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ABSTRACT 

Immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in 

Caucasian populations. It is defined as a serum IgA level below 0.07 g/L with normal IgM 

and IgG levels in an individual older than four years of age. Approximately one-third of 

these patients present with recurrent respiratory and gastrointestinal tract infections, allergic 

disorders and autoimmune manifestations. High familial clustering and prevalence variation 

by ethnicity both suggest the existence of a strong genetic component of the disease. 

Traditionally, IgAD has been reported as permanent, and sub-normal IgA levels remain static 

and persist after 20 years of observation. However, a few cases of reversion have been 

observed. We thus investigated the frequency of reversal in children and more than one-fifth 

(>20%) of Swedish children who were diagnosed before 10 years of age, reversed their IgAD 

status. Our observation suggests that the diagnosis of IgAD should not be made before the 

early teens using a cutoff level of 0.07 g/L of IgA in serum.  

After suggesting improved diagnostic guidelines, we investigated the role of genetics in IgAD 

in a Swedish Twin cohort. Surprisingly, the prevalence of IgAD was found to be markedly 

increased in a twin cohort as compared with the normal Swedish adult population. Although 

the MHC is the main genetic factor associated with IgAD development, the MHC haplotypes 

were not the primary factor causing the differences observed. Nonetheless, risk-conveying 

MHC haplotypes including HLA-A*01, HLA-B*08 and HLA-DRB1*01 were found to be 

associated with significantly lower serum IgA concentration in the twin cohort. On the 

contrary, individuals who carried the protective HLA alleles B*07, DRB1*15 and 

DQB1*06 were found to have significantly higher mean IgA concentration.  

We then performed a comprehensive analysis within the MHC region in order to identify the 

potential susceptibility genes/loci within the MHC region. In our large-scale case-control 

study, we identified an independent MHC haplotype (HLA-DPB1*1301) in the class II region 

associated with IgAD. In addition, MHC recombination analysis suggested a region around 

110 Kbp which may contain a portion of the ancestral block. However, verification using 

complete sequencing did not identify any differences. Nonetheless, identification of 4310 

new variants from ancestral 8.1 haplotypes will provide valuable information for the 

investigation of other MHC associated diseases. We also identified novel genes/variants 

within the MHC class III region including AGER (rs1800625), RNF5 (rs3130349), BTNL2 

(rs1980493) and HCG23 (rs3117097) that are associated with IgAD risk.  
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Subsequently, we investigated the association of non-MHC genes using different MHC risk 

haplotypes as category factors. In total, 14 different genes/loci were identified as potentially 

associated with IgAD in individuals carrying different MHC risk alleles, including one from 

HLA-B*0801-DRB1*0301-DQB1*0201 (ancestral haplotype), three from the HLA-

DRB1*0701-DQB1*0202 cohort, two from HLA-DRB1*01-DQB1*0501 and seven from 

patients who do not carry any susceptibility MHC allele. These findings suggest that the 

development of IgAD may be variable depending on the presence of potentially different 

genes within selected MHC susceptibility haplotypes that interact with the respective disease-

causing non-MHC genes. Understanding the interaction between MHC and non-MHC genes 

and proteins may facilitate identification of the IgAD etiology. 

In summary, this thesis not only helped to identify the genetic basis of IgAD, but also 

improved the current diagnostic definition of the disease. Further work, including protein-

protein interaction investigations, gene knock-in/out and expression analyses are required to 

validate the functional role of the novel associations described in this thesis. As IgAD has 

been shown to be markedly overrepresented among patients with autoimmune diseases, 

further potential studies will aim to identify the link between IgAD and autoimmunity 

which may ultimately result in improved patient care. 
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1 INTRODUCTION 

1.1 Immunoglobulin A 

Immunoglobulin A (IgA) is the predominant antibody class in mucosal secretions and is the 

second most prevalent antibody in serum after IgG (1). IgA comprises at least 70 % of all 

immunoglobulins produced in the human body and plays a key role in immunity.  

There are two IgA subclasses in humans, which are encoded by two functional genes, 

resulting in two IgA subclasses (IgA1 and IgA2, Figure 1). The length of the hinge region 

is the major difference between IgA1 and IgA2 (1, 2).  

Whilst serum IgA predominantly consists of monomeric IgA1, secretory IgA (S-IgA) 

(Figure 1) is chiefly polymeric, comprising mainly dimeric forms, with an increased 

proportion of IgA2 (2). Serum IgA is produced by B-lymphocytes in the bone marrow 

while S-IgA is synthesized locally at the mucosal surfaces (2). There is a strong correlation 

between serum IgA concentrations and mucosal IgA concentrations (3).  

The function of S-IgA is to protect the lining of the respiratory, gastrointestinal and 

genitourinary tracts from invading pathogens by neutralizing antigens as well as preventing 

the adherence of bacteria (2, 4, 5). On the other hand, the function of serum IgA is less clear, 

although there are reports of its involvement in triggering effector functions (2, 6). 

In Swedish adults (>20 years old), the normal range of serum IgA levels for adults is 0.88-

4.5 g/L (reference range at the Karolinska University Hospital Clinical 

Immunology/Transfusion Medicine Laboratory, Sweden). 
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1.2 IMMUNOGLOBULIN A DEFICIENCY (IGAD) 

Immunoglobulin A deficiency (IgAD) is the most common human primary antibody 

deficiency in Caucasian populations. It is defined as a serum IgA level below or equal to 0.07 

g/L in the presence of normal levels of other immunoglobulin isotypes in an individual older 

than four years of age (7-9).  

IgAD comprises a heterogeneous group of disorders, ranging from asymptomatic 

(incidentally noted in healthy blood donors) to symptomatic patients presenting with different 

clinical phenotypes, including recurrent infections of the gastrointestinal and respiratory 

tracts, allergic disorders and autoimmune diseases of variable severity (10-14). In addition, 

recent reports have shown that patients with IgAD have significantly poorer physical health 

and an increased risk of early death (15, 16). 

The prevalence of IgAD is variable in different populations, ranging from 1:143 in Saudi 

Arabia (17)  to 1:18500 in Japan (18). However, the prevalence may be underestimated 

because some individuals with IgAD are asymptomatic, and established routine screening 

programs for IgAD are rare, particularly in Asia. Up to 40% of IgAD patients develop anti-

IgA antibodies (19). From a transfusion medicine perspective, the presence of anti-IgA 

antibodies in an IgA deficient recipient is a possible cause of anaphylactic transfusion 

reaction. Approximately 20% of anaphylactic transfusion reactions in Western populations 

are associated with anti-IgA antibodies in IgA deficient recipients (20).  

Since the prevalence varies widely between different populations, this supports the view that 

genetic factors play an essential role in the pathogenesis of the disease. In addition, the 

observation of familial clustering, as well as associations with known genetic loci have 

provided clinical evidence for the genetic predisposition to IgAD. However, the exact 

etiology of IgAD remains unclear.  

1.3 MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) 

The major histocompatibility complex (MHC) locus is an extremely polymorphic region and 

has been one of the most intensively investigated areas in the human genome. In humans, the 

MHC is called the human leukocyte antigen (HLA) as the gene products were initially 

identified using alloantibodies against leukocytes (21). This genomic region is located on 

chromosome 6p21 and spans approximately 3.6 megabase pairs (Mbp) and encodes over 200 

genes, many of which have a defined immunological function (22). An extended MHC of 7.6 

Mb comprising more than 400 annotated genes and pseudogenes has also been described 

more recently (23).   
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The MHC complex contains two primary classes, the MHC class I and MHC class II gene 

clusters. The MHC class I molecules are expressed on the surface of all nucleated cells, 

whereas the expression of MHC class II molecules is restricted to antigen presenting cells, 

such as B cells and dendritic cells. The MHC class II molecules are responsible for 

presenting peptide antigens to T cells, thereby initiating the adaptive immune responses. In 

addition, there is an MHC class III region which spans the region between the MHC class I 

and MHC class II gene clusters. The MHC class III region contains genes that are involved 

in immunity, such as the complement genes and genes encoding inflammatory cytokines 

(24). 

Given the central role of the MHC in immune function, in addition to its level of diversity, 

the involvement of MHC in disease susceptibility is not surprising. The importance of this 

locus to the pathogenesis of human disorders is proven by the reported association of 

polymorphisms in the HLA region with over two hundred diseases, including autoimmune 

diseases, primary immunodeficiency diseases, susceptibility to infections, malignancies and 

psychiatric conditions (25-28) (Figure 2).   
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1.4 MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) ASSOCIATIONS OF 

IGAD 

The MHC was first identified as a risk locus for IgAD through the association with HLA 

Class I and Class II markers and ascribed to specific conserved haplotypes (29-32).  Most 

notably, the HLA-B*08-DRB1*0301-DQB1*02 haplotype (ancestral 8.1) has been identified 

as the most significant genetic risk factor for IgAD in Northern European populations (33, 

34).  Thirteen percent of homozygous individuals with HLA-B*0801-DRB1*0301-

DQB1*0201 have been estimated to be IgA deficient (32), although this might be 

overestimated due to publication bias (35).  Conversely, the HLA-DRB1*1501-DQB1*06 

haplotype has been shown to confer substantial protection against IgAD, with homozygous 

individuals showing virtually complete protection from the disease (33, 34). Additionally, 

susceptibility has also been shown to be associated with two other haplotypes, i.e., HLA-

B*14-DRB1*0102-DQB1*05 and the HLA-B*44-DRB1*0701-DQB1*02 haplotypes (33, 34).  

