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ABSTRACT 
 
The architecture and functional interactions of the cerebral cortex are fascinating in their 

complexity of billions of neurons and glial cells connected in intricate circuitries and spatial 

regions. During development, transcription factors and chromatin modifiers work together to 

coordinate gene expression programs that drive the formation of the cerebral cortex. Notably, 

neurological aberrations can arise when perturbation occurs in these tightly regulated 

programs. Although our understanding of corticogenesis has advanced with the identification 

of master regulators of neural development, we only have rudimentary knowledge of the 

molecular mechanisms these factors use to execute the developmental programs.  

The aim of this thesis is to investigate the transcriptional mechanisms of gene regulation by 

key transcription factors involved in telencephalic development and disease, using primarily 

human neural progenitors as an in vitro model of development.  

Study I reports a novel mechanism through an interaction between the co-repressor NCOR 

and the transcription factor FOXP2. Genome-wide mapping of common binding sites of 

NCOR/FOXP2 in human iPS-derived neural progenitors included two putative regulatory 

elements in the proximity of the SLITRK gene cluster. Chromosome conformation 

capture (3C) confirmed the interaction between the SLITRK cluster gene promoters and the 

regulatory elements where FOXP2/NCOR binds, which proposes a possible role for this 

regulatory mechanism in accurate development and possibly evolution of vocal and motor 

skills. Study II demonstrates that the transcription factor PAX6 can function as a repressor 

and recruit the histone demethylase KDM5C to repress a subset of genes involved in Notch 

signaling, which is critical for several neuronal functions, proposing that neurodevelopmental 

aberrations by PAX6 and/or KDM5C mutations maybe be associated with defects in Notch 

signaling. Study III explores the gene regulation effects on pluripotency mediated by 

different handling techniques of human embryonic stem cells and human induced pluripotent 

stem cells, and shows that reversible gene expression changes indeed occur during prolonged 

culture in enzymatic conditions. Study IV reveals that a single nucleotide polymorphism 

(SNP) in the promoter of the HTT gene, responsible for Huntington’s disease, disrupts the 

NF-κB binding and transcriptional regulation of the HTT gene, indicating that silencing of 

the HTT gene is a promising therapeutic strategy in Huntington’s disease.  

Taken together, the work of this thesis strengthens the hypothesis that the interplay between 

transcription factors and chromatin structure is critical for maintaining neurological fitness.  

 



  



 

 

LIST OF SCIENTIFIC PAPERS 
 
 
 

I. Giulia Gaudenzi, Nina Heldring, Bianca Migliori, Hannah Bruce, Olga 
Dethlefsen, Saiful Islam, Raju Tomer, Sten Linnarsson, Kristen Jepsen, 
Michael G. Rosenfeld and Ola Hermanson 
 
NCOR and FOXP2 regulate expression of the SLITRK family via distinct 
and distant regulatory elements.  
Manuscript 
 
 

II. Giulia Gaudenzi, Olga Dethlefsen, Julian Walfridsson, and Ola Hermanson 
 
Pax6 and KDM5C co-occupy a subset of developmentally critical genes 
including Notch signaling regulators in neural progenitors. 
Submitted Manuscript 
 
 

III. Frida Holm, Hero Nikdin, Kristín Rós Kjartansdóttir, Giulia Gaudenzi,  
Kaj Fried, Pontus Aspenström, Ola Hermanson, and Rosita Bergström-
Tengzelius 
 
Passaging techniques and ROCK inhibitor exert reversible effects on 
morphology and pluripotency marker gene expression of human embryonic 
stem cell lines 
Stem Cells and Development. 2013, 22:1883-1892. 
 
 

IV.    Kristina Bečanović, Anne Nørremølle, Scott J Neal, Chris Kay, Jennifer A 
Collins, David Arenillas, Tobias Lilja, Giulia Gaudenzi, Shiana 
Manoharan1, Crystal N Doty, Jessalyn Beck, Nayana Lahiri, Elodie 
Portales-Casamar, Simon C Warby, Colúm Connolly, Rebecca A G 
DeSouza, REGISTRY Investigators of the European Huntington’s Disease 
Network, Sarah J Tabrizi, Ola Hermanson, Douglas R Langbehn, Michael R 
Hayden, Wyeth W Wasserman & Blair R Leavitt 
 
 
A SNP in the HTT promoter alters NF-kB binding and is a bidirectional 
genetic modifier of Huntington disease.  
Nature Neuroscience. 2015, 18:807-816. 
 



CONTENTS 
 
 
 
1 INTRODUCTION .................................................................................................. 1 

1.1 Evolutionary complexity ................................................................................ 1 

1.2 Corticogenesis ............................................................................................... 2 

1.2.1 Proliferation and neurogenesis ............................................................ 2 

1.2.2 Migration and differentiation .............................................................. 3 

1.2.3 Patterning by molecular cues............................................................... 3 

1.3 Transcriptional control of neurogenesis .......................................................... 6 

1.3.1 Gene expression regulation ................................................................. 6 

1.3.2 Regulatory elements: Enhancers .......................................................... 8 

1.3.3 Chromatin modifications during neural differentiation ....................... 10 

1.4 Neurodevelopmental disorders and degeneration .......................................... 12 

2 AIMS ................................................................................................................... 15 

3 METHODS .......................................................................................................... 16 

3.1 Modelling human cortical development in vitro ............................................ 16 

3.2 Genomic methods for predicting interactions ................................................ 18 

3.2.1 ChIP-seq .......................................................................................... 18 

3.2.2 Chromosome conformation capture (3C) ........................................... 19 

4 RESULTS & DISCUSSION ................................................................................. 21 

4.1.1 Study I ............................................................................................. 21 

4.1.2 Study II ............................................................................................ 23 

4.1.3 Study III ........................................................................................... 25 

4.1.4 Study IV ........................................................................................... 26 

5 CONCLUSION .................................................................................................... 29 

6 ACKNOWLEDGEMENTS .................................................................................. 30 

7 REFERENCES ..................................................................................................... 32 

 

  



 

 

LIST OF ABBREVIATIONS 
 

3C 

ASD 

BLBP 

BMP 

CBP 

ChIP  

CRISPR 

EGF 

FGF 

FOXP2 

GFAP 

HAR 

HAT 

HD 

HDAC 

HDM 

hESC 

hiPSC 

HMT 

HTT 

IPC 

iROCK 

JARID 

KO 

NCOR 

NE 

NESC 

NSC 

PAX6 

Chromosome conformation capture 

Autism spectrum disorder 

Brain lipid-binding protein 

Bone morphogenetic protein 

CREB-binding protein 

Chromatin immunoprecipitation 

Clustered regularly interspaced short palindromic repeats 

Epidermal growth factor 

Fibroblast growth factor 

Forkhead box protein P2 

Glial fibrillary acidic protein 

Human accelerated regions  

Histone acetyl transferase  

Huntington disease 

Histone deacetylase 

Histone demethylase 

Human embryonic stem cell 

Human Induced Pluripotent Stem Cell 

Histone methyltransferase  

Huntingtin gene 

Intermediate progenitor cell 

Rho-associated kinase inhibitor 

Jumonji- and AT-rich interaction domain (ARID)-domain 

Knock out 

Nuclear receptor co-repressor 

Neuroepithelial cell 

Neuroepithelial-like stem cell 

Neural stem cell 

Paired box protein 6 



PRC2 

RGC 

SFRP2 

SHH 

SLITRK 

SMRT 

SNP 

SVZ 

TF 

TFBS 

TSS 

VPA 

VZ 

WNT 

WT 

 

