Translating PM Entities into a structured data format . 58

6.2 Getting Model Relationships . 65

xv

xvi

Listings

5.1 JHipster Domain Language - Syntax reference. 47

5.2 Example of a DSL to express REST WebServices . 50

6.1 Maven - pom.xml file example . 61

6.2 Maven - Exec Plugin . 61

6.3 Non-ambiguous relationship . 66

6.4 Ambiguous relationship . 66

6.5 Configuration file: yo-rc.json . 70

6.6 Velocity template for JDL format . 72

6.7 Example of CoverageBO entity exposed in JDL format . 72

6.8 Generate Entites batch . 73

6.9 Generate Application batch . 74

6.10 Database - tables initialization . 78

6.11 Liquidbase changeset - create QuoteBO . 79

6.12 Database connection configuration . 80

6.13 Application running log . 80

7.1 pm-dependency template . 91

7.2 pm-dependency template result . 91

7.3 Hooking a JHipster module . 91

7.4 JHipster hook configuration . 91

7.5 Generate Application batch with pm dependency injector 91

7.6 PM Injector source-code . 92

7.7 Additional fields . 93

8.1 Bash command: count the generated application files . 97

C.1 Example: internal DSL . 129

xvii

xviii

Acronyms

AADL Architecture Analysis & Design Language

ACG Automatic Code Generator

API Application Program Interface

B2B Business-to-Business

BA Business Attribute

BI Business Intelligence

BIRT Business Intelligence and Reporting Tools

BO Business Object

BOM Business Object Model

BOP Business Owner’s Policy

COP Component-Oriented Programming

CPU Central Processing Unit

CR Composition Rule

CRM Customer Relationship Management

CRUD Create, Read, Update, and Delete

CRV Composition Rule Version/Variation

CSS Cascading Style Sheets

DAO Data Access Object

DB Database

xix

DBMS Database Management System

DDD Domain Driven Design

DSL Domain Specific Language

DSM Domain-Specific Modeling

DTO Data Transfer Object

DWB Data Workbench

EJB Enterprise JavaBeans

EMF Eclipse Modeling Framework

ES Expert System

ES6 ECMAScript 6

GCR Group Constraint Rule

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IoC Inversion of Control

IP Internet Protocol

IT Information Technology

J2EE Java 2 Platform Enterprise Edition

JAR Java ARchive

JDK Java Development Kit

JDL JHipster Domain Language

JMS Java Message Service

JPA Java Persistence API

JS JavaScript

JVM Java Virtual Machine

JSF JavaServer Faces

xx

JSON JavaScript Object Notation

KBS Knowledge-Based System

KPI Key Performance Indicator

LOB Line-of-Business

MDA Model-Driven Architecture

MDE Model-Driven Environment

MV* Model View

MVC Model View Controller

NPM Node Package Manager

ORM Object-Relational Mapping

PAS Policy Administration System

PDS Product Definition System

PM Product Machine

MWB Modeling Workbench

P&C Property and Casualty

POJO Plain Old Java Object

POM Project Object Model

ROI Return On Investment

RT Real Time

RWB Reporting Workbench

S&S Sales & Services

SPA Single Page Application

SOA Service-Oriented Architecture

SQL Structured Query Language

TTM Time To Market

xxi

TWB Testing Workbench

UDP Unified Distribution Platform

UI User Interface

UML Unified Modeling Language

VI Version Information

VP Value Proposition

VPN Virtual Private Network

WAR Web application ARchive

XAML Extensible Application Markup Language

XMI XML Metadata Interchange

XML Extensible Markup Language

xxii

1
Introduction

Contents

1.1 Problem Statement . 4

1.2 Project Objectives . 5

1.3 Project Constraints . 6

1.4 Hypothesis Test . 6

1.5 Contribution to Knowledge . 7

1.6 Document Organization . 8

1

2

Insurance companies are responsible for providing protection for financial losses and implements so-

phisticated risk management rules to provide the right policies and charge reasonable premiums1 to their

policyholders. Insurance Line-of-Business (LOB) (such as Life, Health, Property & Casualty) are usu-

ally segregated to simplify the risk management and to allow product engineers focus on the particular

relevant rules per line of business.

The typical process to launch an insurance offer is usually very long, especially in the case of new

products. At some Insurers, launching a new product can take as long as a year and even changing a

tariff of an existing product can be lengthy (RGA, 2014). Usually, most of this time is spent in the

preparation phase where the Insurers need to adapt its Information Technology (IT) systems to handle

newest or changed products. In this phase, it is often required the custom development of applications to

sell this offer for every intended channel, which can have different technological constraints and business

requirements. The custom development is often the only way to address this problem, especially if the

Insurer desires the combination of existing products. This custom development is usually costly and leads

to effort duplication for the maintenance of software portfolio.

Reducing the need for custom developments can also decrease the Time To Market (TTM) and the

overall project costs, providing a competitive advantage as well an operative efficiency. Therefore, there

is the need for better tools that can minimize the IT dependencies that currently marketing and sales

face, to answer the market demands faster. Such tools need to take into account the diversity and

particularities of each channel and device that the insurance offer needs to be distributed to, but also

and most importantly they need to leverage existing product definitions without the need for double

configuration or coding.

msg life is a European technological company, with 35 years of experience and is specialized in the

insurance sector. msg life designs and develops solutions that impact different layers of the insurance

business, from product design to distribution. With the centralization of business rules within a multi

LOB platform that communicates with multiple systems, Product Machine (PM) is a back-office Product

Definition System (PDS) that ensures the autonomy, flexibility, and traceability that Insurers need to

create and target the rates according to the intended criteria such as client, distribution channel, and

device. The reduction of risks provided by PM is complemented by Sales & Services (S&S), an integrated

distribution platform which provides the reduction of time and costs as far as the release of new products

into the market and its brokers are concerned. S&S focus on the customer and on the sales process where

it packs itself on a multi-LOB, multichannel and multi-device that can make the insurance distributions

more efficient and scalable (OjE - O Jornal Económico, 2015).

However, to interact with this product definition system, S&S needs to implement a set of Java

interfaces to enable communications. These interfaces represent a conceptual model that was modeled by

1 The amount of money that an individual or business must pay for an insurance policy.

3

a product engineer. In Product Machine a conceptual model is implementing an insurance line-of-business

whereas it can hold several entities with various attributes attached to describe the domain. Therefore it

is required that several interfaces get manually implemented in S&S side. This manual implementation

process is a time-consuming task and currently stands as a bottleneck, especially when Product Machine

releases new customer-specific models.

Consequently, this project aims the creation of presentation layers (front-end applications) for different

PM models by using autonomous processes, such as code generation techniques, to obtain an efficient

model adaptation and enable communications between these two system components (model definition

and presentation layer) without requiring any manual code to adjust the adaptation layer.

1.1 Problem Statement

Sales & Service is a generic presentation layer for various PM models that is being used by different

customers. Usually, when a customer works with the same line of business, for example, Property and

Casualty (P&C), it is possible to share the same conceptual model (objects, attributes, relationships) i.e.

the Business Object Model (BOM). Although customers can reuse an existing PM conceptual model,

they can still define their products, formulas, and rules differently from another client. The dynamic

interpretation of models, allows S&S to support new customers without much effort because the adapter

layer for the model was already developed on S&S side.

However, when the reusage of conceptual models is not possible (e.g. due to specific customer data

structure or rules), a new product definition is often designed and created by product engineers. Upon

this scenario, S&S will also demand developments so that it can adapt and communicate with the newest

PM model and its interfaces.

When a new PM model is designed and generated by the product engineer, Modeling Workbench

(MWB), (thoroughly described in subsection 3.2.1) generates a Java ARchive (JAR) to be used by the

downstream applications. This JAR, created in MWB, contains the product details, and it enables the

model Runtime Services. But not being a standalone system that could provide these services under

a Client-Server architecture approach, the downstream systems or applications interested in using the

model, must implement all the Java interfaces within the JAR artifact generated automatically by MWB.

With the correct implementation of all PM model interfaces, the downstream applications can then start

interacting with the model Runtime Services.

The main problem with this process is that it is a time-consuming task and involves development

related costs to msg life. Additionally, when a new customer acquires both PM and S&S, and his

business demands the development of a new conceptual model that S&S does not support, the front-end

team must focus not only on the front-end behavior but also building a back-end adapter layer.

Many times, PM modelers finish their work faster than S&S team. Consequently, project stakeholders

4

are often waiting for S&S developments completion, not only for validating what was done by the modeling

team but also to assess if the overall project is on schedule. Often, stakeholders ask for estimations so

that they can validate the modeled products in their screens using S&S, causing stress on the S&S team

that needs to adapt the application to this new product design.

1.2 Project Objectives

The main goal of this project is the study and research of solutions able to streamline the sales process

using the existing knowledge about the PDS system directly, without the need to develop the adapter

layer on S&S. One possible path is exploring code generation techniques that use a Customer’s Product

model to generate the right artifacts without manual coding. This project scope and consequent proposed

solution is limited to the main PDS used by msg life, i.e. the FJA Product Machine V4 metamodel (PM).

The proposed solution shall use a PM model as input and generate the presentation layer, dropping the

need to add new adapters so that an end-user can see the modeled products in PM.

As illustrated in Figure 1.1, the solution shall receive different product models as input, where the

output will be a generated presentation layer able to communicate with the Runtime Services provided

by that input model. Each input model represents a distinct LOB’s or even a particular Insurer model.

Although a LOB represents a concrete business in real world, the domain model implemented to describe

that business may differ from customer to customer.

Figure 1.1: Project objective overview

The proposed solution shall generate a presentation layer that follows the modeled conceptual model

provided in the PM model, and without any manual coding involved.

5

The identified sub-goals for this work are:

1. Study similar problems and other approaches to identify alternative solution paths;

2. Define a Domain Specific Language (DSL) or a mapping that enables the re-usage of a PM meta-

model independently of customer specific models;

3. Develop code generators;

4. Develop a proof of concept that can be used with at least two different product models (e.g., PM4

Life model and PM4 P&C model);

5. Define general architecture of a channel application (e.g., mobile native app);

1.3 Project Constraints

Due to the existing technology stack used by the overall applications within msg life portfolio, it is

expected that the solution follows the same ecosystem. Therefore, it must be an open-source Java-based

solution and compatible with Maven Repository so that the artifacts can be accessible through Maven

(internal msg life Nexus2), enabling Maven dependency management.

1.4 Hypothesis Test

”An Experimental Design is the laying out of a detailed experimental plan in advance of

doing the experiment. Well chosen experimental designs maximize the amount of information

that can be obtained for a given amount of experimental effort.” (NIST, 2016)

To test the efficiency and effectiveness of the adopted solution for this project a testing plan is necessary

to support the final conclusions. Therefore, an empirical analysis3 using statistical analysis shall solidly

validate or reject the project claims.

To perform an empirical analysis is necessary to identify what are the claims or hypothesis4 that will

be relevant to be tested; what are the experience conditions; and enumerate what the dependent and

independent variables are. The results will enable the evaluation of actual running time, and operation

counts that will support the conclusions about the solution quality on the selected problem instances.

The hypothesis that will provide support for the observations are:

(A) The proposed solution shall generate various application layers (Database mappings, Do-

main model and Rest API), without any manual coding.

2 Sonatype Nexus - Is a Repository Manager - a dedicated server application designed to manage repositories of binary
components

3 Method to gain knowledge using direct and indirect observation or experience.
4 Proposed explanation made on the basis of limited evidence as a starting point for further investigation. - (Oxford

dictionary, 2016)

6

(B) The proposed solution shall generate the entire application in an acceptable time. In which

an acceptable time is considered to be up to 15 minutes.

To address the previous hypothesis will be obtained 20 random samples of trials. For each test, will be

performed a new execution of the proposed solution. Where all of the random samples shall be under the

same conditions (same machine configuration), featuring 20 valid observations. The retrieved results will

serve for future comparisons with other possible solutions or partial changes, such as algorithm refactoring

or rewriting.

To address the hypothesis B, from the execution samples retrieved, a computational study will be

done. Where the Central Processing Unit (CPU) Time5 will be taken into account and verified if the

generation tool is taken more than 15 minutes to accomplish the desired code generation.

Each PM model has several interfaces that in turn represent the domain model. Therefore the

hypothesis A will be evaluated using a prior interface enumeration so that the results of the generated

code get compared to the expected ones. This process will give a clear validation about how many

interfaces shall the solution be implementing to enable communications for a given PM model. At this

point, the solution accuracy will also be judged.

The solution reliability is another important measurement that must be included in the results, if

tests prove that the solution is implementing all interfaces on every execution, then it can be concluded

that the solution is reliable6.

1.5 Contribution to Knowledge

This research and its developments place a contribution in the Computer Science domain, particularly,

in the autonomous code generation techniques under a Domain-Specific Modeling (DSM) environment.

The proposed solution for this project (See: chapter 6) contributes with a tool that uses a given input

(PM model) and translates it into a different format that will serve to generate a complete web application

able to run right after the code generation, without any manual coding or any further adjustments.

Furthermore, the solution proves that it is possible to generate a complete application from its conception

(domain model) to its production-ready deployment without any software developer interaction.

Sub-section 6.4 demonstrates that this project also contributes to msg life solutions portfolio, whereas

msg life can use the resultant tool to generate new presentation layers for new PM models in about 5

minutes, and with the entire domain model, database mappings, RESTful services, among other infras-

tructure pieces of software generated. Providing a better time-to-market to get new models ready to ship

to their customers.

5 The amount of time in which the CPU was busy executing code
6 Consistently good in quality or performance; able to be trusted.

7

Finally, the conclusions of chapter 9 show that the adopted approach also contributes with new ideas

for the development processes in msg life, where the ad-hoc and manual development process per each

new PM model may be dropped for a development over configuration to adapt the presentation layer

quickly with autonomous processes.

1.6 Document Organization

This document is organized as follows: Chapter 2 describes the value and the CANVAS business

model related to the development of this project, complemented by the value proposition provided by

the existing S&S application to msg life customers.

Chapter 3 describes the project context, where the affected applications are described in detail, i.e.

the current PDS system used by msg life to model products and its S&S platform.

Chapter 4 presents the State-of-the-Art about Code Generation techniques.

Chapter 5 is also describing state-of-the-art for existing tools capable of a partial or an entire appli-

cation generation. This chapter performs a comparison between those tools and explains what are the

tools that could be suitable as a possible solution path to address the project objectives.

Chapter 6 is the main section of this document. It describes the adopted solution and starts by giving

an overview of the solution approach, the conception plan, and the development process. This chapter

concludes with the validation of the proposed solution and presents conclusions.

Chapter 7 complements the previous chapter, where it is explained the custom generators that were

created to extend the standard behavior of the chosen tool so that the final results are compliant with

the project goals.

The validation about this project objectives resides in Chapter 8, here is addressed the identified

Hypothesis Tests that has established the acceptance criteria for this project describing if the solution

approach has successfully met the defined expectations.

Chapter 9 is the last chapter and holds the conclusions about this project, providing a critical thinking

about the current manual coding versus the possible adoption of code generation techniques. Furthermore,

this section provides a verification about the project objectives and demonstrates if they were completely

satisfied. This conclusion section ends with the identification of most relevant future work.

8

2
Value proposition

Contents

2.1 Perceived Value - A Theoretical Introduction 11

2.2 Application Generator - The Perceived Value 12

2.3 Obstacles in Insurance Sector . 13

2.4 Business Opportunities . 15

2.5 Business Model . 17

9

10

The Value Proposition (VP) is essential to any company because it describes buyers benefits from

using the producer solution. It demonstrates that the target prospects are clear and describe what are

they trying to accomplish. The value proposition is essential to the understanding of must-have solutions

and creates compelling marketing messages. (techdata, 2016)

To understand the motivation to accomplish a solution for the described problem at Section 1.1, it is

first necessary to understand what is the expected perceived value for the customer and what perceived

value is. Some authors defend that “the creation of value is key to any business, and any business activity

is about exchanging some tangible and/or intangible good or service and having its value accepted and

rewarded by customers or clients, either inside the enterprise or collaborative network or outside“. (Nicola

et al., 2012) ”A value proposition articulates the essence of business, defining what the organization fully

intends to happen in the customer’s life.” (Barnes et al., 2009)

The value proposition is commonly used as a synonym for benefits statement or to describe the offering

of a product or service. However, the value cannot be simply represented by benefits and offerings. It

must take into account the costs to achieve those benefits. Therefore, the value must be a weighing of

gains and costs. Otherwise, if the value proposition only focused on delivering benefits to every customer

or prospect demand, would lead to bankruptcy. According to (Barnes et al., 2009), the overall product

or service value can be driven by the following formula, where the overall value is the sum of all benefits

minus its costs.

value ≡
n∑

n=1

(Benefitn − Costn) (2.1)

Note that cost is not only about money but a much richer concept (that might be used in a variety

of ways (Lindgreen and Wynstra, 2005)) that also includes other risks and exposures that are involved

in any transaction. There are many types of costs such as: time, convenience, quality, customizations

and of course monetary costs. It is advised that all the costs have to be weighed in the balance with any

benefits. (Barnes et al., 2009)

2.1 Perceived Value - A Theoretical Introduction

According to (Barnes et al., 2009), ”value is specific to a particular instance, because of time, con-

venience perceived risks and so on are all factors that vary from organization to organization and from

individual to individual. Value, like beauty, is in the eye (or mind) of the beholder”. Other authors argue

that ”in most cases, value to the producer means something different from value to the user”. (Lindgreen

and Wynstra, 2005)

Per (Zeithaml, 1988), ”perceived value has been defined as a customer’s overall assessment of the

11

utility of a product (or service) based on perceptions of what is received and what is given”.

”Value for the Customer (VC) is a personal perception of advantage arising out of a client’s

association with an organization’s offering. Results on the combination of benefit and sacrifice;

or an aggregation, over time, of any or all these.” (Woodall, 2003)

As described, value is vague and differently interpreted by each person. Therefore, the figure 2.1 shows

what are the most common characteristics from a Selling to Customer and from a Selling to Business

perspectives. From the consumer perspective, the usability of a product is usually more important (has

more value to him) than the environmental impact (which is somewhat important to the producer since

it may have economic impacts on their company through environmental taxes).

Figure 2.1: Selling to Customer and Selling Business Figure 2.2: Selling Business

Source: Nicola (2016)

2.2 Application Generator - The Perceived Value

This project mainly focuses on the Selling to Business value characteristics as illustrated in figure

2.2, where the main perceived value to be achieved by the proposed solution is its efficiency regarding the

integration with new PM models. Allowing the product modeling team to define customizations in PM

and consequently have a presentation-layer that do not require any manual coding adaptation to work

with the applied PM customizations.

Consequently, the solution shall use techniques that improve its adaptability (to adapt different PM

models), responsiveness (it must be fast so that developers can enable its usability on their daily develop-

ment process). The reliability of the proposed solution is also imperative, where the adopted techniques

shall address the present problem and be precise (for example: given a PM model, all the necessary

BOM interfaces must be implemented to enable communications). Another important characteristic to

12

be achieved with the proposed solution is the relation between time, effort and energy, where the optimal

scenario is the reduction of these three costs.

Although it can be hard to achieve, the solution either a new tool, development technique, or a new

work framework shall provide utility (easy to use), be more convenient when compared with the current

manual development process. Furthermore, it shall also enable financial benefits for the company (e.g.

selling for the same price what can be done with less development time – monetary benefits), deliver-

ing a better service quality, by answering to customer demands or prospects faster. Customer specific

customizations are crucial to enterprise applications, whereas the possibility to extend and override the

existing/base behavior is a plus. Therefore, the solution shall expect that it may/will be necessary to

add customer customizations to the overall base solution.

2.3 Obstacles in Insurance Sector

When it is identified a gap in the market, it is also recognized a business opportunity. Therefore,

this section will describe the obstacles identified by msg life in the insurance sector whereas the most

significant gaps to solve are the need for dynamic tools and the poor time-to-market when launching new

products into the market.

2.3.1 Dynamic Tools

According to msg life internal researches about the insurance market, the emergence of XXI century

consumer’s, more informed and demanding (Accenture, 2013a), has a strong impact in the insurance busi-

ness. An industry that is still strongly oriented to product construction, which is sold through its distribu-

tion channels. This ”Push” (Cognizant, 2013) logic is being challenged by latest consumer’s generations

that are increasingly pushing insurers to think that the future lies on the customer (customer-centricity)

(Capgemini, 2013), providing them an excellent experience (EY, 2014) on all contacts established with

the insurance company, regardless the channels (agencies, banks, Internet, call centers, social networks)

or devices (PC, Tablet, Phone). (EY, 2013)

We have entered the era of ”Pull Insurance” (Cognizant, 2013) in which informed consumers clearly

identify what kind of protections they are interested in to be covered. Consequently, insurance companies

are intended to identify within their existing product portfolio, which ones best fit each customer’s needs.

(IBM, 2013) (EY, 2014) There are a set of pre-conditions to be met to make this possible, Insurers

have to design products that can function as ”building blocks” (Accenture, 2013b) to compose integrated

commercial offers. (IBM, 2013) For such, it is needed highly flexible tools (IBM, 2013), to let insurers

setting components (e.g. insurance coverages) of all kinds and reuses them to build insurance products

quickly and ensuring the consistency of business rules. Additionally, these tools need to provide services

13

that can be managed by external systems so that these new products can be used in a dynamic way

without additional software developments.

As described in the previous paragraphs, more than ever, the Sales and Marketing departments

require having tools to allow them to build in minutes or hours what once took weeks or months: new

commercial offers. The creation of these new offers implies the definition of scenarios, comparisons and

bundling of various products and business lines, in applications where the user experience plays the main

role and where insurance products are just ”building blocks”, managed by the company users focused on

customer needs. The respect for product rules and its consistency must always be present, but it is not

the focus of a Marketing or Commercial department.

Nowadays the insurance products are usually configured, defined and modeled in the insurance com-

panies core systems, whose main concern is the management of product policies. Therefore, products

are defined focused on its management optimization and not on the selling process. For this reasons,

insurers are facing significant differences between the existing technical and actuarial1 products approved

by regulatory authorities where the commercial perspective and the commercial offers are striving to

meet a particular customer profile, channel or a specific client.

Consequently, the problem to solve is how to leverage the definitions of these products to streamline

the creation of commercial offers faster and do it on a right tool for business users leveraging the creation

of friendly solutions for such distinct lines of business as Life Insurance, Non-Life, and Health.

2.3.2 Time-to-Market: Launching of Commercial Offers

Currently, the process to launch new business offers is time-consuming, especially when launched new

insurance products. The launching process of a new insurance product comprises the following steps:

(1) Design and feasibility evaluation;
(2) Approval;
(3) Preparation;
(4) Launch;
(5) Sale;
(6) Maintenance;
(7) Termination.

In many Insurers, the launching process for new products can take over one year, and even a simple

price change may take several months RGA (2014), constituting a significant problem, while it is clear

that reducing the time-to-market will significantly constitute an enormous competitive advantage that

can make the difference. Analyzing the common duration of the first five stages of this process, typically

over 70% of the time is invested in the 3rd phase (preparation). In this phase, the Insurer has to define

in detail the product to be sold, the processes that will be used for its management and adapt their

1 An actuary is a professional dealing with the assessment and management of risk for financial investments, insurance
policies, and any other ventures involving a measure of uncertainty. Investopedia (2016a)

14

information systems to manage this new product. In many cases, whenever is launched a new product,

specific software programs are developed to support these new products on the various distribution

channels. Even when is not about launching new products, but only to combine existing products into

an innovative commercial offer, the problem is similar, i.e. it leads to specific developments.

The inefficient time to market launching new offers derives from the inadequate autonomy of marketing

and commercial departments that don’t have the right tools that could allow them to be agiler on the

evaluation and utilization of the insurer’s assets (insurance products and distribution channels). Another

significant problem to solve is the lack of technological agility on insurance companies (Accenture, 2013b),

which is, in part, responsible for the existing slowness in this industry due to its inability to address in

useful time the market needs.