Interestingly, a recent study from China showed that the ancestral 8.1 haplotype (HLA-B*08-

DRB1*0301-DQB1*02) is also associated with the disease in the Chinese population (36, 37).   

Despite the strong association with the HLA locus, there has been no consensus as to the 

precise location of the causal variants.  Some research groups have suggested that the location 

of the susceptibility area for IgAD is the telomeric region of MHC Class II (38-40), while 

others have proposed the centromeric region of MHC Class III (40-43).  In addition, others 

have suggested a susceptibility locus in a region of MHC Class III that encodes cytokines 

needed for immunoglobulin production, which may also be associated with other forms of 

immunodeficiency, such as common variable immunodeficiency (CVID) (32). A subgroup 

analysis has also proposed the haplotype MSH5-85F-DRB1*0102 at the telomeric end of 

MHC class II as a potential susceptibility region for IgAD (44). Furthermore, a lack of 

diversity of MHC Class II, and an amino acid (AA) substitution at position 57 of the HLA-

DQB1 chain may also be associated with the pathogenesis of  IgAD (33). 

1.5 NON-MHC ASSOCIATIONS OF IGAD 

In addition to linkage to the HLA region, IgAD has been found to be associated with variants 

within the Interferon-induced helicase C domain-containing protein 1 gene (IFIH1) as well as 

variants within the C-type lectin domain family 16 gene (CLEC16A). These genes have also 

been implicated in the susceptibility to a variety of autoimmune disorders including type 1 

diabetes (T1D), systemic lupus erythematosus (SLE) and celiac disease (CD) (45). 

Furthermore, recent findings show that common variants at PVT1, ATG13-AMBRA1 and 

AHI1 are associated with IgAD. These variants overlap with autoimmune markers and 
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correlate with 21 putative regulatory variants, such as DNase hypersensitivity sites in 

FOXP3
+
 regulatory T cells (46). 

1.6 CYTOGENIC DEFECTS IN IGAD 

Cytogenetic defects and chromosomal abnormalities have frequently been reported in patients 

with IgAD.   Significant anomalies were reported involving chromosomes 16 and 18 (47-52), 

while defects in other chromosomes have also been observed, including 4p monosomy, 

trisomy 10p, and translocation of 10q to 4p (53, 54). Long or short-arm deletion and ring 

formation have been described in some patients who exhibit additional dysmorphic features 

and are intellectually disabled (49). However, there are conflicting findings concerning the 

presence or absence of substantial chromosomal abnormalities in IgAD. A study based on 

asymptomatic IgAD individuals has not identified any chromosomal abnormalities (55). This 

observation suggests that cytogenic defects are probably not relevant to asymptomatic IgA 

deficient patients. 

1.7 MONOGENIC MUTATIONS ASSOCIATED WITH IGAD AND 

ASSOCIATION WITH OTHER PRIMARY IMMUNODEFICIENCY 

DISEASES 

The first significant monogenic mutation to be identified in IgAD was a mutation in the 

tumor necrosis factor receptor superfamily member 13B (TNFRSF13B) / transmembrane 

activator and calcium modulator and cyclophilin ligand interactor (TACI), which mediates 

isotype switching in B cells. TACI was expressed in B cells from these patients but they did 

not produce IgA and IgG in response to the TACI ligand, suggesting impaired isotype 

switching (56, 57). TACI mutations have been seen both in patients with CVID and in those 

with IgAD, however, are only present in a small subset of patients with each disease (56, 57). 

Some IgAD cases may progress to CVID (58, 59). One study suggests that individuals with a 

C104R, A181E or ins204A variant in the TACI gene may be at risk for disease progression 

from IgAD to CVID (60). Nonetheless, it is not clear whether these mutations are causative, 

or there may be additional defects that have not yet been identified.  

Advancement of technologies such as next-generation sequencing (NGS), coupled with 

enhanced algorithms for bioinformatics has enabled a much broader approach to interrogate 

multiple genes simultaneously through one single reaction. This strategy has proven to be a 

practical approach by which to identify the genetic basis of Mendelian diseases in the clinical 

research setting. Molecular diagnostic testing using whole exome sequencing (WES) or 

whole genome sequencing (WGS) (61, 62) has greatly enhanced the discovery of new 

monogenic defects in Primary immunodeficiency diseases (PID). 
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Seven IgAD patients with a hypomorphic mutation in JAK3 and ARTEMIS (DCLRE1C) have 

been reported (63, 64). In addition, Kato et al. identified a young IgAD patient with RAG1 

deficiency (65) and Akhairy et al. recently identified two cases of IgAD progressing to CVID 

due to a mutation in the LRBA and CD27 genes, respectively (66, 67). 

In addition, some monogenic mutations in PID genes are associated with  IgAD, including 

genes that are associated with combined immunodeficiency (ATM, CHD7,  DNMT3B, DKC1,  

MLH1, MECP2, NBS1, RAD50, PMS2, PNP,  RMRP,  RNF168, TINF2,  TTC7, WAS and 

ZBTB24), antibody deficiencies (BTK, CARD11, PIK3R1, MSH2, MSH6, TACI and TWEAK), 

defects in intrinsic and innate immunity (CXCR4, IL12RB1 and STAT1) as well as genes  

associated  with  phagocytic abnormalities (CYBB,  NCF1, RAC2 and SBDS) (68, 69).  

Furthermore, loss of function mutations in several non-MHC genes have been found in 

families with IgAD in which progression occurs from a normal immunologic state to IgA 

deficiency, with or without IgG subclass deficiency or CVID (70-73).  IgAD is also reported 

to be associated with IgG2 subclass deficiency (74) and ataxia telangiectasia (75). 

Furthermore, Smith et al. reported a 13% (OR = 14.20) prevalence of  IgAD in patients with 

DiGeorge syndrome (76).  

1.8 RELATIONSHIP TO AUTOIMMUNITY 

Various autoimmune diseases are known to be associated with IgAD, including juvenile 

idiopathic arthritis (JIA), dermatomyositis, sarcoidosis, Sjögren syndrome, Evans syndrome, 

isolated hemolytic anemia, pernicious anemia, rheumatoid arthritis (RA), SLE, Graves’ 

disease (GD), T1D, CD, immune thrombocytopenic purpura (ITP), Hashimoto’s thyroiditis, 

pulmonary hemosiderosis, Addison’s disease, chronic nephritis, Henoch-Schonlein purpura 

and myasthenia gravis (MG) (77). 

The same MHC haplotypes seen in patients with IgAD were found to be associated with 

selected autoimmune disorders, including T1D, SLE, CD, RA (12) where IgAD is markedly 

overrepresented (up to 30 fold). A recent study by Abolhassani et al. showed 

that autoimmune diseases were documented in approximately 30% of IgAD cases (78). This 

observation suggested a genetic overlap between IgAD and autoimmune disorders. 

Furthermore, genome-wide association studies (GWAS) have revealed an association 

between IgAD and genetic variants in the gene for IFIH1 and CLEC16A (45). Mutations in 

these genes are also associated with autoimmune diseases, which further suggest a connection 

between IgAD and autoimmune disease. The prevalence of autoimmune disorders has been 
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observed to be increased among first degree relatives of patients with IgAD, also supporting 

this hypothesis (79). Alternatively, the other hypothesis is that the autoimmune diseases occur 

as a result of recurrent infections and multiple exposures to foreign antigens that should have 

been “neutralized” by IgA. This hypothesis is partly demonstrated by a report which showed 

the presence of antibodies against milk in patients with IgA deficiency correlated with an 

increased frequency of serum autoantibodies (80). However, the exact pathogenetic 

mechanisms remain unclear. 
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2 AIMS 
 

 

2.1 GENERAL AIM  

The aim of this thesis was to study the genetic risk factors associated with IgAD in humans.  
 

 

2.2 SPECIFIC AIMS  

 

 To investigate the frequency of IgAD reversal in a large cohort of children and 

teenagers in order to evaluate the present definition of IgAD. 

 To characterize the occurrence and concordance of IgAD in MZ and DZ twins and 

to identify MZ twin pairs discordant for IgAD for future functional studies. 