Polycomb repressive complex 2 

Radial glial cell 

Secreted Frizzled Related Protein 2 

Sonic hedgehog 

Slit- and Trk-like 

Silencing mediator of retinoic acid and thyroid hormone receptor 

Single-nucleotide polymorphism 

Subventricular zone 

Transcription factor 

Transcription factor binding site 

Transcruption start site 

Valproic acid 

Ventricular zone 

Wingless-INT 

Wild type 



 

 1 

1 INTRODUCTION 
 
Syntactical-grammatical language, symbolic thought, self-reflection, long-term planning 

ability, autobiographical memory, the theory of mind, and the capacity to create art, are 

distinctively human aspects of cognition and behavior (Sousa et al., 2017). The 

computational center of these higher cognitive functions is the cerebral cortex, which is 

arguably the most complex structure in the human brain. Deciphering the architecture and 

functional interactions of billions of different cell types connected in intricate circuitries and 

spatial regions in the cerebral cortex, is a fascinating yet challenging central question of 

neurobiology.  

 

1.1 EVOLUTIONARY COMPLEXITY  
 
When considering brain complexity, at first several descriptive efforts using comparative 

neuroanatomy have focused on creating a scala naturae of brains, and even post-Darwin, the 

goal was merely the reconstruction of phylogenies (Northcutt, 2001). However, it was not 

until the 1980s when applying an evo-devo approach to embryology and the extensive studies 

of several species’ embryonic brains such as rodents (mostly Mus musculus), humans (Homo 

sapiens) and non-human primates (mostly Macaca mulatta) that several scientists began to 

focus not on explaining species differences, but on finding similarities (Striedter, 2011) and 

uncovering developmental principles that elucidated how the human neocortex has 

developed at the cellular and molecular level (Swanson, 2000) (Rakic, 2009). Although 

simplicity may out-survive complexity, as “brainlessness” itself is an adaptive and persisting 

trait throughout the history of life (e.g. prokaryotes, viruses, or simple multicellular 

organisms), the adaptive advantage conferred by an organized nervous system is a general 

feature of the evolutionary process (Konner, 2010). Connecting and mapping DNA changes 

in the human brain during health and disease to uniquely human neuromolecular mechanisms 

through which these genetic differences are expressed, is paving the way to understanding 

the evolution of our species’ high cognitive ability, e.g. like the capacity to elaborate complex 

language (Franchini and Pollard, 2015a). 
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1.2 CORTICOGENESIS  
 

Studying complex traits as well as diseases requires a full understanding of corticogenesis. 

The cerebral cortex is a cellular sheet composed of pyramidal neurons (excitatory 

glutamatergic) and interneurons (inhibitory GABAergic), which are organized in a horizontal 

fashion, and intersected by vertical radial columns, sharing extrinsic connectivity. These 

characteristics are common among all mammalian species (Rakic, 2009). 

 

At first, neurons are generated via a process called neurogenesis which is followed by a 

precise sequence of events, such as organized neuronal migration, differentiation, dendrite 

and axon development, synaptogenesis and the formation of circuitry. These events are 

interlinked with non-neuronal processes such as the generation of astrocytes and 

oligodendrocytes (gliogenesis), which is followed by myelination, angiogenesis and the 

establishment of the blood-brain barrier (Rakic, 1988) (Götz and Huttner, 2005) (Lois and 

Alvarez-Buylla, 1993) (Noctor et al., 2004). 

 

1.2.1 Proliferation and neurogenesis 
 
During development, the most rostral region of the early embryonic mammalian neural tube 

give rise to the cerebral cortex, which at this stage consist of a monolayer of neuroepithelial 

(NE) cells lying the ventricles throughout the neuraxis. NE cells are neural stem cells (NSCs) 

that can generate both neurons and glia. As neurogenesis begins, NE cells are transformed in 

radial glial cells (RGCs), which are highly related to the former by exhibiting apical-basal 

cell polarity but also possess glial markers (Götz and Huttner, 2005) such as BLBPs, vimentin 

and the paired box gene 6 (Pax6) (Figure 1). RGCs at the ventricular zone (VZ) undergo 

symmetric cell division to expand the progenitor pools, as well as asymmetric cell division 

to generate an RGC plus a daughter cell, e.g. a neuronal precursor (Noctor et al., 2004) or an 

intermediate progenitor cell (IPC). IPCs divide at the subventricular zone (SVZ) and they all 

express the transcription factor Tbr2. Studies of mice lacking Tbr2 (Sessa et al., 2008) and 

of familial mutation in humans (Baala et al., 2007) have demonstrated that IPCs contribute 

to cells in all cortical layers and that they generate most cortical excitatory neurons. In 

addition to the aforementioned progenitors, in lissencephalic cortices (like of the mouse), 

other types of progenitors have been found, although less abundant. These additional 

progenitors are classified in apical intermediate progenitors, subapical and basal radial 

progenitors (bRGCs). The latter have been found in higher abundance in gyrencephalics 
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cortices such as those of humans and monkeys which have thicker SVZ, especially at later 

stages of neurogenesis.  

 

 
Figure 1. Snapshots of neurogenesis and gliogenesis. Modified from Rowitch and Kriegstein, 2010. 

 

1.2.2 Migration and differentiation  
 

The newborn neural pool of excitatory neurons or interneurons is derived from the migration 

of RGCs from VZ or SVZ to the uppermost cortical surface. This process is named “radial 

migration” (Rakic, 1972), and refers to the fashion in which cortical layers are formed. Radial 

glial fibers act as efficient train tracks by providing a perpendicular scaffold between the 

ventricular and pial surface of the cortex. Once neural progenitors finish migrating radially, 

they detach and begin to differentiate. At this stage, the “layerization” of the cortex begins in 

an inside-out fashion: early-born neurons migrating from the cortical plate will contribute to 

the deeper neocortical layers (VI and V), whereas late-born neurons will migrate and then 

form the additional superficial layers (IV and then II, III) (Rakic, 1972). 

The neural pool of newborn inhibitory GABAergic interneurons distinctly originates from 

the ganglionic eminences of the ventral forebrain. Once they have exited the cell cycle they 

migrate non-radially into the cortical plate (Pleasure et al., 2000).  

 

1.2.3 Patterning by molecular cues  
 
Extracellular signals from the altering environment of the developing brain, together with a 

combination of intrinsic temporal programs, drive the changes of differentiation during 

corticogenesis (Okano and Temple, 2009).  
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The extracellular milieu is characterized by the biophysical factors, such as the oxygen and 

extracellular matrix, the expression of signalling molecules and of the generation of 

morphogens at patterning regions at the margins of the neocortical primordium, which 

coordinately drive early patterning and the necortex arealization. As described in Figure 2, 

in the early patterning of the development of the mouse forebrain, the principal signalling 

molecules are the FGFs (Fibroblast Growth Factor), secreted rostromedially by the 

commissural plate; WNTs and BMPs (Bone Morphogenetic Proteins), secreted 

caudomedially from the cortical hem and SFRP2 (Secreted Frizzled Related Protein 2) and 

EGF (Epidermal Growth Factor) that are secreted laterally from the anti hem. Altogether, 

these diffusible elements are responsible for reading/interpreting temporal and spatial cues 

as well as for inducing transcription factors gene expression in VZ progenitors in a graded 

manner. Transcription factors then execute the intrinsic programs to control the position and 

relative size of the cortical areas (Greig et al., 2013). 

