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“The function of the expert reviewer is not to be more right than other people,

but to be wrong for more sophisticated reasons.”

—Iain Chalmers and Douglas G. Altman

Systematic Reviews, 1995





Abstract

Dose–response meta-analysis is a statistical procedure for combining and contrasting the evidence

on the association between a continuous exposure and the risk of a health outcome. Different papers

refined selected aspects of the methodology, such as implementation of flexible strategies and extensions

to multivariate meta-analysis. However, there were still several relevant questions that needed to be

addressed. This thesis aims to address these issues by developing and implementing new strategies

and ad-hoc measures (Paper I), including tools for evaluating the goodness-of-fit (Paper II), a new

measure for quantifying the impact of heterogeneity (Paper III), a strategy to deal with differences in

the exposure range across studies (Paper IV), and a one-stage approach to estimate complex models

without excluding relevant studies (Paper V).

In Paper I, we described the implementation of the main aspects of the methodology in the dosres-

meta R package available on CRAN. Dedicated functions were written to facilitate specific tasks such

as definition of the design matrix and prediction of the pooled results. We illustrated how to estimate

both linear and non-linear curves, conduct test of hypotheses, and present the results in a tabular and

graphical format reanalyzing published aggregated dose–response data.

In Paper II, we discussed how to evaluate the goodness-of-fit. The proposed solutions consist of

descriptive measures to summarize the agreement between fitted and observed data (the deviance and

the coefficient of determination), and graphical tools to visualize the fit of the model (decorrelated

residuals-versus-exposure plot). A reanalysis of two published meta-analyses exemplified how these

tools can improve the practice of quantitative synthesis of aggregated dose–response data.

In Paper III, we proposed and characterized a new measure, R̂b, to quantify the proportion of

the variance of the pooled estimate attributable to the between-study heterogeneity. Contrary to the

available measures of heterogeneity, R̂b does not make any assumption about the distribution of the

within-study error variances, nor does it require specification of a typical value for these quantities. The

performance of the proposed measure was evaluated in an extensive simulation study. We demonstrated

how to present and interpret the R̂b re-analyzing three published meta-analyses.

In Paper IV, we extended a point-wise approach to dose–response meta-analysis of aggregated

data. The strategy consists of combining predicted relative risks for a fine grid of exposure values based

on potentially different dose–response models. A point-wise approach can improve the flexibility in

modeling the study-specific curves and may limit the impact of extrapolation by predicting the study-

specific relative risks based on the observe exposure range. We illustrated the methodology using both

individual and aggregated participant data.

In Paper V, we formalized a one-stage approach for dose–response meta-analysis in terms of a

linear mixed model. We explained the main aspects of the methodology and how to address the same

questions frequently answered in a two-stage analysis. Using both hypothetical and real data, we showed

how the one-stage approach can facilitate the assessment of heterogeneity over the exposure range,

model comparison, and prediction of individual dose–response associations. The main advantage is that

flexible curves can be estimated regardless of the number of data-points in the individual analyses.

In conclusion, the methods presented in this thesis enrich the set of tools available for applying

dose–response meta-analyses and for addressing specific questions including goodness-of-fit evaluation

(Paper II) and quantification of heterogeneity (Paper III). In addition, we presented alternative models

for pooling results in case of heterogeneous exposure range (Paper IV) and for estimating complex

models without excluding relevant studies (Paper V). The proposed methods have been illustrated

using real data and implemented in user-friendly R packages available on CRAN (Paper I).





Sammanfattning

Dos-respons metaanalys är ett statistiskt förfarande för att kombinera och jämföra resultat från

epidemiologiska studier där sambandet mellan en kontinuerlig variabel och en hälsorisk har undersökts.

Tidigare studier har förfinat delar av metoden, till exempel genom införande av flexibla strategier

och utökning till multivariata modeller; men trots detta kvarstår flera relevanta metodologiska frågor.

Denna avhandling syftar till att besvara ett antal av dessa frågor genom att utveckla och presentera:

nya strategier och ad hoc-modeller (Artikel 1); nya metoder för att bedöma goodness-of-fit (Artikel 2);

ett nytt mått för att kvantifiera påverkan av heterogenitet (Artikel 3); en ny strategi för att hantera

storleksskillnader i exponering mellan studier (Artikel 4); och en ny enstegsmetod för att estimera

komplexa modeller utan att exkludera relevanta studier (Artikel 5).

Artikel 1 beskriver hur huvuddelarna av ovanstående metoder har införts i R-paketet dosresmeta,

tillgängligt via CRAN. De nya funktioner implementerades för att förenkla vissa uppgifter, så som att

definiera en designmatris och prediktera sammanslagna resultat. Artikeln illustrerar även beräkningen

av linjära och icke-linjära kurvor och utförandet av hypotestester. Utöver detta presenteras resultat från

återanalyserade metaanalyser med sammanslagen dos-responsdata.

Artikel 2 utvärderar bedömningen av goodness-of-fit-testet. Den föreslagna metoden består dels av

beräkning av deskriptiva mätvärden för att summera likheter och skillnader mellan predikterade och

observerade data (avvikelse- och bestämningskoefficient), och dels av grafiska verktyg för att visualisera

den predikterade modellen. En åter analys av publicerade metaanalyser exemplifierar hur metoden kan

användas för att förbättra kvantitativ syntes av sammanslagen dos-responsdata.

Artikel 3 presenterar ett nytt mått (R̂b) för att kvantifiera andelen varians i den sammanslagna

skattningen som kan förklaras av heterogeniteten mellan olika studier. I motsats till tidigare mått

på heterogenitet kräver R̂b varken något antagande om fördelningen av inom-studiefelvariationer eller

någon specifikation av deras värden. Resultatet av det föreslagna måttet har utvärderats i en omfattande

simuleringsstudie samt genom återanalys av publicerade metaanalyser.

Artikel 4 beskriver hur vi har vidareutvecklat ett punktvist tillvägagångssätt för metaanalys med

sammanslagen dos-responsdata. Metoden kombinerar predikterade relativa risker för finfördelade

exponeringsvärden baserat på potentiellt olika dos-responsmodeller. Ett punktvist tillvägagångssätt kan

förbättra flexibiliteten i modelleringen av studiespecifika kurvor, och minska påverkan från extrapolering,

genom att prediktera studiespecifika relativa risker baserat på observerad exponeringsstorlek.

Artikel 5 presenterar en enstegsmetod för att estimera dos-respons metaanalys för linjära mixade

modeller, vilket vanligtvis utförs som en tvåstegsmetod. Fördelarna med en enstegsmetod är många, så

som underlättad bedömning av exponeringsheterogenitet och modellskillnader samt förbättrad predik-

tion av individuella dos-responssamband.

Sammanfattningsvis utökar och förbättrar metoderna i denna avhandling de tillgängliga verktygen

för dos-respons metaanalys. Metoderna har illustrerats med hjälp av befintlig data och är implementer-

ade i det lättillgängliga R-paket.
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Chapter 1

Introduction

A single experiment can hardly provide a definitive answer to a scientific question. Science is

oftentimes referred to as a cumulative process where results from many studies, aiming to ad-

dress a common question of interest, contribute to create and update the scientific evidence. In

the cumulative paradigm, meta-analysis is the statistical methodology to combine and compare

the current evidence in the field. This process lies at the heart of the concept of evidence-based

medicine and plays a major role in policy and decision making.

Epidemiological studies often assess whether the occurrence of a health outcome (e.g.

mortality, incidence of a disease) varies according to a quantitative exposure (e.g. amount of

physical activity, alcohol intake). The quantitative exposure is frequently divided in intervals

and the results are expressed in a tabular format as relative risks for different exposure groups.

A high-versus-low meta-analysis contrasts the outcome risk in the highest exposure category

relative to the lowest. This common approach, however, discards the results for intermediate

categories and thus provides only a partial picture. The rich information of the quantitative

exposure is lost and the contrasts may be related to different exposure intervals.

A dose–response meta-analysis, instead, has the potential to be more informative and pow-

erful since it uses the whole available information to estimate the dose–response association.

Because the estimates are computed using a common reference group, it might not be appro-

priate to regress the relative risks on the assigned dose using ordinary least squares. Greenland

and Longnecker (1992) described in their seminal paper how to reconstruct the correlation

within set of relative risks and incorporate it in the dose–response analysis using generalized

least squares regression. Since then, the number of published dose–response meta-analyses has

rapidly increased in many fields of application including oncology, public health, environmental

sciences, nutrition, endocrinology, and internal medicine. Additional papers refined selected

aspects of the proposed methodology, mainly focusing on the implementation of flexible strate-

gies in modeling non-linear associations and incorporating the advancements of multivariate

meta-analysis. However, there were still several relevant questions that needed to be addressed

including how to assess the goodness-of-fit, how to quantify the impact of heterogeneity, how

to deal with differences in the exposure range across studies, and how to estimate complex

models without excluding relevant studies.



2 1. Introduction

This thesis aims to address these issues by developing and implementing new strategies

and ad-hoc measures. The proposed methodologies are demonstrated reanalyzing published

meta-analyses and are implemented in user friendly packages written in the free and open

source R language, in order to bridge the gap between theory and application.



Chapter 2

Background

2.1 Meta-analysis

Relevant research questions are typically addressed by independent investigators in multiple

studies. Sampling error and possibly differences in the investigations will inevitably produce

diverse results, sometimes even conflicting. Evidence-based medicine requires a synthesis of

the available evidence to optimize the decision-making process (Haidich, 2010).

Meta-analysis, or more generally quantitative review synthesis, is the statistical methodol-

ogy for integrating and synthetizing the information arising from multiple studies (Borenstein

et al., 2009). Using appropriate statistical models, quantitative reviews contrast and pool results

in the hope of identifying similarities and explaining differences across study findings. Meta-

analysis represents the state of the art for systematically reviewing the evidence, as indicated

by the increasing number of published meta-analyses over the last 40 years (Figure 2.1).

The classical approach for meta-analysis consists of an inverse variance weighted aver-

age of the study-specific results or estimates. A fixed-effect model for meta-analysis assumes

that all the studies estimate a single common parameter (Rice et al., 2017). The hypothesis

of homogeneity of the estimates is rarely applicable in biomedical and social sciences where

studies typically differ in terms of design, disease classification, exposure measurement, and

implemented statistical analyses (Colditz et al., 1995). In such cases, heterogeneity across esti-

mates is expected and should be considered in the analysis (Higgins, 2008). If the parameters

estimated in the studies are not identical but related, a random-effects models can be used to

identify those similarities or to explain the observed heterogeneity (Higgins et al., 2009).

2.1.1 Random-effects meta-analysis

In a meta-analysis of I studies indexed by i = 1, . . . , I , we denote β̂i the estimate of an effect of

interest (effect size) in the i-th study. A random-effects model for meta-analysis can be written

as

β̂i = β + bi + εi (2.1)

where β is the underlying mean effect, oftentimes the main parameter of interest. The random-
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Figure 2.1: Number of publications about meta-analysis (results from Medline search using text "meta-
analysis" until January 2018).

effects bi represent the study-specific deviations from the mean effect β and is assumed to

follow a generic distribution f with mean 0 and variance equal to τ2, the between-studies

heterogeneity. The within-study error components εi have also mean 0 and variance equal

to v̂i, an estimate of the sampling variance of β̂i. Because the sample size in the individual

investigations is often large, the uncertainty around the estimates of the sampling variance is

negligible. Therefore, v̂i can be considered fixed and denoted as vi . In addition, for the central

limit theorem, εi ∼N (0, vi), or alternatively, β̂i|bi ∼N (β + bi , vi).

An inverse variance-weighted approach for meta-analysis estimates the mean effect β as a

weighted average of the study-specific effects β̂i (Whitehead and Whitehead, 1991; DerSimo-

nian and Laird, 1986)

β̂ =

∑I
i=1 β̂i ŵi
∑I

i=1 ŵi

(2.2)

ÓVar
�

β̂
�

=

� I
∑

i=1

ŵi

�−1

(2.3)

with weights ŵi =
�

vi + τ̂2
�−1

and τ̂2 being an estimate of the between-study heterogeneity.
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2.1.2 Test and estimates of heterogeneity

A second parameter of interest, often overlooked, is the between-study heterogeneity, τ2. Fo-

cusing on the mean effect alone may provide only a limited piece of information, especially

in case of heterogeneous effects (Borenstein et al., 2010). Indeed, an evaluation of the extent

of heterogeneity is a crucial step in determining the appropriateness of presenting a summary

measure of the observed effect sizes.

Presence of heterogeneity is frequently defined as the excess in the variability of β̂i above

that expected alone by chance. A summary measure of the observed variability is represented

by the Q statistic

Q =
I
∑

i=1

�

β̂i − β̂fe

�2
v−1

i (2.4)

where β̂fe =
∑I

i=1 β̂i v
−1
i /

∑I
i=1 v−1

i is the estimate of β in a fixed-effect model. Based on this

statistic, Cochran (1954) developed a test for assessing the hypothesis of homogeneity of the

study-specific estimates. Under the null hypothesis of no heterogeneity (H0 : τ2 = 0) the

Q statistic follows a χ2 distribution with I − 1 degrees of freedom (df). A p value less than

0.10 is often used as a cut point for testing presence of between-studies variability. It is known,

however, that the test is sensitive to the number of studies, failing to reject the null hypothe-

sis even for high value of τ2 when I is small and rejecting H0 for negligible between-studies

variation when I is big (Higgins and Thompson, 2002; Takkouche et al., 1999). Therefore,

failing to reject the null hypothesis does not provide evidence supporting homogeneity in

the effect sizes (Biggerstaff and Tweedie, 1997). In addition, the dichotomization heteroge-

neous/homogeneous is not very informative, especially because heterogeneity is almost always

present (Higgins, 2008).

An estimate of τ2, instead, directly provides information about the amount of heterogeneity

and is thus the most natural measure of between-studies variability. Based on the expectation

of Q, DerSimonian and Laird (1986) proposed the following estimator for τ2 using the method

of moments

τ̂2
DL =max

¨

0,
Q− (I − 1)

∑I
i=1 v−1

i −
∑I

i=1 v−2
i /

∑I
i=1 v−1

i

«

(2.5)

The moment-based estimator is one of the most popular estimators of τ2 because it has a

simple non-iterative formulation and does not require any distributional assumption for the

random-effects. This estimator only assumes a finite first order moment. Other common non-

iterative alternatives include estimators based on the variance components (Hedges, 1983) and

on methods for estimating the error variance in weighted linear models (Sidik and Jonkman,

2005). Iterative methods based on maximizing the likelihood or restricted likelihood can also

be used by specifying a distributional form for the random-effects. The more conventional

choice is typically a normal distribution bi ∼ N
�

0,τ2
�

, which implies βi ∼ N
�

β ,τ2
�

and

β̂i ∼N
�

β + bi ,τ
2 + vi

�

.

Although τ2 is the more natural and appropriate measure of between-study variability, the

actual value is difficult to interpret because it depends on type of effect size (e.g. log relative
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risk, standardized mean difference) and has no upper limit. Therefore, both evaluation of the

degree (or levels) and the comparison of heterogeneity in different meta-analyses can hardly

be based on the estimate of τ2 alone.

2.1.3 Measures of heterogeneity

To complement the test-based approach and the information provided by τ̂2, measures that

quantify the impact of heterogeneity have been proposed (Higgins and Thompson, 2002).

Higgins and Thompson (2002) presented several possibilities in the simpler case where all the

sampling variances vi are equal to a fixed and known value σ2.

Two measures aim to estimate the ratio σ2/(σ2 + τ2), namely the H2 = Q/(I − 1) that rep-

resents the excess in Q statistic relative to its degrees of freedom, and R2 = Var
�

β̂
�

/Var
�

β̂fe

�

which describes the inflation in the variability of the mean effect in a random-effects model

compared with a fixed-effect analysis. Other measures, instead, relate the between-studies

heterogeneity, τ2, to the marginal or unconditional variability τ2 + vi , which is defined by the

sum of within- and between-study components. These measures can be more easily interpreted

as the percentage of the total variability due to heterogeneity, similar to the Intraclass Corre-

lation Coefficient (ICC) defined for random intercept linear models. These measures directly

involve the within-terms vi that generally varies across the studies. The most popular measures,

namely the R̂I (Takkouche et al., 1999) and the I2 (Higgins and Thompson, 2002), replaced

vi with a statistic in order to summarize the observed distribution.

Takkouche et al. (1999) chose

s2
1 =

I
∑I

i=1 v−1
i

(2.6)

that is the harmonic mean of the inverse of the sampling variances. Higgins and Thompson

(2002), instead, described the “typical” within-study variance as

s2
2 =

(I − 1)
∑I

i=1 v−1
i

�

∑I
i=1 v−1

i

�2
−
∑I

i=1 v−2
i

(2.7)

that provided a direct relationship with the Q statistic when τ2 is estimated using the method

of moments: I2 = (Q− (I − 1))/Q. Both statistics can be expressed as a percentage where 0%

corresponds to no heterogeneity and increasing values imply higher levels of heterogeneity.

It is known that these measures depend on the precision of the study-specific estimates and

tend to increase to 100% when the vi are much smaller than the estimated τ2 (Takkouche

et al., 1999; Higgins and Thompson, 2002). A complementary measure is the between-studies

coefficient of variation, defined as τ2/|β̂ |, that does not directly depend on the within-study

variances. However, it increases quickly as β̂ becomes smaller, and is not defined for β̂ = 0.
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2.2 Categorical models for dose–response analysis

Epidemiological studies often assess the strength and direction of the association between

exposures and the occurrence of a health outcome. When the exposure of interest is measured

on a continuous scale, the additional information on the shape of the relationship is mostly of

interest. Investigating how the outcome risk varies throughout the exposure range can provide

insights on the causal mechanism (Hill, 1965). Different patterns can be identified such as an

increased/decreased outcome risk for increasing values of the exposure or a threshold effect.

