
Requirements Specification for Controller Design –
from Use Cases to IOPT Net Models

João Paulo Barros∗, Isabel Sofia Brito†, and Luı́s Gomes‡
∗ Instituto Politécnico de Beja - ESTIG & UNINOVA - CTS, Portugal

Email: jpb@uninova.pt
† Instituto Politécnico de Beja - ESTIG, Portugal

Email: isabel.sofia@ipbeja.pt
‡ Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologia & UNINOVA - CTS, Portugal

Email: lugo@uninova.pt

Abstract—Non-autonomous Petri nets offer a language espe-
cially adapted for controller specifications. They are typically
used in the design phase often with no clear connection to
the analysis phase, including requirements specification. This
paper shows how use cases can be used to support requirements
specification amenable to a direct transformation to IOPT nets, a
class of non-autonomous Petri nets. To that end, we propose a set
of semi-formal rules for use case descriptions, including use case
relationships, which take advantage of the concepts available in
IOPT nets, namely input and output signals and events and net
addition, a net composition operation.

I. INTRODUCTION

Petri nets is a name used to designate a large set of
languages. Presently, and especially since the 1980s there is a
large number of Petri nets classes, many with supporting tools
[1].

One of the areas where Petri nets are commonly used
is controller design often using non-autonomous extensions
(e.g. [2], [3]). To that end, Petri nets are seen as a design
tool amenable to model specification, simulation, and ver-
ification. Sometimes, those models are used as a basis for
code generation. Often, the analysis phase appears absent: the
process towards code generation seems to start at the design
phase. Naturally, this is not the case as some form of analysis
has to be made. Yet, this is mixed with design decisions
in an informal and unstructured way which is not properly
documented. Here, we propose the use of use cases (e.g.
[4], [5], [6]) for the analysis phase, namely for requirements
specification.

The use case approach is a requirements technique fre-
quently used in industrial applications. The use case approach
is relatively easy to describe, understand, and trace. Unfortu-
nately, it lacks formal syntax and semantics, needed to help
verification and validation as well as the tracing to the design
phase of the system development (e.g. [7]).

Controller models must be precise as they are often in-
tegrated in critical systems. Hence, we propose a set of
semiformal rules that stand between use cases and Petri net
models. In this way, we manage to overcome the limitations
caused by the informal aspects of the use case approach, as use
cases can be unambiguously translated to Petri nets, namely
to IOPT nets a class of non-autonomous Petri nets used for

controller specification that is formally presented elsewhere
[8]. This class of Petri nets is currently supported by a set of
development tools, presently at the level of design, verification,
and implementation phases [9], [10]. The proposed use of
use cases complements those publicly available tools1 with
an integrated approach for the analysis phase. In summary,
the present paper shows how to integrate use cases with IOPT
nets using a set of semiformal rules that allow an unambiguous
translation from use cases to net models.

The paper is structured as follows: Section II presents IOPT
nets in the context of controller design, as well as the net
addition operation. Section III briefly presents the use case
approach and the respective template. Section IV shows how
to translate the use cases to Petri nets including relationships
between use cases. Finally, Section V discusses the related
work and Section VI concludes with some notes about future
work.

II. CONTROLLER DESIGN AND IOPT NETS

The class of IOPT nets [8] was specifically designed to
model synchronous, event-driven controllers. The controller
interacts with the environment through input and output sig-
nals and events. Signals can take any value from a known
domain (here we assume a Boolean domain), and events
are Boolean values than become true when a change in the
respective associated signal has happened.

The controller runs according to sequential steps, each one
with the following procedure:

1) Input signal values are acquired and stored in a buffer
(top left of Fig. 1);

2) Events are computed according to the signal values in
step 1 and the known previous values; they are stored
in another buffer (top right of Fig. 1);

3) The IOPT net fires using a maximal step semantics
(all transitions that can fire are fired); these firings can
change the values in output signals (changes related to
state modification); these changes are specified by output
events in transitions (bottom left of Fig. 1);

1http://gres.uninova.pt/IOPT-Tools

978-1-4799-4905-2/14/$31.00 ©2014 IEEE 207

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Digital IPBeja

https://core.ac.uk/display/154167409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4) Output actions rules, associated to places, can also
change the output signal values (bottom right in Fig.
1);

5) Go back to 1) to execute the next step.

