
i 

 

 

  

INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA 

ÉVORA, Outubro de 2017 

ORIENTADOR (A/ES): Professora Doutora Elsa Leclerc Duarte 
Doutora Margarida Duarte 

Doutora Líbia Zé-Zé 

  

Tese apresentada à Universidade de Évora 
para obtenção do Grau de Doutor em Ciências Veterinárias 

Carina Luísa da Costa Carvalho 

 

The role of wild leporids as reservoirs 
of infectious agents 



ii 

 

 
  



iii 

 

 
  



iv 

 

 
  



v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis 
To the loving memory of my father Alberto Carvalho 

 

 

 

 

 

 

 

 

 



vi 

 

 

  



vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“If I have seen further it is by standing on the shoulders of Giants” 
Isaac Newton 

 

 

 

 

 

 

 
 



viii 

 

 

  



ix 

 

Preface 
The work presented in this thesis focuses on two important pathogens that affect leporids, the rabbit 
haemorrhagic disease virus and Francisella tularensis. Different aspects of both agents and diseases 
induced were investigated such as their molecular epidemiology, pathology, laboratorial diagnostics, 
field monitoring and reservoirs, among others. 
The interest in studying Leporids’ pathogens was initially motivated by the fact that wild leporids are 
central species in the Mediterranean ecosystem of the Iberian Peninsula; this is particularly true 
regarding the European wild rabbit. Secondly, they are also an important source of income as coveted 
preys in the Portuguese and Spanish significant hunting activity based on small game species. Thirdly, 
the rabbit meat industries have been expanding their representativeness in Portugal, at least for the 
past five years, extending the rabbit economic importance, in its domestic type. 
With regard to rabbit haemorrhagic disease, the onset of our work auspiciously coincided with the 
emergence of the new rabbit haemorrhage disease virus 2 (RHDV2) in Portugal. The sanitary importance 
of the disease induced by this new virus and its complex ecologic and economic effects, quickly drawn 
our attention towards its study. In nature, RHDV2 has had a tremendous impact in the wild rabbit 
population and, potentially in the biodiversity of the ecosystems where the species is keystone. 
Moreover, severe losses have also been recorded in the rabbit industry notwithstanding RHDV2 specific 
vaccines were developed. In this context, we aimed to contribute to a better understanding of RHDV2 
by going a step further in the molecular diagnosis, investigating its genetic variability and evolution 
through the characterization of strains obtained between 2013 and 2017 in Portugal, as well as 
achieving a preliminary evaluation of the disease impact in the local rabbit meat industry, with a case-
report in a non-vaccinated farm. This research was entirely conducted at the Instituto Nacional de 
Investigação Agrária e Veterinária (INIAV), virology laboratory, Oeiras, Portugal. 
Concerning the zoonotic disease tularaemia, wild hares are considered the main reservoirs and sentinel 
species for Francisella tularensis. Given that hares are important small game species in the Iberia and the 
concomitant Public Health risk, particularly when disease outbreaks have occurred in the neighbour 
country of Spain, we intended to verify if this zoonotic bacterium, a potential bioterrorism agent, has 
been circulating in wild leporids in Portugal. We also investigated which vectors could be more relevant 
for the disease transmission in our country and attempted a preliminary evaluation of F. tularensis 
epidemiologic reality in Portugal. This research was entirely conducted in Centro de Estudos de Vectores 
e Doenças Infecciosas (CEVDI), Instituto Nacional de Saúde Doutor Ricardo Jorge (INSARJ), Águas de 
Moura, Portugal. 
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This thesis starts with a General Introduction, where a global review on the European wild rabbit 
(Oryctolagus cuniculus) and the Iberian hare (Lepus granatensis) as well as on the two addressed 
pathogens, the rabbit haemorrhagic disease virus (RHDV) and Francisella tularensis, is presented. A 

broad-spectrum of topics are revised and discussed in light of the current state of the art allowing the 
readers to better frame the multiple aspects and implications of the questions addressed. Aspects such 
as the description of the pathogens and diseases are included in this point. However, the aspects more 
closely related with the topics investigated in this work are provided by focused and specific reviews of 
the state of the art that precede each set of studies. 
The results obtained during this work were produced to answer specific questions and most are already 
published in peer-reviewed international journals although some are presently accepted for publication 
or in preparation. There are eight chapters (I to VIII). Each chapter groups together the studies that fall 
in the same area of research and starts with a revision of the main aspects related to the topics 
addressed aiming to facilitate the comprehension of each study. Chapters I to V correspond to research 
areas related to the rabbit haemorrhagic disease while Chapters VI to VIII refer to research on 
tularaemia. Altogether, there are 12 studies included in this thesis. 
A General Discussion and Future Perspectives follow Chapter VIII and intend to summarize and integrate 
the main findings of this work, placing the results in a global perspective and providing an overview of 
the achievements. 
References are given altogether in the References section, except for the published papers, which are 
embedding in the text and contain their own reference list. 
Finally, the Annexes provide additional information on specific topics and publications that were not 
included in the thesis body, but may be useful information to the reader. 
This thesis is based in the following manuscripts and books’ Chapters: 
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Sumário 
Título da Tese: O papel dos leporídeos silvestres como reservatórios de agentes infeciosos 
 

Os leporídeos silvestres coelho-bravo (Oryctolagus cuniculus) e lebre ibérica (Lepus granatensis), 

são determinantes no equilíbrio de vários ecossistemas na Península Ibérica e, simultaneamente, 

espécies cinegéticas de relevante importância económica. 

Esta tese visou investigar o vírus da doença hemorrágica dos coelhos de tipo 2 (RHDV2), detetado 

em Portugal desde 2012 e atualmente disseminado no continente e arquipélagos (Açores, Madeira, 

Berlengas). Dado o impacto alarmante nas populações de coelho-bravo, o Governo Português 

ativou recentemente um plano para controlo da doença (Despacho 4757/2017 de 31 de Maio). 

Um segundo objetivo desta tese consistiu na epidemiovigilância da Francisella tularensis, uma 

bactéria patogénica zoonótica transmitida por vetores, com potencial impacto em Saúde Pública. A 

lebre ibérica é seu reservatório e potencial espécie sentinela. 

Os estudos apresentados nesta tese envolveram a utilização de metodologias clássicas de 

patologia, microbiologia e moleculares. Para a análise de dados produzidos recorremos, entre 

outros, a inferências filogenéticas, e a programas de análise estatística e bioformática (eg R 

software). 

Este trabalho permitiu o desenvolvimento e validação do primeiro método molecular de 

diagnóstico para RHDV2, presentemente adotado pelo manual da OIE, e contribuiu para uma 

compreensão da dinâmica de evolução do vírus em cenários epidemiológicos e geográficos 

distintos, alargando o conhecimento das relações filogenéticas entre as estirpes que circularam em 

Portugal entre 2012 e 2017. 

No que diz respeito à tularémia, este estudo permitiu aferir a situação epidemiológica da doença 

em Portugal, confirmando o papel dos leporideos silvestres como reservatório e possibilitando 

conclusões preliminares sobre o risco desta zoonose para a Saúde pública no país. Adicionalmente, 

permitiu confirmar que os ixodídeos são o principal vetor de F. tularensis em Portugal. 

Globalmente, este trabalho contribuiu para o estado-da-arte das duas infeções, e disponibilizou 

informação relevante para adequar o diagnóstico e a profilaxia sanitária e médica destas duas 

doenças à realidade atual. 
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Abstract 
Thesis title: The role of wild leporids as reservoirs of infectious agents 
 

The European wild rabbit (Oryctolagus cuniculus) and the Iberian hare (Lepus granatensis), are 

keystones species in various ecosystems of the Iberian Peninsula and on the local game-based 

economy. 

This thesis aimed to investigate the rabbit haemorrhagic disease virus 2 (RHDV2), detected in 

Portugal in 2012 and currently disseminated in the continent and autonomous regions (Azores, 

Madeira, Berlengas). Given its alarming impact in the wild rabbit populations, the Portuguese 

Government has recently activated a plan aiming the control of the disease (Despatch 4757/2017 

of May 31st). 

A second objective of this thesis was the epidemiological surveillance of Francisella tularensis 

zoonotic vector-borne pathogenic bacterium, with potential impact on Human Health. The Iberian 

hare is considered reservoir and potential sentinel species for this pathogen. 

Several methodologies were used to carry out the studies presented in this work, including basic 

pathology, microbiology and molecular methods. Data analysis involved the resource to 

phylogenetic inference, statistical programs and bioformatics (e.g. R software). 

This work enabled the development and validation of the first molecular diagnostic method for 

RHDV2, currently figuring in the OIE manual, and allowed insights into to the virus dynamic 

evolution in different epidemiologic and geographic contexts, widening the comprehension of 

RHDV2 phylogenetic relations among the strains that circulate in Portugal from 2012 until 2017. 

This study also made possible to ascertain the tularaemia epidemiologic situation in Portugal, 

confirming the role of wild leporids as reservoirs for the agent and enabling preliminary 

conclusions on Public Health risk in the country. Moreover, this work allowed confirming ticks as 

the main vectors for Francisella tularensis in Portugal. 

Globally, this work contributed to the state-of-the-art of both infections and produced relevant 

information that can be used to adjust the medical and sanitary prophylactic measures of both 

diseases to the present reality. 
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The General Introduction starts by reviewing the main aspects of the two most central leporids 

found in Portugal and the Iberian Peninsula, the European wild rabbit (Oryctolagus cuniculus) and 

the Iberian hare (Lepus granatensis). The European wild rabbit evolutionary history, habitat, diet 

and population dynamics as well as the species relevance in the Iberia, particularly as key species 

and “engineer” of the Mediterranean ecosystem and coveted prey in small game hunting, are 

addressed. Also, key aspects on the Iberian hare including the species distribution and genetic 

diversity, habitat and diet, population dynamics, relevance as prey and game species as well as its 

potential use as sentinels for tularaemia, are briefly reviewed. 

Secondly, a review is made on rabbit haemorrhagic disease (RHD), a highly contagious and fatal 

infection, which affects both wild and domestic rabbits and has been responsible for the dramatic 

reduction in wild rabbit populations as well as for substantial losses in the rabbit industry. This 

review addresses the disease brief history, aetiologic agent, virus life cycle, pathogeny, clinical signs 

and lesions, laboratorial diagnosis, eco-epidemiology, genetic diversity, host virus co-evolution, 

disease prevention and control and immunoprofilaxy. The topics directly related with the studies on 

RHD presented in this thesis, although mentioned in General Introduction, are approached in 

specific reviews that precede each set of studies in the Results Section. 

Finally, the most significant aspects on tularaemia, an emergent/re-emergent zoonosis for which 

wild leporids are considered main reservoirs, are presented in the form of a review article, already 

published in an international refereed scientific journal, which includes the disease history, the 

aetiologic agent (Francisella tularensis) microbiology and phylogeography, epidemiology, life cycle, 

immunopathogenesis, clinical manifestations, laboratory diagnosis, treatment and vaccination. A 

brief update regarding this infection is given after the article is presented. Nevertheless, the update 

of the topics directly related with the studies on tularaemia presented in this thesis, are also 

addressed in specific introductions preceding each study. 
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1.1. The European wild rabbit (Oryctolagus cuniculus) 
The European wild rabbit O. cuniculus (Linnaeus, 1758) is a high-profile prey native to the Iberian 

Peninsula and one of the rare mammals originally domesticated in Western Europe (Monnerot et 

al., 1994). O. cuniculus is the sole representative of its genus and belongs to the Leporidae family of 

the order Lagomorpha (Matthee et al., 2004). 

 

1.1.1. Brief evolutionary history 
The origins of O. cuniculus lay in the Iberian Peninsula. Southern Spain has been considered the 

most probable geographic origin of the Oryctolagus genus (Ferrand and Branco, 2007) as a rabbit 

fossil with 6.5 million years (my) was discovered in the region of Granada (Andalusia, Spain) (Lopez-

Martinez, 1989)(Monnerot et al., 1994)(Ferrand and Branco, 2007). O. cuniculus appeared 900,000 

years ago in Southern Spain and much later in Southern France (≈300,000-500,000 years ago) 

(Ferrand and Branco, 2007)(Queney et al., 2001), after crossing the Pyrenean barrier. In Portugal, 

the rabbit was the most abundant mammal in the Tejo and Sado valleys Mesolithic sites (Lentacker, 

1986)(Arnaud, 1987) and bone ornaments in the shape of rabbits were found in the country dating 

back to the second half of the 4th millennium B.C. (Leisner, 1983)(Ferrand and Branco, 2007). 

The biogeography of the rabbit in its original distribution area was most likely strongly affected by 

the later glacial events (that took place until 12,000 years ago) (Monnerot et al., 1994) and more 

recently, by Man. Human interference affected the dispersion of this species through 

transportation, eventually accompanied by domestication and restocking (Monnerot et al., 1994). 

 

1.1.1.1. Geographic expansion 
O. cuniculus geographical expansion has been one of the most remarkable mammal expansions’ 

(Ferrand and Branco, 2007). From the Iberian Peninsula and southern France, the rabbit was able to 

disseminate to other locations as consequence of environmental factors and human interference 

(Callou, 1995). 

From the Pleistocene to the Neolithic the species geographic distribution was strictly related to 

climate and vegetation (Callou, 1995). In this period, the rabbit presence was extremely marked in 

Spain (except the north regions of Alava, Guipuzcoa and Navarre) and South of France (except west 

of the Garonne river). The species was also able to reach the North of France, although limited to 

the south of the Loire River (Callou, 1995). 
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From the Bronze Age until the Vth century A.D, the rabbit preserved his distribution in the continent 

but was introduced in some of the Mediterranean Islands, such as the Balearic Islands (Majorca 

(1100 B.C.), Menorca (XIV-XIII centuries B.C.), Ibiza and Formentera (from the VIII century B.C. 

onwards) (Vigne and Alcover, 1985)) and Zembra (already present in the II or III century B.C. (Vigne, 

1988)) (Callou, 1995). There are no evidences of the rabbit presence in Corsica, Sardinia or Sicily in 

this period (Callou, 1995). The first domestication attempts of the species were carried out by the 

Romains at the end of this period (Callou, 1995). 

The Middle Age represented the rabbit most important expansion epoch (Callou, 1995). After 

domestication, Man acted as the main vector of the rabbit diffusion (Callou, 1995). During this 

period, the species was exported to central and northern Europe, the British Islands (XII century 

A.D.) an several other locations in the world (Callou, 1995)(Queney et al., 2001)(Branco and Ferrand, 

2002). 

The rabbit very successful process of transport and colonization began with Mediterranean 

navigators (Flux and Fullagar, 1992)(Ferrand and Branco, 2007). By the XVlth century, the species 

had been already introduced in several regions of Western Europe, such as Germany (1407, lake 

Schwerin island) and Hungry, and in the Atlantic islands of Porto Santo (1418) and Azores (in the 

XVth century, by Portuguese navigators) (Callou, 1995)(van der Loo et al., 1999)(Esteves et al., 

2004)(Ferrand, 2008)(Esteves et al., 2014). Rabbit introductions in northern Africa occurred at 

approximately 3,000 years ago (Dobson, 1998)(Queney et al., 2001). The first attempts to introduce 

the rabbit in Australia date back to the end of the XVIIIth century (years of 1787 and 1791) but were 

only effective in 1859. Latter, the rabbit was introduced in the islands of New Zealand (in 1864) and 

Kerguelen (in 1874) (Callou, 1995). Chile imported the species in 1910 (Angerman, 1974)(Callou, 

1995). 