 

BMPs mediate the expansion of the VZ, and together with transcription factors critical for 

forebrain regionalization such as Emx1/2, Pax6, Foxg1 and Tlx1, they promote neural 

progenitor proliferation and suppress neuronal differentiation. In addition, cell signaling 

pathways such as Notch, a cell surface receptor, transduces signals that affect neural 

progenitor maintenance and neuronal migration, while the morphogene Sonic Hedgehog 

(SHH) regulates neural progenitor proliferation (O’Leary et al., 2007).  

 

 
Figure 2. When gradients of extracellular signalling molecules in the telencephalon are induced, trans-acting factors such 
as transcription factors binding to specific genomic sequences mediates this spatio- temporal developmental regulation by 
thereby executing a series of gene expression programs (Spitz and Duboule, 2008). Here are shown the expression patterns 
Emx2 and Pax6 Sp8 and Couptf1, respective to the morphogens gradients. Modified from Greig et al., 2013. 
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Importantly, transcription factors are the effectors of the environmental cues provided by 

morphogenic gradients. The highly controlled regulation/coordination of transcription factors 

is needed throughout brain development, from establishment of neural identity to terminally 

differentiated neurons. In fact, several studies of lineage tracing and fate-mapping of RG and 

IPCs (reviewed in Sun and Hevner, 2014), followed by gain- and loss-of-function 

experiments using in utero electroporation, have elucidated that manipulation of the 

transcription factors gradient is enough to change the position and size of cortical areas but 

not the neuronal identity. In addition, postmitotic controls are also essential to specify the 

identities of newly born neurons’ subtypes (Molyneaux et al., 2007) 

 

The last 20 years of an information-intense generation of computational data complementing 

traditional wet-lab (from proteomics to cell biology) studies of transgenic mice, combined 

with recent advances in spatially-resolved transcriptomics at the single-cell level, are making 

it possible to create a spatially accurate map of the developing transcriptional cascade 

governing corticogenesis (Figure 3) as well as building a molecular-logical code of the TF 

network e.g. by using Boolean network modelling (Greig et al., 2013).  

 

 
Figure 3. Examples of layer-specific genes include, among many others: Cux2 and Lhx2, markers of layers II/III to IV; 
Brn2, a marker of layer II/III and V; Rorβ, a marker of layer IV; markers of layer V; and Foxp2, a marker of layer VI (not 
in the picture). Modified from Molyneaux et al., 2007. 
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1.3 TRANSCRIPTIONAL CONTROL OF NEUROGENESIS 
 

Now that cell-intrinsic programs and extracellular signals regulating fate restriction of neural 

stem cells have been generally discussed, it is apt to examine the actual mechanism of 

transcriptional control during gene expression in the developing cortex. The expression of 

genes during cortex development can be controlled at different levels, such as during 

initiation, elongation, at mRNA processing and stability, transport to cytoplasm and lastly 

during translation. Since this process begins with transcription, this initial stage becomes one 

of the most crucial.  

 

The route of gene regulation, whether during activation or repression, is orchestrated by 

sequence-specific DNA-binding proteins encoded in the genome, such as transcription 

factors (trans-acting factors) acting together with proximal and distal coding or non-coding 

DNA sequences e.g. promoters and enhancers, in the genome (cis-acting elements). 

Transcription factors can bind in multiple regions and genes, making this combinatorial 

regulation between cis- and trans elements one of the most crucial aspects of differential gene 

expression (Carey et al., 2009).  

 

A few questions immediately arise: How do transcription factors execute activation and/or 

repression during the elegant transcription factor cascade that specifies mammalian 

corticogenesis? Which other proteins are involved in such regulatory mechanisms? And 

finally, what happens when some of these mechanisms are failing?  

 

To tackle these fundamental questions, it is crucial to understand the 3D architecture of gene 

regulation and to overview the key aspects of chromatin organization through which 

activation and repression take place in model systems of neural development.  

 

1.3.1 Gene expression regulation  
 
 
In all eukaryotes, the chromosomal DNA is packed into chromatin, which can be classified 

into heterochromatin (dense and compact with limited transcription) and euchromatin 

(decondensed and transcriptionally active) (Trojer and Reinberg, 2007). The fundamental 

unit of chromatin is the nucleosome, which consists of an octamer of histones (H2A, H2B, 

H3, H4) that have several isoforms playing specific roles during gene regulation. Every one 

of the four histones contain lysis-rich amino terminal tails, which are subject to numerous 
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post-translational modifications, control chromatin behavior and are necessary for regulation 

during transcriptional activation and silencing (Figure 4).  

  

Transcription of protein-coding genes in mammals is carried out by the DNA-dependent 

RNA polymerase II (RNA Pol II). A typical mammalian gene is comprised of several regions 

that control the transcriptional activity, including a core promoter, a proximal promoter, 

enhancers and insulators. Transcription begins at the transcription start site (TSS), and for 

transcription to occur, general transcription factors and regulators are typically bind TATA-

boxes (or other core promoter elements) and recruit a large complex of proteins and 

ultimately the RNA pol II. Transcription factors bound at distal regions could also control 

expression, often through the mediator complex. The regulatory elements within promoters 

and enhancers cooperatively regulate the expression patterns, as the core promoters alone 

often drive only low levels of basal transcription (Lenhard et al., 2012). 

 

Gene expression is also affected by the chromatin structure beyond the genomic sequence 

itself through modification of the histone tails (Tessarz and Kouzarides, 2014). There are a 

large number of histone post-translational modifications that can be categorized into “small 

chemical groups” such as methylation, acetylation and phosphorylation as well as into the 

much “larger peptides” including ubiquitination, SUMOylation, citrullination, and ADP-

ribosylation. In the literature these modifications are broadly regarded under the umbrella of 

“epigenetics”, but it is worth noting that this word is often misused in light of recent 

advancement in the field (Ptashne, 2007) (Lappalainen and Greally, 2017) (Greally, 2018). 