Input&signal&
&values&

Input&event&
values&

Input&signals&

Output&signal&values&

Controller&/&IOPT&net&

Ac7ons&
In&places&

Output&events&&
in&transi7ons&

Fig. 1. Controller and environment.

A. IOPT Nets
IOPT nets are based on Place/Transition (P/T) nets (e.g.

[11], [12]). Besides marked places, transitions, and weighted
directed arcs, as in P/T nets, IOPT nets add the following
constructs:

• Each transition can have one or more of the following:
– Input event — this is a necessary, but not sufficient

condition for the transition to fire; in the net models,
we use ”?” as a prefix for input event names; we also
use a ”-” and ”+” suffix to specify events that are true
when the signal decreases or increases, respectively,
its value;

– Guard — Boolean expression that uses the input
signals as variables; we use ”?” as a prefix for input
signal names;

– Output event — changes the value of an output
signal, when the transition fires; in the net models,
we use ”!” as a prefix for output event names; we
also use a ”+” or ”-” suffix to specify events that set
or reset the associated output signal;

– Priority — used in the case of structural conflicts to
resolve effective conflicts.

• Each place can have one or more output action rules —
After transition firing (in step 4 above), if the place is
marked, an output signal value is changed; we use ”!” as
a prefix for output signal names.

Regarding its semantics, IOPT nets use a maximal step
semantics: in each step, all enabled and ready transitions,
considering effective conflicts, are fired. As already mentioned,
effective conflicts are decided based on priorities in transitions.
A transition is enabled if it has enough tokens in its input
places — the usual condition for P/T nets. A transition is ready
if all its guards and input events are true. A more complete
and formal presentation of IOPT nets syntax and semantics
can be found elsewhere [8].

A common problem with graphical languages as Petri nets
is model dimension. To that end many structured approaches

have been proposed for Petri nets (e.g. [13]). Next, we briefly
present a simple operation for net composition, here used for
IOPT nets.

B. Net addition

Petri net composition is typically based on place fusion,
transition fusion, or both. Net addition, defined elsewhere [14],
is a structured and flexible operation for net composition. It
has two stages: (1) in the first, the operand nets are unified
(”put together”), hence still disjoint; (2) next they are merged
by fusing the specified nodes: transitions, places, or both.

Fig. 2 illustrates a simple case of net addition where places
p2 and p3 and also transitions t1 and t3 are fused, generating
place p2p3 and transition t1t3, respectively, yielding net model
N3. Net addition has an algebraic notation, which, for this
example, is the following:

N3 = (N1 + N2) (N1.p2 / N2.p3 -> p2p3,

N1.t1 / N2.t3 -> t1t3)

p1# p2#

t1#

t2#

p3# p4#

t3#

t4#

p1# p2p3#

t1t3#

t2#

p4#

t4#

N1# N2# N3#

Fig. 2. Net addition of modules N1 and N2 and respective result N3.

III. USE CASES

A use case is defined as ”the specification of a set of actions
performed by a system, which yields an observable result
that is, typically, of value for one or more actors or other
stakeholders of the system” [4]. A use case model [15] consists
of a use case diagrams depicted in UML together with use case
descriptions. In this work, a use case is depicted in a diagram
and specified in a description. The use case diagram shows
use cases, actors, and their relationships. The description of
use cases shows, among others, internal flow of events/actions,
using natural language.

A. Use case diagram

The use case diagram is the set of use cases, actors, and
their relationships. ”An actor defines a role that a user can
play when interacting with the system. A user can either be
an individual or another system.” [4]. ”Use cases identify and
describe each task a system is to able to perform. They are
identified by their name and have their description” [6]. The
relationships are associations between actors and use cases, as
well as use case relationships: in particular the <<extend>>

and <<include>>.
An <<include>> relationship denotes the inclusion of use

case as a sub-process of the base use case. Thus, while
”running” the base use case, it will reach the point of inclusion.
The included use case is ”executed” at this stage. When it
completes, the base use case is resumed after the inclusion
point [7]. ”Note that the execution of the included use case is
not optional and is necessary for the proper functioning of the
base use case” [4].

