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“The harder you fall, the heavier your heart; the heavier your 

heart, the stronger you climb; the stronger you climb, the 

higher your horizon.” 
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ABSTRACT 

Wnt signaling controls a wide spectrum of complex cell responses during prenatal 

development, in the adulthood and during disease. In this doctoral study, we have identified 

and explored novel regulatory components of Wnt/Planar Cell Polarity (PCP) pathway and 

their function in various cellular processes during embryogenesis and central nervous 

system (CNS) development. We paid special attention to molecular mechanisms underlying 

the morphogenesis of the ventral midbrain (VM) and development of midbrain 

dopaminergic (mDA) neurons, a brain area that is strictly regulated by Wnt signaling. We 

also touched upon possible clinical applications of our findings in neurodegenerative 

disorders, such as Parkinson’s disease (PD).  

We used a large number of traditional biochemical tools as well as more advanced 

methodologies such as proteomics and phospho-proteomics, RNA-scope in situ 

hybridization, confocal microscopy, electron microscopy and CRISPR/Cas9 technology 

(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9). 

We have also used different models such as cell lines and primary cultures, as well as 

genetically modified organisms, including Xenopus laevis (Frog), Danio rerio (zebrafish) and 

mouse embryos. To better understand the functional complexity of the Wnt/PCP signaling, 

we examined a number of transgenic mice models, which allowed us to uncover the 

function of Wnt/PCP protein complexes in the mammalian CNS. Finally, some of our 

observations were confirmed by using human prenatal brain tissue (study II). Please find 

below the main highlights of each study included in this thesis: 

In study I, we explored the molecular mechanism by which the crucial Wnt signaling 

integrator Dvl and the cell cycle protein kinase NEK2 regulate the progression of cells from 

the G2 to the M phase. We identified Dvl as a NEK2 substrate and described that they 

mediate disassembling of centrosomal linker proteins from the centrosome, a process 

essential for duplicating the centrioles and polarization of the mitotic spindle during mitosis. 

Such findings are of tremendous importance in cancer research and in the context of 

ciliopathies which show defects in the centrosomal structures. 

In study II, we investigated the expression of mammalian Wnts in developing choroid plexi. 

We discovered that biologically active Wnt5a is secreted to the cerebral spinal fluid (CSF) by 

the epithelial cells of the hindbrain, but not the telencephalic choroid plexus, in both mouse 

and in human embryos. We further describe that secreted Wnt5a forms a complex with 

high-density lipoprotein particles containing ApoE and ApoJ, but is not found in exosomes. 

Analysis of the Wnt5a deficient mice revealed a possible function of Wnt5a in the choroid 

plexus to inhibit progenitor proliferation in the neighbor ventricular zone. Our results 

suggest that Wnt5a gradients in the developing mammalian brain might be formed by 

diffusion of Wnt5a-lipoprotein complexes through the CSF. 



In study III, we tackled a molecular mechanism behind the Wnt5a signal transduction in the 

ventral midbrain. Analysis of Wnt5a-/-, Wnt5a overexpressing, Wnt5a-/-;Ror2-/- and Ror2-/-

;Vangl2-/- mice identified a function of the Wnt5a-Ror2/Vangl2 signaling axis in the VM 

morphogenesis and in mDA neuron development. Our study shows that correct Wnt5a 

expression levels are crucial for VM morphogenesis, mDA neurogenesis and mDA neuron 

maturation. Moreover, we found a novel phenotype of bilateral asymmetry in Ror2-/-

;Vangl2-/- animals which suggests that Vangl2 alone or in a complex with Ror2 controls the 

correct position, proliferation and differentiation of mDA progenitors into mDA neuroblasts 

and neurons. Our results additionally identify a novel role of Wnt/PCP signaling in 

controlling mDA neurogenesis, which may be of interest for the development of novel 

regenerative approaches to treat neurodegenerative diseases which affect mDA neurons, 

such as Parkinson’s disease. 

In study IV, we performed a proteomic analysis of the core Wnt/PCP receptor Ror2, and 

discovered several novel binding partners which were verified in mDA cells and in the 

developing ventral midbrain. We selected SorCS2, a proneurotrophin receptor from the 

VPS10-domain containing sortilin receptor family, as a top candidate because of its specific 

expression in the mouse midbrain floorplate and its functional involvement in mDA neuron 

wiring. By using X. laevis and D. rerio, we found that the Ror2-SorCS2 receptor complex is 

required during embryogenesis to regulate convergent extension, somitogenesis and brain 

development. We also suggest that SorCS2 has the capacity to internalize Ror2 and its other 

co-receptors in a Wnt/PCP-dependent manner in vitro and in vivo, via an unknown pathway. 

These data reveal that the two pathways previously considered to be independent, 

Wnt/PCP and proneurotrophin receptor signaling, functionally interact. Moreover, our 

results identify SorCS2 as a novel regulator of Wnt/PCP signaling in vertebral 

embryogenesis. 

In study V, we investigated whether Leucine-rich repeat kinase 2 (Lrrk2), the protein 

product of the park8 gene, which is mutated in more than 40% of patients with inherited 

PD, can interact with the Wnt/PCP pathway by using a proteomic screening. We describe 

that Lrrk2 interacts with a number of Wnt/PCP components in dopaminergic cells, in the VM 

of E18.5 mice embryos, and in a human cell line. Particularly, we show the capacity of Lrrk2 

to inhibit Wnt/β-catenin signaling in vitro and in vivo in X. laevis embryos. We observed that 

these regulatory changes depend on the presence of Prickle1 and Dvl. Our results thus 

provide novel insights into the molecular mechanisms by which Lrrk2 and Wnt signaling 

interact, and describe Lrrk2 and Prickle1 as novel dual regulators of Wnt/PCP and Wnt/β-

catenin signaling. Moreover, we suggest that the pathogenesis of PD may involve an 

alteration in the balance between these two Wnt signaling pathways.   
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1 INTRODUCTION 

Probably no one would have thought in 1982, when the first mammalian Wnt ligand, proto-

oncogene Integration-1 (int-1), was identified by Roel Nusse and Harold Varmus [12] that 

the Wnt field will become so interdisciplinary, and revolutionize many research areas, 

including cancer research, neuroscience, developmental biology, biotechnology and 

regenerative medicine. Shortly after their discovery, Int-1 was aligned to its Drosophila 

homolog Wingless which caused the fusion of the two names into Wnt-1. Many more Wnt-

related proteins have been described in the past 35 years, and due to their high clinical 

relevance, they have become the research focus for scientists all around the world. I hope 

that this thesis will take you on a fun exploration of the Wnt signaling world and will simply 

“Wnt you”. 

1.1 WNTS, THE INNER GPS OF THE ANIMAL KINGDOM 

In mammals, Wnts (Wingless/Integration) are a large family of 19 secreted lipid-modified 

glycoproteins that serve multiple functions in development, tissue homeostasis, and 

disease. Wnts typically function as morphogens, and are highly conserved throughout the 

animal kingdom. As such they comprise, together with Sonic-Hedgehog (Shh), Fibroblast 

growth factor (FGF), Notch or Bone morphogenetic protein (BMP) signaling, one of the most 

essential pathways that control embryonic development and regeneration. Deregulation of 

Wnt signaling often leads to lethal phenotypes such as craniofacial defects, spina bifida or 

exencephaly. Abnormal Wnt signaling has been genetically linked to several developmental 

disorders such as Robinow syndrome and autism. Postnatally, their dysfunction has been 

associated to different types of cancer, skeletal malformations, neurological disorders or 

cardiovascular diseases [5, 13, 14].  

Wnts control a wide spectrum of 

complex cellular processes 

during development. In order to 

create a living organism from a 

one-cell stage zygote, the cells 

must undergo many genetic and 

epigenetic changes, and provide 

a precise micro-environment 

composition for correct cell-to-

cell communication. That 

includes placing attractive and 

repulsive clues in the form of 

trophic and apoptotic factors, 

creating morphogen gradients, 

Figure 1: Wnt gradients together with other morphogens 

place attractive and repulsive cues which guide axons of 

commissural neurons during spinal cord development [1, 2]. 
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and eliminating mispositioned, dysfunctional or unnecessary cells in order to define the 

right tissue size and its function (Figure 1). Generally, the following cellular processes are 

essential during the CNS development: cell proliferation, cell survival, stem cell renewal, 

apoptosis, cell migration, neuronal diversification, and synaptic connectivity; and Wnts 

regulate all of them [11, 13, 15].  

1.1.1 Cell cycle regulation  

Cell cycle progression and its strict regulation are essential for the life of each cell. 

Postmitotic cells do not divide and they stay in a quiescent, G0 phase. Proliferating cells are 

usually in the interphase which is composed of G1, S, G2 phases, and is characterized by 

heavy transcriptional and translational levels as well as multiple mitogen and DNA quality 

check points. These phases are followed by mitotic division that requires massive 

cytoskeletal reorganization, which is strictly regulated by the so-called centrosomal cycle. A 

centrosome is a cytoplasm organelle of animal eukaryotic cells which organize microtubule 

nucleation, mitotic spindle organization and polarization, as well as formation of the basal 

body of the primary cilia. It also participates in cell signaling and cell polarity. In the 

interphase, centrosome is composed of two, mother and daughter centrioles. The centrioles 

are cylindrical structures composed of nine specialized microtubules symmetrically arranged 

around the central core. The microtubules are surrounded by a protein mass called a 

centrosomal linker which is constituted of γ-tubulin, centrosomal proteins family (CEPs), 

pericentrin, centrosomal Nek2 associated protein 1 (C-NAP1), CDK5 regulatory subunit 

associated protein 2 (CDK5RAP2), and Rootletin. Together, they clasp the centrioles until the 

M phase.  In the M phase, the centrosome is duplicated. The linker proteins are 

phosphorylated by Polo-like kinase1, acetyltransferase Mst2, and serine/threonine NIMA 

protein kinase 2 (NEK2), leading to a cleavage of Rootletin and removal of C-NAP1 from 

centrosomes. Centrioles can thus separate and migrate to the opposing poles of the cells 

where they begin polymerization of α and β-tubulin, and subsequent production and bipolar 

orientation of the mitotic spindle. Microtubule polymers of the mitotic spindle bind the 

kinetochore of each chromatid. Microtubules subsequently depolarize which translocate 

sister chromatids to the opposing side of the cells. This is followed by the cytokinesis. The 

centrosome must be very often relocated during other cellular processes, for instance 

during the cell migration. A mature centrosome also builds an anchoring basal body of 

immobile primary cilia in postmitotic cells which must be disassembled if they re-enter the 

cell cycle [16-18].  

Wnt signaling regulates cell proliferation, stem cell renewal and neurogenesis, processes 

fully dependent on the cell cycle. That is why defective Wnt signaling is strongly involved in 

regeneration and carcinogenesis [19, 20]. It has been shown that the so-called Wnt/β-

catenin signaling controls expression of the proto-oncogene c-myc and the cell cycle kinase 

cyclin D1 which both regulate the G1 phase. The activation of Wnt/β-catenin signaling by 
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the CDK14/Cyclin Y complex is further required for G2/M transition and mitotic events [21]. 

It has been shown that Axin1 localizes in centrosomal structures in a complex with γ-tubulin 

and regulates the microtubule nucleation in Wnt signaling dependent manner [22, 23]. 

Dishevelled (Dvl or Dsh in Drosophila), an important mediator of Wnt signaling pathways, is 

localized in centrosomal structures where it controls the polarization of the basal body of 

the primary cilia [24], the orientation of the mitotic spindle [25] and the primary cilia 

disassembly [26]. It has been also shown that the non-canonical Wnt receptor Ror2, 

regulates cell cycle progression in reactive astrocytes [27]. These data provide evidence that 

different Wnt signaling components and pathways control various events during the cell 

cycle in different cell types [16]. 

1.1.2 Planar cell polarity and convergent extension 

Tissue polarity is one of the most spectacular phenomena in living organisms, which 

determines the patterning and organization of the body plan. Planar cell polarity (PCP) 

refers to the process by which cells coordinate their alignment within a plane in a polarized 

manner across a tissue. This process leads to an asymmetry between an apical and basal 

side of the cells, and sets the anterior-to-posterior body axis. In other words, it is a cellular 

compass. Many proteins have been described to control PCP, for example proteins of the 

Cadherin family, G-protein coupled receptors (GPCRs), different components of the Wnt 

signaling pathways, atypical protein kinase C (aPKC), endocytotic proteins from Rab family 

and others. The establishment of PCP is crucial during embryogenesis and early postnatal 

development.  However, PCP maintenance is also essential for tissue homeostasis and repair 

in order provide correct stimulatory and inhibitory signals to the surrounding cells. In 

humans, deregulated PCP signaling has been associated with many pathologies, typically 

birth defects, ciliopathies, and even neurological disorders such as autism [11].  

PCP is governed by signals that control the enriched localization of polarity-mediating 

protein complexes. The asymmetric enrichment appears either intracellularly (polarization 

within a cell), or extracellularly at cell-cell junctions, which mediates the polarization of the 

entire tissue (Figure 2A). So-called PCP proteins also direct the orientation of the subcellular 

structures. Wnt morphogens and some of their transmembrane receptors have an 

irreplaceable function in regulating PCP, and we thus call this pathway the Wnt/PCP 

pathway. The mechanism of the asymmetric distribution of Wnt/PCP proteins was described 

in a great detail in Drosophila where it regulates hair orientation in the wing. In the wing 

blades, the Van Gogh protein (Vang; Vangl2 in vertebrates) accumulate on the proximal side 

of the cell together with Prickle1. They are complementary to the distal side which has 

accumulated molecules of Frizzled, Dishevelled and Diego proteins. The cells are 

interconnected with the cadherin-containing protein Flamingo (Celsr in vertebrates). Such 

asymmetry governs the polarization of each epithelial cell in the fly’s wing, and the correct 

orientation of the single trichome (hair). The polarity of the tissue is orchestrated by 
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additional protein gradients including Wingless (Wg), and Fat-Dachsous (Ds)-Four-jounted 

(fj) signaling axis [11], as schematized in the Figure 2B, although, this description is very 

simplified. In mammals, mechanisms of the Wnt/PCP signaling are mostly studied in the 

polarized epithelial cells [11]. A good example is mechanosensory cells in the cochlea of the 

inner ear which grow stereocilia on their apical side. The loss of PCP signaling components in 

these cells causes degeneration of the cilia and deafness [28, 29]. 

Wnt morphogens and their receptors control PCP by forming protein gradients. These 

concentration gradients provide molecular fingerprints that can be decoded by the 

neighboring cells. It is believed that the combination of concentration gradients of different 

ligands and receptors thus create a topographical map, which helps cells to navigate, 

migrate, determine and maintain their specific function in the organism [30, 31]. These 

results suggest that Wnt signaling works in a combinatorial manner.  

Figure 2: Wnt/PCP proteins control planar polarity within a cell and a tissue which governs the body 

plan. A. Polarized expression of Wnt5b during convergent extension in zebrafish embryos determines 

the A-P body axis. B. Asymmetric distribution of protein complexes and Wnt concentration gradients 

determine the apical-basal polarity and proximal-distal polarity of the epithelial cells in Drosophila’s 

wing. Modified from [11]. 

A. B. 
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Besides the polarized clustering of the PCP proteins, the cells must actively maintain the 

enriched intracellular and transcellular protein complexes which they either recycle or 

remove if they are misplaced or dysfunctional. Endocytosis seems to play an important role 

in the protein sorting, trafficking and lysosomal degradation of Wnt/PCP proteins. It has 

been shown that some of the Wnt/PCP proteins such as Prickle1, Dvl2, Celsr1, Ptk7 or 

Vangl2 are internalized upon their interaction with Rab5, Rab11, AP-1/2, dynamins and 

other endocytic proteins, which subsequently affect the planar cell polarity and the synaptic 

plasticity [32-37].  

Wnt/PCP signaling also governs one of the most important processes during embryogenesis 

called convergent extension (CE). Convergent extension is a series of strictly regulated 

spatiotemporal events during gastrulation, neurulation, axis elongation and organogenesis 

which occur in invertebrates and vertebrates. It triggers and drives a massive, collective 

rearrangement and migration of progenitor cells of the germ layer towards the dorsal side 

of gastrula. The cells narrow and “converge” to form an embryonic body axis, providing 

anterior-to-posterior orientation, thus the basis of the body plan. Simultaneously, the cells 

proliferate and migrate along the axis, which leads to embryonic elongation (=extension) 

(Figure 3). A typical phenotype of defective CE movements is reduced embryo length. 

Unfortunately, the regulation of CE movements is not well understood because of its 

spatiotemporal complexity and variations among species [38, 39]. Mechanisms of CE have 

been extensively studied in Xenopus laevis (frog) and Danio rerio (zebrafish) embryos. These 

models provide great advantages to study such processes due to the rapid production of a 

large number of eggs, fertilization outside of the mother, fast development and embryos’ 

transparency. 

1.1.3 Migration and cell fate decisions in developing CNS 

Cell motility is a fundamental cell behavior that is highly dependent on the dynamic 

remodeling of the cytoskeleton, extracellular matrix and transcriptional changes. Defects in 

migration during CNS development may lead to abnormal brain wiring, causing brain 

malformation, cognitive dysfunctions or seizures. Wnt signaling pathways regulate some of 

Figure 3: A 3D-imaging which tracked individual dividing cells during convergence and extension 

movements in a zebrafish embryo. Hpf stands for “hours post fertilization”. The formation of the body 

axis is already visible at 11hpf, and the head at 17hpf. The gastrulation lasts until 10hpf. The photos were 

modified from [6]. 
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the known mechanisms necessary for cell migration, including cell adhesion, chemotaxis, 

primary cilia movements, development of fillopodia and lamellipodia at the leading edge, or 

the collapse of the growth cone [40-43]. Abnormal cell motility caused by hyperactive Wnt 

signaling has been seen in metastatic stages of many invasive tumors [44, 45].  

In the developing CNS, long distance migration (sometimes several millimeters) and correct 

positioning of neuronal and non-neuronal cells is crucial for cell identity and brain 

connectivity. In the adult nervous system, cell migration is mostly seen after an injury when 

astrocytes and microglia migrate to inflamed areas, to repair the wound. Cell motility is 

regulated on multiple levels. Extracellularly, cell migration is stimulated by many factors 

such as Wnts (Wnt1, Wnt5a, Wnt2, Wnt4), neurotrophins (GDNF, BDNF), semaphorins 

(Semph3A, 4D/E), and cytokines (CXCL12), and by the interaction of cell surface adhesion 

molecules, such as cadherins, with extracellular matrix (ECM) adhesion molecules, for 

instance laminins. Repulsive cues have even higher importance in cell migration than 

attractive clues as they prevent cells from migrating to the wrong areas. The extracellular 

cues are transduced either via specialized receptors, changes in the ion channels or by 

internalization of protein complexes (e.g. via endocytosis). Intracellularly, the signals can be 

transduced in multiple ways, often through activation of small GTPases (Rac1, Cdc42 and 

RhoA), cytoskeletal proteins (myosinII, tubulin, actin), cyclin dependent kinases (Cdk5/p35), 

microRNAs, transcription factors and many other signaling molecules and pathways [10]. In 

vitro studies have shown that stem cells and progenitor cells can sense and prefer different 

structural patterns and softness of the material altering their niche, features which are 

currently being investigated in order to develop engineered biomaterials and to improve cell 

and tissue repair and transplantation [46].  

Neuronal progenitors migrate at different times dependent on the neuronal type, brain area 

and animal species. Generally, we distinguish two models of CNS migration, radial and 

tangential migration (Figure 4), which have been mostly described in cortical areas. 

Tangential cell migration is an event where cells can migrate in different directions based on 

their active communication with the environment. This migration is the most common and 

is typical for integrating interneurons into the brain circuits. The migrating cells extend 

branched processes to sense the extracellular clues, which guide the leading edge and the 

axonal outgrowth. The projection of the processes is followed by branch stabilization, 

centrosome relocalization into the axon, and nucleokinesis. Cells thus undergo a 

translocation of the soma, which is glial-independent [10].  

On the other hand, radial migration has been characterized by the physical interaction of 

postmitotic neuroblasts with radial glia cells. In the developing brain, radial glia cells 

typically express Glast, Nestin, and brain lipid-binding protein (BLBP). Their soma is usually 

located at the ventricular zone whereas their processes are stretched across the developing 

tissue, and is in contact with the pial surface. Due to such positioning, they serve as scaffold 



 

 7 

that is used by neuroblasts to climb along the radial glia processes and reach their final 

location. It has been shown that radial glia have the capacity of undergoing neurogenesis 

and thus producing neuronal precursors, such as dopaminergic neuroblasts in ventral 

midbrain. It is believed that there are no radial glia cells in the adult brain [47, 48]. Radially 

migrating neuroblasts usually display bipolar morphology. Nevertheless, they undergo a 

transient phase when they obtain a multipolar morphology, possess many thin retracting 

processes, and seek the positional information independently from the radial glia. It has 

been hypothesized that this behavior is critical for the determination of correct neuronal 

identity and decision making whether to stay or to continue in radial migration [10].  

Cell migration itself is not just a mechanical process involving translocation of a cell from the 

place A to the place B. It has been shown that migrating cells are undergoing cell fate 

changes and maturation steps, which are controlled by environmental factors that they get 

in contact with during the migration, such as Wnts and other morphogens, as well as growth 

factors and ECM. These factors lead to transcriptional and epigenetic changes resulting in 

cell differentiation and specification in different brain areas. These processes have become a 

large focus of attention for translational researchers who try to understand such 

mechanisms in vivo and recapitulate them in vitro [49]. The correct understanding of 

stemness and the sequential events which are necessary for cell differentiation can be used 

in regenerative medicine in order to prepare high quality cell grafts for cell transplantation 

therapies or for triggering tissue regeneration in vivo, by e.g. small molecules or gene 

transfer. There is a large need for such knowledge in order to develop applications for 

neurological disorders such as Parkinson’s disease, stroke or spinal cord injury, where we 

need to replace the missing pool of physiologically functioning neurons [9].  

Figure 4: A scheme of tangential and radial migration. Drew according to [10]. 
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1.2 WNT SIGNALING PATHWAYS 

1.2.1 Wnt signaling complexity in a living organism 

There is a large number of Wnt ligands (up to 19) which are able to bind to more than 15 

different receptors with distinct preference, which makes Wnt signaling very complex and it 

has been challenging to uncover the precise molecular mechanisms by which cells transduce 

the Wnt signals [4, 50]. Moreover, many Wnt regulators interact with other signaling 

pathways which include MAPK/ERK [51-53], Notch [54-56] or BMP [57-59]. R-spondins, 

Syndecans and Heparan Sulphate Proteoglycans have also been shown to directly modulate 

Wnt signaling pathways [4]. It is therefore believed that the right ratio and high complexity 

of Wnt signaling enables cells to recognize and translate various extracellular clues, and 

subsequently control dynamic and highly refined cellular- and tissue-specific events such as 

cell polarity or cell migration [4, 11, 14]. For this reason it is very important to evaluate the 

results from Wnt signaling studies in the context of the tissue, cellular events and activation 

levels.  

Historically, we distinguish two main branches of Wnt signaling pathways, a canonical also 

called Wnt/β-catenin signaling pathway, and non-canonical, β-catenin independent Wnt 

signaling pathways which include Wnt/Planar Cell Polarity (PCP) and Wnt/Calcium (Ca2+) 

pathways. Interestingly, the activation of non-canonical Wnt signaling pathways inhibit the 

Wnt/β-catenin pathway and vice versa, indicating that these two signaling branches are in 

balance with one another (Figure 5) [60-62].  

1.2.2 Wnt/β-catenin signaling pathway 

The mechanisms of the Wnt/β-catenin signaling pathway are relatively well understood. It 

has been shown that Wnt/β-catenin signaling is typically activated by Wnt1, Wnt3a or Wnt8 

ligands. Our current knowledge about the signal transduction involves Wnt ligands binding 

to a family member of the seven-pass transmembrane receptors Frizzled (Fzd) and its co-

receptor, low-density lipoprotein-related receptor 5 or 6 (Lrp5/Lrp6). The Wnt-Fzd-Lrp5/6 

protein complex is called the signalosome. In the absence of Wnt stimulation, the 

signalosome is not formed, and β-catenin is phosphorylated on multiple sites by the β-

catenin destruction complex, which is composed of Axin1, Glycogen Synthase Kinase-3β 

(GSK3β), Adenomatous Polyposis Coli (APC) and Casein Kinase 1α (CK1α). The 

phosphorylated β-catenin is subsequently recognized and ubiquitinated by the β-Trcp E3 

ubiquitin ligase, which labels β-catenin for its degradation in the proteasome. Upon 

formation of signalosomes, Fzd and Lrp5/6 are phosphorylated on their intracellular 

domains by polymerizing Disheveled 1, 2 and 3 molecules (Dvl1, 2, 3) and CK1 isoforms. 

These changes are recognized by the destruction complex which is recruited to the 

membrane and cannot longer phosphorylate β-catenin. Consequently, β-catenin 

accumulates in the cytoplasm and is translocated to the nucleus where it binds to a family of 
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transcription factors TCF/LEF. Together they control the expression of several target genes 

such as c-myc or cyclin d1 [50, 63].  