Currently, the rabbit is considered a successful colonizer with a worldwide distribution, from 

subtropical to sub-Antarctic climates (Figure 1). O. cuniculus is present in Australia and New 

Zealand, South America, and in more than 800 islands throughout the world (Flux and Fullagar, 

1992)(Queney et al., 2001)(Ferrand and Branco, 2007). The species occurs in a remarkable diversity 

of ecological contexts where it is regarded as a pest, a biological invader or rather a key species 

upon which a variety of threatened predators depend on to survive (reviewed in (Ferrand and 

Branco, 2007)). 
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The human perception of the O cuniculus species changed with the expansion of the rabbit 

territory. From strictly wild, the rabbit became also “wild-domestic” and finally “wild” and 

“domestic” (Callou, 1995). 
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Figure 1. Oryctolagus cuniculus world distribution. This map was based on the IUCN map for the species world distribution and edited according to (Callou, 1995) and 
(Ferrand and Branco, 2007). 
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1.1.1.2. Genetic diversity 
Two O. cuniculus subspecies are recognized, specifically, the O. cuniculus algirus (Figure 2 A and B) 

and the O. cuniculus cuniculus (Lopez Martinez, 1989). Both are brown/grey in colour but the O. c. 
algirus subspecies is smaller (adults medium weight of 1.100 Kg and maximum weight of 1.400 Kg) 

(Soriguer, 1980)(Ferreira and Ferreira, 2014) than O. c. cuniculus (adults maximum weight of 2.00 

Kg) (Gibb, 1990). There are no distinct gender differences in both subspecies (Gibb et al., 

1985)(Ferreira and Ferreira, 2014). 

 

        
Figure 2. (A) and (B) Oryctolagus cuniculus algirus, the most abundant subspecies in Portugal (photos taken 

during wild rabbit translocations in Portugal and kindly relinquished by Doctor Margarida Ramada de Melo). 

 

O. c. algirus is endemic to the south-western Iberian Peninsula, and present with a more restricted 

distribution. It is also present in the North Africa and Atlantic islands (Madeira, Azores and 

Canaries). In contrast, O. c. cuniculus inhabits the north-eastern part of the Iberian Peninsula and is 

widespread in the other locations where the species occurs (Branco et al., 2000)(Ferrand and 

Branco, 2007). 

The fact that O. c. algirus populations are characterized by a higher genetic variability than O. c. 
cuniculus populations (Ferrand and Branco, 2007) is compatible with the species Iberian origin and 

suggests that the separation and long geographic isolation of both subspecies may have generated 

an asymmetrical division of genetic diversity within O. cuniculus (Ferrand and Branco, 2007). Solid 

evidences of the existence of two major population groups that have been evolving independently 

for a long period of time, conforming with the modern subspecies concept (Avise and Hamrick, 

1996), were provided by the genetic data from Ferrand and Blanco (2007) study as well as 

evidences of immunoglobulin polymorphism (van der Loo et al., 1991)(van der Loo et al., 1999) and 

mtDNA variation (Biju-Duval et al., 1991)(Monnerot et al., 1994). In fact, immunoglobulin allotypes 

A B 
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with genetic polymorphism found in IgKC1, IgVH1 and IgGCH2 loci where demonstrated by 

serologic studies (van der Loo, 1987)(van der Loo et al., 1987)(Cazenave et al., 1987). While a high 

degree of genetic identity was found between domestic and wild rabbit populations from central 

Europe and Australia, as no new alleles were described and both allelic distribution profiles were 

very similar (Curtain et al., 1973)(van der Loo 1987)(van der Loo et al., 1987), an entirely different 

scenario was revealed when this investigation was extended to wild rabbit populations from the 

Iberia. In the latter populations, the loci were found to harbour much higher variation with seven to 

eight new alleles in IgKC1 (Cazenave et al., 1987)(van der Loo et al. 1991) and at least 10 new alleles 

in IgVH1 (Cazenave et al., 1987), with no polymorphism for IgGCH2 (Cazenave et al., 1987)(van der 

Loo et al., 1991). These two distinct scenarios regarding the immunoglobulin polymorphism profile 

support the rabbit Iberian origin and are in accordance with two divergent genetic entities. 

Likewise, when Biju-Duval et al. (1991) and later Monnerot et al. (1994) investigated patterns of 

sequence variation in rabbit mitochondrial DNA (mtDNA), the occurrence of two very divergent 

mtDNA lineages was exposed. One (lineage A) was circumscribed to southwest Iberia and Azores 

islands, while the other (lineage B) occurred in northern Spain, France, England, the rest of Europe, 

Australia and in all domestic breeds (Biju-Duval et al., 1991)(Monnerot et al., 1994). In the broad 

survey of Iberian wild rabbit populations carried out by Blanco et al., (2000), those two mtDNA 

lineages were shown to be essentially allopatric, with a very limited overlap along a northwest 

southeast gradient that divides the Peninsula. Furthermore, Iberian rabbits were shown to display 

high levels of inter- and intra-population variability (Branco et al., 2000) in contrast with rabbits 

from France, which do not express intra-population polymorphism (Monnerot et al., 1994). These 

data suggest that south-western Iberian rabbit populations are older and that occupation of 

southern France occurred more recently, corroborating the rabbit Iberian origin (Ferrand and 

Branco, 2007). 

In accordance, Ferrand and Blanco (2007) genetic analysis indicated that an ancient split, supported 

by a high bootstrap value (99% to 100%), separated the south-western Iberian and Azorean Islands 

rabbit populations from all others, including domestic breeds, corresponding most probably to O.c. 
algirus and O.c. cuniculus emergence, respectively. The high degree of genetic differentiation 

between the two subspecies allowed the reconstruction of rabbit geographical expansion. While 

France, Britain and other European countries, as well as Australia, were colonized by O. c. cuniculus, 

from which domestic breeds are exclusively derived, the Azorean island populations represent an 
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expansion of the O. c. algirus and show evidence of a strong bottleneck effect, since their genetic 

diversity represents a subset of the genetic diversity found in the Iberian Peninsula population. 

In brief, it is suggested that O. c. algirus (lineage A) and O. c. cuniculus (lineage B) diverged 

following isolation in two glacial refugia in the Iberian Peninsula south-western and north-eastern 

extremes, respectively, most likely during the Quaternary paleoclimatic oscillations. After a climatic 

improvement, they expanded their ranges to interact in a secondary contact zone along a 

northwest–southeast axis where they hybridized (Branco, et al. 2000)(Branco et al., 2002)(Ferrand 

and Branco, 2007). The Iberian Peninsula is the only region in the world where the two formally 

recognized subspecies, O. c. algirus and O. c. cuniculus currently co-exist and hybridize in natural 

conditions (Figure 3)(Ferrand, 2008)(Ferreira, 2012)(Alda and Doadrio, 2014). 

In the Alda and Doadrio (2014) study, the genetic diversity found in the hybrid zone was higher 

than the one observed in the parental populations. Forty-nine alleles were exclusively observed in 

this region, a number superior to the sum of the parental alleles. This could be the result of alleles’ 

recombination from the parental lineages or of the unbalanced genetic contribution of each rabbit 

lineage. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. O. cuniculus subspecies distribution in the Iberian Peninsula. The subspecies O. c. algirus and O. c. 
cuniculus are essentially allopatric, with a very limited overlap along a north-west/south-east gradient that 

divides the peninsula (the hybrid zone) (adapted from (Branco et al., 2000)(Alda and Doadrio, 2014)). 
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1.1.2. Habitat 
Rabbits select their habitat based on two main drivers, food provision and predation avoidance 

(Dellafiore et al., 2014). Favourable habitats for rabbits include herbaceous patches, providing 

adequate food resources and scrubland cover or warrens, offering protection against predators 

(Beja et al., 2007). Wild rabbits prefer scrubs with a low density of woody vegetation at the ground 

level, but with a dense overhead cover (Beja et al., 2007). The herbaceous layer also offers cover, by 

grasses under the scrub, and forbs, at the edge of the scrub (Beja et al., 2007). 

Habitat deterioration and/or fragmentation have heavily contributed for wild rabbit’s decline 

throughout the Iberian Peninsula (Moreno and Villafuerte, 1995), playing a cumulative role with the 

incidence of viral diseases and predation (Trout and Tittensor, 1989)(Ferreira and Alves, 2009). In 

the European Mediterranean region, the abandonment of agricultural land and its subsequent 

occupation by scrubland and woodland has resulted in habitat losses for species associated with 

early-successional vegetation and edge habitats, which had benefited from the mosaic structure 

shaped by the traditional management of Mediterranean landscapes (Beja et al., 2007)(Delibes-

Mateos et al., 2010)(Ferreira and Delibes-Mateos, 2010). 

Rabbits’ distribution in different landscapes is influenced by topography (rabbits are more 

abundant in continuous areas than in fragmented ones (Virgós et al., 2003), soil hardness, 

climatological conditions and agricultural practices (types of crops) as well as by some agricultural 

landscape components (Calvete et al., 2004a). Vegetative cover has been positively associated with 

rabbit abundance and scrub cover in naturally vegetated sites within agricultural landscapes is 

important in maintaining rabbit abundance (Calvete et al., 2004a). 

The major part of the total variability found between and within habitats in the Iberian Peninsula 

was attributed to differences between O. c. algirus and O c. cuniculus, (Ferrand and Blanco, 2007). 
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Figure 4. Mosaic structure of the landscape created by agricultural management (photo taken by Doctor 

Fílipe Barroso and kindly relinquished by the Instituto de Ciências Agrárias e Ambientais Mediterrânicas 

(ICAAM)). 

 

1.1.3. Diet 
Rabbits are generalist herbivores consuming a large spectrum of plant species (Ferreira and Alves, 

2009). While preferring grasses (Martins et al., 2002), this species explores different vegetation 

strata and adapts to the quantity and quality of available resources (Ferreira and Alves, 2009). 

There is a seasonal pattern of rabbit abundance in the Iberian Peninsula associated with food 

resources (Villafuerte et al., 1997)(Ferreira and Alves, 2009). During the winter, rabbits feed mainly 

on herbs but in particularly critical periods (summer), a displacement of rabbit’s diet is observed 

(Martins et al., 2002)(Beja et al., 2007), with higher consumption of leaves and scrubs seeds (Beja et 

al., 2007) or shrub-like dicotyledons such as gum cistus (Cistus ladanifer), a low nutritional value 

plant of difficult digestion due to its high fibre content (Martins et al., 2002)(Beja et al., 2007). The 

decrease in rabbits’ abundance in summer is usually associated to the poverty of food resources 

(Villafuerte et al., 1997)(Ferreira and Alves, 2009). The species’ reproductive behaviour and survival 

may also be endangered during the hot dry season since a poor physical condition increases 

predation risk and the individuals susceptibility to epizootic events (Ferreira and Alves, 2009). 
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1.1.4. Population dynamics 
The European rabbit is highly prolific and can reproduce opportunistically at any season, which 

contributes to its success as a colonist (Gibb, 1990). Wild rabbits’ population dynamics is more 

sensitive to changes in mortality (particularly juvenile mortality) than in fecundity (Smith and Trout, 

1994)(Smith, 1997)(Calvete et al., 2005). In Mediterranean areas, and in particular in the Iberian 

Peninsula, the distribution and abundance of wild rabbit populations is highly variable between and 

within habitats (Virgós et al., 2003)(Calvete and Estrada, 2004)(Calvete, 2006). High intra- and inter-

year variability within populations is also observed (Calvete, 2006). 

The onset of rabbit reproduction, and hence its influence on rabbit density, is not merely related 

with an increase in food quality but also with the availability of high quality food (Villafuerte et al., 

1997). 

In stable wild populations, the high reproductive rate must be balanced by a high rate of juvenile 

mortality. More than 80% of the young born may be killed by predators, either in the nest or within 

the first two weeks of life (Gibb, 1990). Also, competition for refuge, feeding areas and warrens can 

increase juvenile mortality, when carrying capacity is reached (Myers et al., 1994)(Calvete, 2006). 

Regarding adult rabbits, the annual mortality rates are highly variable usually ranging from 20% to 

80% (Gibb, 1990)(Calvete et al., 2005). 

Despite these aspects, the main factor affecting the structure of wild rabbit populations are 

epizootic diseases (Monnerot et al., 1994), namely those induced by rabbit haemorrhagic disease 

virus (RHDV) (Liu et al., 1984) and Myxoma virus (Aragão, 1927)(Fenner and Ratcliffe, 

1965)(Sanarelli, 1898). RHD has been responsible for local extinctions of O. cuniculus (Ferreira e 

Alves, 2009). 

 

1.1.5. Rabbit population trends 
Until recently, the wild rabbit has been always abundant in the Iberia (Ferreira and Delibes-Mateos, 

2010). Yet, historically, there has been a negative trend regarding rabbit populations in the Iberia 

Peninsula, mainly as a consequence of habitat loss and viral diseases (Delibes-Mateos et al., 

2009)(Ferreira and Delibes-Mateos, 2010). Other scarcely studied factors may have contributed to 

the long-term rabbit decline, including unsustainable hunting, predation or climate change 

(Ferreira and Delibes-Mateos, 2010). 
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Wild rabbit decline in the Iberian Peninsula was already ongoing in the first half of the XXth century, 

before viral diseases emerged, possibly as a consequence of habitat loss and fragmentation (Ales et 

al., 1992)(Ferreira and Delibes-Mateos, 2010). The latter, resulted from changes in the agrarian 

structure, and agriculture and livestock farming intensification, along with the under-utilization of 

the traditional farming practices in rural areas (Ferreira and Delibes-Mateos, 2010). These processes 

originated the loss of the wild rabbit’s most preferred habitat, the Mediterranean mosaics that 

characterized the traditional Iberian agricultural landscapes (Ales et al., 1992)(Beja et al., 

2007)(Delibes-Mateos et al., 2010)(Ferreira and Delibes-Mateos, 2010). 

Wild rabbit populations downsizing in the Iberian Peninsula was greatly accelerated by the arrival 

of myxomatosis during the 1950’s (Ferreira and Delibes-Mateos, 2010) and rabbit haemorrhagic 

disease in 1989 (Villafuerte et al., 1995). 

Despite rabbit populations in their natural ranges have declined dramatically over the past century 

(>90%) (Delibes-Mateos et al., 2009)(Ferreira and Delibes-Mateos, 2010), positive trends were 

recorded in species-friendly habitats, characterized by soft soils and sparse Mediterranean 

scrublands interspersed with good pastures and/or crops (Calavete et al., 2006)(Delibes-Mateos et 

al., 2009)(Ferreira, 2012). 

Presently, most wild rabbit population are still declining in different regions of the Iberian Peninsula 

and negative trends in rabbit numbers have been reported both in Portugal and Spain (Delibes-

Mateos et al., 2014)(Instituto da Conservação da Natureza e das Florestas, IP (ICNF)), mostly in 

consequence of the emergence of the new rabbit haemorrhagic virus 2 (RHDV2) in both Spain 

(Dalton et al., 2012) and Portugal (Abrantes et al., 2013). RHDV2 have been threatening the survival 

of O. cuniculus algirus as well as of the predators that feed on the rabbit (Abrantes et al., 

2013)(Delibes-Mateos et al., 2014). Furthermore, the wild rabbit downsizing has been interfering 

with other trophic chains were the predators find alternative preys for their survival, such as the 

Sardão lizard (Lacerta lepida) (Eng.º Ricardo Paiva, Instituto Nacional de Investigação Agrária e 

Veterinária (INIAV), personal communication). 

Different management techniques are employed to reverse this downsizing, including adjusting 

hunting pressure, predator control, habitat management, restocking and rabbit vaccination 

(Ferreira and Delibes-Mateos, 2010). It is interesting to notice that rabbits have showed to recover 

better in hunting estates where various game management strategies have been applied, both 

regularly and simultaneously (such as low hunting pressure, predator control or habitat 

management)(Delibes-Mateos et al., 2009). 
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The importance of management strategies to enhance the wild rabbit populations is specifically 

addressed in Chapter IV (“RHD eco-epidemiology”) point “1.6.4. Habitat management”. 

 

1.1.5.1. IUCN red list category 
As a result of the European rabbit progressive decline in the Iberian Peninsula, the species has been 

classified as a Near-Threatened andVulnerable species by the IUCN criteria since 2008 (Smith and 

Boyer, 2008), figuring in the Red List of Vertebrates of Portugal (Cabral et al., 2005) and Spain 

(Ferreira, 2012). 

 

1.1.5.2. Hunting records to estimate rabbit population abundance 
Hunting records can be used to estimate population abundance although not necessarily 

accurately reflecting species abundance, given that they can be misleading if hunting effort is not 

controlled (Delibes-Mateos et al., 2009)(Ferreira and Delibes-Mateos, 2010). 

