
Nordic Journal of Computing

A CASE STUDY ON COLOURED PETRI NETS IN
OBJECT-ORIENTED ANALYSIS AND DESIGN

João Paulo Barros
Instituto Politécnico de Beja, Escola Superior de Tecnologia e Gestão

Rua Afonso III, n. 1, 7800-050 Beja, Portugal
Universidade Nova de Lisboa/UNINOVA, Portugal

jpb@uninova.pt

Jens Bæk Jørgensen
Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

jbj@daimi.au.dk

Abstract. In this paper, we first demonstrate how a Coloured Petri nets (CPN) model can
be used to capture requirements for a considered example system, an elevator controller.
Then, we show how this requirements-level CPN model is transformed into a design-level
object-oriented CPN model, which is structurally and conceptually closer to class diagrams
and object-oriented programming languages. The CPN models reduce the gap between
user-level requirements and the respective implementation, thus simplifying the imple-
mentation or code generation. Finally, we discuss the code generation from object-oriented
CPN models.

ACM CCS Categories and Subject Descriptors: D. Software; D.2 SOFTWARE ENGI-
NEERING; D.2.2 Design Tools and Techniques, Petri nets.

Key words: requirements engineering, executable use cases, model transformation.

1. Introduction

Petri nets are sometimes seen as a formal language whose application is not scal-
able to large systems. This perspective results from equating Petri nets to low-level
Petri nets, especially Place/Transition nets [Reisig 1985]. Yet, there are numer-
ous classes of Petri nets, all of them sharing a few fundamental characteristics,
e.g. graphical representation, precise semantics, and duality of concepts [Desel
and Juhás 2001]. In particular, coloured Petri nets (CPN) [Jensen 1992-97] are
useful to model the behaviour of systems. CPN models are expressive and exe-
cutable. Besides, CPN have a standard and implemented formal, precise seman-
tics, which allows model verification. Scalability is a particular important asset of
CPN, which makes CPN models candidate to be useful in real-world software de-
velopment projects. In many projects, this will require that CPN models are used
in conjunction with more traditional software development project artifacts.

This paper discusses how to apply CPN in object-oriented analysis and design.
In particular, we address what seems to be two main drawbacks of CPN: (1) CPN

Received August 20, 1994; revised September 28, 1995; accepted October 11, 1996.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Digital IPBeja

https://core.ac.uk/display/154166695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. P. BARROS, J. B. JØRGENSEN

models often lack a clear connection to other system views, including to structure
diagrams. We will show how CPN models can be used together with common arti-
facts from object-oriented methodologies (e.g. the Rational Unified Process (RUP)
[Kruchten 2004]. (2) CPN models are difficult to implement. We will include a
brief discussion that recognises the problem, and sketch some ideas for how to im-
plement CPN models, but we do not offer a proven solution that can yield efficient
implementations.

We first present a CPN model that is used to express user requirements in a
precise and executable way. This requirements-level CPN model can be used to
provide feedback in the analysis phase: it describes the desired behaviour of the
environment that must be caused by the system we are going to develop. We dis-
cuss how the requirements-level model is transformed into a design-level model
that includes a class diagram and a new design-level object-oriented CPN model,
thus establishing a connection between class diagrams and CPN models. The new
CPN model is used to describe the behaviour of the software to be developed. It is
also closer to an implementation of the software than the requirements-level CPN
model, namely it is closer to the class diagram structure. In this way, CPN models
and their transformation is used to reduce the gap between user-level requirements
and implementations.

Fig. 1 illustrates the overall approach and represents the artifacts we will consider
in this paper.

Use cases

Requirements-
level CPN model

Class diagram

Design-level
object-oriented

CPN model

Implementation

Focus on the environment and real-world entities Focus on representing real-world entities as
software objects

Focus on realising the design as a
running system

Requirements: Design: Implementation:

Fig. 1: Overall approach.

An arrow between two nodes in the figure indicates that the artifact represented
by the source node is used in the development of the artifact represented by the
destination node. The arrows with ”Implementation” as destination are dashed
to signal that going from the design-level artifacts — the class diagram and the
design-level object-oriented CPN model — to an actual implementation is only
briefly discussed in this paper, as the focus of the paper is on the transformations
represented by the solid arrows.

The paper is structured as follows: Section 2 presents the use cases for the con-
sidered elevator controller; starting from the use case diagram, Section 3 shows
a requirements-level CPN model for the elevator controller while informally in-
troducing CPN’s syntax and semantics; Section 4 discusses the transformation
from the requirements-level model to a design-level model; Section 5 presents a
class diagram for the elevator controller; starting from the class diagram, Section

CPNS IN OO ANALYSIS AND DESIGN 3

6 presents a design-level object-oriented CPN model and Section 7 discusses code
generation issues; finally, Section 8 discusses related work, and Section 9 con-
cludes.

2. Use Cases

The elevator controller, we consider, must work in a ten floor building in which
there are two elevator cages.

The main responsibility of the controller is to control the movement of the two
cages. Movement is triggered by passengers, who push request buttons. On each
floor, there are floor buttons, which can be pushed to call the elevator; a push
indicates whether the passenger wants to travel up or down. Inside each cage, there
are cage buttons, which can be pushed to request to be carried to a particular floor.
In addition to controlling the movement of the cages, the controller is responsible
for updating a location indicator inside each cage, which displays the current floor
of the cage.

There are many use cases that must be supported by the elevator controller. Some
examples are:
◦ Collect passengers: when a passenger pushes a floor button on floor f, even-

tually an elevator cage should arrive at floor f and open its doors;

◦ Deliver passengers: when a passenger pushes the cage button for floor f in an
elevator cage, eventually the elevator cage should arrive at floor f and open
its doors;

◦ Show floor: when a cage arrives at a floor, passengers inside the cage should
be informed about the current floor number.

The relationship between the use cases and external entities in the environment
of the elevator controller are depicted in Fig. 2.

Elevator controller

Collect
passengers

Deliver
passengers

Show
floor

Floor
button

Cage
button

Entry
sensor

Arrival
sensor

Motor

Elevator
door

Location
indicator

Fig. 2: UML-style use case diagram for the elevator controller.

4 J. P. BARROS, J. B. JØRGENSEN

In our approach, the actors in the use case diagram are the external entities that
the controller directly interacts with. These entities are given, and we cannot
change them or affect them in our development project, but we must know how
they behave. This conception of actors in a use case diagram may deviate from
more common conventions. As an example, many use case diagrams for the el-
evator controller would include a ”passenger” actor. We do not do this, because
the elevator controller does not interact directly with passengers, but merely with
buttons and sensors operated by and affected by passengers behaviour.