1.2.3 Non-canonical Wnt signaling pathways: Wnt/PCP 

Non-canonical Wnt signaling consists of several pathways whose signaling mechanisms vary, 

and are less understood. The most typical ligands for controlling these pathways are Wnt5a, 

Wnt7a/b and Wnt11. These ligands can activate two main pathways: the Wnt/PCP pathway 

that controls planar cell polarity and signals downstream through small GTPases, and the 

Wnt/Ca2+ pathway that uses changes in calcium levels for its signal transmission [4].  

The Wnt/PCP pathway has been implicated in many fundamental processes such as 

convergent extension (CE) movements, determination of the anterior-posterior axis and 

tissue morphogenesis. Many proteins on different regulatory levels have been identified to 

govern the Wnt/PCP pathway but the molecular mechanisms are not clear. Generally, it is 

accepted that the activation of Wnt/PCP signaling involves the binding of specific Wnt 

ligands to Fzd and the recruitment of several co-receptors, such as the Receptor tyrosine 

kinase-like orphan receptor 2 (Ror2) and its interacting partner Van Gogh like 2 (Vangl2) 

[31]. These interactions are followed downstream by phosphorylation of Dvl and activation 

Figure 5: A scheme of the three main Wnt signaling pathways. The activation of Wnt signaling 

pathways is determined by binding of various Wnt ligands to specific receptor complexes which 

mediates different downstream activation of the Wnt signaling pathways. Drew according to [3, 4]. 
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of the small GTPases, Rac1 and RhoA, or Jun-N-terminal kinase (Jnk), leading to cytoskeleton 

remodeling and changes in gene expression [64-66].  

It has been recently suggested that the Wnt/PCP pathway might be also independent from 

Fzd receptors, in contrast to the canonical signaling where the binding of Fzd to its co-

receptor Lrp5/6 is required for the signal transduction [4, 67]. In recent years, the Wnt/PCP 

pathway has been sub-divided into specific signaling axes according to the specific signaling 

component involved, for example the Wnt5a-Ror2-Dvl axis [67-69]. 

Due to the regulatory diversity and the high, cell-context dependence of the Wnt/PCP 

pathway, there is no standardized and sensitive biochemical assay to measure the activity of 

the Wnt/PCP signaling. This has been one of the biggest complications of this research field 

and has led to the predominant use of biological assays to examine the activity of this 

pathway. In the next paragraphs, I will introduce you to some of the core Wnt/PCP signaling 

components that I have worked with during my PhD projects. 

1.3 WNT/PCP MEDIATORS  

1.3.1 Wnts – the general features 

Wnts are cysteine-rich ligands that undergo several posttranslational modifications before 

being secreted and fully active, with glycosylation and acetylation (= lipidization) being the 

most prominent. Precise modifications differ for each Wnt. For example, glycosylation 

appeared to be crucial for Wnt3a and Wnt5a secretion and activity [70] but has only a minor 

effect on Wnt1 [71]. Acetylation probably helps Wnts to locally diffuse in a tissue creating 

concentration gradients which elicit cell and tissue patterning by providing a diverse 

spectrum of precise signaling “barcodes” during embryogenesis [11, 72]. Therefore, it has 

been suggested that the glycosylation and acetylation probably affect binding properties of 

Wnts to different proteins present in the extracellular matrix, which might represent 

another signaling mechanism of Wnt regulation [73]. Unfortunately, not much is known 

about such interactions.  

Wnts are acetylated by the enzyme o-acetyltransferase called Porcupine that covalently 

adds palmitic acid to the conserved serine residues in the lumen of the endoplasmatic 

reticulum [73, 74]. Acetylation is important for the intracellular transport of Wnts from the 

endoplasmatic reticulum, their secretion, and biological activity. Notably, acetylation turns 

Wnts into hydrophobic, insoluble molecules which must be likely transported in the water-

based extracellular space in a paracrine manner, and over long distances via binding to 

soluble proteins. It has been suggested, mostly by studies in Drosophila, that Wnt transport 

is mediated either via direct binding to Wnt-protein carries such as albumin [75] or Swim 

[76], to lipoprotein particles [77], or by their incorporation inside of exosomes or exosomal-

like vesicles, which was observe in the Drosophila brain and in epididymal fluid in mice [45, 
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78, 79]. Another proposed mechanism includes transport of Wnts via specialized filopodia 

called cytonemes during neural plate formation in zebrafish [80]. Nevertheless, the precise 

mechanisms of Wnt transport remain to be discovered. 

Solubility of Wnts has been very challenging since it is not possible to isolate them without a 

detergent. That is why it has not been possible to purify biologically active, recombinant 

Wnts in vitro, except of Wnt1, Wnt3a and Wnt5a, which are more soluble forms [73].  

1.3.2 Wnt5a - The key to the Wnt/PCP door  

Wnt5a is one of the most studied Wnt ligands as it is one of the most essential activators of 

planar cell polarity in multiple organs during development [30, 31, 81-83]. Wnt5a is 

expressed across the postnatal brain in different brain areas where it controls axonal 

guidance, dendritogenesis, synaptogenesis and synaptic plasticity [13, 84-86]. It has been 

shown that Wnt5a mediates maturation of the synaptic bouton via enriching the 

postsynaptic density protein PSD-95 clusters on the postsynaptic side [86, 87]. Wnt5a also 

signals via concentration-dependent gradients (Figure 6), that if disturbed, may cause 

signaling alterations [30, 31, 88].  

Wnt5a null mice suffer perinatal lethality caused by asphyxia (severe hypoxia caused by 

abnormal breathing). They also display many abnormal defects in the developing skeleton 

and CNS such as extremely short spine, tail and limbs, or craniofacial and neuronal defects 

[82, 89, 90]. Interestingly, the Wnt5a overexpression caused defects in the skin which were 

similar to the ones observed in Wnt/β-catenin signaling loss of function [91] suggesting a 

mutual role of Wnt5a to modulate distinct Wnt signaling responses. Wnt5a has been 

intensively studied not only for its interchangeable role during development but also for its 

clinical relevance in different types of cancer [43, 92, 93], inflammation [69], Alzheimer 

disease [94], amyotrophic lateral sclerosis (ALS) and multiple sclerosis [95, 96], chronic pain 

Figure 6: Distinct patterns of Wnt5b expression in a zebrafish embryo at 24hpf reveal the formation of 

concentration gradient in the trunk (arrow heads), and distinct expression in the brain areas (arrows). 

Wnt5b is a fish orthologue of Wnt5a. 
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[97, 98] and congenital developmental disorders including brachydactyly type B and 

Robinow syndrom [81, 99, 100]. 

1.3.3 Ror2 - Receptor tyrosine kinase-like orphan receptor 2 

Ror2 is a single-pass transmembrane receptor that together with its homolog Ror1 belongs 

to a tyrosine kinase family. Ror1 and Ror2 share most of their structure, and are suggested 

to be biochemically and functionally redundant. Interestingly, Ror receptors have been 

shown to bind multiple Wnt ligands, namely Wnt1, Wnt2, Wnt3, Wnt3a, Wnt4, Wnt5a and 

Wnt5b, Wnt6, Wnt7a, Wnt8, Wnt11, though it has been suggested that Wnt5a is the main 

ligand for Ror2 [101, 102]. 

Ror2 is an important mediator of Wnt/PCP signal transduction that regulates CE and neural 

tube closure during early development [31, 67, 103]. Postnatally, Ror2 mediates axonal 

guidance and synaptogenesis [104-107]. It has been reported that Ror2 controls  cell cycle 

progression of reactive astrocytes after a brain injury [27]. Ror2 null mice show defects in 

the skeleton, heart, lung and external genitalia [108, 109]. Deregulation of Ror2 and Wnt5a 

expression has been correlated to different types of invasive tumors, and thus they have 

become the novel targets for cancer treatment [43, 93, 110]. Similarly to Wnt5a, Ror2 has 

been genetically linked to brachydactyly B and Robinow syndrome [111, 112].  

Ror2 contains multiple domains. The extracellular part of Ror2 is composed of an 

immunoglobulin C2 domain, followed by cysteine-rich domain (CRD), also called Frizzled-like 

domain), and a membrane-proximal Kringle domain [113]. These domains are anticipated to 

be involved protein-protein interactions. Ror2 is anchored in the cytoplasmic membrane by 

a transmembrane domain. Intracellularly, Ror2 contains a large tyrosine kinase domain, and 

three predicted domains, Serine/Threonine domain 1 and 2, and a Proline-rich domain, thus 

the domains responsible for the kinetic activity of Ror2. It has been shown that CK1ε binds 

to the Proline-rich domain, and subsequently phosphorylates its Serine/Threonine rich 

domain 2. The phosphorylation at the Ser/Thr domains leads to auto-phosphorylation of the 

Figure 7: Ror2 structure.  
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Tyrosine kinase domain, which is a predicted prerequisite for full activation of Ror2 (Figure 

7) [61, 114, 115].  

It has been shown that Wnt5a induces homodimerization of Ror2 and formation of a ternary 

complex with Fzd. This is subsequently followed by recruitment and phosphorylation of 

Ror2 by Dvl [58, 67, 116], Gsk3β [117] and/or Ck1ε [115, 118]. Ror2 binds to Fzd2 [119] 

through its CRD domain but it can also bind Wnt5a, and transduce the signal without the 

presence of Fzd [103, 120]. Ror2 also forms heterodimers with other Wnt/PCP receptors 

such as Vangl2 [31] and Ptk7 [121, 122]. The Ror2-Vangl2 receptor complex has been shown 

to create receptor gradients in addition to the Wnt5a gradient in the developing mouse limb 

bud, by which they control limb development in vivo [31, 88]. In addition, Ror1-/-;Ror2-/-  

mice phenocopy Wnt5a mutant animals [67, 120] suggesting that Ror1 and Ror2 function as 

the main receptors of Wnt5a-dependent signaling in vivo, independently of Fzd receptors 

[123]. Nevertheless, the precise molecular mechanism by which Ror2 transduces the Wnt5a 

signal has not been solved yet.  

1.3.4 Celsr1 - Cadherin EGF LAG seven-pass G-type receptor 1 

Celsr1, also known as Flamingo in Drosophila, is a large seven-pass transmembrane receptor 

composed of 3014 amino acids. Celsr1 together with its two homologs Celsr2 and Celsr3, are 

typical regulators of Wnt/PCP signaling [124-126] in multiple tissues such as inner ear, skin, 

brain or tooth [127-130]. As such, it has the capacity to inhibit Wnt/β-catenin signaling 

[125]. Celsrs are a family of atypical cadherins with an enormous ectodomain that is 

composed of 9 cadherin repeats, 6 epidermal growth factor EGF-like domains, 2 laminin G 

repeats, 1 hormone receptor motif (HRM), and a G-protein-coupled receptor proteolytic site 

(GPS). This is followed by seven-pass transmembrane domains and a cytoplasmic tail. Celsr1 

is also classified as part of the cell adhesion receptor family of G-protein-coupled receptors 

[126]. Celsr1 is involved in CE movements [131, 132], anterior-posterior patterning and cell 

polarity [133, 134], cortical neurogenesis in mice [129], neuronal migration of 

branchiomotor neurons in zebrafish hindbrain [135], as well as axonal outgrowth in 

Drosophila and c. elegans [134, 136]. Almost nothing is known about mechanisms of Celsr1 

signaling. It has been suggested that Celsr1 is a Wnt5a receptor, functioning in cooperation 

with Fzd, Vang and Dvl, and together they regulate processes such as dendrite outgrowth 

and axonal branching [136, 137]. 

1.3.5 Ptk7 – Inactive tyrosine-protein kinase 7 

Ptk7 is another single-pass transmembrane receptor that is involved in planar cell polarity, 

neural tube closure and neural crest migration [138-141]. The function of Ptk7 is often 

deregulated in different types of tumors where it likely controls cell proliferation, cell 

motility and angiogenesis [142-144]. Ptk7 has an atypical protein structure. It contains an 

incomplete intracellular tyrosine kinase domain, which is considered to be kinase-dead but 
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is actively involved in downstream signaling [145]. Ptk7 is a strong regulator of Wnt/PCP 

pathway, and as such it inhibits Wnt/β-catenin activity [146-148]. In the presence of Wnt5a, 

Ptk7 can bind to Fzd7 and recruit Dvl to the plasma membrane in Xenopus embryos [138]. 

Two publications have shown that overexpressed Ptk7 physically interacts with Ror2 and 

that upon Wnt5a stimulation this receptor complex controls cell movements and tissue 

morphogenesis in X. laevis development [121, 122]. In planarians, Ptk7 and wntP-2 control 

the trunk-tail positional identity during regeneration [149]. 

Interestingly, a few studies have observed that Ptk7 also positively regulates Wnt/β-catenin 

signaling pathway [62, 150] through an unknown mechanism. In X. laevis embryos, Ptk7 

morphants phenocopy embryos depleted for Wnt3a and Lrp6, and show reduced Wnt/β-

catenin activity. Furthermore, Ptk7 can physically interact with Lrp6 and subsequently 

inhibit the Wnt/PCP pathway [62], suggesting a reciprocal role of Ptk7 in both Wnt/PCP and 

Wnt/β-catenin signaling. Moreover, Berger et al suggested that Ptk7 localization is affected 

differently by different Wnt ligands.  They showed that canonical Wnts such as Wnt8, 

Wnt2b and Wnt3a together with Fzd7 mediate caveolin-dependent lysosomal degradation 

of Ptk7, whereas non-canonical proteins Wnt5a, Wnt11 and Ror2 do not. They hypothesized 

that Ptk7 rather inhibits canonical Wnt signaling by outcompeting the ligand-binding which 

disables Wnts to bind to their Wnt receptors [34]. Nevertheless, the regulation of Ptk7 

signaling and its dual role between Wnt signaling pathways remains largely unclear. 

1.3.6 Dishevelled – the multitasking organizers 

Dishevelled proteins (Dvl/Dsh) are core mediators of Wnt/β-catenin and β-catenin 

independent signaling pathways. We recognized three different Dvl genes in mammals, 

Dvl1, Dvl2 and Dvl3. The structure and the domain features of Dvls are much conserved in 

the animal kingdom, and even though different paralogs have been found in distinct species 

(one Dsh in Drosophila, and more than 4 Dshs in zebrafish) they overall share the basic 

functionality in Wnt signaling. This suggests a synergistic function conserved across the 

species and a biochemical redundancy within a tissue. Nevertheless, the expression of Dvl 

paralogs largely depends on the species, development stage, tissue, and the isoforms 

themselves. Dvl1 is considered more specific for CNS development, whereas Dvl2 and Dvl3 

are more important for the mesodermal tissue. Nevertheless, genetic mutations in Dvl2 and 

Dvl3 are linked to neural tube defects, pointing at the contributions of all isoforms in CNS 

development [151-154]. Overall, we simply do not understand how are Dvls regulated, and 

how exactly they activate, and sometimes inhibit, the Wnt signaling [118, 155, 156]. 

Dvls are characterized by their ability to polymerize, both at endogenous levels and after 

overexpression, via their Dishevelled-and-Axin (DIX) domain, a process regulated in a very 

dynamic manner [157, 158]. It has been shown that Dvl can crosstalk with multiple proteins 

in the cellular membrane, cytosol and even in the nucleus. Such interactions usually occur 
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through the DEP and PDZ domains, whereas the phosphorylation sites are placed at the 

regions of proline-rich and basic domains (Figure 8) [155]. It is believed that the efficiency of 

Dvl polymerization and their interaction/ release to/from their specific binding partners at 

any given moment governs the Wnt activation and the downstream signaling specificity [60, 

155, 159-161]. This was also supported by the observations that Dvl loss-of-function often 

recapitulates some (not all!) features found in mutants of the Wnt/PCP regulators [31, 124], 

such as neural tube closure failure, skeletal malformations, cardiac outflow and craniofacial 

defects [152-154]. These features are also found in patients with congenital diseases that 

often carry mutations in Wnt signaling genes such as Robinow syndrome [99, 100, 111, 162]. 

1.3.7 Prickle1  

Prickle1 is a cytosolic protein downstream of the Wnt/PCP signaling pathway that is 

important for apical-basal cell polarity [162-164]. Nevertheless, its precise function and 

molecular signaling in the Wnt/PCP pathway is rather unknown. It has been shown that 

Prickle1 controls cell movements during gastrulation, cell morphogenesis and neuronal 

migration [165-169]. It was also suggested that Prickle1 controls oligodendrocyte 

differentiation [170]. At the molecular level, Prickle1 can bind to Dvl and cause its 

ubiquitination and degradation which leads to the downregulation of Wnt/β-catenin 

signaling [171]. This interaction has been proposed to be a mechanism by which Prickle1 

regulates the asymmetric localization of Fzd and Dvl across cell-cell contacts from the 

proximal to the distal side of the cell [172-174]. 

Mutations in Prickle1 have been associated to seizures [175], progressive myoclonus 

epilepsy [176, 177] and autism [178], suggesting that its deregulation may result in altered 

CNS development and/or synaptic plasticity. This hypothesis is supported by the fact that 

mouse Prickle1 can promote neurite outgrowth in postmitotic neurons in the developing 

neocortex and in neuroblastoma [179-181], as well as axon outgrowth in sensory peripheral 

neurons in Drosophila [182]. Moreover, Prickle1 has been found to interact with Synapsin1, 

a protein important for synaptogenesis and vesicle trafficking [178]. Even though there are 

hints suggesting that Prickle1 is important for formation and modulation of CNS, its precise 

function and molecular signaling mechanism/s are rather unclear. 

Figure 8: A scheme of the Dishevelled structure.  
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1.4 WNT SIGNALING AND DOPAMINERGIC CIRCUITS 

1.4.1 Signaling centers during the brain development 

The brain is an ectodermal structure that starts being shaped during gastrulation. The first 

neural tissue is the neural plate, which is formed by a flat sheet of neuroepithelial cells. 

During convergent extension, the neural plate starts to fold (neurulation), until the two 

edges fuse dorsally, to form the neural tube, the future brain and spinal cord. The neural 

tube then undergoes neuronal patterning by the action of the so-called signaling centers. 

These centers are located in specific positions, such as the floor plate or the midbrain-

hindbrain boundary and secrete specific combinations of signaling molecules, which provide 

spatiotemporal information along the tube that determines the anterior-posterior and the 

dorsal-ventral identity [183]. In this chapter, I will talk about the floor plate, the midbrain-

hindbrain boundary and the choroid plexus, three signaling centers that are conserved in 

vertebrates [183-186]. 

Figure 9: Mouse brain during embryogenesis. The spatiotemporal signals that control neurogenesis, 

specification and neuronal maturation during the brain development are secreted in concentration-

dependent manner from the signaling centers such as floor plate and midbrain-hindbrain boundary. 

Modified from [5].  
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Floor plate (FP). The floor plate is found at the most ventral part of the entire neural tube, 

from the anterior brain to the spinal cord. The FP contributes to ventral-dorsal patterning, 

cell specification and cell migration, by sequential secretion of morphogen and creation of 

signaling gradients (Figure 9). The FP is the main source of Shh and Netrin1, and together 

with BMPs which are derived from the roof plate, control cell polarization and identity along 

the ventral-dorsal axis of the neural tube. The FP also expresses Slit and Robo proteins, 

which regulate ipsilateral organization of the commissural neurons by stopping their axons 

from crossing the midline, and thus creating bilateral symmetry of the neural tube [183, 

187, 188].  

The FP first contains neuroepithelial stem cells that differentiate into radial glia cells, which 

act as the main signaling center during development. It is for this reason that the FP is 

considered a glial structure. To our knowledge, FP radial glia cells can undergo neurogenesis 

only in the ventral midbrain but not in the other regions. As a consequence, the midbrain FP 

also contains neurons [184, 187, 189].  

Gene expression patterns in the FP change during embryogenesis, depending on their 

position in the AP axis in the neural tube. In the ventral midbrain, the floor plate is the main 

source of not only Shh, but also Wnt1 and Wnt5a, which provides the additional signals and 

instruction for neurogenesis, and maturation of midbrain dopaminergic (mDA) neurons, 

which will subsequently acquire A9/substantia nigra and A10/ventral tegmental area 

identity and will integrate, into cell subtype specific neural circuits [49, 89, 185]. 

Nevertheless, we do not yet understand the precise cellular and molecular mechanism 

orchestrated by the FP during the VM development. 

Midbrain-hindbrain boundary (MHB). During vertebrate embryogenesis, the midbrain ends 

caudally as a constriction, which is connected to the hindbrain via midbrain-hindbrain 

boundary (also called isthmic organizer). The MHB constriction is initiated soon after the 

neural tube closure. That includes shortening of the cells, laminin-dependent basal 

constriction, inflation and adhesion of the ventricle at the midline, and peripheral midbrain 

layer (PML) formation. Consequently, any defects in the MHB lead to a loss or abnormal 

development of the midbrain, hindbrain and cerebellum [5, 190-192].  

The MHB is characterized by the specific expression of Wnt1 in the anterior, midbrain side 

of the MHB, and Fgf8 in the posterior, hindbrain side. It also expresses transcription factors 

Pax-2, Pax-5 and Engrailed-1 (En-1), which further contribute to the development of mDA 

neurons [5, 193-195]. The function of this embryonic signaling center is not only to secret 

morphogens, such as Wnt1 and Fgf8, and thus to provide spatiotemporal information, but 

importantly, it also builds a physical barrier between two distinct brain regions. The position 

of the MHB is determined and maintained by expression of two mutually repressive signals, 

the homeobox proteins Otx2 in the midbrain side and Gbx1/2 in the hindbrain side (Figure 

10). In zebrafish, the activation and the expression of Otx2 and Gbx1/2 is regulated by 
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gradients formed by Wnt8a, which is secreted by lateral mesodermal precursors. The loss of 

Wnt8a moves the position of the MHB posteriorly. However, Gbx1/2 and Otx2 maintain the 

barrier function, avoiding thus alterations in migration and axonal pathfinding [5, 190, 196]. 

Loss-of-function experiments in zebrafish have also revealed that Wnt1/Fgf8 expression is 

crucial for the MHB morphogenesis, and sub-sequential development of the midbrain, 

hindbrain and cerebellum [197-200].  

Some studies suggested that by creating concentration gradients, Wnt1 and Fgf8 control the 

anterior-posterior orientation of the neural tube during patterning. This is supported by the 

fact that Wnt1 and Fgf8 are expressed already during gastrulation at the blastoderm margin 

and nascent paraxial mesoderm, which probably define the correct MHB position before 

contracting the neural tube and creating the actual boundary [5, 183, 190]. The MHB will 

later give rise dorsally to the cerebellum and part of tectum; and ventrally to diverse cell 

types including mDA neurons [5, 191, 201, 202].  

Choroid plexus (ChP). The cerebrospinal fluid (CSF) is the so-called third circulation system 

in mammals. The nervous system uses this system to deliver nutrients, oxygen and ions to 

the brain parenchyma, and exchange them with metabolites and toxins which need to be 

removed in order to maintain the homeostasis in the tissue [203]. The CSF is produced by 

filtering plasma from the blood, mostly via choroid plexus (ChP). The ChP is a highly 

Figure 10: The anatomy of the zebrafish brain with the structurally distinguished MHB at 24hpf. A. 

The bright field photo of live, transparent embryo. B. A scheme of the fish brain at this stage. C. A 

scheme of MHB transverse section with the distinct expression patterns separating the midbrain region 

from hindbrain. TG = tegmentum, r1-7 = rhombomeres, PML = a peripheral midbrain layer [7]. 

A. 

B. 

C. 
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vascularized, folded structure growing inside each of the 4 cerebral ventricles. The ChPs are 

composed of a monolayer of polarized epithelial cells that contain microvilli on their apical 

side (facing the ventricle). The basal membrane of the epithelial cells separates them from a 

neighboring inner stroma, which is composed of connective tissue and contains leukocytes. 

Leukocytes migrate into the ChP stroma through the fenestrated endothelium of the 

choroidal capillaries (Figure 11) [204].  

ChP plexi differentiate from distinct lineages in roof plate at different times of the 

development, with the earliest being the hindbrain ChP in the 4th ventricle, which can be 

structurally recognized already around E12 in mice [186, 205]. It has been shown that the 

maturation of the ChPs from distal to proximal side within ChP involves gradients of 

Aquaporin 1 (AQP1) and glucose transporter 1 (Glut1), which were shown to regulate 

proliferation in the ChP root zone. Thus it is proposed that AQP1 and Glut1, together with 

Figure 11: A scheme of hindbrain ChP in mouse E17.5 embryos. A. A sagittal view of the mouse brain with 

a coronal view at the HbChP. B. Ciliated epithelial cells of choroid plexus are interconnected with tight 

junctions. There is a constant exchange of the trophic factors between the epithelial cells and leukocytes in 

the ChP stroma. 

B. 

A. 
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Calbindin 1 and Proliferating cell nuclear antigen (PCNA) serve as functional markers of 

correct ChP development and maturation in mouse and human [186, 206].  

It was previously thought that the ChP, together with the blood brain barrier, serve only as a 

circulation barrier between the blood and the CSF. However, recent studies have suggested 

that the epithelial cells actively secret signaling molecules themselves, and thus control 

brain development and CSF proteome composition [186, 207, 208]. The epithelial cells of 

ChP are also known to filter trophic factors and cytokines from the blood to the CSF through 

their tight junctions. Microvilli and the folding of ChP greatly enlarge the ChP surface 

increasing the efficacy of the CSF production. The CSF is then transported through the 

ventricles to the rest of the CNS where its components are captured by the ciliated 

ependymal cells and other progenitors such as radial glia cells. Moreover, it has been shown 

that the immune cells localized in the ChP stroma actively communicate with the ChP 

epithelial cells, e.g. by providing cytokines such as inteferon1/2 [209]. In the healthy brain, 

the tight junctions between the epithelial cells usually do not allow any cell type to pass, but 

recent studies proposed otherwise in case of the Th1 lymphocytes [204, 209]. 