208

The <<extend>> ”(...) relationship specifies that the behav-
ior of a use case may be extended by the behavior of another
(usually supplementary) use case. The extension takes place at
one or more specific extension points defined in the extended
use case.” [4].

B. Use case description

The use case description we use is structured as follows
(based on [6]): (1) Use case title; (2) Summary; (3) Actor(s);
(4) Main/basic scenario; (5) Extension points; (6) Alternative
scenario; (7) Precondition; (8) Postcondition.

A scenario is a flow of events/actions. Events are behaviors
performed by actors for accomplishing their goals. The main
scenario is the description of the ”normal” behavior to success,
i.e., the main scenario successfully enables the actor to achieve
the goal. Each alternative scenario can be an optional behavior
of an exception/error condition. The actions/events of the
other use case are inserted at specific places in the use case
called extension points. Each extension is realized under a
specific condition. A precondition defines when the use case
is applicable, and the postcondition defines the state the system
must be left in when the flow of events completes.

Common representations of these scenarios are single col-
umn and double column narratives, where the actions per-
formed by the actor and the system are segregated and
represented in their own column. In this paper, we consider a
two-column scenario description that addresses the internals
of the system, which are at lower levels of abstraction, a
white box perspective. This description helps us transform the
descriptions into transformation rules and then into Petri net
models.

C. Example

From now on, we will be using the following system as an
example:

• The system to be controlled is a car parking;
• The car parking has an entry and an exit in two levels;
• Each car can pass to another level, but that is optional.
Fig. 3 shows the use case diagram for this system.

Enter&park&

Exit&park&

car&

Park&&
management&

<<include>>&

<<include>>&

Passage&
management&

<<extend>>&

Fig. 3. A use case diagram.

Fig. 4 shows an example of a use case description for the
”Enter park” use case. The ”Exit park” use case is very similar.
Due to space restrictions we omit its use case description, as
well as the one for the ”Passage management” use case.

D. Rules for scenario description

A use case is a requirements technique that uses textual
format. Nevertheless, natural language can lead to ambiguities,
making multiple interpretations possible as well as hampering

Use$case$title
Summary
Actor

Actor System
Thecararrivestothe$entrance.

Thecaris$waiting$foraticket The$system$printstheticket$when$
the$printer$is$ok

Thecargetstheticket <<include>>*Park*Management
Thecaris$waiting$forthegateto
open The$system$opensthegate

Thecarpasses$through$the$gate The$system$closes$the$gate

Alternative$scenario

Extension$points
Precondition
Postcondition

The$entrance$is$free
The$entrance$is$free

Use$case$description
Enter$park
Acarentersthepark,$gets$a$ticket,$the$gate$opensandcloses.
Car

Main$scenario

Fig. 4. Use case description for ”Enter park”.

their writing and understanding. To minimize these, we will
follow the indications given in [16] and include some addi-
tional ones. We consider that a scenario can be regarded as a
sequence of actions, which we will designate by use case ac-
tions (UCA) to distinguish them from controller actions. UCA
are behaviors of users or systems to accomplish their goals.
A set of syntactic rules will be followed while constructing
scenarios. As an illustrative example, let us consider the event
”the car gets the ticket”:

• Names
– Rule 1[16]: Use the same word for the same de-

scription in different sentences (e.g. in our example,
we should always use ”ticket” instead of ”entrance
document”);

– Rule 2: Clarify/normalize UCA names; UCA names
initially given in the use case description may need
to be changed; for example, different users may use
different terms to indicate the same UCA;

– Rule 3[16]: Use the name of a subject/object to
replace a pronoun of the subject/object;

• Use case action construction
– Rule 4[16]: Each UCA is written using simple sen-

tence based on Subject+ V erb+Object, and each
has only one subject and one predicate. A subject
can be something or somebody (including an actor
or system) who performs the event (in our example
is ”the car”). The verb is an action (in our example is
”gets”). An object can be something that is handled
by the event (in our example is ”ticket”);

– Rule 5: The verb in the previous rule must be in the
present tense or present continuous.