Let us take a closer look at the use case Collect passengers, whose trigger event is
the push of a floor button. This should generate a stimulus to the elevator controller,
which, upon reception, must do a number of things:

(1) The controller must turn on the light of the pushed button;

(2) The controller must allocate the request to one of the cages. In particular, this
implies that the controller must determine whether the request can be served
immediately. This is possible only if the request comes from a floor where
there currently is an idle cage. In this case, the cage can just open its doors;
it is not necessary to start the motor;

(3) If it is necessary to start the motor, the controller must generate an appropriate
signal to the motor;

(4) If it is sufficient to open the doors, the controller must generate a signal to the
doors instructing them to open.

We could illustrate this scenario and its continuation with cages moving, sen-
sors being triggered etc. using, e.g. sequence diagrams. Alternatively, we could
describe the desired general behaviour of the elevator controller and the entities
in its environment using statecharts [Harel 1987]. This is done, e.g. in Wieringa
[2003]. However, our objective with this paper is to demonstrate the applicability
of CPN in object-oriented analysis and design (statecharts and CPN models have
their advantages and disadvantages in comparison with each other, see, e.g. Elk-
outbi and Keller [2000] and also Jørgensen and Christensen [2002]). Therefore,
instead, we will describe the desired general behaviour using CPN. We do so in the
next section.

3. Requirements-level CPN Model

The requirements-level CPN model, which we will present in this section, models
the desired behaviour of the environment as controlled by the elevator controller.
The model is created and executed with the tool CPN Tools [CPN Tools 2004],
which allows the creation of graphical models and includes the programming lan-
guage Standard ML [Milner et al. 1997]. Together with the explanation of the
model, this section is an informal primer to the CPN language itself, which allows
the reader to understand the model in general terms — although we do not explain
all the technicalities.

An earlier version of the requirements-level model has been previously presented
in the technical report Jørgensen [2004] describing how the requirements-level

CPNS IN OO ANALYSIS AND DESIGN 5

CPN model is constructed based on given traditional documentation taken from
Wieringa [2003]. Thus the current paper supplements Jørgensen [2004] by dis-
cussing how the requirements-level CPN model can be used as a basis for design-
level models, which are closer to an implementation.

The CPN model consists of (1) declarations of data types, functions, etc. and (2)
a graphical net structure in the form of three related modules: Do Cage Cycle,
Handle Requests, and Move UpDown. As we will see, the declarations are used
as inscriptions in the graphical net structure.

3.1 Representation of Entities

Entities in the environment are represented via data type declarations. This applies
both to the environment entities, which can be seen from the use case diagram
in Fig. 2, but also to relevant entities with which the controller does not interact
directly, but which it controls via other entities — e.g. the controller controls a
cage because the controller interacts with the cage’s motor.

As an example, the data type CAGE used to represent the elevator cages consists
of 4-tuples of the form (cageid,floor,requestlist,direction):
◦ cageid identifies the cage;

◦ floor is the number of the floor where the cage currently is, if the cage is
stationary, or has last visited, if the cage is moving;

◦ requestlist is the cage’s request list represented as a list of floor numbers;
it is assumed that the controller will maintain a request list for each cage
recording the outstanding requests currently allocated to that particular cage;

◦ direction holds the cage’s current direction of movement: up, down, or no.
Other examples are floors that are represented as integers, and floor buttons

that are represented as pairs (floor,direction), where direction is no if
the button has not been pushed and otherwise up or down, indicating the passen-
ger’s direction request. The cage buttons in each cage are represented as a pair
(cageid,buttonlist), where buttonlist is a list of integers corresponding to
the floors for which cage buttons have been pushed and the respective generated
requests have not been served yet.

3.2 Representation of Cage Behaviour

The basic behaviour of cages is modelled in the Do Cage Cycle module, shown
in Fig. 3.

A CPN model describes both states and events. The state of a CPN model is a
distribution of tokens on places, drawn as ellipses. Each place has a data type, writ-
ten in capital letters, which determines the kinds of tokens the place may contain.
In Fig. 3, the two elevator cages are modelled by CAGE tokens. Each CAGE token is
at any time on exactly one of the places Idle, Moving, Opened, or Closed, which
all have data type CAGE. The Floor Buttons and Cage Buttons places are used
to model the floor buttons and cage buttons, respectively. Tokens on these places
correspond to buttons and model whether buttons are on or off.

6 J. P. BARROS, J. B. JØRGENSEN

Idle
2 1‘(cg(1),1,[],no)++

1‘(cg(2),1,[],no)

CAGE initCages()

Moving

CAGE

Opened

CAGE

Closed

CAGE

Start
Motor

[not (servenow (c,cf,f::rl,cd))]

Serve
[servenow (c,cf,f::rl,cd)]

Arrive at
Destination

[stophere (c,cf,rl,cd)]

Serve
Next Req

[not(turnidle (c,cf,rl,cd))]

Close
Doors

Stop

[turnidle (c,cf,rl,cd)]

(c,cf,f::rl,cd)

setdirection(c,cf,f::rl,cd)

(c,cf,rl,cd)

(c,cf,
removerequest cf rl,cd)

(c,cf,f::rl,cd)

(c,cf,rl,cd)

resetdirection(c,cf,rl,cd)

(c,cf,rl,cd)

(c,cf,rl,cd)

(c,cf,rl,cd)

Handle
Requests

Handle Requests

Move
UpDown

Move UpDown

Floor
Buttons 10

FLOORBUTTON

initFloorButtons()

Fusion 1

Cage
Buttons 2

CAGEBUTTON

initCageButtons()

Fusion 2

(cf,d)

(c,bl)

(c, delete cf bl)

(cf,d)
(cf,no)

(c,bl)

(c,
delete cf bl)

(cf,no)

(c,cf,
removerequest cf rl,cd)

(c,cf,rl,no)

Fig. 3: Do Cage Cycle module.

The state shown in Fig. 3 is the model’s initial state, which represents a situation,
where both elevator cages are idle on floor 1 and no requests have been made; this
is also the state in Figs. 4 and 5 to be shown later. The number of tokens on a place
is indicated by an integer in a small circle close to or on the place. In CPN Tools,

CPNS IN OO ANALYSIS AND DESIGN 7

a click on the small circle opens a box, which shows the current state of the place
— that has been done for place Idle, where the contents of the two CAGE tokens
can be seen. For places Floor Buttons and Cage Buttons, only the number
of tokens can be seen. The remaining places (Moving, Opened, and Closed) are
empty, and no small circles are shown.