A common approach in epidemiology is to include the continuous variable as covariate in

an appropriate statistical model. By doing so, the outcome risk is assumed to linearly depend

on the covariate. A frequent alternative is to divide the quantitative exposure in categories.

Possible advantages of such a categorical approach is that it relaxes the linearity assumption and

facilitates the interpretation of the estimated regression coefficients. In addition, the results

can be easily presented in a tabular format (Orsini et al., 2011a).

A recent survey among top medical and epidemiological journals estimated that categorization

occurred 86% of the times while a linear trend was reported 56% of the times (Turner et al.,

2010).

2.2.1 Aggregated dose–response data

In a categorical approach the quantitative exposure is divided in J + 1 categories. The cor-

responding indicator or dummy variables index by j = 1, . . . , J are included in the model in

place of the exposure variable. The results from such a categorical dose–response analysis are

expressed as relative measures of association using one category (corresponding to the omitted

dummy variable) as referent. Depending on the study-design and on the statistical model,

the results consist of estimated odds ratios, rate ratios, or risk ratios (generally referred to as

relative risks (RRs)) for the different exposure categories, possibly adjusted for potential con-

founders. The corresponding 95% confidence intervals (CI) cRRL ,cRRU provide information on

the uncertainty related to the estimated regression coefficients. Additional information about

the assigned dose (mean or median within exposure intervals), the number of cases and the

total number of subjects or person-time usually complements the reported results. The general

structure and notation for aggregated or summarized dose–response data are presented for a

generic i-th study in Table 2.1. The subscript i in Ji highlights that independent studies may

categorize the continuous exposure using different number of categories.

The effect sizes considered in a meta-analysis of multiple aggregated dose–response data

consist of the estimated log cRRs and the corresponding standard errors that can be easily derived

from the data available in Table 2.1

cSE
�

logcRR
�

=
log

�

cRRU

�

− log
�

cRRL

�

2 z1−α/2
(2.8)

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution, usually approximated
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Table 2.1: Aggregated results from a categorical dose–response analysis.

Exposure level Assigned dose Cases na
cRR 95% CI

0 x i0 ci0 ni0 1 —

1 x i1 ci1 ni1 cRRi1 cRRLi1, cRRUi1
...

...
...

...
...

...

Ji x iJi
ciJi

JiJi
cRRiJi

cRRLiJi
, cRRUiJi

a Depending on the study design, this column reports either total number of subjects
or amount of person-time.

to 1.96 for the common α = 5% level.

A distinctive feature of aggregated dose–response data is the correlation among the (log)
cRRs, which arises from the fact that they are estimated using a common reference group.

Each cRR has the same baseline risk as denominator that works as comparator. If the observed

baseline risk happens to be high or low just by chance, the estimated cRRs will be also higher or

lower than expected (Schmid et al., 1998). This adds complexity in evaluating a trend from a

categorical dose–response analysis or in directly comparing results based on different baseline

categories.

2.2.2 High vs. low and categorical meta-analysis

A common approach for synthetizing the information from multiple aggregated dose–response

data is to limit the analysis to a subset of the available results. In particular, a high- versus-low

meta-analysis focuses on the results for the extreme exposure categories (Yu et al., 2013). By

selecting only the last row of the aggregated dose–response data, the meta-analytic models

discussed in section 2.1.1 are used for combining and contrasting the results, with β̂i = logcRRiJi
.

The major limitation of a high- versus-low approach is that only a subset of the data is

analyzed, while the remaining information about intermediate exposure categories is excluded

from the analysis. As a consequence, much of the information about the shape of the dose–

response is lost and the power of detecting an association may dramatically decrease. For

example, in cases where only moderate exposure values have a lower or higher outcome risk,

e.g. U-shaped associations, a high- versus-low approach would wrongly conclude that there is

no relationship between the exposure and the health outcome.

In addition, in a high- versus-low analysis, the highest and the lowest category may be

associated to a different exposure value in the studies included in the meta-analysis. To limit the

impact of heterogeneous category definitions, practitioners should carefully plan the analysis

by selecting the cRRs for exposure categories whose definition is more consistent across studies.

If the choice of baseline category also substantially differs, the cRRs can be re-expressed using an

alternative reference category implementing dedicated methodologies (Hamling et al., 2008).

An alternative remedy, although less common, is to conduct a categorical meta-analysis,

which consists of separate univariate meta-analyses pooling the results from comparable expo-
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sure categories. A dose–response association is then deducted from observing the combined
cRRs for increasing dose levels. Apart from evident difficulties in identifying cRRs for homo-

geneous exposure intervals in applied works, this approach does not take into account the

correlations across set of log cRRs and suffers from the same problem of guessing a trend from

a categorical dose–response analysis.

2.3 Dose–response meta-analysis

The aim of a dose–response meta-analysis is to make inference about the shape of the associa-

tion from multiple aggregated dose–response data. As compared to the previous strategies, it

has the advantages of using all the information available and the potential to be more informa-

tive. By describing the variation of the outcome over the entire exposure range, a dose–response

meta-analysis allows one to answer the following questions:

• Is there any association between increasing dose levels and the outcome? If so, what is

the shape of the relationship?

• Which exposure values are associated with the minimum or maximum response?

• Is there any difference in the study-specific dose–response associations across studies?

Which factors can explain the observed heterogeneity?

The statistical problems for modelling sets of correlated relative risks in a dose–response anal-

ysis were first presented by Greenland and Longnecker (1992). Their seminal paper is now a

standard reference for applied works. The number of published dose–response meta-analyses

increased exponentially from 9 in 2000 to 172 in 2016 (Figure 2.2). The most popular research

fields of application include oncology, environmental and public health, nutrition epidemiology,

and general internal medicine. Dose–response meta-analyses are published in many leading

medical and epidemiological journals, including JAMA, Lancet, Stroke, Gastroenterology, Amer-

ican J of Medicine, American J of Clinical Nutrition, American J Epidemiology, International J

Epidemiology, Journal National Cancer Institute, International J of Cancer, Statistics in Medicine

and many others. The method is also routinely used by international organizations such as

the World Cancer Research Fund and American Institute for Cancer Research for reviewing the

evidence on the relations between life-style factors (e.g. diet and physical activity) and cancer.

Guidelines based on these quantitative reviews are central to promote the overall health and

prevent many chronic diseases.

The common approach for dose–response meta-analysis consists of a two-stage procedure,

where the regression coefficients for the study-specific trends are first estimated separately

within each study, and then combined using meta-analysis. In the next sections I cover the

main methodological aspects related to each stage of the analysis.
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Figure 2.2: Number of citations of the paper by Greenland and Longnecker (1992) obtained from Google
Scholar 1992-2017 (until January 2018).

2.3.1 First stage: study-specific trends

If we had access to the individual participant data (IPD), the dose–response model for a simple

linear trend could be written as

log (λ (x ,c)) = β0 + β1 x + γ>c (2.9)

where x is the quantitative exposure and c the set of possible confounders. The outcome vari-

able is the log transformation of the mean outcome (e.g. odds, risk, or rate). Transformations

of the exposure variable can be included to relax the linearity assumption, such as a quadratic

term

log (λ (x ,c)) = β0 + β1 x + β2 x2 + γ>c (2.10)

This thesis focuses on methods for estimating a dose–response relationship from a summary of

the initial individual participant data. In particular, aggregated data from a categorical analysis

can be often retrieved from published articles. The aim of the first stage of a dose–response

meta-analysis is to estimate the β coefficients in Equation 2.9 and 2.10 using aggregated dose–

response data. We consider the notation presented in Table 2.1 with i = 1, . . . , I indexing the

studies and j = 1, . . . , Ji the non-referent dose levels of a generic i-th study. The corresponding

two models can be written as

log
�

cRRi j

�

= log
�

λ̂
�

x = x i j

��

− log
�

λ̂ (x = x i0)
�

= β1

�

x i j − x i0

�

(2.11)
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log
�

cRRi j

�

= log
�

λ̂
�

x = x i j

��

− log
�

λ̂ (x = x i0)
�

= β1

�

x i j − x i0

�

+ β2

�

x2
i j − x2

i0

�

(2.12)

More generally, the i-th dose–response model is defined as

yi = Xiβ i + εi (2.13)

The outcome yi is the Ji length vector of the non-referent log cRRs while Xi the Ji × p design

matrix containing the p transformations of the assigned dose used to model the dose–response

association

Xi =







g1(x i1)− g1(x i0) . . . gp(x ip)− gp(x i0)
...

...

g1(x iJi
)− g1(x i0) . . . gp(x iJi

)− gp(x i0)






(2.14)

In the linear trend analysis (model 2.11), Xi includes only the dose levels, p = 1, g1(x) = x

(identity function)

Xi =







x i1 − x i0
...

x iJi
− x i0







while p = 2 columns are needed in the quadratic model 2.12: g1(x) = x and g2(x) = x2

Xi =







x i1 − x i0 x2
i1 − x2

i0
...

...

x iJi
− x i0 x2

iJi
− x2

i0







A distinctive feature of the models 2.13 is the absence of the intercept term. The reference row

in Table 2.1 is not actually used for the estimation of the regression coefficients but introduces

the constraint on the predicted log cRR, which needs to be 0 (cRR = 1) for the reference dose

value x i0, as is explicit in models 2.11 and 2.12.

Approximation of the covariance between log relative risks

A particular characteristic of summarized dose–response data is that the log cRRs are reported

with different precision and are constructed using the same baseline group. Thus, the error

terms εi in Equation 2.13 are heterogeneous and correlated, with a covariance matrix structured

as

Cov (εi) = Si =



















σi11
...

. . .

σi1 j σi j j
...

. . .

σi1Ji
. . . σiJi j . . . σiJi Ji



















(2.15)
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with the variance of the log cRRs on the diagonal (σi j j) and the pairwise covariances as non-

diagonal elements (σi j j′).

Two methods have been proposed to approximate the covariances σi j j′ (Greenland and Long-

necker, 1992; Hamling et al., 2008). Greenland and Longnecker described an algorithm to

construct a table of pseudo or effective counts (number of cases and participants or person-

time) that would produce the adjusted log cRRs as those published. A unique solution for

the algorithm is ensured by keeping the margins of the pseudo-counts equal to the observed

ones. Alternatively, Hamling et al. modified the previous algorithm in such a way that the

pseudo-counts would also match the standard errors of the log cRRs.

Estimation

The dose–response coefficients β i can be efficiently estimated using generalized least squares

estimator (GLS), which minimizes the quadratic loss function
�

yi −Xiβ i

�>
S−1

i

�

yi −Xiβ i

�

with

respect to β i assuming the covariance matrix Si known

β̂ i = (X
>
i S−1

i Xi)
−1X>i S−1

i yi

ÓVar
�

β̂ i

�

= (X>i S−1
i Xi)

−1
(2.16)

The GLS estimates in Equation 2.16 do not require any distributional assumption for the error

terms. However, for the central limit theory, the error terms follow approximately a normal

distribution εi ∼N (0,Si). Using this additional assumption, the log-likelihood of model 2.13

is

`
�

β i

�

= −
Ji

2
log (2π)−

1
2

log |Si| −
1
2

�

�

yi −Xiβ i

�>
S−1

i

�

yi −Xiβ i

�

�

(2.17)

Interestingly, the maximum likelihood (ML) estimates that maximize the log-likelihood 2.17

coincides with the GLS estimates in 2.16. Introducing the normality distribution for the random

errors facilitates the inference, i.e. test of hypothesis and confidence intervals, on the β i

coefficients. The estimates in 2.16 are a linear combination of normal distributions, yi ∼
N
�

Xiβ i ,Si

�

, and therefore are also normally distributed β̂ i ∼N
�

β i , Var
�

β̂ i

��

.

The ML and GLS estimators give unbiased estimates of β i regardless of the specification

of Si (Orsini et al., 2006). As a consequence, a weighted least squares estimator (WLS) that

assumes independence of the log cRRs will also produce unbiased estimates. However, taking

into account the correlation will improve the efficiency of the estimator. I investigated the

differences between the GLS and WLS estimators using a simulation study of 5000 aggregated

dose–response data where the true trends were linear (βTRUE = −0.014). As expected, both

the estimators were unbiased but the empirical distribution of the GLS estimator was more

concentrated around the true β value 2.3. The empirical distributions of the estimated standard

errors were shifted, with the mean standard error for the WLS estimates being 10% lower than

the corresponding GLS value. This had a direct effect on the inference for the estimated

linear trend. For instance, it may be interesting to fit a quadratic curve as in 2.12 and test

the hypothesis H0 : β2 = 0, i.e. departure from a linear trend. Using inference based on
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WLS estimators the null hypothesis were wrongly rejected 3.96% of the time, lower than the

nominal level α= 5%. The corresponding number for the GLS estimator was instead closer to

the specified rejection rate (4.8%).

I also implemented simulations assuming a quadratic curve with the true coefficients βTRUE =

(−0.092,0.003). The empirical bivariate distributions of β̂ i were centered around the true

parameter, with levels curve more concentrated for the GLS estimates (Figure 2.4). Similarly

to the linear trend simulations, the distributions of the estimates of the standard errors for the

two estimators where shifted, with the mean of cSE
�

β̂1

�

and cSE
�

β̂2

�

being 7 % lower and 6%

higher, respectively, when comparing WLS to GLS estimates.

0

5

10

15

20

−0.05 0.00 0.05

β̂

de
ns

ity

A

0

200

400

600

0.016 0.018 0.020 0.022

SE(β̂)

de
ns

ity

B

Method Greenland−Longnecker Independence

Figure 2.3: Empirical distribution of the β̂ (panel A) and cSE
�

β̂i

�

(panel B) for a linear trend assuming
independence of the log cRR and reconstructing the covariances using the Greenland and Longnecker’s
method. Results are based on simulations with 5000 replications and a true linear trend β = −0.014.

2.3.2 Second stage: multivariate meta-analysis

The study-specific dose–response curves are defined by the p transformations, g1(x), . . . , gp(x),

and the estimated regression coefficients β̂ i. A pooled dose–response can be obtained by

combining the β̂ i coefficients. For that purpose, the same functional relationship needs to be

defined across the studies. Therefore, the transformations of the exposure were not subscripted

by the study index i.

The p length vector of the β̂ i parameters and the accompanying p × p covariances matrices
ÓVar
�

β̂ i

�

serve as outcome in the meta-analytic model. We consider the setting with p ≥ 2 and

relate the univariate case as a simpler instance of the more general multivariate case. Since the
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Figure 2.4: Empirical bivariate distribution of the beta coefficients (panel A) and their standard errors
(panel B) for a quadratic trend assuming independence of the log cRR and reconstructing the covariances
using the Greenland and Longnecker’s method. Results are based on simulations with 5000 replications
and a true quadratic trend β1 = −0.092,β2 = 0.003.

dimension of the outcome is no longer univariate, extensions of models 2.1 to the multivariate

settings can be implemented for accommodating the synthesis of correlated estimates (Berkey

et al., 1998; Gasparrini et al., 2012; Ritz et al., 2008).

Model definition

A multivariate random-effects model has a similar formulation as in the univariate case

β̂ i = β + bi + εi (2.18)

The unobserved random effects bi are now of dimension p, still representing study-specific

deviation from the mean β parameter. As before, E [bi] = 0 and Var [bi] = Ψ, the p×p between-

study variance matrix. Specification of a parametric distribution for the random-effects may

facilitate the inference (especially confidence intervals) and improve the prediction of marginal

and conditional dose–response associations. Typically a multivariate normal distribution is

assumed bi ∼N (0,Ψ). Hence, we can write the marginal model of 2.18 as

β̂ i ∼N (β ,Σi) (2.19)

where the marginal variance Σi =ÓVar
�

β̂ i

�

+Ψ is defined by the sum of the within-study and

between-studies variance components. The model 2.19 implies a two-stage sampling procedure
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where the study-specific β i parameters are assumed to be sampled from a multivariate normal

distribution centered around the population average parameter β . The study-specific estimates

β̂ i are themselves sampled from a multivariate distribution with zero mean and error variance.

The multivariate random-effects model 2.19 can be extended to meta-regression models by

including study-levels covariates that might change the shape of the dose–response relationship.

The dose–response coefficients are then modeled as a linear combination of the m study-level

covariates ui = (ui1, . . . , uim), with ui1 = 1 representing the intercept term

β̂ i ∼N
�

eXiβ ,Σi

�

(2.20)

The p× pm design matrix eXi is constructed taking the Kronecker product between the ui and

the identity matrix of dimension p, I(p)

eXi = I(p) ⊗ u>i =







1 ui2 · · · uim · · · 0 0 · · · 0
...

. . .

0 0 · · · 0 · · · 1 ui2 · · · uim






(2.21)

For example, the eXi matrix relating the effect of a binary variable ui to the dose–response

coefficients for a quadratic trend is

eXi = I(2) ⊗ u>i =

�

1 0

0 1

�

⊗ (1, ui) =

�

1 ui 0 0

0 0 1 ui

�

The dimension of β̂ is now p×m. The coefficients related to the intercept terms are interpreted

as the mean dose–response coefficients when all the study-level covariates u are equal to zero.

The remaining coefficients indicate how the mean dose–response association varies with respect

to the corresponding study-level covariate.