Across the mammalian genome, histone modification influences the state of the chromatin, 

demarcates functional elements (promoters, gene bodies, enhancers, insulators) and fine-

tunes the stability of repressive domains, which makes it fundamental for long-term 

repression/activation of developmental genes.  
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Figure 4. The structure of eukaryotic chromatin structure can be viewed as organized layers: from DNA sequence, to 
nucleosomes, to histone modifications and variants and, finally, to chromatin higher-order structures. To recruit RNA 
polymerase II (RNAPII) and to activate gene transcription, sequence specific transcription factors bind to transcription 
factor binding sites (TFBSs), alone or in clusters of cis-regulatory modules (CRMs). Modified from Lenhard et al., 2012 

 

1.3.2 Regulatory elements: Enhancers 
 

Enhancers are short, cis-acting DNA sequences of 50-1500 bp that can be found many 

kilobases upstream of a gene, downstream or in introns. Enhancers associate with proximal 

promoters to form active chromatin hubs. Genes can contain multiple enhancers, which 

makes it an advantage for combinatorial expression among cell types or in response to 

different signals (Carey et al., 2009). Additionally, mammalian transcription is episodic, 

consisting of a series of discontinuous bursts, and recent evidence from drosophila studies 

proposes that enhancers regulate bursting frequency, making them a key parameter of gene 

control during development (Fukaya et al., 2016).  
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Genome-wide studies combined with chromatin conformation capture (3C), “Hi-C”, and 

mechanistic approaches, help to elucidate high-resolution neuroanatomical annotations  of 

enhancer activities and their associated histone modifications signature in the developing 

cortex (Nord et al., 2013) (Visel et al., 2009). Interestingly, Visel and colleagues have 

postulated that different cohorts of enhancers are active at different stages of brain 

development (Figure 5). Between E11.5 and E13.5, the majority of the enhancers revealed 

analogous patterns of activity, yet by E14.5, enhancers activity decreased and/or became 

limited to a smaller area in mouse forebrain development, suggesting that gene expression at 

later stages of the developmental processes is driven by other enhancers. Indeed, during early 

forebrain development, enhancers are enriched for annotation terms such as neural precursor 

cell proliferation and axonogenesis; later in forebrain development instead are enriched with 

biological processes for synaptic transmission and cognition, as well as phenotypes 

comprising of abnormal learning, memory, conditioning and neurodegeneration (Visel et 

al., 2009).  

 
Figure 5. Heatmaps displaying enhancer enrichment-GO biological functions across different tissues (forebrain, heart and 
liver) and timepoints (E11.5 to P56). Modified from Visel et al., 2009. 

 

Recent reports have also identified “developmental enhancers” which exhibit tissue-specific 

regulatory activity. Fascinatingly, several of these are ‘human accelerated regions’ (HARs), 

regions that are conserved during evolution but have dramatically mutated in humans and  
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have shown to directly being involved in changes that effected brain structure and activity 

(Capra et al., 2013) (Franchini and Pollard, 2015a) (Franchini and Pollard, 2015b) (Franchini 

and Pollard, 2017).  

 
 

1.3.3 Chromatin modifications during neural differentiation 
 
 
Early evidence of the importance of enzymes’ mediation of post-translational histone 

modifications resulted from experiments in Saccharomyces cerevisiae during the late 1980’s. 

Significant technical advancements in the field, including the use of chromatin 

immunoprecipitation (ChIP) to study protein binding to particular DNA sequences in vivo, 

lead to the overall understanding that these fundamental molecular mechanisms were 

evolutionary conserved, from yeast to flies and humans. During cortex development, several 

classes of enzymes were then discovered to be capable of maintaining NSC self-renewal and 

of orchestrating developmental progression towards a specific neural lineage (Figure 6). 

 
Figure 6. Histone-modifying enzymes involved in neurodevelopment and differentiation, color-coded for their mechanism 
of action. Modified from Lilja et al., 2013. 

 

1.3.3.1 Histone acetyl transferases (HATs) and histone deacetylases (HDACs) 

The enzymatic activities of HATs and HDACs are intricately linked with transcription and 

these enzymes are recruited to modify histone tails at enhancers, promoters and within the 

gene body during transcription (early hypothesis: Allfrey et al., 1964) (Bannister and 
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Kouzarides, 2011). DNA-binding activators recruit HATs to acetylate nucleosomal histones, 

which are known to contribute to transcriptional activation, while repressors recruit HDACs 

to deacetylate histones, and therefore repress transcription (Strahl and Allis, 2000).  

 
From the group of HATs, p300 is needed for astrocyte development and axonal regeneration, 

and CBP is required for neural development (reviewed in Lilja et al., 2013). In addition, 

CBP/p300 has been shown to be an accurate predictor of in vivo enhancer activity in the 

developing mouse (Visel et al., 2009). 

 

The class of HDACs contains numerous enzymes falling into three groups: types I, II (with 

related mechanism of acetylation) and III (Sirt-2 related enzymes that require co-factors). 

During glial differentiation, HDACs 1, 2 and 3 (Castelo-Branco et al., 2014) are reported to 

be involved, while HDAC3 has been shown to modulate H4K8 acetylation levels and reduce 

long-term memory formation in hippocampal neurons (reviewed in Lilja et al., 2013). 

 

Many of the HDACs are found in large multi-subunit complexes. Nuclear hormone 

corepressors, exemplified by the nuclear receptor corepressor (NCoR) and silencing mediator 

of retinoic and thyroid hormone receptors (SMRT), recruit HDAC 3. By repressing GFAP 

transcription, NCoR/NCoR1 represses astrocyte and oligodendrocyte differentiation in 

neural stem cells (NSCs), while NCoR2/SMRT represses neuronal and astrocytic 

differentiation by binding to the retinoic acid (RA) receptor and its target genes in the absence 

of retinoic acid (Hermanson et al., 2002) (Perissi et al., 2010). 

1.3.3.2 Histone methyl transferases (HMT) and histone demethylases (HDMs)  
 
Methylation is a histone modification that has multiple layers of complexity, and it 1) can 

occur either on lysines (referred to as “K”) or arginines; 2) can be either positive or negative 

towards transcriptional expression and; 3) there can be multiple methylation states for each 

residue, such as mono- (me1), di- (me2) or tri- (me3). Such combinational potential allows 

for precise regulation of sequentially and timed events, during the transcription (Zhang and 

Reinberg, 2001) (Bannister et al., 2002). Methylation of H3 on K4, K36, K79 is usually 

associated with genes that are active, while methylation of H3 on K9, K27 and H4K20 is 

usually associated with genes that are repressed.  Genome-wide studies of H3K27me in ES 

cells differentiating towards neural progenitors have found that H3K27me plays an important 

and flexible role in many promoters, which highlights the necessity for enzymes that add and 

remove H3K27me. The enzymes responsible are histone methyl transferases (HMT) such as 
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Mll1 or Ezh2. Studies on mice lacking Mll1 show impaired postnatal neurogenesis, and found 

to be associated with Dlx2, which had diminished expression (Lim et al., 2009). Another 

HMT with a key role in the development cortex is Ezh2, which is a HMT associated with the 

Polycomb Repressor Complex 2 (PRC2) and is found to indirectly promote astrocytic 

differentiation (Hirabayashi et al., 2009).   

 

Enzymes that can de-methylate histones also play a key role in stem cells differentiation, 

such as LSD1 which is crucial to embryonic stem cell differentiation but not to self-renewal 

(Sun et al., 2010). Other demethylases that possess a distinct catalytic structure from LSD1 

include the JmjC-domain family. A member of this family of demethylases is 

Jarid1c/SMCX/KDM5C, which specifically demethylates H3K4me3 to a mono- or di-

methylation. Iwase and colleagues, using zebrafish and primary mammalian neurons models, 

demonstrated the fundamental role of SMCX in neuronal survival and dendritic development 

(Iwase et al., 2007) (Iwase et al., 2016) .  

 

Taken together, enzymatic events of chromatin structure control have been shown to be 

implicated in the whole process of neural development, from proliferation at the stem cells 

state, at the neural/gliogenic switch and for neuronal survival and neurite outgrowth. 

 
Regrettably, aberrations of the enzymatic activities described in this paragraph, have been 

linked to neural developmental disorders and neurological conditions. There should therefore 

be continuous emphasis on attempting to understand these enzyme function and roles in 

neurobiology (Iwase et al., 2017).  