The events of a CPN model are represented using transitions, drawn as rectan-
gles. Arcs connect transitions with places. The events consist of transitions that
remove tokens from input places and add tokens to output places. The expression
associated with an arc determines the removed or added tokens: e.g. the expres-
sion (c,cf,f::rl,cd) appearing on the arc from the Idle place to the Start
Motor transition specifies a CAGE token in which the third entry matches the pat-
tern f::rl, i.e. is a non-empty list (c, cf, f, rl, and cd are variables of appropriate
data types).

A transition that is ready to remove and add tokens is enabled; it may occur.
There are two conditions for enabling:

(1) Appropriate tokens are present on the input places — the values in these
tokens are bound to the variables appearing in the inscriptions around the
transition;

(2) A guard — a Boolean expression in square brackets — is true.
In Fig. 3, enabling of Start Motor requires: (1) that Idle contains some
CAGE token that matches the pattern (c,cf,f::rl,cd), i.e. a CAGE token with a
non-empty request list; and (2) that the guard [not (servenow (c,cf,f::rl,
cd))] evaluates to true; i.e. that the state represents a situation in which cage c is
not currently at floor f. Start Motor is not enabled in the shown state. However,
when other transition occurrences in the CPN model have changed the state, Start
Motor can become enabled and can occur. This models that a cage changes from
being idle to be moving: a CAGE token is removed from Idle and a CAGE token is
added to Moving; the latter token with its direction entry determined by the call
of the setdirection function.

Occurrence of Arrive at Destination models that a cage arrives at a floor,
stops, and opens its doors. This causes updates of tokens representing buttons on
the Floor Buttons and Cage Buttons places to model that the request buttons
for the current floor are turned off. Also, the request for the current floor is removed
from the request list of the CAGE token by the call of the removerequest function
on the arc from Arrive at Destination to Opened.

Occurrence of Close Doors models that a cage closes its doors: The token
representing the cage is put on Closed. The Stop transition is enabled if the
CAGE token has an empty request list; this is checked by the turnidle call in the
guard. Serve Next Req is enabled if the request list is non-empty, In this way, it
is modelled that the cage either can become idle or resume its movement.
Handle Requests and Move UpDown in Fig. 3 are special kinds of transitions

that refer to the two other modules of the model, which we describe below.

8 J. P. BARROS, J. B. JØRGENSEN

3.3 Representation of Requests Handling

The handling of requests, i.e. the making and subsequent allocation of requests to
cages, is modelled in the Handle Requests module, shown in Fig. 4.

Floor
Buttons10

FLOORBUTTON

initFloorButtons()

Fusion 1 Cage
Buttons 2

CAGEBUTTON

initCageButtons()

Fusion 2

Floor
Reqs

FLOORREQUEST

Cage
Reqs

CAGEREQUEST

Idle
2

1‘(cg(1),1,[],no)++
1‘(cg(2),1,[],no)

CAGE

initCages()

I/O

Push
Floor Button

[d<>no]

Push
Cage Button

Allocate
Floor Req

Allocate
Cage Req

(f,no)

(f,d)

(f,d)

(c,cf,
addrequest f rl,cd)

(c,bl)

(c,f)

(c,f)

(c,cf,
addrequest f rl,cd)

(c,cf,rl,cd)
(c,cf,rl,cd)

(c,f::bl)(f,d)

Fig. 4: Handle Requests module.

Each of the places Idle, Floor Buttons and Cage Buttons is conceptually
glued with the place with the same name in the Do Cage Cycle module. In a
hierarchical CPN model, there are two ways to glue places. One way is to glue a
socket place on one module with a corresponding port place on another module;
the socket place must be connected to a substitution transition. An example of this
are the Idle places, where Idle on the Do Cage Cycle module is connected to
the Handle Request substitution transition. The other way is to put places in the
same place fusion set; this has been done to the Floor Buttons places and the
Cage Buttons places, respectively.

Occurrence of the Push Floor Button transition models that a passenger pu-
shes a floor button, either in direction up or down. This will cause the floor button to
light up, modelled in the CPN model by an update of a floor button token on Floor
Buttons; that the light of the floor button is eventually turned off again is modelled
by occurrence of either the Serve or, as we saw, the Arrive at Destination

CPNS IN OO ANALYSIS AND DESIGN 9

transition in the Do Cage Cycle module (Fig. 3).
The occurrence of Push Floor Button also causes a FLOORREQUEST token to

be added to Floor Reqs. Subsequently, this may cause Allocate Floor Req
to become enabled; Allocate Floor Req models assignment of a given floor
request to one of the two elevator cages. In the current version of the model, the
scheduling policy is very simple: a random idle elevator is chosen.

Occurrence of Push Cage Button models that a passenger pushes a cage but-
ton. Similarly to Push Floor Button, this causes an update of a token on Cage
Buttons modelling that the button lights up. It also causes a CAGEREQUEST token
to appear on Cage Reqs. Occurrence of Allocate Cage Req models that the
request is added to the request list of the cage in which the button is pushed —
which, of course, is the only sensible way to allocate a cage request.

3.4 Representation of Up and Down Movement

The up and down movement of the elevator cages is modelled in the Move UpDown
module, shown in Fig. 5.

Location
Indicators 2

1‘(cg(1),1)++
1‘(cg(2),1)

LOCATIONINDICATOR

initLocationIndicators()

Moving

CAGE
I/O

Move
One Up

[cd=up,cf<10,not(stophere (c,cf,rl,cd))]

Move
One Down

[cd=down,cf>1,not(stophere (c,cf,rl,cd))]

(c,cf,rl,cd)

updatelocationindicators c l up

(c,cf,rl,cd)

updatelocationindicators c l down

(c,cf+1,rl,cd)

(c,cf-1,rl,cd)

(c,l)

(c,l)

Fig. 5: Move UpDown module.

The Moving place is conceptually glued with the place with the same name in
the Do Cage Cycle module (Fig. 3).

The Move One Up transition models movement of an elevator cage one floor up.
When it occurs, the floor entry of the CAGE token on Moving is incremented, as
can be seen from the expression on the arc from Move One Up to Moving. The
guard of Move One Down consists of three Boolean expressions and should be
read as a conjunction. The expressions cd=up and cf<10 model properties that
are inherent to the environment: that the cage actually is moving upwards and that
it cannot move up if it is at the topmost floor. The expression not(stophere
(c,cf,rl,cd)) models a condition that is enforced by the elevator controller:

10 J. P. BARROS, J. B. JØRGENSEN

that the cage only moves if it should not stop — it should stop if there is a request.
The Move One Down transition works similarly to Move One Up.