 To fully characterize the sequence of the MHC region in order to search for 

mutations/variants which cause susceptibility to IgAD.   

 

 To define etiological subgroups of IgAD using HLA risk alleles as categorical factors 

in order to identify potential causative non-MHC region markers involved in the 

pathogenesis of IgAD. 
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3 MATERIALS AND METHODS 

3.1 SAMPLE COLLECTION 

The recruitment and participation of the described Swedish patients and controls included 

in this thesis was approved by Regionala Etikprövningsnämnden i Stockholm (the regional 

ethical review board in Stockholm). 

3.1.1 Children with IgAD 

3.1.1.1 Symptomatic children 

Between 1992 and 2012, 654 children aged from 4 to 13 years who were referred for 

serological testing for investigation of gastrointestinal symptoms were identified from 

laboratory data at five university hospitals in Sweden (283 from Karolinska Hospital in 

Stockholm, 78 from Sahlgrenska hospital in Gothenburg, 149 from the University Hospital in 

Lund, 86 from the University Hospital in Linköping and 58 from the Academic Hospital in 

Uppsala) and were selected for follow up analysis.  Data from patients with multiple 

laboratory records with a minimum interval of 90 days was collected. The age of IgAD 

reversal was defined at the date of the first IgA value over 0.07 g/L or the first medical report 

indicating that IgA was detected.  The follow-up concluded on 31 Jan 2014. 

3.1.1.2 BAMSE follow up study 

Pediatric samples from a previous study (the Children, Allergy, Milieu, Stockholm, 

Epidemiological survey [BAMSE] during 1994-1996) (81) were included. In total, out of 

2423 children, 14 were identified to have IgAD at the age of 4 years (13) and this group had 

subsequently been followed up at the age of 8 years and were assessed again at 16 years of 

age.  

3.1.2 Twin samples 

For paper II, a total of 12 613 individuals (3130 MZ twins and 9483 DZ twins) were 

included in the study.  Samples were obtained from the TwinGene project, a population-

based study of Swedish twins of European ancestry born between 1911 and 1958, which 

included serum and DNA samples collected between 2004 and 2008 (82). For paper III and 

IV, 9741 Swedish twin samples (including MZ twins: 4063, one per family; DZ twins: 5678, 

two per family) from paper II were included, where 39 were identified as having IgAD 

(serum IgA < 0.07 g/L) (83). 
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3.1.3 Swedish IgAD patients and controls 

For papers III, IV, a total of 767 Swedish IgAD patients referred to the Karolinska University 

Hospital in Stockholm were included in the studies. In addition, 485 healthy Swedish 

controls, recruited from a previous study (34) were included.  

3.1.4  Multi-case family samples 

For paper IV, a total of 73 Swedish multi-case families including 162 sibling pairs who had 

been followed up in Karolinska University Hospital in Stockholm were included in the study. 

Their year of birth ranged from 1910 to 2002.   

3.2 SERUM IGA MEASUREMENT 

3.2.1 Nephelometry 

For papers I, III and IV, serum levels of IgA, IgG and IgM from the samples and controls 

were determined by nephelometry at the Karolinska University Hospital Clinical 

Immunology Laboratory, Sweden. IgAD was diagnosed if the serum IgA level was ≤ 0.07 

g/L with normal serum levels of IgG and IgM. 

3.2.2 Reverse-phase protein microarray 

For Paper II, the serum IgA concentration was measured by a reverse-phase protein 

microarray as described previously (84). Briefly, diluted serum samples were spotted onto 

epoxy-coated microarray slides (Corning, USA) using the 2470 Arrayer Microarray 

Printing Platform (Aushon Biosystems, USA). Rabbit anti-human IgA (dilution 1:100 000, 

DakoCytomation, Denmark) and Alexa Fluor 555-conjugated goat anti-rabbit antibodies 

(dilution 1: 60 000, Molecular Probes, USA) were used to detect the level of IgA. Images 

were generated using a high-resolution microarray scanner (Agilent Technologies, USA) 

and subsequently analyzed by GenePix Pro 7 (Molecular Devices, USA). 

3.2.3 Enzyme-linked immunosorbent assay (ELISA) 
 

For paper I (follow up samples) and paper II (all samples), Serum IgA levels were also 

determined by sandwich ELISA using polyclonal rabbit anti-human IgA antibodies (DAKO, 

Denmark) and alkaline phosphatase-conjugated rabbit anti-human serum IgA antibodies 

(Jackson ImmunoResearch Laboratories, USA). Briefly, polystyrene plates were coated 

overnight at room temperature with 100 µl per well of the primary antibody diluted (final 

concentration: 1.2 mg/l) in carbonate-bicarbonate buffer (0.05 M). The plates were washed 

four times with phosphate-buffered saline (PBS) with 0.5% Tween20 between the 

incubations. All samples were titrated against a six-fold serially diluted standard, ranging 
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from 3.125µg/l to 100µg/l. The samples, the standard dilutions and a blank (PBS with 0.5% 

Tween20) were added in duplicate and incubated overnight at room temperature. The alkaline 

phosphatase-conjugated antibodies (final concentration: 0.3mg/l) were added and incubated 

for 2 hours. p-Nitrophenyl phosphate dissolved in Diethanolamine buffer (Sigma-Aldrich, 

USA) was used to develop the plates and the absorbance was read at 405 nm on an ELISA 

microplate reader (Molecular Devices, USA). 

3.3 HLA TYPING 

3.3.1 HLA imputation using high-resolution SNP  

Imputation of HLA alleles was performed using high-resolution SNP data and two 

independent imputation pipelines, HLA*IMP02 (85) and SNP2HLA(86). HLA*IMP02 was 

carried out using a European reference panel and absolute posterior probability (Q2) ≥ 0.7 

was used as the cut off for the HLA- B, HLA-DRB1 and HLA-DQB1 analyses.  

 

For SNP2HLA, the Type 1 Diabetes Genetics Consortium dataset reference panel was used 

to perform the imputation of HLA types, polymorphic amino acid positions and SNPs. The 

minor allele frequency cut off was set at 0.5% and info score at ≥ 0.5. In total, 8404 

variants, including 7125 SNPs, 1042 amino acid polymorphisms, one hundred and forty-

five 4-digit resolution HLA alleles and ninety-two 2-digit resolution HLA alleles were 

retained for further analysis.  

3.3.2 Molecular-based HLA typing 

For verification of imputation results, a total of 767 Swedish IgAD samples were typed for 

HLA-B, HLA-DR and HLA-DQ using PCR-SSP (87) in 2-digit resolution according to the 

manufacturer’s instructions (Olerup SSP AB, Stockholm, Sweden).  

In addition, 150 IgAD samples and 25 control samples were typed at a 4-digit resolution 

using sequence-based typing (SBT) method as described previously (88). 

3.4 EXOME SEQUENCING  

Exome sequencing and the pipeline for analysis were performed as described (89). In brief, 

captured libraries were generated by ligation-mediated PCR. The fragments were 

hybridized using the Agilent SureSelect Human All Exon 50 Mb Kit (Agilent Technologies 

Incorporated, USA). Subsequently, each captured library was loaded onto an Illumina 

Hiseq2000 sequencer (Illumina Incorporated, USA) according to the manufacturer’s 
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protocol. The high-throughput sequencing was performed to acquire the desired average 

sequencing depth.  

3.5 GENOME-WIDE ASSOCIATION STUDY 

All of the genotyping arrays were carried out using the Omni chips developed by Illumina, 

Inc. (Illumina Incorporated, USA) according to the manufacturer’s instructions. IgAD cases 

were genotyped on the Omni1-Quad and Omni2.5 chips in Genentech Inc, CA, USA and the 

Mutation Analysis Core Facility at the Karolinska University Hospital, Stockholm, Sweden. 

Swedish controls were genotyped on Omni-Quad 1 (45) and the Swedish twinGene controls 

(82) were genotyped using the Omni Express chip.  All SNPs were mapped to build hg19 

coordinates using liftOver and the strand, alleles and positions were updated according to the 

strand data mapped to hg19 (90).  

3.6 SEQUENCING OF THE MHC REGION 

In order to search for new polymorphisms associated with IgAD development in the MHC 

region, we sequenced ten samples (5 IgAD patients and 5 controls) who carried the whole 

ancestral 8.1 haplotype in a homozygous form, by high-throughput sequencing, according to 

the protocol described previously (88). To obtain the complete MHC sequence of these 

samples, those regions with an average depth lower than four reads were defined as gaps and 

re-sequenced by Sanger sequencing.  For Sanger sequencing, specific primers pairs were 

designed by using PRIMER3 Input version (0.4.0) software (http://frodo.wi.mit.edu/). 