 

1.4 NEURODEVELOPMENTAL DISORDERS AND DEGENERATION 
 

Neurodevelopmental disorders are complex and diverse conditions, both for pathophysiology 

and possible treatments. Increasing evidence supports the claim that transcriptional and 

higher-order chromatin abnormalities play a strong role in the development of neurological 

and psychiatric diseases (Mitrousis et al., 2015). Several studies in humans have suggested 

that, even in post-mitotic neural cells, the chromatin landscape and its regulation remain 

plastic, and that in addition disordered chromatin functions have been identified in several 

neurodevelopmental syndromes of early childhood and in a subset of adult-onset hereditary 

neurodegenerative syndromes (Jakovcevski and Akbarian, 2012). At least a dozen 

neurological spectrum syndromes have thus far been linked to single-gene mutation encoding 
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for histone modifying enzymes, their associated proteins or DNA methyltransferases. 

Deficits in language and motor skills, obesity, autistic features and epilepsy are common 

features in this category of mutations (Deriziotis and Fisher, 2017).  

 

Chromatin-related diseases can be categorized into two classes: those with trans effects, 

include the loss or dysfunction of chromatin-associated factors (e.g. chromatin effector 

mutations) which can in turn alter chromatin structure and gene expression at certain genomic 

regions, while those with cis effects, represent mutations in non-coding regulatory sequences 

(e.g. promoters). These mutations, which may include the expansion of DNA repeats, can 

lead to chromatin alterations which affect the gene expression (Zoghbi and Beaudet, 2016).  

 

An example of a trans-effect mutation, is the postnatal neurodevelopmental disorder Rett 

syndrome (RTT) which is initiated by mutations in the gene encoding for the transcriptional 

repressor involved in chromatin remodeling and the modulation of RNA splicing, MeCP2 

(methyl-CpG binding protein 2). Another well-studied genetic disorder that affects chromatin 

structure in trans is the Rubinstein-Taybi syndrome, which is characterized by mental 

retardation, congenital heart defects and increased risk of tumor formation (Amir et al., 

1999). The cause of Rubinstein-Taybi syndrome is a decreased HAT activity due to mutation 

in CREBBP and EP300 genes, which encode for CBP and P300 proteins respectively (Petrif 

et al., 1995). In mice models, those with haploinsuffiency of CBP mutations show impaired 

learning and memory, altered synaptic plasticity and abnormal chromatin acetylation 

(Goodman and Smolik, 2000). 

 

An example of a cis-effect mutation is the Fragile X syndrome, which is one of the most 

common causes of inherited mental retardation. The protein encoded by the FMR1 gene is 

the Fragile X mental retardation protein (FMRP), which is an RNA binding protein that is 

proposed to tightly regulate local translation in neurons by inhibiting translation pre-

synaptically. The disease’s etiology has been proposed to stem from an epigenetic silencing 

of the locus and consequential loss of the FMRP protein, which results in increasing protein 

translation at synapses (Christopher et al., 2017). 

 

HDACs play an important role in brain development mechanisms that lead to Autism 

Spectrum Disorder (ASD. The early generation epileptic drug Valproic Acid (VPA) in an 

HDAC inhibitor. A 10-year population study of children born in Denmark, has proven that 

the maternal use of VPA during gestation is associated with ASD in the offspring 



 

14 

(Christensen et al., 2013). Similarly, studies on rat uterine exposure of VPA (Schneider and 

Przewłocki, 2005) have identified significant increases of acetylation at the promoter of the 

transcription factor Pax6 and subsequent Pax6 gene up-regulation, resulting in autism-like 

behavior (Kim et al., 2014). 

 

Iwase and colleagues uncovered another important link between histone modifications and 

X-linked mental retardation through SMCX/JARID1C/KDM5C, and they demonstrated its 

role in neuronal survival and dendritic development as well as its link to the demethylase 

activity (Iwase et al., 2007). 

 

Intriguingly, whole-genome sequencing studies have revealed that molecular networks 

known to be involved in speech and language impairment are found to intersect to molecular 

networks involved in ASD, epilepsy, and other rare neurodevelopmental disorders. 

(Deriziotis and Fisher, 2017).  

 

Recent studies have also revealed the vital importance of chromatin modifiers during 

neurodegeneration, elucidating that higher order chromatin folding affects gene transcription 

in post-mitotic neurons. 

 

Interestingly, in Huntington disease (HD), a neurodegenerative disease of the striatum and 

cortex characterized by cognitive dysfunction, psychiatric symptoms and choreic 

movements, reducing the levels SMCX/JARID1C/KDM5C in primary neurons reversed 

down-regulation of key neuronal genes caused by mutant Huntingtin expression. In addition, 

SMCX  was neuroprotective in a Drosophila HD model (Vashishtha et al., 2013). The RE1-

silencing transcription factor (REST) was also shown to be neuroprotective and aberrantly 

associated with protein aggregates during the course of neurodegenerative diseases (Lu et al., 

2014) while independently LSD1 might be affected in the aging brain and in human dementia 

(Hwang et al., 2017). Taken together, these findings both from neurological spectrum 

disorders of both development and degeneration, highlight the importance of understanding 

the molecular mechanism governing these diseases for future therapeutic interventions. 
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2 AIMS 
 
 
General aim 

 

The overall aim of the work presented in this thesis is to investigate the transcriptional 

mechanisms of gene regulation by key transcription factors involved in telencephalic 

formation and function, using human neural progenitor as in vitro model of development. 

 

Specific aims listed according to each study: 

 

I. To investigate the functional role for the co-repressor NCOR and its interaction of 

recruitment with the transcription factor FOXP2 in regulation of a subset of genes 

involved in cortical development. 

 

II. To describe the PAX6 transcription factor mechanism of repression via recruitment of 

the histone demethylase KDM5C. 

 

III. To characterize the histone landscape of promoters involved in the maintainance of 

pluripotency in long-term in vitro culturing of human embryonic stem cells and human 

induced pluripotent stem cells, under different passaging conditions.  

 

IV. To investigate the in vitro correlation between the binding of the transcription factor 

NF-κB to the HTT promoter and its mechanistic importance in Huntington’s disease 

(HD). 
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3 METHODS 
 

This section presents the essential material and methods that have been used across the four 

studies included in this thesis. For a more exhaustive description, please refer to the 

individual publication.  

 

3.1 MODELLING HUMAN CORTICAL DEVELOPMENT IN VITRO 
 
 
The recent technical advances in generating in vitro models of human cortical development 

have been fundamental to progressing the understanding of the complex human neurobiology 

in health and recapitulate disease models. Prior to the discovery of human induced pluripotent 

stem cells (hiPS) by Yamanaka and colleagues, the only available source of embryonic neural 

progenitor was via differentiation of human embryonic stem cells (hESC) toward the neural 

lineage or via the primary culture of neural progenitors from aborted human fetuses donated 

for research (Figure 7). This restricted accessibility of the material due to both issues of rarity 

and bioethical limitation made the use of human neural progenitor cells for extensive 

biomedical research inadequate and less standardized. 