Based in a 11 year period that ranged from 2005 to 2016, a negative trend regarding wild rabbit 

populations has also been observed in Portugal and further aggravated by RHDV2 emergence in 

the country in 2012 (Abrantes et al., 2013)(Duarte et al., 2015b). The number of specimens hunted 

in the cinegetic period 2011/2012 was 688, 759 and, since then, this number steadily decreased 

until the present (Instituto da Consevação da Natureza e das Florestas, IP, ICNF). The number of 

wild rabbits hunted during the cinegetic period of 2015/2016 was 267, 479, less than half of the 

number of wild rabbits registered in the homologous period of 2011/2012 (Table 1) (Instituto da 

Conservação da Natureza e das Florestas, IP, (ICNF)
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Table 1. Wild rabbit (O. cuniculus) specimens hunted in Portugal mainland between the years 2005 and 2016, during the cinegetic period (from September 
1st to December 31st). Data was provided by Dr. Gonçalo Lopes from the Instituto da Conservação da Natureza e das Florestas, IP (ICNF). To compare with the 

homologous data regarding the Iberian hares (L. granatensis) hunted in Portugal during the same period Cf. Table 10, page 35. 

 

Species Cinegetic period  

  2005/6 2006/7 2007/8 2008/9 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Wild rabbit  

(O. cuniculus) 

Nº of hunted 

specimens 
687, 553 559, 121 531, 622 592, 460 659, 081 653, 181 688, 759 630, 313 332, 907 322, 118 267, 479 
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1.1.6. The effect of rabbit population dynamics on RHD impact 
This theme is specifically addressed in Chapter IV (“RHD eco-epidemiology”), point “1.5 The effect 

of rabbit population dynamics on RHD impact”. 

 

1.1.7. Importance of the European rabbit in the Iberian Peninsula 
Wild rabbit has a wide distribution in the Iberian Peninsula and is present in diverse environments, 

from Mediterranean scrublands to agro ecosystems, mountainous areas, as well as coastal and 

dunes (reviewed in Dellafiore et al., 2014). 

In the Iberia, O. cuniculus accumulates paradoxical labels (Ferreira, 2012) and is the centre of 

serious management and conservation issues (Delibes-Mateos et al., 2011). In fact, the 

heterogeneous spatial distribution of the species allows it to be considered concurrently absent 

and a pest, in two locations just a few kilometres apart (Ferreira and Delibes-Mateos, 2010)(Ferreira, 

2012). Furthermore, while benefiting from local threatened conservation status, it is also one of the 

most important small-game species (Ferreira, 2012)(Ferreira and Ferreira, 2014). The multiple O. 
cuniculus roles in the Iberian Peninsula are presented below. 

 

1.1.7.1. A keystone species and “engineer” in the Mediterranean ecosystem of the Iberian 
Peninsula 
Wild rabbits are multifunctional keystone species in the Mediterranean ecosystem of the Iberian 

Peninsula (Delibes-Mateos et al., 2008). Here, they are considered as “ecosystem engineers” given 

their effect on landscape structure (Gálvez et al., 2008)(Delibes-Mateos et al., 2008)(Ferreira and 

Alves, 2009) and potentially favourable environments can be perpetuated by the species when it 

reaches certain abundance levels (Ferreira and Alves, 2009). Wild rabbits conspicuously alter plant 

species composition and vegetation structure through grazing disturbance and seed dispersal, 

creating open areas and preserving plant species diversity (Delibes-Mateos et al., 2008). Moreover, 

rabbit latrines contribute to soil fertility and plant growth and provide new feeding resources for 

many invertebrate species (Delibes-Mateos et al, 2008). Rabbit burrows also offer nest sites and 

shelter for vertebrates and invertebrates (Delibes-Mateos et al., 2008). In addition, rabbits 

disappearance in this ecosystem would precipitate further species extinctions (Mills et al., 

1993)(Ferreira, 2012), as they serve as prey for several predator species which depend on high 

rabbit densities for survival (Calvete and Estrada, 2004)(Delibes-Mateos et al., 2008). Those include 
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the Endangered Iberian lynx (Lynx pardinus) and the Vulnerable Iberian Imperial Eagle (Aquila 
adalberti) (Calvete et al., 2005)(Delibes-Mateos et al., 2008). 

Rabbits importance in the Mediterranean ecosystem of the Iberian Peninsula is such that some 

researchers sustain it should be entitled "the rabbit's ecosystem" (Delibes-Mateos et al., 2008). 

 

1.1.7.2. An important game species 
Apart from their central role in nature, O. cuniculus has also an economic and cultural function in 

the Mediterranean countries, such as Spain and Portugal, regarding small game hunting (Virgós et 

al., 2007)(Ferreira and Ferreira, 2014). Rabbits are coveted prey with high social value in the Iberia 

providing an important source of income in rural areas (Beja et al., 2007). 

The Portuguese national territory is subordinated to the legal hunting regime (Decree-Law No. 

2/2011 establishing the legal regime for the exploitation and conservation of hunting resources). In 

the cinegetic period of 2016/2017 the hunting market included an estimated number of 250, 000 

hunters holding licenses (Table 2) and near 2, 000 non residents hunting licenses were emitted for 

the referred period (Table 3). There are 4, 900 shooting areas in the country including associative, 

touristic, municipal and national hunting areas (Table 4). Paixão et al. (2009) refer a revenue of 365 

million euros generated by hunting activities each year in Portugal, derived from hunting licenses, 

number of animals shot for meat consumption and restocking actions. 

 
Table 2. Number of holders of hunting licenses from 2011 to 2016. Data kindly provided by Instituto da 

Conservação da Natureza e das Florestas, IP (ICNF). 

 
Year Nº of holders of hunting licenses 

2011 286, 917 (*) 

2012  282, 870 (*) 

2013 279, 498 

2014 272, 361 

2015 263, 009 

2016 256, 179 
(*) Estimated numbers 
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Table 3. Number of hunting licenses per type emitted in Portugal from the cinegetic period of 2008/2009 
to the homologous period of 2016/2017. Data kindly provided by Instituto da Conservação da Natureza e 

das Florestas, IP (ICNF). 

 
N.º of licenses emitted per type  

Cinegetic period National Regional Non residents 

2008/2009 66, 336 85, 052 1, 125 

2009/2010 62, 105 82, 024 1, 022 

2010/2011 59, 368 80, 219 1, 074 

2011/2012 55, 052 80, 501 1, 160 

2012/2013 49, 924 81, 738 1, 137 

2013/2014 46, 049 77, 514 1, 292 

2014/2015 43, 184 75, 488 1, 274 

2015/2016 41, 750 72, 657 1, 622 

2016/2017 41, 724 78, 071 1, 811 
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Table 4. Number, type and area in hectares (ha) of the cinegetic zones in Portugal. Data kindly provided by Instituto da Conservação da Natureza e das 

Florestas, IP (ICNF). 

 

  ZCA – Zona de caça associativa; ZCT – Zona de caça turistica; ZCM – Zona de caça municipal; ZCN – Zona de caça nacional 

 

 

 

 Hunting areas per type 

 
Associative 

(ZCA) 
Touristic 

(ZCT) 
Municipal 

(ZCM) 
National 

(ZCN) 
Total 

Cinegetic region 
(category) 

Nº Area (ha) Nº Area (ha) Nº Area (ha) Nº Area (ha) Nº Area (ha) 

1ª 352 653, 844 20 21, 033 276 942, 989 1 21, 190 649 1, 639, 056 

1ª/2ª 4       3       7 0 

2ª 431 666, 178 113 114, 029 287 1, 007, 042 1 10, 851 832 1, 798, 100 

2ª/3ª     1   2       3 0 

3ª 402 451, 492 163 181, 835 123 283, 725 2 6, 363 690 923, 415 

3ª/4ª 15   12   3       30 0 

4ª 1, 238 1, 127, 405 1, 010 918, 110 157 198, 904 1 5, 267 2, 406 2, 249, 686 

4ª/5ª 11   1   1       13 0 

5ª 191 198, 660 36 37, 727 43 144, 166     270 380, 553 

Total 2, 644 3, 097, 579 1, 356 1, 272, 734 895 2, 576, 826 5 43, 671 4, 900 6, 990, 810 
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Currently, wild rabbits can be hunted during the autumn–winter season, which begins September 

1st and ends late December (31st) (Instituto da Consevação da Natureza e das Florestas, IP, ICNF). 

Using a simplistic model (which did not include a stochastic variation of natural populations), 

Calvete et al. (2005) showed that the impact of hunting on population dynamics is highly 

determined by hunting selection, which can be age- and sex-biased, and may vary throughout the 

year (Calvete et al., 2005). Autumn–winter hunting occurs at the start of the reproductive season 

(Calvete et al., 2005) and may potentially lead to reductions in the size of the wild rabbit stable 

populations (Kokko and Lindstrom, 1998). Nonetheless, Calvete et al. (2005) concluded that this 

period was the most conservative option for the harvesting of wild rabbit populations. To reduce 

the hunting impact, Calvete et al. (2005) also suggested the shortening of the hunting season by 

finishing it at the end of autumn, avoiding hunting during the winter, when the proportion of 

pregnant females is higher. 

 

1.1.7.3. An agricultural pest 
Regardless of the general negative trend of rabbit populations in Iberia, the “agricultural pest” label 

has recently been added to the list of roles played by the rabbit in the Iberia (Ferreira, 2012). This 

tag was justified by the putative damages rabbits cause to crops in certain areas (Ferreira and 

Delibes-Mateos, 2010)(Ferreira, 2012). Nevertheless, considering rabbits as a pest appears to be 

more related with a change in the perception of damages, both by hunters and farmers, than with 

actual demographic changes (Ferreira and Delibes-Mateos, 2010)(Ferreira, 2012). 

 

1.1.8. The economic role of rabbit in the industry 
The economic importance of the rabbit, mainly in its domestic type, is extensible to the meat and 

fur industries. 

In several countries, the rabbit industry was also severely affected by RHDV2 emergence, including 

France (Le Gall-Reculé et al., 2011a), Spain (Dalton et al., 2012) and Portugal (Carvalho et al., 

2017a)(Carvalho et al., 2017b). 
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1.1.8.1. Relevance of the rabbit meat industry sector in Portugal 
The following information on the national rabbit meat industry was kindly given by Eng.º António 

Fernandes (ASPOC - Associação Portuguesa de Cunicultura, personal communication). Data are 

from the Instituto Nacional de Estatística (INE) processed by ASPOC. 

In Portugal, the total number of industrial meat rabbitries (CAE – Código de Actividades 

Económicas) has slightly expanded in the last years (Table 5). Most of these corporations have less 

than 10 workers (2 workers on average), although the total number of workers has also increased 

(Table 5). Following this positive trend, the rabbit meat industry turnover in our country slightly 

augmented in the last years, despite a little decrease in 2015 (Table 5), related in part to the sharp 

reduction of the price of live rabbits that year. 

 
Table 5. Data on the industrial meat rabbitry sector in Portugal from 2012 to 2015. The total number of 

corporations (CAEs) and workers is provided as well as the global turnover (in euros) in the period 

considered. This information was kindly provided by Eng.º António Fernandes (source: data from Informação 

empresarial simplificada (IES) - INE - processed by ASPOC). 

 

 

In 2014, meat rabbits were the 3rd species category with the highest slaughter numbers in Portugal 

after poultry and swine. Data on the total number of slaughtered meat rabbits in Portugal from 

2011 to 2016 is provided in Table 6. 

 

 

 

 

 

 Year 
 2012 2013 2014 2015 

Number of industrial meat rabbitries 
(CAE) 

97 112 114 125 

Number of workers in the sector 186 202 211 229 
Global turnover (euros) 16, 897, 457 18, 723, 153 18, 116, 174 17, 589, 838 
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Table 6. Data on the total number of slaughtered meat rabbits in Portugal from 2011 to 2016, by number of 

animals (x 1000) and carcass weight (t - tonnes). This information was kindly provided by Eng.º António 

Fernandes (source: data from INE processed by ASPOC). 

 

 Year 
Numbers of rabbits 

slaughtered 

Number of animals 
(x 1000) 

2011 5, 416 

2012 5, 471 

2013 5, 206 

2014 5, 364 

2015 4, 860 

2016 4, 247 

Carcass weight 
(t) 

2011 6, 747 

2012 7, 138 

2013 6, 485 

2014 6, 762 

2015 5, 952 

2016 5, 199 

 

In 2014, the country produced a total of 5, 430, 000 rabbits, from which 4, 800, 000 were 

slaughtered in the national territory. Additionally, 590,000 live rabbits imported from Spain were 

slaughtered in Portugal. 

A total of 5, 000 rabbits per week originate from commercial trades with Spain. In 2015, it was 

estimated 1, 220, 000 live rabbits and 231, 000 Kg of rabbit meat were exported to Spain. Data on 

the production, importation and exportation of live meat rabbits and on the importation and 

exportation of rabbit meat from 2011 to 2016 in Portugal is given in Table 7. 

The national production of rabbit meat in 2015 was estimated in 11.260 tonnes, generating an 

estimated turnover of approximately 17.6 million euros. 
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Table 7. Data on the production, importation and exportation of live meat rabbits and on the importation 
and exportation of rabbit meat from 2011 to 2016 in Portugal. This information was kindly provided by 

Eng.º António Fernandes (source: data from INE processed by ASPOC). 

 

 

In 2015, the rabbit meat consumption in Portugal was valued to 8, 766, 287 Kg (exclusively 

originated from industrial production), from which 5, 552, 000 Kg referred to rabbits that were 

slaughtered in Portugal and 304, 290 Kg referred to imported rabbits. The estimated consumption 

of rabbit meat in Portugal in 2015 was 0.84 Kg/ person/ year. Data on the consumption of rabbit 

meat in Portugal from 2011 to 2016 is given in Table 8. 

 

 

 

 

 

 

 

 

  Meat rabbits Rabbit meat 

 year Production Importation Exportation Importation Exportation 

Number of 
animals 
 (x 1000) 

2011 5, 416 - - - - 

2012 5, 471 - - - - 

2013 5, 573 949 1, 316 - - 

2014 6, 064 736 1, 437 - - 

2015 6, 068 592 1, 800 - - 

2015 6, 170 373 2, 296 - - 

Carcass 
weight (t) 

2011 6, 747 - - - - 

2012 7, 138 - - - - 

2013 6, 941 1, 183 1, 639 3, 222 292 

2014 7, 645 928 1, 811 3, 567 514 

2015 7, 432 725 2, 205 3, 000 262 

2016 7, 552 456 2, 810 3, 664 116 
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Table 8. Data on the consumption of rabbit meat in Portugal from 2011 to 2016. This information was 

kindly provided by Eng.º António Fernandes (source: data from INE processed by ASPOC). 

 
  Consumption of rabbit meat 

 Year Total (t) Per capita (Kg) 

Carcass weight  

2011 6, 747 0. 67 

2012 7, 138 0.71 

2013 9, 414 0.94 

2014 9, 815 0.98 

2015 8, 690 0.87 

2016 8, 747 0.87 

 

The self-supply rate on rabbit meat in Portugal from 2013 to 2016 is provided in Table 9. 

 
Table 9. Portugal self-supply rate (rabbit meat), 2013 to 2016. This information was kindly provided by Eng.º 

António Fernandes (source: data from INE processed by ASPOC). 

 

 

 

 

 

 

 

In 2015 the total production costs associated with the rabbit meat industries rose to 19.8 million 

euros, 60% (11.8 million euros) of which corresponded to expenses with feed. Considering the 

estimated rabbit meat industries turnover in Portugal in 2015 (17.6 million euros) and the 

estimated total production costs (19.8 million euros), there was a global financial loss of 2.2 million 

euros. 