• Template structure
– Rule 6: Identify preconditions; identify relevant sys-

tem state and specify preconditions for use cases as
a predicate involving the system state;

– Rule 7: Check if postconditions are specified by
examining the effects each use case has on the set
of known state variables.

– Rule 8: The extension points are depicted in the
description of the base use case at the respective row
of the template description.

209

– Rule 9: The use case <<include>> relationship is
depicted in the System column of the main scenario.

Notice, these rules cannot be completely automated and
users and domain experts will still be needed to understand
the problem domain.

IV. USE CASES AS PETRI NETS

In this section, we present a mapping from use cases to
IOPT nets: this mapping has two parts: (1) from use case
descriptions to IOPT nets and (2) from use case relationships
(<<include>> and <<extend>>) to IOPT nets.

For the translation from use case descriptions (as exempli-
fied in Fig. 4) to IOPT nets, we define an intermediate step:
this step uses two types of rules: IF [WHEN] THEN rules and
WHEN rules.

These rules were defined with two objectives: (1) to be close
enough to the real world so as to allow an easy translation from
the use case descriptions, as presented in the previous section;
(2) to allow a direct, semi-automatic, translation to IOPT net
models. Hence, the rules offer a bridge between two domains:
one closer to the ”real world” and natural language and the
other closer to the ”machine world” and the IOPT nets formal
language.

The rules — directly translatable to a IOPT net model —
have the following format, presented in a simplified form:

1) IF (present state)* AND (input event)* AND (input signal
has value X)* [WHEN (internal state)+] THEN (next
state)* AND (output event)*;

2) (change output signal value)* WHEN (present state)*; this
rule is translated to a place with an associated action.

Regarding the first type of rule, the [WHEN] part is optional
and the asterisk is used as zero or more and the plus sign
as one or more. This rule is translated to one transition with
its associated annotations — input events, guard checking the
input signal (input signal has value X), and output events (that
change output signal values) — and the respective neighbor
places. These are zero or more input places (present state),
zero or more output places (next state), and zero or more places
that are tested (internal state) using an input and an output arc.

The second type of rule translates to a single place with an
associated output action that can change the value of an output
signal depending on the specified condition.

Fig. 5 illustrates the mapping between a use case descrip-
tion and the IF [WHEN] THEN and WHEN rules. It has four
columns: (1) use case description; (2) transformation rules;
(3) Petri net models resulting from each rule; and (4) the Petri
net model that adds all those net models, including the pre
and postconditions.

Fig. 6 illustrates the mapping between another use case
description, for the ”Park management” use case, and the IF

[WHEN] THEN rules and respective IOPT model. In fact, this
use case could be presented as the result from the composition
of two use cases — the ”Car arrive” and the ”Car leave”. Yet,
due to space restrictions, we omit that step.

The mappings are based of the following set of assumptions:

• Use case preconditions are expressed as the net initial
marking;

• The first UCA and the corresponding IF [WHEN] THEN

rule can explicitly refer to the precondition;
• The last UCA and the corresponding IF [WHEN] THEN

rule can explicitly refer to the postcondition;
• UCA that use the present tense are translated to IF

[WHEN] THEN rules;
• UCA that use the present continuous are translated to
WHEN rules;

• The preconditions, the postconditions, and the nets re-
sulting from the previous assumptions will have common
places; these should be fused to obtain the complete use
case scenario;

• <<include>> relationships are specified in the ”System”
column;

• <<extend>> relationships are specified in ”extensions
points”; these are places in the Petri net model that can
be fused with places in another use case (net model).