One hundred and fifty ng of genomic DNA was added to a final volume of 30µl of reaction 

mix containing the primers (0.4 mM), dNTPs (250uM), MgCl2 (2.5 mM) and 0.8 units of 

enzyme (GoTaq® DNA Polymerase, Promega).  In order to amplify the intergenic regions, a 

total of 3 different PCR programs were performed according to the DNA sequence 

characteristics (%AT or %GC): a) Standard PCR (94ºC for 2 minute (min); 30 cycles: 94ºC 

for 15 second (s), 60ºC for 30 s and 72ºC for 1 min, final elongation: 72ºC for 4 min; b) 

Touch-Down PCR (94ºC for 5 min; 30 cycles: 94ºC for 30 s, 66ºC for 30 s and 58ºC for 12 

min, final elongation: 58ºC for 30 min), the annealing temperature was decreased 0.3 ºC 

every cycle. c) High GC content – Touch down modified PCR (94ºC for 5 min; 40 A cycles: 

94ºC for 30 s, 70ºC for 30 s and 72ºC for 40 s; 15 B cycles 94ºC for 30 s, 58ºC for 30 s and 

72ºC for 40 s, final elongation: 58ºC for 5 min, the annealing temperature was decreased 0.3 

ºC every A cycle, the annealing ramp was set to 33% of the speed and the elongation ramp 

was adjusted to 30% of the speed. The size of all fragments was confirmed by electrophoresis 

in 0.8% agarose gel and the specific band was sliced follow by extracted with Qiaquick gel 

http://frodo.wi.mit.edu/
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extraction kit (QIAGEN, Hilden, Germany) and subsequently sent for Sanger sequencing to 

Macrogen Inc. All the sequences were aligned to the COX ([RRID: CVCL_E534], being 

homozygous for HLA-B*0801-DRB1*0301-DQB1*0201 (91)) published sequence using 

ClustalW software (http://www.ebi.ac.uk/Tools/msa/clustalw2) (92, 93).  

3.7 BIOINFORMATICS AND STATISTICAL ANALYSIS 

3.7.1 Sub-classification of population cohort and association analysis 

The analysis was initiated by comparison of individuals carrying at least one MHC risk allele 

(HLA*B0801-DRB1*0301-DQB1*0201 or HLA-DRB1*0701-DQB1*0202 or HLA-

DRB1*01-DQB1*0501) with individuals lacking a risk allele. The significantly different 

variants in the sample cohort were then filtered with the control cohort and only unique 

variants in the case comparison were considered to have an association with IgAD. The same 

strategy was applied in order to investigate and verify the signal by using the cohort with at 

least one HLA*B0801-DRB1*0301-DQB1*0201 risk haplotype (54% of IgAD individuals). 

The analysis was first performed by comparing all individuals without HLA*B0801-

DRB1*0301-DQB1*0201, followed by a comparison of individuals lacking all risk alleles.  

In the subsequent analysis, cohorts homozygous for HLA*B0801 HLA-DRB1*0301 HLA-

DQB1* 0201(68 IgAD and 123 controls), HLA-DRB1*0701 HLA-DQB1*0202 (7 IgAD and 

30 controls) and HLA-DRB1*01 HLA-DQB1*0501 (34 IgAD and 68 controls) were selected. 

In addition, we also investigated cohorts homozygous for a single allele, i.e., HLA*B0801, 

HLA-DRB1*0301, HLA-DRB1*0701 and HLA-DQB1*0501. 

χ
2
 tests of association for genotypes in each cohort were performed independently, using only 

variants that overlapped between the arrays. Variants reaching genome-wide significance (P 

< 5x10
-8

) were considered as being significantly associated with IgAD. In addition, variants 

with P < 2x10
-7

, and FDR< 0.05 were considered to show suggestive association with IgAD. 

3.7.2 Gene-based association analysis in different subgroups 

The GCTA-fastBAT software was used to analyze gene-based associations (94). A total of 

24125 genes including 1522 miRNA genes from the hg19 reference were included in the 

analysis. MHC genes were excluded to prevent an LD effect. The gene region was set at + 50 

kb from both 3’ and 5’ UTR of the genes. The LD cut off was set at 0.9. Non-MHC genes 

that had a minimum five SNPs within the regions with a total P<2 x10
-6 

were 

considered to be significant; while a total of P < 2 x10
-4 

were regarded as showing a 

suggestive association with IgAD. 
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3.7.3 Linkage disequilibrium proxy analysis of associated variants 

LD proxy analysis was performed using LDlink software (95), and only the European 

population (EUR) was selected for the analysis. R
2
 > 0.9 and D' > 0.9 were used as cut-offs. 

3.7.4 Pre-imputation filtering 

Prior to imputation, we used Genotype Harmonizer (96) to standardize the strand alignments, 

as well as the format for all arrays using the 1000 Genomes Project Phase 3 integrated variant 

set as a reference. In addition, variants with a genotyping rate <97% and evidence of 

deviation from Hardy-Weinberg equilibrium (HWE) in controls (P < 1x10
-6

) were removed.  

3.7.5 Imputation of missing genotypes in the MHC region and association analysis 

MHC region imputation was performed using Impute2 (97). Only samples and controls with 

a high confidence HLA classification proceeded to imputation of MHC regions from chr6: 

28.3 Mb to chr6: 33.8 Mb (total 180,123 SNPs) using the 1000 Genomes Project Phase 3 

integrated variant set release in NCBI, with build hg19 coordinates used as the reference 

panel. Cases and controls were imputed together; using only genotyped variants that 

overlapped across all the arrays. Genotypes were imputed in 1 – 1.5 MB chunks with the 

effective size of the population of 20,000. Additionally, 80 haplotypes as templates when 

phasing observed genotypes were used. A total of 30 Markov chain Monte Carlo (MCMC) 

iterations were performed where the first 10 MCMC iterations were discarded as burn-in.  

The quality control (QC) was set as MAF > 0.5%, info score > 0.5 and calling threshold > 

0.9; a total of 44857 variants passed the filtering stage and were included in the analysis. The 

thresholds for variant calling for each were set at 97%. In addition, the evidence of deviation 

from HWE (P< 1x10
-6

) in controls was set. A logistic regression model was applied to test 

for the association and significantly associated HLA types were used as covariates in the 

conditional analysis (Plink (1.07 (98)). Variants reaching genome-wide significance (P < 

5x10
-8

) were considered as being significantly associated with IgAD. 

3.7.6 Family-based association analysis 

Family association analysis was performed to assess susceptibility to IgAD using a family-

based association test (FBAT) (99, 100). Only HLA alleles with a minimum of ten 

informative families without Mendelian errors were included.  Since our dataset contains 

multiple siblings in a family as well as various families in a pedigree, the test statistics were 

computed using the empirical variance, as described in Lake et al. (101).  The single-locus 

analysis was conducted to test the association of IgAD with the classical HLA alleles using 

the additive genetic model. In addition, the multiple marker haplotype test was performed for 
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tightly linked HLA-DR and HLA-DQ loci. The direction and frequency of transmission were 

indicated by the Z statistic (Z score) and p-values. 

3.7.7 Estimation of increased risk over population prevalence to siblings due to 

disease susceptibility HLA genes  

The attributed risk analysis due to specific HLA alleles for IgAD development was based on 

the formula developed by Risch (102). The identity-by-descent (IBD) of all sibling pairs were 

calculated using the GENIBD program in the Statistical Analysis for Genetic Epidemiology 

(S.A.G.E) package (103). The allele frequency in the Swedish population was extracted from 

an allele frequency database (104). A lack of MHC recombination between HLA-DR and 

HLA-DQ was assumed in the calculation. The recurrence risk for siblings with IgAD was set 

at 50 according to a previous report (105).  

3.7.8 MHC recombination analysis 

The MHC region of six crossover samples, including three HLA-DRB1*0301-HLA-

DQB1*0201 samples without HLA-B*0801 and three samples with HLA- B*0801 only 

(without DRB1*0301-HLA-DQB1*0201) were sequenced using high-performance deep 

sequencing. The possible crossover layover in the class III region (the region between 

HLA-B and HLA-DRB1) were examined against COX, HLA-B*0801 DRB1*0301-HLA-

DQB1*0201 homozygous control and HLA-DRB1*0301-HLA-DQB1*0201 heterozygous 

control using fine mapping SNP examination.    

Sequencing reads of 6 crossover samples and 10 homozygous samples (including COX) were 

aligned to hg19 using the Burrows-Wheeler Aligner (BWA ver: 0.7.10). The bam files from 6 

crossover samples were then used as input by samtools (version 1.2) phase to link 

heterozygous SNPs to haplotypes. Homozygous regions within these heterozygous 

haplotypes were also regarded as haplotypes. Ten homozygous samples were used as the 

control to call SNPs using Samtools software (ver1.2). The haplotypes of 6 crossover samples 

were filtered out if their SNPs were inconsistent with the controls, or if their length was less 

than 5 Kbp.  Only the haplotype from the ancestral COX haplotype remained after the 

filtering process. Subsequently, all the samples were linked to construct the crossover 

regions. The final region which contained the portion of the ancestral haplotype was 

determined as the shared region of these areas. 
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3.7.9 MHC segment-based analysis 

The GCTA-fastBAT analysis was performed to investigate the segment based association 

(94). The MHC region chr6: 28.3 – chr6: 33.8 was analyzed in 100 Kbp interval segments.  