Greater the variety of channels and distribution devices, greater will be the challenge to the Insurers

overcome the problem. From a technological point of view, Insurers are facing an accumulated reality

over decades, in which different developed solutions with diverse technologies were being used to support

the sale of their products.

Furthermore, the nonexistence of an integrated platform for insurance companies, capable of man-

aging the overall sales processes in multiple distribution channels, increase the duplication of efforts on

the integration between various sales software and the central management of the insurance business sys-

tems (Policy Administration System (PAS)) and adjacent systems, for example: Customer Relationship

Management (CRM) and others.

Different and not integrated solutions mean that there are different management procedures for the

different channels and products, with numerous system redundancies, organizational structures, tasks,

and controls, resulting in service inefficiencies and significant costs to insurance companies.

By solving this IT dependency problem when launching new commercial offers, will also promote the

empowerment of business users (Marketing and Sales), which address the issue about the time to market

when launching new commercial offers.

2.4 Business Opportunities

The business opportunities dealt with a presentation-layer for a given PM model is described in

subsection 2.4.1, where it describes the existing S&S business opportunities and its provided benefits.

Then, having in mind the described benefits that a PM presentation-layer delivers to msg Life and

its customers, the subsection 2.4.2 describe the additional business opportunities and benefits of having

a fully dynamic application generation that will serve as a PM presentation-layer.

15

2.4.1 Business Opportunities - Sales & Service2

Sales & Service (S&S), was built to enable faster and better insurance distribution with

maximum effectiveness and cost reduction by empowering business users to create a customer-

centric, cross-channel and multi-LOB sales approach. Its ability to integrate with several

Product Engines (e.g., msgPM, FJA-US PM4, SymAss or others) and leverage existing prod-

uct definitions enables fast adoption and Return On Investment (ROI).

S&S is a multi-channel, multi-Line-of-Business, Multi-device and Multi-tenant platform

that boosts Speed to Market and eliminates redundancies, errors and delays, slashing costs

by taking advantage of a common platform for marketing, product management, and field

operations. S&S supports a multi-channel approach including agents, distribution partners,

service centers, and customer self-service via the Internet in a single system.

S&S simplifies and reduces the time and costs involved with the required steps to bring

products to market, enabling insurers to quickly respond to market opportunities, helping to

enhance competitiveness and increase market share while improving operational and distri-

bution efficiencies.

With S&S, insurers can model, develop, deploy, and distribute products faster than their

competitors, therefore being more responsive to new market opportunities. They can ac-

commodate customers wants and needs, new regulations and legislative trends, market fluc-

tuations, demographic and social changes in their policyholder base, and knowledge they

acquire from Business Intelligence (BI) and/or other data about policies, policyholders and

the industry at large.

Furthermore, S&S makes the processes of creating, modifying, distributing and updating

more collaborative across the entire enterprise. Business users, such as product managers,

marketers, actuaries, underwriters, among other business specialists, can collaboratively cus-

tomize S&S to the needs of each distribution channel to better serve the Salesforce and final

customers.

With S&S, the Salesforce gets a powerful tool to engage in productive conversations with

their customers, understanding their needs and suggesting the most appropriate protection

alternatives, while maximizing the Insurance company share of the client wallet. Agents,

Brokers, Bank Clerks and Telemarketing operators can find in S&S a customer-centric tool,

with powerful pro-active sales features, enabling simple and engaging conversations focused

on customer needs that makes the process of selling Insurance much faster and easier.

Seamless support of the entire lifecycle of an insurance policy, including illustration, quot-

ing, new business and endorsements, as well as cancellations, reinstatements, and claims

2This section describes the existing S&S Business Opportunities. This information was acquired from msg life internal
documentation and may be available in public resources such as company web-site (msg life, 2015) or prospectus.

16

management, are enabled through Straight-Through Processing features.

With S&S, Insurance companies can guarantee a central part of the Digital Agency mobile

model is covered with a powerful tool to sell and serve their partners or customers.

(msg life, 2015)

2.4.2 Business Opportunities - A Dynamic Generated Application

Being a presentation-layer for several PM models, the proposed solution for this project inherits all

the business opportunities and benefits from the existing presentation-layer for a given PM model, the

Sales & Service Platform (S&S).

Having a dynamic and entirely generated application, able to integrate and communicate with a given

PM model, allows the development team to focus on new functionalities instead of having to support,

maintain and develop several Adapter Layers.

Beyond the improvement of the time-to-market launching a solution able to communicate with the

PM model, msg life can reduce its development costs. Providing better pricing to their customers and

therefore standing out from its competitors, and consequently acquiring market share.

2.5 Business Model

This section describes the Business Model applied to S&S using CANVAS. Due to its size, the complete

CANVAS model is available at Appendix B.1

As far as the CANVAS front-state is concerned, the solution addressed to solve this project has msg

life and its final customers as its Customer Segments. Since the solution is a revamp3 of the current S&S

application using code generators techniques, it may change the way that developers currently develop

S&S platform. Consequently, the final customers will also be affected since their requirements may be

answered faster due to the new autonomous programming process implemented. S&S is designed to be

a high-performance platform which enables Insurers to solve their time-to-market problems (See: 2.3.2)

when launching new products. Another important issue (See: 2.4) that S&S solves is the empowerment

of Marketing and Sales departments so that these can focus on their customers. Therefore, these are

the S&S Value Propositions. Under a Business-to-Business (B2B) model, the Customer Relationships

happen under personal presentations (such as Demos and Webinar’s), Sales Force software tool and msg

life Marketing Materials such as the Inside Insurance Trends4 magazine. S&S reach their customers

through business visits, digital marketing, and phone calls. The Revenue Streams are composed of

software licensing for new clients, development of customer-specific features (i.e. customizations) and the

acquisition of new customers.

3 To change or arrange something again, in order to improve it. Cambridge-Dictionary (2016a)
4 Available at: http://www.msg-life.com/pt/inside-insurance-trends/

17

Regarding CANVAS backstage, the specialized software development in Insurance Business area is the

Key Activity of the company as well as the maintenance of portfolio existing solutions. The Key Resources

are the human resources (such as programmers, managers, marketing and sales people), hardware and

software are the key tools for the business. The Key Partners are: Dell, being the msg life laptop supplier

which replaces any damaged laptop if needed; FJA-US is the main direct partner. FJA is responsible for

S&S Core roadmap5 and the producer of PM, the main PDS system that S&S use; msg life System is also

a direct partner who manages all user accounts and enables the msg life company group communications

all around the world with a secure Virtual Private Network (VPN) with RSA cryptosystem. The main

Costs Structure are the same as the Key Resources which is normal since the company does not have

any stock and the main costs are in fact the people and their equipment that enable programming and

managing tasks, i.e. hardware and software.

5 ”Roadmap is a plan of action for how a product or solution evolves over time. ” - (Atlassian, 2016)

18

3
Context

Contents

3.1 Insurance Industry . 21

3.2 Product Machine . 22

3.3 Sales & Service . 29

3.4 PM and S&S - Communication . 31

19

20

This project is related to the Insurance Industry. Therefore the section 3.1 describes the main char-

acteristics of this business. Then it is described two different application modules developed by msg life

to enable efficiency in insurance companies. At section 3.2 is described the Product Machine, a product

definition system. Followed by the section 3.3 that describes the Sales & Service, a presentation layer

capable of exposing the modeled products in Product Machine. This chapter is concluded at section 3.4

which describes the communication between those two systems.

3.1 Insurance Industry

Insurance in simplest terms is about managing risk. For example, in life insurance, the company

attempts to manage mortality (death) rates among its clients. The company collects premiums from

policyholders, investing the money (usually in low-risk investments), and then reimburses this money

once the person passes away, or the policy matures. (Investopedia, 2016b)

A person called Actuary constantly crunches demographic data to estimate the life of a person.

Therefore, characteristics such as age, sex, smoker, affects the premium that a policyholder must pay.

The greater the chance a person to have a shorter life span than the average, the higher the premium that

person will have to pay. This process is virtually the same as every other type of insurance. These natures,

also known as LOB include: General Liability Insurance, Property Insurance, Business Owner’s Policy

(BOP), Commercial Auto Insurance, Worker Compensation, Professional Liability Insurance, Directors

and Officers Insurance, Data Breach, Homeowner Insurance, Renter Insurance, Life Insurance, Personal

Automobile Insurance. (Investopedia, 2016b)

Insurance is the main alternative for businesses and individuals to reduce their financial impact upon

risk occurrences. ”Risk-transfer mechanism that ensures full or partial financial compensation for the

loss or damage caused by events beyond the control of the insured party. Under an insurance contract, a

party (the insurer) indemnifies the other party (the insured) against a specified amount of loss, occurring

from specified eventualities within a specified period, provided a fee called premium is paid. In general

insurance, compensation is typically proportionate to the loss incurred, whereas in life insurance usually

a fixed sum is paid”. (Merkin and Steele, 2013)

Some types of insurance (such as product liability insurance) are an essential component of risk

management and are mandatory in several countries. Insurance, however, provides protection only against

tangible losses. It cannot ensure continuity of business, market share, or customer confidence, and cannot

provide knowledge, skills, or resources to resume the operations after a disaster. (Business Dictionary,

2016)

During this project will be used two different PM models. One product model that holds data about

P&C insurances and another one containing modeled data about Life insurance. For this reason, the

following section will explain these LOB’s concepts within insurance business.

21

3.1.1 Property Insurance

Property insurance is applied to whom own a building or have business personal property, including

office equipment, computers, inventory or tools. Purchasing a property insurance policy will protect the

insured person in case of fire, vandalism, theft, smoke damage, among other reasons. These owners may

also want to consider business interruption/loss of earning insurance as part of the policy to protect the

earnings if the business is unable to operate. (Forbes, 2016)

3.1.2 Life Insurance

Life insurance protects an individual against death. If a person holds a life insurance, the insurer

pays a certain amount of money to a beneficiary upon his death. The insured person is asked to pay

a premium in exchange for the payment of these benefits to the beneficiary. This type of insurance is

important because it grants peace of mind. Having a life insurance allows people to know that the family

of the policyholder will not be burdened financially upon his death. (Forbes, 2016)

3.2 Product Machine

Product Machine is a software solution designed and developed by FJA-US, a company of the group

msg life. PM allows insurance companies to design, model, test and bring their products to the market

more efficiently. This tool has multiple services that can be connected to insurance companies legacy

systems, unifying then into a unified product platform.

Source: FJA-US (2015) ”Product Machine”, internal company documentation, July 2014.

Figure 3.1: PM: Centralization of all Product Rules

22

Figure 3.1 demonstrates the PM centralization capabilities to hold all the details, rules, and formulas

about a product. Consequently, turning off all the other distributed rules among insurers applications

and making those rules stored in a single location where PM acts as the unique possible source of truth.

This centralization allows the reuse of product rules on all downstream applications regardless its channel

and device. It also reduces the maintenance time since all the details about the product are in this single

location, making easier the traceability of existing errors on the product. (FJA-US, 2015)

Product Machine is a Java-based software. Developed to be employed specifically by product man-

agers, marketers, actuaries, underwriters and other business people. PM transforms product modeling

into high-performing runtime services and can be used in a Service-Oriented Architecture (SOA) as well

as in a message-oriented middleware using Java Message Service (JMS). Therefore, PM has the necessary

API that any business application or distributed channel needs to communicate and get all the required

data about the modeled products. Figure 3.2 shows the representation of the product lifecycle, from

engineering to its publication where it ends as being product services available to all parties that need to

consume product data. (FJA-US, 2015)

Source: FJA-US (2015) ”Product Machine”, internal company documentation, July 2014.

Figure 3.2: Product Machine - Overview

As illustrated in Appendix A.1, PM is composed of four different modules, MWB, Testing Workbench

(TWB), Data Workbench (DWB), and Reporting Workbench (RWB). Each module has its responsibility

within the System. Therefore, the next section (3.2.1) describe MWB, being the main PM module this

section describes MWB thoroughly, since it provides the ability to design different conceptual models by

describing the model rules, product variations, and ends with the generation of all the necessary code to

hold and provide the Product Services to downstream systems such as S&S.

Then, the following sections, 3.2.2, 3.2.3, and 3.2.4 hold a shallow explanation about the remaining

modules: TWB, DWB, and RWB giving a brief description of their responsibilities within the PM as a

unified system.

23

3.2.1 Modeling Workbench

MWB is the Product Engineer’s main working area. This Module allows the modeling and repre-

sentation of product details. MWB creates an active catalog of products, coverages/benefits, rules and

calculations for various situations.

Composed by generic concepts, MWB can build new conceptual models to support new product defi-

nitions, delivering flexibility to insurers so that they can produce and configure their products regardless

the LOB. Such flexibility is accomplished due to generic concepts that can hold any conceptual model.

These concepts are:

� Business Object (BO), Business Attribute (BA), and Relationship are components to

define the business object structure that in turn represent the structure of the conceptual model.

� Composition Rule (CR) enables the product variation and enhances re-usability. It is a rule

that joins the parent object to its child object(s). Every Composition Rule (CR) requires at least

one Composition Rule Version/Variation.

� Composition Rule Version/Variation (CRV) manages variations for a CR. If a CRV is

activated, then the CR is available. In a CRV it is possible to define the minimum and maximum

cardinality restrictions on the parent-child relationship as well as the required, and changeability

indicators.

� Version Information (VI) is attached to a CRV and defines the effective date, product, and

additional availability rules, Mass Maintenance Types and reason codes.

� Group Constraint Rule (GCR) creates the relationship between a Domain Object that shares

the same Domain Object Type. A GCR can define if a Domain Object within a group can be selected

without restrictions or if only one element of the group is eligible to be selected (GCR Operation =

{ANY or EXACTLYONE}). When the group operation is modeled as EXACTLYONE the other

components within the group cannot be selected. If the presentation layer for this data would be

HTML based, then it could be easily represented by the following Front-End layout:

1. Operation=ANY ⇒ <input type=”checkbox”/>
2. Operation=EXACTLYONE ⇒ <input type=”radio”/>

If the Front-End adds a new object into the group constraint, PM automatically updates the GCR

parent object that holds the group.

� Domain defines default values as well as attributes and associated possible valid values of com-

ponents. These valid values are defined in Continuous Entries or Filters that are attached to the

Domain. A Domain hangs off of CRV’s for various CR’s.

24

� Functional State corresponds to the Domains and describe the behavior of input fields. Although

Domains are defining attributes default values, and its associated possible values, the functional

state (and its associated Functional State Variations) defines if the control is:

1. Required describes whether an attribute is mandatory or optional, i.e. the field cannot be

left unfilled, and describes if the user is demanded to fill an attribute.

2. Relevant describes whether an attribute is relevant, i.e. the field can be shown or hidden.

3. Changeable describes whether the user can change an attribute value.

4. Rating Relevant describes whether an attribute triggers the Calculation Service. Which

means that changing a rating relevant attribute would impact the premium.

5. Master: Describe whether an attribute value change will impact the Product structure or an

attribute domain.

� Continuous Entry defines the available valid values for any numerical domain. Multiple contin-

uous entries can be attached to the same domain where the overlap in the possible values will not

result in duplicates on the front-end applications. Any default value defined on the Domain must

exist in the associated Continuous Entry. The Continuous Entry is composed by:

1. Min: Low-end of range.

2. Max: High-end of range.

3. Increment: Increment range.

4. Unit of Measurement: Type of range defined (e.g. Dollar, Euro, Day, Visit, Percent, etc).

� Filter defines the available valid values for any string domain E.g., the Benefit Period domain on

an Accumulator CRV would hold the valid values of ’CalendarYear’, ’BenefitYear’.

� Formulas are rules used by Information Service, Domain Service, and Calculation Service to

calculate or derive values. Formulas are also used to determine the availability of components i.e.

Formulas are used on CRV to activate product variations. A CRV can have multiple Formulas

associated. If a Formula returns true, then the CRV will be activated and therefore a product

variation will occur, applying the new rules described by the activated CRV, i.e. the BO’s that

doesn’t make sense for that rule can be removed, or even a new BO that simply started to be

relevant for the product will be added.

� Key Type is a unique identifier for an element. If there are several key types, then they combine to

create a unique identifier. For example: with Plan Options there are two key types: ”Plan Option

Type” and ”Plan Option Name” which would combine to form the unique concrete identifier of:

{Plan Option Type},{Plan Option Name} = Acupuncture,AcupCoveredNetNonNet. Usually, each

BO is composed by some Key Types, such as: BenefitType, AccumulatorType.

25

Each Key Type is composed by:

1. Acronym: An abbreviation form of other words and pronounced as a term.

2. Name: The complete description of the Key Type.

3. ShortText: Usually is modeled with the same content of the Name. However, it can be used

to act as helper description. Example: If the presentation layer is based on HTML, it may be

used as a title of an HTML element.

As an example, the PlanOptionName is a Key Type where its acronym, name, and shortText is

modeled as follows:

1. Acronym ⇒ AcupCoveredNetNonNet

2. Name ⇒ Acupuncture Covered in Network and out of Network

3. ShortText ⇒ Acupuncture is fully covered

� Lookup Tables, are files that are generated by MWB. These are Database (DB) tables used by

formulas to retrieve data from the tables (e.g. for rating purposes or to determine the availability

of components by state, zip code). More about lookup tables can be found at section: 3.2.3.

Figure 3.3 exhibits a small example of a model that can be built when all the previous concepts

are combined with each other. Together, these elements allow the creation of Products with different

conceptual models. MWB has achieved what is needed to create any model, with several rules and

variations.

Source: FJA-US (2015) ”Product Machine”, internal company documentation, July 2014.

Figure 3.3: Combining elements to create conceptual models

The work completed in MWB leads to the generation of Product Services, constituting the Product

Machine run-time System. Figure 3.4 illustrates how does the work of Product Engineers and the compo-

sition of all Rules and Product Specifications are leading to Product Services that serve the downstream

systems.

26

Source: FJA-US (2015) ”Product Machine”, internal company documentation, July 2014.

Figure 3.4: Unified Product Platform Ecosystem

There are different Product Services created by MWB, allowing other applications to consume the

modeled data. Each Product Service has its purpose, API, and response structure. The main Product

Service’s are: the Information Service, Validation Service, Functional State Service, Domain Service and

Calculation Service.

The Information Service, also known as Info Service, is the main service of PM. It provides the

available products, options, and riders. This service returns an entire product definition and its structure,

i.e. BO’s, BA’s, and their child objects with their Attribute State. This service allows downstream systems

to fetch and get the products available for a given input/criteria, for example, according to an effective

date. This service returns not only the product structure but also what are the default values for each

returned BA.

The Validation Service enforces consistency and accuracy for the changes made by users on down-

stream systems. This service enables the consistency by validating the product against its configured

Rules and Formulas. It returns an accurate message about what went wrong within the product data,

identifying what is the element within the Product Model that is related to the validation error.

The most common validations present in PM models are the required fields that were not set by the

user and also the validations about min and max values where the minimum shall be less or equal than

the maximum value. Although these are common and data scoped validations, this Service also allows

validations related to the product itself, where it can be validated if the Coverage A is not selected when

the Coverage B is simultaneously selected.

The Functional State Service is used to manage attributes changeability. It defines the requiredness

and relevance of an attribute. Whenever the functional state declares that an attribute is relevant, it

27

means the attribute will be displayed on the user screen. On the other hand, if PM states that an

attribute is not relevant, then it can simply be defined as an hidden attribute at the presentation layer.

Whenever an attribute is required, it means that the attributes cannot be left without the user set one

of the valid values within the possible Domain values. In this case, if the Domain of an attribute does

not have a Default Value modeled, then the user must choose one value without leaving the attribute

empty. If it occurs, when the Product is validated against the Validation Service it will fail and return a

message stating that this attribute is required and cannot be left empty.

The Domain Service provides the Default Value and the Domain for each attribute, i.e. the possible

valid values that the user can choose for input fields.

The Calculation Service for Life LOB calculates the premium according to the selected coverages

within the Product. For Health LOB, it calculates the benefits affected by the selected Plan Options.

3.2.2 Testing Workbench

TWB is a testing tool where the Product Modelers can validate if an updated PM model is correctly

defining the Rules, Formulas, or new Objects added to the model and validate if they are correctly modeled

when running the new model with S&S front-end application. This tool has two main configuration

parameters:

1. The PM Model version that the modeler wants to test

2. The Front-End (S&S) version that the modeler wants to test his PM model

Usually, the testings using TWB are executed with closed versions of S&S; this avoids the instability of

using a SNAPSHOT1 artifact which may contain ongoing developments and therefore causing errors on

modeler’s tests leading to false positive issues with the tested PM model.

3.2.3 Data Workbench

Data Workbench is an eclipse perspective within the MWB development environment. Used as a

Database connection manager, DWB creates lookup tables compatible with the main database providers.

After defining a connection with the correspondent JDBC Driver, DWB has access to all modeled

data allowing its exportation into the established connection. Here, DWB creates DB files that can be

eventually used by downstream applications. Acting as read-only data, the created tables are usually used

as information catalogs allowing downstream applications to have: filtering mechanisms and front-end

translations.

1If a version number is followed by -SNAPSHOT, then Maven considers it ”as-yet-unreleased” version of the associated
MajorVersion, MinorVersion, or IncrementalVersion.

28

3.2.4 Reporting Workbench

Reporting Workbench is built on top of Business Intelligence and Reporting Tools (BIRT), an Eclipse

based open-source reporting system for web applications, and mainly used with Java based platforms.

BIRT provides a faster way to design and deploy reports with seamless data integration. RWB is a

standalone reporting solution that is used to develop and deploy dynamic business reports, performing

data analysis such as: Benefit Summaries, Coding documents, Key Performance Indicator (KPI)s, and

data validation.

3.3 Sales & Service

S&S is the msg life Unified Distribution Platform (UDP). A platform to enable faster and better

Insurance Distribution with maximum effectiveness and cost reduction. S&S improve time to market;

reduce software development costs that come from Distribution Channels and mobile device support;

improves sales process by promoting intelligent pro-active sales features, and promote customer and

partner self-service, to improve satisfaction and reduce back office costs.

Being a Multi-Channel, Multi Line-of-Business (Life, P&C, Health), Multi-Device and Multi-tenant2,

Sales & Service is designed to be integrated with other modules. Such as PDS (that holds all business

rules), PAS (to processes including rating, quoting, binding, issuing, endorsements, and renewals) and to

be agile, and business focused where it can be customizable by business users; therefore it minimizes IT

development.

Figure 3.5 exhibit that S&S follow a Layered Software Architecture and provides extension points

to support different Authentication and Authorization providers, ID Generators, CRM, Party, Printing,

PDS, PAS, and widgets3.

The S&S technology stack, also described in figure 3.5, is composed of a presentation layer that uses

HTML5, CSS3 and ECMAScript 6 (ES6) specification (commonly known as JavaScript (JS)). The main

libraries used are: RequireJS, a file, and module loader, optimized for in-browser use; BackboneJS to

deliver Model View (MV*) design pattern including routing control for the client-side code (commonly a

Web Browser); JQuery, to provide easier element selection, JQuery UI components, Event handling, etc;

LESS, a Style-sheet language that enables the re-use of common styles and allow the usage of variables.

At S&S server-side, the local main web container is the Apache Tomcat4 and uses Jersey Server,

an implementation library for Java standard JAX-RS5. To enable serialization from Plain Old Java

Object (POJO)’s (Java BO’s or Data Transfer Object (DTO)’s) to JavaScript Object Notation (JSON)

2An architecture in which a single instance of a software application serves multiple customers - (Superior Consulting
Services, 2016)

3Small application with limited functionality that can be installed and executed within a web page by an end user
4Apache Tomcat� is an open source software implementation of the Java Servlet, JavaServer Pages, Java Expression

Language and Java WebSocket technologies
5Java API for RESTful Web Services

29

Source: msg Life Iberia (2015) ”Sales & Service - Project Architecture”, internal company documentation,
September 2015.