It has been reported that the deletion of Otx2 in the hindbrain ChP causes upregulation of 

Wnt4 in the CSF and the Wnt4 expression in the hindbrain ChP. This study proposed a role 

of the ChP in regulating the CSF composition and Wnt signaling. However, it is unclear 

whether it is Wnt4 or another factor that controls proliferation at a distant site in vivo [210]. 

Importantly, a recent transcriptome analysis of FACS-sorted epithelial cells from 

lateral/telencephalic and 4th ventricle/hindbrain ChPs revealed that these two structures are 

molecularly very heterogeneous. Their gene ontology analysis showed that the biggest gene 

clusters in both data sets encode secreted proteins. Wnt8b was specific for the 

telencephalic ChP, whereas Wnt5a was specific for the hindbrain ChP as assessed by qPCR. 

They thus proposed that ChPs may contribute to the so-called regionalization of the 

developing brain by expressing different morphogens [186].  

Notably, alterations in the function of the ChP have been proposed in neurodegenerative 

diseases such as Alzheimer disease based on transcriptomic analysis [209]. Nevertheless, 

not much is known about the development or, the mechanisms by which the ChP bestirs the 

CSF, what signaling molecules are secreted by its epithelial cells, and how do they affect the 

developing CNS. Moreover, it remains to be determined how lipophilic molecules such as 

Wnts are transported via the CSF [210]. 

1.4.2 Role of Wnts in the development of midbrain dopaminergic neurons 

The neurotransmitter dopamine belongs to the catecholamine family and is crucial for 

controlling motor function, reward-motivated behavior, emotional responses, and the 

release of several hormones. Multiple populations of DA neurons have been identified in 

distinct brain regions by the presence of typical markers such as the dopamine transporter 
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(DAT) or a more general marker, tyrosine hydroxylase (TH), an enzyme necessary for 

dopamine synthesis [49]. The largest and most important dopamine-synthesizing neuron 

populations are localized in the ventral midbrain (VM), in the Substantia Nigra pars 

compacta (SNpc), or A9 region, and the ventral tegmental area (VTA), or A10. It has been 

shown that the A9 population controls motor function and is particularly vulnerable to 

stress, and selectively degenerates in PD Parkinson’s disease (PD), one of the most common 

neurodegenerative disorders at present. 

A9 and A10 populations are formed in the floor plate from mDA progenitor cells in the 

ventricular zone (vz), from where they further migrate and differentiate through the 

intermediate zone (iz) and to the marginal zone (mz). The most critical Wnts for 

development of these two populations are Wnt1 and Wnt5a, and thus I will focus on them. 

Expression of Wnts in the VM: Midbrain DA neurons are born in the VM floor plate 

between embryonic day 10.5 (E10) and E14 in mice. The formation of the ventral midbrain 

region is highly dependent on the correct expression of morphogens secreted from the 

floorplate and MHB, as discussed above. It has been previously shown that Wnt1 controls 

the anterior-posterior identity, whereas Shh is crucial for the ventral-dorsal specification 

during the VM patterning. Shh is expressed in the VM between E8.5-E11.5. Wnt1 is first 

expressed in the in the MHB and in the midbrain roof plate between E10.5-E12.5, and in two 

distinct stripes in the lateral feature of the midbrain FP [5, 8, 191]. On the other hand, 

Wnt5a is expressed heavily in the VM from E9.5-E11, and its expression restricts into the 

midline of VM floor plate between the E11.5-E13.5 [89]. Our group performed a single cell 

RNA sequencing of mouse and human midbrain [49], as well as bulk RNA-sequencing of 

mouse midbrain regions [9], and characterized different cell types according to their 

expression profiles during midbrain development. Interestingly, these studies determined 

that there are three types of radial glia (Rgl) in the midbrain, and revealed that Wnt5a is 

expressed by Rgl3, Rgl1, and progenitor cells in mouse and human. Wnt5a is not by the Rgl2. 

Wnt7a/b is also expressed by Rgl3 in human and by Rgl1-3 in mouse. On the contrary, Wnt1 

was expressed by the different progenitors and Rgl1, but it was not expressed by the Rgl3. 

The bulk RNA-sequencing further determined that Wnt3a is probably expressed by the 

ependymal cells [9].  

Wnt1 and Wnt5a activate distinct Wnt signaling pathways, and thus Wnt1 promotes mostly 

mDA progenitor pool proliferation, DA neurogenesis and VM patterning, whereas Wnt5a 

has an important function in mDA differentiation and A-P elongation as shown by Wnt1-/- 

and Wnt5a-/- mice [89, 191, 211]. However, these two pathways regulate each other and 

often crosstalk, sometimes in a synergistic manner, typically resulting in more severe 

Wnt/PCP or canonical Wnt phenotypes as shown by LOF experiments in e.g.  Wnt5a-/- in the 

skin tissue [91] or in Wnt5a-/-;Lrp6-/- mice as dramatic worsening of the Wnt/PCP defects 

during embryogenesis [212]. Similarly, the analysis of Wnt1-/-; Wnt5a-/- mice showed that 
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Wnt1 and Wnt5a functionally cooperate, and their simultaneous LOF resulted in more 

severe Wnt/PCP phenotype such as A-P shortening, greater loss of DA neuroblasts and 

neurons, and VM morphogenesis seen as flattened ventricle compared to the single KO 

animals. TH+ cells were also positioned more dorso-laterally in the basal plate than in the 

Wnt1-/- mice [211]. This spatial, synergistic effect of Wnt1 and Wnt5a on mDA lineage 

development is now applied in differentiation protocols to derive mDA neurons from stem 

cells and induced pluripotent stem cells in a more efficient manner [201].  All together, 

these studies revealed that various Wnts are expressed in the VM by different cell types 

which likely correspond to their different but equally essential function in controlling the 

VM morphogenesis and mDA lineage development.  

mDA progenitors are Sox2+, proliferative cells that can be found in the ventricular zone (VZ) 

of the FP, and which are in contact with the ventricular cavity. These progenitors include 

first neuroepithelial cells and then radial glia cells. Both cell types have the capacity of 

undergoing neurogenesis and give rise to postmitotic neuroblasts that will then differentiate 

Figure 12: The development of ventral midbrain and mDA lineage is controlled by Wnt1 and Wnt5a. A. A 

scheme of the coronal section of human VM with highlighted floor plate (dashed purple lines); ventricular 

(vz), intermediate (iz) and marginal zones (mz; dashed black lines), and regional distribution of mDA 

lineage. B. A scheme of the mDA lineage development and function of Wnts in the particular stages. Wnt1 

and Wnt5a show synergistic effect in different developmental events. Wnt1 has a critical role in mDA 

specification, Wnt5a is a key mediator of mDA differentiation. Drew according to [8, 9]. 

A. 

B. 
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into mDA neurons. During early stages, Wnt1 and Shh control the pattern and expansion of 

the mDA progenitor pool in the VZ. The mDA progenitors are characterized by the 

expression of the LIM homeobox transcription factors Lmx1a and Lmx1b that specify the 

mDA lineage. The expression of Lmx1a/b genes is controlled by Wnt1 and Shh, which also 

regulate the expression of several additional transcription factors essential for mDA neuron 

development such as FoxA2, Engrailed 1 and 2 and Otx2. While Wnt1 promotes, Wnt5a 

inhibits the proliferation of mDA progenitors [8, 49, 201]. 

mDA neuroblasts are the first postmitotic cells in the mDA lineage. These cells are 

generated by mDA progenitors via neurogenesis, a process that finishes by E14.5. These 

cells express the nuclear receptor Nurr1/Nr4a2 and are thus Nurr1+, Lmx1a+ double 

positive. mDA neuroblasts migrate along the radial glia process through the intermediate 

zone (IZ) towards the marginal zone (MZ). They express the Cxcr4 receptor, and are 

attracted by the cytokine CXCL12 which is secreted from the meninges [213]. During their 

migration, neuroblasts start to differentiate into mature TH+ DA cells. While Wnt1 

predominantly controls neurogenesis, and the emergence of Nurr1+ neuroblasts, Wnt5a 

regulates the maturation mDA neuroblasts into mDA neurons in vivo. Nevertheless, Wnt1 

and Wnt5a both contribute to VM morphogenesis, neurogenesis and differentiation of mDA 

neuroblasts into mDA neurons. However, the mechanism by which Wnt1 and Wnt5a 

signaling control and coordinate these functions is not completely understood [8, 211]. 

Mature mDA neurons: After radial migration, mDA neuroblasts reach the marginal zone 

(mz) of the mFP, and mature into mDA neurons that can be identified as double Nurr1+ and 

TH+ cells. They subsequently migrate tangentially towards lateral positions where they 

postnatally form the SNpc and VTA populations. As mDA neurons emerge, their axons start 

to extend and navigate towards their targets. The A9 population mainly projects to the 

striatum, forming the nigrostriatal pathway, while the A10 neurons innervate cortical and 

limbic structures. In mice, these 2 populations account for about 20.000-30.000 mDA 

neurons, and over 400.000 in humans [214, 215]. The early development of mDA neurons is 

schematized in Figure 12. 

1.4.3 Wnt signaling in the CNS  

Wnts hold important functions in neuronal maturation and maintenance of the brain 

circuits, as shown by several in vitro and in vivo studies discussed in the previous chapter. 

Different Wnt ligands and their receptors are expressed in various brain areas in the 

postnatal and adult brain, particularly in those undergoing continuous neurogenesis or 

active synaptic remodeling such as dentate gyrus of hippocampus (Wnt3a, Wnt7a, Wnt8), 

olfactory bulb (Wnt1, Wnt3a, Wnt5a, Wnt7a) and cerebral cortex (Wnt2b, Wnt5a, Wnt7a) 

[216]. The functional activity of Wnts, such as Wnt5a, in these cell types has been linked to 

neurogenesis, axonal outgrowth, synaptogenesis, dendritogenesis, and synaptic plasticity 

[13].  
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Wnt proteins are localized at both sides of the synaptic bouton. Wnt5a/JNK axis was found 

to regulate postsynaptic bouton in hippocampal neurons by increasing the clustering of the 

postsynaptic density protein PSD-95 in the excitatory neurons [87] and GABAA receptors and 

their recycling [86]. On the other hand, the exogenous Ror2 is localized in dendrites of 

hippocampal neurons in close proximity to the synaptic area. There it regulates the dendritic 

spine morphology which was defected in Ror2-ΔCRD but not in the Ror2 mutants lacking the 

intracellular domains [105]. Similarly, Wnt7a/b was enriched on the postsynaptic side in 

pyramidal neurons in the C3 region of the hippocampus, together with the increased 

synaptogenesis upon the enriched environment [217]. Vangl2 was shown to physically bind 

N-cadherin and PSD-95 receptor in hippocampal neurons by which it increased 

synaptogenesis, synaptic markers clustering and dendrite spine formation, as shown also for 

Prickle2. Moreover, β-catenin competes with Vangl2 for the binding to N-cadherin which 

can inhibit the signaling. Vangl2 can be internalized via Rab5 [218]. Deregulated Wnt/β-

catenin signaling was found impaired in Drosophila dopaminergic neurons in a Parkinson’s 

disease model [219]. 

It has been recently promoted that the activity of various Wnt signaling proteins control the 

right ratio between the excitatory and inhibitory neurons whose deregulation leads to 

neurological disorders. It has been shown that Wnt5a increases the dendritic spine 

formation during development, amplitude of excitatory NMDA currents, intracellular 

calcium, and excitatory postsynaptic potentials in hippocampal slides [220]. Moreover, 

Wnt/Ca2+ signaling was shown to activate Ror2 which mediated the neuronal excitability via 

triggering the surface expression of N-methyl-p-asparate receptors (NMDARS), proteins 

impaired in schizophrenia and AD [107, 220, 221]. Strikingly, conditional Celsr3-/- mice show 

a 50% decrease in excitatory glutamatergic but not in inhibitory neurons in CA1 region of 

hippocampus resulting in spatial learning, memory and fear deficits. On contrary, Vang2l-/- 

mice showed an increase in synaptic density suggesting the opposing function maybe via 

asymmetric localization in the synapsis [222].  

Importantly, Wnts have been functionally involved in neuroprotection and regeneration of 

the CNS. Wnt/β-catenin signaling can induce neuronal regeneration of the mammalian 

retina after injury or during degeneration [223], as well as the glial-dependent regeneration 

after the spinal cord injury [224]. It has been shown that the pretreatment with Wnt5a has a 

neuroprotective effect and prevents synaptic damage induced by Amyloid-β25-35 in CA1 

region in Alzheimer disease (AD) models, whereas the rats treated with the Wnt5a 

antagonist SFRP showed learning and memory deficits, similarly to the Wnt modulator 

Dickkopf-3 [94, 225]. The capacity of Wnt5a to promote multiple aspects of mDA neuron 

development [226-228] has been applied in differentiating protocols to generate 

electrophysiologically mature mDA neurons in vitro [201]. Such findings have opened novel 

therapeutic opportunities for Wnts in neurological disorders. 
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1.4.4 Wnts and Parkinson’s disease  

Parkinson’s disease is one of the most common neurodegenerative disorders. At the 

diagnosis stage, the PD patients have already lost around 60% of the DA neurons in the 

Substantia nigra causing the typical motor symptoms of this disease, such as resting tremor, 

rigidity and hypokinesia. At later stages, also other brain regions are affected, and patients 

may also suffer cognitive impairment, dementia and/or depression. PD is currently 

considered as a multifactorial disease with large genetic variations, and thus our 

understanding about the cause and PD progression is still very poor [229]. Since current PD 

treatments are only symptomatic, more efforts are currently being made to understand 

mDA neuron biology, its deregulation in PD patients, and the development of targeted 

therapies to stop the disease progression.  

Parkinson’s disease includes various forms, but they share the same motor disturbances. At 

the pathological level, PD is characterized by a progressive loss of mDA neurons located in 

the SNpc, the formation of Lewy bodies containing aggregated α-synuclein filaments and 

denatured proteins, and the hyper-phosphorylation of microtubule-associated protein Tau 

protein [229, 230]. Only around 10% of PD cases are considered genetic forms [231]. 

Abnormally increased oxidative stress and mitochondrial dysfunction, together with protein 

misfolding, and impairments in the ubiquitin-proteasome and autophagy-lysosomal 

systems, contribute to PD progression. Deregulated function of several proteins has been 

found in genetic forms of PD, such as Parkin, Leucine-rich repeat kinase 2 (Lrrk2), Tau, α-

synuclein, Serine/Threonine protein kinase Pink1 and Protein/nucleic acid deglycase DJ-1 

[232, 233].  

Besides the proposed physiological function of Wnt signaling in the CNS, not much is known 

about the importance of Wnt signaling in PD. Increasing evidence has suggested that Wnt/β-

catenin signaling pathways might be deregulated via their defective communication with 

abnormally functioning PD proteins, such as Lrrk2. Lrrk2 is cytoplasmatic protein involved in 

autophagy [234-236], vesicle trafficking/sorting via cytoskeletal remodeling [237-239], and 

in mitochondrial dynamics [240-242], thus several processes impaired in mDA neuron 

degeneration. Lrrk2 has been found to interact with multiple signaling pathways, including 

Wnt/β-catenin signaling. It has been shown that overexpressed Lrrk2 forms a protein 

complex with Dvl1-3 [243], and brings them to the plasma membrane where it further 

interacts with Lrp6. Together they subsequently trigger the expression of TCF/LEF 

transcription factors, and thus activate the Wnt/β-catenin pathway. These overexpression 

experiments were further supported by the co-immunoprecipitation (co-IP) of Lrrk2 with 

Dvl3, GSK3β, Axin and β-catenin in the adult mouse brain, and downregulation of Wnt/β-

catenin signaling in mouse fibroblasts from Lrrk2 KO mice [244, 245]. Moreover, it has been 

shown that Parkin, an ubiquitin E3 ligase, interacts with β-catenin, and regulates its 

degradation. It was also found that Parkin null mice exhibit high levels of β-catenin, and that 

acute escalations of β-catenin levels in mDA neurons in vitro induce PARP-1 cleavage and 
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mDA neuronal death [246]. Notably, Pink1 and DJ-1 form an ubiquitin E3 ligase complex 

with Parkin [247]. Lrrk2 also interacts with Parkin [248] and with Tau in a tubulin-dependent 

manner [249], suggesting that these proteins could function together and interact or 

regulate Wnt/β-catenin signaling. Later studies also have shown that Wnt-dependent cell 

polarity and vesicle recycling might be deregulated in PD patients [60, 245]. More evidence 

should be thus collected in order to understand the implications of deregulated Wnt 

signaling in the pathophysiology of Parkinson’s disease. 
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2 AIMS OF THE STUDY 

The main focus of this doctoral study was to identify novel regulators of the Wnt/PCP 

pathway, to describe new mechanisms of the Wnt/PCP signal transduction, and to explore 

their function during embryogenesis and mDA neurons development. As such, this study 

provides new insights about Wnt/PCP signaling during embryogenesis, particularly in CNS 

development, and discusses its possible implications in Parkinson’s disease. 

These specific aims define each study: 

1. Study I: How does Wnt signaling regulate mitosis? What is the function of Dvl 

proteins in this process? What is the mechanism? 

2. Study II: Is Wnt5a secreted by the choroid plexus? Does Wnt5a regulate 

development of the choroid plexus? How is Wnt5a transported in the CNS?  

3. Study III: Are Ror2 and Vangl2 receptors important for ventral midbrain 

morphogenesis and development of mDA neurons? Do they signal via Wnt5a-Ror2-

Vangl2 axis in the ventral midbrain development? 

4. Study IV: What proteins bind to Ror2 in dopaminergic cells and in the ventral 

midbrain? What is the mechanism of their signal transduction? What is the function 

of these protein complexes during embryogenesis and in the ventral midbrain 

development? 

5. Study V: Does Lrrk2, a protein with altered function in PD, control Wnt/PCP 

signaling? What Wnt/PCP components bind to Lrrk2 in dopaminergic cells? How 

does Lrrk2 crosstalk with Wnt/β-catenin and Wnt/PCP pathways? 

To obtain more comprehensive information about the Wnt/PCP signaling, we investigated in 

detail the biochemistry behind the novel protein interactors identified in this thesis. We 

combined several advanced approaches such as proteomics, CRISPR/Cas9 system, RNA-

scope in situ hybridization, confocal microscopy and single cell RNA sequencing together 

with traditional biochemical methods such as immunoprecipitations, western blotting, 

immunofluorescence and others. Functionally, we took advantage of X. laevis and D. rerio 

developmental models, which allowed an easy genetic manipulation, relative quantification 

of the Wnt/PCP activity, and determination of what function the novel protein complexes 

have during the embryogenesis. In some of our studies, we also used several transgenic 

mouse models which enabled a more complex analysis about the possible function of these 

protein complexes in the mammalian CNS. Finally, we also integrated the single cell RNA 

sequencing data from the developing human VM tissue in order to determine the possible 

relevance of our findings in human. 
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3 RESULTS & DISCUSSION SECTION 

3.1 STUDY I: DISHEVELLED IS A NEK2 KINASE SUBSTRATE CONTROLLING DYNAMICS OF 
CENTROSOMAL LINKER PROTEINS 

3.1.1 Introduction 

Wnt signaling contributes to the cell cycle regulation [21-23, 27]. Dvl, a crucial signaling 

integrator of Wnt signaling pathways, has been recently found in several centrosomal 

stuctures [24-26]. Nevertheless, it was not clear if Dvl controls the centrosomal cycle 

and what is the possible mechanism. In this study, we performed a comprehensive 

biochemical study using different cell lines, phospho-proteomics, a panel of Dvl 

mutants, Fucci-based cell sorting [250, 251], and loss and gain of function experiments 

in order to describe the molecular pathway by which Dvl isoforms, Dvl1, Dvl2 and Dvl3, 

regulate the centrosome and cell cycle progression. 

3.1.2 Results and discussion 

By performing immunofluorescence and cellular fractionation, we confirmed that 

endogenous Dvl1, Dvl2 and Dvl3 co-localizes in the centrosome together with the 

centrosomal linker proteins Pericentrin (Figure 13), C-NAP1, CEP164, CDK5Rap2, γ-

tubulin, and Rootletin. By transfecting low levels of Dvl isoforms, we further show that 

localization of exogenous Dvl is in close proximity with pericentrin, similar to the 

endogenous protein. We then examined different Dvl truncated mutants in order to 

distinguish, which Dvl domain is necessary for Dvl localization in the centrosome. We 

found that the Dvl-DIX domain, a domain required for polymerization of Dvl molecules 

during Wnt signaling activation, is necessary for Dvl localization in the centrosome. Our 

findings are thus in line with the previous observations showing that the Axin-DIX 

domain is required for its centrosomal localization [22, 23]. Interestingly, the DVL2-

M1(F43S) mutant, a multimerization-defective protein which can form dimers with 

endogenous DVL, remained  localized in the centrosome. Therefore we concluded that 

DVL polymerization is not required for its localization to centrosomes. 

Figure 13: The co-localization of Dvl3 with Pericentrin in HEK293 cells was 

assesed by IF. Scale bar is 10 µm.  
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Functional screens in Drosophila revealed that Dvl is phosphorylated by NEK2 kinase. 

We confirmed that Dvl co-localizes with NEK2 kinase in the centrosome, and that 

endogenous and exogenous Dvl binds NEK2 WT via the Dvl-PDZ domain but does not 

bind to the NEK2 kinase-dead mutant. We next investigated which phosphorylation 

sites of Dvl are directly regulated the NEK2 kinase activity, and used phospho-

proteomics tool and an in vitro kinase assay with a panel of specific phospho-Dvl 

antibodies. We observed that NEK2-dependent phosphorylation of Dvl phospho-sites 

changed during the cell cycle and affected the subcellular localization of Dvl in the 

cytosol in “even” distribution of Dvl (S643 phospho-site) or in the centrosome (pT15, 

pS697 phospho-sites). Moreover, Dvl-pS697 accumulated with the cell cycle 

progression with a peak in the M phase. We also identified the pS280 phosphorylation 

site being specific for localization of Dvl in mitotic spindle uniquely during the M phase. 

These data showed that Dvl is a substrate for NEK2, and that NEK2 phosphorylates Dvl 

at different sides dependent on the cell cycle phase.  

Next, we took advantage of the Fucci system (fluorescent ubiquitination-based cell 

cycle indicator), which is a molecular tool based on reciprocal expression of two cyclin 

proteins, chromatin licensing and DNA replication factor 1 (Cdt1) and its negative 

regulator Geminin that accumulate in the different phases of the cell cycle [251]. In the 

Fucci system, these two genes are fluorescently labelled in red and green channels, and 

as they cycle through the phases in different concentrations, they label cells’ nuclei with 

the distinct colors. We can thus distinguish and visualize the cell cycle phase in the 

single cell by FACS or confocal microscopy, both in living or fixed cells without applying 

any synchronization agents that are usually cytotoxic. G1 cells show red nuclei, G1/S-

early S phase cells orange, S-phase light green, and G2/M phase cells are bright green. 

Newly divided cells, and cells in the G0 phase are not fluorescently labelled. We used a 

transgenic Fucci line of HeLa (Henrietta Lacks) cells for our studies. 

Our data from HeLa-Fucci cells sorted into different cell cycle phases [250] revealed that 

Dvl accumulated in the G2/M phase, similarly to the centrosomal linker proteins and 

NEK2 kinase (Figure 14). We thus hypothesized that Dvl in a complex with the 

centrosomal linker proteins controls configuration of the centrosome during mitosis. 

Indeed, when we knocked down all Dvl isoforms (Dvl1-3) using siRNA, we observed 

defects in centrosomal separation, which was not so apparent in the single Dvl knock-

down (KD), possibly due to the isoforms redundancy. Dvl KD did not cause defects in 

localization of the centrosomal linker proteins nor in the centrosome morphology as 

analyzed by the electron microscopy. These data show that Dvl is not crucial for the 

centrosomal linker structure, but it is functionally important for the centrosomal 

separation.  
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By performing another set of phospho-proteomics, we show that Dvl is not required for 

the NEK2-dependent phosphorylation of the linker proteins. However, NEK2 was able 

to remove Dvl from the centrosome in a kinase-activity dependent manner, similarly as 

it does for C-NAP1 [252]. We thus asked whether NEK2 is in a complex with Dvl during 

the centrosomal separation. We show that Dvl was able to displace C-NAP1 and 

CDK5/Rab2 from the centrosome similar to NEK2 itself. When we overexpressed Dvl in 

higher levels we observed an increase in multinuclear cells which usually occurs when 

the centrosomal function is disturbed, typically creating a monopolar mitotic spindle. 

Similar defects were observed when overexpressing dominant negative NEK2 [18]. 

These observations were confirmed by the Dvl3-ΔDIX which failed to cause such 

defects. We tested several Dvl phospho-mutants and identified that the formation of 

the monopolar spindle is dependent on the lack of the sequential Dvl phosphorylation 

by NEK2, especially at the C1 and C2 phospho-clusters, and at the S697 residue of Dvl3. 

