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Breathe, breathe in the air 
Don't be afraid to care 

Leave but don't leave me 
Look around and choose your own ground 

For long you live and high you fly 
And smiles you'll give and tears you'll cry 

And all you touch and all you see 
Is all your life will ever be 

Run, rabbit, run 
Dig that hole, forget the sun 

And when at last the work is done 
Don't sit down, it's time to dig another one 

For long you live and high you fly 
But only if you ride the tide 

And balanced on the biggest wave 
You race toward an early grave 

 

-Pink Floyd



 

 

ABSTRACT 
Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system, with etiology 

still unknown. MS is thought to arise from a complex interplay between genetic and 

environmental factors. One of the most well established environmental risk factor is smoking, 

which confers a striking increase in risk of developing MS and especially in interaction with 

the risk allele HLA-DRB1*15 and absence of the protective allele HLA-A*02.  

The major part of this thesis is focused on investigating the involvement of the pulmonary 

immune system in MS, and further to uncover underlying smoking associated changes that 

could elucidate on the role of smoking as a risk factor in MS. To characterize the lung immune 

cells, bronchoalveolar lavage (BAL) cells were obtained by bronchoscopy, from healthy 

volunteers and MS-patients, smokers and non-smokers. In project I we provide an initial 

characterization of our study cohort. We could observe that smokers carrying the MS specific 

risk allele HLA-DRB1*15 did not show a smoking-associated increase in macrophages defined 

in non-carriers. Smokers showed higher frequency of proliferating T-cells, while non-smoking 

MS-patients had increased levels of preformed CD40L in CD4+ T-cells. We could further 

provide a more in-depth characterization of pulmonary T-cells in MS-patients and smokers, in 

Project III. The majority of CD4+T-cells in both healthy and MS patients showed a tissue 

resident memory phenotype, characterized by expression of CD69 and CD44, while also 

expressing both CXCR3 and CCR6. Cells from healthy smokers showed an increased 

proliferative capacity and we also observed a significantly higher frequency of regulatory T-

cells in the lungs of both healthy smokers and MS-patients compared to healthy non-smokers. 

When investigating the migratory profile of lung T-cells based on integrins VLA-4 and LFA-

1, both implicated in MS pathogenesis, we found no upregulation of these in MS patients 

compared to healthy. 

In recent years, it has been suggested that dysbiosis of the commensal microbiome in the gut 

is involved in the pathogenies of MS. The lungs also host a unique commensal microbiota, 

which recently was shown to be dysregulated in the autoimmune disease Rheumatoid Arthritis 

and pulmonary Sarcoidosis. In Project IV we investigated if the microbiota in the lungs of MS 

patients also show dysbiosis. We found that the microbial composition in the lungs of MS 

patients differed considerably compared to healthy controls, with increased richness and 

diversity. We could further report that MS patients also had altered expression and presence of 

the antimicrobial peptide human beta defensin-1 (hBD1) in the lungs.  

 



In Project II we developed a novel method, called Small-seq, to study small RNAs, such as 

microRNAs (miRNA) from a scarce source of starting material; a single cell. Previously 

methods required large quantities of sample material in order to investigate small RNAs, which 

often can be a limitation to obtain in clinical samples, as well as average out biological 

variability and heterogeneity within populations. With Small-seq we are were able to capture 

different types of small RNAs from single cells, such as miRNA, snoRNA and tsRNA. 

Captured miRNAs revealed cellular heterogeneity in primed hESC, as well as being able to 

cluster and separate different cell types. The method implemented a masking strategy to 

efficiently limit capture of the highly abundant 5.8S rRNA, and incorporation of a unique 

molecular identifier allowed for molecular quantification of the detected small RNAs.    

The work provided in this thesis concludes that the pulmonary immune milieu is altered in MS 

patients, thereby presenting the lungs as an organ of interest for further investigation into the 

pathology and potential therapeutic opportunities in MS. The described changes in immune 

cell composition between smokers carrying the MS risk allele HLA-DRB1*15 and non-

carriers, could further shed light upon the mechanisms behind the impact of smoking as a risk 

factor for disease and in exacerbating MS. Herein we further provide the development of a 

novel technique to capture and investigate small RNA, such as miRNAs in single cells 
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1 INTRODUCTION 
1.1 PULMONARY IMMUNOLOGY  

The human respiratory tract is an intricately organized system comprised of trachea connected 

to branched airways and bronchioles terminating in millions of alveoli, responsible for the 

primary function of the lungs, oxygen and carbon dioxide exchange. As a result of this highly 

branched unit, the lungs encompass the largest epithelial surface in the body that is exposed to 

pathogens, innocuous particles and toxins inhaled with each breath. To combat such pathogens 

the lungs have evolved a multi-layered host-defense and immune system, preventing entry into 

the body, while restraining inflammation mediated damage to ensure preserved gas exchange. 

These host defense barriers include layers of mucus, an abundance of fluid and antimicrobial 

molecules, and tight junctions between epithelial cells. Furthermore, crosstalk between resident 

alveolar macrophages (AMs), T-cells, dendritic cells and respiratory epithelial cells orchestrate 

restrained and well-controlled immunity1.   

1.2 MACROPHAGES 

Macrophages constitute of a versatile and diverse set of cells that can be found in mammalian 

tissues, but each tissue residing macrophage population is distinct reflecting the different 

microenvironments, and their specific requirements. Macrophages are key players in tissue 

homeostasis through their most recognizable trait of phagocytosis, ingesting apoptotic cells and 

cell debris, together with eliciting tissue repair and control immune activation. As part of the 

innate immune response, they also serve as sentinels scavenging for microorganisms and 

protecting against infection and foreign particles and are capable of eliciting multiple 

inflammatory processes, depending on the type of stimuli. They also represent a link to the 

adaptive immune system by interplay with T-cells via antigen presentation, expression of co-

stimulatory molecules, and secretion of cytokines and chemokines, thus enabling them to 

modulate the responses and initiate recruitment of immune cells to the site of inflammation. 

It was initially believed that tissue resident macrophages originated solely from infiltrating 

bone marrow derived monocytes under steady state conditions, but lately that view has been 

challenged. Recent studies in mice have found macrophages to originate from embryonic 

progenitor cells that inhabit the early tissues and persist through the ability to proliferate and 

self-renew2. However, during inflammation, monocytes will be recruited by the residing 

macrophages to increase the immune defense and become what is termed monocyte-derived 

macrophages 3.  
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Macrophages have the ability to recognize and sense exogenous and endogenous danger via 

various pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), C-type 

lectin receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs). These 

receptors are able to recognize and react to a wide array of pathogen associated molecular 

patterns (PAMPs) on pathogens as well as danger associated molecular patterns (DAMPs) 

produced during cellular stress and/or tissue injury4 . The response pattern differs for each of 

the PRRs. However apart from certain NLRs, activation of PRRs cause downstream activation 

of transcription factors that induce inflammatory responses. This culminates in the production 

of pro-inflammatory cytokines and type I IFNs, along with chemokines for cellular recruitment 

and antimicrobial peptides5. 

Activation of macrophages and subsequent polarization of these cells have typically been 

classified as either “classical” M1 or “alternative” M2; M1 being the inflammation driving 

macrophages, while M2 represents the opposite of more immune regulating and tissue 

repairing macrophages. However the M1/M2 theory does not translate very well across species 

and a paradigm shift towards a more spectrum based model is currently getting more evident6,7. 

1.3 ALVEOLAR MACROPHAGES 
AMs constitute the main population of immune cells in the airway lumen of the lung and 

form the first line of defense against environmental challenges and pollutants. This tissue 

compartment is a unique microenvironment with a considerable influence on the tailored 

characteristics and turnover of alveolar macrophages, as adaptation is required to 

accommodate the ever-changing needs and challenges of the tissue. Similar to other tissue 

resident macrophages, AMs are long-lived and rely very little on circulating monocytes to 

self-maintain due to their ability to locally self-renew8. AMs have been described as being 

masters of contradictory functions, capable of distinguishing between different situations 

those requiring tolerogenic responses and those that require the initiation of an inflammatory 

response. They are responsible for the homeostatic functions of clearing and discarding 

cellular debris and inhaled particles, as well as regulating the levels of surfactant released by 

the epithelium. AMs are able to mount an inflammatory response but are most commonly in 

a hyporesponsive state, responding poorly to stimuli such as TLR ligands. Activation of AMs 

is tightly controlled and shaped by the microenvironment, via interactions with the 

commensal microorganisms and cell-cell contact with the airway epithelium, in order to limit 

any unwanted inflammatory responses9. Initiation of inflammation requires an override of 

the inhibitory mechanisms governing the AMs, which leads to a complex balancing act 

between activating and repressing signals10. 
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1.4 T-LYMPHOCYTES 

T-cells play a major role in the adaptive immune-system by protecting the host from pathogens 

and maintaining balanced host immunity. With their complex and highly diverse T-cell 

receptor (TCR) they recognize peptide antigens presented by cell surface proteins of the major 

histocompatibility complex (MHC) family, which include MHC class I and II. T-cells originate 

from bone marrow hematopoietic stems cells but develop and mature in the thymus. As they 

develop in the thymus the TCR is formed and the T-cells undergo positive and negative 

selection. These selection processes, respectively, ensure that the T-cells can recognize and 

interact with MHC, at an optimal strength, that no strong binding with presented “self-antigens” 

occurs, as well as directing the developing T-cell towards a CD4+ or CD8+ phenotype. T-cells 

that fail these selection criteria will be eliminated, with the exception of some T-cells that fail 

negative selection and are selected to become regulatory T-cells (Tregs). When the T-cells 

leave the thymus, they will have highly specific TCRs recognizing unique antigens presented 

by antigen presenting cells on either MHC class I or II molecules. 