Figure 3.5: Sales and Services - State of the Art

or even Extensible Markup Language (XML) and vice-versa is used Jackson, an implementation for the

Java standard JAX-B6.

Internally, on the Business Logic Layer, it is used Spring Framework for Inversion of Control (IoC).

Spring enables configuration over implementation classes that will run given an application context7.

Moreover, Spring is commonly used to describe a specific customer application context, with its necessary

class overrides and customer-specific method implementations.

For persistence is used Hibernate, a well-known Object-Relational Mapping (ORM) that also ensure

and manage transaction operations with the DB.

For testing, S&S have several JUNIT for unit testing and use Selenium and Cucumber for Func-

tional Tests.

Maven manages the dependencies and adds the necessary classes and packages into the application

classpath8. Maven compiles, builds and deploy Java ARtifacts (JAR). It also provides a dependency

management to build Java artifacts, Web application ARchive (WAR) among other binary files. As far

as application artifacts are concerned, maven profiles also enable customer specifications where maven

can add or remove files from the final application artifacts according to the specified profile configuration.

Jenkins provides continuous integration and continuous delivery features to applications. Jenkins

6Java Architecture for XML Binding
7Inside a Spring application, contexts beans that interact with each other to provide the application services
8Classpath is a way to tell applications, including the JDK tools, where to look for user classes. - (Oracle, 2016)

30

build and test software projects continuously making it easier for developers to integrate changes to the

project.

3.4 PM and S&S - Communication

To communicate with PM model, S&S must implement the generated interfaces available in a given

PM model JAR. These interface implementations are describing the domain, and must be manually

developed and following the same structure declared by PM. This domain model needs to be well-defined

and correctly mapped on the ORM files so that it gets persisted in the DB. It also needs to be well-

configured on JAX-B implementation so that the objects gets correctly serialized/de-serialized between

the client and server HyperText Transfer Protocol (HTTP) requests.

Due to PM generic concepts, PM has the required dynamisms to model different domain models.

Furthermore, with its code-generation techniques to release a new JAR based on the modeled data in

seconds, the PDS adapter layer described in Figure 3.5, needs to be often changed to comply with the

model interfaces declared by the PM model JAR. The constant changes in S&S application constitute

the main motivation to develop a presentation layer that can be auto-regenerated upon PM changes,

without any manual coding and completely following the intended domain model on PM.

To build a proof-of-concept that will generate a presentation layer based on a given PM model, the

next section will describe code-generators state-of-the-art.

31

32

4
Code Generation

Contents

4.1 Introduction . 35

4.2 Code Generation Approaches . 36

4.3 Related work . 38

4.4 Conclusions . 39

33

34

This chapter presents the State-of-the-Art about Code Generators. Here, will be explained what are

the types of code generators and the main differences identified.

4.1 Introduction

Code generation is a technique used for rapid software development, where it automates regular

coding tasks of software design. (Imam et al., 2014) Furthermore, automatic code generation provides

rapid software development as it saves time and effort, enhances both software quality and accuracy, and

frees developers from boring routine tasks. (Imam et al., 2014)

By its definition (IEEE, 1990), a code generator is a software tool that accepts as input the require-

ments or design for a computer program and produces source-code that implements the requirements or

design. ”Code generators are been proven that they are important tools in software development since

they are allowing to automate repetitive coding tasks, and reduce developments costs”. (Franky and

Pavlich-Mariscal, 2012)

In a context of Model-Driven Architecture (MDA), code generation is a very useful technique to

reduce the effort to develop software systems. Code generators have a major role in process automation,

in which can automatically implement the models defined by the system designers or modelers. (Franky

and Pavlich-Mariscal, 2012) Similarly, on Domain-Specific Modeling (DSM), it is used code generation to

implement the domain model. Furthermore, DSM does not expect that all code can be generated from

models, but anything that is modeled from the modeler’s perspective, generates complete finished code.

(Kelly and Tolvanen, 2008)

There are two different types of code generators: passive code generators and active code generators.

(CodeSmith Generator, 2016)

4.1.1 Passive Code Generators

Passive code generators are commonly used to generate code once and then giving up all responsibility

for it. Wizards and builders that are usually available on modern IDE’s are typically passive code

generators. This type of code generation can afford a wide head start, ranging from generating code for

small object classes to generating code for entire object class hierarchies. A developer can later customize

this generated code manually. (CodeSmith Generator, 2016) (Imam et al., 2014)

However, once the code gets generated, a passive code generator cannot regenerate it with the custom

changes. Hence, those changes will be lost. (CodeSmith Generator, 2016)

35

4.1.2 Active Code Generators

According to (CodeSmith Generator, 2016), active code generators are designed to maintain a link

with the code that is generated over the long term by allowing the generator to run multiple times over

the same code. Templates are the source-code for this type of code generator. If an entire class structure

is not correctly defined, a single change on the template can replicate the correct definition in whole

project objects. The previous problem makes an active code generator very useful since it will save an

incredible amount of time over fixing the same issue on an entire project structure, i.e. various class files.

4.2 Code Generation Approaches

Code generation frameworks1 are used to generate the skeleton of a project and also to produce

additional functionality progressively for new modules and use-case implementation. The automatic

generation of an application skeleton contributes to the cut of overall implementation time, leading to a

cost reduction. According to (Franky and Pavlich-Mariscal, 2012) study, ”a code generation framework

comprises multiple individual code generators that create source-code with specific functionality.”

Code generation is being frequently used and has resulted in the development of different types of code

generators. (Imam et al., 2014) Therefore, ”code generators can be implemented in multiple ways: using

template languages, regular expression substitution or as part of a model-driven approach.” (Franky and

Pavlich-Mariscal, 2012)

4.2.1 Template-based Code Generation

Implementing code generators using templates has been the most common approach. These templates

are used to describe how the code generator will generate the code based on a given input data. Template

Languages are used to specify the structure and include mechanisms to reference elements from the input

data, to perform code selection and iterative expansion. (Franky and Pavlich-Mariscal, 2012)

In general, a template language has the following characteristics:

1. Mechanisms to include chunks of text written literally in the generated code.

2. When processing the template file, there is a Context with variables. This context will hold

the input data that is referenced in the template file. The template engine will then populate

the data according to the template.

3. A template file can also have conditional and loop statements that will write specific text in

the generated code (either once or iteratively), based on logic conditions.

4. Template file can include macros, which are substitution functions that facilitate reuse of

templates portions.

1Set of reusable services and components, organized in an extensible structure, to simplify application development.

36

The advantages and disadvantages identified in (Franky and Pavlich-Mariscal, 2012) work are: al-

though the usage of Templates provides flexibility to the code generator, the complexity of a code genera-

tor grows, as more templates are required to be maintained. Another problem with a template-based code

generator is the debug, where it can be challenging and error-prone since it needs first to generate code

from the existing templates, execute and debug the generated code, and finally propagate the corrections

back to the affected templates.

The most popular code generator template-based languages are: Velocity, Jelly, FTL, Acceleo, JET,

Xpand and MOFScript.

4.2.2 Code Generation based on regular expression substitutions

Regular expressions tools, such as java.util.regex library of Java can detect strings that comply with a

given regular expression and can also transform those strings. A regular expression is a pattern denoting

a set of strings of characters. The main components of regular expressions are 1) specific characters that

a string must contain; 2) character classes donating characters that a string may contain at a specific

position, e.g. numbers and letters; 3) quantifiers indicating the presence or absence of certain characters

inside a string. (Franky and Pavlich-Mariscal, 2012)

(Franky and Pavlich-Mariscal, 2012) have also proposed a code generator using an ANT task replac-

eregexp that uses regular expressions as a substitution technique to create source-code based on another

source-code from an existing application. In this case, this technique was mainly used to rename classes,

packages, and configuration files.

4.2.3 Code Generation in a Model-Driven Environment

In the context of Model-Driven Environment (MDE), software can be developed starting from its

conceptual model, i.e. what are the main entities and how they are related to each other.

This type of code generators relies on a design model that can be stored using different formats,

such as Eclipse Modeling Framework (EMF) or XML Metadata Interchange (XMI). These design models

describe the system architecture, where the design model may include an abstract representation of

reference source-code components if necessary. The code generator takes the design model as input data,

generates the project skeleton, and automatically incorporates all of the required components (the ones

referenced in the design model). (Franky and Pavlich-Mariscal, 2012)

Often, stereotypes are used in MDE code generation. These stereotypes are usually based on Domain

Driven Design (DDD) concepts such as Service, Module, Entity, Value Object, Repository (More about

DDD at Appendix: C.1). As described in (Franky and Pavlich-Mariscal, 2012), a study about code

generators, each class in the Figure. 4.1 (a simplified class diagram for illustrative purposes) has a

stereotype denoting the reference code that will be used to implement that class. Both Hotel and

37

Source: Improving Implementation of Code Generators: A Regular-Expression Approach (Franky and
Pavlich-Mariscal, 2012)

Figure 4.1: An example of design model (a class diagram)

Room classes have the �Entity� stereotype, which means that the generator responsible for carrying

out these objects will be using the persistence entity component with Create, Read, Update, and Delete

(CRUD) operations. On the other hand, SalesReport and IncomeReport have the �Report� stereotype,

which means the code that implements these classes will be the components that are responsible for

implementing reports.

The main difference between the MDE-based generators and the frameworks described in the preceding

sections is that an MDE-based framework must include a generator that takes as input the design model.

So that the generator creates the skeleton, finds all of the stereotypes that denote reference components

(e.g. �Entity�, �Service�, �Report�, among others) and also invoke the correspondent generator for

each component.

4.3 Related work

In (Franky and Pavlich-Mariscal, 2012) is suggested an implementation improvement using code gener-

ators with a regular-expression approach to convert existing project components into more generic ones.

The regular expression substitution technique was used to create the project skeleton, and then each

newly generated code was based on the existing project source-code. Generic names replace the names of

modular units such as classes and web pages. They have used a component to set some parameterizations,

including a full description about all substitutions to be performed on the reference source-code. On this

project, the usage of a passive code generator is clearly identified by their affirmation:

”Developers of this project could modify the generated code to add new functionalities;

whereas code generator cannot be used again to produce the same code, since the changes

manually made by developers would be overwritten.” (Franky and Pavlich-Mariscal, 2012)

(Imam et al., 2014) suggested the employment of an Expert System (ES), also known as the Knowledge-

Based System (KBS), for developing an Automatic Code Generator (ACG). In their work, it was used

38

a rule-based system and frames knowledge representation techniques to present the design of a passive

code generator. As a case study, it was created a code generator to generate a device driver program.

On (Talab and Jawawi, 2011) work, it was used executable Unified Modeling Language (UML) 2.0

state machines and composite structures that were suitable as inputs for their code generators. The code

generators were used to generate Component-Oriented Programming (COP) framework state machines.

(Wang et al., 2012) has proposed an automatic Real Time (RT)-Java code generation approach based

on the Architecture Analysis & Design Language (AADL) model for ARINC635 (AADL635) to enable

the development of RT-Java ARINC635-based avionics software more productive and trustworthy. The

main contributions in this work were: 1) a mapping from the AADL635 model to a high-integrity RT-Java

programming model for ARINC635 (RT-Java635); 2) an ARINC635 compliant RT-Java code generation

algorithm suitable for complex multi-task collaboration interaction situation. According to (Wang et al.,

2012), they have implemented the RT-Java class library and the corresponding code generator.

4.4 Conclusions

As described, code generation is a technique that provides rapid software development due to the

automation of the most regular coding tasks. However, to address the requirements of this project, a

code generator tool either based on templates or regular expression substitution is not enough.

The regular expression approach is not suitable for the desired solution since it requires an existing

source and uses it as a template to execute the intended changes (e.g. rename artifacts) which are not

the goals of this project. Regarding template based code generators, although these could address the

requirements, it would require the creation of multiple templates and definitions since a system contain

various types of files, e.g. Java files, Hibernate Mapping files, REST API, Javascript written in a specific

web development framework, HTML templates, CSS.

Consequently, to develop a front-end application that gets always generated and fully adapted to a

given PM, it will be necessary a tool that could provide features to enable a presentation layer to get

completely generated based on the PM model, from its domain model to its front-end screens.

Therefore, the next chapter will describe what are the main existing Java frameworks that use code

generation techniques to do a full stack code generation. The frameworks that can partially do it, will

also be included to determine if they are suitable to address particular areas within an application.

39

40

5
Application Code Generators

Contents

5.1 Application Code Generators - Frameworks 43

5.2 Frameworks Comparison . 51

5.3 Conclusions . 54

41

42

5.1 Application Code Generators - Frameworks

This section describes what are the main Java-based application code generation frameworks able to

provide more than one type of file generation.

5.1.1 AndroMDA

AndroMDA is an extensible generator framework that adheres to the MDA paradigm. It transforms

UML models into deployable components for different platforms, including Java. AndroMDA uses a

cartridge concept that can generate code for several technologies. This cartridge concept is used to isolate

the logic from various technologies within a system application. Figure 5.1 shows that AndroMDA with a

given UML model can generate multiple blocks of artifacts needed to an application, i.e. it can generate

a cartridge holding Java code, another with hibernate configuration and so on.

Figure 5.1: AndroMDA: From UML Model to multiple cartridge generation

Source: Getting started Java – Introduction (AndroMDA, 2016)

AndroMDA provides several cartridges out-of-the-box. For example, the Hibernate and Spring car-

tridges generate the service and data layers for the application. Furthermore, the database schema can

be exported to script files, allowing the creation of the application database.

Regarding customizations on top of this tool, AndroMDA can generate custom artifacts from a given

model, where developers can write custom cartridges.

According to AndroMDA documentation, this tool can generate enterprise quality code that is also

43

highly customizable to meet the project’s particular needs. It also enables the creation of better applica-

tions and maintain order on large projects, enforcing best practices and let developers focus on high-level

problems instead of wasting time on repetitive code.

”AndroMDA takes as its input a business model specified in the UML and generates significant portions

of the layers needed to build a Java application.” (AndroMDA, 2016) These layers are Presentation Layer,

Business Layer, and the Data Access Layer that communicates with Data Stores.

- Presentation Layer, AndroMDA currently offers two technology options to build web based presen-

tation layers: Struts and JavaServer Faces (JSF). It accepts UML activity diagrams as input to specify

page flows and generates Web components that conform to the Struts or JSF frameworks.

- Business Layer, the business layer generated by AndroMDA consists primarily of services that are

configured using the Spring Framework. These services are implemented manually in AndroMDA-

generated methods, where business logic can be defined. These generated services can optionally be

front-ended with Enterprise JavaBeans (EJB) making the services deployed in an EJB container (e.g.

JBoss). These services can also be exposed as Web Services, providing a platform-independent way for

clients to access their functionality. AndroMDA can even generate business processes and workflows

for the jBPM workflow engine (part of the JBoss product line).

- Data Access Layer, AndroMDA uses Hibernate to generate the data access layer for applications,

by generating a Data Access Object (DAO) for each entity defined in the UML model. These data

access objects use the Hibernate API to convert database records into Java Objects and vice-versa.

AndroMDA also supports EJB3/Seam for data access layer.

- Data Stores, since AndroMDA generates applications using Hibernate to access the data, the databases

supported by Hibernate can be used to store the application data.

5.1.2 Celerio

Celerio (Jaxio, 2016) is a code generator tool for data-oriented application. Celerio uses as its input

the entity-relationship model used by all relational databases. To obtain this model, Celerio connects to

a given database and performs a reverse engineering of that database schema. Celerio supports the most

common databases such as Oracle, MySQL, Postgres, and DB2.

The model can be augmented using a configuration file that can hold inheritance settings, variable re-

names, bi-directional associations, among other definitions. With this configuration files, Celerio executes

code generation templates written in Velocity.

Celerio comes with ready-to-use code generation templates organized into templates packs (’Backend’

pack, ’JSF 2’ pack). These templates address most use cases of data-oriented applications.

44

Regarding customization, Celerio allows the definition of new generation templates where the existing

ones can be used as inspiration. (Jaxio, 2016)

Source: Celerio documentation (Jaxio, 2016)

Figure 5.2: Celerio: Overview

Figure 5.2 gives an overview how Celerio connects to a database, and based on templates, generates

code. The generated code is composed of customizable code plus third party libraries.

According to Celerio documentation at (Jaxio, 2016), it generates the presentation layer using JSF

or PrimeFaces. On the Backend layer, it generates services and the data access layer, with its respective

DAO’s. The Backend technologies used are Spring for services and Hibernate for Object-Data mapping.

5.1.3 JHipster

JHipster combines three very successful frameworks in web development: Bootstrap, AngularJS, and

Spring Boot. At its core, JHipster is a Yeoman generator. Yeoman is a code generator that export

and uses the yo command to generate complete applications or valuable pieces. Yeoman generators

promote what the Yeoman team calls the ”Yeoman workflow”, an opinionated1 client-side stack of tools

that can help developers to quickly build web applications, providing the needed infrastructure to get an

application working without the normal associated manual setup.

The Yeoman workflow is made up of three tools to enhance productivity and satisfaction when building

a web application: scaffolding2 tool (yo); build tool (Grunt, Gulp, etc.); package manager (Bower, npm,

etc.).

JHipster supports Liquibase3, which provides tracking of the DB schema changes over the time,

1An opininated person is certain about their beliefs, and expresses strongly their ideas(Cambridge-Dictionary, 2016b)
2Scaffolding, in the Yeoman sense of the word, means generating files for a web-based application with specific configu-

ration requests.
3A database source control tool and allows DB refactoring

45

allowing track of the applied changes and therefore allowing a better DB maintenance.

Another useful feature supported by JHipster is the Elasticsearch, a distributed, open source search

and analytics engine, designed for horizontal scalability, reliability, and easy management. It combines

the speed of search with the power of analytics via a sophisticated, developer-friendly query language

covering structured, unstructured, and time-series data. (Elasticsearch, 2016)

As illustrated by Figure 5.3, JHipster builds an application skeleton from the command line where

the developer has to choose from the supported options, what components shall JHipster be generating

for the application. At this point, the domain model was not yet expressed nor created by JHipster.

Source: The JHipster Mini-book (Raible, 2015)

Figure 5.3: JHipster: Generating the application from command-line

After creating the application skeleton, JHipster is ready to receive the instructions for the intended

domain model for the application. For each created entity, JHipster is responsible for generating the

following components:

A - Database Table with respective Liquibase changelog.

B - Java Persistence API (JPA) entity class

C - Spring Data JPA Repository interface

D - Spring MVC Rest Controller class

E - AngularJS view, router, controller, service, and the related HyperText Markup Language

(HTML) page

Like any other code generators, JHipster needs an input describing what shall be generated, whereas

JHipster supports three different methods for the description of the intended domain model.

46

1. jhipster-entity is a Yeoman sub-generator that is also executed by the yo command. This entity

sub-generator is a command-line tool that prompts developers with a set of questions about the Entity

to be created. This process requires the description of all fields as well as the possible relationships

with other existing Entities.

2. UML is another alternative for those that want to use visual tools. The supported UML editors by

JHipster include Modelio, UMLDesigner, GenMyModel and Visual Paradigm.

3. JHipster Domain Language (JDL) is a DSL to describe all the intended entities and their re-

lationships in a single .jh file (or more than one) with a straightforward and user-friendly syntax.

(JHipster, 2016)

JHipster also provides JDL-Studio, an on-line tool to help developers describing the domain model

for their applications. This on-line tool also offers a real-time visualization of the described model.

Listing 5.1 shows the JDL domain language syntax that allows the description of the intended domain

model.

Listing 5.1: JHipster Domain Language - Syntax reference.

1 Entity Dec la ra t i on
2

3 entity <entity name> {
4 <f i e ld name> <type> [<v a l i d a t i o n>*]
5 }
6 - <e n t i t y name> i s the name of the en t i t y ,
7 - <f i e l d name> the name of one f i e l d o f the en t i t y ,
8 - <type> the JHipster supported type o f the f i e l d ,
9 - <v a l i d a t i o n> the v a l i d a t i o n s f o r the f i e l d (op t i ona l)

10

11 Enum Dec la ra t i on
12

13 enum <enum name> {
14 <enum values>
15 }
16 - <enum name> i s the name of the enum,
17 - <enum va lue s> the comma sepera ted va lue s in uppercase
18

19

20 Re la t i onsh ip Dec la ra t i on
21

22 relationship <type> {
23 <from entity>[{<relationship name>}] to <to entity>[{<relationship name>}]
24 }
25 - <type> i s the type o f your r e l a t i o n s h i p
26 - (OneToMany | ManyToOne | OneToOne | ManyToMany)
27 - <from en t i t y> i s the name of the e n t i t y owner o f the r e l a t i on s h i p ,
28 - <to e n t i t y> i s the name of the e n t i t y where the r e l a t i o n s h i p goes to ,
29 - <r e l a t i o n s h i p name> i s the name of the r e l a t i o n s h i p in the e n t i t y .
30 - The p o s s i b l e t ypes and v a l i d a t i o n s are those de sc r i b ed here , i f the
31 - v a l i d a t i o n r e qu i r e s a value , s imply add (<va lue>) r i g h t a f t e r the name
32 - o f the v a l i d a t i o n .

When JHipster is creating an Entity, it creates JSON and YAML files that are describing the created

Entity, allowing developers to change those files and regenerate the Entity again using a simple command-

47

line instruction. If any conflict occurs, JHipster will present a message and prompt some questions so

that the developer can solve those conflicts.

On JHipster mini-book (JHipster, 2016), the author explains how JHipster works, from the design of

the intended domain model until the complete application generation. The author has used the command

line to generate the application based on the following diagram presented in Figure 5.4.

Source: The JHipster Mini-book (Raible, 2015)

Figure 5.4: JHipster: Generating the application - An example of a domain model design

The author has also described some adjustments in the generated application to get the desired Front-

End layout after the default generation, for example, the infinite scroll or pagination layout style. The

final results from those adjustments are illustrated in Figure 5.5 and Figure 5.6, an application that allows

people to control his health by logging their daily actions, like ”did you exercise?”, ”did you hate healthy

food?”, among other indicators. These logs are them interpreted in the Backend Services which applies

a scoring system. These points are then presented in a graphical way under the application dashboard

(illustrated in figure 5.5).

Figure 5.5: Example: Health App - Dashboard Figure 5.6: Example: Health App - Actions log

Source: The JHipster Mini-book (Raible, 2015)

Any application created by JHipster is production ready since it provides monitoring Metrics, caching

mechanisms such as Ehcache (for local cache) and Hazelcast (for distributive cache system); optimized

static resources using GZip and HTTP cache headers; runtime log management using Logback; and uses

HikariCP connection pooling, for optimum performance.

48

5.1.4 ModelJ

ModelJ is a tool that uses code generation to create complete Java 2 Platform Enterprise Edition

(J2EE) designs using Struts and EJB frameworks. According to (ModelJ, 2016) web-page, developers

just need few steps to complete an application ready to be deployable into a JBoss web server. ModelJ

uses proven design patterns to ensure a robust and an easy-to-maintain design. A UML design file is used

to generate the domain model. It generates a Swing-based presentation layer. The backend comprises

the following technologies: Castor, Velocity, EJB, Struts, Tiles, and JBoss.

5.1.5 Sculptor Framework

(Sculptor, 2016) is an open source tool that applies the concepts from DDD (See: C.1) and DSL (See:

C.2). To generate the application, Sculptor gets a textual specification as input, i.e. a custom DSL is

used to describe the design intent and then, it generates Java code and configuration accordingly. On the

DSL, the concepts from DDD can be used, e.g. Module, Entity, Value Object, Service, and Repository.