Year Self-supply rate (%) 

2011 - 

2012 - 

2013 73.7 

2014 77.9 

2015 85.5 

2016 86.3 
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1.2. The Iberian hare (Lepus granatensis) 
Hares belong to the Leporidae family of the order Lagomorpha. In the Iberian Peninsula, the genus 

Lepus is presently represented by three species: the Iberian hare (Lepus granatensis (Rosenhauer, 

1856)), the Broom hare (Lepus castroviejoi (Palacios, 1976)) and the European brown hare (Lepus 
europaeus (Pallas, 1778)) (Duarte, 2000)(Gortazar et al., 2007)(Melo-Ferreira et al., 2007). Both L. 
granatensis and L. castroviejoi are endemic to the Iberian Peninsula (Duarte, 2000). Mitochondrial 

DNA (mtDNA) studies have identified lineages that are specific to each of these species (Pérez-

Suárez et al., 1994)(Alves et al., 2003)(Melo-Ferreira et al., 2007). However, Alves et al. (2003) also 

detected haplotypes inherited from Lepus timidus (the mountain hare), now extinct from Iberia, in 

L. granatensis and L. europaeus specimens. Lepus timidus is an arctic-alpine species widely 

distributed in the Northern part of the Palaearctic region, and is found from the British Isles to the 

Russian Far East, as well as in some isolated populations in the Alps, Poland and Japan (Angerbjörn 

and Flux, 1995)(Melo-Ferreira et al., 2007). According to fossil records, L. timidus was the most 

common and widely distributed hare species in Europe during the last glacial periods (Lopez-

Martinez, 1980) and mtDNA of L. timidus origin is widespread in the Iberian Peninsula (Melo-

Ferreira et al., 2007). The L. timidus mtDNA introgression predominates in L. granatensis 

populations from the North, but becomes rarer towards the South, where it is absent. Moreover, it 

is almost fixed in Iberian L. europaeus and also present in L. castroviejoi (Melo-Ferreira et al., 2007). 

 

1.2.1 Distribution 
L. granatensis is widely distributed in the Iberia and its geographic range includes Portugal and 

nearly the entire extent of the Spanish territory (Alves et al., 2003)(Gortazar et al., 2007). Still, it is 

absent from Spanish northern regions, where L. castroviejoi (restricted to the Cantabrian 

Mountains) and L. europaeus (along the Pyrenees) are found (Alves et al., 2003)(Gortazar et al., 

2007)(Melo-Ferreira et al., 2007) (Figure 5). These regions correspond to the geographic triangle 

that runs from the Atlantic coast along the Pyrenees to the Ebro delta, the L. granatensis 

southernmost limit in Europe (Alves et al., 2003)(Gortazar et al., 2007). L. granatensis and L. 
europaeus exist in parapatry in most Northern Spain provinces, while the Iberian hare inhabits the 

southern region, the brown hare is found in the north (Fernandez et al., 2004). L. granatensis is also 

present on Mallorca Island (Duarte, 2000) and has been introduced in southern France (Alves et al., 

2003) (Figure 6). 
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According to the IUCN, the Iberian hare is abundant and common in the southern and central areas 

of its range (Mitchell-Jones et al., 1999)(Farfán et al, 2004) and the current population trend is 

considered stable. The species figures in the IUCN red list in the category of Least Concern (Smith 

and Johnston, 2008). 

Although no major threats to L. granatensis have been pointed out (Smith and Johnston, 2008), a 

high hunting pressure, predation and diseases, such as the European brown hare syndrome virus 

(EBHSV) or tularaemia, could putatively represent important factors affecting the Iberian hare 

population dynamics (Duarte, 2000). Also, the use of rodenticides in agricultural lands and road 

traffic could be considered threats to the species (Purroy, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The distribution of the three hare species that can be found in the Iberian Peninsula. Lepus 
granatensis (gross distribution) is widely distributed in the Iberia (light green colour) while Lepus castroviejoi 
(dark green colour) is restricted to the Cantabrian Mountains and Lepus europaeus (medium green colour) 

occurs along the Pyrenees (adapted from (Campos et al., 2015)). 
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Figure 6. Lepus granatensis world distribution. The species is native to the Iberian Peninsula and its 

geographic range includes Portugal and nearly the entire extent of Spain (yellow colour). L. granatensis was 

introduced in the South of France and Balearic islands (purple colour). This map was based on the IUCN 

distribution map and edited according to (Acevedo et al., 2012). 

 

1.2.2 Genetic diversity  
There are three Iberian hare subspecies: i) L. g. granatensis (Rosenhauer, 1856) which occupies 

most of the distribution area; ii) L. g. solisi (Palacios, 1992), restricted to Mallorca island and 

presenting typical insular features, namely shorter posterior extremities, and; iii) L. g. gallaecius 

(Miller, 1907), found in the northwest of the Iberian Peninsula and in Galicia and Asturias (Spain), 

and distinguished from the nominal by a darker fur colour and longer posterior extremities 

(reviewed in (Duarte, 2000)). 

 

1.2.3 Morphologic aspects 
The Iberian hare L. granatensis is larger than the European wild rabbit but smaller than the L. 
europaeus and L. castroviejoi (reviewed in (Duarte, 2000)). Morphologically, the L. granatensis 

presents a grizzled yellow-brown fur colour, except in the ventral body region area, where it is 
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white. Also, the Iberian hare has a black and white fur and the ears are longer with black ear tips 

(reviewed in (Duarte, 2000)). 

L. granatensis is distinguished from the other hare species by a typical white spot in the superior, 

distal portion of its extremities, absent in L. europaeus and L. castroviejoi (Duarte, 2000). Also, the 

white-greyish facial list typical of the L. castroviejoi is absent in L. granatensis. The white fur colour 

in the ventral body region area is extensive, creating a clear contrast between the dorsal and 

ventral body regions, in contrast with L. castroviejoi, where this ventral white spot is less extended, 

and L. europaeus, where it is almost absent (reviewed in (Duarte, 2000)). 

 

 

 

 

 

 

 

 

 
Figure 7. The three hare species found in the Iberian Peninsula. (A)– Lepus granatensis; (B)- Lepus 
castroviejoi; (C)- Lepus europaeus (adapted from (Ballesteros, 1998)). 

 

L. granatensis body longitude ranges from 44.4 cm to 47.0 cm. There is sexual dimorphism as 

females are larger than males. The head-body longitude ranges from 51 cm (in males) to 52 cm (in 

females) and the maximum body weight varies from 2.95 Kg (in males) to 3.30 Kg (in females) 

(Purroy, 2011). 

 

1.2.4. Habitat and diet 
The L. granatensis occupies a wide variety of habitats (Alves et al., 2003), occurring in dry areas as 

well as in coastal dunes and in the wet mountainous forests (Purroy, 2011). Besides occurring in 

open fields, the greater species densities occur in intensive agricultural areas (Calzada and 

Martínez, 1994)(López et al., 1996) such as olive tree and sunflower fields and vineyards (Duarte, 

2000). Hares usually feed at night and their diet includes herbaceous plants, mostly leguminous 

and grasses, but also seeds and fruits, mainly by the end of the summer and autumn, as well as 

A B C 
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short bushes. As they prefer springs, agricultural lands with permanent grass renovation are the 

most favourable habitats for hares (Duarte, 2000). 

Hares are solitaire, as they do not have a social organization nor inhabit in borrows (Duarte, 2000). 

However, they can gather in groups following complex age-dependent patterns, mostly during the 

feeding time, hence reducing predation risk and increasing feeding efficiency (Marboutin and 

Péroux, 1999). 

 

1.2.5. Population dynamics 
The Iberian hare reproductive strategy, of continuous procreation (Alves and Rocha, 2003), is 

concordant with smaller litters and longer breeding seasons (Fernandez et al., 2008). The onset of 

sexual activity is not season dependent but rather on the size of the animals (>1.75-2 Kg) (Purroy, 

2011). 

In their study on the reproductive biology of L. granatensis in southern Iberia, Farfán et al. (2004) 

found that sexually active males and females appeared in every month except August. 

Reproductive activity was as its maximum from February to June and reproductively hyperactive 

females (simultaneously pregnant and nursing) appeared in every month except in January, with a 

first peak in March and a second lower peak in May–June. Births occurred every month and were 

more frequent between March and July. Litter size varied from one to seven leverets, but the most 

frequently one or two. The mean annual litter size was 2.08 and the average number of litters per 

productive female per year was estimated to be 3.48. The total annual production of young per 

adult female was estimated to be 7.21. 

Hares’ abundance is directly related to females breeding success as well as to juvenile survival rates 

(Marboutin et al., 2003), both directly depend on habitat suitability (Duarte, 2000). The highest 

juvenile mortality is observed after the maximum reproductive intensity period. Nearly 60% of the 

young die, corresponding to an increase of 40% in the population numbers (Duarte, 2000). Prenatal 

mortality was estimated to be between 18% to 21% (Alves et al., 2002)(Fernandez et al., 2008). The 

minimum annual survival rate of young was 27.91% (Farfán et al., 2004). 

The Iberian hare population dynamics is greatly affected by food availability (Carro et al., 1999). 

Habitat loss, mostly due to the abandonment of agricultural land, can influence negatively the 

Iberian hare population dynamics. Habitat management is considered the best strategy to recover 

species numbers (Duarte, 2000). 
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1.2.6. Importance in the Iberian Peninsula 
The Iberian hare plays an important socio-ecological role in the Iberian Peninsula. However, data on 

the L. granatensis ecology is scarce in the international literature, since most information has been 

almost entirely published in regional journals, books or reports, with limited access (Acevedo et al., 

2012). 

 

1.2.6.1 Relevance as prey 
Due to the decrease in O. cuniculus numbers, hares also play an important role as prey for a large 

number of predators, including the Vulnerable Imperial eagle (Aquila adalberti ) (Gortazar et al., 

2007)(Acevedo et al., 2012). 

 

1.2.6.2. Relevance as a game species 
Hares are important game species throughout Europe (Gortazar et al., 2007). The L. europaeus is 

the most important small game species in the old continent, with more than 5, 000, 000 individuals 

harvested annually (Flux and Angermann, 1990)(Gortazar et al., 2007). The L. granatensis has also 

been identified as an important game species in the Iberian Peninsula (Gortazar et al., 2007), where 

the species is intensively hunted throughout its range (Duarte, 2000). In Spain, more Acevedo et al., 

(2012) refers that more than 900, 000 hares were harvested annually. 

Currently in Portugal, the Iberian hare can be hunted during the autumn–winter season, which 

begins at September the 1st and terminates at the end of February (Instituto da Conservação da 

Natureza e das Florestas, IP, (ICNF)). 

In the five years period that ranged from 2011 to 2015 (Table 2), a decrease in the number of 

Iberian hares hunted in Portugal was registered. However, the negative trend indicated by these 

data may reflect some bias since the period analysed corresponds to RHDV2 introduction in 

Portugal, when several game management strategies were applied to stabilize the O. cuniculus 

populations downsizing. Those measures included predator control but also reducing hunting 

pressure, the latter also influencing the harvest of the Iberian hare. 

 

1.2.7. Hares as putative sentinels for tularaemia in the Iberian Peninsula 
Wildlife, as well as pets and farm animals, can be used as clinical sentinels in surveillance systems, 

each serving distinct roles in disease detection and risk assessment (Gubernot et al., 2008). There is 
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scientific evidence that sentinel surveillance is predictive of human risk (Gubernot et al., 2008). 

Animals share environments with humans, respond in analogous ways to many toxic or infectious 

agents, and clinical signs may manifest in animals prior to humans (Gubernot et al., 2008). 

Hares are considered reservoirs of tularaemia, an important zoonotic bacterial disease only recently 

detected on the Iberian Peninsula (Quijada et al., 2002)(Gortazar et al., 2007)(Lopes de Carvalho et 

al., 2007)(Lopes de Carvalho et al., 2016). Tularaemia incubation period is slightly shorter in animals 

and often fatal in wild animals, therefore providing useful means for its detection. 

L. europaeus is considered a very good indicator of Francisella tularensis presence and activity in 

natural foci, and has been used routinely for the surveillance of this zoonosis (Bandouchova et al., 

2011). It is possible to plot a prediction map of tularaemia geographic distribution using data on 

European brown hares (Pikula et al., 2004)(Bandouchova et al., 2011). The Iberian hare is also 

susceptible to tularaemia (Duarte, 2000), highlighting the need of monitoring this species.
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Table 10. Iberian hare (L. granatensis) specimens hunted in Portugal mainland between the years 2005 and 2016, during the cinegetic period (from the 
September 1st to the end of February). Data was provided by Dr. Gonçalo Lopes from the Instituto da Conservação da Natureza e das Florestas, IP (ICNF). To 

compare with the homologous data referring to wild rabbits (O. cuniculus) hunted in Portugal during the same period Cf Table 1, page 18. 

Species Cinegetic period  

  2005/6 2006/7 2007/8 2008/9 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Iberian hare  

(L. granatensis) 

Nº of hunted 

specimens 
81,371 87,677 105,301 118,049 107,028 104,053 92,401 72,196 37,268 53,768 37,390 
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1.3. Rabbit haemorrhagic disease (RHD) 
Rabbit haemorrhagic disease (RHD) is a highly contagious and fatal disease caused by the RHD 

virus (RHDV), which affects both wild and domestic rabbits. Until 2010, RHD was attributed to the 

classical RHDV strains distributed within six well-defined genogroups (G1 to G6, the latter also 

designated RHDVa) (Le Gall et al., 1998)(Nowotny et al., 1997)(Le Gall-Reculé et al., 2003). However, 

in late 2010 a new virus emerged in France (Le Gall-Reculé et al., 2011a), representing a distinct 

lineage of pathogenic rabbit lagoviruses, soon designated RHDV2 (Le Gall-Reculé et al., 2013) or 

RHDVb (Dalton et al., 2012). 

Both RHDV and RHDV2 belong to genus Lagovirus of the Caliciviridae family (Capucci et al., 

1996a)(Le Gall et al., 1998)(Le Gall-Reculé et al., 2013) along with the European brown hare 

syndrome virus (EBHSV) (Capucci et al., 1996a) and the non-pathogenic lagoviruses (NP-LV), in 

accordance with the nomenclature suggested by (Le Gall-Reculé et al., 2011b). The general aspects 

of the Caliciviridae family are addressed in Chapter I (Study 1). 
 

1.3.1. Historic perspective on the emergence of RHDV and RHDV2 
RHD was described for the first time in the Wuxi City, Jiangsu Province of China in 1984 about 100 

Km from Shanghai (Liu et al., 1984), in Angora rabbits imported from the German Democratic 

Republic (Liu et al., 1984), and was associated with high morbidity and mortality rates (Liu et al., 

1984)(Xu, 1991). Soon after its emergence, this disease was designated rabbit “Haemorrhagic 

septicaemia” or “Infectious necrotic hepatitis” (Marcato et al., 1988)(Mitro and Krauss, 1993). 

The disease aetiological agent was found to be a RNA virus later designated rabbit haemorrhagic 

disease virus (RHDV) (Liu et al., 1984)(Xu, 1991). After its first report in the mid 80’s, RHDV rapidly 

spread to an area of approximately 50,000 km2, killing 140 million domestic rabbits in China in less 

than a year (Liu et al., 1984)(Xu, 1991). From China, the virus quickly expanded, either in infected 

rabbits or rabbit products, to other Asian countries, namely to Korea (Park et al., 1987), and latter to 

Europe, where it was first reported in 1986 in Italy (Cancellotti and Renzi, 1991). 

In Europe, RHDV promptly disseminated from domestic to wild rabbits and soon was well 

established (Cooke, 2002). The first RHD cases in wild rabbits were reported in Spain in 1988 

(Argüello-Villares et al., 1988). In Portugal the disease was first described in Madeira Island also in 

1988 and in the next years in several islands of the Azorean archipelago (in the islands of Faial in 

1988, São Jorge in 1989 and Santa Maria in 1990 (reviewed in (Duarte et al., 2014)). The disease 
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reached Portugal mainland in 1989 (reviewed in (Duarte et al., 2014)) and was responsible for a 

dramatic reduction in the Iberian wild rabbit populations (Delibes-Mateos et al., 2007). The disease 

was also described in France in 1988 and by 1989 the virus was widespread throughout Europe 

(Morisse et al., 1991)(Le Gall, et al., 1988). 

RHDV was reported in 1988 in Mexico, from where it was successfully eradicated since O. cuniculus 

is not a native species (Gregg et al., 1991), as well as in Russia, Middle East and Africa (Morisse et 

al., 1991). The disease reached India in 1989 (Morisse et al., 1991) and North America in 2000 

(McIntosh et al., 2007). As the virus spread worldwide, naturally occurring RHD outbreaks were 

reported in geographically distant regions, such as Cuba (Farnós et al., 2007) and Uruguay 

(McIntosh et al., 2007). 