Estimation

Several methods are available for estimating the parameters of interest, namely the p × m

dose–response coefficients in β and the p(p + 1)/2 length vector ξ containing the elements

on or above the diagonal of the between-studies covariance Ψ. There is generally no reason to

assume a specific covariance structure (White et al., 2011). We consider here likelihood-based

estimators (Verbeke, 1997; Pinheiro and Bates, 2010). In particular, ML estimators estimate

simultaneously β and ξ by maximizing the log-likelihood of the marginal model 2.20

`
�

β ,ξ
�

= −
1
2

I p log(π)−
1
2

I
∑

i=1

log |Σi| −
1
2

I
∑

i=1

h

�

β̂ i − eXiβ
�>
Σ−1

i

�

β̂ i − eXiβ
�

i

(2.22)

ML estimators, however, don’t take into account the loss of degrees of freedom due to the β

estimation (Harville, 1977). Alternatively, restricted maximum likelihood methods (REML)
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maximizes a set of contrasts defined as a function of the only covariance parameters

`R

�

ξ
�

=−
1
2
(I p− pm)−

1
2

I
∑

i=1

log |Σi| −
1
2

I
∑

i=1

log
�

�
eX>i ΣieXi

�

�+

−
1
2

I
∑

i=1

h

�

β̂ i − eXiβ
�>
Σ−1

i

�

β̂ i − eXiβ
�

i

(2.23)

Both estimation methods require iterative algorithms, where conditional estimates of β̂ are

plugged into either 2.22 or 2.23, regarded as function of ξ only, until convergence. More

details on the implementation of iterative methods for maximizing Equations 2.22 and 2.23

are described by Gasparrini et al. (2012).

Hypothesis testing, heterogeneity, and model comparison

There are two main domains of interest for making inference that relate either to the fixed-

effects β or the variance components in Ψ. Using the normality assumption for the random-

effects, inference is based on the approximated normal distribution for β̂ , with mean and

covariance matrix defined similarly as in Equation 2.16.

Since the mean dose–response association is defined by the β , the hypothesis of no association

can be evaluated by testing H0 : β = 0. Alternatively, a subset or linear combinations of

the elements in β may be of interest. For example, in a quadratic trend the non-linearity is

introduced by the quadratic term x2. Thus, testing H0 : β2 = 0 is a possible way for evaluating

departure from a linear dose–response relationship.

As previously presented in section 2.1.2, the coefficients defining Ψ are not nuisance param-

eters rather they are useful for quantifying the variation of the study-specific associations β i.

Similar measures for testing and quantifying the impact of heterogeneity have been extended

to the multivariate setting (Berkey et al., 1996). In particular, the Q statistic

Q =
I
∑

i=1

�

β̂ i − eXiβ̂ fe

�>
ÓVar
�

β̂ i

�−1 �
β̂ i − eXiβ̂ fe

�

(2.24)

with β̂ fe estimated under a fixed-effect model is used to test H0 : Ψ = 0. Under the null

hypothesis, the Q statistic follow a χ2 distribution with I p − pm degrees of freedom. When

p = 1 the formulations 2.4 and 2.24 coincide. The multivariate extension of the I2 was derived

relating the Q statistics to its degrees of freedom I2 =max
¦

0, Q−(I p−pm)
I p−pm

©

(Jackson et al., 2012).

The fit of alternative non-nested meta-analytical models can be compared using informa-

tion criteria indices such the Akaike information criterion (AIC), which is defined as AIC =

−2`
�

β ,ξ
�

+ 2k, a descriptive measure depending on the maximum log-likelihood and k, the

number of estimated parameters. It is worth to note that the AIC can be used for comparing

the fit of different analyses such as alternative meta-regression models. However, it is not clear

if these indices can be used for comparing different dose–response models, such as linear vs

non-linear.
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Prediction

Interpretation of a single regression coefficient of β̂ may be difficult. The dose–response

findings are best communicated in a graphical form as predicted (log) relative risk for selected

exposure levels using one value as referent. Obtaining predictions and presenting them either

in a graphical or tabular form is an important step following the estimation of the model. Based

on the model 2.18, the predicted log RR for a dose level xv relative to the level xref can be

calculated as

logcRR(xv vs xref) = Xvβ̂ (2.25)

Var
�

logcRR(xv vs xref)
�

= XvÓVar
�

β̂
�

X>v (2.26)

where Xv is the design matrix evaluated in xv, as defined in the first-stage analysis (Equa-

tion 2.14). For example, the predicted log RR for the quadratic model 2.12 comparing xv

versus xref is

logcRR(xv vs xref) = β̂1 (xv − xref) + β̂2

�

x2
v − x2

ref

�

Of note, the referent dose xref is an arbitrary value and thus does not need to correspond to

any of the study-specific reference values x i0.

A confidence interval for the predicted logcRR(x = xv) is based on the normal distribution of β̂

logcRR(xv vs xref)∓ z1−α/2 Var
�

logcRR(xv vs xref)
�

1
2

Formulas 2.25 and 2.26 can be extended to meta-regression models. The predicted log RR

conditional on a specific study-level covariate pattern u= uv is

logcRR (xv vs xref,u= uv) = Xv

�

I(p) ⊗U>v
�

β̂ (2.27)

Var
�

logcRR (xv vs xref,u= uv)
�

= (XvUv)ÓVar
�

β̂
�

(XvUv)
> (2.28)

Inference on study-specific dose–response associations can be enhanced by exploiting the

information from the multivariate distribution for the random-effects. The best linear unbiased

prediction (BLUP) for the study-specific regression coefficients bi is defined as

b̂i = ΨΣ
−1
i

�

β̂ i − eXiβ̂
�

(2.29)

Study-specific predicted log relative risks can be obtained as in Equations 2.25 and 2.27 by

replacing the mean parameter β̂ with the individual dose–response coefficients β̂ + b̂i

2.3.3 History of previous methodological research

Dose–response meta-analysis has received attention not only in applied works but also in theo-

retical articles that covered different aspects of the methodology. Greenland and Longnecker

(1992) originally presented the two-stage approach for efficiently estimating a linear trend
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in a fixed-effect analysis. An alternative model for estimating curvilinear model, referred to

as “pool first”, was also presented. The technique consists of a one-stage approach where the

aggregated data are considered altogether and a single model as in Equation 2.13 is fitted.

By first combining the data, more flexible curve parametrized by multiple parameters (p ≥ 2)

can be estimated. The study-specific dose–response analyses are limited by the minimum

number of non-referent log RRs across the studies. For example, if the aggregated data for

a study consists of only one non referent log RR, only a univariate model with p = 1 can be

estimated. The authors refined the methodology by extending the two-stage approach to allow

for heterogeneity limited to a linear trend analysis (Berlin et al., 1993).

Flexible dose–response models

The primary interest of the methodological research was in presenting alternative strategies

for estimating non-linear curves. Bagnardi et al. (2004) described the use of fractional polyno-

mials and restricted cubic splines using aggregated dose–response data. Based on a practical

example on the association between alcohol consumption and all-cause mortality, the authors

showed how implementation of these flexible techniques may prevent misleading results from

conventional polynomials (e.g. quadratic) curves. Second-degree fractional polynomials (FP2)

consist of a large family of curves defined in the general form of

FP2(x) = β1 x p1 + β2 x p2 (2.30)

where p1 and p2 are chosen in the set of power coefficients {−2,−1,−0.5,0, 0.5,1, 2,3} (Roys-

ton and Altman, 1994; Royston, 2000). When p = 0, x p becomes log(x), while if p1 = p2

the second transformation of x becomes x p2 log(x). The advantage of FP2 models is that dif-

ferent shapes, including U- and J-shapes, can be estimated by only two coefficients chosen

using different combinations for the power terms (p1, p2). Typically, the best fitting fractional

polynomial is chosen in such a way that the (p1, p2) corresponds to the model with the highest

likelihood, or equivalently, lowest deviance (Royston, 2001).

A popular alternative to flexibly model the dose–response association is represented by the

use of splines (De Boor et al., 1978), largely presented by Orsini et al. (2011b) using data from

the Pooling Project of Prospective Studies of Diet and Cancer (http://www.hsph.harvard.
edu/poolingproject). Spline functions consist of consecutive polynomials connected at

specific points of the exposure range called knots. Choosing k = (k1, . . . , kK) knots and third

order polynomials, the model, also known as cubic splines (CS), is defined as

CS(x) = β1 x + β2 x2 + β3 x3 +
K−1
∑

l=1

βl+3(x − kl)
3
+ (2.31)

where the ‘+’ notation has been used (u+ = u if u≥ 0 and u+ = 0 otherwise). To avoid strange

behaviors at the extremes of the exposure range, the model 2.31 is constrained to be linear

before and after the first and last knots, respectively. For example, using the minimum number

http://www.hsph.harvard.edu/poolingproject
http://www.hsph.harvard.edu/poolingproject
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of three knots a restricted cubic spline model (RCS) can be specified in terms of two coefficients

RCS(x) = β1 x + β2

�

(x − k1)
3
+ −

k3 − k1

k3 − k2
(x − k2)

3
+ +

k2 − k1

k3 − k2
(x − k3)

3
+

�

(2.32)

The second transformation is generally divided by (k3−k1)2 to improve the numerical behavior

and to put the spline transformations on the same scale (Harrell Jr, 2015) (see Appendix A for

the derivation of a RCS model).

The previous strategies have been often presented for exposures where 0 was the natural

reference categories (e.g. alcohol consumption). Liu et al. (2009) extended the methodology

for handling non-zero reference categories, as in the case of Body Mass Index. In particular,

they first described how to construct the design matrix in terms of contrasts, as clarified in

Equation 2.14. Misspecification of the design matrix (e.g. log RR= β1(x1 − x0) +β2(x1 − x0)2

instead of log RR= β1(x1− x0)+β2(x2
1− x2

0)) may increase the risk of generating artifacts and

misleading conclusions. Note that for zero exposure categories the problem is generally not

relevant since many functions return zero for x = 0 (g(0) = 0).

Multivariate meta-analysis

The major contribution for estimating non-linear curves in a random-effects analysis came

with the extension of univariate meta-analytic models to the multivariate case. The formaliza-

tion and implementation of multivariate meta-analysis enabled the extension of a two-stage

dose–response meta-analysis to the more complex case of multiple parameters association (Gas-

parrini et al., 2012). The multivariate framework can accommodate the synthesis of correlated

outcomes or estimates, as those derived in the first stage of a dose–response meta-analyses. The

application of the strategies presented in 2.30 and 2.32 in a random-effects setting has been

easily facilitated by the implementation of dedicated packages for multivariate meta-analysis

(White et al., 2011; Jackson et al., 2011). This is probably the reason why a one-stage approach

for dose–response meta-analysis was no further extended.

The methodological advancements for meta-analysis were diverse and numerous (see Sutton

and Higgins (2008) for an overview). Important improvements that directly affected how

results are presented related mainly to the quantification and assessment of heterogeneity,

with the definition of the measures presented in section 2.1.2. In addition, many other articles

enriched the set of tools for pooling study-specific effects, with a direct application to the

second stage of a dose–response meta-analysis. Among the many, it is worth to mention the

implementation of several estimation methods for the between-study variability (see Langan

et al. (2017) for a comparison based on simulation studies); advancement in performing meta-

regression (Van Houwelingen et al., 2002); proposal of sequential approaches (Pogue and

Yusuf, 1997) and statistical power (Sutton et al., 2007); and introduction of Bayesian methods

(Sutton and Abrams, 2001).
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Covariance and sensitivity analysis

Orsini et al. (2006) refined the initial formulas presented by Greenland and Longnecker for

approximating the study-specific covariance matrices depending on the study-design. Berring-

ton and Cox (2003) described an alternative method that avoids the reconstruction of the

covariance matrices. Instead, upper and lower bounds for the covariance matrix are used in

a sensitivity analysis of the dose–response coefficients, adopting a range of plausible values

for the covariances. While the alternative algorithm proposed by Hamling et al. (2008) was

presented in section 2.3.1, Easton et al. (1991) proposed the implementation of the floating

absolute risks where the parameters and their standard errors can be estimated without speci-

fying a baseline group and thus can be regarded as independent. Using individual participant

data from the Pooling Project of Prospective Studies of Diet and Cancer, negligible differences

in the reconstructed covariance matrices were found comparing the three approaches (Orsini

et al., 2011b). Of note, none of the methods would be needed if the authors of the original

articles provided the covariance matrix along with the estimated coefficients, as it is usually

done in consortia projects.

Berlin et al. (1993) presented alternatives for assigning the dose levels within exposure

categories and illustrated the use of meta-regression models for investigating the possible effect

of study-level characteristics on the estimated linear trends. Shi and Copas (2004) further

discussed the issue of dose assignment in grouped measures allowing for arbitrary dose levels.

In addition, they investigated the effect of heterogeneity and publication bias by means of

sensitivity analyses. A similar problem of dose assignment was addressed by using a likelihood

approach limited to a linear trend analysis (Takahashi and Tango, 2010). This idea has been

further extended to the case of restricted cubic splines (Takahashi et al., 2013).

2.3.4 Description of current practice

There were still many open research questions that need to be addressed to improve the synthe-

sis of aggregated dose–response data. In order to identify the most relevant questions, I began

by observing current practice in applied works. I searched the PubMed database for articles

published between January 1, 2013 and April 1, 2013 using the research query (“meta-analysis”

[Title] and “dose–response” [Title]) and, after excluding irrelevant articles, I found a total of

42 applied dose–response meta-analyses. The authors of the select articles conducted a linear

trend analysis most of the times (25 times, 60%) while only 17 (40%) articles considered

non-linear associations by means of restricted cubic splines (15) and fractional polynomials

(2). All the papers modelling non-linear curves reported a graphical presentation of the pooled

dose–response association.

Interestingly, none of the retrieved articles evaluated the goodness-of-fit of the selected

dose–response model. The assessment of how the estimated curve fits the aggregated data

should be a natural and important step in a dose–response analysis. We address this important

issue by presenting relevant measures and graphical tools to help the assessment of goodness-

of-fit.
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The majority of the screened papers (39, 93%) quantify the impact of heterogeneity by

reporting results for the Q test and the value of I2. While the limitations of the Q test approach

are widely known, little emphasis is placed on the assumptions underneath the definition

of the established measures of heterogeneity, i.e. all the estimates being reported with the

same precision, which is unlikely to be met in almost all the applications. A measure of the

impact of heterogeneity that does not require such an assumption would be desirable. We

overcome this limitation by proposing an alternative measure of heterogeneity and comparing

the performance of the new and available measures.

None of the surveyed meta-analyses discussed the sensitivity of the overall dose–response

relationship to differences in study-specific exposure distributions. This analysis can be relevant

in case of studies reporting results for heterogeneous exposure range. Application of a point-

wise average approach originally presented by Sauerbrei and Royston (2011) in the context

of individual participant data may represent an interesting alternative to the averaging of

regression coefficients.

In all the meta-analyses assessing departure from linearity, the authors excluded those stud-

ies reporting less than two non-referent RRs. Indeed, a two-stage dose–response meta-analysis

requires that all the models in the dose–response analysis are identifiable (p ≤ min (Ji)). A

one-stage approach would avoid that requirement. Such an approach is conceptually easier to

understand, and more elegant from a statistical point of view. In addition, it allows investiga-

tion of much more flexible dose–response curves, that are not possible within the context of a

traditional two-stage analysis.

2.4 Software

Dissemination of new statistical methodologies is certainly facilitated by the development and

implementation of statistical software components. Many theoretical papers have not been

considered in applied works because of lack of user-friendly software.

Orsini et al. (2006) described the glst command in Stata, the first publicly available

procedure dedicated for dose–response meta-analysis. The command implements both the

one- and two-stage approaches limited, in case of a random-effects analysis, to a linear trend.

A two-stage random-effects meta-analysis of non-linear relationships can be performed with

the aid of the mvmeta command for multivariate meta-analysis (White et al., 2011). Several

worked examples and codes are available at http://stats4life.se/drm. Later on, Li and

Spiegelman (2010) wrote %metadose, a two-steps macro for dose–response meta-analysis,

where estimation of non-linear relationships is restricted to a fixed-effect analysis.

The majority of the applied meta-analyses retrieved in our survey were performed using

the glst procedure in Stata (36, 87%), while 2 used the metadose macro in SAS, and 2

studies used functions in RevMan. No dedicated package was available in the free software

programming language R (R Core Team, 2017).

http://stats4life.se/drm


Chapter 3

Aims of the thesis

The overall aims of this thesis were to develop and implement new methods for dose–response

meta-analysis, in order to deal with the methodological aspects that have not yet been ad-

dressed.

More specifically, the aims were:

• To develop, maintain, and share a package for dose–response meta-analysis in the open

source and free R software.

• To present and discuss relevant measures and graphical tools to assess the goodness-of-fit

in dose–response meta-analytical models, which is often neglected.

• To develop a new measure of between-study heterogeneity in the broader context of meta-

analysis that does not make any assumption about the distribution of the within-study

error variances.

• To move beyond the specification of a unique model across the studies exploring possible

advantages of a point-wise approach, especially in case of dose–response meta-analysis

where the exposure range varies substantially across the studies.

• To avoid exclusion of studies in order to fit more complex and informative models in an

alternative one-stage approach for dose–response meta-analysis.



Chapter 4

Methods

4.1 The dosresmeta R package

The first version of the dosresmeta R package was released on the Comprehensive R Archive

Network (CRAN) on September 2013. It is listed in the CRAN task view Meta-Analysis (https:
//CRAN.R-project.org/view=MetaAnalysis), a guide that covers the vast collection of

R packages for facilitating meta-analysis of summary statistics.
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Figure 4.1: Monthly number of downloads of the dosresmeta R package from the RStudio CRAN mirror
September 2013 - December 2017.

The dosresmeta package is now available in the updated version 2.0.1 and new features are

being implemented in the version under development on GitHub (https://github.com/
alecri/dosresmeta). Currently, the dosresmeta package is downloaded and used world-

https://CRAN.R-project.org/view=MetaAnalysis
https://CRAN.R-project.org/view=MetaAnalysis
https://github.com/alecri/dosresmeta
https://github.com/alecri/dosresmeta
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wide, with a median number of 260 downloads/month (Figure 4.1). The countries where it has

been downloaded most are Great Britain (4005), United States (3905), and China (1605) (Fig-

ure 4.2). Working examples, codes, and data are available at http://alecri.github.io/
software to fully reproduce figures and numbers presented in both applied and theoretical

papers.

1−50
50−100
100−500
500−1500
>1500

Figure 4.2: Total number of downloads of the dosresmeta R package worldwide from the RStudio
CRAN mirror September 2013 - December 2017.