Tokens on the Location Indicators place model the location indicators for
the two elevator cages. The state of Location Indicator is updated each time
either Move One Up or Move One Down occurs. The call of the function update
locationindicators emulates the controller’s responsibility of ensuring that
each location indicator correctly displays the actual current floor of the elevator
cage. In terms of the CPN model, this means that the floor entry of each of the
tokens on Location Indicators must be equal to the floor entry of the corre-
sponding CAGE token — which is on one of the places Idle, Moving, Opened, or
Closed.

4. From Requirements-level to Design-level Models

The requirements-level CPN model can be seen as an executable use case in the
sense of Jørgensen and Bossen [2004]. This is described in more detail in
Jørgensen [2005], where the CPN model is used in a prototyping fashion to drive
a graphical animation. The execution of the model can be used to validate the
three use cases of Fig. 2. More generally, the CPN model can be used as a vehicle
for requirements engineering: the model and its execution can be used to specify,
validate, and elicit requirements for the elevator controller.

The model describes when the controller should interact with external entities
like motors, buttons, sensors, and doors. The model also describes what should
be the effect of such interactions in the environment. Neither the CPN model, nor
the use case diagram in Fig. 2, explicitly describe details of the software we are
designing for the elevator controller. The elements of both the use case diagram
and the CPN model are to be thought of as real-world elements, like a real motor,
a real button, and a real door.

To design the elevator controller, we need to move from the environment-level
descriptions we have, to a description of the software. This involves the deriva-
tion of a design-level model, thus specifying the constructs and concepts found in
object-oriented programming languages. To that end, we can and we should take
advantage of what we have learned while constructing the requirements-level CPN
model. We use that knowledge to build a design-level model, which includes two
views:

(1) A class diagram, as a structure diagram;

(2) An object-oriented CPN model, for the specification of behaviour, which will
be referred as the design-level object-oriented CPN model or simply as the
design-level CPN model.

In the sense of Damm and Harel [2001], the latter includes intra-object behaviour
— the behaviour of the individual objects of a class — and inter-object behaviour
— communication and cooperation between objects of different classes.

In our approach, we explicitly pay attention to and describe entities in the real
world at the requirements-level, as we have seen. Then, we make an explicit tran-
sition from considering real-world entities to considering software at the design-

CPNS IN OO ANALYSIS AND DESIGN 11

level. The importance of distinguishing between the real world, on one hand, and
the software, on the other hand, is advocated by a number of software experts,
see, e.g. Jackson [2001]. However, this distinction is not always made explicitly
in object-oriented analysis and design, where it is not always clear whether the
classes in a class diagram are to be conceived as real-world entities or as software.
Letting it be up to the reader of a class diagram to decide whether one or the other
interpretation is applicable may cause confusion.

The following section presents a class diagram obtained from the use cases and
the requirements-level model in Figs. 3, 4, and 5. Section 6 presents the corre-
sponding design-level object-oriented CPN model. Yet, in practice, the class dia-
gram should be build in iterative steps together with the design-level CPN model
as each one emphasises distinct system views, thus supplementing the other.

5. Class Diagram

A class diagram for the elevator controller is shown in Fig. 6.

Cage

−state:{Idle, Moving, Opened, Closing}
−direction:{no, up, down}
−floor:1..10
−requestlist:List
−buttonList:List

−servenow():boolean
−setdirection():void
−removerequest():void
−stophere():boolean
−turnidle():boolean

FloorButton

−state

:{no, up, down}

Door

−state:{opened, close}

+doorOpen():void
+doorClose():void

Motor

−state:{stopped,running}

+motorStart():void
+motorStop():void

LocationIndicator

−floor:1..10

Initiator

FloorButtonAllocation

+FBAarrived():void
+FBAallocateRequest():void

CageButtonAllocation

+CBAarrived():void
+CBAallocateRequest():void

CageButton

−state:{on, off}

1

2

1

1

1

1

1
1

1 10

«call»

«call»

«permit»

1 1

1

1

«call»

«call»

1 1
1 10

Fig. 6: Class diagram for the elevator controller.

The class diagram should be compared with the use case diagram of Fig. 2. Each
class in the class diagram, which has a name similar to the name of an actor in the
use case diagram, is the software representation of that actor inside the elevator
controller, e.g. instances of the FloorButton class represent the real-world, phys-
ical floor buttons. In addition to the classes representing actors from the use case
diagram, the class diagram contains the classes Cage, FloorButtonAllocation,
CageButtonAllocation, and Initiator.

The elevator controller will contain two instances of the Cage class; each one
represents one of the two real-world cages. The state of each cage object reflects
the information about the real world that the controller needs in order to do its
job: e.g. that information includes knowledge of the position and direction of
movement of the modelled cage. Many attributes and operations of the classes
in the class diagram are derived from the requirements-level CPN model. Yet, as

12 J. P. BARROS, J. B. JØRGENSEN

the class diagram has been created after the requirements-level CPN model, there
are some differences, which are due only to an increased understanding of what
it is needed to include in the models: e.g. there are no ”motor tokens” in the
requirements-level CPN model — although there might as well have been — but
there are explicit representations of motor objects in the class diagram. There, the
motors are ”first class entities” (modelled as instances of a class Motor); they are
explicitly commanded, by the Cage objects, to start and stop. These commands are
modelled by object operations. The same was done for elevator doors, which are
commanded to open and close by the Cage objects.

The classes FloorButtonAllocation and CageButtonAllocation are used
to model allocation of requests to cages. More specifically, they group the several
cage and floor buttons and delegate the request handling to the respective button
classes: FloorButton and CageButton. Taken together, they play a similar role
to the Handle Requests module in Fig. 4.

There is exactly one instance of the Initiator class; its only aim is to create
other objects inside the elevator controller, namely the two Cage objects and the
FloorButtonAllocation. As already stated, the latter groups the floor buttons.
For that reason it is not made part of the Cage objects.

The LocationIndicator class plays a similar role to the Move Up Down mod-
ule in Fig. 5; its objects have direct access to the respective Cage object’s private
attributes and update the location indicators while the cage is in state Moving.

As noted in Kruchten [2004], objects and classes are most likely found by walk-
ing through the use cases; e.g. the books Jacobson et al. [1999] and Douglass
[2004] provide concrete advice on the connection between use cases, classes, and
objects. Besides taking into account the use cases, the approach we have used to
construct the presented class diagram also considers the connection to the require-
ments-level CPN model. Due to its generality, we believe our approach can be
applied to other models. The approach is summarised by the following points:
◦ The general view should be the one from object-oriented development, that

means the model should be seen as a set of interacting objects that, in each
interaction, act as a client or as a server; the former asks for a service and
the latter provides it; only for the specification of particularly complex oper-
ations, should we think of hierarchical decomposition and always inside one
specific class;
◦ Each actor, in the use case diagram, is a candidate to a class in the class

diagram; note that these actors can already be specified by data types (colour
sets) associated to places in the requirements-level model; in those cases, the
object attributes are the data type elements plus the object’s self reference;
◦ When reusing the requirements-level model functions in arc expressions, they

should be seen as private operations on the objects that model the data they
manipulate;
◦ Some entities that do not appear explicitly can be good candidates to classes

(in the example, this is the case with classes Motor and Door);
◦ When splitting the model in several classes, we need to model operations;

these are expressed as public operations.