1.5 CD4+ T-CELLS 

CD4+ T-cells recognize and respond to antigens presented by MHC class II on antigen 

presenting cells (APCs). If the needed co-stimulatory signals are present together with the 

cognate antigen, the CD4+ T-cell will become active, clonally expand and differentiate into a 

specific subset, depending on the required response needed, shaped by the specific cytokine 

signals present in the environment. These T helper (Th) subsets include Th1, Th2, Th9, Th17, 

T-follicular helper cells, as well as Tregs, which are capable of reciprocally regulating each 

other. Each subset can be defined by their distinct set of lineage-defining transcription factors 

and surface receptors that provide the ability to sense and respond to specific cytokines and 

chemokines. These lineage-defining transcription factors are induced in the naïve CD4+ T cells 

as a result of cytokine binding to specific receptors, initiating intracellular signaling through 

the JAK/STAT pathway. Differentiation of Th1 cells rely on interleukin 12 (IL-12) stimuli to 

upregulate expression of T box expressed in T-cells (Tbet), which is the key transcription factor 

involved in Th1 differentiation. Upon commitment via Tbet expression, Th1 cells will start to 

produce a specific signature of cytokines; interferon-g (IFN-g), tumor necrosis factor (TNF), 

and lymphotoxin-a. The activated th1 cells also express the chemokine receptor CXCR3, 

which then allows them to enter peripheral tissues. Th1 cells are pivotal in fighting intracellular 

pathogens and as a result of their IFN-g secretion play an important role in macrophage 

activation. On the other hand, the primary role of Th2 cells is to fight extracellular parasites. 

Differentiation to the Th2 subset relies on the presence of IL-4 to drive their polarization by 
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initiating expression of the transcription factor GATA Binding Protein 3 (GATA3). This in 

turn induces the Th2 signature which is the production of cytokines IL-4, IL-5, and IL-13 

cytokines, as well as expression of chemokine receptor CCR4 and prostaglandin D2 receptor 

CRTh2. At the same time, IL-4 induced signaling will inhibit the initiation of the Th1 and Th17 

differentiation programs. Th17 are characterized by their production of IL-17 and have been 

shown to be important in fighting extracellular pathogens and fungi. Th17 cells are regulated 

by the transcription factor retinoic-acid-receptor-related orphan nuclear receptor gamma 

(RORgt), that is required for the production of IL-17 and drive the expression of CCR6 and IL-

23R. The majority of all Th17 cells also express CD161 and CCR4. Transforming growth 

factor-b (TGF-b) and IL-6 are the two main cytokines needed to drive the Th17 

specialization11,12. Both Th1 and Th17 subsets have been implicated in chronic inflammation 

and autoimmune diseases. 

Tregs are primarily responsible for preventing any unwanted immune response, preserving 

tolerance to self and immune homeostasis. They are best identified by their “specific” 

transcription factor FOXP3, as well as expression of cell surface CD25 (alpha subunit of the 

IL-2 receptor). Subsequently markers such as CTLA-4, GITR and lack of the IL-7Ra chain, 

CD127, have also been proposed as Treg markers. Tregs are primarily generated in the thymus 

but can also be induced in the periphery. To date, it is still unclear how to distinguish thymus 

derived Tregs from those that are peripherally induced. Expression of the transcription factor 

Helios was initially believed to be a marker for thymus derived Tregs, but that has since been 

refuted, and Helios has instead been linked to various roles such as suppressive capacity and 

activation status of Tregs13. To exert their regulatory functions, Tregs can release an array of 

suppressive cytokines such as TGF-b, IL-10, and IL-3512, as well as modulate and inhibit APCs 

via the inhibitory cell surface receptor CTLA-414. Tregs are a vital part of maintaining a 

functional and balanced immune system and loss of Treg function or suppressive capabilities 

are indicated as contributing factors in many chronic inflammatory and autoimmune 

diseases15,16.  

1.6 CD4+ T-CELL PLASTICITY 

Until recently, the consensus regarding T-cell differentiation was rooted in the concept that 

each specialized subset of T-cells was committed to a stable lineage phenotype. However, it 

seems that T-cell subsets retain the capacity to change their commitment and functional 

phenotype in response to changes in the polarizing environment, such as reactivation by altered 

cytokine milieu (Figure 1) or TCR engagement 17. Th17 cells and Tregs are particularly able to 

adapt and change into more mixed or alternative phenotype. Both subsets have recently been 
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observed in functionally distinct pro- and anti-inflammatory roles, able to interchange 

phenotype and function 18. Thus, under certain conditions, Tregs can acquire pro-inflammatory 

or effector T-cell functions at the expense of FOXP3 expression. These so-called exTregs have 

been shown to produce IL-17 or IFN-g while losing their suppressive function19. With the 

advent of single cell technologies recent studies are uncovering a great deal of heterogeneity 

within seemingly homogenous populations of T-cell subsets. Th17 cells were shown to harness 

a wide array of heterogeneity ranging from pathogenic to regulatory functionalities20,21. In 

several inflammatory conditions and autoimmune diseases, such as Rhematoid Athritis (RA) 

and Multiple Sclerosis (MS), CD4+ T-cell plasticity has been identified by increased frequency 

of a pathogenic “hybrid” Th17/Th1 (hereafter referred to as Th17.1) subset able to co-produce 

IL-17A and IFN-g, as well as high amounts of GM-CSF22,23,24,25.  

 

Figure 1: Simplified overview of key cytokines that promote polarization of naïve CD4+T-cells 

or plasticity between the subsets. The lines between subsets show known plasticity. (Dupage M 

& Bluestone JA, “Harnessing the plasticity of CD4+T-cells to treat immune-mediated disease” 

Nature Reviews Immunology 16, pages 149–163, 2016)17 
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1.7 CD8+ T-CELLS 

CD8+ T-cells, also commonly referred to as cytotoxic T lymphocytes, are important for tumor 

surveillance and immune responses against intracellular pathogens, such as viruses and 

bacteria. In contrast to CD4+ T-cells, CD8+ T-cells recognize and respond to peptides 

presented by MHC class I molecules. When naïve CD8 T-cells get activated by recognizing 

presented antigen peptides, the antigen-specific CD8+ T-cells undergo vast clonal expansion 

and differentiates into effector T-cells. These effector CD8+ T-cells then recognize the antigen 

presented on infected or transformed cells, resulting in killing of these target cells via pathways 

involving either direct cell contact or cell killing mediated by release of cytokines TNF and 

INF-γ. Cytolytic pathways involving direct cell contact consist of the production and release 

of perforin and granzymes into the intercellular space. Perforin forms pores in the target cells 

membrane facilitating entry of granzymes, which cause cell death by engaging the apoptotic 

cascade. Apoptosis of the target cell can also be induced by Fas ligand expressed on the effector 

CD8+ T-cells interacting with Fas receptor on the target cell26,27,28.  

1.8 MEMORY AND TISSUE RESIDENT T-CELLS 

After an infection or threat is properly eradicated the expanded effector T-cells undergo an 

apoptosis-induced contraction phase where most of the cells die off resulting in a small 

surviving subset of cells maturing into memory cells. These memory T-cells are long-lived, 

self-renewing and able to provide a rapid and enhanced response if the same antigen is 

encountered again. Classically these memory T cells have been subdivided into central memory 

T (TCM) cells and effector memory T (TEM) cells. TCM cells express CD62L and CCR7 enabling 

them to access and reside in secondary lymphoid organs. In contrast, TEM cells lack these 

receptors but instead express various tissue specific receptors enabling homing to peripheral 

tissue and provide immune surveillance. Both TCM and TEM recirculate and convey surveillance 

through blood, secondary lymphoid organs and peripheral tissue. 

In the last decade it has become apparent that certain specialized lymphocyte populations 

remain fixed and persistently reside in peripheral tissues of the body. It still remains unclear 

whether a certain spectrum of tissue residency exists or to what extent and if the resident cells 

leave the tissue when encountering certain stimuli 29,30. However, some migration within the 

constraints of the specific tissue and microenvironment has been observed to promote more 

efficient local immune surveillance31,32. Upon entry into the specific tissue the lymphocytes 

undergo a differentiation into resident cells based on the local signaling cues and 

microenvironment, which in mice can be distinguished by a set of transcription factors; Hobit 

and Blimp133. Molecules associated with tissue egress are downregulated, while upregulation 
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and expression of CD69 is promoted to further establish tissue retention by suppression of 

sphingosine 1-phosphate receptor-1 (S1PR1) mediator of tissue egress34. 

