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ABSTRACT

This paper describes the application of the constellation based

multiple model adaptive estimation (CBMMAE) algorithm to

the identification and parameter estimation of nonlinear sys-

tems. The method was successfully applied to the identifica-

tion of linear systems both stationary and nonstationary, be-

ing able to fine tune its parameters. The method starts by

establishing a minimum set of models that are geometrically

arranged in the space spanned by the unknown parameters,

and adopts a strategy to adaptively update the constellation

models in the parameter space in order to find the model re-

sembling the system under identification. By downscaling

the models parameters the constellation is shrunk, reducing

the uncertainty of the parameters estimation. Simulations are

presented to exhibit the application of the framework and the

performance of the algorithm to the identification and param-

eters estimation of nonlinear systems.

Index Terms— Dynamic systems identification: sub-

optimal state estimation, multiple model adaptive estima-

tor, parameter estimation, extended Kalman filter, unscented

Kalman filter.

1. INTRODUCTION

System identification and parameter tuning is a central task in

science and engineering. An algorithm frequently used for

system identification and parameter tuning is the multiple-

model adaptive estimation (MMAE) [1]. The MMAE is a

versatile and powerful algorithm used in system identifica-

tion and state estimation. It uses a bank of estimators based

on a set of models, termed local observers, that run in paral-

lel and through a (posterior) probability evaluator it computes

the likelihood of each model to represent the system. The set

of models try to represent all possible system behavior pat-

terns or system modes. A key step is the choice of the models

to be used in the estimators. The standard approach uses an

exhaustive set of models that represents every system mode

so that the MMAE can pick the true one.

The constellation based multiple-model adaptive estima-

tion (CBMMAE) uses a set of models – a constellation, whose

cardinality depends on the number of unknown parameters

and whose parameters can be chosen quite freely [2]. From

the values for the posterior probabilities of each model, given

by the posterior probability evaluator, the constellation is

adaptively conformed to lower the posterior error covariance

matrix. By adapting the constellation of models the parameter

space is searched for the model that best mimics the system.

In this paper we employ nonlinear state estimators to iden-

tify and tune the parameters of nonlinear systems. Results

for the identification of linear systems, both stationary and

nonstationary, with the CBMMAE can be found in [2].

The main contributions of this paper is the application

of the CBMMAE to design a minimal set of models for the

MMAE, requiring a minimum knowledge about the system’s

parameters, for the identification of nonlinear systems. The

results show the effectiveness of the CBMMAE for identifi-

cation and tuning the parameters of nonlinear systems.

Section 2 presents the CBMMAE, Sec. 3 describes the ex-

perimental setup and the results obtained in the identification

of a nonlinear system, and Sec. 4 ends with the conclusions.

2. CONSTELLATION BASED MMAE

The dynamic model of a general nonlinear discrete time-

varying system is described in the state-space representation

by:

x[t+ 1] = f (x[t],u[t], ξ[t],γ[t], t) , t = 0, 1, 2, . . . (1)

where x[t] ∈ R
n is the system state variables vector at

the time instant t, u[t] ∈ R
m is the input signal that

drives/controls the system, and ξ[t] ∈ R
p accounts for the

system disturbance noise. γ[t] ∈ R
r is the time-variable

system’s parameters vector.

The nonlinear observations of the state variables degraded

by noise are given by:

z[t] = h (x[t], θ[t], t) , (2)

z[t] ∈ R
r is the observations vector, and θ[t] ∈ R

r is the

noise associated with the measurements.
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Fig. 1. Block diagram of the multiple model adaptive estima-

tor and constellation adapter.

2.1. The MMAE Algorithm

Figure 1 displays the CBMMAE structure. The MMAE is

based on a set of estimators models, that represent the pos-

sible different system’s behavior patterns, that run in parallel

and provide a local estimate of the system state.

The MMAE follows a Bayesian approach to calculate the

posterior probabilities of each model that are combined to es-

timate the system state and the error covariance [1]. Using

N estimators each gives the state estimate: x̂k[t], with error

covariance Σk[t], for k = 1, . . . , N , that are combined to

compute recursively the posterior probability of the model k
to represent the system as:

Pk[t+ 1] =
βk[t+ 1] e−

1

2
wk[t+1]

N
∑

j=1

βj [t+ 1] e−
1

2
wj [t+1] Pj [t]

Pk[t], (3)

where wk is the value of the matrix induced metric:

wk = ||rk||S−1

k
= r

T
k S

−1
k rk, (4)

and βk is defined by:

βk =
1

(2π)m/2
√

|Sk|
. (5)

The vector rk[t] in equation (4) is the residual between the

observed z and the predicted vector of observations ẑ from

estimator k: rk[t] = z[t] − ẑk[t] and |Sk| is the determinant

of the residual covariance matrix. The overall state estimate

is computed by combining the N estimates by:

x̂[t] =

N
∑

k=1

Pk[t]x̂k[t]. (6)

The state covariance error matrix is obtained from:

Σ[t] =

N
∑

k=1

Pk[t]
(

Σk[t] + (x̂k[t]− x̂[t]) (x̂k[t]− x̂[t])
T
)

.