The <<include>> relationship implies that the correspond-
ing transition will be fused with another transition in the
included use case. According to the UML Specification ”Ex-
ecution of the included use case is analogous to a subroutine
call. All of the behavior of the included use case is executed
at a single location in the included use case before execution
of the including use case is resumed” [4]. Yet, we assume a
weaker form where the included use case is ”called” but does
not return immediately, hence it is fact similar to the creation
of a new process that is synchronized at the time of call. The
included use case can optionally again synchronize on the
return, but that implies a new transition fusion. This form is
more general and takes advantage of the inherent concurrency
of Petri nets.

Regarding the <<extend>> relationship, the place fusion
allows the net model to optionally execute distinct paths.
This is in accordance with the UML specification where the
<<extend>> ”(...) relationship specifies that the behavior of a
use case may be extended by the behavior of another (usually
supplementary) use case”. In our example this happens with
the ”Passage management”, which extends the ”Park manage-
ment” in places ”hasParkedCars” and ”hasFreePlaces”, as the
passage of cars is optional — each car can stay in one level
(park) or move to the other park.

Finally, Fig. 7 shows the IOPT net model for the ”Park
Management” and ”Passage management” use cases. The latter
allows cars in one level to optionally pass to another level.
The respective resulting net composition is illustrated in Fig.
8 where a park with two entrances (”Enter Park” use case), two
exits (”Exit Park” use case), two ”Park managements”, and one
”Park passage” are used. The cars in one level can pass to the
other level through transitions passUp and passDown. The
resulting model effectively forbids park access if there is no
free parking place in the respective level. Yet, a more general
model can also be specified to allow car entrance when there
is at least a free parking place in some level.

210

Transformation+rules Petri+net+models Composed+Petri+net+model
Use+case+title

Summary

Actor
Actor System

Thecararrivesto
the$entrance.

IFtheentranceisfree$
ANDcararrives$
THENcaris$waiting$
foraticket

Thecaris$waiting$
foraticket

The$system$prints$
the$ticket$whenthe
printerisok

System$prints$the$
ticket$WHEN caris$
waitingfora$ticket

Thecargetsthe
ticket

<<include>>*Park*
Management.enter

IFcaris$waiting$fora
ticketANDcar$gets$a$
ticket$WHEN $printer$
isokTHENcaris$
waitingforthe$gate$
to$open

Thecaris$waiting$
forthegateto
open

The$system$opens$
the$gate

System$opens$the$
gate$WHEN caris$
waitingforthe$gate$
to$open

Thecarpasses$
throughthegate

The$system$closes$
the$gate

IF$gate$is$open$AND$
car$passes$through$
the$gate$THEN$
entrance$$is$free$AND$
system$closes$the$
gate

Alternative+scenario

Extension+points

Precondition

Postcondition The$entrance$is$free

Use+case+description

Acarentersthepark,$gets$a$ticket,$the$
gate$opens$and$closes.

Enter$park

Car

Main+scenario

The$entrance$is$free

entranceIsFree*

?arrive+*

wai0ngForTicket*

wai$ngForTicket/

!printTicket/

entranceIsFree*

entranceIsFree*

gateInOpen)

?gotTicket+)

wai2ngForTicket)

printerIsOK)

gateInOpen)

!openGate)

entranceIsFree*

?arrive−*

gateInOpen*

!closegate*

?arrive+(

?gotTicket+(

wai0ngForTicket(

!printTicket(

printerIsOK(

entranceIsFree(

?arrive−(

gateInOpen(

!closegate(

!openGate(

Fig. 5. Mapping from use case ”Enter car” to IOPT model.

Transformation+
rules

Petri+net+models Composed+Petri+net+model

Use+case+title

Summary

Actor
Actor System

Thecararrives$

IFcarparkhas
free$places$AND$
car$arrives$
THENhas
parked$cars

Has$parked$cars

Thecarleaves

IFhasparked$
cars$AND car
leaves$THEN$
parkhasfree$
places

Alternative+
scenario

Extension+points

Precondition

Postcondition

Countstheentranceandexitof
carsinthe$park

Car

Main+scenario

Parkhas50$free$places

Parkhas50$free$places

Use+case+description

Park$Management

hasParkedCars*

50#

hasFreePlaces#

50#

hasFreePlaces#

50#

hasFreePlaces#

arrive& leave&

50&

hasFreePlaces&

hasParkedCars&

arrive&

50&

hasFreePlaces&

hasParkedCars&

leave%

50%

hasFreePlaces%

hasParkedCars%

Fig. 6. Mapping from use case ”Park management” to IOPT model.