The most well studied resident lymphocyte populations are tissue resident memory T (TRM) 

cells, but other subsets of lymphocytes such as Tregs, non-conventional T-cells, and Innate 

Lymphoid Cells (ILCs) have also shown to be resident and phenotypically distinct from 

equivalent subset form in circulation. TRM cells encompass both CD4+ and CD8+ T-cell 

populations that rely on different microenvironment cues, and appear to constitute most of the 

memory cells found in non-lymphoid tissues35. TRM cells rapidly initiate and augment immune 

responses upon re-exposure to pathogens, by production of cytokines, such as IFN-y, and 

recruitment of circulating lymphocytes. It is still unclear how effective CD8+ TRM cells are as 

direct killers and whether this is a primary mode of action29. Thus the primary role might be to 

quickly contain and delay the threat by profoundly modulating the local environment and 

trigger protective innate and adaptive immune responses, while recruiting for help36,37. 

As mentioned above, distinct residing Tregs are also present in different peripheral tissues. 

These tissue Tregs have been shown to harness specific phenotypes and functions beyond just 

serving as direct regulators of immunity, which impact the local tissue environment and 

homeostasis. One of the more studied phenotypes is the ability to influence and potentiate tissue 

repair in response to local cues and injury, for example in lungs38 and muscle39. Furthermore, 

Tregs in visceral adipose tissue have been associated with insulin sensitivity and resistance, 

indicating functions for modulating metabolic homeostasis40,41.   
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2 MICROBIOME AND THE IMMUNESYSTEM 
We live in a symbiotic relationship with a large complex community of microorganisms that 

have coevolved and forged over millions of years. These microorganisms inhabit our bodily 

surfaces and carry out a vast variety of functions important for our physiology and protection. 

Nevertheless, it is critical to uphold compartmentalization and homeostasis of the microbiota 

to avoid potential pathologic and unnecessary immune activation. Physical barriers in the form 

of mucus layers and epithelial cells separate microbes and immune system, thus minimizing 

the direct exposure, while also producing various antimicrobial substances like antimicrobial 

peptides (AMPs). Despite this separation, the microbiota and immune system are in constant 

communication via a complex set of mechanisms in order to uphold homeostasis and optimal 

conditions for both parts42,43.  

The immune system is able to assert some “host” control over the microbiota composition 

through changes to the mucosal barriers, such as mucus production, pH and secretion of AMPs. 

Through microbial molecules and components, the microbiota can affect and interact with the 

immune-system, by interaction with TLRs present on epithelial cells and myeloid cells. These 

microbial molecules can also be sampled by DCs protruding into the lumen or penetrate the 

barrier causing a direct response43. Sensing microbiota especially through TLR signaling 

pathways are important for eliciting critical responses that maintains homeostasis e.g. repair of 

damaged intestinal epithelial44.   

2.1 LUNG MICROBIOME 

The lungs consist of a vast surface area equipped with effective defense mechanisms to cope 

with the pressure and exposure from environmental microorganisms and particles. Similar to 

other bodily surfaces the lungs are also colonized by a variety of microbial communities. 

Compared to the gut, the lung has a relatively low microbial biomass or burden, possibly due 

to the difference in functional characteristics, a unique selection pressure, and reduced access 

to energy sources. The field of lung microbiome research is relatively young and thus many 

details pertaining to function and causality still remain unknown. It is currently unclear whether 

the lungs consist of stable residing populations of microorganism or are in a state of flux, 

constantly cleared and repopulated. This population or repopulation is hypothesized to happen 

through micro-aspirations from the upper respiratory tract, due to the observed similar 

microbial complexities42,45–47.  
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Regardless, there still exists a delicate balance between host and microbe in lungs distinct from 

the upper respiratory tract48,49. The healthy lung of an adult appears to be primarily populated 

with the microbiota of the following genera; Pseudomonas, Streptoccocus, Fusobacterium, 

Veillonella, and Prevotella50,51.  Changes in the lung microbiota composition have been linked 

to pulmonary inflammation and Th17 responses49, inflammatory cytokines52, and remodeled 

macrophage phenotypes53. Alterations in lung microbiome composition has also been observed 

in lung disease conditions such as asthma and COPD, with association to response to treatments 

and severity of disease, respectively54,55.  

2.2 ANTIMICROBIAL PEPTIDES 

AMPs are an abundant array of short peptides, present in almost every living organism. In 

general, these peptides protect against invading microbes and pathogens in tissue. In humans, 

three main classes of functionally distinct AMPs exist, classified based on their amino acid 

composition and structure. These are the Defensins, Cathelicidins, and Histatins. Defensins can 

further be subdivided into alpha and beta Defensins. AMPs are expressed readily throughout 

the body, primarily by epithelial cells, neutrophils, macrophages, monocytes, and dendritic 

cells.  The majority of AMPs are centered at the interface surfaces, like skin and mucosa, to 

maintain the homeostasis with the commensal microbiome as well as protecting against the 

constant exposure to environmental microorganisms56.  

The most common method of direct killing of pathogens is to employ their specific cationic 

charge, composition, and amphipathicity, to attach to the membrane bilayers and form 

transmembrane pores. The formed pores disrupt membrane integrity resulting in lysis of the 

targeted pathogen57,58. Apart from their antimicrobial activity, these cationic molecules have 

however also been demonstrated to be more complex and host a diverse range of 

immunomodulatory functions. AMPs have been shown to boast both pro- and anti-

inflammatory capabilities, signal through chemokine receptors, and modulate TLR signaling. 

Both Defensins and Cathelicidins have demonstrated chemotactic capabilities both directly and 

indirectly via upregulation of chemokines and cytokines and can thus recruit leukocytes 

directly. Each type of AMP boasts a different chemotactic response that is selective towards 

the recruited cell type. Hence, to encompass their more immune mediated functions, they are 

also referred to as host defense peptides59. 

The lungs comprise of a vast surface area constantly exposed to potential pathogens. As such 

AMPs make an integral part of the first line of defense against pathogens, and dysregulation of 

AMPs is involved in pathogenesis and severity of several pulmonary diseases. For example, in 
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cystic fibrosis, COPD and asthma, differential regulation and function of AMPs were present 

in the lungs of patients compared to healthy individuals60,61. The causality and impact of these 

changes are still elusive and remains to be further explored. Additionally, dysregulation of 

AMPs has been observed in several types of diseases and inflammatory disorders. For example, 

in patients suffering from type 1 diabetes mellitus, serum levels of the only human Cathelicidin 

to date, LL-37, and Human beta defensin 1 (hBD1) are decreased compared to healthy 

individuals62. In patients with psoriasis, the levels of LL-37 and hBD2 were found to be raised, 

the latter correlating with IL-17A, an important driver of the skin pathology62,63. 
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3 SMOKING AND INFLAMMATION 
Cigarette smoking is a serious global health challenge affecting multiple organ systems and 

results in numerous smoking-associated diseases. The complex composition of cigarette smoke 

contains more than 4000 chemical substances, including nicotine, acrolein, carbon monoxide, 

phenols, toxic aldehydes oxidative compounds etc., which highly influences the respiratory 

system. The continual exposure to smoke induces various pathological effects and molecular 

changes in the lung epithelium and the immune cells connected to the lungs, which are 

associated with increased vulnerability to infections and risk of developing several disease, 

such as several cardiovascular diseases, COPD and asthma 64. 

The influence asserted by smoking affects both the innate and adaptive immune system at a 

local and/or systemic level. Either induction or inhibition of the release of pro- and anti-

inflammatory cytokines and mediators can be a consequence of smoke exposure64. A key 

mechanism behind the activation of immune cells by smoke exposure is activation of the NF-

kB pathway, resulting in increased expression and secretion of TNF, IL-1, IL-6, IL-8, and GM-

CSF. However, TLR induced NF-kB activation has also been observed to be inhibited by 

smoke exposure, resulting in a downregulation of the same cytokines64. The main instigators 

of the anti-inflammatory effects of smoking, nicotine, carbon monoxide, and phenols, 

demonstrate suppressive effects on inflammatory cytokines and mediators65. The effect of 

nicotine can be attributed to the interaction between nicotine and the α7 nicotinic acetylcholine 

receptor found on T-cells, B-cells and macrophages. These modulatory effects have an impact 

on different T-cell subsets and their responses, such as reduced activity of Th1 and Th17 cells 

caused by decreased expression of lineage specific transcription factors and reduced specific 

cytokine production66. Chronic exposure to smoke leads to an increased presence of 

macrophages in the airway lumen. Moreover, smoking can contribute to impaired function and 

changed morphology of alveolar macrophages, where cigarette smoke-derived particles remain 

trapped in the cytoplasm67,68.   