CPNS IN OO ANALYSIS AND DESIGN 13

6. Design-level Object-oriented CPN Model

The design-level CPN model describes the software that we must develop. As
we want to construct object-oriented software and to establish a clear connection
between CPN models and well-known object-oriented artifacts we need to achieve
two objectives:

(1) To allow the use of class diagrams as a starting point for the construction of
design-level object-oriented CPN models;

(2) To describe the behaviour (both inter-object and intra-object) for the objects
whose classes were identified in the class diagram while using constructs
conceptually close to the ones found in mainstream object-oriented program-
ming languages.

These objectives are made possible through the use of five idioms for the con-
struction of design-level object-oriented CPN models:

(1) The creation of a CPN module for each class in the class diagram;

(2) The explicit creation of each object by a create operation just like in object-
oriented programming languages;

(3) The use of one token for each object in the CPN module for the respective
class; those tokens contain the object self reference — given by the create
operation — and the object attributes, again just like in object-oriented pro-
gramming languages;

(4) The use of a high-level form of transition fusion — named synchronous chan-
nels – for modelling operations and operation calls, as proposed in Barros and
Gomes [2004];

(5) The use of place fusions, as provided by CPN Tools, for modelling of public
access to object attributes.

Next, we present, in detail, the CPN module for Motor class and the CPN module
for Cage class, both part of the class diagram in Fig. 6. Those modules exemplify
the use of the presented idioms.

6.1 CPN Module for Motor Class

Fig. 7 shows the design-level CPN module for the Motor class (see Fig. 6), which
exemplifies the modelling of a class behaviour by a CPN. When defining the CPN
module for a class we use the tokens to carry the object reference plus all the object
attributes. As each object is modelled by a token, the CPN module of a given class
models the behaviour of all class instances.

The CPN module for class Motor models the behaviour for the two objects
that we use to represent the two motors with two possible states: stopped and
running. The objects are created by transition motorCreate. This transition has
an associated receive channel, specified by the syntax channelName.?(parameters),
where the ? stands for the receive part of the channel. In object-oriented terms,
one can think of it as a class operation as it does not receive an object reference
and, as in this case, it typically returns a new object reference (the self attribute).

14 J. P. BARROS, J. B. JØRGENSEN

motorsToCreate

MotorID

1‘1++1‘2

2

1‘1++1‘2

stopped

MotorObj

running

MotorObj

motorCreate

motorStop

motorStart

self self

selfself

self self

motorCreate.?((*OUT*)self)

motorStart.?((*IN*)self)

motorStop.?((*IN*)self)

Fig. 7: CPN for the Motor class, using channels.

In the presented example, the motorCreate operation is called from transition
cageCreateBegin, which is part of the design-level CPN model for class Cage
(top-left corner of Fig. 9), which we will describe later.

The place motorsToCreate specifies that only two different objects can be cre-
ated. For each firing of transition motorCreate, one Motor object is created. In
this simple case, as the object’s state is modelled by places stopped and running,
its only attribute is the variable self, which is the object self reference. When a
Motor object is created its state is stopped. This is specified by place stopped in
Fig. 7. Later, after transition motorStart firing, a Motor object state can take the
value running.

Each Motor object has two public operations, whose single effect is to change the
object state: motorStart and motorStop. Each of these operations is modelled
by a transition and an associated receive channel with the same name. An instance
operation has the object reference as one of its parameters. This has the advantage
of being similar to the syntax and semantics commonly found in object-oriented
programming languages.

An operation call is specified by the send part of a channel and has the syntax
channelName.!(parameters). The channel’s semantics is defined by the fusion of
the two transitions (with the send and receive parts). The resulting transition has
a guard which is the conjunction of both guards. As an example, Fig. 8 shows
a transition (named Start motor/motorStart) with the equivalent semantics
to the synchronous channel motorStart between transition Start motor in the
CPN module for class Cage (see Fig. 9) and transition motorStart in the CPN
module for class Motor (see Fig. 7).

6.2 CPN Module for Cage Class

Fig. 9 shows the design-level CPN model for class Cage. The requirements-level
model in Fig. 3 defined a CAGE data type with the form (cageid,

floor, requestlist, direction). For the class model, all these four ele-
ments are defined as attributes for Cage objects. We also define, as Cage ob-

CPNS IN OO ANALYSIS AND DESIGN 15

stopped

MotorObj

running

MotorObj

Moving CageObj

LocationIndicator

Idle

CageObj

Start Motor/motorStart

[not (servenow(c, cf, f::rl, cd))]

setdirection(self, c,cf, f::rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c, cf, f::rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

motorRef motorRef

Fig. 8: Transition fusion for channel motorStart.

jects’ attributes, the references to the composite objects CageButtonAllocation,
LocationIndicator, Door, and Motor, and the reference to the aggregate ob-
ject FloorButtonAllocation. Hence, each Cage object has the form (self,
cageid, floor, requestlist, direction, doorRef, motorRef, cbaRef,

fbaRef). Besides the variable self for the objects’ self reference, we use vari-
ables with the syntax nameRef for specifying references to other objects. The
remaining variables are the ones used for the requirements level model in Fig. 3.

The CPN module for Cage class has the same basic structure as the Do Cage
Cycle module in Fig. 3. The differences are due not only to the structure imposed
by the class diagram, namely the creation of one CPN module for each class, but
also to the increased modularity made possible by the use of synchronous channels.
More specifically, the synchronous channels allow us to map operations in the class
diagram, and their invocations, to design-level CPN models.

Whereas the initial Do Cage Cycle module (Fig. 3) assumes that both ca-ges
initially exist in the Idle state, the CPN module for Cage class models the cage
objects creation explicitly. We decided to explicitly model object creation in all
classes for two reasons: (1) it makes the model conceptually closer to object-
oriented specifications as all objects need to be created; (2) it allows a clear vi-
sualisation of composition and aggregation relations between objects.

The operation cageCreateBegin creates a Cage object (and so it returns the
new object reference), and also calls the create operations for all the composite
objects. The arc expressions 1‘cageObj1 ++ 1‘cageObj2 in transition’s cage
CreateEnd input and output arcs guarantee that both objects enter place (state)
Idle in the same instant. Differently, the reference for the aggregate FloorButton
Allocation object (fbaRef) is received from the object Initiator that also
creates the cage object.