V. RELATED WORK

The mapping between use cases and Petri nets has been
presented before, although not in the context of controller
design. The paper by Somé [7] presents a formal mapping
from textual descriptions of use cases to a class of Petri
nets named Reactive Petri nets. This mapping allows to

?passDown) ?passUp)

hasParkedCars1)

hasFreePlaces2)

hasFreePlaces1)

hasParkedCars2)

arrive) leave)

50)

hasFreePlaces)

hasParkedCars)

(a)) (b))

Fig. 7. (a) Module for ”Park management”; (b) Module for ”Passage
management”.

automatically bridge between use cases and a formal model of
the systems behavior. There are several potential benefits for
such a mapping: one benefit is to ensure use cases effectively
express properties that can be verified and are consistent. Addi-
tionally, the mapping provides a definition of formal execution
semantics for textual use cases. A distinction between this
and our approach is that while we propose transformation
rules from requirements to design phase, Som [7] proposes
transformation rules from textual use cases to formal models
at the requirements phase, i. e., those rules are proposed as a
formalism for use cases description and analysis. Meanwhile
they also provide a definition of execution semantics for use
cases. The UML <<include>> and <<extend>> relation-
ships are considered in both papers.

In [17], the authors propose the Constraints-based Modular

211

?arrive+(

?gotTicket+(

wai0ngForTicket(

!printTicket(
printerIsOK(entranceIsFree(

?arrive−(

gateInOpen(

!closegate(

!openGate(

exitIsFree(

?leave=1(

wai0ngToPay(

?leave=0(

gateOutOpen(

!gateOut−(

?pay=1(

!gateOut+(

50(

?arrive+(

?gotTicket+(

wai0ngForTicket(

!printTicket(
printerIsOK(entranceIsFree(

?arrive−(

gateInOpen(

!closegate(

!openGate(

exitIsFree(

?leave=1(

wai0ngToPay(

?leave=0(

gateOutOpen(

!gateOut−(

?pay=1(

!gateOut+(

50(

?passDown(?passUp(

hasParkedCars1(

hasParkedCars2(

hasFreePlaces1(

hasFreePlaces2(

Fig. 8. IOPT park model.

Petri Nets (CMPNs) approach to formalize textual use cases
descriptions. To accomplish this, they propose (1) a system-
atic procedure to convert use cases description to a CMPN
model and (2) a set of guidelines to find inconsistency and
incompleteness in CMPNs. Regarding use case specification,
this work differs from ours mainly because they use an
action condition table, instead of rules, to convert use case
descriptions to CPMNs.

In [16] Timed and Controlled Petri Nets are used for
overcoming limitations of the use case approach, more specif-
ically TCPNs are proposed as the formal description and
verification mechanism for use cases. The work elicits the
requirements and specifies scenarios based on use cases. After
specifying the scenarios, each of them can be transformed
into its correspondent Petri net model. Analyzing these Petri
net models, some flaws or errors on the requirements can be
detected.

Comparing with these previous works, our approach shares
the support to translate use case descriptions to Petri net
models. Yet, in our case, this translation is added to a
complete design flow allowing the effective implementation
of controllers in specific hardware. This is made possible due
to the use of IOPT nets, a classe of non-autonomous Petri nets
to which a full web-based developing environment is available,
including model verification and code generation [9], [10].

VI. CONCLUSIONS

As other Petri net models, IOPT models are often build
with no clear analysis phase. The contributions of this work
is a set of rules to support traceability between the use case
approach and IOPT Net models. These rules improve use case
descriptions and provide a semi-automatic way to translate use
case descriptions and diagrams into IOPT models. In this way,
the controller specification can be started closer to the real

world and be systematically translated to IOPT net models
and executable code.