(7)

If the i-th model matches the system the posterior proba-

bilities of the models evolve according to:

lim
t→∞

Pi[t] = 1; while lim
t→∞

Pk[t] = 0; ∀k 6= i. (8)

Equation (8) states that if a model matches the system it is

identified with probability one, while the posterior probabili-

ties of the other models go to zero [3]. If none of the models

match the system then the posterior probability of the closest

model according to metric of equation (4) tends to one [1].

From equation (3) if one starts with
∑N

k=1 Pk[0] = 1 then:
∑N

k=1 Pk[t] = 1, ∀t. The estimate of the parameters vector

and its error covariance matrix are given by:

γ̂[t] =

N
∑

k=1

Pk[t]γk, (9)

Σγ̂ [t] =
N
∑

k=1

Pk[t]
(

γk − γ̂[t]
)(

γk − γ̂[t]
)T

. (10)

The updates of the probabilities of (3) can be obtained by

developing the dynamic evolution of the probabilities:

Pk[t+ 1] =
p(z[t+ 1]|γk,Z[t])

N
∑

i=1

Pi[t]p(z[t+ 1]|γi,Z[t])

Pk[t], (11)

where Z[t] = {u[0],u[1], . . . ,u[t − 1], z[1], . . . , z[t − 1]} is

the set of previous inputs and past observations, and γi is the

current vector of parameters. This expression is derived by

making no assumption on which type of system is considered

so that it is valid both for linear and nonlinear systems [1].

However, the posterior probability density p(z[t+1]|γk,Z[t])
cannot be obtained exactly for nonlinear systems, and it can

only be approximated with a sub-optimal filter, like the ex-

tended Kalman filter (EKF) or the unscented Kalman filter

(UKF), to compute the state estimates x̂k[t|t] and the error

matrix Σk[t|t]. The optimum state estimate and its covari-

ance matrix are also given by equation (6) and equation (7).

The selection of the type of the non-optimal filter is usually
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based on the physical problem, on the performance required,

and on the available computer resources [4].

The Gaussian Sum (GS) filter approximates the non-

gaussian probability density state of a nonlinear system by

a finite sum of Gaussian functions, each having a different

mean and covariance [1,5]. Although the GS filter is based on

different assumptions and follows a different philosophy con-

cerning the MMAE algorithm, its structure is identical to the

MMAE. The original GS filter explicitly employs the EKF

for each estimator in Fig. 1 to obtain the individual state es-

timates, x̂k[t|t], and the covariance matrices, Σk[t|t] of each

model. The state probability density function is computed by:

p(x[t]|Z[t]) =

N
∑

k=1

αkN(x[t]; x̂k[t|t],Σ[t|t]), (12)

where N(·) is the normal density probability function. The

values for the weights αk for each Gaussian density in the

mixture are obtained by equation (3) (with αk(t) = Pk(t)),
αk is not interpreted as a probability. Similarly to the

MMAE we have the properties:
∑N

k=1 αk[t] = 1, and

αk[t] ≥ 0, ∀t. The overall state estimate and the er-

ror covariance matrix are also obtained from equation (6)

and equation (7). These results justifies the application of the

CBMMAE to the identification and parameters estimation of

nonlinear systems .

2.2. CBMMAE Overview

The CBMMAE algorithm comprises three stages : i) constel-

lation design – establish a proper set of models in the space

spanned by the unknown parameters; ii) tracking and brack-

eting – search the parameter space, by moving the models

constellation, to localize the region containing the system pa-

rameters; iii) shrinking process – reduce the interval range

for the constellation models’ parameters. These steps are il-

lustrated graphically in Fig. 2 for the case of a search in a

two-dimensional parameter space.

To track and bracket the system parameters’ point the con-

stellation’s topology must possess a finite volume, different

from zero; and interior point. The finite volume assures that

the parameters point can be localized inside a delimited region

and the interior point enables the algorithm to detect when the

system point is inside the constellation by checking when the

probability of the corresponding model is close to one. A

topology having these characteristics is an hypercube with a

center point. In a n-dimensional space an hypercube constel-

lation has N = 2n + 1 points (hypercube’s vertices plus a

center point, see Fig. 2 step 1). For a two-dimensional un-

known parameter space n = 2: N = 5 models with param-

eters: {
[

γ11 γ21
]

;
[

γ11 γ22
]

;
[

γ12 γ21
]

;
[

γ12 γ22
]

;
[

γ1c γ2c
]

} where
[

γ1c γ2c
]

is the center point, and γ =
[

γt
1 γt

2

]

is the system parameters’ vector to be estimated.