We thus concluded that Dvl mediates NEK2-triggered displacement of linker proteins 

from centrosome via phosphorylation of Dvl on its C-terminus. 

Last but not least, we tested whether the NEK2-Dvl-mediated separation of the linker 

proteins from the centrosome is dependent on Wnt/β-catenin activity. We also asked 

whether the function of Dvl in the ciliogenesis where it binds to other centrosomal 

proteins, also requires the phosphorylation by NEK2 [253]. Indeed, we observed that 

NEK2 affected the interaction of Dvl with Inversin but not with Chibby nor with CEP164, 

proteins important in ciliogenesis. These data indicate that probably the NEK2-Dvl 

complex requires the presence of other proteins during ciliogenesis. To evaluate the 

A. 

Figure 14: HeLa S. Fucci cell line. A. A photo of HeLa-Fucci by confocal imaging. B. Sorted Fucci 

populations show that Dvl accumulates in the G2/M phase together with Nek2 kinase  

B. 
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involvement of Wnt/β-catenin signaling, we used a TOPFlash assay to measure the 

activation of TCF/LEF genes. TOPFlash is a dual luciferase assay based on 

overexpression of plasmid with eight TCF/LEF repeats (Super8x) to measure their 

Wnt/β-catenin-dependent expression [166]. This signal is then normalized to the 

luciferase signal of transfected, constitutively active cnidarian protein Renilla, which 

represents overall translational activity in the cells. Our TOPFlash experiments showed 

that neither NEK2 alone or in presence of Dvl mediate the Wnt/β signaling. 

Nevertheless, NEK2 increased Wnt/β-catenin signaling in the presence of CK1ε and Dvl. 

This finding was further confirmed by the knock-down experiments and exogenous 

treatment of Wnt3a.  

To conclude, we proposed a novel mechanism of how Dvl, upon sequential 

phosphorylation by NEK2, regulates the centrosomal cycle by displacing the 

centrosomal linker proteins C-NAP1and CDK5Rab2 from the centrosome during the 

G2/M phase. We further suggest that phosphorylation of Dvl on multiple sides by NEK2 

and CK1ε kinases leads to subsequent activation of Wnt/β-catenin signaling (Figure 15). 

We also propose that the Dvl-NEK2 complex might be of importance in other 

centrosomal structures, such as the basal body of primary cilia where it probably 

requires additional protein interaction. As Wnt signaling and the correct position of the 

centrosome control subcellular polarity, we thus speculate that Dvl, when localized in 

the centrosome, contributes to such re-organizations, a possibility which should be 

further investigated. 

  

Figure 15: A scheme of the mechanism by which Dvl upon NEK2 phosphorylation controls the 

G2/M phase progression by disassembling the centrosomal linker proteins from centrioles.  
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3.2 STUDY II: WNT5A IS TRANSPORTED VIA LIPOPROTEIN PARTICLES IN THE 
CEREBROSPINAL FLUID AND REGULATES PROGENITOR PROLIFERATION 

3.2.1 Introduction 

Wnts control many aspects of embryogenesis by forming protein concentration 

gradients within a tissue. Since Wnts are hydrophobic molecules, it is likely that they 

use a transport mechanism that helps them to diffuse and reach their destinations over 

longer distances. A few models of Wnt transport have been proposed with some 

including protein and lipoprotein carriers, or exosomal transport [75, 77, 78, 254], but 

more investigations is required to determine the Wnt transport mechanism in distinct 

mammalian tissues. It has been shown that Wnt4a is expressed in the hindbrain choroid 

plexus [210]. In this study, we investigated the expression and transport of Wnt5a in the 

developing mouse and human choroid plexus. We used an ultracentrifugation protocol 

to isolate lipoprotein particles and exosomes, proteomics, IP, western blotting, RT-PCR, 

in situ hybridization (ISH), IF, confocal microscopy, choroid plexus primary cultures, and 

Wnt5a-/- mice. 

3.2.2 Results and discussion 

To identify what Wnts are expressed in ChPs, we first analyzed the expression profiles 

of all Wnt ligands by ISH in mice embryos at E13.5. The Wnt with the strongest 

expression was Wnt5a, which was specific for the hindbrain ChP (HbChP, 4th ventricle).  

Using qPCR, Wnt5a expression was found from E12.5 to E17.5 in HbChP. Notably, 

Wnt5a was not detected in the telencephalic ChP (TelChP, lateral ventricle), a result 

which was in line with previous findings [186]. On the other hand, Wnt5a was found in 

the adjacent cortical hem where Wnt2b, 3b, 7a, 7b, 8b and 9b were also expressed. 

Interestingly, within the HbChP, the highest Wnt5a expression was found in the 

epithelium. These data were further confirmed at the protein level using a specific 

antibody against Wnt5a, which was validated in the HbChP of Wnt5a-/- mice. At 

postnatal stages, the expression and protein levels of Wnt5a in the HbChP progressively 

decreased suggesting that Wnt5a can control the HbChP development during the 

Figure 16: Wnt5a is localized on the apical side of the HbChP epithelial cells in 

human embryos. IF staining.  
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embryogenesis. Wnt5a was typically found in the apical part of the cytoplasm of 

secretory epithelial cells, and sometimes in punctuate structures close to or above the 

apical cell membrane, which was determined by presence of Aquaporin-1 (AQP-1). 

These stainings were confirmed when using 9 week old human embryos where Wnt5a 

was localized at the apical side of the epithelial cells in direct contact with the CSF 

(Figure 16).  

We next examined whether the HbChP expresses Gpr177 (Wntless in Drosophila), a 

protein indispensable for Wnt secretion and trans-synaptic transport in Drosophila 

[254, 255]. Indeed, we observed that Gpr177 was highly expressed in the epithelium of 

the HbChp and not in the TelChP. These data were confirmed by WB and IF in E12.5-

E17.5 old embryos. The biological activity of Wnt5a secreted by the epithelial HbChlP 

cells was further verified by establishing primary cultures from TelChP and HbChP, and 

collecting the supernatant from these cells. We first analyzed the cell lysates and the 

supernatant from these primary cultures, and confirmed by WB that Wnt5a was 

present only in the supernatant of HbChP cells. We next expected that if the epithelial 

cells secrete biologically active Wnt5a, we could obtain a conditioned medium from 

them which we subsequently collected. A mouse embryonic fibroblast (MEF) cell line 

was incubated with conditioned medium of either the TelChP or the HbChP cells in 

order to examine the activation of Wnt/PCP signaling by Wnt5a. The activity of the 

secreted Wnt5a was analyzed by its capacity to mediate the phosphorylation of Dvl3, 

which is identified by WB as the heaviest band [256]. Our data show that the epithelial 

cells of the HbChP, but not the TelChP, secrete biologically active Wnt5a in mouse and 

human brain during prenatal development (Figure 17). 

We next investigated the mechanism 

by which Wnt5a is transported from 

these cells. We performed an 

ultracentrifugation of the 

conditioned media from HbChP 

primary cells in order to separate 

exosomes from lipoprotein particles 

of different sizes. We determined the 

quality of such fractionation using 

exosomal markers (CD63, Flotillin-2) 

and lipoprotein structural 

components including ApoE, ApoA1, Clusterin and ApoJ. We observed that Wnt5a 

associated with apolipoproteins in the high density lipoprotein fraction (HDL) and to a 

lower extent in the low-density lipoprotein fraction (LDL). Wnt5a was absent in the 

exosomal fraction, which was further confirmed by the IF staining. To confirm whether 

Figure 17: Primary cell cultures of ChP epithelial 

cells. HbChP but not TelChP cells secrete 

biologically active Wnt5a as assessed by the 

increased phosphorylation of Dvl3 in treated MEF 

cells.  
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Wnt5a physically binds apolipoproteins, the structural units of the lipoprotein particles, 

we pulled down the exogenous Wnt5a in HEK293 cells and observed that Wnt5a binds 

to co-expressed ApoE and ApoJ. We also analyzed Wnt5a pulldown by mass 

spectrometry, and identified an enrichment in additional proteins commonly associated 

with the HDL-specific proteome, such as ApoA1, ApoA2 and Vitamin D-binding protein. 

To further investigate the necessity of the lipoprotein particles for Wnt5a transport, we 

used a lipid removal agent (LRA) to delipidate the serum which was used in our primary 

HbChP epithelial cell cultures. Wnt5a was not detected in the supernatant of primary 

HbChP epithelial cultures upon lipid removal as observed by WB. This effect was 

rescued when we added mouse HDL into the media after removing the lipids. These 

data indicated that lipoproteins are at least in part required to restore the presence of 

Wnt5a in the primary HbChP epithelial cells. 

CSF is delivered to the brain parenchyma upon ChP secretion. We thus investigated 

whether we can detect Wnt5a-lipoprotein particles in the cells of the ventricular zone 

which are in direct contact with the CSF but localized distally from the HbChP. Our 

requirement was that the cells cannot express the Wnt5a themselves. Based on these 

conditions, we selected progenitor cells in contact with the ventricle in the dorsal 

hindbrain, anterior to the HbChP at E13.5. We first analyzed whether these cells express 

the core Wnt/PCP receptors, Celsr2 and Vangl2, and/or more general Wnt receptors 

Fzd3 and Fzd10. Indeed, these progenitor cells were positive for all 4 receptors 

suggesting that they can bind Wnt5a in the CSF. We next stained these cells with a 

Wnt5a antibody and observed the presence of Wnt5a in the apical side of these 

progenitor cells in WT but not in Wnt5a-/- mice. Notably, Wnt5a co-localized with ApoE 

and ApoJ in the apical surface of the hindbrain progenitors (Figure 18), supporting the 

hypothesis that apolipoproteins may contribute to the transport of Wnt5a towards the 

receiving cells in the ventricular cavity.  

Figure 18: Wnt5a is 

localized in vesicles at the 

apical side of the HbChP 

epithelial cells in vivo 

where it co-localizes with 

apolipoproteins. 
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Since the Wnt5a plays a key role in controlling the balance between the cell 

proliferation and the differentiation during the development of other cell types such as 

mDA neurons [89], we thus investigated whether Wnt5a regulates the proliferation of 

the hindbrain progenitors. We quantified a number of proliferating cells (Ki67+) in WT 

and Wnt5a-/- of E16.5 old embryos. This analysis revealed a significant increase in the 

proliferation of the hindbrain progenitors in Wnt5a-/- mice compared to the WT. These 

data indicated that Wnt5a might be required to inhibit proliferation of the hindbrain 

progenitor cells in the ventricle, a function that is consistent with previous findings in 

other cell types. 

Overall, our data confirmed that Wnt5a is secreted specifically by the HbChP in the 4th 

ventricle, and thus support the hypothesis that the expression of different Wnt ligands 

in the distinct ChPs creates a particular composition of the CSF proteome, which likely 

contributes to the regionalization of the brain areas during embryogenesis [186]. We 

also show that Wnt5a can be transported over long distances in complex with HDL 

particles where it binds to ApoE and ApoJ, and that these protein complexes can reach 

distant hindbrain progenitor cells in the ventricles.  By comparing WT and Wnt5a 

deficient mouse we further show that the secreted and transported Wnt5a inhibits the 

proliferation of the hindbrain progenitor cells in the ventricular zone. It was previously 

reported that the Drosophila Wnt ortholog Wingless is transported in exosomes in a 

complex with its protein carrier Wntless across the synapses in neuromuscular junctions 

[254]. Based on our data we propose that Wnt5a can also be transported in lipoprotein 

particles over long distances and create concentration gradients with the highest 

concentration at HbChP. 

3.3 STUDY III: ROR2 AND VANGL2 CONTROL DOPAMINERGIC NEUROGENESIS AND 
MULTIPLE ASPECTS OF CELL POLARITY IN THE MIDBRAIN FLOOR PLATE 

3.3.1 Introduction 

As assessed by in vivo loss-of-function studies and in vitro differentiations protocols, 

Wnt5a is an essential morphogen for the anterior-posterior patterning of the ventral 

midbrain (VM), and the propagation and maturation of mDA neurons during 

embryogenesis [89]. Nevertheless, molecular mechanisms underlying these 

developmental processes have not been identified. Transgenic mice lacking two core 

Wnt5a receptors, Vangl2 and Ror2, show an abnormal development of the neural tube 

which fails to close [31]. We previously found that the loss of Wnt5a affects VM 

morphogenesis and cause Wnt/PCP defects which include shortening of the anterior-

posterior (A-P) axis and lateral expansion of the mDA domain. Moreover, Wnt5a-/- mice 

show decreased levels of mDA neurons and an increased pool of mDA progenitors at 

E12.5 [89, 211]. In this study, we thus asked whether the Ror2-Vangl2 receptor complex 

mediates some of the Wnt5a functions and controls different aspects of mDA neuron 
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development and VM morphogenesis. The expression of Ror2 and Vangl2 was 

examined by bulk RNA-sequencing in the VM region of TH-GFP+ mice at different 

developmental stages. We then analyzed the development of cells in the mDA lineage 

at E12.5 and E14.5, by using immunofluorescence for mDA markers, and several 

transgenic mice models including Wnt5a-/-, Ror2-/-;Vangl2-/-; Ror2-/-;Wnt5a-/-, and  

conditional overexpression of Wnt5a (Wnt5a OE), which was induced with doxycycline 

at E10.  

3.3.2 Results and discussion 

We first investigated whether Wnt5a overexpression stimulates the differentiation of 

mDA neurons or whether it causes disturbances due to a signaling imbalance. We 

observed that Wnt5a OE partially phenocopies Wnt5a-/- mice with regard to the lateral 

expansion of the mDA domain and the decreased number of mature mDA neurons [89]. 

Nevertheless, we did not observe A-P defects, and as the Wnt5a levels change in the 

Wnt5a OE animals over time, we did not detect differences in the mDA neuroblast pool. 

Interestingly, we found that Wnt5a gain of function leads to an increased invagination 

of the ventricle and a narrower ventricular space of the FP, which was previously seen 

in Wnt1-/- [211]. These data confirmed the critical role of Wnt5a in mDA neuron 

development, and suggested that any imbalance in Wnt5a-mediated signaling causes 

disturbances in VM patterning and the development of the mDA lineage.  

Next we explored the expression and levels of Wnt5a receptors, Ror2 and Vangl2 in 

different stages of VM development. We used IF and True-seq RNA sequencing of the 

mDA domain which was dissected along the GFP-labelled TH+ neurons (Figure 19).  

RNA sequencing showed rather low expression levels of Ror2 with a decreasing 

tendency from E12.5 onwards. It has been shown that Ror1-/-;Ror2-/- mice phenocopy 

Wnt5a-/- mutant animals, which suggested that Ror proteins are the main receptors for 

Wnt5a. Thus, we first analyzed Ror2-/- animals. However, we did not observe defects in 

VM development. In line with this data, we observed only mild worsening of the Wnt5a-

Figure 19: Bulk RNA-sequencing revealed different expression patterns of Wnt5a, 

Ror2 and Vangl2 in TH-GFP+ domain during the mouse VM development. 
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/- phenotype in our novel Ror2-/-;Wnt5a-/- transgenic line. This data suggested that there 

might be a functional redundancy between Ror2 and Ror1, or between Wnt5a and 

other Wnts. However Ror1 is expressed only laterally in the basal plate, and was not 

induced in the floor plate of Ror2-/- mice.  

On the other hand, Vangl2 was highly expressed in the VM with a distinct expression 

peak at E12.5 and E13.5, and with the lowest expression at E14.5. The Vangl2 

expression pattern correlated with the dynamics of mDA neurogenesis. Analysis of 

Ror2-/-;Vangl2-/- mice has previously showed severe Wnt/PCP phenotypes, including 

neural tube closure defects [31]. We thus wanted to elucidate whether this receptor 

complex also controls VM development. The Ror2-/-;Vangl2-/- mice revealed strong 

alterations in VM morphogenesis, some of which phenocopied the Wnt5a-/- mice, 

including collapsed ventricles along the dorsal-ventral and lateral axis, A-P shortening, 

and widening of the floor plate. Strikingly, we also observed a new phenotype involving 

the left-right asymmetry of the proliferating mDA progenitors and mDA lineage (Figure 

20). Similarly, it has been shown that Vangl2 controls Wnt5a-stimulated neuronal 

outgrowth and A-P axonal guidance of commisural neurons, and regulates the bilateral 

symmetry of the spinal cord by internalization of Fzd3 [41]. We also found that, the 

total number of postmitotic mDA neuroblasts and mature mDA neurons were 

decreased by 40% and 50% respectively at E12.5, indicating a defect in mDA 

neurogenesis. Differences in the differentiation (the ratio between Nurr1+ and Nurr1+; 

TH+) were also detectable at E14.5.  

Figure 20: Ror2-/-;Vangl2-/- show severe phenotype during embryogenesis and in mDA lineage 

development. A. Ror2-/-;Vangl2-/- mice display worsening severity of the Wnt/PCP phenotype at 

E12.5. B. IF of Lmx1a shows the left-right asymmetry of proliferating progenitors and mDA lineage 

in VM of Ror2-/-;Vangl2-/- embryos. The scale bar is 100µm. 

A. B. 
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Thus our results suggest that Wnt/PCP signaling through the Wnt5a-Ror2-Vangl2 axis 

controls VM morphogenesis and bilateral symmetry as well as different aspects of mDA 

neuron development, such as mDA neurogenesis and the differentiation of mDA 

neuroblasts into mDA neurons in a sequential manner.  

3.4 STUDY IV: THE PRONEUROTROPHIN RECEPTOR SORCS2 IS A NOVEL REGULATOR OF 
THE WNT/PCP PATHWAY DURING EMBRYOGENESIS 

3.4.1 Introduction 

It has been shown previously that the Wnt5a-Ror2 signaling axis can recruit additional 

proteins, such as Ptk7 or Vangl2 to form alternative Wnt/PCP signaling complexes [121]. 

In addition, the role of this pathway in dopaminergic circuits has not been investigated 

in full detail. Therefore, we decided to address these issues by performing proteomics 

on Ror2 binding partners in dopaminergic cells (SN4741). This approach was followed 

by a detailed biochemical analysis using different antibodies, mutants and treatments. 

Functionally, we explored the role of novel protein complexes in Wnt/PCP signaling by 

using genetic manipulations in X. laevis and D. rerio models in form of microinjections of 

1-4 cell stage embryos, and subsequent quantification of the Wnt/PCP phenotype 

during CE movements, somitogenesis and brain development. We also used WT and 

transgenic mice in order to investigate novel regulatory mechanisms of the Wnt5a-Ror2 

signaling pathway during the VM development. 

3.4.2 Results and discussion 

Our IP-Ror2-MS/MS analysis uncovered a large number of novel Ror2 interactors that 

can functionally regulate Wnt signaling, endocytosis or the cell cycle. Our datasets 

provide a useful resource platform for the future investigations of Ror2 function in 

dopaminergic neurons but also for a comparison to disease and other tissues. We 

validated a few interesting candidates from the IP-Ror2-MS/MS data sets on a small 

scale using specific antibodies and genetically manipulated cell lines including mDA 

cells, MEF cells, HEK293 cells, and VM lysates of E11.5-E14.5 (Figure 21). We confirmed 

that Ror2 specifically interacts with a) a VPS10-domain containing receptor SorCS2 

(SorCS2) from the sortilin receptor family, which function as a proneurotrophin 

receptor and regulates dopaminergic wiring in vivo [257, 258]; b) Ptk7, a 

transmembrane receptor with an inactive tyrosine-kinase domain and known regulator 

of Wnt/PCP pathway [62, 148, 259]; and c) Lrp4, a low-density lipoprotein Wnt receptor 

which is involved in formation and maintenance of neuromuscular junctions and 

synaptic plasticity in the brain [260-262]. 
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We further proceeded with Ptk7 and 

SorCS2, and demonstrated that the levels 

of these proteins are downregulated in 

MEF-Ror1-/-;Ror2-/- cell line [67] pointing 

out that Ror proteins are required for their 

presence at correct levels. Overexpression 

studies in vitro and in X. laevis in vivo have 

previously shown that Ptk7 binds to Ror2, 

and that they control neural crest cells 

migration [121, 122]. Our results suggest 

that the interaction between Ptk7 and 

Ror2 may also serve a function in the VM, 

a possibility which remains to be 

elucidated. Since we observed several 

receptors binding to Ror2, we might 

further speculate whether large, highly 

organized receptor complexes are required 

for Wnt5 signal transmission and the tissue 

specificity - a hypothesis which meets big 

experimental challenges.  

In this study we mostly focus on SorCS2, a receptor that is highly expressed in mouse 

VM floor plate at E11.5, and its expression spreads caudally into the hindbrain floor 

plate at E13.5 [263]. Interestingly, SorCS2 has been involved in protein trafficking, 

growth cone collapse of mDA neurons, and in synaptic plasticity in the adult brain [257, 

258, 264]. However, the function of the Ror2-SorCS2 receptor complex and its possible 

role in Wnt/PCP signaling, embryogenesis and mDA lineage development have not been 

investigated.  

First, we explored the biochemistry behind the Ror2-SorCS2 complex, and used a panel 

of Ror2 and SorCS2 mutants to define the protein-protein interaction. We showed that 

the CRD domain of Ror2 is crucial for the Ror2-SorCS2 binding, thus the same domain 

where Wnt5a [103, 120] and Fzd2 [119] bind to Ror2. Different proteolytic processing 

of SorCS2 is believed to be used by glial cells and neurons for distinct cellular responses 

towards proneurotrophins such as pro-BDNF or pro-NGF [257, 265]. We observed that 

Ror2 preferably binds to the 2-chain variant of SorCS2 in dopaminergic cells and in 

ventral midbrain. Moreover, we show that overexpressed SorCS2 binds to Wnt5a, 

which suggests that SorCS2 may control the Wnt5a-Ror2 signaling axis. We also found 

that overexpressed SorCS2 also mediates internalization of Ror2 and its binding 

partners Wnt5a, Vangl2 and Ptk7 in vitro. Notably, the internalization of these Ror2 

Figure 21: Ror2 physically binds SorCS2 and 

Ptk7 in VM tissue during mDA neurons 

development. Ror2-SorCS2 interaction is 

strongest at E11.5 whereas Ror2-Ptk7 does 

not change during the VM development. 
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interactors has been previously shown to be important for creation and maintenance of 

the planar cell polarity [34, 36, 41]. The Vps10-domain containing receptor family has 

the capacity of sorting proteins by triggering the lysosomal degradation, a pathway 

impaired in a number of neurodegenerative diseases, including Parkinson’s disease 

[264, 266-268].  

We next examined the possible role of SorCS2 in vivo in the context of Wnt/PCP 

signaling. 4-8 cell stage Xenopus embryos were single or double injected with mouse 

Ror2 and human SorCS2. Increased levels of exogenous Ror2 alone induced a shorter A-

P axis and sharper angle between the head and tail, both of which are Wnt/PCP 

phenotypes. Strikingly, this phenotype was partially rescued in the presence of SorCS2. 

Interestingly, the overexpression of SorCS2 alone showed morphological defects in the 

head, which were repressed in the presence of Ror2 (Figure 22). These data thus show 

that SorCS2 is a novel Wnt/PCP regulator, and suggest that it can control the PCP 

signaling via internalization and/or receptor sorting of Ror2. We are still working on the 

biochemical analysis of this mechanism. We want to particularly investigate endocytosis 

because proteins involved in this process appear in our MS/MS data, and because it 

participates in Wnt/PCP pathway regulation in vivo as mentioned above.  

The expression of SorCS2 during early embryogenesis has not been examined much. We 

thus explored the expression of SorCS2 in zebrafish embryos during the first 24 hours 

post fertilization (hpf), including gastrulation and somitogenesis, by whole mount in situ 

hybridization (WISH) and real-time PCR. Both methods revealed that SorCS2 is very 

weakly or not at all expressed at 3.5hpf, but appeared to be gradually expressed at 50% 

of epiboly till older stages. Interestingly, we observed slightly stronger WISH staining in 

the head and in the tail compared to the rest of the body at bud stage and 8 somites 

stage which might suggest SorCS2 polarization. Expression of SorCS2 at 24hpf was quite 

dispersed in the embryo, labeling mostly the eye, the floor plate in the hindbrain, and 

the midbrain. We observed higher SorCS2 expression in telencephalon and 

diencephalon after the eyes removal. The expression of SorCS2 during gastrulation thus 

Figure 22: SorCS2 regulates Wnt/PCP signaling in vivo. Overexpression of SorCS2 mRNA resulted in a 

mild Wnt/PCP phenotype and its co-expression with Ror2 mRNA lead to a partial rescue of the Ror2-

mediated Wnt/PCP phenotype (shorter axis, sharper angle between the head and the tail). 
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corresponded with that previously described for Ror2 in these developmental stages. 

The Ror2 expression at 24hpf was mostly located in the head, labelling telencephalon, 

diencephalon, midbrain, and weakly the hindbrain as seen previously [269, 270]. These 

findings showed that SorCS2 and Ror2 are expressed in the same areas during early 

embryogenesis. 