In marked contrast with other countries that faced the disease with concern, Australia used RHDV 

as a viral bio-control agent for rabbits, considered an agricultural pest and a major threat to the 

endemic flora and fauna wildlife (Jahnke et al., 2010). Due to its exceptional virulence, high 

transmissibility, and narrow host range, the RHDV Czech reference strain (CAPM-V351) was 

released in 1991 in the Wardang Island in Spencer Gulf, South Australia, after the approval of the 

Australian authorities (Eden et al., 2015). However, regardless the rigorous quarantine measures, 

the virus reached the mainland in 1995 possibly transported by insects or air currents (Kovaliski, 

1998). In less than two years (the initial spread was estimated to be 50 Km per week) it became 

established across southern Australia, causing a reduction of more than 95% of the wild rabbit 

populations in some areas, particularly in the more arid regions (Abrantes et al., 2012). In New 

Zealand, despite the rabbit is also considered a plague, the government decided not to use the 

virus as biological weapon. Yet, RHDV was later illegally introduced by landholders (O ’hara, 2006). 

In brief, RHDV became endemic in areas where the European rabbit wild populations were 

historically present, while the occurrence of RHDV as an epidemic or rare outbreaks seemed to 

occur in countries where the rabbit was mainly present as a domestic or industrial animal and 

related with rabbit colony number and density (Abrantes et al., 2012). 

 

RHDV2 is a new pathogenic lagovirus, which differs from RHDV in terms of phylogenetic position, 

antigenic profile and pathogenicity (Le Gall-Reculé et al., 2013). The first RHDV2 reported cases 

took place in April and May 2010, in a rabbitry in western France and in a wild rabbit, respectively. 

Until December of that year, the estimated mortalities rates caused by RHDV2 in wild rabbit 

populations ranged from 80% to 90% (Le Gall-Reculé et al., 2011a) and RHDV2 was responsible for 
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75% (25/34) of the RHD epizootics recorded in 2010, mainly in north-western France (Le Gall-

Reculé et al., 2013). As early as February 2011, RHDV2 had already reached the south of France, 

demonstrating the large-scale spread of the virus (Le Gall-Reculé et al., 2013). RHDV2 was 

responsible for 73% (29/40) and for 95% (41/439) of the epizootics recorded between January and 

June and between July and December 2011, respectively (Le Gall-Reculé et al., 2013). 

After crossing the Alps and the Pyrenees geographic barriers, favoured by the lack of cross-

protection conferred by classic strains induced immunity (Le Gall-Reculé et al., 2013), RHDV2 

quickly disseminated to other European countries, including Spain (Dalton et al., 2012) and Italy (Le 

Gall-Reculé et al., 2013), were it was first detected in 2011. The virus reached Portugal mainland in 

late 2012 (Abrantes et al., 2013). It was reported in wild rabbits collected near the Spanish border 

(Abrantes et al., 2013) from where it rapidly dispersed to the centre and south of the country in a 

very short period of time (Lopes et al., 2015a). Germany (information on the FLI, 10|21|2013), 

England and Wales (Westcott et al., 2014) and Scotland (Baily et al., 2014) reported RHDV2 in 2013. 

By January 2015, RHDV2 had already extended to several islands of the Azorean archipelago 

(Duarte et al., 2015a). Also in 2015, the virus was reported in Australia (Hall et al., 2015), Finland 

(http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports) and Tenerife 

Island (Martin-Alonso et al., 2016). Tunisia, the Scandinavian countries of Norway (OIE Technical 

disease cards. 2016), and Sweden (Neimanis et al., 2017), the Ivory Coast 

(http://outbreakwatch.blogspot.pt/2016/09/proah-rabbit-hemorrhagic-disease-cote.html) and 

Canada (http://outbreakwatch.blogspot.pt/2016/08/proahedr-rabbit-hemorrhagic-disease_26.html) 

reported the disease in 2016. Recently, by the end of 2016, the virus was also detected by our team 

in the Madeira archipelago (Carvalho et al., 2017c). 

 

1.3.2. Aetiological agent 
1.3.2.1. Virion structure  
Classic RHDV is the prototype virus of the genus Lagovirus. However, it was not until early 1990s 

that the virus was finally assessed in as a member of the Caliciviridae family, since the first attempts 

to classify RHDV were erratic due to its non-cultivable nature (reviewed in (Abrantes et al., 2012)). 

RHDV is a non-enveloped small sized virus, which outer diameter varies between 32-35 nm (with a 

range of 28-42 nm) with a positive-sense, single-strand RNA genome of approximately 7.4 kb 

(7437 nucleotides long) (Valícek et al., 1990)(Capucci et al., 1991)(Wirblich et al., 1996)(Meyers et al., 

2000)(Dalton et al., 2015) and a characteristic morphology defined by cup-shaped depressions 
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(Figure 8A and B) (Valícek et al., 1990)(Capucci et al., 1991)(Sibilia et al., 1995). A high percentage 

of viral particles present an electron-dense core with an approximately 23-25 nm diameter, 

delineated by a rim from which radiate ten short (5 to 6 nm long) peripherical projections, regularly 

distributed (Capucci et al., 1991)(Sibilia et al., 1995). 

Besides the genomic RNA (gRNA), RHDV virions also contain an abundant subgenomic mRNA 

(sgRNA) with 2.2 kb, which is collinear with the 3’ end of the genomic RNA (Meyers et al., 

1991a)(Wirblich et al., 1996)(Meyers et al., 2000). Both the genomic and the subgenomic RNAs are 

packaged in non-enveloped icosahedral capsids that consist of the major structural protein VP60 

(Wirblich et al., 1996). 

 

 

 

 

 

 

 

 

 

 
 
Figure 8. Rabbit haemorrhagic disease virus (RHDV). (A)- Micrograph of purified, negatively stained RHDV 

(bar=100 nm) (adapted from (Wang et al., 2013); (B)- Reconstructed intact RHDV virion with diameter ~41nm 

(adapted from (Hu et al., 2010)). 

 

1.3.2.1.1. VP60 (VP1) capsid protein 

The viral capsid forms a layer that protects the RNA molecule and comprises 180 copies of a single 

capsid protein (Bárcena et al., 2004)(Luque et al., 2012). Virions consist of 90 capsid protein 

protruding arch-like dimeric capsomers which surround 32 large hollows or cup-shaped 

depressions (only visible in the virus purified form) arranged in a T=3 icosahedral symmetry 

(Valícek et al., 1990)(Capucci et al., 1991)(Thouvenin et al., 1997)(Bárcena et al., 2004). 

Each capsid protein monomer consist of shell (S) domain, involved in forming the icosahedral shell 

which protects the viral RNA, with an arm at the N-terminal region (the N-terminal arm or NTA) 
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facing the inner surface of the capsid shell and connected by a hinge to a flexible protruding (P) 

domain (Figure 9) (Bárcena et al., 2004)(Luque et al., 2012)(Bárcena et al., 2015). The (P) domain 

encompasses the C-terminal region and forms the prominent protrusion emanating from the shell 

(Bárcena et al., 2004). While the VP60 N-terminal region is buried within the particle, the C-terminal 

region is exposed on the surface (Bárcena et al., 2004). The (P) domain can be further subdivided 

into the subdomains P1 (the stem or leg of the protrusion) and P2 (top of the protrusion) (Figure 
10 B and C) (Hu et al., 2010)(Bárcena et al., 2015). While the S domain (Figure 10A) is well 

conserved, the P domain contains determinants for virus-host receptor interactions and antigenic 

diversity (Bárcena et al., 2004)(Hu et al., 2010)(Luque et al., 2012)(Bárcena et al., 2015). The P1 sub-

domain is only moderately conserved and the P2 sub-domain, located at the outermost surface 

region of the viral capsid protein, is highly variable (Hu et al., 2010)(Bárcena et al., 2015), displaying 

the greatest genetic and antigenic variation (Bárcena et al., 2015). 

 

 

 

 

 

 

 

 

 
Figure 9. Domain organization of RHDV VP60. The Shell (S) domain encompasses amino acids (aa) 66 to 

230. The Protruding (P) domain comprehends aa 238 to 579 The P domain is further subdivided in the P1-

subdomain, encompassing aa 238 to 287, 450 to 467 and 484 to 579. The P2-subdomain comprehends aa 

287 to 450 and 467 to 484 (adapted from (Wang et al., 2013)). 
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Figure 10. Ribbon representation of the crystal structure of the RHDV VP60 S and P domains and topology 
diagram of P2 subdomain. (A)- S (Shell) domain; secondary structures are coloured blue for helices, gold for 

β-strands, and grey for loops and are labelled sequentially. (B)- P (Protruding) domain; P1 (green) and P2 

(pink) sub-domains are indicated and coloured according to their secondary structure elements (blue for 

helices, gold for β-strands, and grey for loops) and labelled sequentially. (C)- Topology diagram of the VP60 

P2 sub-domain (labels and residue numbers correspond to those shown in panel (B)); (adapted from (Wang 

et al., 2013)). 
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RHDV capsomers have a hat-shaped prominence at the P2 region, indicating a specific antigen 

structure and antibody binding sites (Hu et al., 2010). Each dimeric capsomer presents two 

monoclonal antibodies (MAb) binding sites (Thouvenin et al., 1997). The greater amino acidic 

variability found in P2 subdomain is due, at least in part, to the selection pressure imposed by the 

host antibodies that recognise and target regions located in this subdomain (Martínez-

Torrecuadrada et al., 1998)(Bárcena et al., 2004). In order to avoid this recognition, these regions 

tend to evolve faster having higher genetic variability and antigenic variation (Esteves et al., 

2008)(Kinnear and Linde, 2010). The RHDV antigenic variant G6 or RHDVa virus-like particles (VLP) 

pseudo-atomic model determined by Wang et al., (2013) enabled the identification of seven 

regions of sequence variation on the P domain, which are addressed in a more comprehensive 

manner in Chapter V “RHDV and RHDV2 genetic relations”. 

The specific packing among the 90 RHDV capsomers and the different interactions among adjacent 

capsomers indicates that the P domain, especially the P2 subdomain, has different fold and 

conformation when compared with other caliciviruses (Hu et al., 2010). Capsids are dynamic 

structures whose components have transient conformations in relation to specific functions in the 

viral cycle (Luque et al., 2012). In capsids with triangulation numbers T = 3 (Figure 11A and B), the 

icosahedral asymmetric unit consists of three quasi-equivalent subunits, as the single capsid 

protein must be able to adopt three slightly different conformations (A, B, and C), because they 

must adapt to three quasi-equivalent but different structural environments in the shell (Harrison, 

2001). In accordance, RHDV VP60 (Figure 11 A and B) is able to switch among quasi-equivalent 

conformational states by a mechanism involving the N-terminal region of a subset of subunits 

(Bárcena et al., 2004). Also, the C-terminal (whose residues mostly face the hollows of the cup-

shaped depressions) is also involved in inter-dimeric contacts (Bárcena et al., 2004). Deletions of C-

terminal amino acid residues may result in misfolding or altered conformation of the remaining 

peptide chain, impeding the VLP assembly (Bárcena et al., 2004), (Figure 11C). 
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Figure 11. RHDV VP60 three-dimensional structures. (A)- Surface-shaded representation of the outer 

surface of the VP60 capsid viewed along a 3-fold axis of icosahedral symmetry. The positions of the three 

conformers of VP60 (A, B, and C) are indicated. (B)- A model of the VP60 capsid with the front half of the 

protein shell removed viewed along a 2-fold axis. Six lid-shaped structures located on the inner surface at the 

3-fold axis are indicated by arrows. (C)- Surface-shaded representation of the outer surface of small NT29 

capsids viewed along a 3-fold axis of icosahedral symmetry. T = 1 dimers are shown with the opposite 

handedness with respect to T = 3 dimers. Two monomers of NT29 protein are indicated (A’) (adapted from 

(Bárcena et al., 2004)). 

 

The capsid protein VP60 is the main target of the host immune defence against RHDV, and plays 

an important role in virus diagnosis and vaccine design (Esteves et al., 2008). 

X-ray crystallography (Adams et al., 2010) has facilitated the construction of accurate models for 

the VP60 domains of RHDV (Wang et al., 2013) and RHDV2 (Leuthold et al., 2015), allowing the 

comparison of those structures between both viruses (Bárcena et al., 2015). The P domains 

sequence identity between RHDVa (RHDV G6) and RHDV2 found by Leuthold et al., (2015) was 84% 

and superposition of RHDV2 and RHDVa P domains showed a similar overall structure. However, 

the RHDV2 P1 subdomain helixes were slightly shifted and a number of P2 subdomain loops were 

oriented differently. Also, the three extended loop regions located at the outer surface of the P2 

subdomain contained randomly distributed amino acid variations. The implication of RHDV2 P 
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domain loop different conformation will be addressed in more detail in section “1.3.2.3.1. Histo-

blood group antigens (HBGAs) attachment factors”. 

 

1.3.2.1.2. VP10 (VP2) 

VP10 is proposed to be a basic minor structural protein with 12,7 KDa (Liu et al., 2008)(Chen et al., 

2009) and a component of RHDV virions (Wirblich et al., 1996)(König et al., 1998)(Meyers et al., 

2000) where it is present in small amounts (Esteves et al., 2008). The VP10 is expressed by an 

unknown mechanism (Meyers et al., 2000) and its expression level is considered to be very low, 

approximately one-fifth (≈ 20%) of the VP60 expression level (Meyers, 2003). 

The VP10 protein is conserved in all caliciviruses, suggesting that it may play an important role in 

the virus life cycle (Liu et al., 2008)(Chen et al., 2009), but the precise biological function of RHDV 

VP10 is unclear (Liu et al., 2008). Two main hypotheses have been considered regarding its 

function. The first, hypothesised that the VP10 protein could play a role in virus-particle assembly 

by interacting with both VP60 and the viral RNA (or the VPg protein linked to RHDV-RNA), thus 

mediating specific encapsidation of the virus genome (Sosnovtsev et al., 2005). The second 

assumed that VP10 could be a regulatory factor related to virus replication, protein expression or 

virus-induced cell apoptosis (Liu et al., 2008)(Chen et al., 2009). 

Regarding the first hypothesis, although studies on other members of the Caliciviridae family, such 

as the feline calicivirus (FCV) (Sosnovtsev et al., 2005), have demonstrated that the VP10 is critical 

for infectivity, RHDV was shown to retain its infectivity in the absence of VP10 (Liu et al., 2008). In 

addition, virus-like particles (VLPs) have been produced by expressing only the VP60 protein in 

insect cells (Laurent et al., 1994). These results suggest that that VP10 is not essential for the 

production of infectious RHDV virions (Liu et al., 2008), in contrast with previous assumptions 

(Wirblich et al., 1996)(Glass et al., 2000)(Sosnovtsev and Green, 2000). 

Although VP10 may not participate in the production of progeny virions, it may represent an 

important virulence gene (Liu et al., 2008). In vitro and in vivo studies showed that RHDV VP10 

downregulates the expression of the viral capsid protein VP60 (Chen et al., 2009) and reduces the 

levels of sgRNA (Parra et al., 1993), the major source of capsid protein assembled into mature 

virions. The mechanisms by which this occurs are not yet fully understood and, although it seems 

that the VP60 downregulation occurs at the transcriptional level, the possibility that VP10 may also 

regulate VP60 protein expression at the translational or even post-translational level cannot be 

excluded (Chen et al., 2009). 
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The VP10 ability to regulate capsid protein levels may contribute to effective virus infection (Chen 

et al., 2009). It seems that VP10 might regulate virus replication, by reducing it (Liu et al., 2008). In 

addition, VP10 seems to be involved apoptosis induction following infection and in virion release 

from infected host cells (Liu et al., 2008)(Chen et al., 2009), a determinant  process in the 

development of the RHDV pathogenesis (Alonso et al., 1998)(Jung et al., 2000). Studies in feline 

calicivirus (FCV) have demonstrated that virus replication and de novo synthesis of viral proteins are 

critical for the induction of apoptosis (Sosnovtsev et al., 2003). 