According to Sculptor overview page (Sculptor, 2016): ”The DSL and the code generation drives

the development and is not a one time shot. The application can be developed incrementally with an

efficient round trip loop. The Sculptor framework is useful when developing typical enterprise or web

applications that benefit from a rich and persistent domain model. Within 15 minutes it is possible to

go from scratch to a running application, including build scripts, Eclipse projects, domain model, JPA

persistence, services and much more.” (Sculptor, 2016) Furthermore, the developer can continue evolving

the design, add code manually and regenerate the application. (Sculptor, 2016)

”The generated code is based on well-known frameworks, such as JPA, Hibernate, Spring Framework

and follows J2EE standards” (Sculptor, 2016). Additionally, Sculptor takes care of the technical details

and repetitive work, empowering developers to focus on delivering more business value.

Another interesting feature (See: C.2.2) that Sculptor provides is the ability to represent the model on

different representations (e.g. using diagrams). Sculptor framework uses the DOT language to describe

the generated model and uses Graphviz to generate UML diagrams. Different representations are always

useful since it provides another perspective and it can be used to validate the application domain model

with the PM modelers or other business people.

Regarding customization, ”Sculptor framework is not a one-size-fits-all product. Even though it is

a good starting point for many systems, sooner or later customization is always needed. Sculptor is

designed and documented with this in mind, where the generated result can easily be modified to meet

different business needs.” (Sculptor, 2016)

The Listing 5.2 is an example of the custom DSL that Sculptor uses to interpret the domain intent

and generate the code. Having this listing as an example, Sculptor will generate an Entity named Planet,

being an Entity, Sculptor will also create the respective Hibernate mappings so that Planet gets mapped

49

to be correctly transformed into datasets and therefore stored in a Database. Furthermore, the Service

layer generates all CRUD operations. A Resource with REST Web-Services is also created, allowing a

web-client to fetch and store Planet related data. The Sculptor framework also allows the definition of

custom DTO objects to be sent as the response of the generated REST Web-Services.

Listing 5.2: Example of a DSL to express REST WebServices

1 Resource PlanetResource {
2 show => PlanetService.findById;
3 String createForm;
4 create => PlanetService.save;
5 delete => PlanetService.delete;
6 showAll => PlanetService.findAll;
7 }
8

9 Service PlanetService {
10 findById => PlanetRepository.findById;
11 findAll => PlanetRepository.findAll;
12 save => PlanetRepository.save;
13 delete => PlanetRepository.delete;
14 }
15

16 Entity Planet {
17 String name
18 int diameter
19 Repository PlanetRepository {
20 findById;
21 save;
22 delete;
23 findAll;
24 }
25 }

The Appendix D.1 illustrates an example of a domain model used by (Evans, 2003) on his book about

DDD. Sculptor framework uses this model to illustrate an example about how does Sculptor generate

the necessary source-code to support the exactly same model used by (Evans, 2003).

As illustrated in Figure 5.7, Sculptor generates the main application components with their default

implementations. Sculptor is very flexible and allows changes about the desired implementation by

changing the configuration files.

Source: Sculptor documentation (Sculptor, 2016)

Figure 5.7: Sculptor: Target Implementation

50

Upon cases, whereas Sculptor does not support a specific implementation natively, this tool allows

full control by enhancing the DSL Syntax by changing the Sculptor Meta Model (e.g. to define a new

language element for the DSL) and make Code generation templates changes to generate new types of

artifacts.

5.2 Frameworks Comparison

As described in the previous section 5.1, there are some tools already available to be considered

as the chosen tool to address partially or completely this work aims. However, each tool has its own

pros, cons and value propositions. Therefore, to provide a fair comparison about what are the desired

characteristics for this work versus these frameworks capabilities, this section, will announce what the

main desired characteristics are, that the chosen tool must have, as well as the features that are not

strictly required but that are also important to be considered, e.g. its documentation and extendability.

Therefore, the sub-section 5.2.1 will enumerate what are the main features to be taken into account

when compared with this work objectives. Then, each outlined tool in section 5.1 will be analyzed in

the sub-section 5.2.2, where it is exposed their advantages and disadvantages when compared with the

desired features for this project.

5.2.1 Desired Features

As described in section 5.1, the identified tools are composed of different technology stacks, has

different capabilities, and provides different extendability levels.

Therefore, to provide a fair comparison between such different tools, the present sub-section enumer-

ates what are the desired characteristics to be examined in each tool. Providing a guide-line to clearly

identify what is(are) the tool(s) that stood out from those characteristics and consequently identifying

the tool to provide a complete or a partial solution mechanisms to this work.

5.2.1.A Miscellaneous Characteristics

As already announced in the project constraints at section 1.3, there are general characteristics to

respect when choosing the tool to address the proof-of-concept for this work.

The tool must be maven compliant whereas all its dependencies and build process are handled by

maven since it is used on the overall projects in msg life. Additionally, it must be an open-source Java

based solution to avoid monetary costs to the organization. Another important aspect to be considered

is that the tool must be well documented and provide public developer guides to enable an easy and fast

adaptation to msg life developers. Furthermore, the tool shall have an active support and an up-to-date

bug fixing process.

51

Another relevant characteristic to consider is the usage of a custom DSL to describe the intended

system since it allows the system description without a usage of additional software.

Usually, web-applications are composed of several files, with different syntaxes. For example Java,

HTML, Cascading Style Sheets (CSS), JS, among others. Therefore, the selected tool shall have the

capability to generate all the necessary files by holding various templates already implemented, so that

all the different application files can be generated and consequently provide an application ready to run.

5.2.1.B Code Generation Capabilities

Regarding the backend, it is expected from the selected tool that the Entities gets generated. Addi-

tionally, it is desired that along with the system Entities generation, the tool also generates their database

mappings, to enable persistence with the most common database providers. Furthermore, the stored in-

formation in the application is meant to be visible by the end-user in a frontend layer - typically a web

browser. Therefore, the chosen tool shall also generate a RESTful API to enable a frontend interaction

with the data stored in the backend.

Therefore, the chosen tool must generate a pleasant and up-to-date frontend application, implemented

in a JS Single Page Application (SPA) framework. Where from this generated frontend layer, it is

expected the interaction with the generated backend, whereas at least CRUD operations can be available

and interacting with the generated RESTful API.

5.2.2 Advantages and Disadvantages

In the previous section, it was outlined what are the general and must have characteristics for the

chosen tool to build a proof-of-concept for a full application code generation. Therefore, this section

compiles all the information available in section 5.1 and compare each tool with the desired features

described in the sub-section 5.2.1.

Having in consideration the desired characteristics, the following tables, will express the pros and cons

side-by-side for AndroMDA 5.1, ModelJ 5.2, Celerio 5.3, JHipster 5.4 and Sculptor 5.5.

Table 5.1: Advantages and Disadvantages of: AndroMDA

Advantages Disadvantages

Generates Entities

Generates Data Access Layer using Hibernate.

Generate CRUD Operations.

Needs a UML Model as input to generate the
application.

The Presentation Layer is not using a rich client
side javascript framework.

No project updates since 2014.

52

Table 5.2: Advantages and Disadvantages of: ModelJ

Advantages Disadvantages

Generates Entities. Requires a UML Model as input to generate the
application.

Lack of Documentation.

Out-of-date project.

Presentation Layer is Swing-Based.

Not integrated with Maven.

Table 5.3: Advantages and Disadvantages of: Celerio

Advantages Disadvantages

Generates Entities.

Generates CRUD Operations.

Generates Data Access Layer using Hibernate.

It needs an existing Database Schema as input
to generate the application.

Lacks on a different kind of file templates to sup-
port the entire application.

The Presentation Layer is not using a rich client
side javascript framework.

Do not generate Web-Services.

Lack of documentation and developer guides.

Table 5.4: Advantages and Disadvantages of: JHipster

Advantages Disadvantages

The Presentation Layer uses a rich client side
javascript framework (AngularJS).

Has a DSL to define the intended domain

Good documentation.

Generates Entities.

Generates ORM and Data Access Layer

Generates Web-Services with CRUD Opera-
tions.

Integrated with Maven.

JDL is not as flexible as Sculptor’s DSL

Table 5.5: Advantages and Disadvantages of: Sculptor

Advantages Disadvantages

It uses a DSL as input. Good documentation.

Generates Entities.

Generates Data Access Layer using Hibernate.

Generates Web-Services with CRUD Opera-
tions.

Integrated with Maven.

The Presentation Layer is not using a rich client
side javascript framework.

53

5.3 Conclusions

To determine which tool is best to address entirely or partially the project aims, it is necessary to

compare what are the desired basic features to be supported. As described under project constraints 1.3,

the tool must be accessible using Maven. Furthermore, it is also expected that the tool can generate at

least the Entities, backend Services, and data access mechanisms, i.e. it shall be able to store and fetch

data from a Database. That being said, the following table 5.6 provides a survey of these features and

relates them with the desired characteristics for this project, giving a compiled summary of the previous

section (5.2).

Table 5.6: Frameworks Comparison - Solution Required Features

AndroMDA Celerio JHipster ModelJ Sculptor
Maven integration 3 3 3 7 3
Entities 3 3 3 3 3
RESTful Services 7 7 3 - 3
DB Mappings 3 3 3 - 3
FrontEnd: JS-Based 7 7 3 7 7

Total 3 3 5 1 4

As demonstrated by Table 5.6, ModelJ is not an option for this project since it does not support most

of the required features needed for this project. Moreover, ModelJ documentation lacks information

about this tool, where no information was found about Services, REST API nor DB mappings.

Regarding AndroMDA and Celerio, both do not generate the REST API nor a presentation layer

based on a rich JS framework.

Therefore, Sculptor and JHipster are the most suitable tools to provide the desired code generation for

this project, where JHipster stands out with the ability to generate the front-end code using AngularJS,

one of the most popular front-end javascript frameworks.

Consequently, the next Chapter proposes JHipster to address this project goal since it has proved to

be the most suitable tool due to its code generation capabilities when weighted with the desired ones.

54

6
Proposed solution

Contents

6.1 Overview . 57

6.2 Conception . 57

6.3 Development . 60

6.4 Validation . 75

6.5 Conclusions . 84

55

56

6.1 Overview

JHipster and Sculptor are both illegible tools to provide the capability to generate an application able

to interact with a given PM model. However, knowing that Sculptor does not provide a rich javascript

based front-end generation, JHipster stands as the preferred tool to generate the application since it

provides all the generation capabilities announced at the project objectives.

To use JHipster to generate the application, it is first necessary to describe the intended domain

model. As outlined in section 5.1.3, JHipster supports three different input formats to represent the

domain model.

The domain model will be driven by a particular PM that will be configurable, i.e. the developer

will have the opportunity to choose what is the PM version that will drive the application generation.

Therefore, to get the domain for a particular PM model is necessary to develop a tool that will read

down the domain model from the provided PM JAR. Then, it will be required a transformation from

that domain model to one of the three available JHipster domain model representations (See the Section:

5.1.3).

After inferring the domain model from PM and translate it into a valid JHipster Entity model repre-

sentation (that in turn will allow JHipster generate the entire application), it will be necessary to develop

the following components using code-generation techniques and/or JHipster sub-generators:

1 - Inject the PM JAR as a dependency of the generated application, so that PM Runtime Services

get available in the classpath, and consequently, the generated application can have access to

the Runtime Services.

2 - Every existing Entity must implement BOAdaptable - So that the domain model can them

interact the with PM Runtime Services (See the Section: 3.2.1).

6.2 Conception

This section will briefly describe what are the main actions to get JHipster to generate the application

for a given PM model, which means that a specific PM must be selected. Therefore, the sub-section 6.2.1

holds a shallow description of how the selection of a PM model was designed. Then at sub-section 6.2.2,

is described the necessary steps to translate the domain model into a valid JHipster input representation,

so that finally, JHipster can generate the application as presented in section 6.2.3.

6.2.1 Choosing the PM Model

There are multiple PM models available within the msg Life portfolio such as Life, Health, P&C,

Group Life. The generated application shall work at least with Life and P&C models as described at

project objectives (See: 1.2).

57

Before the application generation takes place, the developer will have to have a way to select the

desired PM (artifact and version) to be generated by JHipster and/or any other needed sub-generators.

Since the project is a Maven project that handles artifact dependencies, it can be used the Maven

pom.xml file to set the proper PM dependency and let Maven pull the correct JAR from the internal

msg life Maven Repository server. Only then, the developed tool can read and interpret the model from

the JAR that should be already available on the classpath.

6.2.2 Interpreting the PM Domain Model

The domain model lives in a customer specific PM model, and the business objects present on that

domain model extends the interface BOAdaptable. During the analysis of a model in a JAR, it was

concluded that all Entities of the model reside in a single Package within the Java classpath. Therefore,

it is possible to use the Java Reflection API to allow the inspection of any existing object at run time and

extract useful information such as Class constructors, methods, and fields. However, Reflection should

be carefully used due to known performance drawbacks. But for this particular case, its usage makes

sense since the interpretation of the model will occur just once, translating the model into a structured

data format. Then, this structured data can be translated into another format. In this case, it will be a

valid JHipster input representation that will take place without any usage of Java Reflection API.

As described in the previous paragraph, every Entity of the domain model extends the interface

BOAdaptable, and is located on a single Java Package where the algorithm to extract the model from a

given PM model artifact could follow Algorithm 6.1.

Algorithm 6.1: Translating PM Entities into a structured data format

Initialize entityCollection collection;
entities iterator := all inherit objects from the interface com.fja.pm.BOAdaptable;
while iterator has next do

entity := get next entity;
if this entity was not yet processed then

Create newEntity object;
properties := read all getter methods from the current entity;
for property ← 0 to properties.length do

if property is not another entity type then
newEntity add regular field;

else
add field type to newRelationship;
set the relationship cardinality type;

set the newRelationshipCollection into the newEntity;
Add newEntity to entityCollection;

else
go to next entity;

return entityCollection;

58

As described in Algorithm 6.1, the model provided by the PM artifact can be interpreted using Java

Reflexion API. The algorithm starts by searching for all implementations of BOAdaptable available in

the classpath, which in turn represent a PM domain model element, i.e. a BO. Then the algorithm starts

iterating all these Classes to infer their fields. If a field is a non-Java standard type (e.g. String, Double,

Integer), it may represent another Entity object within the domain. In this case, this particular field will

mean a relationship (one-to-one, one-to-many) and therefore will need to be treated accordingly, i.e. it

may require that this child Entity needs to be created first so that JHipster can create the relationship

between these two Entities.

6.2.3 Generating the JHipster Domain Model

As described in Section 5.1.3, JHipster can generate the domain model for the generated application

with three different approaches: i) by the command-line using the jhipster-entity sub-generator; ii) using

a UML class diagram; or iii) using their DSL called JDL.

The UML method approach is not ideal since it would require drawing the model on another UML

tool. The command-line option is simple to use, it only requires the execution of a command: yo

jhipster:entity author, here the Author Entity will be created. Then the developer is required to

indicate what are the attributes for this Entity. Having all Entities created, the developer needs to set

their relationships. However, the developer will have to answer all of those questions per each Entity and

will require time to map each Entity Class that was found in PM model, leading to a non-ideal option

since it will need some time to write down manually the Entities part of the domain model. Furthermore,

it also requires interpretation of the model precedences, i.e. which Entities required to be first created

so that a relationship owner can ”know” what are the other Entities to establish the relation.

The usage of a DSL that could represent the entire domain model would be the ideal option. JHipster

has developed the JDL, a text file which has its syntax to represent and hold whole conceptual model

description. This file is interpreted by the JHipster engine to create the entire domain model by executing

one single command: yo jhipster:import-jdl jdl-model.jh where jdl-model.jh is the file that follows

the JDL syntax (see section 5.1). JHipster engine will analyze the Entity precedences and will sort

them in a way that the relationships can be available for all the Entities. When JHipster detect that

the described model is ambiguous, and the relationships end up on a circular dependency, it stops the

process and alerts the developer to revise the model.

As seen on previous section (6.2.2), it is possible to affirm that the domain model can be generated in

two different steps. The first one is the domain model interpretation from PM using Java Reflexion API

and the second, is to re-write this interpreted domain model in a text file that follows the JDL syntax

format so that JHipster can generate the application.

59

6.3 Development

This chapter describes the development process that allowed the dynamic creation of an application

following the same domain model described under a given PM model. The sub-section 6.3.1, describes

how the developer can choose and load the desired PM artifact. Sub-section 6.3.2 describes an ad-hoc1

tool that will be responsible for interpreting the domain model PM artifact. Sub-section 6.3.3 is explained

how did the JHipster framework was used to build down the entire infrastructure code to handle, Logging,

ORM, REST Services, Authorization, among others handy feature generated by JHipster. At this point,

the generated code will just represent a scaffolded project with a set of files. At sub-section 6.3.4 exposes

the building of the Domain Model. The domain model will contextualize the generated application where

the generated files start to be considered an Application with a purpose, since there is already a specific

domain to work with.

6.3.1 Choosing the PM Model

As described in Section 3.1, Insurance business embraces various line-of-business, each one with their

models and business rules. Due to this wide range of branches, PM models are often developed to be

very specific and according to one single business model.

The existence of multiple models and the constant adaptation of S&S application to interact with

these new models has motivated the development of this application generator. That being said, the

code generator has to support at least two different PM models from various line-of-business, proving the

potential of this project adaptability to distinct models by avoiding specific model code generation.

Therefore, it is crucial to develop a process to pick the correct model artifact to serve as input for the

generator.

All the developed projects at msg life are compliant with Apache Maven, a build tool that uses a

Project Object Model (POM) file to manage projects. Maven also has dependency management capa-

bilities that are perfect to ensure the correct placement of the PM model in the Java classpath.

Listing 6.1 presents an example of a possible pom.xml to describe which PM model will be included in

the Java classpath of the generated application. Declaring a dependency using Maven is very simple. It

just needs to declare a proper identification of the artifact to be loaded using maven groupId, artifactId,

and version. Maven will then download the correspondent JAR from the Sonatype Nexus which is the

internal Repository Manager at msg life.

1Created or done for a particular purpose as necessary

60

Listing 6.1: Maven - pom.xml file example

1 <project xmlns="http :// maven.apache.org/POM /4.0.0"
2 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
3 xsi:schemaLocation="http :// maven.apache.org/POM /4.0.0
4 http :// maven.apache.org/xsd/maven -4.0.0. xsd">
5

6 <modelVersion >4.0.0</modelVersion >
7 <groupId >entityGenerator </groupId >
8 <artifactId >entityGenerator </artifactId >
9 <version >0.0.1 - SNAPSHOT </version >

10

11 <properties >
12 <fja.groupId >com.fja</fja.groupId >
13 <pm.artifactId >metis.pm.life</pm.artifactId >
14 <pm.version >1.0.0- SNAPSHOT </pm.version >
15 </properties >
16

17 <dependencies >
18 <dependency >
19 <groupId >${fja.groupId}</groupId >
20 <artifactId >${pm.artifactId}</artifactId >
21 <version >${pm.version}</version >
22 </dependency >
23 </dependencies >
24 </project >

The groupId, artifactId, and version are declared as properties. This way it is possible to configure

which PM version shall be used. Maven Properties can be declared implicitly in the pom.xml file and

therefore being resolved immediately to their proper values. These properties can also be declared later

at the runtime of a Maven lifecycle (e.g. clean, compile, install, deploy) or at the execution of any Maven

plugin. To inject properties using Maven it is used the -D instruction followed with the property name

and its value.

Listing 6.2: Maven - Exec Plugin

1 mvn exec:java -D exec.mainClass="entityGenerator.JDLGenerator"
2 -D fja.groupId="com.fja"
3 -D pm.artifactId="metis.pm.life"
4 -D pm.version="1.0.0- SNAPSHOT"

Listing 6.2 illustrates the usage of exec maven plugin. In this specific command, the plugin will run

a Java -jar instruction where the exec.mainClass is the property that will indicate to the plugin what is

the main Java class to run.

Before start the execution of this main class, Maven will first ensure that the project code is com-

piling and to do that Maven needs to fetch all of the project dependencies declared in the pom.xml file.

Furthermore, Maven will use the provided -Dfja.groupId, -Dpm.artifactId, -Dpm.version properties to

correctly update its PM model dependency, and once Maven finishes the download from the Repository

Manager and the inclusion of that JAR in the project classpath, a compilation routine using the new

model starts.

61

Right after a successful compilation the java classpath is ready and fully updated with the correct

PM model, which means the code can now use any class from the PM model.

6.3.2 PM Model Interpretation

Right after Maven ensures that a given PM model is available in the classpath, it is possible to start

analyzing the domain model structure that was modeled by the Product Engineers. To processed with

this domain model analysis, it was used the Java Reflexion API, a set of utility instructions that makes

part of the Java Development Kit (JDK) and provides introspection2 capabilities.

Reflection is commonly used by programs which require the ability to examine applications

running in the Java virtual machine. Reflexion is a relatively advanced feature and should be

used only by developers who have a strong grasp of the fundamentals of the language. With

that caveat in mind, reflection is a powerful technique and can enable applications to perform

operations which would otherwise be impossible. Oracle (2016)

According to its documentation, Java Reflexion API has several drawbacks, and it ”should not be

used indiscriminately since it involves types that are dynamically resolved and where certain Java virtual

machine optimizations can not be performed. Consequently, reflective operations have slower performance

than their non-reflective counterparts, and should be avoided in sections of code which are frequently

called in performance-sensitive applications”. Oracle (2016)

Although Java Reflexion API must be carefully used, this technique is still a valid and a reliable

option to provide PM models introspection, since this model interpretation will be just executed once.

Then, the gathered information will be loaded into regular Java Objects that will hold all the needed

data about the model. These objects do not require reflexion techniques and can then be used in a second

step so that the model data can be written into a specific output format.

Figure 6.1 illustrates a sequence diagram describing the introspection process of a PM model. At Step

2 the Reflexions class is created to inspect a given Java Package (for this specific case is the ”com.fja”

package). This object can retrieve all subtypes of BOAdaptable class that are simultaneously located at

any named package that contains ”com.fja”.

All domain objects available in a PM model implement the BOAdatable interface; therefore the

Reflexions object infers what are the objects that are inherited from BOAdaptable.

Every PM model has an implementation of his model, i.e. it is possible to find a specific implemen-

tation of all the BOAdaptable interfaces in a sub-package named: ”com.fja.model.impl”. These classes

were also determined by the Reflexions object, but the interfaces are the only objects that are relevant

to be analyzed by the introspection tool. Consequently, at Step 4 there is an additional filtering routine

2”Introspection is the automatic process of analyzing properties, events, and methods.” Java Sun (2008)

62

Figure 6.1: Sequence Diagram: PM model introspection

executed to make sure that the returned classes are only composed of the needed interfaces. These are

the Entities that will drive the domain of the generated application.

Step 10 is the final step of this model introspection, where is returned a Map that holds the available

Entities in the PM model. The key of the returned Map is composed by the Entity simple name, where

at Step 7 it is being removed the BOAdaptable prefix and the BO suffix, e.g. from a named class

BOAdaptableIllustrationBO it is being translated into Illustration.

However, at this point, the information found in the model were only the entity names and the

correspondent Java classes. Therefore, a second routine must be performed to infer what are the attributes

that compose a given Entity.

There are attributes within the domain model that are not just common attributes. Some attributes

of an Entity may have a type that refers to another Entity. In this cases we are not facing a mere attribute

but a domain relationship. It is vital that the relationship information gets correctly inferred because it

will be used to link and describe the entire domain model properly.

Every PM model has a root object that holds the entire domain structure. The root entity of Life

model is the Illustration, whereas for P&C model is the Proposal. Either way, the correct retrieval of

these relationships are crucial so that the relationship owner can also be accurately established after this

63

introspection process.

Therefore, to store the domain model hierarchy, a data structure was developed to hold the entire

model and recursively attach the children of each entity. This parent-child hierarchy has allowed the

dynamic discovery of the model root object. Furthermore, using a top-down strategy, it is always possible

to correctly set the relationship owner, under the parent object.

Consequently, the diagram 6.2 describes the process of inferring an Entity children object. The first

step is the retrieval of all the Entities from PM model that were previously outlined in the sequence

diagram 6.1. Then, a TreeMap is created. It will hold all the Entity names and their correspondent

children that also make part of the domain and shall be linked with the current Entity, forming a

relationship. Inferring a child Entity is not simple nor a straightforward process, since multiple types of

relationships may exist, such as: one-to-one, one-to-many, many-to-one and many-to-many.