Ror2 regulates Wnt/PCP signaling 

during gastrulation and somitogenesis 

[270]. We performed loss-of-function 

(LOF) experiments by injecting single or 

double Morpholino oligomers (MOs), 

which inhibit translational machinery of 

Ror2 and/or SorCS2. We examined 

whether deletion of SorCS2 can worsen 

the Ror2-LOF-mediated Wnt/PCP 

phenotype. We thus either injected WT 

with Ror2 and SorCS2 MOs, or we 

injected SorCS2 KO embryos with Ror2 

MOs, and compared them to WT 

injected with Ror2 MO. In both models 

we observed that Ror2;SorCS2 double 

LOF worsens the Wnt/PCP phenotype 

compared to the single Ror2 KD 

embryos which display short A-P axis, 

smaller heads at 24hpf, and shorter A-P 

axis and somite area at 7-somite stage. 

These data confirmed that Ror2 is in a 

functional complex with SorCS2 during 

convergent extension and 

somitogenesis. Moreover, these 

embryos lacked expression of Wnt5b, 

the fish orthologue of Wnt5a, in 

specific brain areas labeling the MHB 

and telencephalon-diencephalon (TD) 

boundary (Figure 23), whereas it did 

not affect Wnt5b expression in the rest 

of the trunk at the 7-somites stage. The TD boundary was not described before we thus 

speculate that it can be a novel signaling center. We are currently working on the 

structural determination of these signaling centers to uncover whether the Ror2-SorCS2 

controls the expression of Wnt5b in the brain or if it regulates the morphogenesis of 

Figure 23: Ror2-SorCS2 complex controls brain 

development in the Wnt5b-dependent manner. A. 

WISH staining of Wnt5b in WT and SorCS2-/- 

embryos injected with Ror2 MO reveals that the 

expression of Wnt5b in the MHB and 

Telencephalon-Diencephalon boundary is lost in the 

double mutant embryos. B. A scheme of fish brain 

anatomy at 24hpf (according to [7]). 

A. 

B. 
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these structures which fail to express Wnt5b in absence of Ror2 and SorCS2. We are 

also currently exploring the possible molecular mechanism by which the Ror2-SorCS2 

receptor complex regulate Wnt5a-dependent signaling in Ror2-/-;SorCS2-/- dopaminergic 

cells, and Ror1-/-;Ror2-/-;SorCS2-/- MEF cells. 

Our results show that the Ror2-SorCS2 receptor complex controls embryogenesis by 

regulating the Wnt/PCP pathway in fish and frog. These observations are also 

supported by the fact that SorCS2 KO mice show A-P shortage and a decreased in 

weight. Moreover, a colony of deaf mice with SorCS2 gene mutations was found to 

exhibit shorter and disorganized stereocilia in the cochlea of the inner ear, a typical 

Wnt/PCP phenotype [271]. SorCS2 KO animals are also known to display decreased 

dopamine levels, and dopaminergic hyperinnervation in the prefrontal cortex [257]. 

Moreover, SorCS2 expression changes were observed in the subthalamic nucleus after 

deep brain stimulation in PD mice [268]. Our results suggest that the Wnt5-Ror2-SorCS2 

signaling axis controls brain development and might regulate DA neuron development 

in the diencephalon and hindbrain, near the midbrain–hindbrain and telencephalon-

diencephalon boundaries in zebrafish [272, 273].  

SorCS2 is expressed spatiotemporally in various places in mice, with high levels in the 

midbrain floor plate, spinal cord and in adult hippocampus [257, 258, 263].There are no 

specific Ror2 antibodies available for IF methods [274]. To track the expression of Ror2 

and SorCS2 in the VM tissue, we used RNA-scope in situ hybridization (RNA-ISH) which 

is a novel, commercially available, highly sensitive and selective ISH assay which detects 

single molecules of RNA in an intact, fresh frozen tissue. It uses carefully designed 

double Z probes which have to hybridize to the target sequence simultaneously in order 

to amplify the signal [275]. By using RNA-scope in situ hybridization, IF and single cell 

RNA-sequencing data of mouse and human midbrain, we show that the Ror2-SorCS2 

interaction occur in the mouse VM in vivo. These data were confirmed by IP-Ror2 from 

WT VM of E11.5-E14.5 stages, where the Ror2 binding to SorCS2 2-chain variant was 

the strongest at E11.5 (Figure 20). Ror2 and SorCS2 were localized the same cells in the 

VM floor plate at this stage. From E12.5, SorCS2 is expressed in Sox2+, Glast+ and BLBP+ 

positive radial glia in the floor plate (Figure 24), and laterally in the ventricular zone, 

and in radial glia which are Sox2 negative, Glast+, BLBP+ in the intermediate zone. 

Moreover, SorCS2 is expressed by mDA neuroblasts which are Nurr1+ positive and by 

the TH+ dopaminergic neurons in marginal zone, as previously shown [257]. Ror2 

displays partial expression separation from SorCS2 at E12.5 stage onwards. We are 

currently collecting Ror2-/-;SorCS2-/- embryos to investigate the precise function of this 

receptor complex in the mDA lineage, radial glia populations and VM morphogenesis in 

vivo. We will also examine other cell types possibly expressing Ror2 and SorCS2, such as 

motor neurons in the basal plate.  

A. 

B. 
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To conclude, our study shows that SorCS2 is a novel Wnt/PCP regulator and that the 

Ror2-SorCS2 receptor complex controls a number of processes during convergent 

extension, and brain development. Ror2 and its co-receptors were shown to regulate 

synaptogenesis and synaptic plasticity [105, 106, 218, 261]. We thus propose that the 

correct understanding of Ror2-SorCS2 signaling may be of importance not only for the 

wiring of the mDA system, but also for its generation during early development and its 

demise in Parkinson’s disease. 

3.5 STUDY V: A PROTEOMIC ANALYSIS OF LRRK2 BINDING PARTNERS REVEALS 
INTERACTIONS WITH MULTIPLE SIGNALING COMPONENTS OF THE WNT/PCP 
PATHWAY 

3.5.1 Introduction 

Autosomal-dominant mutations in Leucine-rich repeat kinase 2 (Lrrk2) appear in 40% of 

the patients with inherited PD. Lrrk2 is a large, multi-domain protein composed of 2527 

amino acids, and as such it regulates not only several different proteins in a number of 

cellular compartments, but also its own activity. The most common Lrrk2 mutations lead 

to excessive or persistent activation of Lrrk2, suggesting that the pathogenesis of PD 

involves a gain-of-function, rather than loss-of-function, as shown by comparison to 

Lrrk2 knock-out models [276-278]. It has been suggested that overexpressed Lrrk2 

remains mostly monomeric in the cytoplasm, while it oligomerizes once relocated to the 

plasma membrane [279]. Although many Lrrk2 substrates have been suggested, the 

identity of true endogenous substrates at physiological levels of Lrrk2 protein remains to 

be determined.  

Figure 24: SorCS2 is expressed in 

radial glia cells (Glast+) in the 

caudal VM floor plate. IF (Glast) 

was combined with RNA ISH 

(SorCS2) at stage E12.5 of WT 

embryos. The scale bar is 100µm. 
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It has been reported that Lrrk2 is involved in Wnt/β-catenin signaling [243, 244]. Since 

Wnt/β-catenin and Wnt/PCP signaling pathways maintain their balance by inhibiting 

each other, we thus asked whether Lrrk2 also interacts with regulatory components of 

Wnt/PCP pathway in mDA cells.  

We used several biochemical methods in this study. We again took advantage of an 

unbiased approach and used IP-MS/MS with a specific antibody to pulldown Lrrk2 in a 

mouse Substantia nigra cell line (SN4741), which in contrast to the majority of cell lines 

available, exhibits endogenously detectable physiological levels of Lrrk2 protein. By 

using CRISPR/Cas9 technology, we generated SN4741 cell line with Lrrk2 mutations in 

exon1 which shows decreased protein levels of Lrrk2. We also used human embryonic 

kidney 293 cell line (HEK293) to overexpress human Lrrk2. We performed a number of 

endogenous and overexpression experiments followed by IP, WB, and IF in order to 

identify and validate the novel Lrrk2 binding partners. We tested a spectrum of different 

proteins, either using specific antibodies or panel of plasmids. We used SN4741 cells, 

HEK293T cells, and lysates from the VM of E18.5 embryos. The functional importance of 

Lrrk2 in Wnt/PCP signaling was determined by the TOPFlash assay to examine the 

capacity of Lrrk2 to inhibit Wnt/β-catenin signaling. We also examined the importance 

of Lrrk2 domains by using truncated Lrrk2 mutants. Last but not least, X. laevis was used 

to investigate the functional involvement of Lrrk2 in the inhibition of Wnt/β-catenin 

pathway, and the regulation of Wnt/PCP-dependent functions in vivo. 

3.5.2 Results and discussion 

Since the preservation of protein-protein interactions highly depends on the sample 

preparation, we tested 3 different protocols in our IP-Lrrk2-MS/MS analysis. Lists of 

candidate interactors were manually analyzed using published literature, and selected 

for their involvement in Wnt signaling. These included the PDZ-domain containing 

protein Gipc1, the Integrin-linked protein kinase ILK, and the Lipoma-preferred partner 

homolog LPP.  

Our first interactor, Gipc1, was shown to bind the Wnt/PCP receptor Vangl2, and 

regulate its removal from the plasma membrane. Disruption of Gipc1 activity affects hair 

polarity in the mammalian inner ear and in Drosophila wing where it regulates the hair 

cell maturation and the hair bundle orientation, a function that identifies Gipc1 as a 

Wnt/PCP regulator. Importantly, Gipc1 also interacts with the D2 and D3 dopamine 

receptors [280-282]. Our second candidate, ILK, is known to control cell adhesion and 

cell motility, it binds to Dvl and activates the Wnt/PCP pathway [283]. Interestingly, 

constitutively active ILK also activates the Wnt/β-catenin signaling [284], indicating a 

more complex function. Lastly, LPP is related to members of the Zyxin family (also 

identified in our IPLrrk2-MS/MS) and is localized in cell-cell contacts. It has been shown 
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that LPP binds to the PCP protein Scrib, which mediates convergent extension 

movements in zebrafish early development [285]. To validate these interactions, we 

pulled-down Lrrk2 from WT and Lrrk2 KD SN4741 cells, and used specific antibodies 

against Gipc1, ILK and LPP for WB detection. We observed an enriched interaction of 

Lrrk2 with Gipc1 and ILK in WT compared to the KD cells. We did not see the enrichment 

for Lrrk2-LPP binding so we were not convinced of the specificity of this interaction.  

Lrrk2 is gradually expressed during the late prenatal development in different tissue. In 

the adult brain, Lrrk2 is highly expressed in the striatum, olfactory bulb and cerebral 

cortex, and is present at low levels in SNpc [286-290]. We thus investigated whether 

Lrrk2 interacts with Gipc1, ILK and LPP in developing midbrain in vivo. We used lysates of 

ventral midbrain tissue of WT mice at E18.5 stage, and confirmed that Lrrk2 does 

interact with Gipc1, ILK and LPP in developing VM. 

Since Lrrk2 activity and its localization is greatly affected by Lrrk2 protein levels, we 

decided to validate whether Lrrk2 binds to several selected Wnt/PCP regulators once 

overexpressed in HEK293 cells. We 

selected candidates in our MS/MS 

data set such as Flotillin-2, which is 

known to regulate Wnt secretion 

[291]; and Cullin-3 that inhibits 

Wnt/β-catenin signaling [292] and is 

downregulated by Lrrk2 KD [293].C-

Jun-amino-terminal kinase-

interacting protein 3 (JIP3), a Lrrk2 

binding partner [294] was used as 

positive control; Additionally, we 

tested core mediators of Wnt/PCP 

signaling, such as Celsr1, Prickle1, 

Ror2, and Vangl2. Our results show 

that Lrrk2 binds to Flotilin-2 and 

Cullin-3, as well as to Prickle1 and 

Celsr1, but not to Vangl2 or Ror2. 

We further found that Prickle1 

triggers re-localization of Lrrk2 into 

punctate cytoplasmic structures 

(Figure 25) similarly to the ones 

formed by the Lrrk2-Dvl complex 

[244]. 

Figure 25: Co-expression of Lrrk2 together with Prickle1 

results in their translocation into puncta structures 

where they co-localize. These structures were not 

endocytic vesicles. The scale bar is 20µm. 
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 Lrrk2 co-localized with the other partners in cell-cell contacts (Celsr1), cytoplasm 

(Cullin3, JIP3), and in lamellipodia (Flotillin-2). We also observed that overexpression of 

Lrrk2 alone inhibits Wnt/β-catenin signaling, which is dependent on its Roc-COR 

domains. We further showed by IF and TOPFlash assay that Prickle1-Lrrk2 complex 

forms signalosomes which can either activate or inhibit the Wnt/β-catenin signaling, and 

thus act as a dual regulators of Wnt/PCP and Wnt/β-catenin signaling. The activity of 

Prickle1-Lrrk2 complex was modulated by the presence of Dvl2, which seems to 

compete with Prickle1 for the binding to Lrrk2. These data were confirmed by the 

functional experiments in X. laevis where Lrrk2 overexpression not only inhibited the 

Wnt/β-catenin pathway, but also induced a shortening of the A-P body axis (Figure 26), 

which identified Lrrk2 is a novel regulator of the Wnt/PCP signaling in vivo.  

Altered protein levels and localization of Lrrk2 within a cell may be an important 

determinant for the function and regulation of Lrrk2 activity. It is currently thought that 

different temporal and spatial events might greatly affect Lrrk2 signaling, and may result 

in apparently contradictory biochemical assays or read-outs [295]. Our data show that 

Lrrk2 inhibits the Wnt/β-catenin signaling and activates Wnt/PCP signaling pathway 

during development, as supported by its interaction with multiple Wnt/PCP regulatory 

components. We show that the composition of Lrrk2 complexes greatly affects its 

activity and localization. Moreover, we found that Lrrk2 and its binding partner Prickle1 

can act as dual regulators of Wnt/PCP and Wnt/β-catenin signaling pathways, in a 

fashion that can be modulated by Dvl2. We hypothesize that the vulnerability of mDA 

neurons in patients carrying Lrrk2 mutations might be caused by the defective Lrrk2 

regulation of the Wnt signaling pathways. Taking together, our observations identify 

multiple novel Wnt/PCP interactors of Lrrk2, and suggest that a deregulation of distinct 

Wnt signaling pathways may contribute to the pathogenesis of PD. 

 

Figure 26: Overexpression of Lrrk2 inhibits Wnt/β-catenin signaling and causes 

Wnt/PCP defects in X. laevis development. 
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4 CONCLUDING REMARKS AND PERSPECTIVES 

In this thesis we discovered a few novel regulators of Wnt/Planar cell polarity pathway such 

as Lrrk2 and SorCS2, and explored some of the possible molecular mechanisms by which 

they control vertebrate embryogenesis, the development of dopaminergic neurons and 

their function. We used several methodological approaches, including RNA sequencing, 

proteomics, CRISPR/Cas9 technology, imagining techniques, genetic manipulations of 

zebrafish and Xenopus embryos, transgenic mice, and analysis of human tissue in order to 

obtain a broad perspective of the molecular mechanisms and functions controlled by the 

Wnt/PCP signaling. Our discoveries thus contribute to better understanding of the Wnt 

signaling pathways in multiple cellular processes during embryogenesis, brain and mDA 

neuron development as well as neuronal degeneration in PD.  

I would like to finish this thesis with speculative, but not less important thoughts: 

Parkinson’s disease seemed simple but turned out complicated. “An essay on shaking 

palsy”, a classification of the motoric PD symptoms as a disease, was written by James 

Parkinson in 1817 [296]. More than 200 years later, in 2018, we still do not know the cause 

of the disease, and whether the dopaminergic neurons degenerate because they are 

dysfunctional or because their microenvironment gives them false or toxic inputs. Likely? 

Both. But similarly, we do not know the onset of the mDA neurons degeneration. Some 

Parkinson’s disease patients have been diagnosed with the motoric symptoms in their 

thirties and thus have more than 50% of their SNpc DA populations already lost. Should we 

thus exclude the possibility that an impaired development of mDA neurons might contribute 

to the increased vulnerability of mDA neurons in the adulthood or to their decreased ability 

to deal with stressful conditions such as oxidative stress or protein misfolding? Additionally, 

we also face the lack of reliable diagnostic screening. Nowadays, Parkinson’s disease is 

confirmed only in the postmortem brains. Will the onset of the PD pathology be detected in 

the brains of young people if we develop more sensitive diagnostic systems? This remains to 

be seen. 

Parkinson’s disease affects about 1.5% of the population over 65 years, and thus aging 

seems to be a major factor contributing to the disease onset and progression. So you might 

ask: “Why shall we care about the development?” During a disease, the expression of 

particular genes or the function of proteins is altered, but these events should not be seen 

as irreversible. Upon an injury, cells often attempt to respond but cannot do that in the 

exactly same way as they were capable during development. Interestingly, the first 

detectable α-synuclein aggregates and the simultaneous worsening of the smell are 

localized in highly neurogenic brain area, in olfactory bulbs [297]. It has been shown that 

this dopaminergic pool can be functionally restored in PD mouse model by induction of 
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adult neurogenesis [297]. The rejuvenation and reactivation of developmental programs in 

somatic cells, as e.g. performed during iPS reprogramming by Yamanaka’s protocol [298], 

may endow cells the capacity to “come-back” and participate in tissue repair or 

regeneration by activating specific developmental events. I think that a detailed 

understanding of cell signaling during developmental processes is thus crucial for advances 

in translational research and regenerative medicine [299].  

And last but not least, the importance of Wnts in the adult CNS is currently coming to the 

light with the growing evidence of Wnt regulation of various processes that are involved in 

modulation of brain circuits [13, 300]. Wnt signaling is a family of very complex, tissue 

specific pathways which actively crosstalk with other signaling pathways such as BMP or 

Notch. The “Wnt combinatorics” helps cells to continuously determine various intrinsic and 

extracellular signals, to evaluate them and to trigger specific responses.  I believe that Wnts 

do regulate nigrostriatal circuits since they are key players in their development and their 

expression is maintained during the adulthood. The problem is how to achieve this in a 

selective manner, as a systemic modulation of Wnt signaling may be deleterious. We 

therefore have to design the right tools to address this challenge.  

In my opinion, these are all questions of high importance which should be investigated, as 

well as how the healthy mDA neurons keep their homeostasis before and after their 

integration into the brain circuits. I honestly cannot wait to see the advances of the Wnt 

signaling and Parkinson’s disease research in the future. 

  



 

 49 

5 ACKNOWLEDGEMENTS 

My doctoral studies at Karolinska Institute have been a thrilling journey filled with 

excitement of discovery, prestigious scientific talks, countless laboratorial up- and downs, 

and dynamic interaction with many excellent junior and senior researchers without whom I 

certainly wouldn’t be able to reach this great milestone.  

It goes without a doubt, that the person who is to acknowledge the most is my main 

supervisor prof. Ernest Arenas. Even though my beginning was a bit shaky, you have never 

given up on me, and let me do the research that I’ve always wanted – the biology behind 

the Parkinson’s disease. I have always enjoyed your strong analytical and critical thinking, 

but also the amazing ability to get out of the box and come up with completely crazy, but 

truly fun ideas. Your constant support gave me self-confidence to trust my scientific instincts 

and to follow the creativity and sense for adventure within me, which allowed me to fully 

explore my own thoughts. Indeed, this working style enabled me to grow not only as a 

scientist, but also as a person. I wish that you will mentor many more young researchers 

because you are so good in planting the seeds of curiosity and enthusiasm in anybody you 

are talking with. I also hope that we will go skiing again, because I still need to improve my 

jumping skills :). 

The second most important person to acknowledge is my co-supervisor ass. prof. Víťa Bryja. 

I still remember my interview with you as a bachelor student. I was only twenty and 

incredibly nervous. I didn’t want to order a beer in front of you, which now, retrospectively, 

seems like a miracle that you gave me the chance anyway ;). I hope you know that you are a 

great supervisor who creates fantastic working environment where people are happy, 

helpful and fully productive. Without your continuous support, I wouldn’t be where I am 

now. Thank you for your friendship, and I hope we will continue our (Wnt) interactions in 

the future.  

The last year of my PhD was a roller coaster when I developed a small project into an 

exciting story. The person to acknowledge the most is prof. Anders Nykjær. Anders, thank 

you so much for the great support, but also for all the funny stories, and the happy evenings 

out with the lab. You have a great gift to make everybody laugh and to feel comfortable. I 

not only appreciate your bright mind, kindness and equality by which you treat everybody, 

but also the fact that for you the person comes always first before the serious business. 

Indeed, it has been a fun ride!:) 

It was a great pleasure to have Dr. Emma Andersson as my co-supervisor. Even though we 

didn’t interact so much, I want you to know that you have been always an outstanding 

example of smart, strong and highly competent young woman scientist who literally 

manages everything she aims for (at least in my eyes :)). I hope that your enthusiasm and 

hard-work will guide you to the great future. 



 

50 

I have spent the majority of my research at the division of Molecular Neurobiology 

(MolNeuro) which is a pretty atypical place, with a dynamic development and a high 

concentration of broad knowledge. In particular, I would like to thank all the group leaders, 

professors Ernest Arenas, Patrik Ernfors, Sten Linnarsson, Per Uhlén, and Tibor Harkany, as 

well as to the junior PIs Gonçalo Castello-Branco, Jens Hjerling-Leffler, and Ulrika 

Marklund, for leading MolNeuro through the tough challenges towards the ground-breaking 

research. I also thank people responsible for running MolNeuro, Alessandra Nanni for all 

the great administrative work, kindness and your open heart; Johny Söderlund for being a 

fantastic colleague, for the jokes , and for always solving the problems before they even 

occurred; and Ahmed Moshref for keeping up the great work. Next, I’d like to thank all 

present and past MolNeuro members, you are truly awesome! In particular, I’d like to thank: 

EA group: Spyros Theofilopoulos, for the great discussions, beer nights and football games, 

for all the jokes, and the lunches at 10am. I hope that our paths will meet again. Karol 

Kaiser, for your bottomless energy, curiosity, and the humor by which you lifted the stress 

levels at MolNeuro. Also thanks for your incredible ineptitude which always turns into great 

party stories. Shanzheng Yang for being such a sweet and kind colleague and friend, for your 

bright mind, discussions and great laughs. Chika Yokota, for your kind friendship, all the nice 

chats, and for your important contribution to my PhD projects which really made the 

difference! Geeta Ravindran, who was like my lab mum, always taking care of me; I loved 

our office-time together! Carmen Salto, who is the true heart of the lab, for your kindness 

and help with everything. Daniel Gyllborg, for your 200% productivity and making me 

tolerate dance music :). Kaneyasu Nishimura for your enthusiasm and careful work, as well 

as your kindness. Willy Oliveira for the fun days and your friendship. Lottie Jansson 

Sjöstrand for being such a great lab-mate and for all the interesting discussions. Pia Rivetti 

di Val Cervo for giving new standards to the term hard-work and for being always on top of 

your research. Enrique Toledo for your love for computing, and the patience with my IT 

anti-skills. Dawei Zhang for always being in a good mood. Isabel Martin Caballero for our 

scientific discussions and chats. Mark Denham and Fabia Febbraro for re-connecting in 

Aarhus. Carlos J. Villeascusa for your help, scientific discussions and feedback during the 

seminars.  

PE group: Prof. Patrik Ernfors for your sharp mind and fun lunch discussions. Daohua Lou 

for your honest friendship, all the up and downs we went through together, all the laughs 

and exciting exchanges about our cultures. Lili Li for your big heart, your kindness and for 

your friendship. Changgeng Peng for being a great friend, and for all the interesting 

discussions during the weekend lab-lunches. Mitya Usoskin for keeping the Slavic 

contribution at MolNeuro, for your interesting perspectives, enthusiasm, and the passion 

for skiing. Boris Eleuteri, my favorite Italian office-mate, whose knowledge and skills in 

biochemistry has been exemplary to me. Thanks for creating a sweet little Italy in the office. 



 

 51 

Anneke Navis for your great help with CRISPR/Cas9 and your interest in skating and horn 

playing. Moritz Lübke for creating the core of MolNeuro, it’s not the same without you 

anymore! Dongok Kwak for your clear mind, helpfulness and kindness. Hind Abdo for being 

a sweet colleague and for the awesome hat you gave me! Albert “Blanchi” Blanchart for 

your lively character, cool discussions and great work. Mingdong Zhang for exchanging our 

PhD experiences through-out these years. Puneet Rinwa for your funny jokes and 

interesting inputs. Jana Sontheimer for fantastic manager skills and helpfulness.  Alessandro 

Furlan for interesting discussions and the structured complains. Martin Häring for your 

calmness and the love for chocolate.  

PU group: Prof. Per Uhlén for your kindness and the great CLICK facility. Ivar Dehnisch for 

the fun stories and jokes, and for your open-mindedness. Manuel Varas for your 

contribution to my project, pure heart, longing friendship, and the crazy fun we had 

together. Erik Smedler for being a nice office-mate and a good colleague. Paola Rebellato 

for your friendship and for having a great time sharing the office. Shigeaki and Sachie 

Kanatani, for your bright insights, your kindness and helpfulness. Songbai Zhang for our 

western blotting time together, and for your awesome jokes. Göran Månsson for all the 

great chats about sports, adventures or simply anything else. Nicholas Fritz for organizing a 

great career course, and for all the nice discussions. Dagmara Kaczynska for your Slavic 

sense of humor and all the fun we had in Japan. Lauri Louhivuori for all the interesting 

discussions and nice time in the lab. Connla Edwards for doing a great job with the CLICK 

facility and for your rowing passion.  