 

In studies I and II we made extensive use of “long-term self-renewing neuroepithelial-like 

stem cells” (NESCs) established and generated in the Falk laboratory to use as a robust and 

reliable model system to study the properties of these cells in culture. Briefly, human iPSC 

lines were produced by standard retroviral transduction with OCT3/4, KLF4, SOX2 and c-

MYC. Post-transduction, the individual clones are picked and transferred to separate 

monolayer cultures, where the “neuralization” took place according to previously described 

protocols  (Falk et al., 2012) (Koch et al., 2009) (Shahsavani et al., 2017). The established 

NESCs lines are positive for neural precursor markers for Nestin and SOX2, and they express 

SOX1 and PAX6, but the lines are negative for differentiated neuronal and glial markers such 

as Tubb3 and GFAP.  

 

Overall, the NESC system is a robust 2D-culture model, for several reasons: It is easy to 

handle in a well-equipped stem cell laboratory with basic good manufacturing 

practices (GMP) conditions, its wide use among different labs has proven that there is limited 
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batch-to-batch variation and it results in a stable genotype and phenotype even when 

subjected to freeze-thawing cycles or long-term culturing.  

 
However, like every model, the NESC system has its limitations to take into considerations. 

The 2D culture system is profoundly lacks the in vivo three-dimensional conditions, e.g. the 

self-organization of the cortex, individual cell-to-cell contacts, the extracellular milieu and 

the intrinsic signalling that occur during corticogenesis, as previously described.  

 

It is important to be aware of these limitation, and therefore it is always recommended to 

make use of several models, and to reproducing the findings using additional complementary 

systems for cultural development. This includes: in vivo studies in animal models, meta-

analyses of data generated in different laboratories and finally transitioning to 3D culture 

systems, such as brain organoids, under defined and standardized conditions.  

 

 
Figure 7. Neural Stem Cells (NSCs) sources. Modified from Conti and Cattaneo, 2010. 
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3.2 GENOMIC METHODS FOR PREDICTING INTERACTIONS  
 

3.2.1 ChIP-seq 
 
 
One of the first experimental strategies to execute when studying functional regulation of a 

control region by DNA-TF binding and/or histone modification or chromatin protein is the 

well-established Chromatin Immuno-Precipitation assay (ChIP) coupled with new generation 

sequencing (ChIP-seq). Commercially available kits have become a reliable standard for 

reproducibility among this assay. However, it is usually recommended to trouble shoot the 

experimental conditions according to the starting material (e.g. whether cell lines or tissues). 

Briefly, DNA/protein are cross-linked, the extracted chromatin is fragmented by sonication 

and immunoprecipitated with the antibody of choice, the DNA is extracted and reverse cross-

linked to be fragmented and analyzed through massively parallel DNA sequencing.  

 
The obtained results (reads) are processed through a standardized quality control pipeline 

that uses samtools/1.3 to sort and index .BAM files and NGSUtils/0.5.9 to calculate simple 

reads statistics, NGSUtils/0.5.9 to remove duplicated reads and the blacklisted genomic 

regions with artificially high signals that can lead to false positive results and 

phantompeakqualtools/1.1 to calculate the standard cross-correlation metrics and plots after 

removal of the duplicated reads and blacklisted genomic regions. DeepTools/1.1.2 is used to 

obtain ChIP-seq cumulative enrichment (fingerprint) and to assess overall similarity between 

libraries, spearman- and pearson-based clustering heatmaps in bin mode. MACS/2.1.0 is used 

to call peaks, using 2.45e9 as an estimated effective genome size and default settings. 

DiffBind_2.2.12 R Bioconductor package is used to prepare a list of all peaks present across 

libraries and to calculate fractions of reads in peaks (FRiP). ChIPpeakAnno_3.8.9 is used for 

down-stream analysis of peaks, i.e. annotations and visualizations binding site distribution 

relative to features and for obtaining enriched pathways. 

 
ChIP-seq also has its limitation regarding the quality of the primary reagents (e.g. antibody 

affinity or cross-reactivity), as the ChIP alone cannot really provide evidence that the protein 

of interest carries out an important function at the location of its binding, and finally 

standardized pipeline for bioinformatics analyses and quality control are necessary to 

compare data across experiments.   

 
ChIP-seq was used in Studies I and II, and ChIP-qPCR in Studies I, II, III, and IV.  
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3.2.2 Chromosome conformation capture (3C) 
 
 
3C was developed by the Nancy Kleckner laboratory as a general assay to study the frequency 

of interaction between different genomic loci (Dekker et al., 2002). In Study I, 3C was used 

to characterize NCOR and FOXP2 putative regulatory elements. As described briefly in 

Figure 8, the technique begins with the crosslinking of the protein complexes to DNA, 

followed by a digestion of the chromatin using restriction enzymes. ATP and DNA ligase 

enzymes are then added to the diluted solution to ligate the loose ends of the DNA that are 

in close proximity. Interactions are then monitored via qPCR using primers specific to the 

region of interest (Figure 9A).  

 
Figure 8. Schematic representation of 3C technique. 

 
To study the putative regulatory region identified in Study I, 3C in human NESC was 

established. Figure 9A shows a schematic view of the SLITRK gene cluster on Chromosome 

13. The cut sites for HindIII, the restriction enzyme employed in the assay, are shown as 

perpendicular lines. Forward primers were designed so that they flanked a restriction enzyme 

cut site in a fashion so that they tiled the region of interest. Reverse qPCR primers and probes 

(shown in yellow) were designed to be located at a HindIII cut site in proximity to the putative 

regulatory elements 1 and 2 (shown in red). To calculate the ligation event efficiency, control 

qPCR primers are designed, as exemplified in Figure 9B. Amplification of the “total DNA 

background” is calculated via the product of qPCR primers A+B, which should always occur 

as no restriction enzyme HindIII cut site lies between the two. Primers A+C allow the percent 

of digestion efficiency to be determined, as the HindIII site interrupts the amplification if the 

restriction has occurred as expected. 
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Figure 9. A) SLITRKs gene cluster and primer design for the respective regions. B) Control primer design. 

 

Since its first application in yeast, the 3C technique has been adapted to several mammalian 

cells and newer sequencing methods have developed it further in 4C, 5C, Hi-C and so on 

(methods reviewed in Shlyueva et al., 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 21 

4 RESULTS AND DISCUSSION 
 

4.1.1 STUDY I 
 
NCOR and FOXP2 regulate expression of the SLITRK family via distinct and distant 
regulatory elements 
 
 
The transcription factor FOXP2 has been implicated to carry out crucial neurogenetic 

mechanisms facilitating human spoken language. The gene was first discovered during a 

search for an underlying reason for developmental verbal dysplaxia; a speech and language 

impairment found in humans (Lai et al., 2003). FoxP2 is expressed in multiple regions within 

the developing brain including the cortical plate, basal ganglia, thalamus, cerebral cortex and 

cerebellum. 

 

Along with the closely related transcription factor FoxP1, FoxP2 has been suggested to play 

essential roles in the regulation of growth and differentiation during organogenesis (Wijchers 

et al., 2006). A functional interaction between FoxP1 and the corepressor SMRT was 

discovered to be required for cardiac growth (Jepsen et al., 2008). SMRT is important for 

proper brain development and in particular for the control of the differentiation progress of 

cortical progenitors (Jepsen et al., 2007) (Castelo-Branco et al., 2014). As FoxP1 and FoxP2 

proteins have an especially high sequence homology, it was hypothesized that interactions 

between corepressors and FoxP proteins might be a general mechanism in the development 

of target organs, and that FoxP2-mediated regulation of gene expression in brain 

development would require interactions with corepressors, such as SMRT and/or the closely 

related NCOR. 