Figure 6.2: Sequence Diagram: Relationship analysis

Before diving into the algorithm details, it is necessary to analyze how does the domain model inter-

faces in a PM model artifact are exposed. Figure 6.3 shows a set of signatures that were snipped from the

BOAdaptableContractBO interface. According to these method signatures, the children getter methods

are also present on these method signatures. Therefore, is possible to see that any child object of a given

Entity has two possible nomenclatures to be identified.

64

1. getAll�AnotherEntityName�BO - The return type is an Array, i.e. a Collection, meaning

that the relationship between the current Entity and this child object will be inferred as being an

ONE TO MANY relationship;

2. get�AnotherEntityName�BO - When the return type is not a Collection, the inferred relation-

ship will be ONE TO ONE;

Figure 6.3: Partial signatures of the BOAdaptableContractBO class: Relationship analysis

Having identified the method nomenclature that is being generated by PM on the model interfaces,

it is possible to develop an algorithm that will retrieve the child objects and the respective relationship

cardinality for a given Entity.

Algorithm 6.2 describes the logic to retrieve those Entity relationships as well as their relationship

cardinalities. The algorithm is using Reflexion so it can infer which methods are available in the Interface

that represents the given Entity. Then, a collection is populated with the methods that have the ”BO”

suffix in its return type. At this point, an iteration to those methods starts and is verified if the return

type of the method is an Array. If so, the relationship type will be set as ONE TO MANY; otherwise, it

will be set as ONE TO ONE.

Algorithm 6.2: Getting Model Relationships

For a given Entity ... ;
Initialize childreenRelationShips Map;
Method iterator := get all methods from Entity that contains ”BO” in its return type;
while iterator has next do

method := get next method;
initialize a new relationshipType;
if method return type is an Array then

relationshipType := ONE TO MANY ;
else

relationshipType := ONE TO ONE ;

anotherEntityName := methodName without ”BO” and without ”getAll” ;
put the anotherEntityName and the correspondent relationshiptType into the
childreenRelationShips Map;

return childreenRelationShips;

65

At this point, the relationships are identified, but there are still ambiguous cases that must be re-

solved to correctly identify the domain model hierarchy. These cases occur when relationships have a

ONE TO ONE cardinality in both Entities. To illustrate this ambiguous situation, the following listings

illustrate a snipped JSON that is being saved in a file named BO Relations.json by the PMModelReader

for debugging purposes.

Listing 6.3 shows an example of a non-ambiguous relationship, where the Contract BO is related with

many Adjustment BO Entities and each Adjustment has the parent relationship (ONE TO ONE) with

his parent, the Contract. These cases have no ambiguity since the relationship owner is the Entity that

holds the ONE TO MANY relationship cardinality.

Listing 6.3: Non-ambiguous relationship

AdjustmentBO : {
ContractBO : ”ONE TO ONE” ,
CoverageBO : ”ONE TO ONE” ,
PackageBO : ”ONE TO ONE”

} ,
ContractBO : {

AdjustmentBO : ”ONE TO MANY” ,
DocumentBO : ”ONE TO MANY” ,
ExperienceBO : ”ONE TO MANY” ,
I l l u s t r a t i onBO : ”ONE TO ONE” ,
PackageBO : ”ONE TO MANY” ,
PremiumComponentBO : ”ONE TO MANY” ,
ProducerBO : ”ONE TO ONE” ,
PropertyBO : ”ONE TO MANY” ,
RateComponentBO : ”ONE TO MANY” ,
RoleBO : ”ONE TO MANY” ,
UserBO : ”ONE TO ONE”

}

Listing 6.4: Ambiguous relationship

IndividualBO : {
InsuredPersonBO : ”ONE TO ONE” ,
PartyBO : ”ONE TO ONE” ,
ProducerBO : ”ONE TO ONE” ,
PropertyBO : ”ONE TO MANY” ,
UserBO : ”ONE TO ONE”

} ,
InsuredPersonBO : {

IncomeBO : ”ONE TO MANY” ,
IndividualBO : ”ONE TO ONE” ,
PhoneBO : ”ONE TO MANY” ,
PropertyBO : ”ONE TO MANY”

}

On the other hand, Listing 6.4 illustrates an example of ambiguous relationships between Individual

BO and the InsuredPerson BO, where the parent-child is not possible to be directly inferred. These

ambiguous cases occur because all PM models has the entire domain model defined with bidirectional

relationships, i.e. each Entity has a one-to-one relationship with another child-Entity which also have

a one-to-one relationship to its parent. For this reason, knowing which Entity is the parent is not

straightforward.

To correctly get the entire domain model hierarchy, this flat study about each Entity and their direct

relationships and its relationship cardinalities is not enough. Instead of a flat study, the introspection

algorithms must infer the domain model on a hierarchically way, so that all the domain entities get

correctly assigned to their parents without any ambiguity.

At the previous diagram 6.2, in the described Step 8, the BOMVisitor is created. This contextualized

class is initialized with the already resolved flat Entity map and its relationships. Then it will build

the necessary hierarchy and find the root Entity. Having this root Entity discovered it is possible to

move down along the hierarchy, marking the currently visited Entities as the parent ones. The algorithm

66

continues moving down to a lower level, identifying these levels as their children and consequently avoiding

any relationship ambiguity.

Therefore, to store the entire PM domain model hierarchy, it was created the BO class. This Class is

illustrated in Figure 6.4 and will recursively hold the whole domain model hierarchy. Each node contains

the Entity name, a reference to its parent BO and a collection of children BOs. This Class will also

provide some helper methods so that this hierarchical structure can be navigable.

Figure 6.4: Class Diagram - Business Object

The BOMVIsitor Class will be responsible for creating this BO Class that will hold the entire recursive

model hierarchy. Therefore, this Class is initialized with the already founded Entity map. With this map,

the constructor of the BOMVisitor will initialize the investigation about the domain model hierarchy. The

methods executed by BOMVisitor are somewhat procedural. Therefore, the following Activity Diagram

6.5 shows what are the main actions taken by the BOMVisitor to infer which Entity is the root object

for a given PM model.

The BOMVisitor Class starts by iterating over the map that contains the PM model Entities in a

flattened form. This Class starts by building all the Entities available in the map and transforms them

into a BO Class form. All the handled Entities are stored in a collection (visited Entities) to track the

Entities that were already built and therefore avoiding infinite loops. At this point, BOMVisitor hold

various BO’s with their drill-down children, i.e. each Entity is linked to its children objects.

The next step is the removal of Entities that don’t relate to any other domain model Entity. Although

these were found being subtypes of BOAdaptable, they do not relate nor are used by the Runtime Services

in PM model. For this reason, these Entities are being disregarded.

To find the Root Entity for a PM model, so that the parent-child relationship can be correctly inferred

for those that has one-to-one cardinality, the BOMVisitor has an algorithm to find the best eligible Root

Object. Knowing that each PM model has only one root object that defines the entire BOM, and this

information could be configurable using a Maven Property when setting the PM version dependency,

67

Figure 6.5: Activity Diagram - Building domain model hierarchy

it is better having the root Entity being inferred since it avoids input dependencies and user mistakes.

Furthermore, it makes the process of generating the application being a simple ”push of a button”, more

streamlined and clean.

The algorithm to retrieve the most eligible root Entity is based on the following statement: ”The

Entity that can visit more Entities in depth is the most suitable Entity to be the root object of the

domain.” (Alves, 2016) However, it is known that this statement does not contemplate all the possible

scenarios where a draw in the score can occur if eventually, the model has the same amount of bi-

directional one-to-one relationships. In this cases, it can always be used the Maven Property configuration

approach since a human intervention is needed to investigate the domain model and set/configure which

parent makes sense for the given domain model and its structural dependencies.

Having the root Entity inferred correctly, it is now possible to resolve the entire domain model as

well as the ambiguity found in the bi-directional one-to-one relationships. Therefore, the final step in

BOMVisitor is building the final root BO Class that will attach the entire BOM together recursively.

At this point, it is possible to read the domain model stored in a given PM model, since this information

is now structured and can be later transformed into any output format that will serve as input for the

chosen code generator tool.

6.3.3 Generate Application Skeleton

Before starting using JHipster specific commands to generate the application, is necessary to install

Java 8, NodeJS, and GIT. Then, using Node Package Manager (NPM) the following packages will be

retrieved from on-line repositories using the following NPM commands:

1. Install Yeoman: npm install -g yo

68

Yeoman is a generation tool that helps to kick-start new projects. Using the ’yo’ command, Yeoman

can scaffold complete projects or just useful parts.

2. Install Bower: npm install -g bower

Bower manage components that contain HTML, CSS, Javascript, fonts or even image files. Bower

handle the installation of packages and their dependencies.

3. Install Gulp: npm install -g gulp

Gulp is a task runner that automates time-consuming tasks in development workflow. For example,

performing Javascript minification; Move files to different directories; Translate LESS to CSS;

4. Install JHipster: npm install -g generator-jhipster

The generator-jhipster is a Yeoman generator developed by JHipster team. This tool allows the

generation of applications written in Java for the back-end, and it generates AngularJS files for

a rich client-side front-end. It also generates all the necessary infrastructure code such as Maven,

Spring Boot, and Hibernate mappings.

After the installation of these required packages, it is possible to open a command-line and execute

the following command: yo jhipster. The execution of this instruction will start the generator. This

generation tool starts by prompting some questions about what are the desired modules to be included

in the generated project. These questions are:

1. Which type of application would you like to create?
2. What is the base name of your application?
3. What is your default Java package name?
4. Which type of authentication would you like to use?
5. Which type of database would you like to use?
6. Which production database would you like to use?
7. Which development database would you like to use?
8. Do you want to use Hibernate 2nd level cache?
9. Do you want to use a search engine in your application?

10. Do you want to use clustered HTTP sessions?
11. Do you want to use WebSockets?
12. Would you like to use Maven or Gradle?
13. Would you like to use the LibSass stylesheet preprocessor for your CSS?
14. Would you like to enable translation support with Angular Translate?
15. Which testing frameworks would you like to use?

With these questions answered correctly, the generation tool starts generating all the necessary files

for the chosen modules and according to the provided answers.

After this code generation, it was performed a shallow analysis of what was generated. One interesting

file that was created by this tool was the .yo-rc.json. As illustrated in Listing 6.5, this JSON file contains

the previously answered questions.

69

Listing 6.5: Configuration file: yo-rc.json

1 {
2 ” generator - j h i p s t e r ” : {
3 ” j h i p s t e r V e r s i o n ” : ”3 . 4 . 2 ” ,
4 ”baseName ” : ” generated - s a l e s a n d s e r v i c e ” ,
5 ”packageName ” : ” com.msg.ib ” ,
6 ” packageFolder ” : ”com/msg/ ib ” ,
7 ” se rve rPor t ” : ”8080” ,
8 ” authent icat ionType ” : ” s e s s i o n ” ,
9 ” hibernateCache ” : ” ehcache ” ,

10 ” c lu s t e r edHt tpSe s s i on ” : ”no ” ,
11 ” websocket ” : ”no ” ,
12 ”databaseType ” : ” s q l ” ,
13 ”devDatabaseType ” : ”mysql ” ,
14 ”prodDatabaseType ” : ”mysql ” ,
15 ” searchEngine ” : ”no ” ,
16 ” bui ldTool ” : ”maven” ,
17 ” e n a b l e S o c i a l S i g n I n ” : f a l s e ,
18 ”rememberMeKey ” : ”2 d7719b7273d815b6bf fb03dee87cefe2a1f5367 ” ,
19 ” useSass ” : f a l s e ,
20 ” appl i cat ionType ” : ” monolith ” ,
21 ” testFrameworks ” : [
22 ” g a t l i n g ”
23] ,
24 ” j h i P r e f i x ” : ” j h i ” ,
25 ” enab l eTrans l a t i on ” : true ,
26 ” nativeLanguage ” : ”en ” ,
27 ” languages ” : [
28 ”en ” ,
29 ” n l ” ,
30 ” f r ” ,
31 ”de ” ,
32 ” p l ” ,
33 ”pt - pt ” ,
34 ” es ”
35]
36 }
37 }

The first time the generator was executed it took about 5 minutes to answer all of these questions

because they were carefully interpreted to avoid mistakes and unnecessary code generation. It was found

that the generator has generated the file .yo-rc.json and this file is containing all the answered questions.

Motivated by this question answering being such repetitive and a time-consuming process, it was tested

if the yo jhipster command would first check for the existence of the .yo-rc.json file and therefore

escaping all those questions.

Therefore, it was removed all the previous generated files except the .yo-rc.json. Then it was executed

the yo jhipster command again. The result was that the questions were not asked at this time, and

all the previous generated files and folders were regenerated without any problem. As a verdict, this has

simplified the process of creating the application skeleton using JHipster with just executing a simple

command-line instruction and without user interaction.

To streamline even further the application generation process using JHipster and other necessary

tools that may be included in the routine to create the application, it was created a bash file named

70

generate everything.bat. This bash file has the objective to provide an easier way to generate the

application like if it was as simple as a push of a button. Therefore, this file will hold all the necessary

commands and sub-commands that may be needed to generate the entire application.

6.3.4 Generating the Domain Model

Having the PM model completely interpreted (See: 6.3.2), and an application skeleton in place (See:

6.3.3), it is now possible to transform the interpreted model into a correct JHipster input format. So that

JHipster engines can generate all the necessary: Java Entities; JPA annotations; REST Services; Angu-

larJS Routers, Views, Controllers; and other utilities for the application such as Logging, Authentication,

and Testing Frameworks.

As described at conception section: 6.2.3, the chosen JHipster input format to expose the intended

domain model for the application is the JDL format, a DSL provided by JHipter team to express the

entire domain model with a single instruction. Therefore, to transform the interpreted domain model

from the BO hierarchical structure into the JDL format, it was created a set of Classes that represents

a JHipster Entity as presented in Figure 6.6. Each built JHipster Entity will be translated into a JDL

text format using Velocity engine: a template-driven code generator.

Figure 6.6: Class Diagram - JHipster Entity

The process to create these JHipster Entities is described in a diagram at Appendix E.1. As illustrated,

each BO is translated into a JHipster Entity which is then sent to the Velocity engine using the Velocity

Context. Then the context is merged with a Velocity Template, in which defines the layout of the generated

text file and must follow the JDL format. Therefore, the listing 6.6 illustrates the developed template

that follows the JDL structure described at Listing 5.1. The template illustrated at Listing 6.6 instructs

Velocity framework to create the JDL file that will be describing the entire domain model, composed of

all the necessary Entities and their relationships.

71

Listing 6.6: Velocity template for JDL format

#s e t ($ s t a r t b r a c e = ”{”)
#s e t ($endbrace = ”}”)
/**
* The @Auto - Generated $ e n t i t y . entityTableName e n t i t y .
*/
e n t i t y $ e n t i t y . entityTableName {

#foreach ($ f i e l d in $ e n t i t y . f i e l d s)
$ f i e l d . f ie ldName $ f i e l d . f i e ldType#i f ($ f o r each . hasNext ()) ,#end

#end
}
#foreach ($ r e l a t i o n s h i p in $ e n t i t y . r e l a t i o n s h i p s)
r e l a t i o n s h i p $ r e l a t i o n s h i p . getUpperCamelRelationType () {

$ e n t i t y . en t i tyTab l eName$ s ta r tb race$ r e l a t i onsh ip . getRelationName ()
$endbrace to $ r e l a t i o n s h i p . o the rEnt i tyName$ s ta r tb race$ r e l a t i onsh ip
. otherEntityRelat ionshipName$endbrace

}
#end

The result of Velocity engine is represented in Listing 6.7. Where it is possible to see the CoverageBO

Entity as an example of a generated Entity that will make part of the final JDL file containing all Entities

description. This file contains all the domain model and its relationships expressed under a format that

will serve as input of the jhipster-entity sub-generator so that it can generate these Entities on top of

the already created/scaffolded application structure.

Listing 6.7: Example of CoverageBO entity exposed in JDL format

1 /**
2 * The @Auto - Generated CoverageBO e n t i t y .
3 */
4 e n t i t y CoverageBO {
5 max Double ,
6 groupConstraintType Str ing ,
7 baseComponentFlag Boolean ,
8 cove rageE f f e c t i v eDate ZonedDateTime ,
9 i s S e l e c t e d Boolean ,

10 coverageId Str ing ,
11 min Double ,
12 exc e s s Double ,
13 sumAssured Double ,
14 o b j e c t I d e n t i f i e r S t r ing
15 }
16 r e l a t i o n s h i p OneToMany {
17 CoverageBO{allAdjustmentBO} to AdjustmentBO{coverageBO}
18 }
19 r e l a t i o n s h i p OneToMany {
20 CoverageBO{allPremiumComponentBO} to PremiumComponentBO{coverageBO}
21 }
22 r e l a t i o n s h i p OneToMany {
23 CoverageBO{allRateComponentBO} to RateComponentBO{coverageBO}
24 }
25 r e l a t i o n s h i p OneToMany {
26 CoverageBO{allRoleBO} to RoleBO{coverageBO}
27 }
28 r e l a t i o n s h i p OneToMany {
29 CoverageBO{allPropertyBO} to PropertyBO{coverageBO}
30 }
31 r e l a t i o n s h i p OneToMany {
32 CoverageBO{allCoverageBO} to CoverageBO{coverageBO}
33 }

72

6.3.5 Database

To persist data, JHipster natively supports the following database providers: MySQL, MariaDB,

PostgreSQL, MongoDB or Cassandra. Using Liquidbase, JHipster will be responsible for setting the

correct database connector driver for the chosen database provider, and create the necessary files to map

all database tables with the Domain Entities.

In this project, was used MySQL since it is a free and widely used database. Furthermore, this

configuration can always be easily changed at file .yo-rc.json if necessary.

6.3.6 Application generation and initialization

To streamline the application generation and its initialization, it was produced some batch files to

execute all the necessary sub-commands. The objective of these executable files is hiding the complexity

of all necessary commands to get the application generated and running. Having such executables files,

which hide all commands and its complexity, allow this tool to be used by non-technical users.

1. generate everything.bat

This batch file will create a folder named: Generated where the entire application will get generated.

Then it will execute the batch file generate entities.bat that uses the developed PM introspection

project to interpret the PM model and translate the domain model into a JDL format. Finally,

having the JDL file describing the domain model under the generated folder, it will run the batch

file generate application.bat that will generate the application using JHipster.

2. generate entities.bat

The Listing 6.8 is a batch file that starts by creating the new folder named Generated if this specific

location does not exist in the system. Then, the mvn clean compile instruction is executed. This

Maven command will make sure that the project located at the folder entityGenerator is compiling

correctly. Then, is executed a Maven Plugin capable of executing Java Main classes from the

command-line.

Listing 6.8: Generate Entites batch

1 echo Starting Entity Generator ...

2 call mkdir Generated

3 call mvn clean compile -f ./entityGenerator

4 call mvn exec:java -Dexec.mainClass="entityGenerator.JDLGenerator" -f ./entityGenerator

5 :EOF

Once the main class JDLGenerator finishes, all Entities related with the PM configured under the

pom.xml file will be available, in the Generated folder, in a file named: jdl-model.jh.

73

3. generate application.bat

Once exposed the domain model under a JDL format, it is possible to instruct JHipster to generate

an application able to work with that domain model. Therefore, the Listing 6.9 illustrates the set

of commands executed so that the application get generated.

Listing 6.9: Generate Application batch

1 echo Starting Generate Application ...

2 call mkdir Generated

3 call copy .yo-rc.json Generated\

4 call cd Generated

5 call yo jhipster

6 call yo jhipster:import-jdl jdl-model.jh --force

7 cmd /k

8 :EOF

Note that the file .yo-rc.json is already defined, and it is copied over to the Generated folder so

that JHipster does not ask any questions about the intended system (See: 6.3.3). Then, it is just

used the proper command so that JHipster knows that the domain model is described under the

JDL syntax and at jdl-model.jh file.

4. run generated application.bat

Among the generated files it is possible to see a pom.xml which has a Spring Boot plugin to start

the generated application. To launch the application is executed the command: mvn spring-

boot:run.

As illustrated in Figure 6.7, the execution time of the batch file that generates the entire application is

taking about 4 minutes and 33 seconds. It is important to notice that most of this time is being expended

over the network, because most of the generated files use third party libraries that are stored in NPM

remote repositories, such as AngularJS, Bower, Gulp, and many others libraries used in web-development.

Figure 6.7: Code Generation Time

74

6.4 Validation

The following sub-sections will describe the validations about what has been generated when executed

the batch files described in the previous sub-section. It will be reviewed if the generated code is composed

by the necessary Entities, the correspondent database mappings, REST Services, and basic Front-End

components for user interaction.

6.4.1 Generated Entities

The main goal of this project is the complete generation of an application able to communicate

with PM models, specifically the P&C and Life models. As described in Section 1.4, to validate if the

generated application follows the same domain model defined in PM; this section will evaluate if all

necessary Entities were correctly generated for both models, following a prior interface enumeration and

compare it with the generated Entities.

The validation plan for both PM models has followed the same approach. It was set up an Eclipse

Workspace, and was created an empty Maven Project. Under the pom.xml was established the proper

PM model dependency.

Once the dependency JAR gets available under the Java Classpath, it was possible to use Eclipse IDE

to verify all the objects that are inherited from BOAdaptable; these are all the Entities that should have

been generated in the application.

6.4.1.A P&C Model

By exploring the BOAdaptable inherited interfaces available on the P&C PM model, it is possible to

verify that the domain model is composed of the following Entities illustrated in Table 6.1. Furthermore,

to evaluate if each Entity has all its attributes generated, the table also presents the number of expected

attributes per Entity.

Table 6.1: P&C Model - Entity Comparison : PM Model vs Generated Entities

(a) PM Model

Entity Name N. of Attrs
1 BOAdaptableBusinessTransaction 6
2 BOAdaptableFormBO 19
3 BOAdaptablePremiumComponentBO 13
4 BOAdaptablePremiumDetailBO 17
5 BOAdaptableProductComponentBO 23
6 BOAdaptablePropertyBO 37
7 BOAdaptableProposalBO 14
8 BOAdaptableQuoteBO 30
9 BOAdaptableQuoteVersionBO 9
10 BOAdaptableRiskBO 22
11 BOAdaptableRiskDetailBO 18
12 BOAdaptableRoleBO 21
13 BOAdaptableScheduledLocationBO 7
14 BOAdaptableTextBO 24

(b) Generated Entities

Entity Name N. of Attrs
1 BusinessTransaction 4
2 FormBO 14
3 PremiumComponentBO 9
4 PremiumDetailBO 10
5 ProductComponentBO 19
6 PropertyBO 26
7 ProposalBO 12
8 QuoteBO 21
9 QuoteVersionBO 6
10 RiskBO 17
11 RiskDetailBO 13
12 RoleBO 17
13 ScheduledLocationBO 7
14 TextBO 16

As illustrated by the previous tables, all necessary Entities were generated for P&C model. However,

75

there is a gap between the generated attributes and those that compose the PM model. This happen

because the model can have three different types of attributes:

1. Java Standard Attributes: These are Java native types, e.g. boolean, int, double, char. Or even

objects supported by the Java Virtual Machine (JVM). For example Boolean, Double, String.

2. Non Java Standard Attributes - PM Specific Types: These are Value Objects available in

the PM model artifact. Also known as DiscreteValues, these types are composed of three Strings:

acronym, name, and shortText (see PM Key Type at: 3.2.1).

3. Domain Model Attributes: These are the relationships with other Entities within the domain

model.

Due to the existence of non-standard types, the application presents differences between the expected

attributes and those that were generated by JHipster. Those differences are related to the PM specific

types, where the model introspection tool logs these Types as a warning message, since JHipster only sup-

ports the following Types: String; Integer; Long; Float; Double; BigDecimal; LocalDate; ZonedDateTime;

Boolean; Enum; Blob.