In total, 242 MHC genes, including 12 miRNA genes from hg19 reference genes were 

included in the region. LD cut-off of 0.95 was set. 

3.7.10 Heritability estimation 

The genome-wide complex trait analysis-restricted maximum likelihood (GCTA-REML) 

software (106) was used to estimate variance explained within the MHC region using the 

IgAD cases and controls. The heritability of IgAD within the MHC was estimated in the 

Swedish IgAD cohort (n=44857 imputed genotypes) (106), using the first 10 eigenvectors as 

covariates in the model and adjusted for the disease prevalence in Sweden (1/600). 

3.7.11 Statistical Analyses 

All the statistical analyses were performed using Microsoft Excel 2010 (Microsoft, USA) and 

GraphPad Prism software (GraphPad, USA). Fisher exact tests and one-way analysis of 

variance (ANOVA) were used in paper I and paper II.  
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4 RESULTS  

4.1 REVERSAL OF IGAD IN CHILDREN 

4.1.1 Frequency of reversal of IgAD based on clinical record review 

A total of 654 children diagnosed with IgAD between 1992 and 2012 at one of five 

participating university hospitals were identified. The children were aged between 4 and 13 

years. Of these, 232 had follow-up testing results available (minimum interval 90 days) up 

to 31 January 2014. In order to assess the validity of using 4 years of age as the minimum 

age at which to reliably diagnose IgAD, the children were subdivided into three age groups 

(A: 4–4.99; B: 5–9.99; C: 10–12.99) based on the age at which they were first diagnosed 

with IgAD.  

Nine out of thirty-nine (23.1%) children who were identified to have IgAD at 4 years of age 

had a serum IgA level above 0.07g/L upon re-testing. The average age of reversal was 9.53 ± 

2.91 years. Additionally, 30 of the 131 (22.9%) children with IgAD identified between 5 and 

9.99 years of age had a serum IgA level which had returned to the normal range at an average 

age of 12.21 ± 3.43 years of age. However, only 4 out of 62 (6.5 %) children who were 

diagnosed at 10 – 12.99 years of age showed a reversal of IgAD during the follow-up 

period. The frequency of reversal was significantly higher for children who were identified 

to have IgAD prior to the age of 10. No significant differences in gender were observed in 

IgAD reversal at any age of diagnosis. 

4.1.2 BAMSE follow up study 

From previous findings, five out of the ten children with IgAD had normal serum IgA 

levels at 8 years of age (13). Fourteen serum IgA levels from the 16-year old follow up 

study were analyzed using ELISA and 8 of the 14 children (57.1%) showed an increase in 

serum IgA above the cutoff level. Out of the eight children, four children were found to 

have a normalized IgA level (serum IgA over 0.7 g/L), while four remained partially deficient 

(serum IgA level 0.07 – 0.7 g/L), giving a prevalence of IgAD in the BAMSE cohort of 

1:404 at 16 years of age. 

4.2 THE HIGHER FREQUENCY OF IGA DEFICIENCY AMONG SWEDISH 

TWINS IS NOT EXPLAINED BY HLA HAPLOTYPES 

4.2.1 Distribution of IgA concentration 

The mean IgA concentration was 2.38 g/L (Standard Deviation (S.D) = 1.03) for MZ twins 

and 2.56 g/L (S.D=1.17) for DZ twins. The difference was significant for the mean 
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concentration (t = − 7.8, P= 9.9 x10
− 15

) and the effect size (η2 = 0.0047) was extremely 

small. The sex-stratified means were 2.53 g/L for male MZ twins and 2.26 g/L for female 

MZ twins, as compared with 2.71 g/L for male DZ twins and 2.43 g/L for female DZ twins. 

By using one-way ANOVA, the mean serum IgA concentrations for male and female twins 

were found to be significantly different (P= 1.43 x10
− 43

). However, no significant 

difference in the concentration was observed in a time-of-sampling-dependent manner. 

4.2.2 Influence of HLA alleles on IgAD and IgA concentration 

4.2.2.1 Influence on IgAD 

Comparison of HLA haplotypes was made between the twin study population (based on 

imputation of HLA types from high-resolution SNP data) and data from approximately 40 

000 individuals from the National Swedish Bone Marrow Donor Registry (Tobias Registret 

http://www.tobiasregistret.se). There was no difference in the frequency of HLA alleles in 

the twin cohort compared with a national population cohort. In addition, the HLA types of 

the MZ IgAD twins did not show significant differences when compared with the DZ twins. 

4.2.2.2 IgA concentration 

ANOVA was used to study the influence of individual HLA alleles on the IgA 

concentration. For MZ twins, IgA concentrations from only one twin from each twin pair 

were used, while IgA concentrations from both DZ twins were used. The IgAD associated 

HLA alleles A*01, B*08, B*13, B*14, DQB1*05, DRB1*01 and DRB1*07 were 

investigated. In addition, the protective alleles HLA B*07 and DRB1*15 (34) were also 

studied. From the analysis, individuals with the HLA alleles A*01 (p =0.019), B*08 

(p=0.003), B*14 (p=0-042), DRB1*01 (p<0.001), DRB1*03 (p=0.011) and DQB1*05 

(0.038) were found to have a significantly lower mean IgA concentration. On the other 

hand, individuals who carried the HLA alleles B*07 (p=0.001), DRB1*15 and DQB1*06 

(0.01) were found to have an increased mean IgA concentration. There was no significant 

difference observed between individuals with or without the HLA alleles B*13, DQB1*02 

and DRB1*07.  

4.2.3 Exome sequencing of selected discordant MZ twins  

Exome sequencing was performed on two selected MZ twin pairs discordant for IgAD. 

However, no mutations or structural variants were found in the IgA deficient twin as 

compared to their sibling. 
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4.3 FINE MAPPING AND DEEP SEQUENCING OF THE MAJOR 

HISTOCOMPATIBILITY COMPLEX IDENTIFIES SUSCEPTIBILITY 

LOCI/VARIANTS FOR IMMUNOGLOBULIN A DEFICIENCY  

4.3.1 Estimation of heritability MHC effect  

The genome-wide complex trait analysis-restricted maximum likelihood (GCTA-REML) 

software (106) was used to estimate variance explained within the MHC region using a large-

scale case-control study (636 IgAD patients and 7798 controls). The heritability of IgAD in 

the Swedish patients in the MHC region was estimated to be 46% (standard error [S.E.] 

=2.9% with the first 10 eigenvectors as covariates in the model and adjusted with the disease 

prevalence in Sweden [0.167%]). 

4.3.2 Family association analysis and estimation of attributed risk due to disease 

susceptibility HLA genes  

Seventy-three multi-case families including 162 sibling pairs who had been followed up since 

1999 were included in the analysis. Strong associations were observed in HLA-B*08 (Z: 2.60; 

p=0.0094), HLA-DR*03 (Z: 2.98; p=0.0029) and HLA-DQ*02 (Z: 3.91; p=0.0001) while the 

strongest protection was seen in the HLA-DQ6 (Z:-2.69; p=0.0072) positive individuals, 

which was in agreeance with a previous finding (32).  We next determined the attributed risk 

due to this specific HLA ancestral allele for IgAD development using the identity-by-descent 

(IBD) of all sibling pairs based on the formula developed by Risch (102). Based on a total of 

31 affected sibling pairs where at least one sibling carried the risk haplotype (HLA- B*08-

DRB1*03-DQB1*02), the genetic effect due to this risk haplotype was 34.6%.  

4.3.3 MHC fine mapping and Haplotype association analysis in a large-scale case-

control study 

Three class I HLA genes (HLA-A, HLA-B and HLA-C) and five class II HLA genes (HLA-

DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1) were examined. Twenty-six 

4-digit HLA alleles were significantly associated with IgAD (p < 5 x 10
-8

) (Figure 3).  The 

strongest association signal was detected from HLA-DQB1*0201 (OR = 3.35, P= 1.13 × 

10
−78

) whereas the highest odds ratio (OR= 7.78, CI 95%, 5.335 – 11.34) was derived from 

HLA-DRB*0102. In addition, the multiple haplotype effect of the HLA- B*0801-

DRB1*0301-DQB1*0201 allele (OR = 3.59, P = 3.17 × 10
−82

) showed the strongest 

association with IgAD, while the secondary signal came from HLA-DRB1*0701- 

DRB1*0202 (OR = 1.84, P = 1.19 × 10
−9

). These results were consistent with previous 

findings (34, 107).  
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Because of the extensive LD nature and complexity of the MHC region, a conditional 

analysis was used to identify independent MHC haplotypes that may drive IgAD risk. The 

most significant associated alleles from HLA-B, HLA-DRB1 and HLA-DQB1 were in the 

model as covariates.  If any HLA alleles remained significantly associated, it would be 

included in the next model as a covariate until no HLA alleles would reach the stringent 

significant threshold (p < 5x 10
−8

).  Firstly, we used multiple logic regression analysis 

conditioned on the strongest risk haplotype in HLA- B, HLA-DRB1 and HLA-DQB1 alleles. 