3.1 SMOKING AND AUTOIMMUNITY 

More evidence is now being uncovered linking smoking to several autoimmune disorders as it 

has been identified as a risk factor and observed to play a role in RA, Systemic Sclerosis, MS, 

Crohn’s disease and Systemic Lupus Erythematous64. In RA the interaction between the 

environmental influence of smoking and a specific genetic background increased the risk of 

the anti-citrullinated protein antibodies (ACPAs) form of RA by 21-fold69. Citrullinated 

peptides are autoantigens in RA and interestingly, increased expression of citrullinated proteins 
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and citrullinating enzymes have been observed in cells and fluid obtained by broncho alveolar 

lavage (BAL) from healthy smokers70. Contrary to the elevated level of autoantibodies related 

to smoking in RA, smoking has been shown to decrease the levels of anti-dsDNA titers in 

systemic lupus erythematosus suggesting a more immunosuppressive effect on auto-antibody 

creation71.  
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4 MULTIPLE SCLEROSIS 
MS is a chronic inflammatory disorder of the central nervous system (CNS) leading to 

demyelination, axonal degeneration and neuronal loss. The disease affects around 2,5 million 

people worldwide and is more prevalent in young adult women than men72. The disease is 

further sub-diagnosed into one of several common forms, relapse-remitting form (RRMS), 

secondary progressive MS (SPMS), and primary progressive MS (PPMS), based on clinical 

manifestations of the disease (Figure 2). Most frequently, MS patients will be diagnosed with 

RRMS, which is characterized by bouts of active disease, relapses, followed by periods of 

remission and clinical inactivity. However, most patients with this type of disease will 

eventually develop a more progressive form; SPMS. This disease state is defined by gradual 

worsening overlaid with or without relapses. A minority of MS patients will have the third form 

of MS, PPMS, which in contrast to the other types, has no periods of relapse-remission but 

proceeds as a continuous worsening from onset of disease. MS is a heterogeneous disease with 

great variation in clinical manifestations including physical disability, cognitive impairment 

and fatigue. These symptoms correlate with the diverse locations of the pathological 

inflammatory lesions in the CNS, arising from immune cell infiltration and subsequent CNS 

damage 72,73.  

 

Figure 2: Overview of the disease course and the different progression forms of MS. (Olsson 

T, Barcellos LF and Alfredsson L, “Interactions between genetic, lifestyle and environmental 

risk factors for multiple sclerosis”, Nature Reviews Neurology 13, pages 25–36, 2016)74 
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Diagnosing MS is based on the McDonald criteria. In brief, the diagnosis is established upon 

visualizing demyelinating episodes with magnetic resonance imaging (MRI) during two 

different time-points at different locations75. The first incidence of observed demyelination and 

suspicion of MS is classified as Clinically Isolated Syndrome (CIS). Furthermore, clinical 

symptoms are assessed by the Expanded Disability Status Scale (EDSS)76, as well as screening 

of the cerebrospinal fluid (CSF) for the presence of and quantification of oligoclonal 

immunoglobulin G (IgG) bands (OCB)77,78. 

While etiology for developing MS is still unknown, it is regarded as an autoimmune disease, 

likely caused by a complex interplay between genetic and environmental factors. The precise 

mechanisms underlying disease pathogenesis are still unresolved. However, MS is believed to 

be initiated by defects in peripheral tolerance to an unknown CNS self-protein, causing the 

immune system to induce and perpetuate disease. Additionally, there exists a complex interplay 

between genetic and environmental factors that contributes to the development of MS. A 

clinical hallmark of MS is the manifestation of pathological inflammatory lesions, caused by 

the infiltration of immune cells from the periphery through the blood-brain barrier (BBB). T-

cells in particular have been shown to play a central part in the pathogenesis of the disease. 

These auto-reactive T-cells activated by one or several auto-antigens in the periphery, have 

been shown to infiltrate the CNS and to be present at CNS lesions. The exact antigen(s) or 

trigger(s) of the autoreactive lymphocytes are still not known. However, several potential 

mechanisms exist. Those include loss of peripheral tolerance and a failure of regulatory 

mechanisms in the periphery, such as the inability of regulatory T-cells to suppress or discover 

unwanted auto-reactivity. Other potential mechanisms include molecular mimicry and 

bystander activation. As the disease progresses a state of chronic inflammation emerges and is 

likely maintained by local residing cells in the CNS, gradually replacing infiltration of 

peripheral immune cells73. 

4.1 INVOLVEMENT OF THE MICROBIOME IN MS 

According to recent advances, the gut microbiome may contribute to pathogenesis and 

progression of MS. The gut microbiome profiles of RRMS patients demonstrate that they are 

distinctly different from that of healthy controls79,80,81,82. Germ-free mice lacking commensal 

bacteria were much less prone to develop experimental autoimmune encephalomyelitis (EAE), 

an animal model of MS, compared to mice colonize with microbiota, indicating a required role 

for the commensal bacteria for the induction of disease83. Additionally, dysbiosis of the gut 

microbiome was shown to cause a break in tolerance enabling encephalitogenic T-cells to 

trigger induction of EAE84.  When human gut microbiota from MS patients was transplanted 
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into germ-free mice, disease severity of EAE was increased compared to mice transplanted 

with microbiota from healthy donors85. Moreover, healthy commensal microbiota were able to 

readily suppress EAE by decreasing pro-inflammatory Th1 and Th17 cells in favor of more 

regulatory and anti-inflammatory Tregs and suppressive macrophages86. Both human MS 

patients and EAE mice have an increased permeability of the intestinal mucosa, causing 

luminal contents to leak into the body87,88. Conversely, changes in gut microbiota in mice, could 

influence the BBB permeability due to lower expression of tight junction proteins89. This 

relationship between neuroinflammation and gut is also referred to as the gut-brain axis90, and 

has gained increased interest in recent years. 

4.2 PULMONARY INVOLVEMENT IN MS 

The risk of developing MS is strongly linked to both genetic factors and environmental factors, 

with smoking being the strongest and one of the most established environmental risk factors 

for disease74. From the more than 200 identified risk loci associated with disease susceptibility, 

the human leukocyte antigen (HLA) complex exerts the strongest influence. HLA-DRB1*1501 

confers the greatest risk for MS, odds ratio ~3, while HLA-A*02 is linked to a protective 

effect91. A striking interaction between gene and environment is observed when combining the 

prescence of HLA-DRB1*15, absence of HLA-A*02, and smoking, resulting in a 16-fold 

increased risk of developing MS 92. Oral smokeless tobacco however has been shown to confer 

a protective effect on developing MS, indicating that lung irritation by smoking, rather than 

nicotine bears the responsibility for MS risk93. An increased risk of MS is also seen in 

individuals exposed to second-hand smoking94, as well as in patients diagnosed with COPD 95, 

providing further evidence for a role of cigarette smoke exposure as a trigger for the 

development of MS. The association between second hand smoking and MS suggests that the 

link between MS and smoking could be due to non-specific lung irritation. In support of this, 

air pollution has been recently associated with increased relapse rates and inflammatory 

activity, although this hypothesis still needs further confirmation from replication and 

expanded studies96,97.   

Recently an EAE study using adoptive transfer in rats, implicated the lungs as a potential 

contributor to CNS infiltration of auto-reactive T-cells and induction of autoimmune disease. 

Briefly after adoptive transfer of the auto-reactive T-cells, these cells were observed homing to 

the lungs, where they would be reactivated or “primed”, granting the ability to enter the CNS98. 
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5 RNA TRANSCRIPTOMICS 
5.1 QUANTIFICATION AND SEQUENCING OF RNA 

RNA transcribed from the genome, is referred to as the transcriptome, and is essential for 

understanding cellular diversity, functionality, and molecular constituents in both health and 

disease. The transcriptome is composed of all transcribed species of RNA, including non-

coding RNAs, and mRNAs. Quantifying RNA levels has long been used to identify and 

measure transcripts derived from active genes99. Earlier established methods of RNA 

quantitation rely on various ways to detect specific RNA abundance. For example, Northern 

blot utilizes hybridization with radioactive probes for detection100 and quantitative real time 

polymerase chain reaction relies on the incorporation of fluorescent dyes in DNA from RNA 

converted to cDNA101. Similarly, microarrays use oligonucleotide probes to capture 

fluorescently labelled cDNA102. With the introduction of RNA sequencing (RNA-seq) and next 

generation sequencing came a method that could more precisely quantify RNA levels, at higher 

throughput, from lower starting material.  

RNA-seq is a method to sequence fragments of cDNA converted from RNA. Due to the nature 

and chemistry of the most prominent commercial sequencers, long cDNA corresponding to 

long RNAs have to be turned into shorter fragments. The sequencing then produces millions 

of short reads, that represents partial read readouts of the original cDNA103.   

5.2 SINGLE CELL RNA-SEQUENCING 

Due to technical constraints and limitations, conventional methods in detecting gene expression 

and transcriptome information were usually performed using “bulk” or tissue samples, 

containing thousands to millions of cells. Often however these populations of cells are not 

homogeneous. Recent advances in technology and the drive for higher throughput methods 

have made it possible to measure gene expression in hundreds and thousands of individual cells 

simultaneously. This allows for observation of cell-specific properties that might otherwise be 

masked in bulk population analysis due to being averaged out or diluted by all the cells in the 

sample. As such, single cell methods have become powerful instruments in dissecting the 

complexity of cellular composition in organ systems and identifying the specific cell-type 

transcriptomes. One major application of single cell RNA-seq is to identify rare cells and new 

cell-subtypes in an unbiased fashion from heterogeneous populations, that before would have 

been missed due to contaminating influence of the other cell types104,105. Further, this has 

enabled the possibility of discovering novel markers and gene signatures for specific cell-types. 