When possible, the model introspection tool is adapting non-supported standard types, like Calendar

into a supported type, in this case, it generates an attribute as being ZonedDateTime instead.

To address the gap between the number of attributes being created by JHipster, the Section 7.3

describes the development of a JHipster Module that will hook the jhipster-entity generator and add

additional behavior so that the generated resources can have the necessary PM Discrete Values getting

generated along with each Entity.

6.4.1.B Life Model

Similarly to the preceding sub-section 6.4.1.A, it was analyzed the generated Entities using the Life

model. Table 6.2 presents a comparison between the expected result and the generated Entities and its

attributes.

In line with the reported results using P&C model, using Life model were also found differences in

the number of generated attributes, which will be addressed in Section 7.3.

When using Life model, some Entities were not generated according to the inherited objects of the

BOAdaptable interface. This is, in fact, normal because the introspection tool is ignoring Entities that do

not relate with the Domain Model, i.e. navigating from the root Object found in the model, the Entity

is not visitable (see the paragraph at 6.3.2). For this reason, the Entity generation is pointless since the

Runtime Services will not use those objects, neither the generated application need to store them.

76

Table 6.2: Life Model - Entity Comparison : PM Model vs Generated Entities

(a) PM Model

Entity Name N. of Attrs
1 BOAdaptableAddressBO 14
2 BOAdaptableAdjustmentBO 13
3 BOAdaptableBusinessTransaction 6
4 BOAdaptableContractBO 41
5 BOAdaptableCoverageBO 21
6 BOAdaptableDatePeriod 4
7 BOAdaptableDocumentBO 10
8 BOAdaptableEmailBO 5
9 BOAdaptableExistingCoverageBO 6
10 BOAdaptableExperienceBO 26
11 BOAdaptableExperienceDetailBO 22
12 BOAdaptableIllustrationBO 19
13 BOAdaptableIncomeBO 6
14 BOAdaptableIndividualBO 24
15 BOAdaptableInsuredPersonBO 19
16 BOAdaptableMultiLifePartnerBO 11
17 BOAdaptableOrganizationBO 8
18 BOAdaptablePackageBO 14
19 BOAdaptablePartyBO 9
20 BOAdaptablePeriod 4
21 BOAdaptablePerpetual 2
22 BOAdaptablePhoneBO 13
23 BOAdaptablePremiumComponentBO 14
24 BOAdaptablePremiumDetailBO 9
25 BOAdaptablePremiumDetailVector 5
26 BOAdaptablePremiumDetailVectorElement 6
27 BOAdaptableProducerBO 14
28 BOAdaptableProducerOrganizationBO 5
29 BOAdaptablePropertyBO 21
30 BOAdaptablePropertyVector 7
31 BOAdaptablePropertyVectorElement 9
32 BOAdaptableRateComponentBO 9
33 BOAdaptableRateDetailBO 8
34 BOAdaptableRateDetailVector 7
35 BOAdaptableRateDetailVectorElement 6
36 BOAdaptableRoleBO 12
37 BOAdaptableUserBO 6

(b) Generated Entities

Entity Name N. of Attrs
1 AddressBO 11
2 AdjustmentBO 11
3 BusinessTransaction 5
4 ContractBO 28
5 CoverageBO 18
6 N/A N/A
7 DocumentBO 6
8 BOAdaptableEmailBO 5
9 ExistingCoverageBO 5
10 ExperienceBO 26
11 ExperienceDetailBO 22
12 IllustrationBO 14
13 IncomeBO 6
14 IndividualBO 20
15 InsuredPersonBO 14
16 MultiLifePartnerBO 9
17 OrganizationBO 7
18 PackageBO 12
19 PartyBO 9
20 N/A N/A
21 N/A N/A
22 PhoneBO 11
23 PremiumComponentBO 8
24 PremiumDetailBO 7
25 PremiumDetailVector 5
26 PremiumDetailVectorElement 6
27 ProducerBO 11
28 ProducerOrganizationBO 5
29 PropertyBO 16
30 PropertyVector 7
31 PropertyVectorElement 9
32 RateComponentBO 7
33 RateDetailBO 7
34 RateDetailVector 7
35 RateDetailVectorElement 6
36 RoleBO 10
37 UserBO 5

Legend:
N/A: Entity not generated.

6.4.2 Generated REST Services

JHipster generates a REST Service Layer where each generated Entity receives a Resource Class

providing basic CRUD operations. Each Entity Resource is composed by the respective Entity Repository,

a compliant JPA Object that is responsible for accessing the database layer and transport data between

the generated application and the database.

Taking the IllustrationBO Entity from the Life PM model as an example, the REST Services generated

for this entity are illustrated in Table 6.3:

Table 6.3: Generated REST Services : Resource for IllustrationBO Entity

Method URL Description
POST /api/illustration-bos Creates a new IllustrationBO
PUT /api/illustration-bos Update an existing IllustrationBO
GET /api/illustration-bos/{id} Gets an existing IllustrationBO by its ID
DELETE /api/illustration-bos/{id} Removes an existing IllustrationBO by its ID

77

As anticipated, these REST Services are minimalistic regarding its functionalities, where only CRUD

operations are available. Although this satisfies the project aims, these Services could be improved by

adding another JHipster Custom Module to add additional Services. For example to access or execute

the PM Runtime Services:

1. Information Service: Get and merge Product Components related to a given Illustration Entity ;

2. Domain Service: Update values that may no longer be compliant with PM rules and formulas

i.e. upon user changes, the Product may not be in sync with PM.

6.4.3 Generated Database Mappings

Along with the generated Entities, JHipster has also created the necessary database mappings using

JPA annotations in each Entity class. Furthermore, using LiquidBase files, the application will create

the necessary database tables upon application startup.

The database tables are created due to the file master.xml. This file aggregates all the LiquidBase

partial files that instruct a database to create the necessary tables and gives its consistency through the

usage of constraints.

The listing 6.10 illustrates the master.xml file that load all the partial XML files responsible for

creating a DB table per generated Entity.

Listing 6.10: Database - tables initialization

1 <databaseChangeLog >

2 <include file="classpath :00000000000000 _initial_schema.xml"/>

3 <include file="classpath :20160702185114 _added_entity_BusinessTransaction.xml"/>

4 <include file="classpath :20160702185115 _added_entity_ProposalBO.xml"/>

5 <include file="classpath :20160702185116 _added_entity_QuoteVersionBO.xml"/>

6 <include file="classpath :20160702185117 _added_entity_ScheduledLocationBO.xml"/>

7 <include file="classpath :20160702185118 _added_entity_QuoteBO.xml"/>

8 <include file="classpath :20160702185119 _added_entity_ProductComponentBO.xml"/>

9 <include file="classpath :20160702185120 _added_entity_FormBO.xml"/>

10 <include file="classpath :20160702185121 _added_entity_RoleBO.xml"/>

11 <include file="classpath :20160702185122 _added_entity_PremiumComponentBO.xml"/>

12 <include file="classpath :20160702185123 _added_entity_RiskBO.xml"/>

13 <include file="classpath :20160702185124 _added_entity_PremiumDetailBO.xml"/>

14 <include file="classpath :20160702185125 _added_entity_RiskDetailBO.xml"/>

15 <include file="classpath :20160702185126 _added_entity_TextBO.xml"/>

16 <include file="classpath :20160702185127 _added_entity_PropertyBO.xml"/>

17 </databaseChangeLog >

d

One important detail discerned during the development of this project was that the order of the

Entities described under the JDL file is important. Because JHipster will create this master.xml file

using the same order declared in the JDL file. Therefore, it will be also the execution order of the

78

Structured Query Language (SQL) statements that will create the Database Schema for the generated

application.

Due to the declared constraints in the SQL statements (to enforce the relationships and provide schema

consistency), it is important that each table that contains those constraints have all its dependent tables

already created. Otherwise, the generated application won’t start properly, and an exception will be

thrown to the System Output since the Database Management System (DBMS) was not able to assign

those constraints.

As an example, Listing 6.11 illustrates the Liquidbase file that will create the QuoteBO table in

the database. This file contains all the necessary columns so that the Entity QuoteBO gets stored

in a database. Moreover, the file presents two types of constraints: field constraints and foreign-key

constraints. As explained in the previous paragraph, it is imperative that the tables that hold the related

Foreign Key Constraints already exist in the database. In this particular case, it is expected that the

proposal bo and the business transaction tables already exist in the database.

Listing 6.11: Liquidbase changeset - create QuoteBO

1 <changeSet id="20160702185118" author="jhipster">

2 <createTable tableName="quote_bo">

3 <column name="id" type="bigint" autoIncrement="${autoIncrement}">

4 <constraints primaryKey="true" nullable="false"/>

5 </column >

6 <column name="number" type="integer">

7 <constraints nullable="true" />

8 </column >

9 (... other columns ...)

10 <column name="business_transaction_id" type="bigint">

11 <constraints unique="true"/>

12 </column >

13 <column name="proposal_bo_id" type="bigint"/>

14 </createTable >

15 <addForeignKeyConstraint baseColumnNames="business_transaction_id"

16 baseTableName="quote_bo"

17 constraintName="fk_quotebo_businesstransaction_id"

18 referencedColumnNames="id"

19 referencedTableName="business_transaction"/>

20 <addForeignKeyConstraint baseColumnNames="proposal_bo_id"

21 baseTableName="quote_bo"

22 constraintName="fk_quoteb_proposalbo_id"

23 referencedColumnNames="id"

24 referencedTableName="proposal_bo"/>

25 </changeSet >

Since the QuoteBO appears after both dependents, i.e. BusinessTransaction and ProposalBO, when

the system processes the master.xml file (at Listing 6.10), the tables will be correctly defined and created

in the database.

79

6.4.4 Generated Database Tables

The generated application holds a configuration to establish a database connection. Since the .yo-

rc.json file has the database provider configured to be MySQL, JHipster has generated the correct con-

figuration to run the generated application using a MySQL database.

The Listing 6.12 exhibit the Liquidbase Maven Plugin that is responsible for using the master.xml file

explained in the previous section and consequently, establishes the connection with the database.

Listing 6.12: Database connection configuration

1 <plugin >

2 <groupId >org.liquibase </groupId >

3 <artifactId >liquibase -maven -plugin </artifactId >

4 <version >${liquibase.version}</version >

5 <configuration >

6 <changeLogFile >src/main/resources/liquibase/master.xml</changeLogFile >

7 <driver >com.mysql.jdbc.Driver </driver >

8 <url>jdbc:mysql :// localhost :3306/ generated -salesandservice </url>

9 <defaultSchemaName >generated -salesandservice </defaultSchemaName >

10 <username >root</username >

11 <password ></password >

12 <verbose >true</verbose >

13 <logging >debug</logging >

14 </configuration >

15 </plugin >

The generated application was named: generated-salesandservice at .yo-rc.json. Therefore the

database schema will also have the same name. Additionally, to validate if the application creates all the

necessary tables in a MySQL database, it was installed the MySQL Workbench, and created a database

server instance that runs by default in localhost on port 3306. Then, it was created a new schema named

generated-salesandservice. Finally, the generated application was launched using the maven command:

mvn spring-boot:run.

Upon seeing the following log illustrated in Listing 6.13, the application has started and is available

to get accessed using any Browser.

Listing 6.13: Application running log

1 --

2 Application 'generated -salesandservice ' is running! Access URLs:

3 Local: http ://127.0.0.1:8080

4 External: http ://192.168.56.1:8080

5 --

At this point, it is expected that the database holds several tables about the existing domain model.

To check if the database contains all the domain model entities, it was compared the generated Entities

80

against the database tables that were generated at application start up. Getting the P&C model as an

example, Table 6.4 illustrates the generated tables in the database using the MySQL Workbench.

Table 6.4: Generated Database Tables

Entity Database Table
Name Num. of attributes Name Num. of columns
BusinessTransaction 4 business transaction 4
FormBO 14 form bo 14
PremiumComponentBO 9 premium component bo 8
PremiumDetailBO 10 premium detail bo 10
ProductComponentBO 19 product component bo 13
PropertyBO 26 property bo 26
ProposalBO 12 proposal bo 9
QuoteBO 21 quote bo 15
QuoteVersionBO 6 quote version bo 2
RiskBO 17 risk bo 13
RiskDetailBO 13 risk detail bo 11
RoleBO 17 role bo 13
ScheduledLocationBO 7 scheduled location bo 7
TextBO 16 text bo 16

According to the Table 6.4, it is possible to verify that not every existing attribute in the Java Entity

object had a correspondent column in the database. Therefore, this was targeted for further investigation,

since this missing attribute column could provide data losses to the application. It was then noticed that

this is a normal scenario when there are ONE TO MANY relationships. For example, in the database

table premium component bo, the missing column was the reference to a collection of ”allPremiumDetail-

BOs”. And for the product component bo the suspicious missing columns were: ”allPropertyBOs”, ”all-

FormBOs”, ”allTextBOs”, ”allRoleBOs”, ”allProductComponentBOs”, ”allPremiumComponentBOs”.

It was then concluded that the fact of those tables not having those foreign key references, is cor-

rect and makes sense. Because the table that holds the reference id to establish the relationship, for

example, between PremiumComponentBO and PremiumComponentsDetailsBO, is the PremiumCompo-

nentDetailsBO table and not the PremiumComponentBO.

6.4.5 Generated Client-Side

JHipster has generated a Front-End using AngularJS, a popular javascript framework developed by

Google to build a SPA. AngularJS implements the architectural pattern Model View Controller (MVC)

and allows the construction of complex yet organized javascript scripting language.

81

6.4.5.A Generated Functionalities

Apart from the Domain Model, JHipster generates various advantageous features that are only acces-

sible using a user that have administration action rights. The generated utility features were:

1. User Management - To create new users, set or change user roles (action rights). By default,

the generator has initialized two distinct user roles, ROLE USER and ROLE ADMIN.

2. Metrics - An application profiling tool that allows the visualization of the current application

status. Figure 6.8 shows that is possible to visualize what are the system load, how many memory

is being consumed by the system, and how many Threads are running.

Figure 6.8: System Metrics

In this Metrics section, it is also possible to observe the HTTP requests and events per second; Get

Service statistics - how many hits are getting a Service or a Repository ; The Cache usage, i.e. how

many data records were retrieved from cache mechanism instead of going to the DB.

3. System Health - Under the system health, its possible to observe the availability of system re-

sources, such as Database and Disk Space. To test this feature, it was tried to switch off the database

to verify if the application reports back if the database was not available. As illustrated in Figure

6.9, the application did notify the administrator that the connection between the application and

the database was not established at that time.

Figure 6.9: Application Health Check

82

4. System Audits - This feature provides access monitorization. The system will audit the login

accesses date, the username, and from which Internet Protocol (IP) address the system was accessed.

5. Logging - Allows the configuration of logging without the need to stop and start the application.

6. REST API - JHipster uses Swagger, a framework for API’s. This feature exposes all the existing

REST Services in the Backend, allowing a proper and maintainable API documentation. Figure

6.10 shows an example of the available API to access information about the Resources: Proposal,

Quote, and Quote Version.

Figure 6.10: System Metrics

6.4.5.B Interacting with application domain model

As expected, as far as functionalities are concerned the generated Front-End components to allow user

interactions with the application Domain Model are basic. As illustrated in Figure 6.11, each system

Entity gets an entry on the dropdown menu. There is also an angular router allowing the user to access

the correspondent entity view. This view uses a tabular layout to present the data. Additionally, it

presents a button to create a new entity of the same type.

Moreover, to create new Entities, the user is presented with a modal screen as illustrated in Figure

6.12. This user interface component contains all the Entity related attributes. Here, the user can cancel

his action or create the entity instance with the provided input.

83

Figure 6.11: Managing Domain Entities

Figure 6.12: Creating a Domain Entity

It is also possible to establish relationships using these generated front-end components. If a Proposal

already exists, the user can create a new Quote and associate it with that existing Proposal. Furthermore,

the user can open Quotes from a Proposal, since there will be a link reference to its Quote.

6.5 Conclusions

As a conclusion of this development process, where it was applied the JHipster generator to scaffold

the entire application infrastructure, the generated application is following the model described by the

PM model. Here the developed introspection tool is working accordingly, and all the relevant Entities

for a given PM domain model got generated correctly. However, there is still a known drawback related

84

with the PM Discrete Values that will be addressed in Section 7.3.

Regarding the generated REST Services, these were also generated correctly. Where the application

got basic CRUD operations that are being used by the client-side code to create, edit and remove any

generated Entity in the system.

The database related resources were also correctly generated, where the usage of JPA annotations

and Liquidbase mappings has enabled the persistence layer for the generated application.

As seen, JHipster has generated almost everything related to the application infrastructure which takes

serious time of development when manually done. This entire application generation using automated

processes is a great achievement. However, to establish communication with PM Runtime Services this is

not enough since the generated domain model does not implement the interfaces nor have the necessary

Key Types associated with the generated Entities. Therefore, the next section will describe the custom

components created to enable communications between the generated application and the PM model.

85

86

7
JHipster - Custom Extensions

Contents

7.1 JHipster Modules . 90

7.2 Inject PM Model Dependency . 90

7.3 Applying BOAdaptable to the Generated Entities 92

7.4 Validation . 94

7.5 Conclusions . 94

87

88

It was identified in the previous section that the generated Entities do not have the necessary attributes

to establish communication with PM Runtime Services. One of the identified causes was that most of

the Entities have to have some Discrete Values that are PM specific objects. Therefore JHipster does

not recognize those objects to generate the necessary infrastructure for those unknown attributes.

This chapter describes how all the generated Entities were improved so that they can hold not only

Java standard types but all the necessary and relevant attributes in the domain model to enable PM to

recognize them, using the model interfaces.

Figure 7.1 illustrates an overview of the evolved components in this project. In this section, it will be

particularly described the ”PM Dependency Injector” and the ”BO Adaptables” which were developed

as being new JHipster Modules.

Figure 7.1: Overall Project Overview

Therefore, the following sections describe the JHispter Modules that were developed to add customiza-

tion on top of the base JHipster entity sub-generator and together, generate Entities that hold all the

necessary attributes, interfaces, and relationships to establish communications with the PM Runtime

Services.

89

7.1 JHipster Modules

As described, JHipster uses Yeoman generator, which provides composability for sub-generators.

”The composeWith method allows the generator to run side-by-side with another generator

(or sub-generator). That way it can use features from the other generator instead of having

to do it all by itself.” Yeoman (2016)

JHipster has used the Yeoman composability to allow other generators being executed along with the

main JHipster entity sub-generator, where the context and variables are shared between the generator

modules. Due to this variable and context sharing mechanism, it is possible to add customizations on

top of what has been generated in the first place, by the main JHipster entity sub-generator.

That being said, to have multiple generators running side-by-side it is needed to add the module to

JHipster hook system, where JHipster calls certain hooks before and after some of its tasks such as:

- Pre App creation hook [planned]
- Post App creation hook [planned]
- Post Entity creation hook
- Pre Entity creation hook [planned]

To create a JHipster Module, its necessary to follow some rules established by JHipster and Yeoman,

where it should follow Yeoman extension rules and should not stop the module chain by doing process.exit

in the developed module. However, this process was streamlined with another existing JHipster Module.

The sub-generator named: generator-jhipster-module allows the creation of a skeleton for new modules,

leaving these creation rules being a concern of the generator-jhipster-module. Consequently, using this

handy tool, it was created the skeleton for all additional modules that are needed to enhance the generated

Entities.

7.2 Inject PM Model Dependency

The generated Entities must be composed not only of Java standard types and domain model re-

lationships but also PM specific types such as GroupConstraintType, GroupConstraintOperationType,

PremiumDetailType among many other objects related to the PM model that needs to be recognized by

the generated domain model.

Therefore, to recognize all the possible types from the PM model is necessary that the JAR gets

available in the generated application classpath. Since the generated application is also a Maven project,

it has a pom.xml file that establishes all the project build process including its dependencies, where these

Maven capabilities were used to resolve dependencies and add the given PM model into the generated

application classpath. Consequently, the PM Model Introspector tool was improved to write down which

90

PM was used to generate the domain model, where a new template file was created. This file is represented

in Listing 7.1 and stand as a template for a Maven Dependency that will be later included in the generated

pom.xml. The template is modified by the PM Model Introspection tool using a regular expression

substitution technique, generating its final state as illustrated in Listing: 7.3

Listing 7.1: pm-dependency template

1 <dependency >

2 <groupId >{0}</groupId >

3 <artifactId >{1}</artifactId >

4 <version >{2}</version >

5 </dependency >

Listing 7.2: pm-dependency template result

1 <dependency >

2 <groupId >com.fja</groupId >

3 <artifactId >aais.pm.pandc</artifactId >

4 <version >1.1.36. DEVO</version >

5 </dependency >

After PM Model Introspection tool generates the XML file that holds the correct dependency, its nec-

essary to set the PM Dependency Injector Module being one Post App creation hook. This is accomplished

by having the following code in the PM Injector module:

Listing 7.3: Hooking a JHipster module

1 jhipsterFunc.registerModule("jhipster -pminjector", "app", "post", "app");

This instruction will generate an additional .jhipster folder and a jhi-hooks.json file represented in

Listing: 7.4, This is interpreted by JHipster when the entity sub-generator is running. The hookFor and

hookType designate what is the correct moment to another module starts its execution.

Listing 7.4: JHipster hook configuration

1 [

2 {
3 ”name” : ” J h i p s t e r Pminjector genera to r ” ,

4 ”npmPackageName” : ” j h i p s t e r - pminjector ” ,

5 ” d e s c r i p t i o n ” : ”A JHipster module to generate J h i p s t e r Pminjector ” ,

6 ”hookFor” : ”app” ,

7 ”hookType” : ” post ” ,

8 ” generatorCa l lback ” : ” j h i p s t e r - pminjector : app”

9 }
10]

At this point, the batch file that was starting the code generation was also adjusted as illustrated in

Listing 7.5 so that the new module is executed first, getting registered in the jhi-hook.json. Then, when

JHipster is executed the hook is already set, and consequently, the module will be called by JHipster

according to the configured task step.

91

Listing 7.5: Generate Application batch with pm dependency injector

1 echo Starting Generate Application ...

2 call mkdir Generated

3 call copy .yo-rc.json Generated\

4 call cd Generated

5 call yo jhipster-pminjector

6 call yo jhipster

7 call yo jhipster:import-jdl jdl-model.jh --force

8 cmd /k

9 :EOF

Listing 7.6 illustrates the source-code of the PM dependency injector, which is responsible for adding

the pm-dependency.xml previously generated by the introspection tool and will add it to the pom.xml

file of the generated application by JHipster.

Listing 7.6: PM Injector source-code

1 var file = "pom.xml";

2 var pmDependencyStr = fs.readFileSync("pm-dependency.xml", { encoding : 'UTF-8' });

3 var pmDependency = new dom().parseFromString(pmDependencyStr);

4

5 fs.readFile(file, 'utf8', function (err, data) {

6 if (err) throw err;

7

8 // Create an XMLDom Element:

9 var doc = new dom().parseFromString(data);

10 // Parse XML with XPath:

11 var dependencies = doc.getElementsByTagName('dependencies')[0];

12 var firstDependency = dependencies.getElementsByTagName("dependency")[0];

13 dependencies.insertBefore(pmDependency, firstDependency);

14

15 var prettyXML = prettyData.xml(doc.toString());

16 fs.writeFile (file, prettyXML, function(err) {

17 if (err) throw err;

18 this.log('End of pminjector generator');

19 }.bind(this)

20);

21 }.bind(this));

22

23 this.log('\n' + chalk.bold.green('pminjector done'));

When the batch file is once again executed so that the application gets regenerated, it is possible to

see that the dependency for the PM is now included as a dependency in the pom.xml of the generated

application. Consequently, the JAR is now in the classpath, and the application can now access and

recognize the existence of all PM types available in the JAR. The next step is to improve each generated

Entity so that all Entities implement the correspondent interface available in PM.