The HLA-DPB1*1301 allele (OR = 1.84, P = 2.20 × 10
−9

) showed an independent risk 

separate from all known associated alleles. Further conditional analysis using HLA-

DPB1*1301 as a covariate did not show any other significant associated alleles. In addition, 

linkage graph analysis using the Disentangler software confirmed that the HLA-

DPB1*1301 signal is independent of the currently known susceptibility haplotypes for 

IgAD. 
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4.3.4 Long-range haplotype analysis 

One common long-range haplotype spanning the entire HLA class I and class II regions 

that was in strong association with IgAD risk in the Swedish population was observed, i.e. 

HLA-A*0101-C*0701-B*0801-DRB1*0301-DQA1*0501-DQB1*0201-DPA1*0201-

DPB1*0101 (F case = 0.091, OR = 4.07, P= 1.71 × 10
−31

). Further analysis of this long-

range haplotype showed that only in the presence of HLA-A*0101 (OR=0.488, P= 4.56 × 

10
−4

), HLA- A*0101-C*0701- B*0801(OR= 0.985, P= 0.957) or HLA-DRB1*0301-

DQA10501-DQB1*0201 (OR= 1.03,  P= 0.913) was this haplotype not associated with 

IgAD.  

4.3.5 MHC recombination analysis 

The MHC region of crossover samples from six patients, including three patients 

heterozygous for HLA-DRB1*0301-HLA-DQB1*0201 but without HLA- B*0801, and three 

samples heterozygous for HLA-B*0801 alone but without DRB1*0301-DQB1*0201, where 

the second haplotype has been shown to be neutral with regard to IgAD were examined. 

The possible crossover site was located in the class III region (between HLA-B and HLA-

DRB1) and was analyzed using the COX cell line (91) as a control. The haplotype blocks (5 

kbp/blocks) that were homozygous in COX, but heterozygous in the samples were 

considered ”ancestral blocks.” A region of approximately 110 kbp in length, which may 

contain the shared ancestral block for all the samples was identified. The chromosome is 

located at chr6:31997601-32107851, within the MHC class III region. The genes located 

within this region are C4B, CYP21A2, TNXB, ATF6B, and FKBPL.  

4.3.6 Complete sequencing of the MHC region  

The MHC region was completely sequenced and aligned to the COX cell line using the 

ClustalW software. In total, 473 SNPs and 3837 InDels variants were identified. Thirty-nine 

of these were located in exons, 74 in UTR’s, 1562 in introns and 2635 in the intergenic 

regions which have not been listed in either the dbSNP150 database (February 03, 2017 

release) or in the 1000 Genomes Project database (September 14, 2014 release) or the 

NHLBI-ESP project with 6500 exomes (June 07, 2013 release).  There was no significant 

difference observed in the new variants between IgAD patients and controls. 

4.3.7 MHC segment analysis and identification of the independent variants 

associated with IgAD 

A 100K bp segment-based analysis with an LD cut-off set at 0.95 was performed. The 

analysis included 8434 individuals in order to investigate the strongest association region for 
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IgAD within the MHC region. Interestingly, the strongest association was detected in the 

class III region, chr6: 32.1 – 32.2, P = 8.34 × 10
-110

 whereas rs1800625 produced the 

strongest signal (Pnominal = 4.80 × 10
-104

). The stepwise conditional analysis allowed us to 

identify three independent signals, including RNF5 (rs3130349), BTNL2 (rs1980493), and 

HCG23 (rs3117097) within the MHC region class III region that were associated with IgAD.  

4.4 DISTINCT NON-MHC GENE ASSOCIATIONS OF IGAD PATIENTS 

CARRYING DIFFERENT MHC RISK ALLELES   

4.4.1 MHC association analysis and multiple haplotype association investigations 

8,434 samples (636 IgAD and 7798 controls) passed QC and were included in the analysis.  

In the MHC haplotype analysis, the HLA-B*0801-DRB1*0301-DQB1*0201 haplotype 

showed the strongest association with IgAD (OR = 3.59, P = 3.17 × 10
−82

). The HLA-

DRB1*0701- DRB1*0202 (OR = 1.84, P = 1.19 × 10
−9

) and HLA-DRB1*0101- 

DQB1*0501 (OR = 1.41, P = 1.31 × 10
−4

) showed a weaker association with IgAD. The 

effect of HLA-DRB1*0102-DQB1*0501 was not possible to determine due to the low 

frequency in controls (F < 0.01). Therefore, combined signals of HLA-DRB1*0101 

DQB1*0501 and HLA-DRB1*0102-DQB1*0501 were investigated and showed a strong 

association signal HLA-DRB1*01-DQB1*0501 (OR = 1.84, P  = 3.90 × 10
−14

). However, 

the presence of HLA-B*0801 (OR = 1.32, P = 1.17 × 10
−1

) alone or HLA-DRB1*0301-

DQB1*0201 (OR = 1.32, P = 7.24 × 10
−2

) alone was not sufficient to confer susceptibility 

to IgAD. Similarly, the presence of the HLA-DRB1*0701 (OR = 1.06, P = 7.16 × 10
−1

) 

alone was not associated with IgAD. Since the HLA-DQB1*0202 is in complete linkage 

disequilibrium (LD) with HLA- DRB1*0701, it was therefore not possible to investigate the 

effect of HLA-DQB1*0202 without the presence of HLA- DRB1*0701. Similarly, the effect 

of HLA-DRB1*01 or HLA-DQB1*0501 alone could not be determined due to the low 

number of cases and controls.  

Haplotype linkage analysis showed that HLA-DQB1*0201 was in complete LD (100%) 

with HLA-DRB1*0301 and vice versa and HLA-DQB1*0202 had a 100% association with 

HLA-DRB1*0701. On the other hand, 74.7% of HLA-DRB1*0701 was linked to HLA-

DQB1*0202, whereas 24.7% was associated with HLA-DQB1*0303. In addition, 72% of 

the HLA-DRB1*0101 and 22.8% of the HLA-DRB1*0102 alleles were associated with 

HLA-DQB1*0501, while the remaining 5.2% were mainly associated with HLA- 

DRB1*0103 and DRB1*1001.  
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4.4.2 Analysis of the influence variants outside of the MHC region in IgAD patients 

homozygous for high-risk HLA alleles 

Based on the cross-comparison strategy, only one significantly associated non-MHC 

variant, rs4097492 (OR = 0.23, P= 7.63 x 10
−9

), an intronic variant of STXBP6 on 

chromosome 14 was detected in the IgAD cohort alone. Next, we analysed the individuals 

expressing at least one HLA*B0801-DRB1*0301-DQB1*0201 and compared these with 

individuals who do not carry HLA*B0801-DRB1*0301-DQB1*0201 (but we did include 

individuals carrying other risk haplotypes), and did not detect any significant variants.  

However, if we only compared these with individuals not carrying a risk haplotype, the 

identical non-MHC variants, rs4097492 (OR = 0.22, P= 4.01 x 10
−8

) passed the genome-

wide threshold (P < 5.0 x 10
−8

).   

In the HLA-DRB1*0701-DQB1*0202 homozygous cohorts, we identified one significant (< 

5x 10
−8

) and two suggestive variants (< 2 x 10
−7

; FDR ≤ 0.05). The peak novel variant was 

rs2133282 (OR = 33, P= 3.97 x 10
−8

; FDR= 0.02), an intergenic variant located between 

NOX3 and ARID1B on chromosome 6. Rs3917325 (OR = 59, P= 1.57 x 10
−7

; FDR< 0.05), 

an UTR3 variant of IL1R1 on chromosome 2 and rs257945 (OR = 38.67, P= 1.14 x 10
−7

; 

FDR= 0.05), an intergenic variant located between NEDD1 and RMST on chromosome 12 

were found to be suggestively associated.  

For the HLA-DRB1*01-DQB1*0501 homozygous individuals, rs10399952 (OR= 15.4, 

P=5.05x10
−9

), a variant of FMO1 on chromosome 1 was found to be significantly associated 

with IgAD. However, we did not detect any strong signal (< 5x 10
−8

or < 2 x 10
−7

) based on 

the analysis method in the HLA-B*0801-DRB1*0301-DQB1*0201 homozygous cohort.  