For example, rare cell-types in the intestine has been uncovered106, as well as  a more detailed 
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view of the early stages of embryonic development, cancer stem cells and 

neurodevelopment107,108. Another major advantage is the ability to observe fluctuations in the 

transcriptome and gain a better understanding of the dynamics involved in gene regulation and 

transcription, building our fundamental knowledge in RNA biology. Furthermore, transitions 

between cellular states (naïve vs primed stem cells) as well as tracing lineages across multiple 

cellular differentiation events are being uncovered109. This can lead to a novel understanding 

of regulatory mechanisms, intermediary states, and key genes/signaling pathways involved in 

various biological processes and disease states.  Ultimately this fundamental knowledge may 

be applied to the development of better therapeutic targets or more efficient 

derivations/creation of stem cell populations for application in regenerative medicine.  

A single cell, on average, contains 10pg of total RNA or lower, hence it is vital in single cell 

methods to minimize loss of RNA during processing as well as to maximize capture and 

conversion efficiency. To achieve this, cell lysis, cDNA conversion, and PCR amplification 

are carried out in the same tube, with addition of molecular crowding agents that effectively 

reduces the reaction volume, causing an increase in potential reaction rates and interations110. 

One of the most abundant species of RNA is ribosomal RNA (rRNA), which usually is not of 

interest. Hence to prevent this species of RNA from overwhelming both the cDNA library 

amplification and sequencing, bulk RNA usually undergoes a rRNA depletion step. However, 

this is only feasible when the amount of RNA is high as it results in general losses that therein 

are not practical in single cell methods. To avoid this, most single cell methods rely on only 

capturing the RNA containing poly-A tails, a feature not present in rRNAs. Furthermore, due 

to the low starting material, extensive amplification of the cDNA, usually by PCR, of the cDNA 

is necessary to create libraries prior to sequencing. This extensive amplification however comes 

at the cost of introducing PCR bias. A way to compensate for this bias is the implementation 

of a unique molecular identifier (UMI). UMIs are essentially a known stretch of random 

nucleotides, incorporated either before or at the cDNA conversion step and allow for counting 

and estimating absolute molecules111,112.  

This cutting-edge technology still faces some challenges which include: improving sensitivity 

and accuracy, reduce both biological and technical noise, as well as the development of new 

computational methods to complement the increased complexity of data generated113. Another 

important caveat, to date, is that the majority of single cell RNA-seq protocols are limited to 

the detection of RNA with poly (A) tails. A diverse substantial amount of RNA is not poly (A) 

tailed, and hence are not captured by most present single cell RNA-seq technologies104,105 
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5.3 SMALL RNAS 

Small RNAs refers to a class of short (<300nt) non-coding RNAs, which are functional but not 

transcribed into protein. However, most of these small RNAs convey their biological function 

as a RNA-protein complex. It is now established that these small RNAs harness a remarkable 

variety of biological functions, including regulation of transcription and translation of multiple 

genes. Due to the regulatory nature of small RNAs, there is  great interest for investigating and 

understanding the role of these molecules in terms of disease114,115. 

The most well characterized and studied small RNA is the species of microRNAs (miRNAs; 

~22nt). Apart from miRNAs, a large variety of less characterized small RNAs have been 

described, including transfer RNA (tRNA), transfer RNA derived small RNAs (tsRNA; 30-

34nt), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), snoRNA derived 

RNAs (sdRNAs) and more114. In MS miRNAs have been found to be dysregulated in a wide 

variety of body fluid, cells and tissues, including immune cells, neurons, brain tissues, and 

spinal cord. The dysregulated miRNAs seem to play an important role in the pathogenesis of 

MS and are proposed to serve as therapeutic targets and potential biomarkers for both disease 

diagnosis as well as treatments efficiency assessment116–118.  

5.4 SMALL RNA SINGLE CELL SEQUENCING. 

Up until recently it was not possible to sequence small RNAs from single cells. However, 

Faridani et al. 119 (Project II) introduced, Small-seq the first method able to quantify and capture 

small RNAs at single cell level. This method utilized a ligation approach to capture several 

types of small RNAs including miRNA, tsRNAs and sdRNA, and incorporated UMIs for 

quantification. Further novel elements consisted of masking the most prevalent rRNA with a 

masking oligo, greatly reducing the amount of captured rRNA. This method was able to capture 

a vast array of small RNAs and was able to use expressed miRNA genes to readily cluster and 

separate different cell types119.  
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6 AIMS 
The overall aim of the work included in this thesis was to characterize the involvement of the 

pulmonary immune system in MS and identify smoking associated immune mediated 

mechanisms. 

 

6.1 SPECIFIC AIMS 

Project I: To investigate if the pulmonary immune system is altered in smokers or non-

smokers diagnosed with MS. 

Project II: To develop a method to quantify and investigate the role of small RNAs in 

individual cells.  

Project III: To perform an in-depth characterization of residing lung T-cells in smokers and 

non-smokers and investigate changes in these subsets associated with MS. 

Project IV: To investigate the lung microbiome in patients with MS and study compositional 

changes in relation to antimicrobial peptides and pulmonary immune components. 
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7 METHODOLOGY 
This section will expand upon motivation and considerations in terms of certain methodologies 

used in the various projects. For more detailed description of the methodologies please see the 

respective papers.  

7.1 STUDY COHORT (PROJECT I, III, IV) 

Except for project II which focuses on sequencing the small RNA transcriptome of single cells, 

the studies included in this thesis relied on human material from MS-patients and healthy 

volunteers, smoking and non-smoking. All studies were approved by the Stockholm regional 

ethical board and all included subjects provided informed written consent. 

To investigate the smoking associated immune events in the lungs of MS patients, both non- 

smokers and current smokers with normal lung function were recruited as well as current 

smokers and non-smokers with a MS diagnosis. Healthy volunteers were recruited by public 

advertising, while MS patients were recruited through the Neurology Clinic, Karolinska 

University Hospital, Stockholm, Sweden. All subjects underwent relevant clinical 

investigations, to ensure normal lung function and that no sign of airway infection or allergic 

symptoms were present at the time of bronchoscopy. Additionally, subjects were asked to fill 

out a questionnaire addressing general and pulmonary health, smoke and oral tobacco habits, 

and any current medication. All included MS patients fulfilled the McDonald criteria120. The 

MS cohort represents patients at various stages of the disease, disease course, and current 

treatments. All MS patients labelled as untreated in the various studies, are currently 

undergoing wash-out from previous medication, and should not be considered true untreated, 

but rather not on current medication. The majority of the included individuals were genotyped 

for HLA-DRB1 alleles from DNA extracted from whole blood samples, either using PCR-

based methodology or estimated from SNP-genotype data. A minority of subjects were only 

genotyped for presence/absence of HLA-DRB1*15, a known risk-variant for MS. 

Our healthy subjects are on average younger (median age 25 years) than our recruited MS 

patients (median age 39 years). There are two main reasons for this skewing of our study cohort. 

It is important to remember that both healthy individuals and MS patients are volunteering to 

undergo bronchoscopy and participate in this study. Neither have any direct clinical benefit 

from participation, and bronchoscopy is associated with a certain degree of discomfort. It is a 

general trend in studies involving human participants that a younger cohort is more likely to 

volunteer for study participation. However, MS is usually diagnosed between the age of 20-45, 

and thus naturally shifts towards an older population. Another reason for the age difference is 
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also bound in the interest of trying to discover immunological changes in young smokers that 

could foster an autoreactive environment, giving clues to how MS might develop and why 

smoking confers such a great risk factor. As such, age is always considered a confounding 

variable during data analysis.  

7.2 SUBJECT SAMPLING (PROJECT I, III, IV) 

The primary sampling procedure for the lung investigations was bronchoscopy. In brief, a 

flexible fiber optic bronchoscope is inserted nasally into the airways under local anesthesia. 

Mucosal tissue specimens are collected with forceps from the left lung compartment, either 

from the upper lobe, lingula or lower lobe and immediately flash-frozen. BAL is performed by 

instilling usually 5 aliquots of 50mL of sterile saline solution into the right lung. After each 

aliquot the fluid is gently aspirated and collected on wet ice until further processing.  The BAL 

fluid contains both cells and soluble components. The majority of cells collected by BAL are 

alveolar macrophages (median 91.7% in healthy non-smokers) , but also includes lymphocytes 

(6%) and minor percentages of neutrophils, basophils, eosinophils and mast cells 121,122. The 

cellular content of the BAL fluid adapts to the pulmonary health, and conditions such as 

bacterial infections, allergic asthma, and sarcoidosis, are characterized by marked increases in 

neutrophils, eosinophils and lymphocytes, respectively. Even though bronchoscopy is an 

invasive procedure it is considered very safe and can be performed on an outpatient basis, with 

only moderate sedation required122. Additionally, both blood and serum were sampled from 

each subject. 

Project I, III and IV all rely on human samples, and especially primary cells retrieved by 

bronchoscopy. This brings about some challenges and limitations to the specific study designs. 

As bronchoscopy is an invasive procedure, recruitment of volunteers with very specific criteria 

or phenotype can be a challenge that requires time and dedication. This also makes it difficult 

or impractical to perform sampling at multiple time-points. The data presented in this thesis 

represents one time-point, a snap shot, of the specific state of health and disease and 

immunologic events. As such, caution is warranted when interpreting the results. A further 

complication is the fact that a BAL sample from a healthy individual on average yields 10-15 

million cells that typically needs to be subdivided into various ongoing projects, hence the 

available material is often limited and constrained.  