 

1.3.2.1.3. RHDV Core-like particles (CLP) 

A second type of classical RHDV virions was also reported to be obtained sporadically from rabbits’ 

liver with subacute or chronic RHD (Granzow et al., 1996). These viral particles were designated 

core-like particles (CLP), smooth particles or s-RHDV (Granzow et al., 1996). CLP were found in the 

liver and spleen but not in the bloodstream (Barbieri et al., 1997)(Hu et al., 2010) and correspond to 

the assembly of the N-terminal region of the RHDV-VP60 (Laurent et al., 2002) into small (25-27 

nm in diameter), and smooth particles which present only one structural protein of 28-30 kDa 

(Figure 12) (Granzow et al., 1996)(Laurent et al., 2002)(Hu et al., 2010). CLP have no 

haemagglutinating properties, most likely due to the absence of the C-terminus, but present 

reactivity with sera from RHDV convalescent rabbits and monoclonal antibodies directed towards 

the N-terminal part of the RHDV capsid protein (Granzow et al., 1996)(Barbieri et al., 1997). CLP 

seem to be associated with the appearance of specific anti-RHDV IgM (Abrantes et al., 2012) and it 

was suggested that they might result from the degradation of RHDV-IgM immuno-complexes, 

formed in large amounts at the beginning of the humoral response (Barbieri et al., 1997)(Hu et al., 

2010). Although it was also suggested that CPL could result from a truncated VP60 genome or 

defective expression rather from proteolytic degradation (Granzow et al., 1996)(Bárcena et al., 

2004), more recent date showed that CLP directly derive from intact virions with dissociated 

protrusion (Hu et al., 2010). 
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Figure 12. Comparison between intact RHDV virion and CLP. (A)- Central section perpendicular to one of 
2-fold axes plotted against the intact RHDV virion and CLP. The RHDV virion contain four regions of densities, 

from the centre to outside: RNA containing core (O), inner shell (IS), capsid shell (S) and capsid protrusion (P); 

the arrows indicate the similar features between two structures (adapted from Hu et al., 2010). (B)- Isosurface 

representation of both intact RHDV virion (diameter ~41nm) and CLP (diameter ~32nm) (adapted from (Hu 

et al., 2010)). 

 

1.3.2.2 RHDV genomic organization 
Caliciviruses’ genomes are typically organized into either two (Lagovirus, Sapovirus, Nebovirus) or 

three (Norovirus, Vesivirus, Recovirus) major open reading frames (ORF) (reviewed in (Taube et al., 

2010)), although a fourth ORF was identified in murine norovirus (MNV) (Thackray et al., 2007). The 

RHDV gRNA consists of two slightly overlapping ORFs. ORF1 has 7 kb and comprises nucleotides 

10 to 7044 while ORF2 is 351 nucleotides-long, from nucleotide 7025 to 7378, covering nearly 99% 

of the genome (Meyers et al., 1991b)(Wilblich et al., 1996). 

  B 
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1.3.2.2.1. ORF1 

ORF1 encodes a primary translation product of 257 kDa (Meyers et al., 1991b), containing the non-

structural genes (grouped in the 5’ region) followed by the 60 kDa capsid protein genes (in the 3’ 

region), uninterruptedly (Meyers et al., 1991b)(Parra et al., 1993). This is a distinguishing 

characteristic from other caliciviruses (Capucci et al., 1996). The genome organization of RHDV is 

given in Figure 13. 

The 257 kDa polyprotein contains the non-structural and major capsid proteins, which are arranged 

in the order NH2-p16-p60-p41-p72-VP60-COOH (König et al., 1998)(Meyers et al., 2000). The p60 

is further cleaved into p23 and p37 (a helicase) and, following an apparently complex processing 

system, p41 gives rise to products of 23 and 18 kDa (p23/2 and p18), or alternatively, to 

polypeptides of 29 and 13 kDa (p29 and p13) (Meyers et al., 2000). The latter product represents 

VPg (Meyers et al., 2000). Apparently, cleavage of p41 into p29 and p13 (p14) seems to be 

preferred in infected cells or, alternatively, p18 is rapidly processed to give rise to p13 and a 

hypothetical product of 5 kDa not detected so far (Meyers et al., 2000). The p72 represents a fusion 

protein composed of the viral cysteine protease (p15) and the RNA-dependent polymerase (RdRP, 

p58) in which is cleaved with rather low efficiency (Wirblich et al., 1996)(Meyers et al., 

2000)(Thumfart and Meyers, 2002). According to the above described genome organization, 

cleavage of the ORF 1 polyprotein occurs at eight cleavage sites (Thumfart and Meyers, 2002). 

Most, if not all, cleavages are performed by a virus-encoded trypsin-like cysteine protease (TCP) 

showing significant similarity to the 3C proteases of picornaviruses (Wirblich, 1996)(König et al., 

1998)(Meyers et al., 2000)(Thumfart and Meyers, 2002). Seven of the eight sites were identified and 

correspond to the dipeptides located in the positions 143/144 (EG, p16-p23), 367/368 (EG, p23-

p37), 718/719 (EG, p37-p41), 993/994 (QG, within p41), 1108/1109 (EG, p13(VPg)-p15(protease), 

1251/1252 (ET, p15 (protease)-p58 (polymerase) and 1767/1768 (EG, p58 (polymerase)- VP60) 

(Martín-Alonso et al., 1996)(Wirlblich et al., 1996)(Meyers et al., 2000). The still unknown site is 

located within p41 and separates the processing products p23/2 and p18 (Thumfart and Meyers, 

2002). Blocking of EG 1108/1109 prevents the generation of p41, p13 (VPg), p72 (protease/ RdRp), 

and p15 (protease)(Meyers et al., 2000) while blocking cleavage at site 718/719 had a major effect 

on processing of p41 in general (Meyers et al., 2000). 

The sgRNA also contains the entire VP60 gene and, apparently, is responsible for the synthesis of 

most or all of the VP60 assembled into mature virions (Parra et al., 1993)(Sibilia et al., 1995). In fact, 

as the assembly of virus like particles (VPLs) occurs irrespectively of the pathway followed for the 
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VP60 synthesis, it is possible that capsid synthesis follows two distinct pathways, one through 

processing of the polyprotein precursor translated from the gRNA and the second by translation of 

the sgRNA (Meyers et al., 1991a)(Parra et al., 1993)(Sibilia et al., 1995). 

The helicase and the RNA-dependent RNA-polymerase (RdRp, which catalysis VPg uridylation) are 

involved in the replication of the viral RNA. The protease is responsible for the proteolytic 

processing of the large polyprotein. However, the function of the non-structural proteins p16, p23 

and p29 is still to be determined (Abrantes et al., 2012). 

It is noteworthy that, in other caliciviruses the capsid protein is encoded by a separate ORF (Meyers 

et al., 1991b)(Parra et al., 1993). 

 

1.3.2.2.2. ORF2 

ORF2 is located at the 3’ end of the genome and encodes VP10, a putative minor structural protein 

of 117 amino acids, also encoded by the sgRNA (Sibilia et al., 1995). 

The gRNAs express products needed during intermediate and late stages of infection, such as 

structural or movement proteins (Miller and Koev, 2000). Because replication is required for sgRNA 

synthesis, the RNA-dependent RNA polymerase (RdRp) is always translated first, directly from 

genomic RNA of positive-strand RNA viruses (Miller and Koev, 2000). Both the genomic and 

subgenomic RNAs are polyadenylated and covalently linked through a Tyr-21 residue at the 5’ end 

to a 15-kDa virus-encoded protein, VPg (Meyers et al., 1991a,b)(Sibilia et al., 1995)(Meyers et al., 

2000)(Machín et al., 2001), constituted by 115 amino acid residues with a putative role in RHDV 

genome synthesis initiation (Machín et al., 2001).
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Figure 13. Genome organization of RHDV. Both genomic and subgenomic RNA and open reading frames (ORF) 1 and 2 are represented. The translational products and the 
257 kDa polyprotein cleavage sites are represented as well (adapted from (Wilblich et al., 1996)(Martín-Alonso et al., 1998) and (Meyers et al., 2000)). 
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RHDV2 shares with RHDV the same genomic structure, organized in two potential open reading 

frames (ORFs) (Dalton et al., 2012). The complete genome sequence of two RHDV2 isolates strain 

collected on the Iberia (RHDV-N11 from Spain and CBVal16 from Portugal) was recently obtained 

by Dalton et al. (2015). The RHDV-N11 strain genome is 7447 nucleotides (nt) in length. Both 

isolates showed an identical 5’ untranslated region (UTR) of 9 nt. The 3’ UTR of RHDV-N11 is 69 nt 

long, larger than UTRs of classic RHDV or RHDVa strains (both with 59 nt). The 3’ 22-nt sequence of 

isolate CBVal16 was not determined; however, there was a 4-nt deletion in the remaining 30 UTR 

region with regards to RHDV-N11. In RHDV2 strains, ORF 1 encodes a polyprotein with 2344 amino 

acid residues, which includes the predicted non-structural proteins NS1 (2A, 143 aa), NS2 (2B, 196 

aa), NS3 (2C NTPase, 379 aa), NS4 (3A, 275 aa), NS5 (3B, 115 aa), NS6 (3C protease, 143 aa) and 

NS7 (3D polymerase, 516 aa), and the structural protein VP60 (577 aa and 579 aa when expressed 

from sgRNA). ORF2, which partially overlaps with the terminal six amino acids of ORF1, encodes the 

minor structural protein VP10 with 117 aa. The authentic ATG for VP10 has yet to be determined, 

and there are four in-frame ATGs in the region surrounding the overlap; ATG at nucleotide position 

7025–7027 is that which best maps to RHDVAst89 (Dalton et al., 2015). 

The potential cleavage sites, conserved in relation to the RHDV Ast89, are E143/G144 (NS1); 

E338/G339 (NS2), E718/G719 (NS3), Q993/G994 (NS4), E1108/G1109 (NS5), E1251/T1252 (NS6) and 

E1767/G1768 (NS7). There are divergences in the literature with regard to the C-terminal NS2 

processing site, indicated both in amino acids 338/339 and 367/368 (Meyers et al., 2000)(Bull and 

White, 2010)(Sosnovtsev, 2010). In the RHDV2 sequences, the potential cleavage site E338/ G339 is 

conserved with respect to RHDVAst89, while the potential cleavage site E367/D368 in classic RHDV 

sequences is E367/E368 in the RHDV2 sequences. The RHDV2 exact polyprotein-processing sites 

are yet to be determined experimentally (Dalton et al., 2015). 

The sgRNA transcriptional starting site for classic RHDV is at the nucleotide position 5296 in the 

genome. This region, including the subgenomic promoter region (Morales et al., 2004)(Simmonds 

et al., 2008) and the 5’ UTR of the subgenomic transcript, is highly conserved (98.2% identity, nt 

5266–5322) between the RHDV2 and classic RHDV (RHDVAst89; accession number Z49271) (Dalton 

et al., 2015). 
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1.3.2.3. Virus Life Cycle 
The hepatocytes cytoplasm is considered the major site of RHDV replication (reviewed in (Abrantes 

et al., 2012)). However, the epithelial cells of the upper respiratory and digestive tracts, the most 

probable virus entry doors (Ruvoën-Clouet et al., 2000)(Guillon et al., 2009), were also suggested as 

primary sites of viral replication (Ruvoën-Clouet et al., 2000). 

After RHDV attachment to the cell surface, viral internalisation, by an unknown mechanism, and 

desencapsidation occurs (Abrantes et al., 2012). The viral genome is released into the cell 

cytoplasm where the proteins translation is initiated (Abrantes et al., 2012). Translation initiation is 

a key point for successful gene expression, as well as a potential site for its regulation, and viruses 

are dependent on the host cell biochemistry for this process (Meyers et al., 2003). The mechanism 

used by most viral and cellular mRNAs for initiating translation is 5’-end and 7- methylguanosine 

(m7G) cap-dependent (Daughenbaugh et al., 2003). A complex set of protein-protein and RNA-

protein interactions that begin with binding of eIF4F initiation factor to the 5’ terminal m7G cap 

structure on the mRNA, initiate translation (Daughenbaugh 2003). As caliciviruses lack m7G cap 

structures (Daughenbaugh 2003), the viral genome linked protein VPg was shown to play a crucial 

role in the translation initiation for these viruses (Meyers et al., 2003)(Daughenbaugh 2003). VPg 

interacts with the translation initiation factors eIF4E and/or eIF3 and possibly serves as a cap 

substitute or analogue (Goodfellow et al., 2005)(Daughenbaugh et al., 2003)(Meyers, 2007). The 

ORF1 encoded polyprotein precursor translation can then occur at the initiation codon AUG 

(Abrantes et al., 2012). Translation of ORF2 encoded VP10 starts by an unusual mechanism of re-

initiation after termination of translation of the preceding major capsid protein VP60 (Meyers et al., 

2003)(Meyers, 2007). The ORF2 translated region starts with codon AUG2 and is dependent on 

translation of the preceding sequence and the presence of the last 84 nucleotides of ORF1 (Meyers 

et al., 2003)(Meyers, 2007). The name TURBS (“termination upstream ribosomal binding site”) was 

proposed by Meyer et al. (2003) for this RNA element, located upstream the start/ stop site, which 

should ensure the prolonged contact of post-termination ribosomes and RNA to allow the binding 

of the necessary factors for a new translation cycle. Two essential motifs for VP10 expression were 

recognized within TURBS (Meyers et al., 2003)(Meyers, 2007), motifs 1 and 2, respectively. Motif 1 is 

highly conserved among caliciviruses and complementary with a short 18S rRNA sequence, which 

suggests an interaction between the viral RNA and the ribosomal 18S rRNA. Motif 2 is thought to 

be implicated in the correct ribosome positioning at the translational start site (Meyers, 2007). 
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Despite AUG2 presence importance for the VP10 yield it can be replaced by non AUG initiation 

codons (Meyers et al., 2003). The standard ribosome scanning process used for cellular mRNAs 

cannot be used, as the ORF2 AUG2 represents AUG number 28 in the viral sgRNA and is 

surrounded by a sequence representing a weak context for translation initiation (CUUAUGU) 

(Meyers, 2003). 

Post-translational proteolytic processing by the viral gRNA encoded protease cleaves the ORF1 

polyprotein precursor into the RHDV capsid protein VP60 and mature non-structural proteins 

(Abrantes et al., 2012). The latter, a helicase and RdRp, form a replication complex and synthesise a 

complementary negative-sense RNA from the gRNA, used as a template for the gRNA and sgRNA 

synthesis (Abrantes et al., 2012). The RNA product can be translated again or packaged into viral 

particles that will be released from the infected cell (Abrantes et al., 2012). Although the 

mechanisms used by RHDV for egress are not well clarified, VP10 is able to induce hepatocytes’ 

apoptosis and virion release and dissemination (Jung et al., 2000)(Liu et al., 2008). A representation 

of RHDV lifecycle is given in Figure 14
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Figure 14. Caliciviruses lifecycle. After attachment to the cellular receptor, the virion is internalised into the cell. Uncoating of the viral genome is followed by translation of the 
polyprotein precursor and co-translational processing releasing the non-structural proteins. These proteins assemble in a replication complex that synthesises the antigenomic RNA, 
used as a template for the genomic RNA synthesis. The newly synthesized genomic RNA is translated as a polyprotein precursor or is used for packaging in the assembled viral 
protein core. The antigenomic RNA is also the template for synthesis of subgenomic RNA. The subgenomic RNA is translated as structural proteins, VP60 and VP10. In lagoviruses, 
VP60 is also released from the polyprotein precursor after processing by the viral protease. Assembly of the structural proteins as well as packaging of the genomic RNA occurs, 
followed by release of the mature virion from the cell (adapted from (Abrantes et al., 2012)). 
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In the absence of a culture system for RHDV, much of our understanding of this virus relies on the 

experimental infection of rabbits and on recombinant DNA technology for the production of 

recombinant RHDV virus-like particles (VLP) in heterologous systems (Sibilia et al., 1995)(Nagesha 

et al., 1995)(Luque et al. 2012). Cloning of the RHDV genome and expression in the baculovirus 

system have enabled the study of many aspects of this virus (Laurent et al., 1994)(Nagesha et al., 

1995). Indeed, the RHDV capsid protein was successfully expressed in insect cells where it 

spontaneously assembled to form VLPs, physically and immunologically indistinguishable from the 

intact wild-type virions despite being devoid of viral RNA (Sibilia et al., 1995)(Nagesha et al., 1995) 

(Clarke and Lambden, 1997)(Bárcena et al., 2004)(Luque et al., 2012). More recently, a recombinant 

baculovirus expressing the RHDV2 VP60 protein was also produced in insect cells (Bárcena et al., 

2015). 