4.4.3 Analysis of influence genes using gene-based analysis in different subgroups 

In order to enhance the detection power, the data was investigated using a gene-based 

association analysis. With the enhanced detection method, CD40 (P = 6.89 x 10
−5

) on 

chromosome 20, with 29 SNPs in the analyzed gene region, was found to be potentially 

associated with IgAD in patients homozygous for HLA-B*0801-DRB1*0301-DQB1*0201. 

DHX38 (P = 8.60 x 10
−5

), a novel inhibitor of protein phosphatase 4 (108) located on 

chromosome 16 with a total of 14 SNPs in the analyzed region, was shown to be weakly 

associated with IgAD patients homozygous for HLA-DRB1*01-DQB1*0501.  

A total of 7 gene regions were identified, showing suggestive association with IgAD in the 

patients who did not carry any of the major MHC susceptibility alleles. Most (6 out of 7) of 

these genes were associated with DNA repair or autoimmune disease. The associated genes 
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included B3GNT6 (P = 2.09 x 10
−6

), TNFRSF13B (TACI) (P = 1.12 x 10
−4

), GIMAP5 (P = 

1.9 x 10
−4

), SFPQ (P = 1.00 x 10
−4

), OXA1L (P = 1.18 x 10
−4

), TFAP2E (P = 6.99 x 10
−5

), 

and ZMYM4 (P = 1.07 x 10
−4

). The locations of all the identified genes identified by two 

different methods are shown in the chromosome ideogram according to the MHC 

susceptibility groups (Figure 4).  

 

Figure 4. Chromosome ideogram for all identified susceptibility genes/locus in the patients with different 

MHC risk alleles. Chromosome ideogram was generated using the Phenogram software (109). Blue 

circle: location of genes/locus associated with the HLA-B*0801-DRB1*0301-DQB1*0201 homozygous 

cohort; Green circle: location of genes/locus associated with the DRB1*01-DQB1*0501 homozygous 

cohorts; Red circle: location of genes/locus associated with the DRB1*0701-DQB1*0202 homozygous 

cohorts; Black circle: location of genes/locus associated with patients carrying no MHC susceptibility 

genes. Pink circle: location of genes/locus associated with patients carrying at least one MHC 

susceptibility genes. The MHC region is highlighted in purple box. Coloured region indicated the 

cytogenetic band on each chromosome according to the predefined setting, based on ideogram 

documented in the UCSC database (110). 
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5 DISCUSSION AND FUTURE PERSPECTIVES 

Overall, this thesis aimed to identify the genetic basis of the most common primary 

immunodeficiency disorder in the world. Before commencing the genetic analysis, we first 

verified and fine-tuned the current definition of IgAD in order to have a better sampling 

criteria for subsequent projects. To date, several studies have shown that compared to adults, 

there is a relatively high proportion of IgAD in pediatric patients that are transient in children 

over the age of four (72, 111-115). In paper I, our study was the first to evaluate reversal of 

IgAD among children. We showed that around 22.9% (39 out of 170) children who were 

diagnosed as having IgAD prior to 10 years of age had an increase in their serum IgA level 

with increased age. The reversal was highly significant as compared to those diagnosed after 

10 years of age. This observation indicated that more than one-fifth of Swedish children 

might have delayed ontogeny of their IgA system. Hence, it may be too early to establish a 

diagnosis of IgAD using a serum level of 0.07g/L as a cutoff in children. In addition, in the 

BAMSE follow up study, more than 57.1 % (8 out of 14) of the children had reversed their 

IgAD status during a follow-up period of 12 years. The percentage of reversal was more than 

twice as high (57.1% vs. 22.9%) in this cohort as compared to children with a suspected 

disease based on gastrointestinal symptoms, celiac disease, etc. Since the BAMSE cohort 

represents a “healthy” control group, this observation indicated that reversal of the serum IgA 

level may potentially be higher in asymptomatic individuals. 

Next, we initiated a twin study (paper II). Twins, in particular MZ twins discordant for a 

given disease, provide a unique opportunity to study the complex interplay of genes and 

environment in disease susceptibility (116). To date, there are six studies evaluating serum 

IgA concentrations in twins, of which three studies were case reports (117-119).  Two studies 

quantified and compared the level of serum IgA in MZ and DZ twins (42, 43). The first paper 

suggested a genetic influence on serum IgA concentrations (120) whereas the second study 

showed that the serum IgA concentration was influenced by a combination of genetic and 

environmental factors (121). The last report focused on susceptibility genes for 

immunoglobulin deficiencies in MZ twins discordant for type 1 diabetes (122).  Pairwise 

concordance for IgA was 50% in the MZ twins, thus markedly higher as compared with 

randomly paired controls.  

We reported that the prevalence of IgAD was 1:241 in MZ twins and 1:198 in DZ twins, 

which was markedly higher than that in the healthy Swedish adult population (1:600). 

However, the associated HLA haplotypes were not significant in comparison with 40 000 

Swedish healthy controls. This observation suggested that the genetic contribution by the 
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MHC region might be similar.  The risk-conveying HLA alleles A*01, B*08, B*14, 

DRB1*01 and DQB1*05 were associated with significantly lower serum IgA concentrations 

in the twin cohort. Our report is the first to describe the disease risk and protective MHC 

alleles that influence serum IgA levels. In addition, exome sequencing from two MZ twin 

pairs discordant for IgAD revealed no differences between the siblings. Furthermore, the 

heritability of 35% for IgAD suggests a genetic influence.  

We further investigated the role of genetics in IgAD by performed a comprehensive 

examination within the MHC region to study the IgAD risk (paper III) and studied the 

association/interaction of the non-MHC genes in individuals who carry different MHC 

haplotypes (paper IV). The majority of the twin cohort participants (77.2%) and more than 

1100 IgAD patients and controls were also included in the study using fine-mapping 

strategies.  

In general, fine-mapping strategies have confirmed the major associated locus reported by 

serotype analysis within a particular MHC locus in most autoimmune disorders. In addition, 

the strategies have provided the opportunity to investigate and determine specific allelic 

variants as well as independent variants in different HLA classes that are associated to the 

diseases. For example, for multiple sclerosis (MS), SLE and T1D, the strongest association 

was detected within with the MHC class II locus. However, there are also weaker 

associations within the class I as well as class III regions being fine-mapped (123-125). In 

addition, HLA-DPB1*17, in MHC class II, was identified being the most significant 

haplotype associated with dermatomyositis in Asian population (126). 

By applying similar strategies, we confirmed the primary association signal from the HLA-

B*0801-DRB1*0301-DQB1*0201 haplotype (OR = 3.59, P = 3.17 × 10
−82

) and a secondary 

signal was observed from the HLA-DRB1*0701- DRB1*0202 haplotype (OR = 1.84, P = 

1.19 × 10
−9

). This data is in agreement with previous findings (32, 34). In addition, HLA-

DPB1*1301 (OR = 1.84, P = 2.20 × 10
−9

) was shown to be an independent risk signal and 

concurred with previous observations (107). 

Extensive LD has been a significant obstacle to the investigation of causal genes within the 

MHC region. The recombination rate within the MHC is lower than the genome-wide rate 

determined by sperm typing (127). The rate was predicted to be less than 1 % per Mega 

basepair (bp) in each meiosis (128, 129). The same report showed that the recombination rate 

within the class II region was 0.74% and 0.94% within the class III region (128). However, 

only one unique case of recombination within the DRB1-DQA1-DQB1 locus has been 
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observed (130). Investigation of the recombination between loci may provide clues to the 

location of the IgAD predisposing genes. We thus examined the MHC region in crossover 

samples from patients, and identified a region approximately 110 kb in length in MHC class 

III as shared ancestral block. However, further analysis with controls carrying the ancestral 

8.1 haplotype did not show any differences.  In addition, there was no significant difference 

noted after verification with complete sequencing of the regions (including 91 newly 

identified variants in the shared ancestral block). This observation suggested that the ancestral 

block may not contain independent IgAD predisposing genes. The MHC class I and II genes 

themselves may carry the susceptibility. Since not all individuals who carry MHC risk 

haplotypes suffer from IgAD,  susceptibility to IgAD may be due to a combined effect owing 

to an interaction within MHC genes, as well as the interaction of an MHC-encoded 

susceptibility allele with a disease contributing non-MHC gene. 

Fine mapping strategies have identified multiple MHC Class III variants significantly 

associated with autoimmune diseases, including the association to variant rs2516489 which is 

located between the MICB and LST1 genes in MS (125). An independent association signal 

located at the upstream of NOTCH4 in MHC class III region was determined by a stepwise 

meta-analysis of sizeable European SLE cohort (131). Additionally, an association signal of 

SKIV2L in the MHC class III region has also been suggested involving in susceptibility to the 

pathogenesis of SLE (132).   