SL group: Prof. Sten Linnarsson for your stoicism and advances in RNA sequencing. Lars 

Borm for being an awesome and fun friend, for your kindness and for your shared passion 

for skating and hockey. Simone Codeluppi for being a great colleague who is always ready 

to help others or discuss anything over a coffee. I still don’t understand how you can 

perform on such high levels all the time! Hannah Hochgerner for having a sweet nature, 

being helpful and have always smile to spare. Amit Zeisel for being yourself at all times and 

for having solid opinions. Peter Lönnerberg for the chats about the Nordic skating. Anna 

Johnsson for all the interesting discussions and for standing behind your opinions. Kasper 

Karlsson for having you around and for the nice chats. Job van der Zwan for all the fun 

discussions and parties. Gioele La Manno for the midbrain sequencing and all the 

discussions. 

JHS group: Jens Hjerling-Leffler for all the great courses your organized. Ana Marííí Munóz 

Manchado for your great friendship, dinners and simply all the years we shared together. 

It’s amazing to watch you climbing the career ladder because you truly deserve a big success 

for all your ideas and hard work! Hermany Munguba for your friendship, and all the fun 

time we spent together. Carolina Bengtsson Gonzales for your dedication to MolNeuro and 



 

52 

your hug times. Kasra Nikouei for our chats and party times. Nathan Skene for your bright 

opinions and enthusiasm about science. 

GCB group: Gonçalo Castello-Branco for the high quality courses and symposiums you 

organized as well as for the cool discussions and social activities at MolNeuro. Ana 

Mendanha Falçao for your friendship, your pureness of heart, as well as all the good and 

bad times that we went through. Sueli Marques Spencer for being a great office-mate and a 

friend, and for your incredible cooking skills. Marek Bartošovič for maintaining the 1% 

Czechoslovakian presence at MolNeuro, and for your love to climb. David van Bruggen for 

all the nice chats and great parties. Mandy Meijer for being a sweet office-mate and for 

taking care of Daniel! Samudyata for your sharp focus and the love for comics. Elisa 

Floriddia for fighting the postdoc rights, for all your activities and hard work.  

UM group: Ulrika Marklund for your calm nature and kindness. An awesome office-mate 

and friend, Fatima Memic, who always makes my day brighter - not mentioning the 

incredible cakes! My sweet Austrian friend Viktoria Knoflach, thank you for the fun parties, 

big laughs, shared worrying about Karol, and the love for mountains and skiing.  

Next, I would like to thank Gunnar Schulte, who was in my half-time committee and gave 

me a through-out feedback about my Wnt research. I also want to thank the other two 

members of my half-time board, Eva Hedlund and prof. András Simon for their valuable 

questions, inputs and enthusiasm by which they supported me. I also thank Michael Andäng 

for the work on the Fucci project, and scientific advices, and prof. Ola Hermanson for having 

him as my mentor and for simply being cool. 

During my PhD studies, I spent 3-months in Víťa Bryja’s lab in Czech Republic and 11-months 

in Anders Nykjær lab in Denmark. In both labs, I received incredibly warm welcome, big 

experimental help, and had indeed a memorable time. In particular, I would like to thank: 

Masaryk University, Czech republic: Ondra Bernatík for your sarcasm, experimental help 

and for your realistic thinking. Zankruti Dave for your great work and curiosity about science 

and the world around you.  Jakub “James” Harnoš for being an incredibly funny and sweet 

bíťák, for all our gaming and inappropriate jokes! Tomek Radaszkiewicz for your help with 

CRISPRs, for your awesome beers and funny jokes. Kasia Radaszkiewicz for your friendship, 

your sweetness, and for taking care of Tomek. Pája Janovská for your hard-work and 

enthusiasm. Katka Straková for fighting your way through the Frizzled project. Lucka 

Smyčková and Bára Valnohová for being very helpful and sweet at any time of the day. 

Honza Kučera for being awesome and for having you in Stockholm for a little bit. Jožka 

Večeřa for all our discussions, climbing time and beers on the boat. Zuzanka Šrámková for 

your friendship and for being always yourself. Pavel Hyršl for being such a good friend and 

for organizing stuff when you are in Stockholm. And the Wnt master of all times, Lukáš 



 

 53 

Čajánek :) Thank you for replying my million emails when I joined the EA lab, your sharp 

thinking, your friendship, and for the fun times we had together. 

Aarhus University, Denmark: Susanne Schousboe Sjøgaard for being 200% productive, for 

fixing any problem that I come up with, and for being a great office-mate. Pernille 

Thomasen, Karen Marie Sørensen, Niels Kjærgaard Madsen and Peter Ovessen for all the 

experimental help, shared PhD stories and the fun evenings out! Anja Aagaard Danneskjold 

Pedersen, Benedicte Vestergaard, and Anne Kerstin Thomassen for being awesome 

technicians. Kasper Kjær-Sørensen  for introducing me to zebrafish. Karen-Marie Pedersen, 

Hande Login, Mikhail Paveliev and Anne Kathrine Sørenssen for being great lab-mates. 

Olav Andersson for your friendship, for your critical questions about my data, and for all the 

fun times ahead of us. Kerstin Imrell for your friendship and all the great discussions we had 

together. Mariam Mahmoud, Sergío Almeida, Sara Ferreira, and Giulia Monti for your 

friendship. And to the rest of Biomedicine and Dandrite. 

When you live abroad without a family, it feels very lonely at first. But once you meet the 

right people, you gain an extra family instead. Thus, I would like to thank all my friends from 

Stockholm who supported me during these years: 

Our tiny Czech community, namely Simča Hankeová for being a great example of a talented 

young scientist with good senses for partying. Igor Červenka and Janča Valnohová for all the 

possible aliquots you got me, your long friendship, and the maintenance of Bryja lab powers 

at KI. Katarina Tiklová for being like an older sister to me, always sparing the time for me 

and for all the beautiful shared memories. Petra Sekyrová for all the struggles, discussions 

and nice times we had together. Maciej Szeszula for the climbing lessons and for your “bad” 

jokes. Tom Drápal, for our won and lost battles, but importantly, for the fun and the 

adventure that came with it. Tom Matras for having a true friend in you and for all the past 

and future trips. Jarda Zaoral for your adventure spirit. 

Our formal floorball team, Pawel Modewski, Robko Hovorka, Vivek Sharma, Voravit 

Tanyingyong, Abi Singh, and Yasar Al-Mosawi who filled my days with joy, and made me 

feel good in Sweden. I miss you guys a lot, we should start playing again! 

My many awesome KI friends - I own you a lot for being on the same boat with me. You 

made my time in Stockholm unforgettable: Teresa Fernandez Zafra, for your pure 

friendship, big heart, and all the strong and never ending encouragements when I struggled 

the most. Thank you for everything and mostly for being you! Yildiz Kelahmetoglu for the 

beautifulness you carry within everywhere you go, for your bright head, for your creativity, 

enthusiasm and the drive that you handle things. Jorge Correia, the man I know since I 

moved to Stockholm :) Thanks for all the beers, board-gaming and other fun stuff we did 

together. Kuba Lewicki, my Biomedicum pub mate, an Adobe Illustrator freak, a hipster, but 



 

54 

most importantly, a totally awesome friend. Thank you for all the fun times we had 

together, I’m awaiting for some more! Jesse Coleman for spending only few weeks with you 

but gaining a life-longing friend! Thanks for all the awesomeness! Susie Neumann for your 

indescribable jokes, for your bright mind, perfection and your loving heart. Joanne Bakker, 

the one of the three people who have ever read my thesis :D, for your kind heart, your big 

dedication, and your energy which can move rocks.  Gonçalo Brito for your coolness, a kind 

heart and great organization skills. Erik Keimpema for your friendship, the beer nights, and 

the fun discussions. Manideep Gupta for your rare, sensible character, for the true 

friendship, caring, and for all the fun events. Paula Valente de Silva for your friendship, and 

the ability to see unicorns all around you. Sandra Petru Reuer for your dedication, craziness 

and your bright head. Luismi Nino for all the good times! Ilgar Abdullayev for your kind 

heart, the big strength within, and the cool discussions. Junwei Zhang for the great jokes 

and your cooking skills! Jonathan Mudry for your adventure spirit and sport personality 

which brought us together. Erik Müllers for never given up on me and inviting me for 

events. Thank you for all the fun discussions and the great old times! Helena Silva Cascales 

for your amazing enthusiasm, your energy and the happiness you spread around. Kasia 

Maleńczyk for all the fun in the good times! Igor Adameyko for being so inspiring. Theresa 

Madler and Tom Reichenbach for your sweet friendship and nice times together. Mauricio 

Barrientos for your positive attitude and fun events. Alex Bersellini Farinotti for being very 

capable, and the most chick man I know. Anas Kamleh, Marin Jukic, Javier Avila Cariño, 

Carmen Fou, and Olivia Miossec for your friendship, good work and the fun times.  

To my best friends in Czech Republic who have always stood besides me, and kept me 

connected with my home:  

Také děkuji svým nejlepším kamarádům z Česka, kteří při mě stáli po celou dobu studia a 

představovali pro mě to nejdůležitější – spojení s domovem. Děkuji Martince Fajmonové, 

Tadeáškovi, Magdalénce, Zdeňkovi Fajmonovi, a Terezce Černé za lásku a všechny super 

výlety, na které jsme spolu vyrazili a ještě vyrazíme! Děkuji Míši Píchové za moji Pražskou 

spojku, za všechny věci minulé i budoucí. Děkuji Renatce Svorové za neutuchající podporu a 

za to, že ať se děje co se děje, nic se mezi námi nezmění. Děkuji Pavlince Čapkové za 

celoživotní přátelství a za všechny milé noční návštěvy. Děkuji Janči Daňkové za kopec 

srandy, kterou si vždycky spolu užijem. Děkuji Davídkovi Bednářovi za to, že jsi :). Děkuji 

všem Vajzarům na Tisovce, doma u Jandů v Prachatisích a u Drápalů v Třebíčí, za všechnu 

lásku, podporu a přátelství, které ste mi za ty roky projevili. A taky za ten rum a víno, co se 

vypilo :).  

  



 

 55 

From all my heart, I also want to thank my boyfriend Giuseppe Santopolo, for an incredible 

support, encouragement, care and love that you are constantly doping me with. Thank you 

for always being besides me, in good and bad times, with laughter or tears. Thank you for 

our countless, stimulating scientific and non-scientific discussions. You are an amazing 

human being, and a great scientist (trust me, I’m a biologist ;))!  

Vorrei anche ringraziare la famiglia e gli amici di Giuseppe, che mi hanno accolta a braccia 

aperte e coi quali mi sento come a casa. Voglio ringraziare in particolare i suoi genitori, Anna 

Colosimo e Vincenzo Santopolo per la loro gentilezza e le loro battute, che a volte possono 

essere capite anche senza bisogno di tradurle :); Daniela Santopolo per la sua natura 

esuberante e viaggiatrice; e Lina Colosimo e Marianna Commisso per la loro dolcezza ed il 

loro supporto. 

Last but not least, I would like to thank all my family, particularly my parents, who have 

been incredibly understanding, and supported me all these years when I was abroad:  

A to nejdůležitější nakonec. Ráda bych na tomto místě z celého srdce poděkovala své 

nejbližší rodině, především taťuldovi Petru Salaši a mamince Aleně Salašové, ale také svým 

prarodičům Eduardu Salaši, Karlu Prokopovi a Jarmilce Prokopové, a bráškovi Kubovi 

Salaši, za všechnu jejich lásku, podporu, trpělivost a sebeodříkání za posledních 7 let mého 

pobytu v zahraničí. Ste nejlepší a bez vás by to nešlo! Dále bych ráda poděkovala ujkovi 

Lukášovi “Honzovi” Prokopovi, tetě Ivě Kochové, Monči Kochové a Jurovi Laborovi za to, že 

k sobě patříme, a že si vždy užijem spoustu srandy. 





 

 57 

6 REFERENCES 

1. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, Nathans J, Tessier-Lavigne M, Zou 

Y: Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science (New 

York, NY) 2003, 302:1984-1988. 

2. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, Zou Y: Ryk-mediated Wnt repulsion 

regulates posterior-directed growth of corticospinal tract. Nature neuroscience 2005, 8:1151-1159. 

3. Jansson L, Kim GS, Cheng AG: Making sense of Wnt signaling-linking hair cell regeneration to 

development. Frontiers in cellular neuroscience 2015, 9:66. 

4. Niehrs C: The complex world of WNT receptor signalling. Nature reviews Molecular cell biology 

2012, 13:767-779. 

5. Wurst W, Bally-Cuif L: Neural plate patterning: upstream and downstream of the isthmic 

organizer. Nature reviews Neuroscience 2001, 2:99-108. 

6. Kobitski AY, Otte JC, Takamiya M, Schafer B, Mertes J, Stegmaier J, Rastegar S, Rindone F, 

Hartmann V, Stotzka R, et al: An ensemble-averaged, cell density-based digital model of zebrafish 

embryo development derived from light-sheet microscopy data with single-cell resolution. 
Scientific reports 2015, 5:8601. 

7. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development 

of the zebrafish. Developmental dynamics : an official publication of the American Association of 

Anatomists 1995, 203:253-310. 

8. Arenas E: Wnt signaling in midbrain dopaminergic neuron development and regenerative 

medicine for Parkinson's disease. Journal of molecular cell biology 2014, 6:42-53. 

9. Toledo EM, Gyllborg D, Arenas E: Translation of WNT developmental programs into stem cell 

replacement strategies for the treatment of Parkinson's disease. British journal of pharmacology 

2017, 174:4716-4724. 

10. Evsyukova I, Plestant C, Anton ES: Integrative mechanisms of oriented neuronal migration in the 

developing brain. Annual review of cell and developmental biology 2013, 29:299-353. 

11. Butler MT, Wallingford JB: Planar cell polarity in development and disease. Nature reviews 

Molecular cell biology 2017, 18:375-388. 

12. Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a 

provirus integrated in the same region of the host genome. Cell 1982, 31:99-109. 

13. Oliva CA, Montecinos-Oliva C, Inestrosa NC: Wnt Signaling in the Central Nervous System: New 

Insights in Health and Disease. Progress in molecular biology and translational science 2018, 

153:81-130. 
14. Angers S, Moon RT: Proximal events in Wnt signal transduction. Nature reviews Molecular cell 

biology 2009, 10:468-477. 

15. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ: Neural tube closure: cellular, molecular 

and biomechanical mechanisms. Development 2017, 144:552-566. 

16. Bryja V, Cervenka I, Cajanek L: The connections of Wnt pathway components with cell cycle and 

centrosome: side effects or a hidden logic? Critical reviews in biochemistry and molecular biology 

2017, 52:614-637. 

17. Bertoli C, Skotheim JM, de Bruin RA: Control of cell cycle transcription during G1 and S phases. 

Nature reviews Molecular cell biology 2013, 14:518-528. 

18. Faragher AJ, Fry AM: Nek2A kinase stimulates centrosome disjunction and is required for 

formation of bipolar mitotic spindles. Molecular biology of the cell 2003, 14:2876-2889. 

19. Clevers H, Loh KM, Nusse R: Stem cell signaling. An integral program for tissue renewal and 

regeneration: Wnt signaling and stem cell control. Science (New York, NY) 2014, 346:1248012. 

20. Acebron SP, Karaulanov E, Berger BS, Huang YL, Niehrs C: Mitotic wnt signaling promotes protein 

stabilization and regulates cell size. Molecular cell 2014, 54:663-674. 

21. Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, 

Niehrs C: Cell cycle control of wnt receptor activation. Developmental cell 2009, 17:788-799. 

22. Alexandrova EM, Sokol SY: Xenopus axin-related protein: a link between its centrosomal 

localization and function in the Wnt/beta-catenin pathway. Developmental dynamics : an official 

publication of the American Association of Anatomists 2010, 239:261-270. 

23. Fumoto K, Kadono M, Izumi N, Kikuchi A: Axin localizes to the centrosome and is involved in 

microtubule nucleation. EMBO reports 2009, 10:606-613. 

24. Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB: Dishevelled controls apical docking and 

planar polarization of basal bodies in ciliated epithelial cells. Nature genetics 2008, 40:871-879. 

25. Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A: Dishevelled, a Wnt signalling component, is 

involved in mitotic progression in cooperation with Plk1. The EMBO journal 2010, 29:3470-3483. 



 

58 

26. Lee KH, Johmura Y, Yu LR, Park JE, Gao Y, Bang JK, Zhou M, Veenstra TD, Yeon Kim B, Lee KS: 

Identification of a novel Wnt5a-CK1varepsilon-Dvl2-Plk1-mediated primary cilia disassembly 

pathway. The EMBO journal 2012, 31:3104-3117. 

27. Endo M, Ubulkasim G, Kobayashi C, Onishi R, Aiba A, Minami Y: Critical role of Ror2 receptor 

tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury. 
Glia 2017, 65:182-197. 

28. Jin Y, Ren N, Li S, Fu X, Sun X, Men Y, Xu Z, Zhang J, Xie Y, Xia M, Gao J: Deletion of Brg1 

causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse 

cochlea. Scientific reports 2016, 6:27124. 
29. Bhonker Y, Abu-Rayyan A, Ushakov K, Amir-Zilberstein L, Shivatzki S, Yizhar-Barnea O, Elkan-

Miller T, Tayeb-Fligelman E, Kim SM, Landau M, et al: The GPSM2/LGN GoLoco motifs are 

essential for hearing. Mammalian genome : official journal of the International Mammalian Genome 

Society 2016, 27:29-46. 

30. Minegishi K, Hashimoto M, Ajima R, Takaoka K, Shinohara K, Ikawa Y, Nishimura H, McMahon AP, 

Willert K, Okada Y, et al: A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP 

Proteins Polarize Node Cells for Left-Right Symmetry Breaking. Developmental cell 2017, 40:439-

452.e434. 

31. Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, Andre P, Robinson J, Sood R, Minami Y, 

et al: Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation 

through Ror2. Developmental cell 2011, 20:163-176. 

32. Ossipova O, Chuykin I, Chu CW, Sokol SY: Vangl2 cooperates with Rab11 and Myosin V to 

regulate apical constriction during vertebrate gastrulation. Development 2015, 142:99-107. 

33. Ossipova O, Kim K, Lake BB, Itoh K, Ioannou A, Sokol SY: Role of Rab11 in planar cell polarity 

and apical constriction during vertebrate neural tube closure. Nat Commun 2014, 5:3734. 

34. Berger H, Breuer M, Peradziryi H, Podleschny M, Jacob R, Borchers A: PTK7 localization and 

protein stability is affected by canonical Wnt ligands. Journal of cell science 2017. 

35. Cho B, Pierre-Louis G, Sagner A, Eaton S, Axelrod JD: Clustering and negative feedback by 

endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle. PLoS 

genetics 2015, 11:e1005259. 

36. Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T: Association of Dishevelled with 

the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. 
Developmental cell 2007, 12:129-141. 

37. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC: 

Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. 
The Journal of biological chemistry 2008, 283:5918-5927. 

38. Tada M, Heisenberg CP: Convergent extension: using collective cell migration and cell 

intercalation to shape embryos. Development 2012, 139:3897-3904. 

39. Shindo A: Models of convergent extension during morphogenesis. Wiley interdisciplinary reviews 

Developmental biology 2018, 7. 

40. Onishi K, Shafer B, Lo C, Tissir F, Goffinet AM, Zou Y: Antagonistic functions of Dishevelleds 

regulate Frizzled3 endocytosis via filopodia tips in Wnt-mediated growth cone guidance. The 

Journal of neuroscience : the official journal of the Society for Neuroscience 2013, 33:19071-19085. 

41. Shafer B, Onishi K, Lo C, Colakoglu G, Zou Y: Vangl2 promotes Wnt/planar cell polarity-like 

signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. 
Developmental cell 2011, 20:177-191. 

42. Mentink RA, Middelkoop TC, Rella L, Ji N, Tang CY, Betist MC, van Oudenaarden A, Korswagen 

HC: Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. 

Developmental cell 2014, 31:188-201. 

43. Yu J, Chen L, Cui B, Widhopf GF, 2nd, Shen Z, Wu R, Zhang L, Zhang S, Briggs SP, Kipps TJ: 

Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and 

proliferation. The Journal of clinical investigation 2015. 

44. Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G: A noncanonical Frizzled2 

pathway regulates epithelial-mesenchymal transition and metastasis. Cell 2014, 159:844-856. 

45. Harada T, Yamamoto H, Kishida S, Kishida M, Awada C, Takao T, Kikuchi A: Wnt5b-associated 

exosomes promote cancer cell migration and proliferation. Cancer science 2017, 108:42-52. 
46. Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM: Material Cues as Potent 

Regulators of Epigenetics and Stem Cell Function. Cell stem cell 2016, 18:39-52. 

47. Hebsgaard JB, Nelander J, Sabelstrom H, Jonsson ME, Stott S, Parmar M: Dopamine neuron 

precursors within the developing human mesencephalon show radial glial characteristics. Glia 

2009, 57:1648-1658. 

48. Bonilla S, Hall AC, Pinto L, Attardo A, Gotz M, Huttner WB, Arenas E: Identification of midbrain 

floor plate radial glia-like cells as dopaminergic progenitors. Glia 2008, 56:809-820. 



 

 59 

49. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, Borm LE, Stott SR, Toledo 

EM, Villaescusa JC, et al: Molecular Diversity of Midbrain Development in Mouse, Human, and 

Stem Cells. Cell 2016, 167:566-580.e519. 

50. Kikuchi A, Yamamoto H, Sato A, Matsumoto S: New insights into the mechanism of Wnt signaling 

pathway activation. International review of cell and molecular biology 2011, 291:21-71. 

51. Georgopoulos NT, Kirkwood LA, Southgate J: A novel bidirectional positive-feedback loop between 

Wnt-beta-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue 

regeneration. Journal of cell science 2014, 127:2967-2982. 

52. Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A: FGF/MAPK/Ets signaling renders 

pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf 

transcription. Development 2011, 138:1421-1432. 

53. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, Bryja V, Arenas E, Choi KY: Valproic 

acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-

catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC cell biology 2008, 9:66. 

54. Singh S, Mishra A, Bharti S, Tiwari V, Singh J, Parul, Shukla S: Glycogen Synthase Kinase-3beta 

Regulates Equilibrium Between Neurogenesis and Gliogenesis in Rat Model of Parkinson's 

Disease: a Crosstalk with Wnt and Notch Signaling. Molecular neurobiology 2018. 

55. Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, Gavaghan DJ, Byrne HM: The 

role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS 

computational biology 2017, 13:e1005400. 

56. Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD: The Notch intracellular 

domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. 
Biochimica et biophysica acta 2016, 1863:303-313. 

57. Perez VA, Ali Z, Alastalo TP, Ikeno F, Sawada H, Lai YJ, Kleisli T, Spiekerkoetter E, Qu X, Rubinos 

LH, et al: BMP promotes motility and represses growth of smooth muscle cells by activation of 

tandem Wnt pathways. The Journal of cell biology 2011, 192:171-188. 

58. Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, Cernohorsky NH, Krejci P, Stricker 

S, Bryja V: A Novel Role for the BMP Antagonist Noggin in Sensitizing Cells to Non-canonical 

Wnt-5a/Ror2/Disheveled Pathway Activation. Frontiers in cell and developmental biology 2017, 

5:47. 

59. Munnamalai V, Fekete DM: Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse 

cochlea in a spatiotemporal manner. Development 2016, 143:4003-4015. 
60. Salasova A, Yokota C, Potesil D, Zdrahal Z, Bryja V, Arenas E: A proteomic analysis of LRRK2 

binding partners reveals interactions with multiple signaling components of the WNT/PCP 

pathway. Molecular neurodegeneration 2017, 12:54. 

61. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, 

Aaronson SA: Canonical and noncanonical Wnts use a common mechanism to activate completely 

unrelated coreceptors. Genes & development 2010, 24:2517-2530. 

62. Bin-Nun N, Lichtig H, Malyarova A, Levy M, Elias S, Frank D: PTK7 modulates Wnt signaling 

activity via LRP6. Development 2014, 141:410-421. 

63. Cruciat CM: Casein kinase 1 and Wnt/beta-catenin signaling. Current opinion in cell biology 2014, 

31:46-55. 

64. Cajanek L, Ganji RS, Henriques-Oliveira C, Theofilopoulos S, Konik P, Bryja V, Arenas E: Tiam1 

regulates the Wnt/Dvl/Rac1 signaling pathway and the differentiation of midbrain dopaminergic 

neurons. Molecular and cellular biology 2013, 33:59-70. 

65. Lindqvist M, Horn Z, Bryja V, Schulte G, Papachristou P, Ajima R, Dyberg C, Arenas E, Yamaguchi 

TP, Lagercrantz H, Ringstedt T: Vang-like protein 2 and Rac1 interact to regulate adherens 

junctions. Journal of cell science 2010, 123:472-483. 

66. Matsukawa T, Morita K, Omizu S, Kato S, Koriyama Y: Mechanisms of RhoA inactivation and 

CDC42 and Rac1 activation during zebrafish optic nerve regeneration. Neurochemistry 

international 2018, 112:71-80. 

67. Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L, Kuruvilla R, Greenberg ME: Wnt5a-

Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue 

morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 

2012, 109:4044-4051. 
68. Takiguchi G, Nishita M, Kurita K, Kakeji Y, Minami Y: Wnt5a-Ror2 signaling in mesenchymal 

stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. 
Cancer science 2016, 107:290-297. 