 

A genetic screen in human NESC (N.B. in the manuscript referred to as hNPs) for chromatin 

regions binding FOXP2, NCOR and SMRT established using ChIP-seq. Favorable control 

of the quality of the FOXP2 ChIP-seq was confirmed by the presence of peaks in the well-

established FOXP2 target gene CNTNAP2, which is from the neurexin family that is 

expressed in the developing human cortex. Neurexins are a family of neuronal cell surface 

proteins with proposed roles in cell adhesion and intercellular signaling and are suggested to 

affect the glia-neuronal signaling. The phenotype of individuals with neurexin gene deletions 

is variable but includes autism spectrum disorders, mental retardation as well as language 

delays (Vernes et al., 2008). 
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ChIP-seq results identified 1326 overlapping regions between FOXP2 and NCOR and 1795 

overlapping regions between FOXP2 and SMRT. Analyses of the peaks revealed significant 

enrichment of FOXP2 binding in two regions in proximity to SLITRK family regulatory 

regions. SLITRK genes are of interests as several of its members have been associated with 

neuropsychiatric disorders. To further investigate the nature of the two regions regarding 

putative regulatory function, a profiling of the regions for chromatin marks was conducted 

together with 3C experiments and indicated that FOXP2-NCOR binding sites represent active 

regulatory elements and that the expression of SLITRK genes is regulated by NCOR. 

Intriguingly, one of the regions has been identified as a “human accelerated region” by three 

different reports, further supporting the importance of these regulatory elements as key 

mechanisms in proper human development and speech.  

 
Figure 10. Simplified model of interaction. 

 

In conclusion, the findings outlined in this manuscript support the presence of a novel 

mechanism for NCOR, in which interaction with FOXP2 regulates the expression of SLITRK 

genes via two distinct and distant elements. Since FOXP2 entails implications in 

development and evolution of speech, this regulatory model exemplified in Figure 10, is of 

a great interest for further investigations of neurodevelopmental disorders connected with 

speech impairment. Collaborators have access to mice harboring conventional and 

conditional gene deletions of SMRT and NCoR in excitatory projection neurons in the cortex, 

and studies to visualize morphological impairments are currently on-going.  
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4.1.2 STUDY II 
 
Pax6 and KDM5C co-occupy a subset of developmentally critical genes including Notch 
signaling regulators in neural progenitors 

 
Pax6 is an evolutionary conserved transcription factor, found in all animals with bilateral 

symmetry and is a master regulator of a plethora of functions, such as embryonic and 

forebrain development as well as pancreatic, pituitary and ocular genesis (reviewed in 

Ypsilanti and Rubenstein, 2016). 

 

It has been noted that genetic ablation of Pax6 can result in both down- and up-regulation of 

gene expression in the developing CNS, suggesting that Pax6 can act as both a transcriptional 

activator and repressor. When acting as a transcriptional activator, Pax6 has been associated 

with H3K4me3 methyl transferases; however further reports show that Pax6 preferentially 

binds to methylated DNA (Bartke et al., 2010), and show that when Pax6 is ablated, the 

expression of a subset of genes has been shown to be increased. 

 
Using the inducible/integrated GAL reported system, we show that Pax6 can indeed act as a 

direct transcriptional repressor and that the Pax6-mediated repression is primarily associated 

with demethylation of trimethylated lysine 4 on histone H3 (H3K4me3).  

 

H3K4me3 is a positive mark for transcription and is strongly associated with the recruitment 

of the transcriptional initiator complex to the promoter, and a demethylation of H3K4me3 is 

considered to have a robust repressive effect. A known H3K4me3 demethylase expressed at 

significant levels in neural stem cells and progenitors is SMCX/Jarid1C/KDM5C (Jung et 

al., 2005). Jumonji domain-proteins similar to KDM5C interact with sequence-specific 

transcription factors, but less is known regarding such KDM5C-recruiting factors.  

 

Two separate published ChIP-seq data sets for Pax6, KDM5C and H3K4me3, generated in 

the developing mouse forebrain and in neural progenitor cells, were analyzed and compared 

for co-occupancy. Results show that Pax6 and KDM5C overlapped with H3K4me3-negative 

regions. Several of those regions were associated with Notch signaling, including Dll1, Dll4, 

and Hes1, when analyzing for Reactome pathway terms. Considering the fundamental role 

of Notch signaling in neural development, we suggest that this regulatory mechanism may 

play a role in pathologies associated with aberrant Pax6 and/or KDM5C activity.  
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RNA knockdown of PAX6 and KDM5C in human NESCs results in a change of gene 

expression levels of DLL1 and DLL4 but not HES1. These results can be explained by the 

dual role of PAX6 as activator and repressor or by the chromatin landscape at the binding 

site, e.g. at HES1 there multiple H3K4me3 peaks. One could also argue that the method of 

choice for mRNA silencing (siRNA) should be complemented to more efficient genome 

editing technique (e.g. CRISPR KO system) for generating a PAX6 Knock-Out line in NESC. 

This was indeed attempted in this study, but NESC single cells of PAX6 KO clonal line did 

not survive, which is why the approach was discarded.  

 

 
Figure 11. Model 

 

Thakurela and colleagues have previously shown that Pax6 directly targets the promoter of 

Notch signaling components in ES cells (Thakurela et al., 2016). Here we expand these 

results by adding another level of tuning and propose that Pax6 directly recruits KDM5C to 

repress a subset of genes involved in Notch signaling and function in NESC cells. Notch 

signaling is critical for many events during brain development, such as proliferation, 

differentiation, migration, morphology, survival and plasticity. Study II suggests that 

neurodevelopmental aberrations by PAX6 and/or KDM5C mutations maybe be associated 

with defects in Notch signaling (Figure 11). 
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4.1.3 STUDY III 
 
Passaging techniques and ROCK inhibitor exert reversible effects on morphology and 
pluripotency marker gene expression of human embryonic stem cell lines 
 
 
The use of human embryonic stem cells (hESC) and human induced pluripotent stem cells 

(hIPS) is an exciting area of research regarding the potential insights into the basic biology 

of pluripotency and regarding their promising clinical potential they hold as cell replacement 

in degenerative disease. Since their discovery, significant progress has been made in 

characterizing the in vitro behavior of hESC and hIPS.  

 

The aim of Study III was to investigate the gene expression profiles and histone modifications 

associated with pluripotency marker genes in, at the time, three common ways to passage 

hESC and hiPS cells, i.e. using mechanical splitting techniques by surgical scalpel and 

enzymatical splitting with or without a ROCK inhibitor. ROCK-dependent signaling 

pathways play a significant role in many physiological functions, such as cell proliferation, 

adhesion, migration and inflammation. When applied to human embryonic stem cells, the 

ROCK inhibitor has been shown to decrease disassociation-induced apoptosis, increase 

cloning efficiency and facilitate subcloning after gene transfer (Watanabe et al., 2007) . One 

report found that the morphology was relatively unchanged and that pluripotency markers to 

have maintained expression after ROCK inhibitor administration to hESCs (Gauthaman et 

al., 2010). 