The implementation of the package is presented in Paper I, which is also offered as a free guide

for the package in a vignette accessible by typing browseVignettes("dosresmeta") from

the R console.

4.1.1 Architecture and design of the package

The initial version 1.0 of the dosresmeta R package implemented the two-stage approach

for dose–response meta-analysis described in Sections 2.3.1 and 2.3.2. The package included

some facilities for efficiently estimating the dose–response associations across the included

studies and used the mvmeta package for combining the study-specific regression coefficients

(Gasparrini et al., 2012). The main novelty of the version 1.0 was the implementation of gl
and hamling functions for reconstructing the covariance matrices among sets of log relative

risks using the methods developed by Greenland and Longnecker (1992) and Hamling et al.

(2008) (Figure 4.3). In version 1.3, dedicated functions were written for summarizing and

displaying results, and for predicting the pooled dose–response association as described in

Section 2.3.2. Compared to other routines, the predict function offers the possibility of

http://alecri.github.io/software
http://alecri.github.io/software
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deriving the predicted curve also for dose levels that are not observed in the analyzed data. The

same applies for the choice of the reference dose value. The main advantage is that publication

quality curves and tables (i.e. combined results for desired dose values) can be easily obtained

with a few lines of code. Practical examples are available at https://alecri.github.io/
software/dosresmeta.html. Furthermore, the center argument was added in the main

function for centering the design matrix as described by Liu et al. (2009). The argument has

been set to TRUE by default for preventing possible errors when modelling non-linear curves,

especially in case of non-zero exposure reference categories. Finally, additional arguments

were introduced for allowing the specification of a list of covariance matrices directly by the

user. This can be useful in pooling projects where the principle investigators share the results

of harmonized analyses.

New capabilities and functions were written in the version under development available on

GitHub and were finally included in the major release version 2.0 on CRAN. The dosresmeta

package was largely redesigned in the internal functions but kept unchanged the external form

and arguments for backward compatibility. Three main features were introduced: the extension

of the two-stage approach for dose–response meta-analysis of differences in means (rather

than log relative risks) (Crippa and Orsini, 2016a), the possibility of fitting meta-regression

models and the implementation of an alternative one-stage approach. The first was achieved

by extending the choices of the covariance argument for results presented in terms of mean

and standardized mean differences, which related to the covar.smd function. The alternative

covariance == "indep" can be specified for assuming independence of the log relative risks

or differences in means. This is particularly useful when the information for reconstructing

the covariances is not available (see additional (useful) code section on the referenced site for

examples).

2012 2013 2014 2015 2016 2017 2018 2019

First release (v 1.0) 
 'gl' and 'hamling' functions 

 2013−09−09

Introduction of S3 methods 
 and documentation in roxygen2 

 2014−01−17

First development version on GitHub 
 2015−08−06

Shiny app 
 2017−07−31

Major release (v 2.0) 
 one−stage, meta−regression, 

 differences in means 
 2017−08−17

Figure 4.3: Development of the dosresmeta R package over time.

The implementation of the one-stage approach and related functions is discussed in more detail

https://alecri.github.io/software/dosresmeta.html
https://alecri.github.io/software/dosresmeta.html
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in the methods for Paper V. The updated dosresmeta package also implements functions to

facilitate specific aspects of a dose–response meta-analysis. These includes the assessment of

goodness-of-fit discussed in Paper II, tests for fixed- and random-effects coefficients, conditional

and marginal predictions, and the use of fractional polynomials.

Based on the last version of the dosresmeta package, an interactive interface is also avail-

able at http://alessiocrippa.com/shiny/dosresmeta. The web-app can be useful for

introducing the concepts of dose–response meta-analysis to those researchers who are not

familiar with the R software.

4.1.2 Description of the package

The dosresmeta package can be downloaded from CRAN by typing directly in R

R> install.packages("dosresmeta")

The version under development is instead available from GitHub

R> install.packages("devtools")
R> devtools::install_github("alecri/dosresmeta")

The package consists of a main function dosresmeta with the following arguments

R> str(dosresmeta)
function (formula, id, v, type, cases, n, sd, data, mod = ~1, intercept = F,

center = T, se, lb, ub, covariance = "gl", method = "reml", proc = "2stage",
Slist, method.smd = "cohen", control = list())

The dose–response model is specified in the formula argument in a symbolic representation.

For example, if logrr and dose are the variable names for the log relative risk and assigned

doses, a linear trend is specified as logrr ∼ dose while a quadratic curve as logrr ∼ dose
+ I(doseˆ2). The variables are defined in a data.frame whose name is specified in the

data argument. By default intercept = FALSE does not include the intercept term in the

covariance matrix, which is constructed in terms of contrasts unless center = FALSE. The

id argument specifies the name for the study id variable (can be omitted for single study

analysis). The standard errors for the log relative risks are specified in the se argument, or

alternatively, either the variances (v) or the lower (lb) and upper bounds (ub) of the relative

risks need to be specified. The additional information about the study-design (type), the num-

ber of cases (cases), and participants or amount of person-time (n) is used for reconstructing

the covariance of the log relative risk (or mean differences) using the method specified in

the covariance argument (default is the Greenland and Longnecker’s method). A list of

covariance matrices can be passed to the Slist argument when covariance = "user". A

two-stage procedure with REML estimation method is the default. A one-stage procedure (proc
= "1stage") and either ML estimator method = "ml" or a fixed-effect analysis method =
"fixed" can be adopted. Residual heterogeneity can be modeled in a meta-regression analysis

http://alessiocrippa.com/shiny/dosresmeta
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by specifying covariates in the mods argument. For example, a different curve depending on

the study design can be specified with mods = ∼ type. Finally, a list of parameters can be

passed to the control argument to control the fitting process.

The dosresmeta function returns an object of class “dosresmeta” with the information

from the dose–response meta-analytic model. The print and summary methods display and

produce a summary of the content of a dosresmeta object. The predict method facilitates

the presentation of the results of a dose–response meta-analysis

R> str(dosresmeta:::predict.dosresmeta)
function (object, newdata, xref, expo = FALSE, xref_vec, ci.incl = TRUE,

se.incl = FALSE, xref_pos = 1, delta, order = FALSE, ci.level = 0.95,
...)

where object contains the results of the dosresmeta function. A new data.frame with

the desired doses can be passed to the newdata argument for obtaining the corresponding

predicted log relative risks. If not provided, the predictions will be calculated for the assigned

dose values available from the studies. The expo argument can be set to TRUE to predict log

relative risk and confidence intervals (unless ci.incl = FALSE) on the exponential scale.

The reference value can be specified with the xref argument, or better, specifying the line

of the newdata which serves as referent (xref_pos argument). For non-linear models, a

vector needs to be provided in xref_vec instead of xref. The delta argument is useful for

predicting the linear increase in the outcome for a delta increase in the exposure, and is thus

only appropriate in a linear trend analysis. In the updated version of the dosresmeta package,

a blup method has also been implemented for predicting the study-specific random-effects

and hence the conditional curves.

Additional functions can be listed

R> ls("package:dosresmeta")
[1] "covar.logrr" "covar.smd" "dosresmeta"
[4] "dosresmeta.control" "dosresmeta.fit" "fpgrid"
[7] "fracpol" "gof" "grl"

[10] "hamling" "vpc" "waldtest"

Use ls(getNamespace("dosresmeta"), all.names=TRUE) for a complete list including

hidden auxiliary functions.

4.1.3 Datasets

Several datasets from published dose–response meta-analyses and methodological articles have

been included in the dosresmeta package. To get a list as in Table 4.1 with the names and

description type

R> data(package = "dosresmeta")
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Table 4.1: Data sets available in the dosresmeta R package.

Name Description

alcohol_crc Eight published studies on the relation between alcohol intake and
colorectal cancer (Orsini et al., 2011b)

alcohol_cvd Six published studies on the relation between alcohol intake and
cardiovascular disease risk (Liu et al., 2009)

alcohol_esoph Fourteen case-control studies on the relation between alcohol
consumption and esophageal cancer (Rota et al., 2010)

alcohol_lc Four published studies on the relation between alcohol intake and lung
cancer (Orsini et al., 2011b)

ari Five clinical trials on the relation between aripiprazole and schizophrenia
(Crippa and Orsini, 2016a)

bmi_rc Four case-control studies on the relation between Body Mass Index and
renal cell cancer (Liu et al., 2009)

cc_ex Case-control data on alcohol and breast cancer risk (Greenland and
Longnecker, 1992)

ci_ex Cumulative incidence data on high-fat dairy food and colorectal cancer
risk (Orsini et al., 2006)

coffee_cancer Eight prospective studies on the relation between coffee consumption and
cancer mortality (Crippa et al., 2014)

coffee_cvd Thirteen prospective studies on the relation between coffee consumption
and cardiovascular mortality (Crippa et al., 2014)

coffee_mort Twenty-one prospective studies on the relation between coffee
consumption and all-cause mortality (Crippa et al., 2014)

coffee_mort_add Additional two prospective studies on the relation between coffee
consumption and all-cause mortality (Nilsson et al., 2012)

coffee_stroke Eleven prospective studies on the relation between coffee consumption
and stroke risk (Larsson and Orsini, 2011)

fish_ra Six studies on the relation between fish consumption and rheumatoid
arthritis risk (Di Giuseppe et al., 2014)

ir_ex Incidence-rate data on fiber intake and coronary heart disease risk (Orsini
et al., 2006)

milk_mort Eleven prospective studies on the relation between milk consumption and
all-cause mortality (Larsson et al., 2015)

milk_ov Nine studies on the relation between milk consumption and ovarian
cancer (Larsson et al., 2006)

oc_breast Twenty-two case-control studies on the relation between oral
contraceptives use and breast cancer (Berlin et al., 1993)

process_bc Ten studies on the relation between processed meat and bladder cancer
(Crippa et al., 2016b)

red_bc Twelve studies on the relation between red meat and bladder cancer
(Crippa et al., 2016b)

sim_os Simulated data for one-stage dose-response meta-analysis (Crippa et al.,
2018a)
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4.2 Goodness-of-fit

The aim of Paper II was to address how to evaluate the goodness-of-fit in dose–response meta-

analysis. The distance between observed and predicted data is often at the heart of model

checking. Although we are working with linear regression models, features of aggregated

dose–response data can complicate this comparison. The predicted curve is presented using

a referent, xref, which may differ from the study-specific reference values. Thus the predicted

and observed log relative risks can no longer be directly compared because their baseline group

is not the same. Even in the case where the reference values are all the same and equal to

xref, the covariance among the study-specific RRs and the heterogeneity across the studies

adds further difficulties in evaluating if the chosen model provides a good summary of the

observed data. The proposed tools for assessing the goodness-of-fit are presented in a fixed-

effect analysis where meta-regression models as in 2.20 are typically employed to explain the

observed heterogeneity. We consider relevant measures, tests, and graphical tools that take

into account the correlation of the observed data.

4.2.1 Deviance

The first natural measure of goodness-of-fit is a comparison between the predicted and observed

data points, i.e. the non-referent log relative risks. This can be done by analyzing the residual

term errors, which are defined by the difference between the observed log RRs, yi, and the

marginal prediction

êi = yi −XieXiβ̂ (4.1)

A summary for the error terms is the deviance

D =
I
∑

i=1

�

yi −XieXiβ̂
�>

S−1
i

�

yi −XieXiβ̂
�

=
I
∑

i=1

êi
>S−1

i êi (4.2)

The deviance D measures the total squared deviation between observed and predicted data

taking into account the covariance matrices Si of the error terms. It is usually referred to as

generalized residual sum of squares (GRSS) (Draper and Smith, 2014). Decreasing values of

D indicate a better agreement between reported and fitted log RRs, with 0 being the lower

bound that corresponds to perfect agreement (saturated model).

The D statistic can be used as a test for model specification. Under the null hypothesis that

the model is correctly specified, D follows a χ2 distribution with df =
∑I

i=1 Ji − pm. This is

equivalent to test if the residual variance, corrected for the correlation of the error terms, is

larger than expected assuming that the dose–response model is correct. A small p value can

be interpreted as evidence that the fitted model fails in accounting the observed variation in

the log relative risks. As for the Q test, the deviance has no upper bound and is thus difficult

to interpret the absolute value of D.
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4.2.2 Coefficient of determination

To complement the D statistic (and the corresponding test), the coefficient of determination,

R2, can be used as a descriptive measure of goodness-of-fit (Hagquist and Stenbeck, 1998;

Kvålseth, 1985). The R2 is the complement to the unit of the ratio between the GRSS and

the generalized sum of squares, GTSS=
∑I

i=1 y>i S−1
i yi . Because dose–response models do not

have the intercept term, the R2 can be defined as in (Buse, 1973; Theil, 1958)

R2 = 1−
GRSS
GTSS

= 1−

∑I
i=1

�

yi −XieXiβ̂
�>

S−1
i

�

yi −XieXiβ̂
�

∑I
i=1 y>i S−1

i yi

(4.3)

R2 is a dimensionless number that is bounded between 0 and 1 and can be generally interpreted

as the proportion of the generalized total sum of squares explained by the dose–response

model and study-level covariates. The lower bound 0 corresponds to the case where all the β

coefficients are equal to 0 and therefore the model is not able to explain the variability in the

observed log relative risks. Contrary, the upper bound 1 indicates a perfect agreement between

reported and fitted data.

By construction the R2 can not decrease as the number of regression coefficients increases.

A penalized, or adjusted, version that takes into account this behavior can be defined

R2
adj = 1−

∑I
i=1 Ji

∑I
i=1 Ji −m

�

1− R2
�

(4.4)

Possibly, a low R2 may indicate that more flexible transformations of the exposure are

needed, or that there is considerable residual variability that might be explained by study-level

covariates.

4.2.3 Visual tools

The visual assessment of the goodness-of-fit may reveal specific patterns in the data that might

otherwise go undetected by only looking at summary measures such as the deviance and the

coefficient of variation (Kvålseth, 1985). The graphical comparison can sometimes be cumber-

some because different factors may affect such analysis. The aggregated dose–response data

are presented using one group as comparison. This feature has two important consequences

when deducing an overall trend from the reported (log) relative risks. The first is that different

parameterizations, or models, can be graphically compared only if the predicted risk for the

reference category is similar. The second involves the correlation of the modelled data points,

which makes it difficult to evaluate if a specific model fits the reported data.

To illustrate both problems, I consider IPD from one of the registers involved in the Surveil-

lance, Epidemiology, and End Results (SEER) Program (https://seer.cancer.gov), and

focus on the association between age at diagnosis and breast cancer mortality. Using 35, 60,

70 years as cut points, I modelled age using 5 categories in a Poisson model adjusting for

potential confounders and produced aggregated dose–response results in Table 4.2, where the

https://seer.cancer.gov
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first category served as referent.

Table 4.2: Aggregated dose–response data on the adjusted association between age and breast cancer
mortality based on one registry from the SEER program using the first age category as referent.

Age category Mean age Cases Person-years IRR 95% CI log IRR SE
[20,35] 32.4 56 2099.3 1.00 — 0.00 0.00
(35,60] 49.7 451 37585.3 0.68 (0.51, 0.90) -0.39 0.14
(60,70] 65.6 220 20590.7 0.71 (0.53, 0.96) -0.34 0.15
(70,97] 77.0 215 17896.5 0.77 (0.57, 1.04) -0.27 0.15

Using the methodology presented in Section 2.3.1, I estimated a linear trend and graphically

compared the predicted curve and the modelled data (left panel of Figure 4.4). While the

empirical log RRs may suggest an inverse association between age and breast cancer mortality,

the estimated linear trend indicates opposite conclusions (a 0.17% increase in mortality for

every 5-year increase of age at diagnosis). The linear trend does not seem to properly fit the

data since the fitted line doesn’t event pass through the reported log RRs. The problem is that

there are few cases in the reference age category and so the log RRs are typically larger. By

changing the group comparison to the second age category, this issue is partially solved (right

panel of Figure 4.4). To address the further issue of the covariance, we proposed graphical

tools based on the analysis of the decorrelated residuals.
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Figure 4.4: Comparison between observed and fitted data, changing the comparison group from the
first age category (left panel) to the second one (right panel), based on the aggregated data on the
association between age and breast cancer mortality presented in Table 4.2.

The residuals can be decorrelated using the Cholesky factorization of the covariance matri-

ces Si = CiC
>
i , with Ci being a lower Ji × Ji triangular matrix. The decorrelated residuals êi

∗
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are then calculated as

êi
∗ = C−1

i

�

yi −XieXiβ̂
�

= C−1
i êi (4.5)

and plotted against the exposure. Such a graphical analysis is the equivalent to a residual

vs. predictors/predicted outcome plot after a model estimated through ordinary least squares.

Since the variables in the plot are transformed, the actual value of the decorrelated residuals is

not directly interpretable. However, it is still possible to detect specific patterns for the residuals

over the exposure range. In such a case, the plot can indicate lack of fit of the chosen model

for select exposure values. Overlaying a locally weighted scatterplot smoothing (LOWESS)

may help to visualize possible patterns, while a different shape or color for the residuals can

distinguish them according to study-level covariates in case of meta-regression models.

4.3 A new measure of heterogeneity

One of the possible reasons for large values of D or similarly small values of R2 is the presence

of heterogeneity in the dose–response associations. The measures of heterogeneity presented

in Section 2.1.3, namely R̂I and I2 were derived based on the assumption of homogeneity for

the error variance terms vi , which is unlikely to be met in applications. To illustrate this point,

let us consider the two hypothetical distributions for the within-study error terms in Table 4.3.

The distribution of vi in the first example (Analysis A) is much more homogeneous compared to

the second scenario (Analysis B). The coefficient of variation for the vi in the second example is

20 times higher than the corresponding number in the first scenario. While it seems reasonable

to assume homogeneity of the vi for the Analysis A, in the second case this hypothesis is not

appropriate. Nonetheless, both R̂I and I2 would summarize the two distributions with a single

common number.

Table 4.3: Hypothetical distributions of within-study errors in two meta-analyses of 5 studies.