The CPN module for class Motor (see Fig. 7) returns the object reference (self)
through the channel motorCreate. This reference is then used by the Cage objects

16 J. P. BARROS, J. B. JØRGENSEN

Idle

CageObj

Moving CageObj
LocationIndicator

OpenedCageObj

Closing

CageObj

beingCreated

CageObj

cageToCreate

CageID

1‘1++1‘2

2

1‘1++1‘2

Start
Motor

[not (servenow (c, cf, f::rl,cd))]

Serve

[servenow (c, cf, f::rl,cd)]

Arrive at
Destination

[stophere cf rl]

Serve
Next Req

[not(turnidle (c,cf,rl,cd))]

Close
Doors

Stop

[turnidle (c,cf,rl,cd)]

cageCreateBegin

cageCreateEnd

allocateCageRequest

allocateFloorRequest

(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

setdirection(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, removerequest cf rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,
removerequest cf rl,
cd, doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef,
cbaRef, fbaRef)

resetdirection(self, c,cf,rl,cd, doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,no,
doorRef, motorRef,
cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,1,[],no,
doorRef, motorRef,
cbaRef, fbaRef)

self

1‘cageObj1++1‘cageObj2

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, addrequest f rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

(id, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, addrequest f rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

1‘cageObj1++1‘cageObj2

CBAarrived.!((*IN*)cbaRef, (*IN*)cf)
FBAarrived.!((*IN*)fbaRef, (*IN*)cf)
doorOpen.!((*IN*)doorRef)

CageCreate.?((*IN*)c, (*IN*)fbaRef,
 (*OUT*)self)

doorCreate.!((*OUT*)doorRef)
motorCreate.!((*OUT*)motorRef)
CBAcreateBegin.!((*IN*)cc,10,
 (*OUT*)cbaRef)
LIcreate.!((*IN*)self)

motorStart.!((*IN*)motorRef)

doorClose.!(doorRef)

CBAallocateRequest.!(
 (*IN*)cbaRef,
 (*IN*)cf)

CBAarrived.!((*IN*)cbaRef, (*IN*)cageFloor)
FBAarrived.!((*IN*)fbaRef, (*IN*)cageFloor)
motorStop.!((*IN*)motorRef)
doorOpen.!((*IN*)doorRef)

motorStart.!((*IN*)motorRef)

FBAallocateRequest.!(
 (*IN*)cbaRef,
 (*IN*)cf)

Fig. 9: CPN for the Cage class, using channels.

as the motorRef variable. The Door class is handled in the same way.
When compared to the Do Cage Cyclemodule, the CPN module for class Cage

has three main differences:
(1) The Move UpDown module is replaced by the CPN module for class Loca

CPNS IN OO ANALYSIS AND DESIGN 17

tionIndicator. Yet, this class behaves in a very similar way to the mod-
ule, as the communication with the Cage objects is still done through the
place Moving. Now, this place is seen as a public part (one can think of it as
a public attribute) of class Cage. A LocationIndicator object is created,
in transition cageCreateBegin, by each Cage object, which passes its own
reference to the LocationIndicator object (LIcreate.!((*IN*)self));
later, the LocationIndicator object uses the Cage reference when asyn-
chronously communicating with the Cage object; this is achieved through fu-
sion of one place in LocationIndicator class with place Moving in class
Cage;

(2) The cage buttons requests are now handled by the CageButtonAllocation
class together with the CageButton class; likewise, the floor buttons’ re-
quests are now handled by class FloorButtonAllocation together with
FloorButton; channels associated to transitions Arrive at Destination
and Serve are now responsible for updating the buttons’ state; additional
transitions allocateCageRequest and allocateFloorRequest get the
pending requests, through the associated channels, from the CageButton
Allocation class and the FloorButtonAllocation class, respectively;
note that we could also model these channels as receiving channels; in that
case the CageButtonAllocation and FloorButtonAllocation objects
would send the new requests to the respective Cage object;

(3) The cage door and cage motor are now created as composite objects (in tran-
sition cageCreateBegin); the Motor class objects change state
through channels motorStart and motorStop; the Door objects change
state through channels doorOpen and doorClose.

Compared with the requirements-level CPN model, the object-oriented design-
level CPN model that we have just presented allows us to take advantage of the
class diagram structure and is a step towards code in an object-oriented program-
ming language; this is discussed in the next section.

7. From Design-level Models Towards an Implementation

The straightforward approach to execute a CPN model is to use a simulator like
CPN Tools or R [RENEW 2004]. Yet, this is not always possible as the model
may have to be run on a platform where the simulator is not available or has insuf-
ficient performance. The alternative is a code generation approach as this allows
code optimisations adaptable to each software and hardware platform.

One way to implement a CPN model is to translate it into a state machine. More
specifically, each possible step is translated to an arc and each reachable net mark-
ing is translatable to a state. Yet, this state machine will probably be too large to
be useful in practice: in fact, through that approach we will be implementing the
complete state space. In many cases, this is not a solution, as the state space is sim-
ply too large. Yet, for small enough state spaces this can be an efficient solution,
especially for hardware platforms, which have limited memory resources but are
able to efficiently execute state machines. These state machines can be coded in

18 J. P. BARROS, J. B. JØRGENSEN

ANSI C, which is usually available for embedded operating systems. This path al-
lows the design, in a high-level specification language, of object-oriented models,
which are finally implemented as a state-machine. In this sense, a CPN model can
be seen as a higher-level alternative to a state-machine (or statechart) based model.

The alternative approach is to generate an interpreter for the model. This could
be implemented as two distinct packages: (1) the net structure specification; (2) the
net executor.

The following guidelines allow a straightforward centralised implementation for
the net structure, in a general object-oriented programming language (e.g. Java or
C++):
◦ Each Colour Type is defined as a class;

◦ Each CPN module is implemented as a class;

◦ Each place, transition, and arc, is an object of class Place, Transition, and
Arc, respectively;

◦ Each CPN class contains as attributes the respective module variables, tran-
sitions and places;

◦ Each place object contains a bag of elements of the data type associated to
the place in the net model (the place colour);

◦ Each transition object has four methods:

(1) One to test the transition state (enabled or not enabled);
(2) One to fire the transition, accordingly changing the markings of the re-

spective input and output places;
(3) One implementing the guard;
(4) One implementing the code segment.

◦ Each arc object has a reference to a place object and a reference to a tran-
sition object; it also contains a method implementing the arc expression and
returning a value of the place colour;

◦ Each port place, in a hierarchical CPN, is a reference attribute to a place
object in another class;

◦ Each place fusion, again for a hierarchical CPN, is coded as a place object
and a set of place object references.