 

1.3.2.3.1. Histo-blood group antigens (HBGAs) attachment factors 

RHDV was the first calicivirus shown to bind to ABH histo-blood group antigens (HBGAs) on rabbit 

epithelial cells of the upper respiratory and digestive tracts (Ruvoën-Clouet et al., 2000). HBGAs are 

attachment factors or ligands for RHDV, rather than the main cellular receptor, and facilitate RHDV 

infection (Nyström et al., 2011). 

HBGAs are polymorphic carbohydrate structures representing terminally exposed portions of larger 

glycans linked to proteins or glycolipids (Nyström et al., 2012). HBGAs are built up by sequential 

addition of monosaccharide units via glycosyltransferase enzymes with affinity to a specific 

substrate in a process called glycosylation (Ruvoën-Clouet et al., 2000)(Marionneau et al., 2001). 

Several genes encode the glycosyltransferase enzymes resulting in ABH, Lewis and secretor 

polymorphic phenotypes (Marionneau et al., 2001). In rabbits, the α1,2-fucosyltransferase involved 

in the different HBGAs synthesis is encoded by three functional genes, Fut1, Fut2 and Sec1 (Guillon 

et al., 2009)(Abrantes et al., 2012). The H antigen is considered the building block to produce of the 

antigens and its deficiency is denominated the "Bombay phenotype" or “O” (Yunis et al., 1969). 

Bombay individuals lack ABH epitopes due to inactivating mutations in the gene Fut1 (Ruvoën-

Clouet et al., 2000)(Taube et al., 2010). 

In many vertebrate species HBGAs are mainly expressed on epithelial surfaces (Nyström et al., 

2011). Yet, a few primate species, including humans, express them on erythrocytes and vascular 

endothelial cells (Nyström et al., 2011). This distinctive characteristic of human erythrocytes 

determines the important ability of RHDV to strongly agglutinate human red blood cells (RBC) (Xu 
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and Chen, 1989)(Hanchun et al., 1991)(Ruvoën-Clouet et al., 1995), irrespective of their ABO 

phenotype (Ruvoën-Clouet et al., 2000), while not agglutinating erythrocytes from rabbits or other 

mammals (Oriol et al., 1992)(Ruvoën-Clouet et al., 2000). The interaction with human erythrocytes 

has been used for RHDV diagnosis and detection in tissues from victimized rabbits (Capucci et al., 

1991)(Chasey, 1997), using the Haemagglutination (HA) test” (see Chapter I “The RHD laboratorial 

diagnosis”, point “1.2.1.2 Antigen detection”). 

Rabbits were shown to express complex patterns of HBGAs on the duodenum surface (Breimer et 

al., 1979)(Oriol et al., 1992)(Miller-Podraza et al., 1997)(Nyström et al., 2011)(Leuthold et al., 2015). 

Several HBGA types are also weakly expressed in the trachea (Ruvoën-Clouet et al., 2000) and 

biliary ducts (Nyström et al., 2011)(Leuthold et al., 2015). At least four HBGAs were found to interact 

with RHDV strains, namely A, B and H type 2 and Lewis Y (Ruvoën-Clouet et al., 2000)(Nyström et 

al., 2011)(Leuthold et al., 2015). 

 

1.3.2.3.1.1. HBGA binding pocket 
A recent study by Leuthold et al. (2015) showed that the RHDV HBGA binding pocket is in a 

negatively charged patch on the side of the P domain and located at a dimeric interface. Residues 

from both monomers contribute to the HBGA binding which involved a network of direct hydrogen 

bonds and water-mediated interactions. An amino acid sequence alignment of different RHDV 

strains carried out in that study, indicated that the residues directly interacting with the ABH-fucose 

of the HBGAs (Asp472, Asn474, and Ser479) were highly conserved among different RHDV P domains, 

suggesting that different RHDV strains also could bind HBGAs at the equivalent pocket (although 

amino acid variations surrounding the pocket may influence the interactions). 

Structural analysis of the RHDV2 HBGA binding pocket performed by Leuthold et al. (2015) showed 

that the three conserved residues were located on a single P2 subdomain loop. Superposition of 

the unbound RHDV2 and RHDV2 P domain H2-tri complex revealed that the loop had slightly 

different conformations, especially between residues 477 and 482. The loop was found to be 

flexible, but how the flexible loop may have affected the HBGA binding interactions is yet to be 

clarified. 
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1.3.2.3.1.2. Resistance mechanisms to RHDV related to HBGA binding 
This issue is addressed in Chapter III “RHD pathogenesis and prophylaxis”, point “1.1.3. Resistance 

mechanisms to RHDV”. 

 

1.3.2.3.1.3. Shared human/rabbit ligands for RHDV 
Classical RHDV infection has been shown to be rabbit specific, suggesting that other molecular 

elements not shared between rabbits and other mammals restrict its host range (Nyström et al., 

2012). However, RHDV-RNA was detected in sympatric wild small mammals (Merchán et al., 2011) 

and in Iberian hares (Lopes et al., 2014), indicating that the species range of RHDV may not be as 

limited as previously believed. In addition, the recently emerged RHDV2 was detected in three 

different hare species (Camarda et al., 2014)(Puggioni et al., 2013)(Lavazza A, personal 
communication). 

A relatively recent study indicates that attachment factors for RHDV are present on human cells, 

constituting potential points of entry for RHDV (Nyström et al., 2012). Attachment to HBGAs of 

human calicivirus strains represents the first step of the infection process (Nyström et al., 2012). 

This cross-species recognition of HBGAs in cells that may constitute points of RHDV entry into 

human cells, emphasises that more studies are needed to decode the molecular mechanisms 

involved in RHDV pathogenicity and to clarify its zoonotic potential (Nyström et al., 2012). 

The barriers to viral emergence in novel host species are assumed to be difficult to overcome. Most 

cases of viral emergence represent transient “spill over” infections, in which only a few individuals 

of a novel host species acquire the new virus and without a sustained chain of transmission 

(Kitchen et al., 2011). A phylogenetic analysis showed that the colonization of new but related host 

species may represent the principle mode of macroevolution in RNA viruses and that, overall, 

caliciviruses exhibit a high level of host switching (Kitchen et al., 2011). Nevertheless, for primates 

and lagomorph reservoir hosts there was significant support for the clustering of viruses within the 

same reservoirs across the caliciviruses phylogeny (Kitchen et al., 2011). 

Despite the evident evolutionary barriers to switching hosts, it is more likely that viruses will 

successfully escape niche overlap through allopatric rather than sympatric processes, although the 

precise mechanisms underlying this form of divergence are generally unknown (Kitchen et al., 

2011). A host switch may require both less net movement through sequence space and cost less in 

terms of fitness than the substantial changes that may be necessary to acquire a new niche within 

the same host species. Kitchen et al. (2011) suggest that, although cross-species transmission and 
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emergence is normally regarded as an unusual mode of viral evolution, it may be a common form 

of RNA virus macroevolution. 
 

1.3.4. RHD laboratorial diagnosis 
The RHD laboratorial diagnosis is discussed in Chapter I. Sample preparation and direct and 

indirect detection methods are addressed. Direct methods include electron microscopy, antigen 

detection, molecular methods, immunohistochemical techniques “in situ” hybridization and viral 

isolation. Indirect methods refer to antibodies detection. 

 

1.3.5. Information on sanitary status and importation recommendations regarding RHD 
This information is given in Chapter II. 
 

1.3.6. RHD Pathogenesis and prophylaxis 
RHDV pathogenesis including disease forms and clinical manifestations, induced lesions, 

pathogenesis, mechanisms of resistance to RHDV and RHD prophylaxis is addressed in Chapter III. 
 

1.3.7. RHD eco-epidemiology 
RHD eco-epidemiology is reviewed in Chapter IV. The issues addressed in the chapter include 

susceptible hosts, viral survival in the environment, the impact of climatic factors, disease 

transmission, the effect of host related factors, the effect of population dynamics on the RHD 

impact and management strategies to enhance wild rabbits populations. 

 

1.3.8. RHDV and RHDV2 genetic relations 
This issue is addressed in Chapter V, where the RHDV and RHDV2 origin and evolution, genetic 

diversity and phylogeography are discussed. The non- or moderately pathogenic lagoviruses are 

also addressed in this chapter. 

To better frame the reader in the comprehension of this chapter and of the studies included, a 

review on the methods used for phylogenetic analysis is provided at the beginning of the chapter. 
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1.3.9. Virus host co-evolution 
The virus-host biological interaction is a continuous co-evolutionary process involving the host 

immune system and viral escape mechanisms (Lobo et al., 2009). During the co-evolution 

progression, the host and the virus evolve features to battle each other. While the first mounts 

defence mechanisms, the second develops counterstrategies to overcome those defences (Souiri et 

al., 2016). In these circumstances, hosts which develop strategies to avoid or limit virus infection are 

expected to be favoured by natural selection. Similarly, viruses which develop mechanisms to evade 

host natural defences are expected to be favoured as well (Lobo et al., 2009). 

Although difficult to demonstrate rigorously in practice, host-pathogen co-evolution is considered 

a powerful determinant of the biology and genetics of infection and disease (Woolhouse et al., 

2002) and implies very slow long-term evolutionary rates (Sharp and Simmonds, 2011). Evidence 

for host-virus co-evolution comes from a match between the phylogenetic trees of the viruses and 

their hosts (Lobo et al., 2009). Yet, if a virus has been co-diverging with its hosts, over the longer 

term, the virus phylogeny should be similar to that of the hosts but not necessarily identical (Sharp 

and Simmonds, 2011). This is because molecular clock approaches can underestimate, often by 

orders of magnitude, the ages of ancestral viruses and several viral families seem to be much older 

than previously realised (Sharp and Simmonds, 2011). Over this longer timescale, co-divergence of 

viruses with their hosts may have been much more frequent than suggested (Sharp and Simmonds, 

2011). 

In the long-term, co-evolution involves the origin of life forms, the evolution of host and vector, 

especially arthropods, kingdoms and families, and changes in biological diversity induced mainly by 

the last five great extinctions (Lovisolo et al., 2003). To study the European wild rabbit and RHDV 

co-evolution, the rabbit evolutionary history (already addressed in General Introduction, point 1.1) 

should be taken into account. In the medium term, the diversification of hosts and vectors is 

important, and in the short term, recent events, especially human-made, may have had a great 

impact on virus co-evolution (Lovisolo et al., 2003). 

To understand and predict the virulence patterns of novel infections and reduce their impact, 

suitable models to study the mechanisms of disease emergence are critical (Holmes, 2013). The 

classical model of the evolution of virulence, even though the critical body of work occurred in the 

pre-genomic era, is the attenuation of myxoma virus (MYXV), family Poxviridae, genus 

Leporipoxvirus, following its introduction as a biological control agent for wild rabbit populations 

in Australia and Europe (Kerr et al., 2012). The intentional release of MYXV provided a unique 
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opportunity to study the initial spread and establishment of this pathogen as well as its co-

evolution with the European wild rabbit, offering insights into how the virulence of a large DNA 

virus may evolve following a species jump (Kerr et al., 2012). The same kind of rare opportunity was 

provided later by the intentional release of RHDV in Australia, also as a biocontrol agent (Elsworth 

et al., 2014). 

Given the major biological differences between both viruses, it was expected that RHDV and MYXV 

would follow different evolutionary trajectories (Elsworth et al., 2014). MYXV is a large double-

stranded DNA genome, with several genes that may act as virulence determinants, mechanically 

transmitted by biting or blood sucking arthropod vectors such as fleas and mosquitoes and a 

reduction of virulence potentially maximises transmission, as the virus particles uptake occurs from 

lesions on live animals (Fenner and Ratcliffe, 1965) (Holmes, 2013). On the other hand, RHDV is a 

small, rapidly-replicating RNA virus, probably with a limited set of mutations controlling virulence 

(Kerr et al., 2012)(Holmes, 2013), that can be transmitted both orally by fomites or direct contact 

between rabbits (Morisse et al., 1991) or passively by scavenging insect vectors feeding on 

carcasses (Asgari et al., 1998)(McColl et al., 2002a)(Cooke, 2002) which facilitate the long distance 

transmission of the virus (Kovaliski et al., 2014)(Elsworth et al., 2014). Cadavers are the main source 

of virus in field transmission (Elsworth et al., 2014). 

Regarding the canonical model of MYXV, initially the virus caused mortality rates of 99.8% (Fenner 

and Ratcliffe, 1965) but within a few years, and despite the ongoing release of virulent viruses, 

slightly attenuated MYXV strains came to dominate field populations (Kerr et al., 2012). Although 

these intermediate virulence strains still killed 90–99% of infected rabbits, their lower virulence 

allowed infected rabbits to survive longer, increasing the probability of transmission from skin 

lesions by mosquito and flea vectors (Fenner and Marshall, 1957)(Kerr et al., 2012). Simultaneously, 

natural selection acted on the wild rabbit population, resulting in the appearance of animals 

resistant to myxomatosis (Marshall and Fenner, 1958)(Kerr et al., 2012), probably in relation to an 

enhanced innate immune response allowing rabbits to mount an effective cellular immune 

response (Best and Kerr, 2000). With the attenuation of MYXV and developing genetic host 

resistance, rabbit populations in Australia began to recover (Elsworth et al., 2014). Parallel adaptive 

processes were observed on the European continent following the MYXV introduction (Fenner and 

Ratcliffe, 1965)(Kerr et al., 2012). 

Studies on RHDV carried out in Australia also suggest that the virus became less effective in 

keeping wild rabbit numbers low and, in some populations, rabbit numbers returned to the pre-
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RHDV levels (Elsworth et al., 2014). Initially, RHDV caused rabbit numbers to drop of up to 95% in 

many areas of Australia, but an evolutionary trend towards higher virulence was observed, 

contrarily to MXYV (Elsworth et al., 2014). 

The RHDV evolutionary trend appears to be related to the fact that rabbit carcasses, rather than 

diseased animals, are the likely source of mechanical insect transmission, reflecting the selection of 

strains that multiply most efficiently and have the highest number of infectious viral particles in the 

liver (Elsworth et al., 2014). Despite this apparent evolutionary trend towards higher virulence, the 

causative viral mutations are unclear (Elsworth et al., 2014). 

RHDV have evolved to cause higher mortality rates, shorter survival times, increased replication 

speed and higher virus loads in the livers of the succumbing rabbits (Elsworth et al., 2014). Also, the 

strains able to overcome the developing genetic resistance of Australian wild rabbits seem to have 

been favoured (Parkes et al., 2008), suggesting the virus evolution towards an increased virulence 

in response to higher host resistance. 

The proportion of rabbits of all ages with antibodies to RHDV as well as the abundance of rabbits 

was found to increase across time since the virus introduction in Australia, evidencing a change in 

the rabbit–virus interaction (Parkes et al., 2008). The mechanisms for genetic resistance to RHDV 

are not fully clarified, but may be related with different HBGA phenotypes on the intestine of 

rabbits that differ in their ability to bind different RHDV strains that could contribute to a genetic 

resistance to RHDV at the population level (Nyström et al., 2011). It has been proposed that 

differential binding preferences of RHDV to HBGAs can convey partial resistance to certain strains 

of RHDV in both Australian and European wild rabbits (Nyström et al., 2011). Outbreaks survivors in 

wild populations showed an increased frequency of weak binding ABH phenotypes, indicating 

selection for host resistance depending on the circulating strain (Nyström et al., 2011). This 

evidence supports the role of HBGA in the virus epidemiology while suggesting that the virus is 

shaping the hosts’ HBGA diversity (Nyström et al., 2011). This issue is addressed in Chapter III “RHD 

pathogenesis and prophylaxis”, point “1.1.3.1 HBGA polymorphisms”. 