Analysis v1, . . . , v5 CVvi
s2
1 s2

2
A 5, 5.2, 4.9, 5.3, 4.8 0.04 5.0 5.0
B 4, 17, 15, 2, 3.8 0.84 5.0 4.4

4.3.1 Definition and properties

The available measures relate the between-study heterogeneity to the overall variability, whose

definition also varies across studies. A different approach consists of measuring the impact of

heterogeneity in determining the variance of the combined effect in a random-effects analysis.

This quantity depends on the τ2 and on the variance of the mean β̂ , quantities that don’t

require the assumption of homogeneity for the within-study error terms.

To determine how τ2 contributes to ÓVar
�

β̂
�

, we consider the hypothetical case where all

the estimates β̂i are reported with no error, i.e. vi = 0 ∀i = 1, . . . , I . The weights used in

the meta-analytic model depends only on τ2, and following Equation 2.3 the variance of the

combined effect is ÓVar
�

β̂
�

=
�

∑I
i=1 τ̂

2
�−1
= τ̂2/I . In the more realistic case where vi > 0,
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the variance of β̂ will increase to incorporate the uncertainty in the reported estimates. The

contribution of the heterogeneity is still defined by τ̂2/I . The new measure of heterogeneity,

R̂b, can be written as

R̂b =
τ̂2

IÓVar
�

β̂
� =

τ̂2

I/
�

∑I
i=1

1
vi+τ̂2

� =
1
I

I
∑

i=1

τ̂2

τ̂2 + vi
(4.6)

The R̂b is a dimensionless number that can be expressed as a percentage, ranging from 0%

(corresponding to τ̂2 = 0, i.e. no observed heterogeneity) to 100%, for the hypothetical case

where all the effects are estimated with no error. The proposed measure is defined as a function

of the estimated heterogeneity (τ̂2), the number of studies (I), and the within-study error terms

(vi). It satisfies the criteria required for a measure of heterogeneity (Higgins and Thompson,

2002): it is a non-decreasing function of τ̂2, it is invariant to scale transformation of the

estimates, and is not intrinsically affected by the number of studies included in the analysis.

Similarly to R̂I and I2, the proposed measure is a function on the within-error terms vi and so it

tends to 1 in case of meta-analysis of very precise estimates, even for relative small values of τ̂2.

As already mentioned in Section 2.1.3, the use of the between-studies coefficient of variation

can complement these measures (Takkouche et al., 1999). The right hand of Equation 4.6

expresses R̂b as an average of the ratios of the τ̂2 to the study-specific overall variance vi + τ̂2.

It is easy to derive that R̂b coincides with the definition of R̂I and I2 in case of homogeneity of

the vi . When the within-errors vary across study, the difference between R̂b and I2 will depend

on the actual values of vi , while it can be proven that R̂b ≤ R̂I .

An estimate of the between-study heterogeneity is required for the computation of R̂b

as well for the alternative measures R̂I and I2. The moment-based estimator presented in

Equation 2.5 is a standard choice in many applied meta-analyses and it has the advantage of

having a closed formulation. In addition, the estimator is consistent (Jackson et al., 2010).

Using this estimation method, R̂b can be expressed as a function of the Q statistic

R̂b =
1
I

I
∑

i=1

Q− (I − 1)
Q+ ai − (I − 1)

(4.7)

with ai = vi

�

∑I
i=1 wi −

∑I
i=1 w2

i /
∑I

i=1 wi

�

. The asymptotic variance for R̂b can be derived by

using the delta method on the relation 4.7

ÓVar
�

R̂b

�

≈

�

1
I

I
∑

i=1

ai

(Q+ ai − (I − 1))2

�2

Var(Q) (4.8)

The formula for Var(Q) = 2(I−1)+4
�

S1 −
S2
S1

�

τ2+2
�

S2 − 2S3
S1
+

S2
2

S2
1

�

, with Sr =
∑I

i=1 wr
i , was

first presented by Biggerstaff and Tweedie (1997).

When the number of studies is large, R̂b is asymptotically normally distributed and thus Wald-

type confidence interval can be constructed R̂b ∓ z1−α/2

q

ÓVar
�

R̂b

�

.
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4.4 A point-wise approach

Measures of heterogeneity are frequently employed in applied works. In a dose–response

meta-analysis, however, there are two aspects of heterogeneity that can not be captured using

standard methods. More specifically, in a two-stage analysis the same functional transforma-

tions g1, . . . , gp need to be defined for all the studies so that the regression coefficients can be

properly combined by meta-analysis. This may have important consequences in case the chosen

dose–response model adequately fits only a subset of the analyzed studies. To illustrate this as-

pect, I considered a subset of 4 studies on the association between milk consumption (ml/day)

and all-cause mortality (Larsson et al., 2015). I modelled the individual curves using FP2 and

selected in each study the combination of power terms which maximized the log likelihood (or

equivalently with the minimum AIC). The chosen power terms in the individual analyses differ

although the predicted curves describe a similar association (Figure 4.5). Forcing a unique set

of power terms may decrease the fit of some of the study-specific analyses and thus produce

more unstable estimates for the dose–response parameters.

Another difficulty may be encountered in uniformly defining the g transformations across

the studies. For instance, we might decide to model the previous association between milk

consumption and mortality using RCS. A percentile approach is commonly adopted for choosing

where to place the k in Equation 2.32 (Harrell, 2013). The first and third knots are located

at fixed percentiles, generally at the 10-th and 90-th percentiles of the exposure distribution,

while the median exposure value is chosen for the remaining knot. If the exposure distributions

largely vary (especially in terms of range definition), as it is in this case, it may not be possible

to equally locate the knots in all the studies. Indeed, in our example only one study considered

dose levels higher than the upper knot (433 ml/day). As a consequence, the second spline

transformation for the other studies will be equal 0 and the model is not estimable (the design

matrix is not invertible).

A related problem directly affects the prediction of the pooled log relative risks. The

maximum dose levels varies largely across studies, with values 715, 441, 369, 146 ml/day.

The predictions from the second stage analysis, however, are obtained using the combined β̂ ,

which disregards the information about the exposure. All the studies contribute in predicting

the log relative risks, even if some of them only reported results for low exposure values. In

such a way, the combined curve may be severely affected by these extrapolations.

A point-wise approach for meta-analysis of aggregated dose–response data may properly

address the described issues. A point-wise approach was first presented by Sauerbrei and

Royston (2011) for meta-analysis of continuous covariates based on IPD. The strategy consists

of separately estimating the study-specific curves and, based on them, calculating the predicted

log relative risks for selected exposure values. The combined curve is obtained by averaging the

predicted relative risks instead of calculating them from the combined regression coefficients.

The described methodology has the advantage of fitting potential diverse curves across the

studies, and limiting the study-specific predicted log relative risks to the observed exposure

range.
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Figure 4.5: Dose–response associations between milk consumption (ml/day) and all-cause mortality in
4 studies. The curves are modelled using fractional polynomials with the sets of power terms p (reported
in the title) chosen by maximizing the study-specific likelihoods. The results are presented on the log
scale using the observed reference values as comparators.

4.4.1 Estimation and prediction of study-specific curves

The first step of a point-wise approach is similar to the methodology presented in Section 2.3.1

with the difference that the g transformations in the design matrices 2.14 are subscripted by

the study index i, to highlight that they may differ across the studies, also in terms of number

(pi)

Xi =







gi1(x i1)− gi1(x i0) . . . gipi
(x ip)− gipi

(x i0)
...

...

gi1(x iJi
)− gi1(x i0) . . . gipi

(x iJi
)− gipi

(x i0)






(4.9)
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For example, different power terms for FP2 can be chosen or, for a RCS analysis, the knots can

be located separately in each study. Potentially, a mixture of curves could be also estimated

across the study in order to improve the fit of the individual dose–response analyses. The

regression coefficients are then estimated using GLS estimators presented in Equation 2.16.

Once the curves have been estimated, the results of the first step analysis are presented in

terms of predicted log relative risks for a set of ni exposure values xni
using a suitable common

value xref as comparator. The index i is used to highlight that the chosen dose values may differ

across the studies. In particular, the predictions in each study can be limited to the observed

exposure range: max
�

xni

�

≤max (xi).

ŷ i = Xni
β̂i (4.10)

v̂ i = diag
�

Xni
ÓVar
�

β̂i
�

X>ni

�

(4.11)

with formulas similar to those presented in Equation 2.25 and 2.26, with the notable difference

that the predictions are based on the study-specific β̂i rather than the mean β̂ coefficients.

4.4.2 Averaging of dose–response predictions

In a point-wise strategy, the combined dose–response curve is derived by pooling the study-

specific predicted log RRs derived in Equation 4.10. The second step consists of n =max(ni)

univariate meta-analyses where the effect sizes are the elements in ŷ i with the within-error

variances v̂ i. The combined predicted (log) relative risks are estimated using the weighted

average presented in Equation 2.2.

As a final result, the combined dose–response curve is graphically presented as a smooth

function of the combined predicted relative risks for the chosen n dose levels. In addition, all the

results of the univariate meta-analyses can be pointwisely presented, such as estimates of the

heterogeneity τ2 and related measures (R̂b, I2, and R̂i), the Q statistic, and the study-specific

weights, with the potential of a much richer set of results.

4.5 A one-stage model

The study-specific dose–response analyses in a standard two-stage or alternative point-wise

approach suffer from the limited number of data points. Most of the individual studies present

results for 2 to 4 non-referent exposure categories, but cases where dichotomization of the

exposure occurred are not rare (Turner et al., 2010). In the latter case, only dose–response

models parameterized by p = 1 coefficient can be estimated (e.g. linear trend). Indeed, a

standard requirement for meta-analysis of non-linear curves is that the studies provide at least

two non-referent relative risks.

The extension of the one-stage approach to a random-effects meta-analysis may overcome

the exclusions of studies with limited number of individual data points. A one-stage approach

is conceptually easier since the entire analysis can be formulated in a single statistical model.
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Flexible curves characterized by multiple parameters (p > 3) can also be easily accommodated,

so that more elaborate research questions can be answered, without losing the information

from those studies usually excluded in a two-stage analysis.

4.5.1 Model definition

A one-stage dose–response meta-analysis can be written in the form of a linear mixed-effects

model

yi = Xiβ + Zibi + εi (4.12)

where the terms yi , Xi , and εi are defined exactly as those presented in the first step of a two-

stage analysis (Equation 2.13). The quantities β and bi, instead, are the population average

parameter and unobserved random-effects as defined in the second step (Equation 2.18). The

additional Zi is the ni×p design matrix for the random-effects and coincides with Xi . Assuming

a multivariate distribution for the random-effects terms, the marginal model for a one-stage

analysis is

yi ∼N
�

Xiβ ,ZiΨZ>i + Si

�

(4.13)

Similarly, the conditional model is defined as

yi | bi ∼N (Xiβ + Zi bi ,Si) (4.14)

Note that the conditional and marginal models are now defined for the log relative risks rather

than the dose–response coefficients. In particular, the definition of the marginal variance

Σi = ZiΨZ>i +Si is quite different. It depends not only on the within and between components

but also on the corresponding dose value x i j (or equivalently zi j) associated with yi j .

Meta-regression models can be estimated by including in Xi the interaction terms between

the p transformations of the exposure variable and study-level covariates, while leaving un-

changed the definition of the Zi matrix for the random-effects. Assuming a quadratic curve and

a binary study-level covariate ui , for example, the design matrices for the fixed- and random-

effects can be written as

Xi =







x i1 − x i0 x2
i1 − x2

i0 (x i1 − x i0)ui

�

x2
i1 − x2

i0

�

ui
...

...
...

...

x iJi
− x i0 x2

iJi
− x2

i0

�

x iJi
− x i0

�

ui

�

x2
iJi
− x2

i0

�

ui







Zi =







x i1 − x i0 x2
i1 − x2

i0
...

...

x iJi
− x i0 x2

iJi
− x2

i0
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4.5.2 Estimation, hypothesis testing, and model comparison

The parameters to be estimated are the m× p fixed effects and the p× (p+ 1)/2 elements of

the between-study variance matrix. We consider likelihood-based estimators that maximize

either the log-likelihood of model 4.14

`
�

β ,ξ
�

= −
1
2

n log(2π)−
1
2

I
∑

i=1

log |Σi

�

ξ
�

|−
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2

I
∑

i=1

�

(yi −Xiβ)
> �Σi

�

ξ
��−1

(yi −Xiβ)
�

(4.15)

or the corresponding restricted version
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(4.16)

As in case of multivariate meta-analysis, likelihood estimators requires iterative algorithms to

optimize the functions 4.15 and 4.16. In particular, the Nelder-Mead method can be employed

to find the maximum for the parameters in the multidimensional domain. For ease of compu-

tation, both likelihoods are expressed as function of only the ξ parameters, which corresponds

to the elements of the lower triangular Cholesky decomposition of Ψ. The algorithms start

with an initial guess for Ψ, obtain an estimate for β using GLS estimators and maximize the

objective function in terms of ξ. The steps are iterated until convergence is achieved.

Test of hypothesis and confidence intervals are based on the established theory for mixed

models. Inference on the fixed-effects coefficients is conducted in a similar way as presented

in Section 2.3.2, using the asymptotic normal distribution for the estimator of β . Tests for the

variance components, instead, generally require a mixture of χ2 because the coefficients to

be tested can only be positive. When p ≥ 2, however, the distribution of the test statistic is

difficult to implement, so that alternative measures can be instead applied.

Following the idea behind the definition of the ICC, the marginal variance in 4.13 can also be de-

composed in the within-study and between-study components. The dose–response model 4.12

is a mixed model with random-effects for the slope terms and with no intercept. Thus, the

between-study variance is a quadratic function of the assigned dose values. For this setting

Goldstein et al. (2002) defined the Variance Partition Coefficient (VPC) as the ratio of the

between-studies component by the total residual variability

VPCi j =
zi jΨz>i j

zi jΨz>i j + s2
i j

(4.17)

The VPC is indexed by both i and j because it depends both on the observed dose value zi j

and the variance for the log relative risk s2
i j . Values for VPC can be expressed as percentage to

quantify the proportion of residual variance attributable to heterogeneity. Because the VPC will

typically vary for different doses, overlaying a LOWESS smother in a scatter plot VPC versus
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dose levels may help to examine the impact of heterogeneity over the exposure range.

Information criteria based on the log-likelihood 4.15 can be used to compared the fit

of alternative models. As opposed to the corresponding measure from a two-stage analysis,

the AIC from a one-stage model is not limited to the comparison of meta-regression models

assuming the same functional relationship. Instead, the fit of different dose–response analyses

can be properly compared using these fit indices since the log-likelihood is conditional on the

modelled log relative risks rather than the study-specific regression coefficients.

4.5.3 Prediction

Predictions for the combined, or marginal, curve are obtained as in Equation 2.25, where now

the β̂ coefficients were estimated using the log relative risks as outcome variables rather than

the study-specific β̂ i .

Predictions are also available for study-specific curves. Using the normality distribution for the

random-effects, Henderson et al. (1959) computed the asymptotic BLUP of the random-effects

b as

b̂i = Ψ̂Z>i Σ̂
−1
i

�

yi −Xiβ̂
�

(4.18)

The conditional dose–response coefficients are defined as Xiβ̂ + b̂i. Of note, individual

curves defined by p parameters can be predicted for those studies reporting Ji < p non-referent

relative risks. The BLUP employ the information of the entire distribution of the random-effects

to make the best possible prediction.

4.5.4 Comparison with two-stage analysis

Previous methodological articles have oftentimes implemented new methods using the two-

stage approach, mainly because of computation reasons. The alternative one-stage approach

has been frequently referred to as equivalent and was not further investigated. The tools

to assess the goodness-of-fit in Paper II were established using the one-stage framework. We

proved in the supplementary material of the original paper that the two techniques give identical

results in a fixed-effects analysis of non-linear curves, not only for the simpler case of a linear

trend. In the appendix of Paper V, we extended the equivalence to the setting of non-linear

curves for a random-effects model. In order to provide the same point and interval estimates,

the study-specific models in the two-stage analysis need to be estimable, i.e. p ≤min(Ji). In

practical examples, small discrepancies in β̂ and ÓVar
�

β̂
�

may be related to differences in the

optimization methods for the objective functions of the two techniques.
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Results

We illustrated the usage of the developed methodologies and measures by reanalyzing data

from published dose–response meta-analyses.

5.1 Paper I

We demonstrated the main aspects of the methodology reanalyzing aggregated dose–response

data from 21 prospective studies on the association between coffee consumption (cups/day)

and all-cause mortality (Crippa et al., 2014). The data set coffee_mort is included in the

package, with the first six lines printed below.

R> library(dosresmeta)
R> data("coffee_mort")
R> head(coffee_mort)

id author year type dose cases n logrr se gender area
1 1 LeGrady et al. 1987 ci 0.5 57 249 0.0000000 0.0000000 M USA
2 1 LeGrady et al. 1987 ci 2.5 136 655 -0.2876821 0.1391187 M USA
3 1 LeGrady et al. 1987 ci 4.5 144 619 -0.1743534 0.1373198 M USA
4 1 LeGrady et al. 1987 ci 6.5 115 387 0.0861777 0.1401409 M USA
5 2 Rosengren et al. 1991 ci 0.0 17 192 0.0000000 0.0000000 M Europe
6 2 Rosengren et al. 1991 ci 1.5 88 1121 -0.1203576 0.2531537 M Europe

5.1.1 Single study analysis

We showed how to estimate the dose–response association in a single study. For that purpose,

we selected the first study ID 1 consisting of 3 non-referent log relative risks (Legrady et al.,

1987). One relevant feature of aggregated dose–response data is the correlation arising from

having a common comparator. The covar.logrr function can be used to reconstruct the

covariance matrix accordingly to the method by Greenland and Longnecker (1992).