The constellation models’ parameters can be initialized with

physical plausible values or with an estimated range.

1

2

3

γ1

γ2

γ11 γ12

γ21

γ22

γ1c

γ2c

γt
1

γt
2

Fig. 2. Constellation topology and evolution in a two-

dimensional parameter space: 1- initial constellation setup;

2- tracking and bracketing; 3- shrinking.

Each point in the topology is associated with one of the N
estimators of the MMAE structure of Fig. 1 that was comple-

mented with the constellation adapter block. When the pos-

terior probability of a model reaches a threshold value near

to one, Pi ≥ Pth, it is identified as the closest to the sys-

tem point (in Fig. 2, and considering the euclidian metric, the

model with coordinates
[

γ12 γ22
]

is identified as the closest

to the system point,
[

γt
1 γt

2

]

), the constellation is translated

by positioning its center point,
[

γ1c γ2c
]

, at the point pre-

viously identified as the closest to the system point. Repeat-

ing this process the center point is eventually identified as the

closest to the system point that ends located inside the con-

stellation – the system point is bracketed. The tracking and

bracketing stage is illustrated by step 2 in Fig. 2.

To estimate the parameters of the system the ranges of the

models’ parameters of the constellation are systematically re-

duced and whenever the system point is bracketed the constel-

lation volume is reduced by a shrinking process. To refine the

parameters estimation the constellation volume’s is shrunk by

scaling the parameters’ intervals by a factor λ < 1 (step 3 in

Figure 2) and the system point is tracked and bracketed again.

To estimate the system state the CBMMAE uses a bank

of local estimators. For linear systems the Kalman filter (KF)

is optimal [6]. However, for nonlinear systems optimal state

estimation is difficult since the probability density functions

of the signals and noise are altered by the nonlinearities, so

that the mean and standard deviation are insufficient to de-

scribe the probability density function. In this case the state

estimate depends on the characteristics of the problem. We

will use extended Kalman filter (EKF) [6] and the unscented

Kalman filter (UKF) [4] as the state estimators for the non-

linear system.
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3. EXPERIMENTAL RESULTS

This method was developed in the context of the design of

bioelectronic vision systems, therefore the CBMMAE algo-

rithm is applied to the identification and parameters’ estima-

tion of a retinal ganglion cell (RGC) neuron model. The

stochastic leaky integrate-and-fire (SLIF) neuron model [7]

is employed complemented with a sigmoidal nonlinear block

to obtain the firing rate.

The pulse of a postsynaptic ionic current induced in a neu-

ron in response to a presynaptic set of action potentials ρ(t)
is given by:

d2Is(t)

dt2
+

2

τα

dIs(t)

dt
+

1

τ2α
Is(t) = α0ρ(t), (13)

α0 sets the peak amplitude of the current pulse and τα its de-

cay time. The input spike train is defined as a series of Dirac

delta functions: ρ(t) =
∑

i δ(t − ti) modeling the barrage

of incoming action potentials from different presynaptic neu-

rons at distinct time instants ti. The SLIF model describes the

subthreshold potential of a neuron’s membrane by:

τm
dVm(t)

dt
= −Vm(t) +RmIs(t) + σmξm(t), (14)

where τm = RmCm is the membrane’s time constant and σm

establishes the power of the membrane noise ξm(t). There-

fore, the subthreshold dynamics of the neuron according to

the SLIF model is written in the state space form as:

dx(t)

dt
= Ax(t) +Bu(t) + Lξ(t), (15)

with the state-space variables vector:

x(t) =
[

dIs(t)/dt+ 1/ταIs(t) Is(t) Vm(t)
]T

, (16)

with the dynamic matrix:

A =





−1/τα 0 0
1 −1/τα 0
0 1/Cm −1/τm



 . (17)

The input vector is the neural function u(t) =
[

ρ(t)
]

where

the input matrix is B =
[

α0 0 0
]T

. The noise vector ξ(t)
models the spontaneous activity observed in neurons in the

absence of controlled input stimulus and the random varia-

tions on the ionic currents through the membrane.

The values for the parameters, given in Table 1, are taken

to conform with the literature [8]. The neuron synaptic cur-

rent and the membrane voltage are sampled at regular inter-

vals of time. The discrete time measurement equation:

z(t) = Cx(t) + θ(t), t = nTs, n ∈ Z, (18)

is joined to the state-space equations. Ts is the sampling pe-

riod and C is observation matrix. The noise vector θ(t) in

(18) models the observations’ errors.