For each execution step, the net executor package executes three sub-steps:
(1) Calculates the set of enabled transitions;

(2) Chooses a subset to fire;

(3) Fires the transitions in the chosen subset.
For large nets, the first sub-step can impose a significant computation delay, as

the binding computation has the potential to become the execution bottleneck. Yet,
this computation can be minimised by testing only the transitions where, at least,
one input place has changed its marking in the previous step.

The usual memory versus speed compromise clearly shows up when implement-
ing CPN models: either the CPN model compactness, compared to a low-level
Petri net, has to go away through the total unfolding of the model, in the form of a

CPNS IN OO ANALYSIS AND DESIGN 19

state-machine; or we implement a direct execution implying the binding’s compu-
tation, which is slower although more memory efficient.

Finally, we stress that the general solution for code generation from CPN models
should consider distributed architectures. This a complex issue for which further
research is clearly needed. Interestingly, synchronous channels and place fusion
already provide the abstractions for synchronous communication and shared mem-
ory. A possible line of research is to investigate the use of shared memory, ex-
plicitly modelled by place fusion, for communication between distinct centralised
architectures (or processors) that do not share the same clock signal. Inside each
centralised architecture, either place fusion or synchronous channels can be used.

8. Related Work

The use of Petri nets in conjunction with object-orientation has been studied in-
tensively in recent years. Much of the work done is concerned with automatic
translation from certain types of UML diagrams into Petri nets, often aimed at for-
mal verification, e.g. Saldhana and Shatz [2000]. Also, Petri nets have been used to
give precise execution semantics to different classes of UML diagrams, e.g. Baresi
and Pezzè [2001]. A small number of examples of combined use of UML and
CPN in software development have appeared in the literature, e.g. design of user
interfaces is described in Elkoutbi and Keller [2000].

Much research has addressed the development of concepts and theories that com-
bine the ideas of object-orientation in general and Petri nets [Agha et al. 2001].
Specifically, in Lakos [2001], Object Petri Nets are defined, which extend CPN
with object-oriented features like inheritance and polymorphism. Other examples
of work in this area are Biberstein et al. [2001], Giese et al. [1999], and Maier and
Moldt [2001]. Differently from all these approaches, in this paper we have used
plain CPN to construct object-oriented models. This was made possible through
the use of a small set of idioms. These rely on synchronous channels and place
fusion to mimic object-oriented concepts and constructs like creation and destruc-
tion of objects, message passing, and data sharing. As the presented example does
not use any kind of inheritance, it does not exhibit all the common features of
object-oriented languages. According to the classification in Wegner [1987], the
example is somewhere between ”class-based” and ”object-oriented”. Yet, it should
be noted that polymorphism is easily modeled: we just need to add a variable pa-
rameter specifying the class where the receive side of the channel is defined. Then,
the dynamic binding of that parameter corresponds to a polymorphic invocation
(a dynamic dispatch) of the respective receive channel. Regarding implementation
inheritance, we do not have a good solution. Yet, we do believe, as many other
authors (e.g. [Gamma et al. 1995]), that implementation inheritance should be re-
placed by composition. Regarding type inheritance (as found, e.g. on Java), it is
trivially supported as we do not model interfaces (types) but only the classes that
implement them. Even the inheritance from abstract classes, in the sense of ”in-
terfaces with attributes”, can be modeled by the derived classes alone, where each
one has to support the attributes in the abstract class.

20 J. P. BARROS, J. B. JØRGENSEN

The channels for synchronous communication were first proposed in Christensen
and Hansen [1994]. They bring the transition fusion concept to CPN. In particu-
lar, transitions are able to communicate complex values. By allowing synchronous
communication modelling in CPN plus data communication, synchronous chan-
nels offer an effective way to create more compact and readable models. The ini-
tial proposal by Christensen and Hansen is totally symmetric, namely there is no
sender and receiver sides for each channel. Kummer [1998] proposed a direction of
invocation to each channel: we get sender and receiver sides for each channel. Yet,
the parameters are still bidirectional: e.g. one net (using a send channel in one of
its transitions) can pass a value through one parameter and receive a value from an-
other parameter. Barros and Gomes [2004] proposed to further disambiguate this
bidirectional nature for channel parameters by qualifying the parameters as IN,
OUT, or INOUT. These qualifiers give channels a parameter passing semantics simi-
lar to the ones usually found in imperative object-oriented programming languages.
The direction of invocation makes channels closer to method invocation. Here, we
used the qualifiers inside Standard ML comments, as they are not supported by
CPN Tools. Presently, the same happens to synchronous channels. It is clear that if
we want to generate executable, autonomous code from a CPN model, we should
use the inscription language as the target programming language. CPN Tools uses
Standard ML as the inscription language. Hence, it is easier to generate Standard
ML code for model execution [see Mortensen 1999; Kristensen and Christensen
2004]. Another approach is to use a code-level library, in the target language, sup-
porting the net execution and add it to a net structure specification also in the target
language (e.g. [Reinke 2000]). A general object-oriented language can also be
used. A significant example is the R tool [RENEW 2004], which supports an
extension to CPN, is written in Java, and uses Java as the inscription language.

9. Conclusions and Future Work

CPN models as we have presented them in this paper might candidate to be used in
object-oriented analysis and design, e.g. in development projects tailored from the
widely used Rational Unified Process (RUP) [Kruchten 2004]. RUP emphasises
the use of UML models as key artifacts in software development. If a deviation
from UML is acceptable by the project stakeholders, creating and executing CPN
models fit well in the elaboration phase or the inception phase of RUP. However,
a major effort is clearly needed to transfer the specific observations done in the
small case study of this paper into generally applicable guidelines for the interplay
between traditional RUP artifacts like use case diagrams and class diagrams and
various kinds of CPN models.

Compared to many other graphical languages for behaviour description, CPN
have the following advantages:

(1) They have a precise syntax and semantics;
(2) They are executable;
(3) They are verifiable;
(4) They scale well as testified by numerous examples in literature.

CPNS IN OO ANALYSIS AND DESIGN 21

As already pointed out, they lack clear connections to a structure diagram. This
was addressed here through the use of a set of idioms that allow the creation of
design-level object-oriented CPN models. These idioms include the use of chan-
nels for synchronous communication. In particular, transitions are able to com-
municate complex values. By allowing synchronous communication modelling in
CPN plus data communication, synchronous channels improve models modularity
and readability. Together with the presented idioms, they allow the designer to
think and model in object-oriented terms (see also Barros and Gomes [2004]). In
this way, they provide a one-to-one relationship between classes and modules of a
CPN model, thus establishing a clear connection between class diagrams and CPN
models.