R> legrady <- subset(coffee_mort, id == 1)
R> covar.logrr(cases = cases, n = n, y = logrr, v = se^2, type = type,
+ data = legrady)
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[,1] [,2] [,3]
[1,] 0.01935402 0.01279718 0.01259433
[2,] 0.01279718 0.01885673 0.01254856
[3,] 0.01259433 0.01254856 0.01963947

The alternative method by Hamling et al. (2008) can be used by specifying covariance =
"h" in the covar.logrr function. The reconstructed covariance matrix is used to efficiently

estimate the dose–response association. For example, a linear trend y1 j = β1(x1 j − x10) + ε1 j

can be estimated with

R> lin_le <- dosresmeta(logrr ~ dose, se = se, type = type, cases = cases, n = n,
+ data = legrady)
R> lin_le
Call: dosresmeta(formula = logrr ~ dose, type = type, cases = cases,

n = n, data = legrady, se = se)

Fixed-effects coefficients:
dose

0.0328

1 study 3 values, 1 fixed and 0 random-effects parameters
logLik AIC BIC

-0.7914 3.5827 2.6813

The change in the log relative risk of all-cause mortality associated with a 1 cup/day increase

in coffee consumption was 0.033. That is, the increment of 1 cup/day of coffee was associated

with a 3.4% (exp(0.033) = 1.034) higher mortality risk. The predict method facilitates the

computation for the predicted linear increase for any arbitrary amount of coffee consumption.

For example, setting delta = 3

R> predict(lin_le, delta = 3, expo = TRUE)
delta pred ci.lb ci.ub

3 1.103507 0.9744976 1.249596

In the study by Legrady et al. (1987), 3 cups/day increase in coffee consumption was associate

with a 10% (95% CI 0.97, 1.25) higher mortality risk.
Alternative curves can be specified in the formula argument. For example, a quadratic

trend y1 j = β1(x1 j − x10) + β2(x2
1 j − x2

10) + ε1 j can be estimated.

R> quadr_le <- dosresmeta(logrr ~ dose + I(dose^2), se = se, type = type,
+ cases = cases, n = n, data = legrady)
R> quadr_le
Call: dosresmeta(formula = logrr ~ dose + I(dose^2), type = type, cases = cases,

n = n, data = legrady, se = se)

Fixed-effects coefficients:
dose I(dose^2)
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-0.2135 0.0334

1 study 3 values, 2 fixed and 0 random-effects parameters
logLik AIC BIC
3.5738 -3.1475 -4.9503

The coefficients of the quadratic model are not directly interpretable. The results can be instead
presented in terms of predicted relative risks for selected values of coffee consumption.

R> predict(quadr_le, newdata = data.frame(dose = 0:6), expo = TRUE)
dose I(dose^2) pred ci.lb ci.ub

1 0 0 1.0000000 1.0000000 1.0000000
2 1 1 0.8352219 0.7209175 0.9676497
3 2 4 0.7458585 0.5796705 0.9596916
4 3 9 0.7121374 0.5191844 0.9768005
5 4 16 0.7269823 0.5166453 1.0229519
6 5 25 0.7934812 0.5680037 1.1084654
7 6 36 0.9259812 0.6805480 1.2599276

The quadratic model suggested a U-shaped inverse association, with the maximum risk reduc-

tion, 29 % (95% CI 0.52, 0.98), observed for 3 cups/day of coffee compared.

5.1.2 Multiple studies

The chosen curves can be estimated also for the other studies. One possibility is to use the

tidyverse package (Wickham, 2017) in order to obtain the linear trends and corresponding

variances.

R> library(tidyverse)
R> lin_i <- coffee_mort %>%
+ split(.$id) %>%
+ map(~ dosresmeta(logrr ~ dose, se = se, type = type,
+ cases = cases, n = n, data = .x))
R> lin_bi <- map_dbl(lin_i, ~ coef(.x))
R> lin_vi <- map_dbl(lin_i, ~ vcov(.x))
R> head(cbind(bi = lin_bi, vi = lin_vi))

bi vi
1 0.03283124 4.470869e-04
2 -0.02360445 3.561441e-04
3 -0.01430817 5.833618e-05
4 -0.04777017 6.194806e-04
5 -0.04736154 1.219069e-03
6 -0.02027627 1.127937e-04

The mean linear trend can be calculated with standard packages for meta-analysis such as the
mvmeta package (Gasparrini et al., 2012).
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R> mvmeta(lin_bi, lin_vi)
Call: mvmeta(formula = lin_bi ~ 1, S = lin_vi)

Fixed-effects coefficients:
(Intercept)

-0.0326

22 studies, 22 observations, 1 fixed and 1 random-effects parameters
logLik AIC BIC

36.0221 -68.0442 -65.9551

Alternatively, the two steps of a two-stage analysis (dose–response and pooling) are unified
and simplified in the dosresmeta function. In a single call, the study-specific linear trends
are estimated and combined with the results being stored in the lin object.

R> lin <- dosresmeta(logrr ~ dose, id = id, se = se, type = type,
+ cases = cases, n = n, data = coffee_mort)

The summary method displays the measures and tests of interest.

R> summary(lin)
Call: dosresmeta(formula = logrr ~ dose, id = id, type = type, cases = cases,

n = n, data = coffee_mort, se = se)

Two-stage random-effects meta-analysis
Estimation method: REML
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 41.8314 (df = 1), p-value = 0.0000

Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

(Intercept) -0.0326 0.0050 -6.4677 0.0000 -0.0424 -0.0227

Between-study random-effects (co)variance components
Std. Dev

0.0172

Univariate Cochran Q-test for residual heterogeneity:
Q = 77.0088 (df = 21), p-value = 0.0000
I-square statistic = 72.7%

22 studies, 22 values, 1 fixed and 1 random-effects parameters
logLik AIC BIC

36.0221 -68.0442 -65.9551

There was an inverse association between increasing levels of coffee consumption and all-
cause mortality risk, with a mean relative risk of exp(−0.03) = 0.97 for a 1 cup/day increase.
Similarly to the single study analysis, the predict function returns the combined result for
any amount of coffee consumption.
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R> predict(lin, delta = 3, expo = T)
delta pred ci.lb ci.ub

3 0.9069412 0.8804891 0.9341879

The linear trend appeared to be heterogeneous as indicated by both the Q test (Q = 77, p value
< 0.01) and I2 = 73%. A possible alternative for both reducing the observed heterogeneity
and relaxing the linearity assumption is to model the dose–response as a quadratic curve.

R> quadr <- dosresmeta(logrr ~ dose + I(dose^2), id = id, se = se, type = type,
+ cases = cases, n = n, data = coffee_mort)
R> summary(quadr)
Call: dosresmeta(formula = logrr ~ dose + I(dose^2), id = id, type = type,

cases = cases, n = n, data = coffee_mort, se = se)

Two-stage random-effects meta-analysis
Estimation method: REML
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 75.9675 (df = 2), p-value = 0.0000

Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

dose.(Intercept) -0.0847 0.0138 -6.1315 0.0000 -0.1118 -0.0576
I(dose^2).(Intercept) 0.0095 0.0023 4.1751 0.0000 0.0050 0.0139

Between-study random-effects (co)variance components
Std. Dev Corr

dose 0.0491 dose
I(dose^2) 0.0081 -0.9811

Univariate Cochran Q-test for residual heterogeneity:
Q = 113.4826 (df = 42), p-value = 0.0000
I-square statistic = 63.0%

22 studies, 44 values, 2 fixed and 3 random-effects parameters
logLik AIC BIC

96.2340 -182.4680 -173.7796

The overall test H0 : β1 = β2 = 0 (Chi2 model) indicated that the mortality risk significantly

varied according to coffee consumption levels (χ2
2 = 76, p value < 0.001). The quadratic

model reduces to the simpler linear trend analysis when β2 = 0. Thus, the univariate test for

β2 (z = 4.18, p value < 0.001) suggested that the all-cause mortality risk was related in a

non-linear fashion with coffee consumption. The heterogeneity in the study-specific regression

coefficients was reduced but its impact was still important, with the multivariate I2 = 63%.

The predicted log relative risks from the linear and quadratic analyses can be presented in a

graphical format using xref = 0 cups/day as referent (Figure 5.1).
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R> xref <- 0
R> pred <- data.frame(dose = c(xref, seq(0, 8, .1))) %>%
+ predict(quadr, newdata = ., expo = T) %>%
+ cbind(lin = predict(lin, newdata = ., expo = T))
R> ggplot(pred, aes(dose, pred, ymin = ci.lb, ymax = ci.ub)) +
+ geom_line() + geom_ribbon(alpha = .1) +
+ geom_line(aes(y = lin.pred), linetype = "dashed") +
+ scale_y_continuous(trans = "log", breaks = scales::pretty_breaks()) +
+ labs(x = "Coffee consumption (cups/day)", y = "Relative Risk")
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Figure 5.1: Combined dose–response association between coffee consumption and all-cause mortality
(solid line) with 95% confidence intervals (shaded area). Coffee consumption was modelled with a
quadratic curve in a two-stage random-effects meta-analysis. The dashed line represents the combined
linear trend. The value 0 cups/day served as referent. The relative risks are plotted on the log scale.

Alternatively, the predicted relative risks for desired exposure values, say from 0 to 5 cups/day

can be presented in a table.

R> filter(pred, dose %in% 0:5) %>%
+ select(-`I(dose^2)`, -lin.dose) %>%
+ unique() %>% round(3)

dose pred ci.lb ci.ub lin.pred lin.ci.lb lin.ci.ub
1 0 1.000 1.000 1.000 1.000 1.000 1.000
3 1 0.928 0.907 0.949 0.968 0.958 0.978
4 2 0.877 0.845 0.910 0.937 0.919 0.956
5 3 0.845 0.808 0.883 0.907 0.880 0.934
6 4 0.829 0.793 0.867 0.878 0.844 0.913
7 5 0.829 0.795 0.865 0.850 0.809 0.893
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The previous predictions can be easily re-expressed using a different exposure value as referent,

e.g. 1.5 cup/day, by changing xref <- 1.5 and rerunning the previous code to produce a

new figure or table.

The study-specific dose–response coefficients and related covariance matrices are stored

in the results and can be easily accessed. For example, the β̂ i and ÓVar
�

β̂ i

�

for the quadratic

model in the first two studies are

R> quadr$bi[1:2, ]
dose I(dose^2)

1 -0.213506072 0.033448197
2 -0.008546787 -0.001605319
R> quadr$Si[1:2]
[[1]]

[,1] [,2]
[1,] 0.0073978648 -0.0009437912
[2,] -0.0009437912 0.0001281500

[[2]]
[,1] [,2]

[1,] 0.0043603384 -4.268928e-04
[2,] -0.0004268928 4.551165e-05

and can be used to plot the individual curves in Figure B.1.

R> newd <- data.frame(dose = c(xref, seq(0, 6, .1)))
R> p_indiv <- cbind(newd, map(array_branch(quadr$bi, 1),
+ ~ exp(.x[1]*newd$dose + .x[2]*newd$dose^2))) %>%
+ gather(study, pred, -dose) %>%
+ ggplot(aes(dose, pred, group = study)) + geom_line() +
+ scale_y_continuous("Relative Risk", trans = "log", breaks = c(.5, 1, 2, 5, 10),
+ limits = c(.25, 10)) + labs(x = "Coffee consumption (cups/day)")

The previous analyses suggested that coffee consumption may be inversely associated with

all-cause mortality in a non-linear fashion. The highest risk reduction, 17% (95% CI 0.79,

0.87), was observed for 4 cups/day of coffee consumption.

5.2 Paper II

We used the tools presented in Section 4.2 to evaluate the goodness-of-fit of the previous
analyses. The gof function returns a display of the quantities of interest, namely the deviance
test and the adjusted and unadjusted R2. We started with the simpler linear trend estimated in
a fixed-effect analysis.

R> gof(lin, fixed = TRUE)
Goodness-of-fit statistics:

Deviance test:
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D = 225.244 (df = 78), p-value = 0.000

Coefficient of determination R-squared: 0.488
Adjusted R-squared: 0.482

The fit for the model assuming a linear relationship was poor (Analysis A in Table 5.1). In

particular, the deviance test rejected the null hypothesis that the model was properly specified

(D = 225.2, p value < 0.001) while the percentage of the accounted variation by the analysis

was 49%. In addition, the decorrelated residuals vs exposure plot in panel A of Figure 5.2

indicated a specific pattern with negative residuals for low values of the exposure (before 5

cups/day) and positive ones for high levels of coffee consumption.

A possible solution for addressing the lack of fit of the previous analysis is to consider a non-

linear example such as a quadratic curve (Analysis B). The fit slightly improved as indicated by

R2 which increased to 65% (R2
adj = 0.64). The deviance test, however, still showed evidence of

lack of fit (D = 155.1, p value < 0.001). Furthermore, even if the variability of the residuals

reduced (panel B of Figure 5.2), the LOWESS smoother showed a tendency for the residuals

to be more likely negative for low and very high exposure values.
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Figure 5.2: Decorrelated residuals versus exposure plots with LOWESS smother for different modelling
strategies in a dose–response meta-analysis between coffee consumption and all-cause mortality (Crippa
et al., 2014).
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An alternative strategy (Analysis C) was to model coffee consumption using RCS with 3 knots

located at the fixed quantiles 0.10, 0.5, and 0.9 corresponding to 0, 2, 6.5 cups/day. Since the

number of parameters is the same as in the Analysis B (p = 2), the R2 can be used to compare

the fit of the two strategies. In particular, the RCS analysis had a better fit, as indicated by

the higher R2 = 0.68 (R2
adj = 0.67). The pattern in the residuals also leveled off around zero

with the exception for the 3 highest dose levels. The deviance test, however, rejected again the

null hypothesis for model specification, possibly because of the heterogeneity in the individual

curves.

Coffee consumption varies substantially across countries both in terms of coffee powder,

methods of preparation, and amount of cup size. In addition, the effect of coffee on all-cause

mortality may have a different impact depending on the sex of participants. To address this

variability, we employed meta-regression models to explain differences across the studies (Anal-

ysis D). We included two study-level covariates indicating the geographical area where the

study was conducted (Europa, USA, and Japan) and the sex of the participants (only men, only

women, and both sexes). Both the decorrelated vs exposure plot and R2
adj = 0.74 indicated

an improvement in the overall fit of the analysis even if the p value for the deviance test was

below the nominal value (D = 100.4, p value = 0.008).

Table 5.1: Goodness-of-fit tests and measures for dose–response meta-analysis of coffee consumption
and all-cause mortality (Crippa et al., 2014)

Analysis Model Deviance df p value R2 R2
adj

A Linear 225.244 78 0.000 0.488 0.482
B Quadratic 155.093 77 0.000 0.648 0.638
C RCS a 141.332 77 0.000 0.679 0.671
D RCS + interaction b 100.372 69 0.008 0.772 0.739

a 3 knots located at the 10th, 50th, and 90th percentiles of the distribution of coffee.
b As in c) + interaction with gender of participants (only men, only women, both sexes) and geo-

graphical area (Europe, USA, Japan) included as categorical study-level covariates.

5.3 Paper III

We illustrated how to employ the new measure of heterogeneity, R̂b, reanalyzing aggregated

dose–response data on the association between meat and bladder cancer (Crippa et al., 2016b).

Five cohort and 8 case-control studies reported results for either red or processed meat and

bladder cancer risk including a total of 10,271 cases and 1,066,027 participants. The data for

both the associations are also included in the dosresmeta package.

5.3.1 Processed meat and bladder cancer

We started by considering a linear trend analysis for the association between processed meat

and bladder cancer risk. The effect sizes for the meta-analysis in the second part of a two-stage

dose–response meta-analysis were the linear trends for a 50 g per day increase in processed
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meat consumption (Figure 5.3). The combined relative risk was 1.2 (95% CI 1.06, 1.37). The

Q test detected statistical heterogeneity (Q = 17.2, p value = 0.07). The R̂b = 38% (95%

CI 37, 40) indicated that the contribution of heterogeneity in the pooled analysis was limited

(Table 5.2), as also suggested by the alternative measures I2 = 42% (95% CI 40, 43) and RI

= 43% (95% CI 41, 44). Because the within-study variances were substantially homogenous,

the differences between the alternative measures were negligible.

No evidence of non-linearity was observed using either a quadratic curve (p value = 0.96) or

a RCS model with 3 knots located at fixed percentiles (p value = 0.92).

Overall (Rb = 38%, p = 0.07)

0.7 1 1.5 2 3

Nagano et al., 2000
Michaud et al., 2006
Michaud et al., 2006
Larsson et al., 2010
Ferrucci et al., 2010
Closas et al., 2007
Hu et al., 2008
Aune et al., 2009
Lin et al., 2012
Wu et al., 2012
Catsburg et al., 2014

  0.71%   0.60 [0.13, 2.75]
  7.49%   0.96 [0.65, 1.43]
 11.87%   1.19 [0.91, 1.56]
 12.53%   1.07 [0.83, 1.38]
 11.08%   1.13 [0.85, 1.51]
 11.64%   1.06 [0.81, 1.40]
 12.17%   1.82 [1.40, 2.37]
  9.23%   1.31 [0.93, 1.83]
  3.20%   1.22 [0.62, 2.41]
  6.07%   1.68 [1.06, 2.65]
 14.02%   1.05 [0.84, 1.31]

100.00%   1.20 [1.06, 1.37]

Author(s), Year RR [95% CI]Weight

processed meat and bladder cancer
for every 50 g per day increment

Figure 5.3: Relative risks of bladder cancer for every 50 g increase per day in processed meat consump-
tion.

5.3.2 Red meat and bladder cancer

An analogous analysis was conducted for the association between red meat consumption and

bladder cancer risk, with the estimated linear trends expressed for a 100 g per day increase

(Crippa et al., 2016b). The pooled relative risk was 1.22 (95% CI 1.05, 1.41). The study-specific

associations in Figure 5.4, however, appeared to be heterogeneous (Q = 60, p value < 0.01).