As future work, we intend to generate test cases from use
cases and to expand the translation of the <<include>>

relationship to allow a structured way to specify the subroutine
call semantics assumed in the UML specification. Finally, the
present proposal will be applied to larger examples, which
should provide useful feedback for improvements and the
construction of a CASE tool to be integrated with IOPT tools.

ACKNOWLEDGMENT

This work is financed by National Funds through Portuguese
Agency ”FCT - Fundação para a Ciência e a Tecnologia” in
the framework of project PTDC/EEI-AUT/2641/2012.

REFERENCES

[1] “Petri nets tool database,” accessed on 2012/04/07. [Online]. Available:
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

[2] L. E. Holloway, B. H. Krogh, and A. Giua, “A Survey of Petri
Net Methods for Controlled Discrete Event Systems,” Discrete Event
Dynamic Systems, vol. 7, pp. 151–190, 1997.

[3] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets,
2nd ed. Springer Publishing Company, Incorporated, 2010.

[4] OMG. OMG Unified Modeling LanguageTM (OMG UML), Superstruc-
ture, version 2.4.1. http://www.omg.org/spec/UML/.

[5] ——. OMG Systems Modeling Language (OMG SysMLTM), version
1.3. http://www.omg.org/spec/SysML/1.3/.

[6] K. Bittner and I. Spence, Use Case Modeling, ser. The Addison-Wesley
object technology series. Addison Wesley, 2003.

[7] S. S. Somé, “Formalization of textual use cases based on petri
nets.” International Journal of Software Engineering and Knowledge
Engineering, vol. 20, no. 5, pp. 695–737, 2010. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijseke/ijseke20.html\#Some10

[8] L. Gomes, J. Barros, A. Costa, and R. Nunes, “The Input-Output
Place-Transition Petri Net Class and Associated Tools,” in Proceedings
of the 5th IEEE International Conference on Industrial Informatics
(INDIN’07), Vienna, Austria, Jul 2007.

[9] L. Gomes, F. Moutinho, and F. Pereira, “IOPT-tools — A Web based tool
framework for embedded systems controller development using Petri
nets,” in Field Programmable Logic and Applications (FPL), 2013 23rd
International Conference on, Sept 2013, pp. 1–1.

[10] GRES Research Group, “IOPT Tools,” accessed on 2014/03/06.
[Online]. Available: http://gres.uninova.pt/IOPT-tools

[11] J. Desel and W. Reisig, “Place/transition Petri nets,” in Lectures
on Petri Nets I: Basic Models, ser. Lecture Notes in Computer
Science, W. Reisig and G. Rozenberg, Eds. Springer Berlin
Heidelberg, 1998, vol. 1491, pp. 122–173. [Online]. Available:
http://dx.doi.org/10.1007/3-540-65306-6 15

[12] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[13] L. Gomes and J. Barros, “Structuring and composability issues in
Petri nets modeling,” IEEE Transactions on Industrial Informatics,
vol. 1, no. 2, pp. 112–123, May 2005, http://dx.doi.org/10.1109/TII.
2005.844433.

[14] J. Barros and L. Gomes, “Net model composition and modification by
net operations: a pragmatic approach,” in Proceedings of the 2th IEEE
International Conference on Industrial Informatics (INDIN’04), June
2004.

[15] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-
oriented software engineering – a use case driven approach. Addison-
Wesley, 1992.

[16] J. Zhao and Z. Duan, “Verification of use case with petri nets in
requirement analysis,” in ICCSA (2), ser. Lecture Notes in Computer
Science, O. Gervasi, D. Taniar, B. Murgante, A. Laganà, Y. Mun, and
M. L. Gavrilova, Eds., vol. 5593. Springer, 2009, pp. 29–42.

[17] W. J. Lee, S.-D. Cha, and Y.-R. Kwon, “Integration and analysis of
use cases using modular petri nets in requirements engineering,” IEEE
Transactions on Software Engineering, vol. 24, no. 12, pp. 1115–1130,
Dec 1998.

212

Powered by TCPDF (www.tcpdf.org)