The transformation between design-level object-oriented CPN models and ex-
ecutable autonomous code is still a subject for further work. In particular, the
design-level object-oriented CPN model must be able to somehow reflect the plat-
form specific architecture, code and data. Code segments associated to transition
firing and CPN data declarations may facilitate this. Unfortunately, the literature
and applications on the implementation of CPN models is still scarce. We attribute
this situation to the Petri net’s community traditional bias towards model verifica-
tion and analysis. This comes probably from the deeply formal and abstract Petri
nets’ origin, as a mathematical object. Yet, CPN, even without further semantic
extensions, are a class of Petri nets ready to be applied to object-oriented analysis
and design of systems that, like the elevator controller, exhibit a static structure of
interacting components.

References

A, G., C, F., R, G., E. 2001. Concurrent Object-Oriented Program-
ming and Petri Nets, Advances in Petri Nets. Volume 2001 of Lecture Notes in Computer
Science. Springer-Verlag.

B, L. P̀, M. 2001. On Formalizing UML with High-Level Petri Nets. Volume 2001 of
Lecture Notes in Computer Science. Springer-Verlag.

B, J. P. G, L. 2004. On the Use of Coloured Petri nets for Object-Oriented Design. In
ICATPN 2004, Bologna, Italy, Cortadella, Jordi and Reisig, Wolfgang, Editors. Volume 3099
of LNCS. Springer, 117–136.

B, O., B, D., G, N. 2001. Object-Oriented Nets with Algebraic Specifications:
The CO-OPN/2 Formalism. Volume 2001 of Lecture Notes in Computer Science. Springer-
Verlag.

C, S. H, N. D. 1994. Coloured Petri Nets Extended with Channels for Syn-
chronous Communication. In ICATPN 1994, Zaragoza, Spain, Valette, R., Editor. Volume 815
of LNCS. Springer, 159–178.

CPN T. 2004. CPN Tools homepage. http://wiki.daimi.au.dk/cpntools.
D, W. H, D. 2001. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design 19, 45–80.
D, J. J́, G. 2001. What is a Petri net , Volume 2128 of LNCS. Springer, 1–25.
D, B. P. 2004. Real Time UML: Advances in the UML for Real-Time Systems. Addison-

Wesley.
E, M. K, R. K. 2000. User Interface Prototyping Based on UML Scenarios and

High-Level Petri Nets. Volume 1825 of Lecture Notes in Computer Science. Springer-Verlag,
Aarhus, Denmark, 166–186.

G, E., H, R., J, R., V, J. 1995. Design Patterns: Elements of Reusable

22 J. P. BARROS, J. B. JØRGENSEN

Object-Oriented Software. Addison-Wesley.
G, H., G, J., W, G. 1999. Closing the Gap Between Object-Oriented Modeling of

Structure and Behaviour. In �UML� 1999 - The Unified Modeling Language, 2nd Interna-
tional Conference, Volume 1723 of Lecture Notes in Computer Science. Springer-Verlag, Fort
Collins, Colorado.

H, D. 1987. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8, 231–274.

J, M. 2001. Problem Frames — Analyzing and Structuring Software Development Problems.
Addison-Wesley.

J, I, B, G, R, J. 1999. The Unified Software Development
Process. Addison-Wesley.

J, K. 1992-97. Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use.
Volume 1-3. Monographs in Theoretical Computer Science. An EATCS Series. Springer.

J, J. B. 2004. CPN Models as Enhancements to a Traditional Software Specification for
an Elevator Controller. In Proc. of 3rd Workshop on Modelling of Objects, Components, and
Agents (MOCA’04). University of Aarhus, Aarhus, Denmark, 99–116.

J, J. B. B, C. 2004. Executable Use Cases: Requirements for a Pervasive Health
Care System. IEEE Software 21, 2, 34–41.

J, J. B. C, S. 2002. Executable Design Models for a Pervasive Healthcare
Middleware System. In Proc. of 5th UML Conference, Volume 2460 of LNCS. Springer, Dres-
den, Germany, 140–149.

J, J.B. 2005. Towards Arguing the Cost-effectiveness of Coloured Petri Nets. In Proc. of
2005 International Conference on Software Engineering Research and Practice. CSREA Press,
Las Vegas, NV, USA, 246–252.

K, L. M. C, S. 2004. Implementing Coloured Petri Nets Using a Functional
Programming Language. Higher-Order and Symbolic Compututation 17, 3, 207–243.

K, P. 2004. The Rational Unified Process: An Introduction. Addison-Wesley.
K, O. 1998. Simulating Synchronous Channels and Net Instances. In Forschungsbericht

Nr. 694: 5. Workshop Algorithmen und Werkzeuge für Petrinetze, Forschungsbericht Nr. 694.
Fachbereich Informatik, Universität Dortmund, 73–78.

L, C.A. 2001. Object-Oriented Modelling with Object Petri Nets. Volume 2001 of Lecture
Notes in Computer Science. Springer-Verlag.

M, C. M, D. 2001. Object Coloured Petri Nets – A Formal Technique for Object Ori-
ented Modelling. Volume 2001 of Lecture Notes in Computer Science. Springer-Verlag.

M, R., T, M., H, R., MQ, D. 1997. The Definition of Standard ML . MIT
Press.

M, K. H. 1999. Automatic Code Generation from Coloured Petri Nets for an Access Control
System. In Kurt Jensen (ed.): Second Workshop on Practical Use of Coloured Petri Nets and
Design/CPN, Aarhus, Denmark , 41–58.

N, M. S, D., E. 2000. 21st International Conference on Application and The-
ory of Petri Nets 2000 , Volume 1825 of Lecture Notes in Computer Science. Springer-Verlag,
Aarhus, Denmark.

R, C. 2000. Haskell-Coloured Petri Nets. In IFL ’99: Selected Papers from the 11th Interna-
tional Workshop on Implementation of Functional Languages. Springer-Verlag, 165–180.

R, W. 1985. Petri nets: an Introduction. Springer-Verlag New York, Inc.
RENEW. 2004. The Reference Net Workshop homepage. http://www.renew.de/.
S, J. S, S.M. 2000. UML Diagrams to Object Petri Net Models: An Approach for

Modeling and Analysis. In International Conference on Software Engineering and Knowledge
Engineering. Chicago, Illinois.

W, P. 1987. Dimensions of Object-Based Language Design. In OOPSLA ’87: Conference
proceedings on Object-Oriented Programming Systems, Languages and Applications. ACM
Press, New York, NY, USA, 168–182.

W, R. J. 2003. Design Methods for Reactive Systems: Yourdon, Statemate, and the UML .
Morgan Kaufmann.