In particular, the contribution of the heterogeneity in determining the variance of the combined

effect was R̂b = 67%, indicating a moderate impact. Given that the distribution of within-error

terms was higher as compared to the previous analysis (Figure B.2), the differences with the



50 5. Results

alternative measures were higher: I2 = 80% (95% CI 79, 81) and RI = 89% (95% CI 88, 89),

which suggested a larger heterogeneity across the study specific trends.

Similarly to the case of processed meat, no evidence of non-linearity was found (p value equal

to 0.73 and 0.74 for β2 in the quadratic and RCS model.)

Overall (Rb = 67%, p < 0.01)
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Larsson et al., 2010
Ferrucci et al., 2010
Jakszyn et al., 2011

Tavani et al., 2000
Closas et al., 2007
Hu et al., 2008
Aune et al., 2009
Lin et al., 2012
Wu et al., 2012
Isa et al., 2013

  3.24%   0.84 [0.42, 1.70]
  7.04%   0.94 [0.67, 1.34]
  8.56%   1.03 [0.79, 1.33]
  8.74%   0.91 [0.71, 1.16]
  9.07%   1.21 [0.96, 1.52]
 11.37%   1.01 [0.96, 1.06]

  6.95%   2.13 [1.50, 3.04]
  9.51%   0.84 [0.68, 1.02]
  8.91%   1.40 [1.10, 1.77]
  9.02%   1.34 [1.07, 1.69]
  5.37%   2.85 [1.79, 4.55]
  7.36%   1.23 [0.88, 1.71]
  4.86%   1.94 [1.16, 3.24]

100.00%   1.22 [1.05, 1.41]

Cohort

Case−control

Author(s), Year RR [95% CI]Weight

1.51 [1.13, 2.02]Subtotal (Rb = 81%, p < 0.01)

1.01 [0.97, 1.06]Subtotal (Rb = 0%, p = 0.62)

Red meat and bladder cancer
for every 100 g per day increment

Figure 5.4: Relative risks of bladder cancer for every 100 g increase per day in red meat consumption,
separately for cohort and case-control studies.

The variability across the linear trends could be related to differences in the study design.

Figure 5.4 reports also the results separately for cohort and case-control studies. No association

was observed in the subset of the prospective studies (combined RR= 1.01 (95% CI 0.97, 1.06)).

The individual associations were homogenous (Q = 3.5, p value = 0.62), with R̂b = 0%. The

results for case-control studies, instead, largely varied across studies Q = 39.8, p value < 0.01

and R̂b = 81%. A summary of the results for the alternative measures of heterogeneity in the

different analyses is presented in Table 5.2.
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Table 5.2: Measures of heterogeneity for dose–response meta-analysis between processed and red meat
and bladder cancer risk (Crippa et al., 2016b).

Analysis β̂ (95% CI) Q test, p values CVvi
R̂b (95% CI) I2 (95% CI) R̂I (95% CI)

Processed meat 1.2 (1.06, 1.37) 17, 0.07 0.33 38 (37, 40) 42 (40, 43) 43 (41, 44)
Red meat 1.22 (1.05, 1.41) 60, < 0.01 5.94 67 (66, 68) 80 (79, 81) 89 (88, 89)

Red meat, Prospective 1.01 (0.97, 1.06) 4, 0.6 3.51 0 (0, 4) 0 (0, 8) 0 (0, 100)
Red meat, Case-control 1.51 (1.13, 2.02) 40, < 0.01 0.36 81 (80, 82) 85 (84, 86) 86 (85, 86)

5.4 Paper IV

The proposed and alternative measures of between-studies variability cannot capture the het-

erogeneity related to differences in the exposure range distribution. We presented the imple-

mentation of a point-wise strategy as a possible remedy, reanalyzing the data between red meat

consumption and bladder cancer risk described in the previous section. The data consists of 13

independent studies where the exposure varied across studies not only in terms of definition

and measurement but also in terms of range of assessment. For example, the minimum red

meat consumption in one study (85.5 g per day in study ID 7) was higher then the maximum

exposure value in other studies (71.7 g per day in study ID 3). Furthermore, only 3 out 13

studies reported relative risks for meat consumption greater than 150 grams/day. Descriptive

measures of red meat consumption across studies are reported in Table C.1 and graphically

presented in Figure B.3.

We decided to model the association using FP2. To allow for differential dose–response

relationships, we fitted the FP2 models for different combination of power terms separately

in each studies and selected the study-specific best fitting polynomials as the model with the

lowest AIC. As expected, the best study-specific power terms varied across studies (Table C.2),

with the most common polynomial defined by p = (−2,−2) (8 out of 13 studies). Interestingly,

the corresponding analysis using the AIC from the a one-stage model selected p = (−1,−0.5)

as the best FP2, a combination of power terms that was not preferred in any of the individual

dose–response analyses. Figure 5.5 displays the predicted curves based on the best FP2 for each

study, limited to the observed exposure range (blue solid lines). Extrapolation are represented

by dashed lines while the red curves represent the predicted association from the one-stage

model, which imposed the common power terms p = (−1,−0.5) across the studies. While the

alternative strategies gave similar results in the observed exposure range, larger differences

were observed for high levels of red meat consumption. Taking study ID 5 as an example, the

predicted relative risks for 150 g compared to 15 g of red meat consumption per day were 2.14

(95% CI 0.81, 5.67) and 1.13 (95% CI 0.84, 1.53) for the FP2 with the study specific p5 = (3, 3)

and the common power terms p = (−1,−0.5), respectively.
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Figure 5.5: Study-specific dose–response curve between red meat consumption and bladder cancer risk.
Blue and red solid lines are the predicted relative risks based, respectively, on the best fitting fractional
polynomial (FP2) and on a common FP2 with p = (-1, -.5) limited to the observed exposure range.
Dashed lines indicate extrapolated predicted relative risks. Confidence intervals for best fitting FP2 are
represented by shaded areas (lighter colors correspond to extrapolations). All predicted relative risks
are presented on the log scale using the study-specific reference values as comparators.
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In a point-wise dose–response meta-analysis, we chose to predict the study specific log

relative risks for a fine grid of exposure values ranging from 5 g to 300 g with step by 5 g,

using 85 g/day (median reference dose value) as referent. The study-specific predictions were

limited to the observed exposure range so that study ID 3, for example, predicted log RRs for

dose values up to 70 g/days. Thus, the number of study-specific predicted log RRs varies across

the selected red meat consumption levels.
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Figure 5.6: Comparison between pointwise and one-stage predicted relative risks for the association
between red meat consumption (g per day) and bladder cancer risk. The step function at the bottom
indicates the number of studies contributing to the prediction in the pointwise analysis. The relative
risks are presented on the log scale using 85 g per day as referent.

The combined results from the 59 meta-analyses can be presented pointwisely. Figure 5.6 plots

the combined predicted relative risk from a point-wise strategy and compares them with the

corresponding one-stage analysis. In the reanalyzed data, the two strategies provided similar

point estimates. However, the confidence intervals from the point-wise analysis were larger

as compared to the corresponding one-stage model, reflecting the higher uncertainty in the

predictions. For example, for 100 g the predicted RRs were 0.92 (95% CI 0.80, 1.07) for the

point-wise strategy and 1.11 (95% CI 1.03, 1.19) for the one-stage model. Similarly, for 250 g

the two predictions were 1.27 (95% CI 0.71, 2.26) and 1.20 (95% CI 1.05, 1.38).

One advantage of a point-wise strategy is that additional statistics from the meta-analytic

models can be presented pointwisely (Figure 5.7). For example, the estimates for the between-

study heterogeneity, τ̂2, were lower than 0.02 for red meat consumption between 20 g and

150 g per day, and rapidly increased for higher values (panel A). The weights of the individual

studies changed over the range of the exposure values. Panel B displays the standardized
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Figure 5.7: Point-wise results for a meta-analysis between red meat consumption (g per day) and bladder
cancer risk: estimates of τ̂2 (A), random-effects weights for three studies (B), p value for ther Q test
(C), and R̂b (D).

weights for three of the included studies. The percentage weight for study ID 5 was very large

for red meat consumption lower than 30 g, while it stabilized around 15% after that. For study

ID 10, the weight declined from 20% to 5% as the dose value increased, while it remained

constant around 3% for study ID 1. The results from the Q test in panel C indicated presence

of statistical heterogeneity for red meat consumption betwee 100 and 200 g. The impact of

heterogeneity quantified by the R̂b varied between 25% and 60% for exposure values below

75 g per day, while it reached 85% for higher dose levels.

5.5 Paper V

A common limitation of a two-stage and point-wise approach is that the dose–response analyses

are limited by the low number of data points in each study, usually Ji ≤ 3. We demonstrated

an alternative one-stage model for dose–response meta-analysis using a subset of the data on

coffee consumption and all-cause mortality presented in Sections 5.1 and 5.2. The data consists

of the results for 12 independent populations including 5508 cases and 750959 participants

(Crippa et al., 2014). The results for two cohorts (Nilsson et al., 2012) were excluded in

the initial analysis of a non-linear trend because they only reported 1 non-referent risk. We

performed a one-stage random-effects meta-analysis assuming a quadratic relationship on the

whole data set and compared the results with the corresponding two-stage analysis which

excluded the results by Nilsson et al. (2012).



5. Results 55

Although both the analyses suggested a U-shaped association between increasing levels of

coffee consumption and mortality risk, the predicted curve from a two-stage model provided

lower relative risk estimates (Figure 5.8). Using 0 cups/day, the predicted RRs for 2 cups/day

were 0.86 (95% CI 0.81, 0.91) for the two-stage analysis, and 0.89 (95% CI 0.83, 0.96) for

the one-stage model. Similarly, for 5 cups/day the corresponding numbers were 0.78 (95%

CI 0.72, 0.84) and 0.82 (95% CI 0.76, 0.89). Interestingly, the standard errors for the beta

coefficients were lower in the two-stage analysis
�

SE
�

β̂1

�

= 0.021,SE
�

β̂2

�

= 0.003
�

, even if

the corresponding estimates from the one-stage analysis were based on a larger number of

data points
�

SE
�

β̂1

�

= 0.027,SE
�

β̂2

�

= 0.004
�

. As a consequence, the confidence intervals for

the reported predicted relative risks were larger in the one-stage analysis, while the p value

for non-linearity H0 : β2 = 0 was lower in a two-stage analysis: p = 0.008 compared to p =

0.154 from the alternative one-stage model.
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Figure 5.8: Combined quadratic association between coffee consumption (cups/day) and all-cause
mortality estimated using a one-stage (blue line) and two-stage (red line) approach. The predicted
relative risks are plotted on the log scale using 0 cups/day as referent.

The exclusion of 2 studies affected also the estimation of the variance components in Ψ. For

example, the variances of the random-effects based on 10 out of the 12 studies (two-stage)

were 0.0013 for b1 and 5× 10−5 for b2, while they were 0.00544 and 1.5× 10−4, respectively,

in the alternative model. The I2 = 45% from the multivariate two-stage analysis indicated

a moderate impact of the heterogeneity. The same question can be addressed in a one-stage

analysis by looking at the variance partition coefficients for the observed dose values. The VPC

plot suggested a limited impact of heterogeneity between 20 and 40% for coffee consumption

below 7 cups/day, while it become substantial for higher exposure values (Figure B.5).
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Oftentimes it can be informative to provide a graphical presentation not only of the marginal

association but also of the study-specific or conditional curves. The multivariate normal dis-

tribution for the random-effects is used to predict the study-specific regression coefficients,

exploiting the information from the between-studies heterogeneity matrix (Table C.3). It is

worthwhile to notice that the non-linear curves in the one-stage approach can be predicted

also for those studies providing only one non-referent log RR (study ID 27 and 28), which were

instead excluded in the traditional approach. The predicted conditional curves are graphically

presented in Figure 5.9.

Different strategies can be chosen to model the dose–response association of interest. A

one-stage approach, in particular, gives the opportunity to estimate a complex curve defined

by multiple parameters in order to answer more elaborate research questions. A model with

a spike at zero treats the low or unexposed participants as a separate group, and estimates

the dose–response association only for the exposed groups. For example, we can think of the

participants drinking a low amount coffee (less than 1 cup/day) as a separate group. The

rest of the association can be described by two lines with a different slope before and after 4

cups/day. The mixed of linear splines model can be specified as

yi = (β1+ bi1) (I(xi < 1)− I(x i0 < 1))+ (β2+ bi2) ((xi − 1)I(xi ≥ 1)− (x i0 − 1)I(x i0 ≥ 1))+

+ (β3 + bi3) ((xi − 4)I(xi ≥ 4)− (x i0 − 4)I(x i0 ≥ 4)) + εi

where the indicator function I takes on value 1 if the condition in the parenthesis is met, 0

otherwise. Another possibility consists of considering homogeneous groups of exposure in

which the mortality risk can be considered constant. For instance, coffee consumption could

be divided in intervals < 1, [1, 3), [3, 5), [5, 7), and > 7 cups/day. The dose–response model is

specified by including 4 dummy variables (x1, x2, x3, and x4) and using one level (e.g. [1, 3))

as referent

yi = (β0 + bi0) + (β1 + bi1)(x1 i − x1 i0) + (β2 + bi2)(x2 i − x2 i0)(β3 + bi3)(x3 i − x3 i0)+

+ (β4 + bi4)(x4 i − x4 i0) + εi

The two models are parameterized, respectively, by p = 3 and p = 4 parameters. It is unlikely

to have enough data points (at least 4 non referent log RRs) for estimating the previous models

in a two-stage analysis. Using a one-stage approach, instead, the predicted curve from those

alternative analyses are presented graphically in Figure B.4 together with the quadratic model

described before. In the spike at 0 model, the predicted mortality risk for the unexposed

participants was 14% higher (95% CI 1.02, 1.28) as compared to participants drinking 1

cup/day. Every one cup per day increase in coffee consumption was associated with 2% (95%

CI 0.95, 1.01) reduction in all-risk mortality, whereas the same number was less pronounced

(β3 = 0.01) for coffee consumption higher than 4 cups/day, with a decreased risk of 1% (95%

CI 0.96, 1.02). The categorical model provided similar results with a 16% (95% CI 1.04, 1.28)

higher mortality risk for never drinkers compared to the category [1, 3) of coffee consumption.
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Figure 5.9: Conditional predicted quadratic curves for the association between coffee consumption and
all-cause mortality in a one-stage (blue lines) and two-stage (red lines) approach. The relative risks are
presented on the log scale using the study-specific reference categories as comparators.

Categories for coffee consumption greater or equal to 3 cup/day indicated a decreased mortality

risk. We can evaluate if this further decline is significant by testing H0 : β2 = β3 = β4 = 0. The

multivariate Wald test did not provide enough evidence to reject the null hypothesis (χ2
3 =
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5.08, p value = 0.17). The fit of the alternative analyses can be compared by looking at the

AIC. We selected the quadratic curve as the best fitting model since it had the lowest AIC (-29),

as compared to the spike at 0 (-28) and the categorical model (-11).

After choosing the quadratic curve as the basis for modelling the dose–response association,

we might try to relate the heterogeneity observed in the VPC plot to study-level covariates.

For example, we can investigate if the sex of the study participants (3 levels: only men, only

women, both sexes) substantially alter the combined quadratic association or partially explain

the observed heterogeneity. This can be done by fitting a meta-regression model which includes

in the fixed-effect matrix the interactions between the quadratic transformations (x and x2)

and the two dummy variables (u1 and u2) for the sex of the participants

yi = (β1 + bi1)(xi − x i0) + (β2 + bi2)(x
2
i − x2

i0)+

+ β3(xi − x i0)× u1 i + β4(x
2
i − x2

i0)× u1 i+

+ β5(xi − x i0)× u2 i + β6(x
2
i − x2

i0)× u2 i + εi

The meta-regression model simplifies to the quadratic model when the coefficients for the

interaction terms are equal to 0. A test for H0 : β3 = β4 = β5 = β6 = 0 is equivalent to test

if the dose–response associations differ according to sex of the participants. The multivariate

Wald test (χ2
3 = 2.4, p value = 0.66) did not reject the null hypothesis. Furthermore, the meta-

regression model was not able to explain the observed residual heterogeneity (Figure B.5).



Chapter 6

Discussion

We have proposed and developed new strategies and ad-hoc measures for dose–response meta-

analysis, including tools for evaluating the goodness-of-fit, a new measure for quantifying the

impact of heterogeneity, a strategy to deal with differences in the exposure range across studies,

and a one-stage approach to estimate complex models without excluding relevant studies. The

developed methodologies have been implemented in user-friendly R packages freely available

on CRAN. Several codes for reproducing the results of this thesis and of the corresponding

papers can be found on my website https://alecri.github.io/software and on GitHub

at https://github.com/alecri.

6.1 Goodness-of-fit

An evaluation of the goodness-of-fit should be a natural step in a dose–response meta-analysis.

In Paper II we discussed the relevant issue of how to evaluate the goodness-of-fit in a dose–

response meta-analysis. Flexible parametric curves are estimated in order to summarize and

represent the aggregated data in a synthetic format. It is important to check if the fitted

meta-analytical model actually provides an adequate description of the data at hand.

The evaluation of the goodness-of-fit is usually carried out in practice by measuring the

degree of agreement between the fitted and observed data. We have presented and discussed

three tools (deviance, coefficients of determination, and decorrelated residuals versus exposure

plot) specifically designed for assessing the goodness-of-fit in meta-analysis of aggregated

dose–response data. In particular, the deviance can be employed for testing if the chosen

meta-analytic model is properly specified, while the R2 can be useful for quantifying from a

descriptive point of view the proportion of variability accounted by the dose–response model.

The fit of the dose–response analysis can be visually checked by inspecting the scatter plot of

the decorrelated residuals versus the quantitative exposure.

The practical examples in Paper II and Section 5.2 illustrated the use of the proposed tools

in evaluating the fit of the candidate dose–response models. In particular, we have shown

how they can be useful for identifying specific dose–response patterns, investigating possible

sources of heterogeneity, and generally evaluating if the combined dose–response association

 https://alecri.github.io/software
 https://github.com/alecri
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can be an adequate summary of the observed data. Implementation of the proposed tools in

applied works can strengthen the results or, on the contrary, raise doubts about the ability of

the selected model in summarizing the available evidence.