In addition, Goudey et al. reported 20 significant epistatic signals within the MHC which 

contribute to the genetic architecture of celiac disease (133).  The majority of the strongest 

signal was located in the MHC class III region, over 1Mb upstream of the HLA-

DQA1 and HLA-DQB1 risk loci, whereas the strongest signal corresponded to genes in the 

MHC class III region, in particular, PRRC2A and GPANK1/C6orf47 (133). Celiac disease has 

been reported to be strongly associated with IgAD, with up to a 15-fold increase in the 

prevalence of IgAD observed among both children and adults with CD (12).  The 

identification of strong association regions within MHC class III that likely play a role in the 

genetic epistasis in IgAD suggests a potentially shared genetic predisposition with celiac 

disease. 

By using segment-based analysis in the fine-mapping strategies, the strongest association was 

detected in the class III region, which contains 14 genes, with rs1800625 producing the 

strongest signal (P = 4.80 × 10
-104

). The variant, rs1800625 is located in the promoter region 

of the advanced glycosylation end product-specific receptor (AGER). The gene is involved in 

innate immune mechanisms as well as mediating interactions of advanced glycosylation end 
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products which play a crucial role in regulating the production/expression of TNF, as well as 

oxidative stress (134, 135). TNF has previously been shown to be involved in the regulation 

of IgA production (136, 137).  In addition, three independent signals including variants in 

RNF5 (rs3130349), BTNL2 (rs1980493), and HCG23 (rs3117097) within the MHC class III 

region has been identified. Rs3130349 has been reported to be linked to age-related macular 

degeneration (AMD) (138, 139). Interestingly, in AMD patients, overactive IgA responses 

and increased levels of serum IgA have been observed (140). The BTNL2 variant rs1980493 

has previously been shown to be associated with autoimmune diseases including autoimmune 

thyroid disease, T1D and SLE (141-143) and IgAD is overrepresented among all these 

autoimmune disorders(12). This observation provides another piece of evidence of a potential 

shared genetic predisposition between IgAD and autoimmune diseases.  

In addition to identifying independent variants, GWAS and MHC region fine-mapping 

studies allowed the analysis of epistatic interactions between genes. Multiple studies have 

reported the epistatic interactions between MHC and non-MHC alleles in autoimmune 

diseases, including T1D (144-146), GD (147-150), RA (151), SLE (146), ankylosing 

spondylitis (AS) (152), psoriasis (153) and MG (154). For example, the most significant 

epistatic interaction signal was identified between the MHC region and cytotoxic T 

lymphocyte antigen 4 (CTLA4) in the European SLE patients (155). CTLA4 gene is 

upregulated in activated T cells (interacting with antigen-presenting cells (APCs)) and 

transmits an inhibitory signal to T cells (156). This finding indicated that proper antigen 

presentation and T cell activation is essential in the pathogenesis of SLE (155). In addition, 

the epistatic effects of MHC and non-MHC loci may also help to elucidate the mechanistic 

basis of the disease. For instance, individuals who carry variants in ERAP1 showed an 

increased risk of psoriasis when they also carried a HLA-C risk allele (153). Similarly, 

epistatic effects were also observed for ankylosing spondylitis (AS), where loss-of-function 

variants of ERAP1 reduced the risk of AS in individuals who carried the HLA-B*27 and 

HLA-B*4001 haplotypes, but not in individuals carrying other risk haplotypes (152). Animal 

studies have shown that ERAP1 regulates the cleavage of relevant epitopes so that the 

epitopes can be presented by the HLA-B*27 molecule (152). This observation suggested that 

specific epitope have to be cleaved by ERAP1 in order to be efficiently presented. This step 

may be critical for identification of specific triggers for autoimmune diseases.  

Our study is the first to investigate the interaction between the MHC alleles with non-MHC 

genes in IgAD. Altogether, we identified 14 variants/genes that are potential susceptibility 

loci for IgAD in different cohorts, including one for all major risk alleles, one from HLA-
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B*0801-DRB1*0301-DQB1*0201, three from the HLA-DRB1*0701-DQB1*0202 cohort, 

two from HLA-DRB1*01-DQB1*0501 and seven in the patients who do not carry any 

susceptibility MHC alleles. The majority of the identified genes and variants were associated 

with an immune function or autoimmune disease, including the known IgAD associated 

genes, TNFRSF13B/TACI (56, 57). TACI gene was detected in patients who did not carry any 

risk alleles. On the other hand, our results show that CD40, which is involved in the 

regulation of IgA class switching (157), is suggestively associated with IgAD in the patients 

who are homozygous for the HLA-B*0801-DRB1*0301-DQB1*0201 haplotype. We also 

identified a UTR variant in the IL1R1 gene which was associated with the IgAD in the HLA-

DRB1*0701-DQB1*0202 cohort. Interestingly, multiple loci in IL1R1 have been reported to 

be associated with IgA nephropathy (IgAN) (158), a disease which is linked to 

overproduction of IgA.  This finding suggests that IL1R1 may potentially play a role in IgA 

production. 

As the clinical presentation of IgAD varies, ranging from asymptomatic to highly 

symptomatic patients, observation of differences in the non-MHC association in IgAD 

depending on the MHC risk alleles is not unexpected. The findings open up interesting 

perspectives for future research.  

GWAS has been highly successful in the identification of genetic variants associated with 

complex human disorders. However, GWAS generally captures only a few percents of the 

estimated heritability for these complex diseases (159). Application of a conservative 

threshold for the association may miss some causal SNPs. In addition, it has been postulated 

that the missing heritability could partially be explained by epistasis or rare variants (160). A 

well-selected cohort may improve the discovery of missing causal signals (160).  In our 

study, selected patients and controls enabled us to identify novel association signals within 

and outside the MHC regions. A similar approach has been adopted previously in other 

autoimmune diseases including AS and psoriasis, where the interaction between the HLA-

B*51 allele and HLA-C loci and ERAP1 and HLA-B*27, respectively were identified (161-

163). In contrast, these different strategies missed the detection of several genes which were 

previously implicated in the susceptibility to IgAD, including PVT1, ATG13-AMBRA1, AHI1, 

CLEC16A and mir-6891 (46, 164).  In addition, the relatively smaller sample size in our 

selected cohort also limited our detection power in genes with a modest effect, although 

multiple strategies were employed.  

In summary, this thesis has helped to advance our knowledge of the genetics of IgAD, the 

most common primary immunodeficiency disorder in the western world. In addition, this 
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study has also helped to refine the diagnostic definition of IgAD. Given the variable clinical 

presentation of IgAD, our findings, including 14 associated variants/genes in different cohorts 

outside the MHC region, four genes in the MHC class III region and three major MHC 

haplotypes, suggests that in contrast to other monogenic primary immunodeficiency diseases, 

IgAD is most likely to be a multi-complex rather than a pure monogenic disease, further 

evaluation of which represents the “next generation” in the genetics of immunodeficiency 

diseases. Further advancement in genetic studies may lead to a new definition of the disease 

based on the genetics of the individual. In addition, sub-categories of the disease may be 

identified. Currently, screening and evaluation for IgAD in the Asian population is ongoing to 

verify whether Caucasian haplotypes are the major risk factors for the disease. Additionally, 

whole genome sequencing of multi-case families is progressing in order to further enhance 

our understanding of the genetics of the disease. In addition, further work such as protein-

protein interaction investigation, gene knock-in/out and expression testing are planned to 

validate the functional role of the novel associations described in the present thesis. It may 

also form the basis for understanding the cellular pathways involved in the pathogenesis of 

the disease, paving the way for potential supportive or even curative therapy for affected 

patients.  
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6 CONCLUSIONS 

 In Paper I, the rate of reversal of IgAD in children who were diagnosed before the age 

of 10 is significantly high. The minimum age of four years to make a diagnosis of 

IgAD with a 0.07 g/L as cutoff may need to be altered to prevent a premature diagnosis 

of IgAD. A definitive diagnosis of IgAD should not be made before the early teens.  

 

 In Paper II, the MHC haplotypes were shown not to be the factor responsible for the 

increased frequency of IgAD in twins. However, the MHC haplotypes may play a role 

in regulating serum IgA concentrations in the twin cohort. A heritability of 35% was 

demonstrated and suggested that genetic influences are important for IgAD.  

 

 In Paper III,  novel independent HLA haplotypes, as well as independent gene variants 

associated with IgAD disease risk within the MHC were identified. Complete 

sequencing of the ancestral 8.1 haplotypes identified a large number of novel genetic 

variants and may provide valuable information for the investigation of other MHC 

associated diseases.  

 

 In Paper IV, the development of IgAD may be variable depending on the presence of 

different genes within selected MHC susceptibility haplotypes which interact with the 

potential disease-causing non-MHC genes. Understanding the interaction between MHC 

and non-MHC genes/protein may facilitate future identification of the etiology of IgAD. 
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