69. Sato A, Kayama H, Shojima K, Matsumoto S, Koyama H, Minami Y, Nojima S, Morii E, Honda H, 

Takeda K, Kikuchi A: The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 

and interferon-gamma in colitis. Scientific reports 2015, 5:10536. 



 

60 

70. Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A: Post-translational palmitoylation and 

glycosylation of Wnt-5a are necessary for its signalling. The Biochemical journal 2007, 402:515-

523. 

71. Mason JO, Kitajewski J, Varmus HE: Mutational analysis of mouse Wnt-1 identifies two 

temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a 

mammary cell line. Molecular biology of the cell 1992, 3:521-533. 

72. Vladar EK, Antic D, Axelrod JD: Planar cell polarity signaling: the developing cell's compass. Cold 

Spring Harbor perspectives in biology 2009, 1:a002964. 

73. Willert K, Nusse R: Wnt proteins. Cold Spring Harbor perspectives in biology 2012, 4:a007864. 
74. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, 3rd, Nusse R: Wnt 

proteins are lipid-modified and can act as stem cell growth factors. Nature 2003, 423:448-452. 

75. Mihara E, Hirai H, Yamamoto H, Tamura-Kawakami K, Matano M, Kikuchi A, Sato T, Takagi J: 

Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein 

afamin/alpha-albumin. eLife 2016, 5. 

76. Mulligan KA, Fuerer C, Ching W, Fish M, Willert K, Nusse R: Secreted Wingless-interacting 

molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proceedings 

of the National Academy of Sciences of the United States of America 2012, 109:370-377. 

77. Panakova D, Sprong H, Marois E, Thiele C, Eaton S: Lipoprotein particles are required for 

Hedgehog and Wingless signalling. Nature 2005, 435:58-65. 

78. Gross JC, Chaudhary V, Bartscherer K, Boutros M: Active Wnt proteins are secreted on exosomes. 

Nature cell biology 2012, 14:1036-1045. 
79. Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, Raposo G, Thibault P, Le Borgne R, 

Vincent JP: Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient 

forms independently of exosomes. Traffic 2013, 14:82-96. 

80. Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D, Weber S, Schug A, Raz E, Scholpp S: 

Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 2015, 6:5846. 

81. Wang B, Sinha T, Jiao K, Serra R, Wang J: Disruption of PCP signaling causes limb morphogenesis 

and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum Mol 

Genet 2011, 20:271-285. 

82. Yamaguchi TP, Bradley A, McMahon AP, Jones S: A Wnt5a pathway underlies outgrowth of 

multiple structures in the vertebrate embryo. Development 1999, 126:1211-1223. 

83. Kikuchi A, Yamamoto H, Sato A, Matsumoto S: Wnt5a: its signalling, functions and implication in 

diseases. Acta physiologica (Oxford, England) 2012, 204:17-33. 

84. Hutchins BI, Li L, Kalil K: Wnt-induced calcium signaling mediates axon growth and guidance in 

the developing corpus callosum. Sci Signal 2012, 5:pt1. 

85. Duan X, Gao Y, Liu Y: Ryk regulates Wnt5a repulsion of mouse corticospinal tract through 

modulating planar cell polarity signaling. Cell discovery 2017, 3:17015. 

86. Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M, Inestrosa NC: Wnt-5a 

modulates recycling of functional GABAA receptors on hippocampal neurons. The Journal of 

neuroscience : the official journal of the Society for Neuroscience 2010, 30:8411-8420. 

87. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C, Inestrosa NC: Wnt-5a/JNK 

signaling promotes the clustering of PSD-95 in hippocampal neurons. The Journal of biological 

chemistry 2009, 284:15857-15866. 
88. Yang W, Garrett L, Feng D, Elliott G, Liu X, Wang N, Wong YM, Choi NT, Yang Y, Gao B: Wnt-

induced Vangl2 phosphorylation is dose-dependently required for planar cell polarity in 

mammalian development. Cell research 2017, 27:1466-1484. 

89. Andersson ER, Prakash N, Cajanek L, Minina E, Bryja V, Bryjova L, Yamaguchi TP, Hall AC, Wurst 

W, Arenas E: Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 

dopaminergic cells in vivo. PloS one 2008, 3:e3517. 

90. Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kaiser J, Xie M, Petersen J, Pachnis V, 

Nicolis SK, et al: Analysis of neural crest-derived clones reveals novel aspects of facial 

development. Science advances 2016, 2:e1600060. 

91. van Amerongen R, Fuerer C, Mizutani M, Nusse R: Wnt5a can both activate and repress Wnt/beta-

catenin signaling during mouse embryonic development. Developmental biology 2012, 369:101-

114. 
92. Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS: Role of Wnt5a in the 

proliferation of human glioblastoma cells. Cancer letters 2007, 257:172-181. 

93. Lu C, Wang X, Zhu H, Feng J, Ni S, Huang J: Over-expression of ROR2 and Wnt5a cooperatively 

correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget 

2015, 6:24912-24921. 

94. Zhang GL, Zhang J, Li SF, Lei L, Xie HY, Deng F, Feng JC, Qi JS: Wnt-5a prevents Abeta-induced 

deficits in long-term potentiation and spatial memory in rats. Physiology & behavior 2015, 149:95-

100. 



 

 61 

95. Li X, Guan Y, Chen Y, Zhang C, Shi C, Zhou F, Yu L, Juan J, Wang X: Expression of Wnt5a and its 

receptor Fzd2 is changed in the spinal cord of adult amyotrophic lateral sclerosis transgenic 

mice. International journal of clinical and experimental pathology 2013, 6:1245-1260. 

96. Yuan S, Shi Y, Tang SJ: Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic 

pain. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune 

Pharmacology 2012, 7:904-913. 

97. Zhu A, Shen L, Xu L, Chen W, Huang Y: Wnt5a mediates chronic post-thoracotomy pain by 

regulating non-canonical pathways, nerve regeneration, and inflammation in rats. Cellular 

signalling 2018, 44:51-61. 
98. Wang J, Zhang S, Li L, Zhang L: Involvement of Wnt5a within the cerebrospinal fluid-contacting 

nucleus in nerve injury-induced neuropathic pain. The International journal of neuroscience 2015, 

125:147-153. 

99. White JJ, Mazzeu JF, Coban-Akdemir Z, Bayram Y, Bahrambeigi V, Hoischen A, van Bon BWM, 

Gezdirici A, Gulec EY, Ramond F, et al: WNT Signaling Perturbations Underlie the Genetic 

Heterogeneity of Robinow Syndrome. American journal of human genetics 2018, 102:27-43. 

100. Roifman M, Marcelis CL, Paton T, Marshall C, Silver R, Lohr JL, Yntema HG, Venselaar H, Kayserili 

H, van Bon B, et al: De novo WNT5A-associated autosomal dominant Robinow syndrome 

suggests specificity of genotype and phenotype. Clinical genetics 2015, 87:34-41. 

101. Masiakowski P, Carroll RD: A novel family of cell surface receptors with tyrosine kinase-like 

domain. The Journal of biological chemistry 1992, 267:26181-26190. 

102. Stricker S, Rauschenberger V, Schambony A: ROR-Family Receptor Tyrosine Kinases. Current 
topics in developmental biology 2017, 123:105-142. 

103. Hikasa H, Shibata M, Hiratani I, Taira M: The Xenopus receptor tyrosine kinase Xror2 modulates 

morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. 
Development 2002, 129:5227-5239. 

104. Parodi J, Montecinos-Oliva C, Varas R, Alfaro IE, Serrano FG, Varas-Godoy M, Munoz FJ, Cerpa W, 

Godoy JA, Inestrosa NC: Wnt5a inhibits K(+) currents in hippocampal synapses through nitric 

oxide production. Molecular and cellular neurosciences 2015, 68:314-322. 

105. Alfaro IE, Varela-Nallar L, Varas-Godoy M, Inestrosa NC: The ROR2 tyrosine kinase receptor 

regulates dendritic spine morphogenesis in hippocampal neurons. Molecular and cellular 

neurosciences 2015, 67:22-30. 

106. Paganoni S, Bernstein J, Ferreira A: Ror1-Ror2 complexes modulate synapse formation in 

hippocampal neurons. Neuroscience 2010, 165:1261-1274. 

107. Cerpa W, Latorre-Esteves E, Barria A: RoR2 functions as a noncanonical Wnt receptor that 

regulates NMDAR-mediated synaptic transmission. Proceedings of the National Academy of 

Sciences of the United States of America 2015, 112:4797-4802. 

108. Mikels A, Minami Y, Nusse R: Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A 

signaling. The Journal of biological chemistry 2009, 284:30167-30176. 

109. Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, Tamura S, Ueda T, Hatta T, Otani H, et al: 

Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. 
Genes to cells : devoted to molecular & cellular mechanisms 2000, 5:71-78. 

110. Wang L, Yang D, Wang YH, Li X, Gao HM, Lv JY, Wang L, Xin SJ: Wnt5a and Ror2 expression 

associate with the disease progress of primary thyroid lymphoma. Tumour biology : the journal of 
the International Society for Oncodevelopmental Biology and Medicine 2015. 

111. Schwarzer W, Witte F, Rajab A, Mundlos S, Stricker S: A gradient of ROR2 protein stability and 

membrane localization confers brachydactyly type B or Robinow syndrome phenotypes. Hum 

Mol Genet 2009, 18:4013-4021. 

112. Raz R, Stricker S, Gazzerro E, Clor JL, Witte F, Nistala H, Zabski S, Pereira RC, Stadmeyer L, Wang 

X, et al: The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, 

causing brachydactyly, mediating patterning of joints and modeling recessive Robinow 

syndrome. Development 2008, 135:1713-1723. 

113. Stricker S, Mundlos S: FGF and ROR2 receptor tyrosine kinase signaling in human skeletal 

development. Current topics in developmental biology 2011, 97:179-206. 

114. Akbarzadeh S, Wheldon LM, Sweet SM, Talma S, Mardakheh FK, Heath JK: The deleted in 

brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PloS 
one 2008, 3:e1873. 

115. Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A, Iozumi K, Nishita M, Kikuchi A, 

Takumi T, Minami Y: The receptor tyrosine kinase Ror2 associates with and is activated by casein 

kinase Iepsilon. The Journal of biological chemistry 2004, 279:50102-50109. 

116. Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, Iijima K, Otani H, Hartmann 

C, Nishinakamura R, Minami Y: Role of Wnt5a-Ror2 signaling in morphogenesis of the 

metanephric mesenchyme during ureteric budding. Molecular and cellular biology 2014, 34:3096-

3105. 



 

62 

117. Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y: Wnt5a modulates glycogen synthase 

kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes to cells : devoted to 

molecular & cellular mechanisms 2007, 12:1215-1223. 

118. Witte F, Bernatik O, Kirchner K, Masek J, Mahl A, Krejci P, Mundlos S, Schambony A, Bryja V, 

Stricker S: Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled 

via Ror2. FASEB journal : official publication of the Federation of American Societies for 

Experimental Biology 2010, 24:2417-2426. 

119. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A: Wnt5a regulates distinct signalling 

pathways by binding to Frizzled2. The EMBO journal 2010, 29:41-54. 
120. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, 

Schwabe GC, et al: The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK 

signalling pathway. Genes to cells : devoted to molecular & cellular mechanisms 2003, 8:645-654. 

121. Martinez S, Scerbo P, Giordano M, Daulat AM, Lhoumeau AC, Thome V, Kodjabachian L, Borg JP: 

The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity 

(PCP) Pathway. The Journal of biological chemistry 2015, 290:30562-30572. 

122. Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A: A PTK7/Ror2 Co-Receptor Complex 

Affects Xenopus Neural Crest Migration. PloS one 2015, 10:e0145169. 

123. Brinkmann EM, Mattes B, Kumar R, Hagemann AI, Gradl D, Scholpp S, Steinbeisser H, Kaufmann 

LT, Ozbek S: Secreted frizzled-related protein 2 (sFRP2) redirects non-canonical Wnt signaling 

from Fz7 to Ror2 during vertebrate gastrulation. The Journal of biological chemistry 2016. 

124. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, 
Fisher EM, et al: Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes 

severe neural tube defects in the mouse. Current biology : CB 2003, 13:1129-1133. 

125. Morgan R, El-Kadi AM, Theokli C: Flamingo, a cadherin-type receptor involved in the Drosophila 

planar polarity pathway, can block signaling via the canonical wnt pathway in Xenopus laevis. 
The International journal of developmental biology 2003, 47:245-252. 

126. Boutin C, Goffinet AM, Tissir F: Celsr1-3 cadherins in PCP and brain development. Current topics 

in developmental biology 2012, 101:161-183. 

127. Duncan JS, Stoller ML, Francl AF, Tissir F, Devenport D, Deans MR: Celsr1 coordinates the planar 

polarity of vestibular hair cells during inner ear development. Developmental biology 2017, 

423:126-137. 

128. Shrestha R, Little KA, Tamayo JV, Li W, Perlman DH, Devenport D: Mitotic Control of Planar Cell 

Polarity by Polo-like Kinase 1. Developmental cell 2015, 33:522-534. 

129. Boucherie C, Boutin C, Jossin Y, Schakman O, Goffinet AM, Ris L, Gailly P, Tissir F: Neural 

progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-

deficient mice. Mol Psychiatry 2017. 

130. An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT: A quiescent cell population 

replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun 

2018, 9:378. 

131. Formstone CJ, Mason I: Combinatorial activity of Flamingo proteins directs convergence and 

extension within the early zebrafish embryo via the planar cell polarity pathway. Developmental 

biology 2005, 282:320-335. 

132. Carreira-Barbosa F, Kajita M, Morel V, Wada H, Okamoto H, Martinez Arias A, Fujita Y, Wilson SW, 
Tada M: Flamingo regulates epiboly and convergence/extension movements through cell cohesive 

and signalling functions during zebrafish gastrulation. Development 2009, 136:383-392. 

133. Allache R, De Marco P, Merello E, Capra V, Kibar Z: Role of the planar cell polarity gene CELSR1 

in neural tube defects and caudal agenesis. Birth defects research Part A, Clinical and molecular 

teratology 2012, 94:176-181. 

134. Steimel A, Wong L, Najarro EH, Ackley BD, Garriga G, Hutter H: The Flamingo ortholog FMI-1 

controls pioneer-dependent navigation of follower axons in C. elegans. Development 2010, 

137:3663-3673. 

135. Glasco DM, Pike W, Qu Y, Reustle L, Misra K, Di Bonito M, Studer M, Fritzsch B, Goffinet AM, 

Tissir F, Chandrasekhar A: The atypical cadherin Celsr1 functions non-cell autonomously to block 

rostral migration of facial branchiomotor neurons in mice. Developmental biology 2016, 417:40-

49. 
136. Shimizu K, Sato M, Tabata T: The Wnt5/planar cell polarity pathway regulates axonal 

development of the Drosophila mushroom body neuron. The Journal of neuroscience : the official 

journal of the Society for Neuroscience 2011, 31:4944-4954. 

137. Li X, Wang Y, Wang H, Liu T, Guo J, Yi W, Li Y: Epithelia-derived wingless regulates dendrite 

directional growth of drosophila ddaE neuron through the Fz-Fmi-Dsh-Rac1 pathway. Molecular 

brain 2016, 9:46. 

138. Shnitsar I, Borchers A: PTK7 recruits dsh to regulate neural crest migration. Development 2008, 

135:4015-4024. 



 

 63 

139. Yen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, Lu X, Sutherland A: PTK7 is 

essential for polarized cell motility and convergent extension during mouse gastrulation. 
Development 2009, 136:2039-2048. 

140. Paudyal A, Damrau C, Patterson VL, Ermakov A, Formstone C, Lalanne Z, Wells S, Lu X, Norris DP, 

Dean CH, et al: The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits 

defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear. 
BMC developmental biology 2010, 10:87. 

141. Wehner P, Shnitsar I, Urlaub H, Borchers A: RACK1 is a novel interaction partner of PTK7 that is 

required for neural tube closure. Development 2011, 138:1321-1327. 
142. Na HW, Shin WS, Ludwig A, Lee ST: The cytosolic domain of protein-tyrosine kinase 7 (PTK7), 

generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and 

gamma-secretase, enhances cell proliferation and migration in colon cancer cells. The Journal of 

biological chemistry 2012, 287:25001-25009. 

143. Golubkov VS, Prigozhina NL, Zhang Y, Stoletov K, Lewis JD, Schwartz PE, Hoffman RM, Strongin 

AY: Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis. The 

Journal of biological chemistry 2014, 289:24238-24249. 

144. Liu Q, Zhang C, Yuan J, Fu J, Wu M, Su J, Wang X, Yuan X, Jiang W: PTK7 regulates Id1 

expression in CD44-high glioma cells. Neuro-oncology 2015, 17:505-515. 

145. Peradziryi H, Tolwinski NS, Borchers A: The many roles of PTK7: a versatile regulator of cell-cell 

communication. Archives of biochemistry and biophysics 2012, 524:71-76. 

146. Lu X, Borchers AG, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M: PTK7/CCK-4 is a novel 

regulator of planar cell polarity in vertebrates. Nature 2004, 430:93-98. 

147. Peradziryi H, Kaplan NA, Podleschny M, Liu X, Wehner P, Borchers A, Tolwinski NS: PTK7/Otk 

interacts with Wnts and inhibits canonical Wnt signalling. The EMBO journal 2011, 30:3729-3740. 

148. Hayes M, Naito M, Daulat A, Angers S, Ciruna B: Ptk7 promotes non-canonical Wnt/PCP-

mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during 

vertebrate development. Development 2013, 140:1807-1818. 

149. Lander R, Petersen CP: Wnt, Ptk7, and FGFRL expression gradients control trunk positional 

identity in planarian regeneration. eLife 2016, 5. 

150. Puppo F, Thome V, Lhoumeau AC, Cibois M, Gangar A, Lembo F, Belotti E, Marchetto S, Lecine P, 

Prebet T, et al: Protein tyrosine kinase 7 has a conserved role in Wnt/beta-catenin canonical 

signalling. EMBO reports 2011, 12:43-49. 
151. De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V: Genetic analysis of 

disheveled 2 and disheveled 3 in human neural tube defects. Journal of molecular neuroscience : 

MN 2013, 49:582-588. 

152. Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, 

et al: Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal 

cardiac outflow tract, cochlea, and neural tube development. PLoS genetics 2008, 4:e1000259. 

153. Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien KR, Sussman DJ, 

Wynshaw-Boris A: Dishevelled 2 is essential for cardiac outflow tract development, somite 

segmentation and neural tube closure. Development 2002, 129:5827-5838. 

154. Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford 

JB, Wynshaw-Boris A: Dishevelled genes mediate a conserved mammalian PCP pathway to 

regulate convergent extension during neurulation. Development 2006, 133:1767-1778. 

155. Gao C, Chen YG: Dishevelled: The hub of Wnt signaling. Cellular signalling 2010, 22:717-727. 

156. Gentzel M, Schambony A: Dishevelled Paralogs in Vertebrate Development: Redundant or 

Distinct? Frontiers in cell and developmental biology 2017, 5:59. 

157. Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M: The DIX 

domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature structural & 

molecular biology 2007, 14:484-492. 

158. Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, 

Sedlackova M, Salasova A, et al: Dishevelled is a NEK2 kinase substrate controlling dynamics of 

centrosomal linker proteins. Proceedings of the National Academy of Sciences of the United States of 

America 2016, 113:9304-9309. 

159. Terawaki SI, Fujita S, Katsutani T, Shiomi K, Keino-Masu K, Masu M, Wakamatsu K, Shibata N, 
Higuchi Y: Structural basis for Ccd1 auto-inhibition in the Wnt pathway through 

homomerization of the DIX domain. Scientific reports 2017, 7:7739. 

160. Li X, Roszko I, Sepich DS, Ni M, Hamm HE, Marlow FL, Solnica-Krezel L: Gpr125 modulates 

Dishevelled distribution and planar cell polarity signaling. Development 2013, 140:3028-3039. 

161. Nishita M, Itsukushima S, Nomachi A, Endo M, Wang Z, Inaba D, Qiao S, Takada S, Kikuchi A, 

Minami Y: Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating 

Dishevelled polymerization. Molecular and cellular biology 2010, 30:3610-3619. 



 

64 

162. Liu C, Lin C, Gao C, May-Simera H, Swaroop A, Li T: Null and hypomorph Prickle1 alleles in mice 

phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biology open 

2014, 3:861-870. 

163. Tao H, Suzuki M, Kiyonari H, Abe T, Sasaoka T, Ueno N: Mouse prickle1, the homolog of a PCP 

gene, is essential for epiblast apical-basal polarity. Proceedings of the National Academy of Sciences 

of the United States of America 2009, 106:14426-14431. 

164. Kuss P, Kraft K, Stumm J, Ibrahim D, Vallecillo-Garcia P, Mundlos S, Stricker S: Regulation of cell 

polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 

and WNT5A. Developmental biology 2014, 385:83-93. 
165. Carreira-Barbosa F: Prickle 1 regulates cell movements during gastrulation and neuronal 

migration in zebrafish. Development 2003, 130:4037-4046. 

166. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT: Zebrafish Prickle, a Modulator of 

Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements. Current Biology 2003, 

13:680-685. 

167. Sweetman D, Wagstaff L, Cooper O, Weijer C, Munsterberg A: The migration of paraxial and 

lateral plate mesoderm cells emerging from the late primitive streak is controlled by different 

Wnt signals. BMC developmental biology 2008, 8:63. 

168. Liu C, Lin C, Whitaker DT, Bakeri H, Bulgakov OV, Liu P, Lei J, Dong L, Li T, Swaroop A: Prickle1 

is expressed in distinct cell populations of the central nervous system and contributes to neuronal 

morphogenesis. Hum Mol Genet 2013, 22:2234-2246. 

169. Gibbs BC, Damerla RR, Vladar EK, Chatterjee B, Wan Y, Liu X, Cui C, Gabriel GC, Zahid M, Yagi 
H, et al: Prickle1 mutation causes planar cell polarity and directional cell migration defects 

associated with cardiac outflow tract anomalies and other structural birth defects. Biology open 

2016, 5:323-335. 

170. Zilkha-Falb R, Gurevich M, Hanael E, Achiron A: Prickle1 as positive regulator of oligodendrocyte 

differentiation. Neuroscience 2017, 364:107-121. 

171. Chan DW, Chan CY, Yam JW, Ching YP, Ng IO: Prickle-1 negatively regulates Wnt/beta-catenin 

pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology 

2006, 131:1218-1227. 

172. Tree DR, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD: Prickle mediates feedback 

amplification to generate asymmetric planar cell polarity signaling. Cell 2002, 109:371-381. 

173. Lin YY, Gubb D: Molecular dissection of Drosophila Prickle isoforms distinguishes their essential 

and overlapping roles in planar cell polarity. Developmental biology 2009, 325:386-399. 

174. Sweede M, Ankem G, Chutvirasakul B, Azurmendi HF, Chbeir S, Watkins J, Helm RF, Finkielstein 

CV, Capelluto DG: Structural and membrane binding properties of the prickle PET domain. 

Biochemistry 2008, 47:13524-13536. 

175. Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, et al: 

Mutations in prickle orthologs cause seizures in flies, mice, and humans. American journal of 

human genetics 2011, 88:138-149. 

176. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-

Alegre P, Griesbach HL, et al: A homozygous mutation in human PRICKLE1 causes an 

autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. American journal of human 

genetics 2008, 83:572-581. 
177. Fox MH, Bassuk AG: PRICKLE1-Related Progressive Myoclonus Epilepsy with Ataxia. In 

GeneReviews(R). Edited by Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, 

Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K. Seattle (WA): University of Washington, 

Seattle 

University of Washington, Seattle. All rights reserved.; 1993 

178. Paemka L, Mahajan VB, Skeie JM, Sowers LP, Ehaideb SN, Gonzalez-Alegre P, Sasaoka T, Tao H, 

Miyagi A, Ueno N, et al: PRICKLE1 interaction with SYNAPSIN I reveals a role in autism 

spectrum disorders. PloS one 2013, 8:e80737. 

179. Okuda H, Miyata S, Mori Y, Tohyama M: Mouse Prickle1 and Prickle2 are expressed in 

postmitotic neurons and promote neurite outgrowth. FEBS letters 2007, 581:4754-4760. 

180. Fujimura L, Watanabe-Takano H, Sato Y, Tokuhisa T, Hatano M: Prickle promotes neurite 

outgrowth via the Dishevelled dependent pathway in C1300 cells. Neuroscience letters 2009, 467:6-
10. 

181. Fujimura L, Hatano M: Role of Prickle1 and Prickle2 in neurite outgrowth in murine 

neuroblastoma cells. Methods in molecular biology (Clifton, NJ) 2012, 839:173-185. 

182. Mrkusich EM, Flanagan DJ, Whitington PM: The core planar cell polarity gene prickle interacts 

with flamingo to promote sensory axon advance in the Drosophila embryo. Developmental biology 

2011, 358:224-230. 

183. Dworkin S, Jane SM: Novel mechanisms that pattern and shape the midbrain-hindbrain 

boundary. Cellular and molecular life sciences : CMLS 2013, 70:3365-3374. 