As in the general case for the use of summary measures, one should be aware of the possible

limitations of the developed tools. We have already seen that while a small p value for the

deviance test for model specification is an indication that the posited model failed in accounting

for the observed variation in the log relative risks, a large p value can not be interpreted as

evidence that the model adequately explains the observed variability. In addition, a test based

approach is generally unsatisfactory because it does not provide information about the actual

fit of the analysis and suffers from low power due to the typically small number of data points

in meta-analyses. Lastly, the p values for the global test of goodness-of-fit are not valid when

the meta-analytical dose–response models are estimated driven by the observed data.

Possible explanations for a low value of the R2 may be multiple. In fact, an R2 close to zero

may indicate that the selected model poorly fits the data, but also that there is no association

between the quantitative exposure and the relative risk for the health outcome, or again that

the model is correctly specified but the residual variability is still close to the overall variability.

Finally, the visual inspection of the goodness-of-fit can reveal dose–response patterns in the

modeled data but its judgment can be quite subjective. In case of sparse data, almost any

patterns can be detected in the decorrelated residuals-versus-exposure plot.

More generally, the tools have been presented in a fixed-effect framework. The decorrelated

residuals-versus-exposure plot can be directly extended to the case of a random-effects analysis

by including the covariance matrix of the random-effects in the Cholesky decomposition. The

other two measures do not have an explicit extension. Their usage as diagnostic tools, however,

should be independent from the inclusion of the random-effects in the final model.

6.2 A new measure of heterogeneity

Another relevant aspect in a quantitative review, which is also related the assessment of

goodness-of-fit, is the evaluation of the impact of heterogeneity. Indeed, a high variability

in the reported effect sizes may undermine the appropriateness of presenting the combined

effect as a summary measure. The common measures of heterogeneity have been developed

under the unrealistic assumption of constant error variances. In Paper III we have proposed a

new measure of heterogeneity, R̂b, that overcomes the limitation of the previous measures.

The R̂b quantifies the impact of heterogeneity as the proportion of the variance of the

combined effect due to the between-study variability. We have shown how R̂b satisfies the

properties required for a measure of heterogeneity without making any assumptions about

the distribution of the within-study error terms. It can be expressed as the average of the

study-specific intraclass correlation terms, i.e. the ratios of the τ2 to the overall study-specific

variance τ2+ vi . Like I2 and R̂I , the proposed measure tends to its upper limit 1 in case of meta-

analysis of very precise estimates (small vi). The between-study coefficient of variation can give

additional information about the magnitude of heterogeneity compensating the shortcoming
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of the available measures. The proposed measure of heterogeneity requires an estimate of

τ2, the between-study variability. Thus, confidence intervals should accompany the point

estimates of R̂b to reflect the uncertainty in the sample. We have proposed Wald type confidence

intervals using the delta methods based on the relation between R̂b and Q. The performances

of the confidence intervals were tested throughout an extensive simulation study presented in

Paper III.

We have shown how to present and interpret the new measure of heterogeneity by rean-

alyzing both univariate meta-analyses (in the illustrative examples of Paper III) and, more

specifically, a dose–response meta-analysis (in Section 5.3). As expected, the R̂b provided simi-

lar results as compared to both I2 and R̂I in case of effect sizes with homogeneous distribution

for the within-error terms. On the contrary, differences were more evident as the variability of

the vi increased, with values of R̂b generally lower than the corresponding I2 and R̂I .

6.3 A point-wise approach

In Paper IV we have extended a point-wise approach originally presented for meta-analysis of

individual patient data to the case of meta-analysis of aggregated dose–response data. The

proposed strategy consists of combining the predicted log relative risks for a fine grid of exposure

values arising from different study-specific dose–response analyses instead of combining the

regression coefficients for a common dose–response model.

A point-wise approach has the potential advantage of improving the individual dose–

response analyses since the study-specific models can be defined separately across the studies.

Although the aim of a dose–response meta-analysis should be to estimate a common curve that

uniformly fits the study-specific results, estimation of a single functional form may lower the

fit of some individual analyses. We have illustrated in Section 4.4 and 5.4 the case of second

degree fractional polynomials. In a two-stage approach, a single couple of power terms needs

to be defined for all the studies so that the pooled dose–response curve can be derived by

pooling the study-specific regression coefficients. In a point-wise approach, each study can

choose a possibly different combination of power terms to better fit the observed data. In such

a way, the predicted log relative risks will be closer to the observed ones. The combined curve

can be then derived by pooling the individual predicted log relative risks pointwisely.

Another important advantage relates to the meta-analysis of heterogeneous exposure distri-

butions where the quantitative exposure may differ not only in the definition and measurement

but also in the range. The solution in a two-stage analysis could be to limit the prediction

of the pooled curve to a subset of the observed exposure values. Depending of the extent of

the diversity of the exposure ranges this might not be sufficient. We have illustrated this fea-

ture reanalyzing aggregated data on the association between milk consumption and all-cause

mortality in the results of Paper IV and between red meat consumption and bladder cancer

in Section 5.4. In the point-wise strategy, the predicted log relative risk can be limited to

the observed exposure range. The combined curve is thus obtained by combining pointwisely

a potential different number of log relative risks. Neglecting this type of heterogeneity may
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have important consequences both in terms of point and interval estimates for the combined

dose–response association. We have seen in Section 5.4 how the results based on a two-stage

analysis may provide overconfident results for moderate to high values of red meat consumption,

whereas a point-wise strategy limited the number of studies participating in the corresponding

prediction and thus produced wider confident intervals, reflecting the uncertainty associated

with the lower number of results. Finally, additional results from the univariate meta-analytic

models can also be presented pointwisely, providing a richer description of the quantities of

interest over the exposure range.

A possible limitation of the proposed approach is that the combined curve is obtained by

means of separate univariate meta-analyses which are based on a set of common study-specifics

analyses. As a consequence, the standard errors and confidence intervals may no longer be

valid. A potential remedy would be to incorporate the covariance matrix for the study-specific

predictions in the multivariate meta-analytic model. However, the number and the nature of

the multivariate predictions are typically too high for the estimation algorithms to converge.

6.4 A one-stage model

In Paper V we have formalized and presented a one-stage model for meta-analysis of heteroge-

neous non-linear curves. The two steps of a two-stage approach, dose–response and pooling,

can be written as a single procedure in terms of a linear mixed-effects model. The mixed-

effects framework is particularly suitable for inferential procedures, marginal and conditional

predictions, quantification of heterogeneity, goodness-of-fit and model comparison. The same

questions frequently answered in a two-stage approach can be similarly addressed using a

one-stage methodology.

The technique was initially presented in a fixed-effect analysis as a more flexible alternative

of the two-stage methodology. Extensions to random-effects meta-analysis of non-linear curves

have been typically framed into a two-stage framework because of the developments related to

multivariate meta-analysis and for simplicity in the implementation using common statistical

software. A one-stage model has oftentimes been regarded as equivalent. Even if we proved that

a one-stage and two-stage approach give the same point estimates and inference, the one-stage

methodology is more flexible and allows one to answer more elaborate research questions.

Flexible curves can also be estimated based on the results from studies reporting a limited

number of relative risks. In a two-stage meta-analysis, on the other hand, a typical requirement

is that each study provides enough data for the individual dose–response analyses. For example,

using either second order fractional polynomials or restricted cubic splines with 3 knots, p = 2

transformations are required for modeling non-linear associations. As a consequence, only

studies providing at least 2 non-referent relative risks can be included in the non-linear analysis.

The case where studies reported the results after dichotomizing the quantitative exposure

are not rare. The data for these studies will be excluded in a two-stage meta-analysis. One

important objective of a quantitative review, however, is to consider and analyze the whole

body of evidence for a research question of interest. Systematic exclusion of studies because of
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insufficient number of data points will necessarily discard useful information and thus provide

only a partial summary. Furthermore, the assessment and investigation of between-studies

variability will be also distorted, so that residual heterogeneity might be undetected.

Another advantage of a one-stage model is that many methodological aspects are greatly

facilitated by using a single linear mixed-effects model. The tools presented in Paper II, for

instance, were developed using the equivalence between the one- and two-stage approach in

a fixed-effects analysis. The comparison of the fit in different dose–response analyses is also

greatly facilitated by using information criteria such as the AIC, which are based on a common

comparable likelihood.

Multiple routines implement linear mixed-effects models in different statistical packages.

However, several aspects are specific to dose–response meta-analysis and it may be cumber-

some to specify them using general commands for mixed-effects model. Therefore, we have

implemented the one-stage methodology in the updated version of the dosresmeta package.

Several example data sets and codes are available in order to facilitate applications of the

proposed methodology.



Chapter 7

Conclusions

The methods presented in this thesis enrich the set of tools available for applying dose–response

meta-analyses and for addressing specific questions, including how to evaluate the goodness-

of-fit and how to measure the impact of the between-studies heterogeneity. Furthermore, this

thesis describes alternative models for pooling results in case of heterogeneous exposure range

and for estimating complex models without excluding relevant studies. The proposed methods

have been illustrated using real data from published meta-analyses and implemented in user-

friendly R packages available on CRAN.

More specifically we conclude the following:

• The dosresmeta R package has been widely used throughout the world and applied

by practitioners in conducting dose–response meta-analyses. More recent developments

are available to apply the methods presented in this thesis. Dedicated functions have

been useful to avoid pitfalls frequently encountered in published meta-analyses, such as

definition of the design matrix and prediction of the pooled results (Paper I).

• The proposed tools consist of descriptive measures to summarize the agreement between

fitted and observed data (the deviance and the coefficient of determination), and graph-

ical tools to visualize the fit of the model (decorrelated residuals-versus-exposure plot).

These tools can be employed to identify systematic dose–response patterns and possi-

ble sources of heterogeneity, and to support the conclusions. Goodness-of-fit should be

regularly evaluated in applied dose–response meta-analyses (Paper II).

• The new measure of heterogeneity, R̂b, quantifies the proportion of the variance of the

pooled estimate attributable to the between-study heterogeneity. Contrary to the avail-

able measures of heterogeneity, it does not require specification of a typical value for

these quantities. Therefore, we recommend the use of the R̂b as a preferred measure for

quantifying the impact of heterogeneity (Paper III).

• A point-wise strategy for dose–response meta-analysis does not require the specification

of a unique model as in the traditional approaches, and therefore allows for more flexibil-

ity in modeling the individual curves. In addition, the extent of extrapolation is limited
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by predicting the study-specific relative risk based on the observe exposure range. The

use of the described strategy may improve the robustness of the results, especially in case

of heterogeneous exposure range (Paper IV).

• The proposed one-stage approach for dose–response meta-analysis consists of a linear

mixed-effects model, offering useful tools for describing the impact of heterogeneity

over the exposure range, for comparing the fit of different models, and for predicting

individual dose–response associations. The main advantage is that flexible curves can be

estimated regardless of the number of data-points in the individual analyses (Paper V).



Chapter 8

Future research

Based on the conclusions presented in this thesis, future research includes:

• Implementing additive models as a smoother for dose–response meta-analysis. The

non-parametric regression models can be use to investigate and identify the shape of

the dose–response relationship. Formulae for estimation of additive models need to be

extended to take into account the correlation of the error terms and the lack of intercept

term.

• A limited set of tools is available for evaluating possible sources of bias for dose–response

meta-analysis. In particular, a set of tools including descriptive measures, tests, and

plots would be desirable for examining the likelihood of publication bias. Following this

direction, a similar application of the trim and fill method could provide some aid in

performing such a sensitivity analysis.

• Random-effects models for dose–response meta-analysis focus on estimating the popula-

tion average risk-exposure association. Methods for evaluating the influence of specific

data points and the effect of possible outliers are not available. A possibility could be

to switch the focus from the mean to selected percentiles such as the median, which is

generally less sensitive to extreme observations.

• Bayesian methods for dose–response meta-analysis have not yet been presented. A

Bayesian perspective has the advantages of incorporating pertinent information that

can be available from external sources. In addition, the uncertainty for all the parame-

ters can be directly specified in the model. More generally, communication of the results

can be enhanced by making probability statements about the quantities of interest.

• More generally, study selection is a frequent issue in meta-analyses of aggregated data.

On the other hand, sharing of individual participant data is oftentimes difficult because

of privacy agreements and costs involved in the data collection. A solution could be the

implementation of a platform where practitioners are allowed to upload aggregated data

without the need to have them published.



Appendix A

Restricted cubic splines

A Restricted Cubic Splines (RCS) model with 3 knots k = (k1, . . . , k3) can be derived from a

corresponding Cubic Splines (CS) model by forcing the curve to be linear at the extremes of

the exposure distribution.

The CS model with 3 knots k is defined as

CS(x) = β1 x + β2 x2 + β3 x3 + β4 (x − k1)
3
+ + β5 (x − k2)

3
+ + β6 (x − k3)

3
+ (A.1)

where the ‘+’ notation has been used (u+ = u if u≥ 0 and u+ = 0 otherwise).

A RCS model restricts the CS function in equation A.1 to be linear before the first knot (k1)

and after the last knot (k3). The first linearity constraint requires the model A.1 to be linear

for x ≤ k1

CS(x) = β1 x + β2 x2 + β3 x3

Hence, β2 = 0∧ β3 = 0.

The second linearity constraint requires the model A.1 to be linear for x ≥ k3

CS(x) =β1 x + β4

�

x3 − 3x2k1 + 3xk2
1 − k3

1

�

+ β5

�

x3 − 3x2k2 + 3xk2
2 − k3

2

�

+

+ β6

�

x3 − 3x2k3 + 3xk2
3 − k3

3

�

=

= −
�

β4k3
1 + β5k3

2 + β6k3
3

�

+
�

β1 + 3β4k2
1 + 3β5k2

2 + 3β6k2
3

�

x+

− 3
�

β4k1 + β5k2 + β6k3

�

x2 −
�

β4 + β5 + β6

�

x3







β4k1 + β5k2 + β6k3 = 0

β4 + β5 + β6 = 0







β4k1 + β5k2 − β4k3 − β5k3 = 0

β6 = −β4 − β5







β5 = −β4
k3−k1
k3−k2

β6 = −β4 + β4
k3−k2
k2−k1







β5 = −β4
k3−k1
k3−k2

β6 = −β4 + β4
k3−k1
k3−k2







β5 = −β4
k3−k1
k3−k2

β6 = β4
k2−k1
k3−k2

(A.2)

We can rewrite equation A.1 with β2 = 0∧ β3 = 0 and equations A.2



68 A. Restricted cubic splines

RCS(x) = β1 x + β4

�

(x − k1)
3
+ −

k3 − k1

k3 − k2
(x − k2)

3
+ +

k2 − k1

k3 − k2
(x − k3)

3
+

�

(A.3)

that is a function of two variables: the quantitative exposure x and a transformation of x .
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Supplementary figures
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Figure B.1: Study-specific quadratic associations between coffee consumption and all-cause mortality.
The relative risks are presented on a log scale using 0 cups/day as referent (Crippa et al., 2016b).
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Figure B.2: Empirical distributions for within-error terms for the study-specific linear trend in a dose–
response meta-analysis between processed and red meat and bladder cancer risk (Crippa et al., 2016b).
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Figure B.3: Graphical visualization of the study-specific exposure distribution for 13 studies included
in a dose–response meta-analysis between red meat consumption (g per day) and bladder cancer risk.
The crosses and circles are, respectively, the referent and non-referent assigned doses of red meat
consumption.
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Figure B.4: Comparison of different strategies (quadratic, spike at 0, and categorical models) in a dose–
response meta-analysis of coffee consumption (cups/day) and all-cause mortality. The relative risks are
presented on the log scale using 1 cup/day as referent.
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Figure B.5: Variance Partition Coefficient, VPCi j , versus observed dose levels plot and LOWESS smoother
for dose–response meta-analysis between coffee consumption (cusp/day) and all-cause mortality using
a quadratic and meta-regression model.
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Supplementary tables

Table C.1: Descriptive statistics of the assigned dose levels for 13 studies included in a dose–response
meta-analysis between red meat consumption (g per day) and bladder cancer risk.

ID Referent Min P25 Median P75 Max

1 8.6 8.6 30.0 51.4 77.1 102.9
2 34.6 34.6 50.3 65.5 83.2 106.7
3 7.8 7.8 19.5 34.1 51.5 71.7
4 28.9 28.9 63.2 92.8 193.9 442.7
5 17.3 17.3 38.0 55.8 76.6 112.1
6 6.0 6.0 24.4 42.9 77.1 111.4
7 85.5 85.5 122.9 160.3 230.2 300.2
8 17.1 17.1 43.1 64.2 83.0 101.9
9 34.4 34.4 63.8 90.8 122.7 171.8
10 8.0 0.0 8.0 17.1 51.4 102.9
11 8.0 0.0 8.0 17.1 51.4 102.9
13 8.6 8.6 30.0 51.4 77.1 102.9
14 51.4 51.4 68.6 85.7 102.9 120.0
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Table C.3: Conditional predicted coefficients for quadratic curves in 12 studies on the association
between coffee consumption (cups/day) and all-cause mortality based on a one-stage (os) and two-
stage (ts) approach.

ID β̂1os β̂2os β̂1ts β̂2ts

2 -0.043 0.002 -0.074 0.005
4 -0.125 0.015 -0.112 0.013
5 -0.077 0.007 -0.094 0.009
6 -0.060 0.005 -0.080 0.006
7 -0.012 -0.003 -0.050 0.000
10 -0.140 0.018 -0.115 0.013
11 -0.159 0.021 -0.118 0.014
16 -0.028 -0.001 -0.074 0.005
17 -0.134 0.017 -0.132 0.017
18 -0.082 0.008 -0.101 0.010
28 0.032 -0.011
29 -0.019 -0.002
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