7.3 Applying BOAdaptable to the Generated Entities

For an Entity to be recognized by PM on its Runtime Services, each Entity must implement the

related interface that will establish a concrete agreement for all the necessary attribute getters so that

92

PM can infer about the domain model and its value state in the downstream systems, i.e. the generated

application.

The BOAdaptables is a JHipster module that will add the ”implements” reference to each generated

Entity to the co-related interface. Additionally, all the getters in the Entity will have to match all method

signatures declared in the related interface to avoid compilation errors.

To accomplish this, the introspection tool was once again improved to generate an additional file

named additionalFields.json. For each Entity, this file describes what are the non-standard Java types

that must be included, and also the BOAdaptable interface that the Entity must be implementing.

Listing 7.7 illustrates an example of an Entity that needs to have additional fields other than the

Java standard types that were already handled by JHipster upon the interpretation of the JDL. At the

left-side of the illustrated JSON, is possible to identify what are the additional fields that need to be part

of the Entity. The BOAdataptable field is not an additional field neither a new getter to be generated,

but it is the interface that each Entity must be implementing. There is also Boolean types, because

JHipster is generating a method named as ”public Boolean isIsChange()” while PM expects to find a

”public Boolean getIsChanged()”. For this reason, a new getter method was added to match the PM

signature where it is reusing the same attribute ”isChanged” from the Entity.

Listing 7.7: Additional fields

1 "RiskDetailBo" : {

2 "IsChanged:isChanged" : "java.lang.Boolean",

3 "AllPropertyBO:allPropertyBo" : "[Lcom.fja.pm.aais.model.BOAdaptablePropertyBO;",

4 "categoryOverride" : "com.fja.pm.aais.vo.Category",

5 "riskDetailCategory" : "com.fja.pm.aais.vo.Category",

6 "groupConstraintOperationType" : "com.fja.pm.aais.vo.GroupConstraintOperationType",

7 "groupConstraintType" : "com.fja.pm.aais.vo.GroupConstraintType",

8 "AllTextBO:allTextBo" : "[Lcom.fja.pm.aais.model.BOAdaptableTextBO;",

9 "riskDetailType" : "com.fja.pm.aais.vo.RiskDetailType",

10 "riskDetailClass" : "com.fja.pm.aais.vo.RiskDetailClass",

11 "IsSelected:isSelected" : "java.lang.Boolean",

12 "BOAdaptable" : "com.fja.pm.aais.model.BOAdaptableRiskDetailBO",

13 "RiskBO:riskBo" : "com.fja.pm.aais.model.BOAdaptableRiskBO"

14 },

15 "OtherEntities ...": {

16 }

With this information stored in the additionalFields.json file, it was possible to develop the BOAd-

aptables JHipster module that will be hooked to the Post Entity hook. Which means that right after

JHipster finishes the generation of a single Entity it will call this BOAdaptables module that in turn,

will add all of these additional customizations to the generated Entity.

As a result, all the Entities have now all the necessary getters so that PM can access using the

established interface, making the generated domain model ready to communicate with the PM Runtime

Services.

93

7.4 Validation

The code generation was executed once again, to validate the function of these two modules. As a

result, it was opened the generated project using Eclipse IDE where it was possible to open all the PM

types that are not part of Java. Therefore, the PM dependency injector has set the PM dependency

correctly in its pom file.

Additionally, it was confirmed that the Eclipse Markers did not identify any compilation error in the

source-code. Furthermore, it was manually revised each generated Entity in which was validated that all

the Entities were implementing the correct PM interface, and since there were no compilation errors in

the source-code, it means that all methods correctly followed the interface signatures established by the

PM model.

7.5 Conclusions

Having all the generated Entities implementing correctly the related PM interface and having all

the relationships between all the domain model objects established, it is concluded that the generated

application has a domain model fully compatible with the provided PM and its Runtime Services.

94

8
Experiments

Contents

8.1 Generation of Multiple Software Layers . 97

8.2 Generation Time . 98

95

96

At Chapter 1.4 - Hypothesis test, was enumerated some tests that should be done against the proposed

solution. This chapter describes the executed tests and validations previously identified in chapter 1.4.

8.1 Generation of Multiple Software Layers

An application is composed of several software layers such as Domain, Services, Business Logic,

Data Access among others infrastructure components that are described by distinct files. During the

validation phase of this project it was analyzed how many files were generated by the proposed solution.

Consequently, Table 8.1a and Table 8.1b illustrates the overall number of generated files and folders by

the generator tool.

The proposed solution uses existing modules and dependencies from NPM. When the application is

being generated from the first time, those third party dependencies are fetched from a remote repository

so that, in generation time, all the dependencies are available. This network operation takes some time

to accomplish; therefore Table 8.1a illustrates the number of created files on the host machine by this

tool, even though some files are just dependencies. On the other hand, Table 8.1b illustrates only files

that are related to the generated application.

Table 8.1: Number of Generated Files and Folders

(a) With node modules

Model Folders Files
AAIS 4.572 32.207
LIFE 4.606 32.812

(b) Without node modules

Model Folders Files
AAIS 317 3.441
LIFE 350 4.025

Additionally, it was used a bash command to investigate how many lines of code were generated per

file type. Listing 8.1 holds the bash command used to get those metrics.

Listing 8.1: Bash command: count the generated application files

1 find src/ -name '*.<file-extention>' -type f -exec wc -l {} \;

2 | awk '{ sum += $1 } END { print sum }'

Using the previous bash command it was obtained the number of generated source-code lines for the

most common files in the application such as Java, JavaScript, HTML, CSS, JSON and property files.

The results are exposed in Table 8.2.

Table 8.2: Generated Source-code Lines

Model Java Javascript HTML CSS XML JSON properties Total
AAIS 18.674 10.004 6.896 337 2.088 12.042 264 50.305
LIFE 20.086 18.707 11.340 337 3.588 18.807 264 73.129

97

8.2 Generation Time

As described in this project Hypothesis Test, the proposed solution shall generate the entire application

within the acceptable time of 15 minutes. During this project, was used two different PM artifacts that

have different Domain Models. Therefore there are a different number of Entities to be generated.

To test the generation time, it was executed the code generation 20 times, and the results are presented

in Table 8.3.

Table 8.3: Solution Generation Times

(a) Generate AAIS Model

Time
1 00:03:33,49
2 00:03:40,94
3 00:03:48,17
4 00:03:57,65
5 00:03:38,10
6 00:03:39,28
7 00:03:47,33
8 00:03:47,85
9 00:03:39,99
10 00:03:38,43
11 00:03:41,72
12 00:03:44,39
13 00:03:39,88
14 00:03:38,61
15 00:03:37,12
16 00:03:33,79
17 00:03:34,94
18 00:03:42,59
19 00:03:55,54
20 00:03:39,90

(b) Generated LIFE Model

Time
1 00:05:31,40
2 00:05:21,68
3 00:05:17,13
4 00:05:20,49
5 00:05:19,36
6 00:05:34,93
7 00:05:37,26
8 00:05:23,93
9 00:05:23,91
10 00:05:15,30
11 00:05:32,17
12 00:05:33,80
13 00:05:35,02
14 00:05:42,80
15 00:05:30,30
16 00:05:31,00
17 00:05:31,23
18 00:05:42,86
19 00:05:34,35
20 00:05:47,01

As demonstrated in the previous Table 8.3, depending on the model, the generation time is different.

This different generation time is understandable since these models have a different amount of Entities

to be generated. Using the AAIS model in which have 14 Entities to be generated, the generation tool

takes in average 3 minutes and 42 seconds. Whereas LIFE model, having 37 Entities to be generated,

takes about 5 minutes and 30 seconds.

98

9
Conclusions

Contents

9.1 Code Generation vs Current Manual Processes 101

9.2 Switching to Code Generation in the Organization 103

9.3 Objectives Assessment . 104

9.4 Limitations and Future Work . 105

99

100

9.1 Code Generation vs Current Manual Processes

This section describes, in a critical thinking approach, the possible application of the proposed solution

in the company. Weighing the advantages provided by such autonomous code generation techniques versus

its adoption disadvantages.

9.1.1 Current Manual Processes

To compare the impacts of changing to another development process approach, it will be described

three different possible scenarios when it comes to changing and adapting the current Sales & Service

application.

9.1.1.A Adapting: New Attribute

Adding a new attribute is the most basic scenario when it comes to domain model changes. In this

situation, the domain model is known, and already fully implemented by Sales & Services application.

Although it is the most basic scenario, it still requires manual changes in the application so that these

new attributes gets handled by the application.

When a new attribute is added by a Product Modeler in Product Machine, Sales & Services developers

must proceed with several changes in the application. The necessary changes are:

1 - Add/implement the getter method in the BOAdaptable implementation Classe

2 - Add the attribute to Builder algorithms

3 - Add the attribute in the respective Entity Transformer algorithm

4 - Add attribute to the Merge algorithm

5 - Add attribute to be included in the Entity Clone method

6 - Add attribute to be included in the Entity Copy method

7 - Add the attribute to all required Flows so that the attribute gets rendered in the user’s

browser.

8 - Add the attribute to Hibernate Mappings, so it gets stored in the database.

As seen, adding just a new attribute to an existing Entity can require various actions from a devel-

oper. Leading to a repetitive and time-consuming task just to adapt the application for new attributes.

Furthermore, to accomplish this manual process, a developer usually expends 4 hours of his working day.

9.1.1.B Adapting: New Entity

Adding a new Entity in a Product Machine model is the second worse case scenario when it comes to

adapting Sales & Services to work with that model.

101

When a new Entity is modeled in PM, a Sales & Services developer must create new objects to handle

that new domain Entity. The necessary components required to be produced are:

1 - Create Entity Transformer

2 - Create Entity Builder

3 - Create Entity related Algorithms: Copy, Clone

4 - Create and implement the correspondent BOAdaptable for the newest Entity

5 - Adjust the parent Entity BOAdaptable to have a getter for this new child object

6 - Create new Hibernate Mapping, so that it maps a new Entity

7 - Map all desired attributes in the Screen Flows

The amount of time to accomplish all of these steps to adapt S&S to have a new Entity is usually

estimated around 1 to 3 working days of a developer.

9.1.1.C Adapting: New Domain Model

The worse case scenario is when S&S needs to be adapted to new domain models. In this case, a

Sales & Services developer must go through a meticulous analysis to understand which Entities in this

new domain model matches with the existing internal BOM.

This analysis is a manual process that involves having object transformations so that they can match

existing Entities in the S&S internal BOM.

Furthermore, this analysis and consequent developments are very expensive regarding development

time. This kind of adaptation can take several weeks or even months to accomplish and requires to run

serious regression tests on the application.

9.1.2 Adopting Code Generation

As seen, the current manual process to adapt the presentation-layer with a given PM model can

take from 4 hours for a simple attribute change up to several weeks of development time to adjust the

application to new domain models.

The usage of code generation would mostly address the identified issues. Particularly the necessary

time to make the presentation-layer able to communicate with the PM model and be ready to use.

Therefore, this section describes the advantages and disadvantages of adopting these code generation

techniques when compared with the current manual process to adapt a Product Machine model to Sales

& Services presentation-layer.

9.1.2.A Advantages

There are various benefits when code generation techniques are used. The main advantage is the time

to generate the entire application. When compared with the current manual process this scenario fits the

102

case when it is necessary the adaptation of an entire domain model. Therefore, the comparison between

these two processes, i.e. manual vs generated, demonstrates that the autonomous generation process is

enormously more preferable, where in just 5 minutes the organization can have the application ready to

run.

Another advantage is the simplicity in running the generation engine. Where using an executable

batch file, even a non-developer person can start the generator and start the generated application.

For the developers, having such autonomous tools is also very convenient. Since it prevents these

developers from being continuously working on such repetitive tasks, such as mapping an attribute in

Hibernate configuration files, adjust existing algorithms, adjusting description languages such as Flow

screen definitions, among others repetitive adaptations.

9.1.2.B Disadvantages

The first identified disadvantage when code generation techniques are being adopted is that it starts

to have two different kinds of code in applications, the generated code, and the manual code. The manual

code can be added for several reasons, but the most common reason is the necessary customizations that

customers sometimes require to their businesses.

Developers must be careful where the manual code are set. Otherwise, a regeneration might over-

ride and drop all the manual code previously added, leading the developers starting over again their

customizations.

Another problem with applications entirely generated is the debug and small changes, where it is

challenging and error-prone. Because it needs first to generate code from the existing DSL, execute the

generator, debug the generated code, and finally propagate the corrections back to the affected templates

or DSL. (Franky and Pavlich-Mariscal, 2012) With this process, what should just take half a minute to

change, can take three or four minutes since it is necessary to run the code generation routine to the

developer see his changes applied and working.

9.2 Switching to Code Generation in the Organization

To switch to a code generation process in the organization, it would be necessary to change the current

development process. In which more than ever new DSLs would be created to describe particularities

within the application that currently are somewhat manually hardcoded.

Another implication of this process change is the way that developers code the application. Where it

demands a process change from doing static code that is done once to a completely different approach.

The code generation approach demands that instead of coding regular manual code, the developers must

invest in programming over configuration, where many DSLs would be needed to describe particular areas

103

within the application and its correspondent parsers, so that the initial desired code gets generated.

The existing ContainerAndDataHolder object structure that is being returned in each REST endpoint

is currently providing metadata and configuration hints to the javascript in the presentation layer of Sales

& Service. This metadata allows the javascript parser to render the correct forms, widgets, and other

User Interface (UI) components in the user’s browser.

The ContainerAndDataHolder is currently a big data structure concerning its dimension, that de-

grades the network communication time between the client-server requests. Therefore, using the code

generation approach, the return would just be the necessary objects to be rendered on the screen. Since

the application is not generic anymore and it is particularly working for a specific implementation that

was based on the initial DSLs that drove the code generation.

Although the proposed solution generates a complete application, it stands as a poor application as

far as its functionalities are concerned. Where just CRUD operations are available. Therefore, most

of the existing features in Sales & Service would be required to be ported over to this code generation

approach.

9.3 Objectives Assessment

According to the project objectives described at 1.2, it is concluded that the present work has ad-

dressed all the objectives. Having studied various solutions approaches, where some, such as template

driven and regular expression substitution were partially discarded due to the need for a more general

solution path.

Studying various code generation frameworks and compared its features, has proved that JHipster

has stood out from the others due to the overall code generation capabilities in which does not only

generate a partial software layer, but is capable of a multi-software layer generation, including a rich

javascript-based presentation-layer generation.

Regarding the definition of a DSL to describe the application generation intent, was not necessary

since JHipster supports a DSL named JDL that has produced the same result.

Additionally, it is concluded that the objective to ”Develop code generators” was achieved. Since it

were developed new modules to work with JHipster and add extensibility to the default JHipster entity

sub-generator behavior. The developed modules ”PMInjector” and ”BOAdaptables” have enhanced the

generated Domain Model so that it gets compatible with PM Runtime Services.

It was also developed a proof of concept that can be used with at least two different product models.

During this project, it was used two difference models to prove that the solution is dynamic and able to

adapt to different models of various domains, where the product models used were: PM4 Life model and

PM4 P&C model.

104

Regarding a general architecture for a channel application, the generated front-end is a Web-based

solution that uses a richer Javascript framework, HTML5, and CSS3. This technology stack is fully

compatible with any Desktop PC, Laptop, Tablet and even Smartphones. Furthermore, due to the usage

of Bootstrap, the application got a responsive front-end, which means that regardless the user screen

resolution, the elements will be reorganized according to the screen viewport.

9.4 Limitations and Future Work

Having a front-end application able to communicate with a PM model is much more than just create a

domain model that implements its model interfaces. Each PM model has a necessary minimal context that

needs to be set under its entities, so that when it gets in the Information Service, PM knows which product

matches that minimal context criteria, and therefore be able to infer which ProductComponentInfo will

be sent back to the presentation layer.

Therefore, it is identified as future work that this project would need to dynamically infer what is the

minimal context of a PM model. Hence, the presentation layer should have a form where this minimal

context should be rendered so that the User can fill the fields and consequently the application could

retrieve the correspondent Product from PM.

Furthermore, PM Runtime Services are an essential component to communicate with, since it is from

where all the modeled data comes from. Consequently, the generated application should also establish

in which moments the backend code should go over these PM Runtime Services and when that is not

necessary, for example, when should the system call the Validate Service.

Additionally, the returned object of Information Service is a ProductComponentInfo, each domain

Entity has one equivalent product component info in PM. But these objects are not BOAdaptables.

Thus, the generated application would need to have a new code generator module to generate these

Builders or Factories, to deliver the capability to build an Entity based on a ProductComponentInfo

object.

The generated presentation-layer is also very basic with just CRUD operations. As future work is

also identified that this area would need various enhancements so that it could have an Homepage and/or

a Dashboard, a Find screen to find created products with different Criteria’s, workflow (Draft, Request

Audit, Finalize, In Production and Discontinued).

105

106

Bibliography

RGA. Life insurance product development innovation and optimization, 2014. URL https:

//www.rgare.com/knowledgecenter/Documents/Life%20Insurance%20Product%20Development_

Final%201-28-15%20(2).pdf.

OjE - O Jornal Económico. msg life quer ajudar seguradoras a lan-

car produtos mais rapido, May 2015. URL http://www.oje.pt/

msg-life-quer-ajudar-seguradoras-a-lancar-produtos-mais-rapido/. Accessed 11-Nov-

2015.

The National Institute of Standards and Technology NIST. What is experimental design?, Jan 2016. URL

http://www.itl.nist.gov/div898/handbook/pri/section1/pri11.htm. Accessed 26-01-2016.

Oxford dictionary. hypothesis - definition of hypothesis in english from the oxford dictionary, Ago 2016.

URL http://www.oxforddictionaries.com/definition/english/hypothesis. Accessed 30-Aug-

2016.

techdata. Why is a value proposition important?, 2016. URL http://www.techdata.com/tdagency/

vendorconnect/FY14TDAgencyWebsite%20Giveaway[1].pdf.

S. Nicola, E. P. Ferreira, and J. J. P. Ferreira. A novel framework for modeling value for the customer, an

essay on negocitiation. International Journal of Information Technology & Decision Making, 11(661):

1103–1120, 2012. ISSN 1520-9210. doi: 10.1142/S0219622012500162.

C. Barnes, H. Blake, and D. Pinder. Creating and Delivering Your Value Proposition: Managing Customer

Experience for Profit. Kogan Page Publishers, 2009. ISBN 0749458593, 9780749458591.

A. Lindgreen and F. Wynstra. Value in business markets: What do we know? where are we going?

Industrial Marketing Management, 34(7):732–748, 2005. doi: 10.1016/j.indmarman.2005.01.001.

V. A. Zeithaml. Consumer perceptions of price, quality, and value: A means-end model and synthesis

of evidence. Journal of Marketing, 52(3):2–22, 1988. ISSN 00222429. URL http://www.jstor.org/

stable/1251446.

107

Tony Woodall. Conceptualising’value for the customer’: an attributional, structural and dispositional

analysis. Academy of marketing science review, 2003:1, 2003.

Susana Nicola. Apresentação em aula: Análise de valor de negócio. 2016.

Accenture. Accenture 2013 consumer-driven innovation survey, Oct 2013a. URL https://www.

accenture.com/t20150918T224011__w__/us-en/_acnmedia/Accenture/Conversion-Assets/

Microsites/Documents15/Accenture-Consumer-Driven-Innovation-Insurance-Survey-2013.

pdf. Accessed 22-Oct-2016.

Cognizant. Advice made social, Oct 2013. URL http://www.cognizant.ch/InsightsWhitepapers/

Advice-Made-Social.pdf. Accessed 22-Oct-2016.

Capgemini. Leveraging social media across the insurance lifecycle, Oct 2013. URL https:

//www.capgemini.com/sites/default/files/resource/pdf/leveraging_social_media_across_

the_insurance_lifecycle.pdf. Accessed 22-Oct-2016.

EY. Consumers on board, Oct 2014. URL http://www.ey.com/Publication/vwLUAssets/

EY-consumers-on-board/$FILE/EY-consumers-on-board.pdf. Accessed 22-Oct-2016.

EY. Insurance in a digital world: the time is now, Oct 2013. URL http://www.ey.com/

Publication/vwLUAssets/EY_Insurance_in_a_digital_world:_The_time_is_now/$FILE/

EY-Digital-Survey-1-October.pdf. Accessed 22-Oct-2016.

IBM. Insurers, intermediaries and interactions, Oct 2013. URL http://www-935.ibm.com/services/

multimedia/Insurers_intermediaries_interactions_Avril_2013.pdf. Accessed 22-Oct-2016.

Accenture. Accenture technology vision 2014, Oct 2013b. URL https://www.

accenture.com/gr-en/_acnmedia/Accenture/next-gen/reassembling-industry/pdf/

Accenture-Technology-Vision-2014.pdf. Accessed 22-Oct-2016.

Investopedia. Actuary, Oct 2016a. URL http://www.investopedia.com/terms/a/actuary.asp. Ac-

cessed 02-10-2016.

msg life. msg life - sales & service, Ago 2015. URL http://www.msg-life.com/en/

software-consulting-and-cloud-solutions-for-life-insurance-companies-and-pension-scheme-providers/

sales-service/. Accessed 24-Jan-2016.

Cambridge-Dictionary. Revamp, Oct 2016a. URL http://dictionary.cambridge.org/dictionary/

english/revamp. Accessed 02-10-2016.

Atlassian. Agile roadmaps: build, share, use, evolve, Ago 2016. URL https://www.atlassian.com/

agile/roadmaps. Accessed 25-Jan-2016.

108

Investopedia. The industry handbook: The insurance industry, Fev 2016b. URL http://www.

investopedia.com/features/industryhandbook/insurance.asp. Accessed 20-02-2016.

R. Merkin and J. Steele. Insurance and the Law of Obligations. OUP Oxford, 2013. ISBN 0191507911,

9780191507915.

Business Dictionary. What is insurance? definition and meaning, Fev 2016. URL http://www.

businessdictionary.com/definition/insurance.html. Accessed 20-02-2016.

Forbes. 13 types of insurance a small business owner should have -

forbes, Fev 2016. URL http://www.forbes.com/sites/thesba/2012/01/19/

13-types-of-insurance-a-small-business-owner-should-have/#693858e294fd. Accessed

20-02-2016.

FJA-US. Fja-us.pm4, 2015. URL https://www.msg-life.com/fileadmin/Uploads/en/pdfs/

ProductMachine_Folder_20140829.pdf.

Superior Consulting Services. Software multitenancy, Ago 2016. URL https://www.teamscs.com/

2015/11/using-entity-frameworks-access-multi-tenant-data-saas-environment/. Accessed

30-Aug-2016.

Oracle. Path and classpath (the java� tutorials ¿ essential classes ¿ the platform environment), Oct

2016. URL https://docs.oracle.com/javase/tutorial/essential/environment/paths.html.

Accessed 02-Oct-2016.

A.T. Imam, T. Rousan, and S. Aljawarneh. An expert code generator using rule-based and frames

knowledge representation techniques. In Information and Communication Systems (ICICS), 2014 5th

International Conference on, pages 1–6, April 2014. doi: 10.1109/IACS.2014.6841951.

IEEE. Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990, pages 1–84,

Dec 1990. doi: 10.1109/IEEESTD.1990.101064.

M.C. Franky and J.A. Pavlich-Mariscal. Improving implementation of code generators: A regular-

expression approach. In Informatica (CLEI), 2012 XXXVIII Conferencia Latinoamericana En, pages

1–10, Oct 2012. doi: 10.1109/CLEI.2012.6427199.

S. Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-

IEEE Computer Society Press, 2008. ISBN 978-0-470-03666-2.

CodeSmith Generator. Active vs. passive generation - codesmith generator - confluence, 2016. URL

https://codesmith.atlassian.net/wiki/display/Generator/Active+vs.+Passive+Generation.