Parameter Value

Membrane capacitance Cm 250 pF

Membrane time constant τm 10 ms

Synapse current peak α0 0.38089 µA/s

Synapse current decay time τα 0.32564 ms

Table 1. Neuron parameters.

To evaluate the CBMMAE in the identification and pa-

rameter estimation of nonlinear systems the SLIF neuron

model is extended with a nonlinear block to generate the

firing rate from the subthreshold membrane potential. The

nonlinear block generates the discrete firing rate r[t] from the

membrane potential Vm[t] by applying a sigmoid, such that

r[t] = S (Vm[t]), with the form:

S (Vm[t]) =
r0

1 + e−(Vm[t]−V0)/τr
, (19)

where r0 establishes the maximum value for the firing rate, V0

shifts the sigmoid along the horizontal axis, and τr establishes

the slope of the sigmoid between its zero minimum value and

its maximum value r0. The discrete state-space nonlinear sys-

tem model can be written as:

x[t+ 1] =

[[

Ad 03×1

]

x[t]
S (x3[t])

]

+Bu[t] + ξ[t], (20)

where Ad is the discrete counterpart of (17) and the state vec-

tor of equation (16) is augmented to include the firing rate:

x[t] =
[

dIs(t)/dt+ 1/ταIs(t) Is(t) Vm(t) r[t]
]T

.
(21)

The linear and nonlinear blocks of the model are apparent

from (20). The parameters of the sigmoid are adjusted to the

firing rate of the RGC data set referred in [9] by following the

methodology described in [10]. The matrix ξ(t) includes the

current, ξs(t), voltage, ξm(t) and firing rate, ξr(t), noises:

ξ(t) =





ξs(t)
ξm(t)
ξr(t)



 , with power L =









σs 0 0
0 0 0
0 σm 0
0 0 σr









. (22)

The noise components are considered to be Gaussian white

noise with variances: σ2
s = 10−18 A2, σ2

m = 10−6 V2 and

σ2
r = 10−2 Hz2. The input signal u[t] is generated from

a Poisson distribution with a mean rate of 45 spikes/s. (The

RGC data presented in [9] has an average of 42 spikes/s). The

observation matrix is C =
[

0 0 0 1
]

, so that only the

firing rate is observed. The other state variables are inferred

through the nonlinearity. The observation noise has the in-

tensity: Θ = 10−4. The constellation models’ probabilities

were initialized with Pk = 1/N, k = 1, . . . , N N = 2n+1,

with the initial mean estimate x̂k[0|0] = 04×1 and covari-

ance Σk[0|0] = 10−3
I4×4. The threshold probability was
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Fig. 3. Estimates of the nonlinear system parameters (

EKF; UKF ).

set to Pth = 0.95. The shrinking scale factor is λ = 0.5.

The results were obtained by averagingM = 25 Monte-Carlo

runs of the experiment. Figure 3 displays the evolution of the

estimates the parameters of the linear block computed when

observed through the nonlinear sigmoid with (9) using a con-

stellation of N = 22 + 1 = 5 models. The estimation er-

ror in Fig. 4 is computed by γ̂[t] = 1
M

∑M
i=1 [γ[t]− γ̂i[t]].

Figure 3 shows the results obtained for the estimation of the

parameters vector γ =
[

1/τα 1/τm
]T

, that results in a con-

stellation of N = 5 models for the CBMMAE, with the initial

ranges: γ1 ∈
[

2100, 2300
]

and γ2 ∈
[

500, 700
]

.

Figure 3 and Fig. 4, where the EKF and the UKF are used

as the sub-optimal state-estimators, show that the system pa-

rameters are identified even when initialized with a range of

values different from the true ones.

0 1 2 3 4 5
0

200

400

600

800

1000

γ̃
1
(t

)

0 1 2 3 4 5
−800

−600

−400

−200

0

200

γ̃
2
(t

)

t [s]

Fig. 4. Estimates errors for the nonlinear system parameters

( EKF; UKF ).

4. CONCLUSIONS

By using a properly designed constellation of models the

CBMMAE is able to identify and tune the parameters of non-

linear systems, even when the system state variables of the

state estimators are inferred through the nonlinearity. These

results show the effectiveness of this use of this method in

nonlinear systems. The number of estimators depend on

the number of parameters than can change, and not on the

number of possible different configurations of the system.

The number of models in the estimators bank depends on

the number of unknown and not on the number of possible

system configurations, and it robust in terms the initial range

of the system parameters. Further research must be done to

determine the conditions on which the algorithm converges

for nonlinear systems since the convergence of the MMAE is

guaranteed only for linear systems.
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