7.3 FLOW CYTOMETRY (PROJECT I, III) 

Flow cytometry is a well-established method to characterize and capture various cellular 

components at a single cell level. The technique is based on laser-mediated detection of 
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fluorochrome conjugated antibodies, each exhibiting different excitation and emission spectra. 

Emission from the fluorochromes is captured by specific detectors, photomultiplier tubes 

(PMTs), set to a specific range of wavelengths. These PMTs convert the analog light signal 

into the digital signal, fluorescence intensity. When mixing multiple fluorochrome conjugated 

antibodies, their emission spectra are most likely to overlap, causing a specific PMT to detect 

emission from multiple fluorochromes instead of the designated one. To correct for this “spill-

over” or spectral overlap between the PMTs, a compensation process is applied, subtracting an 

estimate of the emission from other flurochromes influencing the specific PMT. In addition to 

fluorescence emission, light scatter measuring cell size and complexity are captured by the 

forward and side scatter detectors. 

7.4 QUANTITATIVE PCR (PROJECT III, IV) 

For projects III and IV we used quantitative polymerase chain reaction (qPCR) to investigate 

the gene expression of select targets from RNA extracted from BAL fluid cells, mucosal tissue 

biopsies and stimulated alveolar macrophages. It has previously been reported that PSMB2 and 

RPL32 are most suitable housekeeping genes for expression studies in BAL, since they remain 

stable irrespective of age, gender, smoking, lung pathology and treatments123. However, we 

found that expression of RPL32 varied significantly within our cohort, and in contrast both 

PSMB2 and HPRT1 showed stable expression. We thus used the average of PSMB2 and 

HPRT1 expression as stable value for reference gene expression. To calculate the relative gene 

expression or fold change the comparative Ct method was used124.   

7.5 TLR STIMULATIONS (PROJECT IV) 

For project IV, we enriched BAL cells for AMs, and cultured these in the presence of known 

stimulants of TLR 1-6. Stimulation of TLRs elicits a complex signaling cascade involving the 

adaptor proteins MyD88, and TRIF. The latter is required for TLR3 signaling. Downstream 

signaling results in activation of the transcription factors NF-𝜅B and AP1, which leads to the 

production of inflammatory cytokines. Apart from inflammatory responses, TLR activation 

can also influence several other biological processes including survival, antigen presentation 

and antimicrobial pathways125,126.  

7.6 DETECTION OF MOLECULES IN BAL FLUID (PROJECT III, IV) 

Since the lavage is carried out in a large volume, the BAL fluid usually requires extensive up-

concentration in order to detect cytokine and chemokines. The volume is measured after the 

up-concentration to determine and later adjust for the concentration factor. To facilitate analysis 

on multiple analytes simultaneously, we used bead capture assays based on the Luminex 
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technology. This is a sensitive method that relies on antibody coated beads of differing color 

to capture the targeted cytokines or chemokines. Specific biotinylated detection antibodies are 

then added to determine the fluorescence intensity or magnitude of signal. Quantification of 

the fluorescence intensity is done by plotting it on a standard curve derived from standard 

samples with known concentration.   

To estimate the concentration of hDB-1 in the lungs (project IV) we utilized an enzyme-linked 

immunosorbent assay (ELISA), that much like the bead capture assay, captures the specific 

target molecule in a sandwich of antibodies and emit a magnitude of fluorescent signal based 

on the amount captured. 

7.7 LUNG MICROBIOME SEQUENCING AND ANALYSIS (PROJECT IV) 

DNA was extracted from the cell free BAL fluid, to perform amplicon sequencing on the highly 

conserved 16S rRNA gene hypervariable region 4. The 16S rRNA gene comprises of 9 

hypervariable regions of different length, separated by conserved regions, making it possible 

to specific identify phylogenetic microorganisms. The V4 region is considered to be the most 

accurate and reliable region for classification and reproducibility127–129. Bacterial amplicons 

were produced using the established 515F-806R primer-pair, and sequenced at 150bp paired 

end, on an Illumina MiSeq130. As the V4 amplicon fragment is around 253bp, sufficient overlap 

between the paired reads occur to ensure higher quality data and reliable merging of reads. 

To analyze amplicon sequence data we used the recently released algorithm Divisive Amplicon 

Denoising Algorithm 2 (DADA2)131. This method infers exact amplicon sequence variants 

(ASVs) and is able to distinguish biological sequence variants differing by one nucleotide. Prior 

methods relied on constructing Operational Taxonomic Units (OTUs) by arbitrarily clustering 

the sequencing reads differing less than a specific threshold; however, inferring ASVs by 

DADA2 have shown to provide higher reproducibility and better accuracy with fewer false 

positives132. The remaining computational analysis was based loosely on an adaptation of the 

published pipeline (Ben J Callahan et al. 2016)133 and the R package Phyloseq134. 

7.8 SINGLE CELL RNA SEQUENCING (PRELIMINARY PROJECT) 

To further investigate the cellular heterogeneity in pulmonary CD4+ T-cells, and the impact of 

smoking and MS, we single cell sort pulmonary CD4+T-cells, from healthy and MS-patients, 

smoker and non-smokers. Using index-sorting, phenotypic information based on surface 

markers is retained from each individual cell sorted into plates. This information might 

complement the transcriptional analysis and further assist downstream subset identification. 

Cells are stained, prior to sorting, with antibodies permitting us to identify the following 
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population based on surface phenotype; Tissue Resident (CD69+), Treg (CD25+CD127-), Th1 

(CCR6-CXCR3+), Th17 (CCR6+CXCR3-) and Th1.17 (CCR6+CXCR3+), are sorted on a BD 

Influx FACS sorter. Synthetic RNA spike-ins (ERCCs) are added to each cell before being 

processed using the SMART-seq2 135. Spike-ins facilitate for downstream accounting of 

technical noise, and distinguish biological variation136. SMART-seq2 is able to capture full-

length transcripts and is still one of the most sensitive single cell methods available. Obtaining 

full-length transcripts further allows for downstream computational reconstruction of the TCR 

and determination of clonality137. The Illumina compatible cDNA libraries are sequenced on 

an Illumina HiSeq 2500. The sequenced data is demultiplexed, mapped by STAR to the human 

genome (Hg38), and quantified using rpkmforgenes138. All downstream analysis is carried out 

using Seurat, an R package for single cell analysis. 
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8 RESULTS AND DISCUSSION 
This section comprises of a summation of results and conclusions for each project. For more 

detailed discussions and results please refer to respective paper or manuscript. 

8.1 PROJECT I 

Smoking is a significant environmental risk factor for developing MS. This risk is further 

increased for individuals carrying the specific risk allele HLA-DRB1*15, while lacking the 

protective allele HLA-A*02. To investigate smoking induced immune mechanisms and 

alterations in human lungs associated with MS, and to potentially elucidate the underlying 

conferred risk of disease, we recruited healthy volunteers (smoking and non-smoking) and MS 

patients (smoking and non-smoking) to undergo bronchoscopy with BAL. 

This project consists of the initial basic immune characterization of the majority of included 

individuals in our study cohort. This is also the first investigation into the pulmonary immune 

responses in MS patients, smokers and non-smokers. In this study we were able to identify 

smoking associated immune effects influencing the overall immune composition and 

proliferation. Smokers, both healthy and MS, had a radical increase in alveolar macrophages, 

which was specifically associated with HLA-DRB1 alleles. We could observe that smoking 

individuals carrying the MS risk allele HLA-DRB1*15 had significantly lower number of 

macrophages present, compared to smokers with other DRB1-alleles (Paper I, figure 4). 

Perhaps this difference in HLA-DBR1*15 individuals could be due to faulty recruitment in 

combination with smoking or shift in response to smoking. However, this finding suggests a 

direct link between smoke exposure associated immune changes and the major MS risk variant. 

Lung macrophages perform vital functions in removing cellular debris, and clearance of 

inhaled particle matter and irritants. This burden is greatly increased in smokers. It can be 

speculated that this decrease in macrophages could lead to a more severe perpetual 

inflammation due to inefficient clearance of particle matter and irritants.  

We also discovered that in non-smoking MS patients, CD4+ T-cells harbored increased levels 

and expression of preformed intracellular CD40 ligand (pCD40L) compared to healthy non-

smokers (Paper I, Figure 3). CD40L is an important co-stimulatory molecule for adaptive 

immunity, both for CD4+ T-cell stimulation and differentiation, as well as for macrophage 

activation and dendritic cell maturation139. Dysregulation of the CD40-CD40L pathway has 

been observed in several autoimmune and inflammatory diseases140. Additionally CD40L+ 

CD4+ T-cells are present at a higher frequency in blood of MS patients compared to healthy 

controls 141. Further, increased levels of preformed CD40L have previously been shown in 
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effector and memory CD4+ T-cells as indicative of cellular activation and recent antigen 

exposure142,143.  It can be speculated whether this increase in pCD40L in MS, is a sign of cells 

being in a more primed state, ready to produce a more rapid and powerful response. 