109

Velocity. The apache software fundation : Apache velocity - vtl reference, 2016. URL http://velocity.

apache.org/engine/devel/vtl-reference-guide.html.

Jelly. The apache software fundation : Jelly - jelly overview, 2016. URL http://commons.apache.org/

proper/commons-jelly/overview.html.

FTL. The apache software fundation : Freemarker java template engine, 2016. URL http://freemarker.

incubator.apache.org/.

Acceleo. The Eclipse Foundation : Acceleo, 2016. URL http://www.eclipse.org/modeling/m2t/

?project=acceleo.

JET. The Eclipse Foundation : JET, 2016. URL https://eclipse.org/modeling/m2t/?project=jet.

Xpand. The Eclipse Foundation : Xpand, 2016. URL http://www.eclipse.org/modeling/m2t/

?project=xpand.

MOFScript. The Eclipse Foundation : MOFScript, 2016. URL http://www.eclipse.org/gmt/

mofscript/.

M.A.S. Talab and D.N.A. Jawawi. A code generator for component oriented programming framework.

In Open Systems (ICOS), 2011 IEEE Conference on, pages 225–230, Sept 2011. doi: 10.1109/ICOS.

2011.6079314.

Ying Wang, Dianfu Ma, Yongwang Zhao, Lu Zou, and Xianqi Zhao. Automatic rt-java code gen-

eration from aadl models for arinc653-based avionics software. In Computer Software and Ap-

plications Conference (COMPSAC), 2012 IEEE 36th Annual, pages 670–679, July 2012. doi:

10.1109/COMPSAC.2012.94.

AndroMDA. Getting started java – introduction, 2016. URL http://andromda.sourceforge.net/

andromda-documentation/getting-started-java/.

Jaxio. Celerio , a code generation tool for data-oriented application written in java., 2016. URL http:

//www.jaxio.com/en/celerio.html.

JHipster. Jhipster home, 2016. URL https://jhipster.github.io/.

Cambridge-Dictionary. Revamp, Oct 2016b. URL http://dictionary.cambridge.org/dictionary/

english/opinionated. Accessed 02-10-2016.

Elasticsearch. Elasticsearch — elastic, 2016. URL https://www.elastic.co/products.

Matt Raible. The JHipster Mini-book. C4Media, 2015. ISBN 9781329638143.

110

Modelio. Modelio, download uml modeling tool and free products, 2016. URL https://www.

modeliosoft.com/.

UMLDesigner. Uml designer documentation, 2016. URL http://www.umldesigner.org/.

GenMyModel. Design software faster than ever, 2016. URL https://www.genmymodel.com/.

Visual Paradigm. Software design tools for agile teams, with uml, bpmn and more, 2016. URL http:

//www.visual-paradigm.com/.

JDL-Studio. Jdl-studio, 2016. URL http://jhipster.github.io/jdl-studio/.

Ehcache. Terracotta : Ehcache, 2016. URL http://www.ehcache.org/.

Hazelcast. Hazelcast the leading in-memory data grid - hazelcast.com, 2016. URL https://hazelcast.

com/.

Logback. Logback home, 2016. URL http://logback.qos.ch/.

HikariCP. Hikaricp, 2016. URL https://github.com/brettwooldridge/HikariCP.

ModelJ. The model-driven design tool for j2ee, 2016. URL http://modelj.sourceforge.net/.

Sculptor. Sculptor - generating java code from ddd-inspired textual dsl, 2016. URL http://

sculptorgenerator.org/.

E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.

ISBN 978-0321125217.

Maven. Maven – welcome to apache maven, 2016. URL https://maven.apache.org/index.html.

Sonatype Nexus. Nexus repository - software component management — sonatype, 2016. URL http:

//www.sonatype.com/nexus-repository-sonatype.

Java Sun. Lesson: Introspection (the java� tutorials ¿ javabeans(tm)), 2008. URL

http://web.archive.org/web/20090226224821/http://java.sun.com/docs/books/tutorial/

javabeans/introspection/index.html.

Oracle. Trail: The reflection api (the java� tutorials), 2016. URL https://docs.oracle.com/javase/

tutorial/reflect/.

Nuno Alves. personal communication, Apr. 04 2016.

Java 8. Java se development kit 8 downloads, 2016. URL http://www.oracle.com/technetwork/java/

javase/downloads/jdk8-downloads-2133151.html.

111

NodeJS. Download — node.js, 2016. URL https://nodejs.org/en/download/.

GIT. Git - downloading package, 2016. URL https://git-scm.com/download/win.

Yeoman. Composability — yeoman, Ago 2016. URL http://yeoman.io/authoring/composability.

html. Accessed 20-Aug-2016.

A. Avram and F. Marinescu. Domain Driven Design Quickly. C4Media, 2006. ISBN 978-1-4116-0925-9.

M. Fowler and R. Parsons. Domain-Specific Languages. Addison-Wesley, 2012. ISBN 978-0321712943.

112

A
From PM to S&S Overview

113

114

Figure A.1: Unified Product Platform Ecosystem

115

116

B
CANVAS : Business Model

117

118

K
ey

P
ar

tn
er

s
K

ey
A

ct
iv

it
ie

s

K
ey

R
es

ou
rc

es

C
os

t
S
tr

u
ct

u
re

V
al

u
e

P
ro

p
o
si

ti
o
n
s

C
u
st

om
er

R
el

at
io

n
sh

ip

C
h
an

n
el

s

C
u
st

o
m

er
S
eg

m
en

ts

R
ev

en
u
e

S
tr

ea
m

s

S
u
p
p
li
er

s

D
el

l

F
J
A

-U
S

m
sg

li
fe

S
y
st

em

R
S
A

P
ro

g
ra

m
in

g

D
ev

el
op

in
g

In
su

ra
n
ce

S
ol

u
ti

on
s

M
a
in

te
n
an

ce
of

ex
is

ti
n
g

so
lu

ti
on

s

H
u
m

an
R

es
ou

rc
es

H
ar

d
w

ar
e

S
of

tw
a
re

S
ec

u
ri

ty

S
&

S
P

la
tf

or
m

P
er

fo
rm

an
ce

In
su

re
r:

T
im

e
to

M
a
rk

et

Im
p
ro

ve
p
ro

d
u
ct

la
u
n
ch

p
ro

ce
ss

U
se

rs
E

m
p

ow
er

m
en

t

M
ar

ke
ti

n
g

an
d

S
al

es
em

p
ow

er
m

en
t

R
et

ri
ev

e
IT

d
ep

en
d
en

ci
es

S
al

es
P

re
se

n
ta

ti
on

s

D
em

os

W
eb

m
in

ar

S
al

es
F

or
ce

E
m

ai
l

M
ar

ke
ti

n
g

P
la

tf
o
rm

In
su

ra
n
ce

E
v
en

ts

m
sg

li
fe

M
a
rk

et
in

g
M

a
te

ri
a
ls

In
si

d
e

In
su

ra
n
ce

T
re

n
d
s

D
ig

it
a
l

&
P

ap
er

M
a
g
a
zi

n
e

B
ro

ch
u
re

s

V
id

eo
s

In
fo

gr
ap

h
ic

s

B
u
si

n
es

s
V

is
it

s

D
ig

it
al

M
ar

ke
ti

n
g

In
te

rn
et

E
-m

ai
l

P
h
on

e

m
sg

li
fe

F
in

a
l

C
u
st

o
m

er
s

L
ic

en
si

n
g

C
u
st

om
P

ro
d
u
ct

F
ea

tu
re

s

E
x
it

in
g

C
u
st

om
er

s
m

a
in

te
n
an

ce

N
ew

C
u
st

om
er

s

H
u
m

an
R

es
ou

rc
es

H
ar

d
w

ar
e

S
o
ft

w
ar

e
L

ic
en

ce

S
ec

u
ri

ty

F
ig

u
re

B
.1

:
C

A
N

V
A

S
B

u
si

n
es

s
M

o
d
el

119

120

C
Related Technologies

Contents

C.1 DDD - Domain Driven Design . 123

C.2 DSL - Domain Specific Languages . 129

121

122

In the enterprise development community, especially the web development community, have been

tainted by years of hype that took software engineers and similar positions away from proper object-

oriented software development. In the Java community, proper domain modeling was lost in the hype of

EJB and the container/component models of 1999-2004. Luckily, shifts in technology and the collective

experiences of the software development community are moving us back towards traditional object-

oriented paradigms. However, the community is lacking a clear vision for how to apply object orientation

on an enterprise scale, in which is why DDD is important. (Avram and Marinescu, 2006)

C.1 DDD - Domain Driven Design

Software development is often applied to automating real-world processes, or providing solutions to

real business problems. For this reason, it is important to know from the beginning that software is

originated from and deeply related to the domain of the problem that it was designed to work with.

(Avram and Marinescu, 2006)

To create complex software, e.g. for insurance or banking business, domain knowledge is the key.

Bankers and Insurer’s specialists are the ones that understand very well this business; they know all the

details, all the catches, all the rules and the possible issues. This is where software development should

always start: the domain.

When a software project begins, the focus should reside on its operation domain. The entire purpose

of the software is to enhance a specific domain. Therefore, the software has to fit harmoniously with

the domain it has been created for. Software needs to incorporate the core concepts and elements of the

domain and to realize the relationships between them precisely. (Avram and Marinescu, 2006)

C.1.1 Domain

”A domain model is not a particular diagram; it is the idea that the diagram is intended

to convey. It is not just the knowledge in a domain expert’s head; it is a rigorously organized

and selective abstraction of that knowledge.” (Evans, 2003)

A domain describes something in the real world. Therefore, a domain cannot just be taken and poured

over the keyboard into the computer to become code. An abstraction of the domain must be created.

This domain abstraction is earned with conversations with domain experts. In the beginning, the domain

abstraction is unfinished but in time, while the development teams work on it, it gets better and becomes

more and more clear to the development team. This abstraction, for the software development team,

becomes the model, the model of the domain.

123

C.1.2 Model

A model is an internal representation of the target domain, and it is very necessary throughout the

design and the development process. During the design process, lots of references to the model are

made. The world around us is too much for our heads to handle. Even a specific domain could be more

than what the human mind can handle at one time. Therefore, the information must be organized, to

systematize it, to divide it up into smaller pieces and, to group these pieces into logical modules. (Avram

and Marinescu, 2006)

A domain contains just too much information to be included in the model. Some are not even

necessary to be included, other are key elements that are needed to be included. The challenge is the

analysis about what to keep and what to throw away. This is part of the design, the software creating

process. (Avram and Marinescu, 2006)

A model is an essential part of software design. It is needed to be able to deal with complexity. The

thinking process about the domain is synthesized into this model. Therefore, it is very common that the

model starts to be the bridge between developers and domain/business specialists. It is very common

that model elements start to be used in conversations/discussions. For this reason, the model must be

exposed to domain experts, designers, and developers. Therefore it is imperative to establish ways to

express it, precisely, completely and without ambiguity. There are different ways to do that (Avram and

Marinescu, 2006) :

1. Graphically: Diagrams, Use Case, Drawings, pictures, etc.

2. Writing: Writing down the vision about the domain

C.1.3 Building Blocks

In Object-Oriented programs, it is very common to see UI, database, and other support code written

directly into the business objects. On the other hand, some business logic is embedded within the UI

widgets and database scripts. This scenario sometimes happens because it is the easiest way to make

things work quickly.

However, when the domain-related code is mixed with the other layers, it becomes tough to see and

think about. Additionally, superficial changes to the UI can change the internal business logic that

will impact another section within the application which leads to a scenario where to change a simple

business rule will require meticulous tracing of UI code, database code, or other program elements.

Implementing coherent, model-driven objects become impractical. ”Automated testing is awkward. With

all the technologies and logic involved in each activity, a program must be kept very simple, or it becomes

impossible to understand”. (Avram and Marinescu, 2006)

Therefore, splitting a complex program into layers is the most common solution. ”Develop a design

within each layer that is cohesive and that depends only on the layers below. Follow standard architectural

124

patterns to provide loose coupling to the layers above. Concentrate all the code related to the domain

model in one layer and isolate it from the user interface, application, and infrastructure code. The domain

objects, free of the responsibility of displaying themselves, storing themselves, managing application tasks

and so forth, can be focused on expressing the domain model.” (Avram and Marinescu, 2006) This allows

a model to evolve to be rich and clear enough to capture essential business knowledge and put it to

work. The Figure C.1 illustrates the map of the most important patterns and its relationships used in a

model-driven design.

Figure C.1: Domain-Driven Design - Patterns and Relationships

Source: Domain-Driven Design Quickly (Avram and Marinescu, 2006)

It is important to design an application in separate layers and establish rules of interactions between

those layers. If the code is not clearly divided into layers, it will soon become so entangled that it

becomes tough to manage changes. One simple change in one section of the code may have unexpected

and undesirable results in other sections. (Avram and Marinescu, 2006)

125

C.1.4 Model Driven Design - Sterotypes

The concern of having complex applications divided into various layers, each with their own respon-

sibilities within the system, lead to the definition of these DDD patterns as illustrated in Figure C.1.

These stereotypes: Entities, Value Objects, Services, Modules, Aggregates, Factories, Repositories; allow

the layer segregation, leading to a low-coupled and high-cohesion code per system layer.

C.1.4.A Entities

Entities are important objects of a domain model, and they should be considered from the beginning

of the modeling process. An Entity is a category of objects which have an identity. Usually, the identity is

either an attribute of the object, a combination of attributes or even a behavior. (Avram and Marinescu,

2006)

Although Entities are an important object of a domain model, not all objects should be defined as

an Entity and it is crucial to determine if an object needs to be an entity in the domain model. Entities

are tracked by their identity, but creating and tracking identities come with costs, e.g.: Performance

degradation, since there has to be one instance for each entity object. ”If Customer is an entity object,

then one instance of this object, representing a particular bank client, cannot be reused for account

operations corresponding to other clients. The outcome is that such instance has to be created for every

client. This can result in system performance degradation when dealing with thousands of instances.”

(Avram and Marinescu, 2006)

C.1.4.B Value Objects

An object that is used to describe certain aspects of a domain but does not have an identity is named

Value Object. (Avram and Marinescu, 2006) This type of objects are used when their identity are not

necessary, but their attributes are. Having no identity, Value Objects can be easily created and discarded.

This type of object simplifies the design because garbage collector takes care of these objects when they

are no longer referenced by any other object.

Value Objects are created with a constructor, and never modified during their life time. When a new

Value Object is needed, it can be simply created and used.

It is highly recommended that Value Objects be immutable. Being immutable and having no identity

means that they can be shared, and this can be imperative for some designs. Having immutable sharable

objects brings important performance implications.

Value Objects can contain other Value Objects, and they can even reference other Entities. Although

Value Objects are used to simply contain attributes of a domain object, that does not mean that it should

include a long list of all the necessary attributes. It can simply be composed of another object either

Entities or Value Objects. (Avram and Marinescu, 2006)

126

C.1.4.C Services

There is an important behavior of the domain that does not seem to belong to any object. ”Adding

such behavior to an object would spoil the object, making it stand for functionality which does not

belong to it.” (Avram and Marinescu, 2006) When such behavior is recognized in the domain, the best

practice it to declare it as a Service. A Service is an object without an internal state, and its purpose

is to provide functionality for the domain. Services can group related functionality which serves Entities

and the Value Objects. The three main characteristics of a Service are:

1. The operation performed refers to a domain concept which does not naturally belong to an

Entity or Value Object.

2. The operation performed refers to other objects in the domains.

3. The operation is stateless.

Services act as interfaces which provide operations. A Service is not about the object performing the

service but is related to the objects operations that are carried out on/for a domain object. A Service

usually becomes a point of connection for many objects. This connection is one of the reasons why

behavior which naturally belong to a Service should not be included in domain objects. A Service should

not replace the operation which normally belongs to domain objects. A Service should not be created

for every operation needed. However, when such an operation stands out as an important concept in the

domain, a Service should be set up for it. (Avram and Marinescu, 2006)

C.1.4.D Modules

Enterprise applications are complex, and with time, the model tends to grow. Often the models reach

a point where its just hard to talk about as a whole and to understand the particularities about the

domain. For these cases, it is necessary to organize the model into Modules.

Modules are an efficient way to manage complexity, because looking into project Modules and then its

relationships; it is easier to get the picture of a large model. Another reason for using Modules is related

to code quality. Software source-code should have a high cohesion and a low coupling. Where cohesion

starts at the class and method level, but it can be applied at the module level. It is recommended to

group highly related classes into modules to maximize cohesion. (Avram and Marinescu, 2006)

C.1.4.E Aggregates

An Aggregate is a group of associated objects which are considered as one unit about data changes.

The Aggregate is demarcated by a boundary which separates the objects inside from those outside. Each

Aggregate has one root object which is an Entity, and it is the only object accessible from outside. The

root can hold references to any of the aggregate objects, and the other objects can hold references to each

other, but an outside object can hold references only to the root object. (Avram and Marinescu, 2006)

127

Aggregates ensure data integrity and enforce the invariants. Since other objects can hold references

only to the root object, it means that they cannot directly change the other objects in the aggregate. All

that they can do is modify the root, or ask the root to perform some actions. Moreover, the root will

be able to change the other objects, but that is an operation contained inside the aggregate, and it is

controllable. (Avram and Marinescu, 2006)

C.1.4.F Factories

”The creation of an object can be a major operation in itself, but complex assembly operations do

not fit the responsibility of the created objects. Combining such responsibilities can produce ungainly

designs that are hard to understand.” (Avram and Marinescu, 2006) Therefore, it is necessary a concept

that encapsulates the process of complex object creation.

Factories are used to encapsulate the necessary knowledge for an object creation, and they are espe-

cially useful to create Aggregates (when the root of the Aggregate is created, all the objects contained

by the Aggregate are created along with it, and all the invariants are enforced). It is important for the

creation process to be atomic. If it is not, there is a chance for the creation process to be half done for

some objects, leaving them in an undefined state. (Avram and Marinescu, 2006)

C.1.4.G Repositories

Databases are part of the infrastructure. A poor solution is having the client to be aware of the details

needed to access a database. Therefore, Repositories encapsulate all the logic needed to obtain object

references. ”The domain objects will not have to deal with the infrastructure to get the needed references

to other objects of the domain. They will just get them from the Repository, and the model is regaining

its clarity and focus.” (Avram and Marinescu, 2006)

128

C.2 DSL - Domain Specific Languages

DSL ”is a computer programming language of limited expressiveness focused on a partic-

ular domain.” (Fowler and Parsons, 2012)

DSL has little expressiveness, therefore it supports a bare minimum of features needed to support its

domain which means that an entire system cannot be built or described using one simple DSL. Rather,

a DSL can be used to describe one particular aspect of the system. This limited language is only useful

if it has a clear focus on a small domain. Here, the domain focus is what makes a limited language

worthwhile. (Fowler and Parsons, 2012)

According to (Fowler and Parsons, 2012), there is three main categories of DSL: external DSLs;

internal DSLs and language workbench.

1. Internal DSL is a particular way of using a general-purpose language (Java, C#, C++). A script

in an internal DSL is a valid code in its general-purpose language, but only uses a subset of the

language’s features in a particular style to handle one small aspect of the overall system. The result

should have the feel of a custom language, rather than its host language. The classic example of this

style is Lisp; Lisp programmers often talk about Lisp programming as creating and using DSLs.

Ruby has also developed a strong DSL culture; Many Ruby libraries come in the style of DSLs. In

particular, Ruby’s most famous framework, Rails, is often seen as a collection of DSLs.

In Java, an example of the usage of an internal DSL is JMock a Java library for Mock Objects.

The Listing C.1 illustrates an example of an Internal DSL:

Listing C.1: Example: internal DSL

1 mainfram.expects(once ())

2 .method("buy").with(eq(QUANTITY))

3 .will(returnValue(TICKET));

This example uses partial Java language features to develop an internal DSL. JMock uses a mix of

Method Chaining on the mock object itself (expects) and Nested Function (once). Object Scoping

is used to allow the Nested Function methods to be bare. JMock uses progressive interfaces that

allow to with be only available after method permitting the auto-completion in IDE’s, guiding the

developer to write the JMock expectation in the right way. (Fowler and Parsons, 2012)

2. External DSL is separated language from the main application language that is using the DSL.

Often, is used a custom syntax but is very common to find DSLs using well-known syntaxes like

XML. To interpret an external DSL, a parser is used in the host language code with text parsing

129

techniques. External DSLs are widely used and include: regular expressions, SQL, Awk and are

using XML to describe and configure the behavior of well-known libraries like: Hibernate (hbm.xml

Describes how the classes are mapped in the Database); Maven (pom.xml describes how projects are

related to each other, stating its classpath dependencies, exclusions and build process to the appli-

cation artifacts). Other examples, now used for presentation layers are the well-known: Extensible

Application Markup Language (XAML) (Microsoft introduced XAML as a DSL to lay out UIs)

and CSS, both are interpreted by browsers to render according to what those DSL languages are

describing. (Fowler and Parsons, 2012)

3. Language Workbench is a specialized IDE for defining and building DSLs. In particular, a

language workbench is used not just to determine the structure of a DSL but also as a custom

editing environment for people to write DSL scripts. The resulting scripts intimately combine the

editing environment and the language. (Fowler and Parsons, 2012)

C.2.1 Why use a DSL?

DSL are popular for several reasons, but (Fowler and Parsons, 2012) has highlighted two main ones:

improving productivity for developers and enhance communication with the domain experts.

This statement is vital because it brings us two essential reasons about why should we be taken DSLs

into account for the development of this project. First, and according to the previous statement, a DSL

can bring us an improvement of developers productivity which alone is an important statement to address

the objectives of this project. Secondly, being a tool that can be used as a communication bridge between

front-end development team and domain experts (i.e. PM modelers) when the system design is being

decided, it can solve communication issues and prevent wrong path decisions.

DSL provides means to communicate the intent of a part of a system more clearly. A system definition

in a DSL form is easier to understand what it is doing. Moreover, this is not just an aesthetic desire,

because the easier is to read a lump of code, the easier it is to find mistakes, and the easier it is to modify

the system. (Fowler and Parsons, 2012)

”The limited expressiveness of DSLs makes it harder to say wrong and easier to see when

you’ve made an error.” (Fowler and Parsons, 2012)

The hardest part of a software project and the most common reasons for its failures are the commu-

nication with customers and users of that software. (Fowler and Parsons, 2012) A DSL provides a clear

and precise language to express the domain in which can help on this communication issues. Its revision

should not only include the development team but most importantly, the domain experts. However, if

we want to guaranty that the domain experts completely understand the content of the model expressed

by the DSL, sometimes a DSL alone is not enough. It is also necessary to provide a visual representation

130

of the model (See: C.2.2). Being able to read and understand the DSL, domain experts can prevent

mistakes to happen during the system design phase. (Fowler and Parsons, 2012)

C.2.2 Visualization

Visual representations are a great advantage when working with DSLs, in particular, graphical rep-

resentations. Even with a textual DSL is possible to obtain a diagrammatic representation of what that

DSL is expressing. The most common tool used to express a DSL in a diagram is the DOT 1 language.

The DOT language is part of the Graphviz 2 package. (Fowler and Parsons, 2012)

Graphviz is an open-source tool that allows the description of mathematical graph structures (nodes

and edges) and automatically plots them. It also lay out node-and-arc graphs structures. Having various

kinds of reports creates different perspectives of what a model looks like and that is very useful.

Using tools such as Graphviz is extremely helpful for many DSLs because it gives another represen-

tation perspective about the DSL. Another visualization is always very valuable since it gives humans

different ways to understand the model. (Fowler and Parsons, 2012)

1DOT is a plain text graph description language
2Graphviz is open source graph visualization software

131

132

D
Sculptor: Domain Driven Design

sample

133

134

Source: Sculptor documentation (Sculptor, 2016)

Figure D.1: Sculptor: DDD Sample Model

135

136

E
Diagrams

137

138

Figure E.1: Sequence Diagram - Creating JDL model

139

140