 

 65 

184. Yu K, McGlynn S, Matise MP: Floor plate-derived sonic hedgehog regulates glial and ependymal 

cell fates in the developing spinal cord. Development 2013, 140:1594-1604. 

185. Joksimovic M, Yun BA, Kittappa R, Anderegg AM, Chang WW, Taketo MM, McKay RD, 

Awatramani RB: Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nature 

neuroscience 2009, 12:125-131. 

186. Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, Springel MW, Malesz A, 

Sousa AM, Pletikos M, et al: Spatially heterogeneous choroid plexus transcriptomes encode 

positional identity and contribute to regional CSF production. The Journal of neuroscience : the 

official journal of the Society for Neuroscience 2015, 35:4903-4916. 
187. Strahle U, Lam CS, Ertzer R, Rastegar S: Vertebrate floor-plate specification: variations on 

common themes. Trends in genetics : TIG 2004, 20:155-162. 

188. Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, 

Tessier-Lavigne M: Conserved roles for Slit and Robo proteins in midline commissural axon 

guidance. Neuron 2004, 42:213-223. 

189. Jonsson ME, Ono Y, Bjorklund A, Thompson LH: Identification of transplantable dopamine 

neuron precursors at different stages of midbrain neurogenesis. Experimental neurology 2009, 

219:341-354. 

190. Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC: Midbrain-Hindbrain Boundary 

Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Frontiers in neuroanatomy 2017, 

11:64. 

191. Prakash N, Brodski C, Naserke T, Puelles E, Gogoi R, Hall A, Panhuysen M, Echevarria D, Sussel L, 
Weisenhorn DM, et al: A Wnt1-regulated genetic network controls the identity and fate of 

midbrain-dopaminergic progenitors in vivo. Development 2006, 133:89-98. 

192. Doherty D, Millen KJ, Barkovich AJ: Midbrain and hindbrain malformations: advances in clinical 

diagnosis, imaging, and genetics. The Lancet Neurology 2013, 12:381-393. 

193. Castelo-Branco G, Sousa KM, Bryja V, Pinto L, Wagner J, Arenas E: Ventral midbrain glia express 

region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a 

secretion. Molecular and cellular neurosciences 2006, 31:251-262. 

194. Kouwenhoven WM, Veenvliet JV, van Hooft JA, van der Heide LP, Smidt MP: Engrailed 1 shapes 

the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and 

function. Biology open 2016, 5:279-288. 

195. Kelly GM, Moon RT: Involvement of wnt1 and pax2 in the formation of the midbrain-hindbrain 

boundary in the zebrafish gastrula. Developmental genetics 1995, 17:129-140. 

196. Rhinn M, Lun K, Luz M, Werner M, Brand M: Positioning of the midbrain-hindbrain boundary 

organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. 
Development 2005, 132:1261-1272. 

197. Jaszai J, Reifers F, Picker A, Langenberg T, Brand M: Isthmus-to-midbrain transformation in the 

absence of midbrain-hindbrain organizer activity. Development 2003, 130:6611-6623. 

198. Picker A, Brennan C, Reifers F, Clarke JD, Holder N, Brand M: Requirement for the zebrafish mid-

hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal 

projection. Development 1999, 126:2967-2978. 

199. Chi CL, Martinez S, Wurst W, Martin GR: The isthmic organizer signal FGF8 is required for cell 

survival in the prospective midbrain and cerebellum. Development 2003, 130:2633-2644. 
200. Sato T, Joyner AL: The duration of Fgf8 isthmic organizer expression is key to patterning 

different tectal-isthmo-cerebellum structures. Development 2009, 136:3617-3626. 

201. Arenas E, Denham M, Villaescusa JC: How to make a midbrain dopaminergic neuron. 

Development 2015, 142:1918-1936. 

202. Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, 

Kitajewski J, Arenas E: Differential regulation of midbrain dopaminergic neuron development by 

Wnt-1, Wnt-3a, and Wnt-5a. Proceedings of the National Academy of Sciences of the United States of 

America 2003, 100:12747-12752. 

203. Hladky SB, Barrand MA: Mechanisms of fluid movement into, through and out of the brain: 

evaluation of the evidence. Fluids and barriers of the CNS 2014, 11:26. 

204. Deczkowska A, Baruch K, Schwartz M: Type I/II Interferon Balance in the Regulation of Brain 

Physiology and Pathology. Trends in Immunology, 37:181-192. 
205. Currle DS, Cheng X, Hsu CM, Monuki ES: Direct and indirect roles of CNS dorsal midline cells in 

choroid plexus epithelia formation. Development 2005, 132:3549-3559. 

206. Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Meyer G, 

Castaneyra-Perdomo A: A Distal to Proximal Gradient of Human Choroid Plexus Development, 

with Antagonistic Expression of Glut1 and AQP1 in Mature Cells vs. Calbindin and PCNA in 

Proliferative Cells. Frontiers in neuroanatomy 2016, 10:87. 

207. Da Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F: Insights on the 

pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, 



 

66 

neuroinflammation and the peripheral immune system. Neuroscience and biobehavioral reviews 

2016, 68:547-562. 

208. Mesquita SD, Ferreira AC, Falcao AM, Sousa JC, Oliveira TG, Correia-Neves M, Sousa N, Marques F, 

Palha JA: Lipocalin 2 modulates the cellular response to amyloid beta. Cell death and 

differentiation 2014, 21:1588-1599. 

209. Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, Correia-Neves M, Sousa N, 

Palha JA, Marques F: The choroid plexus transcriptome reveals changes in type I and II interferon 

responses in a mouse model of Alzheimer's disease. Brain, behavior, and immunity 2015, 49:280-

292. 
210. Johansson PA, Irmler M, Acampora D, Beckers J, Simeone A, Gotz M: The transcription factor Otx2 

regulates choroid plexus development and function. Development 2013, 140:1055-1066. 

211. Andersson ER, Salto C, Villaescusa JC, Cajanek L, Yang S, Bryjova L, Nagy, II, Vainio SJ, Ramirez 

C, Bryja V, Arenas E: Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic 

neurons in vivo and in stem cells. Proceedings of the National Academy of Sciences of the United 

States of America 2013, 110:E602-610. 

212. Andersson ER, Bryjova L, Biris K, Yamaguchi TP, Arenas E, Bryja V: Genetic interaction between 

Lrp6 and Wnt5a during mouse development. Developmental dynamics : an official publication of 

the American Association of Anatomists 2010, 239:237-245. 

213. Yang S, Edman LC, Sanchez-Alcaniz JA, Fritz N, Bonilla S, Hecht J, Uhlen P, Pleasure SJ, Villaescusa 

JC, Marin O, Arenas E: Cxcl12/Cxcr4 signaling controls the migration and process orientation of 

A9-A10 dopaminergic neurons. Development 2013, 140:4554-4564. 
214. Björklund A, Dunnett SB: Dopamine neuron systems in the brain: an update. Trends in 

Neurosciences 2007, 30:194-202. 

215. Hegarty SV, Sullivan AM, O'Keeffe GW: Midbrain dopaminergic neurons: a review of the 

molecular circuitry that regulates their development. Developmental biology 2013, 379:123-138. 

216. Shimogori T, VanSant J, Paik E, Grove EA: Members of the Wnt, Fz, and Frp gene families 

expressed in postnatal mouse cerebral cortex. The Journal of comparative neurology 2004, 473:496-

510. 

217. Gogolla N, Galimberti I, Deguchi Y, Caroni P: Wnt signaling mediates experience-related 

regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 

2009, 62:510-525. 

218. Nagaoka T, Ohashi R, Inutsuka A, Sakai S, Fujisawa N, Yokoyama M, Huang YH, Igarashi M, Kishi 
M: The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through 

direct control of N-cadherin. Cell reports 2014, 6:916-927. 

219. Stephano F, Nolte S, Hoffmann J, El-Kholy S, von Frieling J, Bruchhaus I, Fink C, Roeder T: 

Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a 

rotenone triggered Drosophila Parkinson's disease model. Scientific reports 2018, 8:2372. 

220. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC: Wingless-type family member 5A 

(Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proceedings 

of the National Academy of Sciences of the United States of America 2010, 107:21164-21169. 

221. McQuate A, Latorre-Esteves E, Barria A: A Wnt/Calcium Signaling Cascade Regulates Neuronal 

Excitability and Trafficking of NMDARs. Cell reports 2017, 21:60-69. 

222. Thakar S, Wang L, Yu T, Ye M, Onishi K, Scott J, Qi J, Fernandes C, Han X, Yates JR, 3rd, et al: 

Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. 
Proceedings of the National Academy of Sciences of the United States of America 2017, 114:E610-

e618. 

223. Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M: Wnt signaling promotes 

regeneration in the retina of adult mammals. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 2007, 27:4210-4219. 

224. Rodriguez JP, Coulter M, Miotke J, Meyer RL, Takemaru K, Levine JM: Abrogation of beta-catenin 

signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon 

regeneration after CNS injury. The Journal of neuroscience : the official journal of the Society for 

Neuroscience 2014, 34:10285-10297. 

225. Zhang L, Sun C, Jin Y, Gao K, Shi X, Qiu W, Ma C, Zhang L: Dickkopf 3 (Dkk3) Improves 

Amyloid-beta Pathology, Cognitive Dysfunction, and Cerebral Glucose Metabolism in a 
Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's disease : JAD 2017. 

226. Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, Arenas E, Parish CL: 

Wnt5a regulates midbrain dopaminergic axon growth and guidance. PloS one 2011, 6:e18373. 

227. Blakely BD, Bye CR, Fernando CV, Prasad AA, Pasterkamp RJ, Macheda ML, Stacker SA, Parish CL: 

Ryk, a receptor regulating Wnt5a-mediated neurogenesis and axon morphogenesis of ventral 

midbrain dopaminergic neurons. Stem cells and development 2013, 22:2132-2144. 



 

 67 

228. Vivancos V, Chen P, Spassky N, Qian D, Dabdoub A, Kelley M, Studer M, Guthrie S: Wnt activity 

guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and 

ROCK kinases. Neural development 2009, 4:7. 

229. Lin MK, Farrer MJ: Genetics and genomics of Parkinson's disease. Genome medicine 2014, 6:48. 

230. Dachsel JC, Nishioka K, Vilarino-Guell C, Lincoln SJ, Soto-Ortolaza AI, Kachergus J, Hinkle KM, 

Heckman MG, Jasinska-Myga B, Taylor JP, et al: Heterodimerization of Lrrk1-Lrrk2: Implications 

for LRRK2-associated Parkinson disease. Mechanisms of ageing and development 2010, 131:210-

214. 

231. Klein C, Westenberger A: Genetics of Parkinson's disease. Cold Spring Harbor perspectives in 
medicine 2012, 2:a008888. 

232. Wood-Kaczmar A, Gandhi S, Wood NW: Understanding the molecular causes of Parkinson's 

disease. Trends in molecular medicine 2006, 12:521-528. 

233. Kumaran R, Cookson MR: Pathways to Parkinsonism Redux: convergent pathobiological 

mechanisms in genetics of Parkinson's disease. Hum Mol Genet 2015, 24:R32-44. 

234. Saha S, Ash PE, Gowda V, Liu L, Shirihai O, Wolozin B: Mutations in LRRK2 potentiate age-

related impairment of autophagic flux. Molecular neurodegeneration 2015, 10:26. 

235. Schapansky J, Nardozzi JD, Felizia F, LaVoie MJ: Membrane recruitment of endogenous LRRK2 

precedes its potent regulation of autophagy. Hum Mol Genet 2014, 23:4201-4214. 

236. Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R: 

LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a 

novel human genomic reporter cellular model. Hum Mol Genet 2009, 18:4022-4034. 
237. Dodson MW, Zhang T, Jiang C, Chen S, Guo M: Roles of the Drosophila LRRK2 homolog in Rab7-

dependent lysosomal positioning. Hum Mol Genet 2012, 21:1350-1363. 

238. Beccano-Kelly DA, Kuhlmann N, Tatarnikov I, Volta M, Munsie LN, Chou P, Cao LP, Han H, Tapia 

L, Farrer MJ, Milnerwood AJ: Synaptic function is modulated by LRRK2 and glutamate release is 

increased in cortical neurons of G2019S LRRK2 knock-in mice. Frontiers in cellular neuroscience 

2014, 8:301. 

239. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N: LRK-1, a C. elegans PARK8-

related kinase, regulates axonal-dendritic polarity of SV proteins. Current biology : CB 2007, 

17:592-598. 

240. Su YC, Guo X, Qi X: Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-

induced mitochondrial depolarization and autophagy. Biochimica et biophysica acta 2015, 
1852:12-21. 

241. Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK, O'Neill SP, Zhang X, Chung J, Lim KL: AMP 

kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in 

Drosophila models of Parkinson's disease. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 2012, 32:14311-14317. 

242. Papkovskaia TD, Chau KY, Inesta-Vaquera F, Papkovsky DB, Healy DG, Nishio K, Staddon J, 

Duchen MR, Hardy J, Schapira AH, Cooper JM: G2019S leucine-rich repeat kinase 2 causes 

uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet 2012, 21:4201-4213. 

243. Sancho RM, Law BM, Harvey K: Mutations in the LRRK2 Roc-COR tandem domain link 

Parkinson's disease to Wnt signalling pathways. Hum Mol Genet 2009, 18:3955-3968. 

244. Berwick DC, Harvey K: LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins 

and membrane-localized LRP6. Hum Mol Genet 2012, 21:4966-4979. 

245. Berwick DC, Javaheri B, Wetzel A, Hopkinson M, Nixon-Abell J, Granno S, Pitsillides AA, Harvey K: 

Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated 

repression of beta-catenin signaling. Molecular neurodegeneration 2017, 12:9. 

246. Rawal N, Corti O, Sacchetti P, Ardilla-Osorio H, Sehat B, Brice A, Arenas E: Parkin protects 

dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochemical and biophysical 

research communications 2009, 388:473-478. 

247. Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z: 

Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein 

degradation. The Journal of clinical investigation 2009, 119:650-660. 

248. Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA: 

Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces 
neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of 

America 2005, 102:18676-18681. 

249. Kawakami F, Yabata T, Ohta E, Maekawa T, Shimada N, Suzuki M, Maruyama H, Ichikawa T, Obata 

F: LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated 

regulation of the tau-tubulin association and neurite outgrowth. PloS one 2012, 7:e30834. 

250. Bostrom J, Sramkova Z, Salasova A, Johard H, Mahdessian D, Fedr R, Marks C, Medalova J, Soucek 

K, Lundberg E, et al: Comparative cell cycle transcriptomics reveals synchronization of 

developmental transcription factor networks in cancer cells. PloS one 2017, 12:e0188772. 



 

68 

251. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, 

Miyata T, Miyoshi H, et al: Visualizing spatiotemporal dynamics of multicellular cell-cycle 

progression. Cell 2008, 132:487-498. 

252. Mayor T, Hacker U, Stierhof YD, Nigg EA: The mechanism regulating the dissociation of the 

centrosomal protein C-Nap1 from mitotic spindle poles. Journal of cell science 2002, 115:3275-

3284. 

253. Wallingford JB, Mitchell B: Strange as it may seem: the many links between Wnt signaling, planar 

cell polarity, and cilia. Genes & development 2011, 25:201-213. 

254. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V: Trans-synaptic 

transmission of vesicular Wnt signals through Evi/Wntless. Cell 2009, 139:393-404. 

255. Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K: Wntless, a conserved 

membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 2006, 

125:509-522. 

256. Bryja V, Schulte G, Rawal N, Grahn A, Arenas E: Wnt-5a induces Dishevelled phosphorylation and 

dopaminergic differentiation via a CK1-dependent mechanism. Journal of cell science 2007, 

120:586-595. 

257. Glerup S, Olsen D, Vaegter CB, Gustafsen C, Sjoegaard SS, Hermey G, Kjolby M, Molgaard S, 

Ulrichsen M, Boggild S, et al: SorCS2 Regulates Dopaminergic Wiring and Is Processed into an 

Apoptotic Two-Chain Receptor in Peripheral Glia. Neuron 2014, 82:1074-1087. 

258. Glerup S, Bolcho U, Molgaard S, Boggild S, Vaegter CB, Smith AH, Nieto-Gonzalez JL, Ovesen PL, 

Pedersen LF, Fjorback AN, et al: SorCS2 is required for BDNF-dependent plasticity in the 

hippocampus. Mol Psychiatry 2016, 21:1740-1751. 

259. Lander R, Petersen C: Wnt, Ptk7, and FGFRL expression gradients control trunk positional 

identity in planarian regeneration. eLife 2016, 5. 

260. Sun XD, Li L, Liu F, Huang ZH, Bean JC, Jiao HF, Barik A, Kim SM, Wu H, Shen C, et al: Lrp4 in 

astrocytes modulates glutamatergic transmission. Nature neuroscience 2016. 

261. Gomez AM, Froemke RC, Burden SJ: Synaptic plasticity and cognitive function are disrupted in 

the absence of Lrp4. eLife 2014, 3:e04287. 

262. Wu H, Lu Y, Shen C, Patel N, Gan L, Xiong WC, Mei L: Distinct roles of muscle and motoneuron 

LRP4 in neuromuscular junction formation. Neuron 2012, 75:94-107. 

263. Rezgaoui M, Hermey G, Riedel IB, Hampe W, Schaller HC, Hermans-Borgmeyer I: Identification of 

SorCS2, a novel member of the VPS10 domain containing receptor family, prominently 
expressed in the developing mouse brain. Mech Dev 2001, 100:335-338. 

264. Ma Q, Yang J, Milner TA, Vonsattel JG, Palko ME, Tessarollo L, Hempstead BL: SorCS2-mediated 

NR2A trafficking regulates motor deficits in Huntington's disease. JCI insight 2017, 2. 

265. Deinhardt K, Kim T, Spellman DS, Mains RE, Eipper BA, Neubert TA, Chao MV, Hempstead BL: 

Neuronal Growth Cone Retraction Relies on Proneurotrophin Receptor Signaling Through Rac. 
Sci Signal 2011, 4:8. 

266. Mori F, Miki Y, Tanji K, Kakita A, Takahashi H, Utsumi J, Sasaki H, Wakabayashi K: Sortilin-

related receptor CNS expressed 2 (SorCS2) is localized to Bunina bodies in amyotrophic lateral 

sclerosis. Neuroscience letters 2015, 608:6-11. 

267. Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S: Vps10 Family 

Proteins and the Retromer Complex in Aging-Related Neurodegeneration and Diabetes. Journal 
of Neuroscience 2012, 32:14080-14086. 

268. Kamali Sarvestani I, Visanji NP, Creed MC, Shams Shoaei Z, Nobrega J, Hamani C, Hazrati L-N: 

Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of 

striatopallidal neurons in an animal model of Parkinson’s disease. Frontiers in cellular 

neuroscience 2015, 9. 

269. Bai Y, Tan X, Zhang H, Liu C, Zhao B, Li Y, Lu L, Liu Y, Zhou J: Ror2 receptor mediates Wnt11 

ligand signaling and affects convergence and extension movements in zebrafish. The Journal of 

biological chemistry 2014, 289:20664-20676. 

270. Young T, Poobalan Y, Tan EK, Tao S, Ong S, Wehner P, Schwenty-Lara J, Lim CY, Sadasivam A, 

Lovatt M, et al: The PDZ domain protein Mcc is a novel effector of non-canonical Wnt signaling 

during convergence and extension in zebrafish. Development 2014, 141:3505-3516. 

271. Forge A, Taylor RR, Dawson SJ, Lovett M, Jagger DJ: Disruption of SorCS2 reveals differences in 

the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS 

genetics 2017, 13:e1006692. 

272. Schweitzer J, Lohr H, Filippi A, Driever W: Dopaminergic and noradrenergic circuit development 

in zebrafish. Developmental neurobiology 2012, 72:256-268. 

273. Xi Y, Yu M, Godoy R, Hatch G, Poitras L, Ekker M: Transgenic zebrafish expressing green 

fluorescent protein in dopaminergic neurons of the ventral diencephalon. Developmental dynamics 

: an official publication of the American Association of Anatomists 2011, 240:2539-2547. 



 

 69 

274. Ma SS, Henry CE, Llamosas E, Higgins R, Daniels B, Hesson LB, Hawkins NJ, Ward RL, Ford CE: 

Validation of specificity of antibodies for immunohistochemistry: the case of ROR2. Virchows 

Archiv : an international journal of pathology 2017, 470:99-108. 

275. Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD: Migrating 

Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing 

Mammalian Brain. Neuron 2017, 94:500-516.e509. 

276. Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, 

Danner S, et al: LRRK2 protein levels are determined by kinase function and are crucial for 

kidney and lung homeostasis in mice. Hum Mol Genet 2011, 20:4209-4223. 
277. Volta M, Cataldi S, Beccano-Kelly D, Munsie L, Tatarnikov I, Chou P, Bergeron S, Mitchell E, Lim R, 

Khinda J, et al: Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas 

wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered 

regulation of dopamine release. Parkinsonism Relat Disord 2015, 21:1156-1163. 

278. Nikonova EV, Xiong Y, Tanis KQ, Dawson VL, Vogel RL, Finney EM, Stone DJ, Reynolds IJ, Kern 

JT, Dawson TM: Transcriptional responses to loss or gain of function of the leucine-rich repeat 

kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. Hum Mol 

Genet 2012, 21:163-174. 

279. James NG, Digman MA, Gratton E, Barylko B, Ding X, Albanesi JP, Goldberg MS, Jameson DM: 

Number and brightness analysis of LRRK2 oligomerization in live cells. Biophysical journal 2012, 

102:L41-43. 

280. Giese AP, Ezan J, Wang L, Lasvaux L, Lembo F, Mazzocco C, Richard E, Reboul J, Borg JP, Kelley 
MW, et al: Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear. 

Development 2012, 139:3775-3785. 

281. Jeanneteau F, Diaz J, Sokoloff P, Griffon N: Interactions of GIPC with dopamine D2, D3 but not 

D4 receptors define a novel mode of regulation of G protein-coupled receptors. Molecular biology 

of the cell 2004, 15:696-705. 

282. Djiane A, Mlodzik M: The Drosophila GIPC homologue can modulate myosin based processes 

and planar cell polarity but is not essential for development. PloS one 2010, 5:e11228. 

283. Rudkouskaya A, Welch I, Dagnino L: ILK modulates epithelial polarity and matrix formation in 

hair follicles. Molecular biology of the cell 2014, 25:620-632. 

284. Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl 

R, Dedhar S: Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin 

signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 

1998, 95:4374-4379. 

285. Vervenne HB, Crombez KR, Lambaerts K, Carvalho L, Koppen M, Heisenberg CP, Van de Ven WJ, 

Petit MM: Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate 

convergence and extension movements during zebrafish gastrulation. Developmental biology 2008, 

320:267-277. 

286. Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L: LRRK2 expression linked to 

dopamine-innervated areas. Annals of neurology 2006, 59:714-719. 

287. Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson 

TM, Moore DJ, Emson PC: Localization of Parkinson's disease-associated LRRK2 in normal and 

pathological human brain. Brain research 2007, 1155:208-219. 
288. Higashi S, Moore DJ, Colebrooke RE, Biskup S, Dawson VL, Arai H, Dawson TM, Emson PC: 

Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the 

mouse brain. J Neurochem 2007, 100:368-381. 

289. Lee H, Melrose HL, Yue M, Pare JF, Farrer MJ, Smith Y: Lrrk2 localization in the primate basal 

ganglia and thalamus: a light and electron microscopic analysis in monkeys. Experimental 

neurology 2010, 224:438-447. 

290. Melrose H, Lincoln S, Tyndall G, Dickson D, Farrer M: Anatomical localization of leucine-rich 

repeat kinase 2 in mouse brain. Neuroscience 2006, 139:791-794. 

291. Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CA, Basler K: 

Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and 

Hedgehog in Drosophila. The EMBO journal 2008, 27:509-521. 

292. Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT: The KLHL12-

Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting 

Dishevelled for degradation. Nature cell biology 2006, 8:348-357. 

293. Habig K, Walter M, Poths S, Riess O, Bonin M: RNA interference of LRRK2-microarray 

expression analysis of a Parkinson's disease key player. Neurogenetics 2008, 9:83-94. 

294. Hsu CH, Chan D, Wolozin B: LRRK2 and the stress response: interaction with MKKs and JNK-

interacting proteins. Neuro-degenerative diseases 2010, 7:68-75. 

295. Cookson MR: LRRK2 Pathways Leading to Neurodegeneration. Current neurology and 

neuroscience reports 2015, 15:42. 



 

70 

296. Parkinson J: An essay on the shaking palsy. 1817. The Journal of neuropsychiatry and clinical 

neurosciences 2002, 14:223-236; discussion 222. 

297. Lazarini F, Gabellec MM, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM: Adult 

neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. The Journal of 

neuroscience : the official journal of the Society for Neuroscience 2014, 34:14430-14442. 

298. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult 

fibroblast cultures by defined factors. Cell 2006, 126:663-676. 

299. Rivetti di Val Cervo P, Romanov RA, Spigolon G, Masini D, Martin-Montanez E, Toledo EM, La 

Manno G, Feyder M, Pifl C, Ng YH, et al: Induction of functional dopamine neurons from human 

astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nature biotechnology 

2017, 35:444-452. 

300. Arnes M, Casas Tinto S: Aberrant Wnt signaling: a special focus in CNS diseases. Journal of 

neurogenetics 2017, 31:216-222. 

 

 



 

 71 

 

 

 