Overall this work presents an introductory investigation into the immune environment in lungs 

of MS patients and smokers, providing evidence between smoking and disease associated 

changes in the pulmonary immune response. This study highlights the potential importance of 

the lung in the development of MS and establishes the need for a better understanding of 

smoking associated disease mechanisms in MS.     

8.2 PROJECT II 

The last years have proven single cell techniques very important and powerful for new insights 

to cellular heterogeneity, functions and identification of rare cell types. However, one obvious 

drawback has been that almost all the methods are limited to capturing and investigating only 

poly-A RNA; predominantly mRNA 144. Small-RNAs refer to small non-coding RNAs that 

have emerged as important regulators of a wide range of biological post-transcriptional 

processes in both health and disease 115,145. Investigating the function of small-RNAs has been 

previously limited to requiring large quantities of starting material. To further uncover cell-

specific functions and regulation, there was a great necessity to develop a method sensitive 

enough to capture small-RNAs in single cells. 

At the time of publication, we did not name the method, but we have since come to call it 

Small-seq. The Small-seq method for capturing small-RNAs in single cells and other sparse 

material is based on the ligation of adaptors to the 5’ phosphate and 3’ hydroxyl groups. To 

combat competition from rRNA, that also would get captured and ultimately occupy a lot of 

the reads downstream, we created a masking oligo towards the abundant 5.8S rRNA. By 

inclusion of this masking oligo we were able to greatly reduce the amount of captured rRNA 

(Figure 3).  

 

Figure 3: Bioanalyzer traces from small-RNA libraries of primed hESC cells created without 

(left) and with (right) rRNA masking of the 5.8S rRNA. 
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We incorporated an eight nucleotide long UMI, on the 5’ adaptor, to be able to quantify the 

number of small RNA molecules captured, as well as to remove technical biases introduced by 

downstream PCR amplification. The method was originally developed without a gel size 

selection step which allows for automation of the method, however we have observed, after 

publication that a size selection step decreases the amount of contaminating adaptor dimers, 

thus greatly enhancing the quality of downstream sequencing output. To complement the 

Small-seq method and the data created, a computational pipeline was developed to support the 

analyses (https://github.com/eyay/smallseq). 

To validate the method, we investigated the expression and composition of small-RNAs in 

naïve and primed human embryonic stem cells (hESC) as well as in HEK293T cells. We chose 

to focus on miRNA, tsRNA and sdRNA, as they were among the most abundant small RNAs 

(Paper II Supplementary Figure 4a). We were able to capture on average 3800 miRNA, 3500 

tsRNA and 600sdRNA molecules per cell (Paper II, Figure 1b). When investigating the small 

RNAs of interest, we were able to show differential expression of miRNAs in single cells 

consistent with similar miRNA profiling in bulk samples of naïve and primed cells. We could 

also reveal cellular heterogeneity by variation in miRNA expression exclusively in primed 

hESC, when compared to naïve cells. In contrast, we did not observe many tsRNAs and 

sdRNAs differentially expressed between naïve and primed hESC. Furthermore, the miRNA 

profiles generated, revealed a great potential to robustly cluster and separate different states of 

pluripotency and cell types (Paper II, Figure 1k), comparable to that of mRNAs (Paper II, 

Figure 1l). To further evaluate the ability to separate cell types by their miRNA profile we 

included several types of glioblastoma cells (Figure 4). 

 

Figure 4: Clustering with t-distributed neighbor embedding(t-SNE) of naïve, primed, 

HEK293T and glioblastoma cells based on the captured mature miRNAs expressed at least 

Supplementary Fig. 10. Clustering of an extended number of cell types.  
Clustering of primed and naïve hESCs, HEK293T cells and glioblastoma cells using miRNA expression 
with t-distributed stochastic neighbor embedding (t-SNE). Analysis included total 398 cells and 585 
miRNAs expressed (>=1 molecule) in at least 2 cells. The number of cells used for each cell type is  
indicated inside parenthesis in the legend.Independent experimental replicates were performed for 
primed and naïve hESCs in order to evaluate the batch effect. 
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once in at least two cells. The number of cells for each type and replicate is indicated in the 

parenthesis in the legend (Paper II, supplementary figure 10)119.  

Two important features to establish in a new method are sensitivity and quantitative accuracy. 

Here the sensitivity was measured as the number of mature miRNAs detected. To evaluate the 

sensitivity, we compared the detected levels of mature miRNA, expressing more than 1 

molecule in a single HEK293T cell, to serial dilutions of total HEK293T RNA ranging from 

1000ng to 0,01ng.  For the dilution range between 1000ng – 1ng the miRNAs detected were 

fairly constant; around 450 different mature miRNAs were expressed more than 1 

molecule/cell. Below 1ng total RNA we detected technical losses. At 0,01ng, approximately 

the amount of RNA estimated to be in a single cell we detected 40% mature miRNAs, 

compared to the higher dilutions. This was comparable to the detected levels found in a single 

HEK293T cell, hence we could conclude that Small-seq has 40% sensitivity, capturing roughly 

40% of mature miRNAs in a single cell. 

In conclusion we developed a novel, sensitive method to analyze and quantify small RNAs 

from single cells and sparse material. Captured small RNAs, in particular miRNAs, were able 

to clearly discern cell-type and cell heterogeneity. By being able to investigate small RNA in 

single cells we will be able to learn more about their regulation and how these are affected by 

pathological conditions. This method is specifically designed to capture small RNAs, and as 

such information about long non-coding RNAs and mRNA is omitted. To fully explore the 

biology of the single cell transcriptome and its regulation, Small-seq could be combined or 

used in conjunction with other available single cell methods, to also obtain both mRNA data 

together with information about small RNAs. 

8.3 PROJECT III 

The work presented in Project III, is a continuation of Project I; providing a more detailed 

examination of the T-cell mediated immune response in smokers and MS patients. Interestingly 

we were able to identify that most T-cells in healthy lungs express both chemokine receptors 

CCR6 and CXCR3; which are associated with Th17 and Th1 phenotypes, respectively. This 

has previously been reported in lung diseases like asthma and sarcoidosis. We also observed 

smoking associated changes in the composition of residing T-cells, defined by CD69+. In 

particular CD69+ CD4+ T-cells expressing both CCR6 and CXCR3 chemokine receptors were 

significantly reduced in the lungs of smokers, in favor of CCR6+ and double negative CD4+ 

T-cells (Project III, figure 1E and Table 2). We could observe that the CD69+ T-cell population 

of cells overall showed higher proliferation than CD69- T cells, which was significantly 
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increased in the lungs of healthy smokers. Smoking also increased the percentage of 

proliferating CD69- CD4+ T-cells in both healthy and MS.  (Project III, figure 2D-E).  

It is difficult to conclude whether these compositional changes are due to shifts in the on-site 

proliferation or recruitment of T-cells. In asthmatic BAL CD4+ T-cells, both CCR6 and 

CXCR3 have been shown to be internalized after antigen exposure in vitro, and this could also 

be a possible explanation for increased composition of CCR6 and CXCR3 positive CD4 T-

cells in smokers146. We analyzed expression and presence of ligands for CCR6; CCL20 and 

CXCR3; CXCL9,-10,-11, in BAL cells, mucosal tissue biopsies and BAL fluid. In all instances 

levels of the ligands CCL20, CXCL9,-10,-11 were decreased in smokers compared to non-

smokers (Project III, figure 4).  

As we previously had reported in Project I, CD4+ T-cells in BAL from MS patients had 

increased levels of intracellular pCD40L. In Project III, we discovered that pCD40L was more 

prevalent in CD69+CCR6+CXCR3+ expressing CD4+ T-cells, which still was significantly 

increased in MS patients (Project III, figure 3). A recent study has suggested that 

CCR6+CXCR3+ expressing CD4+ T-cells represents a population of persistent 

multifunctional cells important for controlling latent infections or chronic inflammation147. 

Increased pCD40L in these double expressing cells could be part of a functional repertoire to 

quickly react and control infection and inflammation.  

Furthermore, we could discover that both healthy smokers and MS patients had increased 

occurrence of Tregs in BAL compared to healthy non-smokers (Project III, Figure 6). Tregs 

are important to maintain homeostasis, peripheral tolerance and control ongoing 

immunological responses. This increase could both indicate and serve as a response to ongoing 

underlying immunological mechanisms.  

One of the few biological examples demonstrating the involvement of lungs in autoimmune 

neuroinflammation, was the lung specific “priming” or reprogramming of autoreactive T-cells 

observed by Odoardi et al. in their EAE rat model of the disease resulting in autoreactive T-

cells with a distinct migratory profile98. To investigate if T-cells in MS patients had increased 

migratory potential, we tested for expression of known integrins, VLA-4 and LFA-1, 

responsible for the traversal of autoreactive T-cells across the BBB in humans. Somewhat 

surprisingly, we did not see any upregulation of these integrins in pulmonary T-cells from MS-

patients compared to healthy subjects. In addition, smoking significantly decreased the 

expression of integrins. However, when comparing BAL T-cells with T-cells isolated from 

blood we saw significantly increased levels of the tested integrins in BAL, except for LFA-1 
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in MS patients. In mice, VCAM-1 (ligand of VLA-4), and ICAM-1 (ligand of LFA-1) were 

shown to be constitutively expressed in the lung compartment. VCAM-1 was predominantly 

expressed in the bronchioles, while ICAM-1 on extravascular cells. Both integrins and their 

ligands were responsible for controlling recruitment of immune cells in response to infection 

and subsequent interactions with the lung tissue and bronco alveolar compartment148. It can be 

speculated the autoreactive T-cells in the lungs acquire the function to traverse the BBB, due 

to mechanisms vital for normal lung function and response to infection. 