 

However, when the three ways of passaging hESC and hIPS were investigated, a decreased 

in pluripotency markers was observed in the enzymatic passaged cells. These differences in 

the gene expression profile however correlated poorly with the analysis of histone 

modifications in the promoters of the same genes. To evaluate whether these effects on the 

morphology and gene expression were permanent, cells passaged enzymatically were then 

passaged mechanically instead and re-analyzed, with the results showing that the earlier 

decreased levels in gene expression of the most commonly used pluripotency markers had 

reverted to initial levels. 

 
In conclusion, it is important to review this work using an “historical” approach. Since this 

study was conducted and published, several advancements were made in the field of 

pluripotency. It is particularly relevant to consider the following points: Early hESC line 

derivation used a highly empirical culture system (e.g. feeder cells, fetal calf serum) which 
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impacted on the pluripotency state of the cells. The original settings of derivation of hESC 

lines were In Vitro Fertilization (IVF) hospital research units and were often conducted by 

embryologists who relied heavily on morphological cues to assess their cell behavior. In 

addition, hESC lines derivation is rare, which implies that the cell lines obtained are 

maintained in culture for long period of time. In addition, before the iPS revolution, the 

knowledge of reprogramming and transdifferentiation was in its early days, and still lacked 

the technological support of accessible single cells techniques and genome-wide high 

throughput methods. Some of the important questions in the field are now beginning to be 

understood, such as: Are mouse ES cells the same as hESC (Guo et al., 2016)? And How is 

the gene expression profile of mouse and human preimplantation embryos? (Deng et al., 

2014) (Petropoulos et al., 2016).  

 
With that said, the important observation from this study is, how reversible was the effect on 

pluripotency genes when the culture methods were overturned. A possible speculation, could 

be inferred regarding the plasticity of the chromatin landscape (Cheloufi and Hochedlinger, 

2017) of pluripotency cells and how perturbation (e.g. a rough enzymatic splitting) can 

indeed affect the cellular state, but that does not consolidate these changes into a new cell 

identity that would require stable modification of chromatin structures. 

 

4.1.4 STUDY IV 
 
A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of 
Huntington disease 
 
 
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive 

cognitive, motor and emotional impairments initiated by a single genetic mutation in the HTT 

gene, which is responsible for a trinucleotide “CAG” repeat expansion and disease age onset. 

Although the genetics of HD have been known for over 20 years, no treatment for HD is yet 

available.  

 

Findings by Bečanović and colleagues at the University of British Columbia, have proven 

through in vitro reporter assays, in silico screening and site direct mutagenesis experiments 

that the HTT promoter transcriptional activity is reduced of 50% by a cis-regulatory SNP in 

the NF-κB binding site. NF-κB is a transcription factor involved in inflammation and the 

regulation of cytokine production and has been previously been shown to be connected with 

HD (Träger et al., 2014). In vivo ChIP analyses in WT mouse striatum, prefrontal cortex and 
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cerebellum as well as in vitro ChIP analyses from Lymphoblastoid (LCLs) cell lines from 

HD patients and rat striatal ST14A cell line stimulated with TNFα, demonstrated that the 

mouse HTT promoter indeed contains the NF-κB binding site. The effect on HTT mRNA 

expression was therefore investigated upon transfection with siRNA against NFκB1 and p65 

in HEK293 cells. NFκB1 and p65 encode for the p50/p65 heterodimer complex and indeed 

targeting their precursor mRNA indeed resulted in decreased HTT mRNA expression. The 

same decrease was seen in p53 mRNA levels, an established NF-κB target. SiRNA 

knockdown efficiency was on average 82% for NF-κB1 and 70% for p65. To further validate 

the findings, a cohort of HD patients in Denmark and Canada were screened for the disease 

modulatory effect of a single nucleotide polymorphisms (SNP). Findings were striking, as 

indeed the cis-regulatory variant was proven to be a “bidirectional modifier” and to modulate 

the HTT promoter region and the disease onset in the two independent cohorts of patients. 

When genotyping was conducted in the familial HD cases in both cohorts, it was revealed 

that when the SNP was present in the WT allele, the onset of the disease was extra-early 

(circa 9 years), whereas when present in the HD allele the disease onset was delayed (Figure 

12).  

 
Figure 12. Model. The SNP is located in the identified NF-κB TFBS in the HTT promoter immediately proximal to the 

HTT gene. NF-κB binding is impaired and transcriptional activity of the HTT gene and HTT protein levels are reduced. 
When the variant is present on the wild-type allele, there are reduced wild-type HTT protein levels and earlier AO, while 

on the HD disease allele, there are lower mutant HTT (mHTT) protein levels and delayed AO in HD patients. 
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These results are significant in different ways: Firstly, professional genetic counselling for 

patients and their family that falls under the studied carrier genotypes could be tailored, and 

relevant prognosis could, therefore, modulate therapeutic approaches; secondly the allele-

specific targeting tactics for HTT mRNA may have greater therapeutic efficacy and finally, 

other cohorts of patients should be screened to improve knowledge of cis- and trans 

regulatory elements in HD. 
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5 CONCLUSION  
 
 

In this thesis, novel transcriptional mechanisms of neurodevelopment and neurodegeneration 

have been described. In addition, common underlying threads highlighted in the interplay 

between the transcription factors and chromatin structure have been shown.  

Study I reports a novel mechanism through an interaction between the co-repressor NCOR 

and the transcription factor FOXP2 and proposes a possible role for this regulatory 

mechanism in accurate development and possibly evolution of vocal and motor skills. To 

further investigate this interaction, several analyses could further take place 1) analyses of 

vocalization/behavior on the post-natal brain of conditional KO mice 2) genetic screening for 

mutations in the enhancer regions of fibroblast lines or hIPS cells derived from individuals 

with speech impairments 3) in-depth characterization of the implication of SGRE1/2 as 

possible HAR.  Study II demonstrates that the transcription factor PAX6 can function as a 

repressor and recruit the histone demethylase KDM5C to repress a subset of genes involved 

in Notch signaling, proposing that neurodevelopmental aberrations by PAX6 and/or KDM5C 

mutations maybe be associated with defects in Notch signaling. To overall improve upon 

these results, the next-generation of standardized (in terms of cell cultures and handling), 3D 

in vitro models of the developing human cortex, are promising tools to continue exploring 

the complexity of the human brain in health and disease (Di Lullo and Kriegstein, 2017) . In 

addition, technological advancement such as genome editing techniques (e.g. CRISPR/Cas9) 

should be integrated in these works and should gradually replace siRNA silencing, when 

possible. In addition, new techniques to manipulate chromatin-looping and 3D chromatin 

structures are emerging and could contribute to the transcriptional regulation tool box 

available for mammalian cells. Single-cell technologies to create topographical gene 

expression mapping with the respective chromatin snapshots should also be considered and 

implemented in these kinds of studies. Study IV reveals a mechanism by which a single 

nucleotide polymorphism (SNP) in the promoter of the HTT gene, disrupts the NF-κB 

binding and transcriptional regulation of the HTT gene. These findings show that silencing 

of the HTT gene could be a promising therapeutic strategy in Huntington’s disease. To 

improve upon these results, continue identification of cis- and trans regulatory elements 

could provide insights for new therapeutic targets in Huntington’s disease, and additional 

molecular tool such as CRISPR/Cas9 could further elucidate the role of the SNP in HD.  
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