This project presents a more thorough investigation of lung T-cells under physiological 

conditions as wells as in the context of smoke exposure and disease. We provide a detailed 

insight into the suggested multifunctional lung resident T-cells. Furthermore, we were able to 

uncover several smoking and disease associated changes to migratory and regulatory 

mechanisms in lungs. Identifying disease specific changes in lungs, might provide new insight 

about the etiology and progress of MS, and open up new avenues for therapeutic strategies, 

uncovering possible ways the lungs can be exploited in the treatment of MS patients. 

8.4 PROJECT IV 

Recent studies have attributed dysbiosis and alterations in the gut microbiome to MS and neuro-

inflammation79,149. In EAE models, it has been shown that dysbiosis can cause a break in 

tolerance and induce disease, or increase disease severity 84,85. Other organs, such as the lung, 

have been shown to harbor a microbial flora. The lung microbiome has recently been shown to 

have a reduced diversity in patients with Sarcoidosis and RA150. Hence, we were interested in 

studying if dysbiosis also was present in lungs of MS patients, and if any changes in microbiota 

composition were associated with any immunological characteristics. 

Bacterial DNA extracted from BAL fluid was sequenced for the 16S rRNA hypervariable 

region 4. The healthy cohort included in this project has already been compared to Sarcoidosis 

and RA patients. As such, the samples were sequenced together with the sample from MS 

patients150. We could observe that MS patients had significantly higher species richness and 

evenness compared to healthy controls, regardless of smoking status (Project IV, Figure 1). 

This was in stark contrast to the diminished bacterial community observed in Sarcoidosis and 

RA. Nevertheless, when we investigated the relative bacterial composition of MS patients 

further, we found similar decreases in Actinomyces, Chryseobacterium, and Prevotella genera 

as reported in RA (Project IV Figure 3c) 150. 

Interestingly we observed similarities between changes in the lung microbiome of MS patients 

and MS specific changes reported in the gut. Most strikingly, the genus Acinetobacter had a 
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higher prevalence in MS and was also one of the most important drivers of the differences in 

microbiota composition between healthy and MS. Acinetobacter has been implicated various 

aspects of MS disease, including exacerbating EAE symptoms and severity, inducing pro-

inflammatory response in human T-cells, and encoding peptide sequences which are able to 

mimic myelin basic protein, and myelin oligodendrocyte glycoprotein85,151. Higher titers of 

anti-Acinetobacter antibodies have also been observed in MS patients151. Most notable we 

could also identify microbial changes that positively correlated with disease severity 

(Streptococcus) and disease duration (Faecalibacterium).  

To complement the discovery of dysbiosis in MS patients we wanted to investigate whether 

any differences in the antimicrobial defense could also be found. We screened BAL cells and 

mucosal tissue biopsies for expression of AMPs. We found that DEFB1 mRNA was 

significantly more expressed in BAL cells and the protein hDB-1 present in significantly higher 

amounts in BAL fluid from MS patients compared to healthy subjects. This increase in hDB-1 

correlated with the changes of Rhodanobacter and Corynebacterium. Interestingly, 

Corynebacterium have been shown to regulate TLR3 response 152. We could show in AMs that 

TLR3 stimulation by PolyI:C upregulated DEFB1 mRNA expression, suggesting potential 

occuring regulation between Corynebacterium, TLR3-signalling and release of hDB-1. 

A limitation of this study is the potential cross contamination during bronchoscopic sampling, 

which might act as a confounder in low biomass samples like lung microbiome samples153. No 

oral samples were obtained at the time of bronchoscopy nor were any bronchoscopic 

environmental controls obtained to verify possible cross contamination. However, 

contamination of throat or oropharyngeal microbiota has been shown to not influence sampling 

by bronchoscopy 154–157.   

To conclude, we were able to identify a dysbiosis in MS lungs, with striking similarities to 

those previously reported in the gut of MS patients as well as in RA and Sarcoidosis. 

Furthermore, we report MS specific changes to AMP response that correlated with changes 

seen to the microbiome in the lungs of MS patients. We were also able to associate the observed 

microbiome changes in MS patients with clinical and disease specific characteristics. 

8.5 PRELIMINARY DATA 

To better understand the changes and findings from Project I, III and IV, especially with regard 

to residing T-cell populations and specific functionalities in the lungs, we decided to investigate 

the single cell transcriptomics of pulmonary CD4+ T-cells. Around 3000 CD4+ T-cells from 
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healthy individuals and MS patients have been single cell index sorted and sequenced (Figure 

5). 

 

Figure 5: Shows current distribution of sequenced cells as well as the markers used for index 

sorting and characterization. 

Utilizing index sorting allows us to discriminate and classify each sorted cell by surface 

phenotype (Figure 6). 

 

Figure 6: Distribution of sequenced cells characterized by surface marker analysis from index 

sorting. 

More than 1500 single cells from another three individuals have already been sorted and await 

cDNA conversion and sequencing. From the very preliminary data gathered and quality 

filtered, we were able to cluster and identify multiple populations of CD4+ T-cells in healthy 

non-smokers based on their highly variable expressed genes (Figure 7). 
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Figure 7: Clustering of CD4+ T-cells from two healthy non-smokers with t-SNE showing batch 

corrected overlap of the two individuals (left) and clusters identified based on expressed genes. 

(right).  

The single cell data presented here is still in a very preliminary state. Both acquisition and 

analysis of the data is currently ongoing for the project. However, it does reflect a continuation 

of Project I and III as well as showcasing one of the future directions chosen, to further 

investigate and hopefully broaden our knowledge of the human pulmonary CD4+ T-cells and 

their heterogeneity. Furthermore, by utilizing single cell sequencing we hope to identify MS 

associated changes in CD4+ T-cells populations and functionality, as well as examine the 

clonality of such subsets.  
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9 CONCLUSION AND FUTURE PERSPECTIVES 
The majority of the presented work in this thesis is part of an extensive and rigorous ongoing 

investigation into the involvement of the pulmonary immune system in MS. Furthermore, the 

studies presented are aimed to elucidate the effects of smoking in the development and/or 

progression MS. Project I, III and IV use various approaches to identify significant changes to 

the immune environment and host defense in the lungs of MS patients and young smokers. 

Overall, our findings conclude that the lungs are a peripheral organ of interest, which may aid 

in our understanding of the development and etiology of MS. This thesis also presents the 

development and work of a highly sensitive, novel method, to detect small RNAs in single cells 

with the potential to further extend our knowledge of small RNA biology and implications in 

disease.  

In project I we observed less macrophages accumulation in the lungs of smokers carrying the 

MS risk allele HLA-DRB1*15. Further studies investigating this relationship are warranted 

since the interaction between smoking and carrying the HLA-DRB1*15 allele is one the most 

prominent increases in risk of developing MS. It would be interesting to further infer whether 

this gene-environment interaction causes changes in macrophage chemotaxis and functionality. 

Additionally, it would be worthwhile to determine the consequences of the lowered 

macrophage percentage in smokers, in terms of impact of host defense and ability to properly 

clear and dispose of smoke associated particles. The latter could potentially cause a more severe 

state of chronic irritation and inflammation. 

Project I and III reported several changes in the composition and potential function of CD4+ 

T-cells in both MS and smokers. To further elucidate on composition and possible functions of 

CD4+ T-cells, not only in MS but also in young smokers and healthy individuals, we decided 

to use single cell transcriptomics to further examine lung CD4+ T-cells in health and disease.  

When we investigated the difference in lung microbiome between healthy individuals and MS 

patients in project IV, we uncovered dysbiosis in MS patients with similar traits in lungs of 

RA, as well as in the MS specific changes in the gut. Despite establishing a relationship 

between local immune changes, and disease specific parameters, future experiments are needed 

to establish a causal role of both changes in microbiome composition as well as changes in 

AMP presence. In addition, Acinetobacter, which has been shown to produce mimicry peptides 

of myelin components was more abundant in MS lungs151, suggesting a possible role of 

Acinetobacter in MS development. It could be important to further examine microbiotic 
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changes in MS patients, from a molecular mimicry perspective, and their potential to activate 

the local immune system.  

Project II culminated in the development of Small-seq, a sensitive and novel method to study 

small RNAs in scarce material and single cells. Investigating and profiling small RNAs in 

single cells, complex tissues, and clinical biofluids, will help extend our knowledge about the 

biology of small RNAs and their regulatory roles in cells, as well as facilitate possible 

biomarker discovery. This could, for example, be implemented in pulmonary T-cells, 

analogous to the single cell mRNA sequencing presented in this thesis. Another application 

would be analysis of the miRNA transcriptome of immune cells from the CSF, a highly relevant 

clinical material in MS research. Combining Small-seq with expression of long RNAs/mRNA 

will further increase the insight into regulatory relationships between small RNAs and 

regulation of transcription in single cells.  
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