 

1.4. Tularaemia 
This topic is presented next in the review article “CL Carvalho, L Zé-Zé, I Lopes de Carvalho, EL 

Duarte. 2014. Tularaemia: a challenging zoonosis. Comp Immunol Infec Dis. 37(2):85-96”. 
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It is noteworthy that the published book chapter “Lopes de Carvalho I., Carvalho C.L., Núncio M.S. 

2012. Tularémia. In Doenças Associadas a artrópodes vetores e roedores. Núncio MS & Alves MJ 

(Eds). Ministério da Saúde. Instituto Nacional de Saúde Doutor Ricardo Jorge, IP. ISBN: 978-972-

8643-90-4. pp 99-105”, also reviews the theme in Portuguese and is provided in Annex I. 
As the review article was published in 2014, information on specific issues that needed update is 

given after this article is presented providing the reader the state-of-the-art on the theme. More 

recent information’s on the tularaemia laboratorial diagnosis and genotyping methods, 

epidemiology and on Francisella-like endosymbionts will be specifically addressed in the 

introduction of chapters VI, VII and VIII, respectively, preceding the studies.
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a  b  s  t  r  a  c  t

In recent  years,  several  emerging  zoonotic  vector-borne  infections  with  potential  impact
on human  health  have  been  identified  in Europe,  including  tularaemia,  caused  by  Fran-
cisella  tularensis.  This  remarkable  pathogen,  one  of  the  most  virulent  microorganisms
currently  known,  has  been  detected  in  increasingly  new  settings  and  in  a wide  range  of
wild species,  including  lagomorphs,  rodents,  carnivores,  fish and  invertebrate  arthropods.
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Also,  a renewed  concern  has  arisen  with  regard  to F.  tularensis:  its  potential  use  by  bioter-
rorists.  Based  on  the  information  published  concerning  the  latest  outbreaks,  the  aim  of this
paper  is  to  review  the  main  features  of the  agent,  its biology,  immunology  and  epidemiol-
ogy. Moreover,  special  focus  will be  given  to zoonotic  aspects  of the  disease,  as  tularaemia
outbreaks  in  human  populations  have  been  frequently  associated  with  disease  in animals.
ild animals © 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Seventy-five per cent of emerging infectious diseases
are zoonotic [1]. Some wildlife species have been recog-
nised as being major reservoirs for infectious diseases and
the proximity of wildlife habitats and the existence of
arthropod vectors with a wide geographical spread have
rendered epidemiological cycles more complex [1].

Tularaemia is a zoonosis caused by the Francisella
tularensis bacterium, which was first isolated in 1912 in
Tulare County, California, by George McCoy and Charles
Chapin [2–4]. Initially termed Bacterium tularense, it was
allocated to a new genus and named F. tularensis in honour
of the pioneer of research on the organism, Edward Fran-
cis [2,4]. Arthropod-borne transmission of tularaemia was
first demonstrated by Francis in 1919 when he isolated the
etiologic agent in a patient with “deer fly fever” [2,5,6].

Tularaemia was recognised as an important disease in
the last century and since then there has been a growth
in enthusiasm for research on this pathogen [7,8]. Interest
has arisen with regard to F. tularensis as it has emerged in
new locations, populations and settings, and increasingly
figured in scientific research gauging its potential use in
bioterrorism [7,9]. The European Centre for Disease Con-
trol and Prevention (ECDC) 2012 surveillance report refers
a total of 891 confirmed cases of tularaemia in a num-
ber of European countries in 2010, with Sweden reporting
the highest confirmed case rate, followed by Finland and
Hungary [10]. Tularaemia is considered an unusual dis-
ease and the confirmed case rate in Europe has remained
stable from 2006 to 2010. Recent outbreaks of tularaemia
have occurred in several European countries, presented
in Table 1, including the Czech Republic, Kosovo, Bul-
garia, Germany, Sweden, Finland, Spain, Turkey, France
and Norway [11–20]. Besides these outbreaks, sporadic
case notifications have occurred in Austria, Estonia, Italy,
Lithuania, Poland, Romania, Slovakia and the United King-
dom [10]. Although there are no reports of tularaemia
for Denmark during this period, a confirmed case of the
disease in a human was  recorded there in 2003 [21]. In
Portugal, the bacterium has been detected in the blood of
an asymptomatic man  and in a Dermacentor reticulatus tick
by molecular methods [9].

2. Microbiology and phylogeography of F. tularensis

F. tularensis is one of the most virulent microorganisms
currently known, while as few as ten microorganisms can
cause potentially fatal disease in man  and animals [7,22].
This high rate of infectivity has led the Centre for Disease

Control and Prevention (CDC) to classify F. tularensis as a
Category A biowarfare agent [23].

F. tularensis is a gram-negative, catalase-positive, pleo-
morphic and non-motile cocobacillus, characterised as a
 . .  .  . .  . . . . .  . .  . . .  .  . . . . . . .  . .  . . . .  .  . . .  .  . . . . . . .  .  . . . . . .  . . .  . . . .  .  . . .  . . . .  . 94

facultative intracellular pathogen that can grow within dif-
ferent types of cells including macrophages, hepatocytes
and epithelial cells [2,22,24,25]. The cell wall of F. tularen-
sis has an unusually high level of fatty acids with a unique
profile for the genus, and wild strains have a lipid-rich
capsule, with neither toxic nor immunogenic properties
[2,5,6]. Capsule loss has been related to a decrease in vir-
ulence, although the viability or survival of the bacterium
within neutrophils may  remain unaltered.

F. tularensis is a gamma (�)-Proteobacteria of the Fran-
cisellaceae family [2,4,22]. F. tularensis is the most common
and pathogenic species and is formally divided into three
subspecies with different pathogenicities and geographic
distributions: tularensis, holarctica and mediasiatica. The
species Francisella novicida is currently widely accepted as
a fourth subspecies of F. tularensis [3,4,26–31], as it shares
with F. tularensis an average of 99.2% nucleotide identity
over a 1.1 Mbp  of genome sequence [4,26,27,30]. However,
some objections to the transfer of F. novicida to the sub-
species rank of F. tularensis have been recorded, based on
recent multiple genome sequencing results, which show
divergent evolutions for F. tularensis and F. novicida popu-
lations. Therefore, separate species may  be retained [32].

The F. tularensis subspecies tularensis,  regarded as the
most virulent subspecies and classified as Type A, occurs
predominantly in North America [3,4,6,22,33]. Two distinct
genetic sub-populations have been identified, AI and AII,
which have different geographic distributions, hosts and
vectors [3,4,6,26,30,34]. Sub-population AI has been addi-
tionally sub-divided into groups AIa and AIb [3,6,30,35].
The subspecies holarctica,  related to milder forms of the
disease and classified as Type B, occurs throughout the
Northern Hemisphere [3,22,30,33]. Human infection with
AIb strains usually have a fulminant clinical progression
and are associated with high mortality rates, in con-
trast with infections by AIa and AII strains or Type B
tularaemia [25,30,35]. Recently, this subspecies has also
been detected in Tasmania, Australia [36]. Subspecies
mediasiatica presents a similar virulence to subspecies hol-
arctica, but its geographic distribution is restricted so far
to Central Asia [26,33]. F. novicida is less virulent and has
been isolated in North America, Australia and Thailand
[3,26,29–33,37].

Based on a high degree of similarity between 16S rRNA
gene sequences, other microorganisms have been classi-
fied as probable members of the Francisellaceae family;
these include the Francisella-like endosymbionts or FLEs
[6,8,38]. FLEs belong to a distinct phylogenetic clade from
F. tularensis species [39]. The effect of FLEs, if any, on vector
competency and in the transmission of F. tularensis by ticks

is still unknown [6]. FLEs have a worldwide distribution
and are vertically transmitted by hard and soft ticks of the
genera Amblyomma, Dermacentor, Ixodes and Ornithodoros
[39–42]. FLEs have been detected in ticks in North America
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Table 1
Cases of tularaemia recorded in Europe.

European country First report Latest report Suspected animal
host

Tularaemia
transmission to
humans

Number of cases
(year(s))

References

Czech Republic 1936 (humans
and hares)

2000 Small mammals,
particularly wild
hares, rodents

Contact with tissues of
infected animals,
aerosols, contaminated
food and water, tick
bite

48 (2000) [11,87–91]

Kosovo 1999–2000 2001/2002–2010 a Ingestion of
contaminated food or
water

Ranging from 25 to
327 (2001–2010)

[12]

Bulgaria 1962 (muskrat) 1997,
2003–2005

Wild hares Contaminated food and
water, tick bite

285 (1997–2005)
24 (2003–2004)

[13,92]

Germany 1949 2004–2005 Wild hares, rodents Contact with tissues of
infected animals

39 (2004–2005) [14,93,94]

Sweden 1931 2000–2005 a Contaminated water,
aerosols (farming),
Mosquitoes

270 (2000)
698 (2003)
90 (2005)

[15,95–97]

Finland a 2000, 2003,
2007

a Mosquitoes, aerosols
(farming), tick bite

50 (2007) [16,21,76,97–99]

Spain 1997 (Human,
wild hares)

2007 Small mammals
(especially hares
and rodents)

Aerosols, wild
lagomorphs, canids,
rodents, sheep,
haematophagus
vectors, crayfish

507 (2007) [17,51,100,101]

Turkey 1936 2000,
2004–2010

Contaminated water 12 (2000)
61 (2004–2005)
12 (2005–2006)
40 (2010)

[18,102–107]

France a 1997–2011 Wild hares Contact with tissues of
infected animals,
aerosols, tick bite

144 (2007–2008)
51 (2011)

[19,108–110]

Norway a 2003, 2005,
2007, 2011

Rodents
(lemmings) and
hares

Contaminated water or
food

5  (2005)
9 (2007)
39 (2011)

[20,111,112]

a Information unavailable.

Fig. 1. Phylogeography of F. tularensis and Francisella-like endosymbionts.
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(Texas, California, Minnesota), Canada (Alberta) and Euro-
pean countries such as Spain, Portugal, Hungary, Serbia
and Bulgaria [38–45]. Their pathogenicity to humans is
undetermined. They have recently been detected in free-
living small mammals in Europe, suggesting the possible
transmission of some FLE types from ticks to small mam-
mals, although, to date, attempts to demonstrate it have
failed [39,41,42,45,46]. The phylogeographic distribution
of F. tularensis is given in Fig. 1; the geographic locations
where FLEs have been detected in ticks are also indicated.

3. Epidemiology of F. tularensis

In nature, F. tularensis has been detected in a high
number of wild species including lagomorphs, rodents,
insectivores, carnivores, ungulates, marsupials, birds,
amphibians, fish, and invertebrates [6,22,27,39,46–48].

Lagomorphs and rodents are considered as the main
reservoirs of F. tularensis [6,22,46]. Wild lagomorphs,
such as the European brown hare (Lepus europaeus),  are
thought to be suitable sentinels for F. tularensis and disease
surveillance [46,47]. Recently, there have been serologi-
cal evidences that foxes and raccoon dogs could also act
as biological indicators for tularaemia [48].

Natural infections with F. tularensis have also been doc-
umented in different arthropods, although only a subset
of these have been identified as important in F. tularen-
sis transmission to humans. Still, few pathogens show
the adaptability of F. tularensis to such a wide range of
arthropod vectors capable of infection dissemination [6].
Arthropod found infected in nature include ticks of the
genera Amblyomma, Dermacentor, Ixodes and Ornithodoros,
mosquitoes of the genera Aedes,  Culex, Anopheles and
Ochlerotatus excrucians,  and flies from the Tabanidae fam-
ily (Tabanus spp., Chrisozona spp. and Chrisops spp.)
[6,22,27,49]. Nevertheless, vector competence has only
been demonstrated in ticks of the genera Dermacentor [35].
Tick-borne transmission of F. tularensis usually results in
sporadic cases, although occasional outbreaks have also
been reported [6]. Although regarded as merely mechanical
vectors, mosquitoes have been associated with widespread
epidemics of tularaemia and are capable of transient dis-
ease transmission [6,50]. Both ticks and mosquitoes may
be infected in the larval phase. Transtadial transmission
has been demonstrated in ticks although in mosquitoes
evidences for transtadial transmission are only based in
molecular methods [35,50]. Although transovarial trans-
mission of F. tularensis in ticks was reported [2,6,51], a
recent study in Dermacentor variabilis has proved other-
wise [52]. Despite dissemination to ovaries and then to the
oocytes, the pathogen was not recovered from the sub-
sequently hatched larvae. Tabanid flies are regarded as
mechanical vectors for F. tularensis and the long-term sur-
vival of this bacterium does not occur in these arthropods
[6].

The epidemiologic characteristics of vector-borne
tularaemia vary throughout the northern hemisphere and

also within a given geographic location. This is thought
to be related to the abundance of different vectors and
host species. This could explain why, in the USA, Sweden,
Finland and Russia, the arthropod bite is a common mode
ology and Infectious Diseases 37 (2014) 85– 96

of transmission to humans, whilst in Western and Central
Europe, contact with infected animals and the ingestion
of contaminated food or water have been reported as
more common transmission modes. Differences in trans-
mission patterns have also been recorded within the USA:
in western states, both ticks and deer flies are considered
to be important vectors of tularémia, while in the east
only ticks are considered relevant. In Sweden and Finland,
mosquitoes have been identified as the primary vectors
[6].

In Portugal, the role of ticks and small mammals in the
transmission of tularaemia is still the subject of research. A
collection of 4949 mosquitoes belonging to the genus Culex
(63.97%), Ochlerotatus (35.34%), Anopheles (0.42%), Culiseta
(0.14%) and a small number of Aedes aegypti females from
the island of Madeira (0.12%) have been analysed, although
all the results were found to be negative [53]. So far,
this is in accordance with previous findings regarding the
epidemiology characteristics of vector-borne tularaemia,
suggesting that, in Portugal, mosquitoes have no role in
the transmission of this disease. Ticks are thought to be
the most important vectors of tularaemia in the majority
of countries where tularaemia is endemic [53]. Neverthe-
less, major on-going research on tularaemia, aiming at
gauging the overall impact of the disease in Portugal, is
expected to throw further light on the main F. tularensis
sources.

In endemic areas, tularaemia is a seasonal disease,
with higher incidence in late spring, summer and autumn,
occurring annually over a 5-year period or unreported for
more than a decade. Often, the number of cases varies
widely from 1 year to another, which is thought to be due
to temperature or precipitation variability. However, the
association between climactic conditions and tularaemia
outbreaks has yet to be demonstrated [49]. F. tularensis
has been found to be extremely resistant to environmen-
tal stress, surviving for weeks in soil, water and animal
carcasses, at low temperatures [22].

Human tularaemia outbreaks are often preceded by
animal outbreaks, particularly in wild lagomorphs and
rodents. This is usually related to an increase in the num-
bers of these species, increasing the probability of exposure
to infected animals [4,22,27,49].

The transmission of tularaemia to humans can occur
either by direct contact with infected animals or indirectly
due to arthropod vector bites, the ingestion of contam-
inated water, food or aerosols inhalation. Aerosols can
be dispersed by ventilators, farming, and the deposition
of contaminated hay, either intentionally or uninten-
tionally [22]. Domestic dogs and cats can also transmit
tularaemia to humans after contact with an infected
animal, environment or infected ticks [54–56]. Person-
to-person transmission has not been described so far
[2,22,49,54].

Tularaemia has been reported to occur in any age group.
Men  tend to present a higher prevalence than women
[2,49]. Professions that are prone to contact with reser-

voirs or arthropod vectors have been associated with a
higher infection risk: these include laboratory technicians,
hunters, farmers, veterinary surgeons, and anyone hand-
ling the flesh of infected animals [22,27].
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. F. tularensis life cycle

Few pathogens show the adaptability of F. tularensis to
arying vector, host and environmental conditions. Vari-
tions occur in local transmission cycles in association
ith differing ecologies. Both F. tularensis type A and type

 are associated with different life cycles in which dif-
erent animal hosts and arthropod vectors intervene [6].
ype A tularaemia is more commonly associated with
he terrestrial cycle of the disease, with wild lagomorphs
uch as rabbits and hares acting as vertebrate hosts in
hich amplification of the agent occurs and where arthro-
ods are disease-disseminating vectors [6,22,54,57]. Type

 tularaemia is more frequently associated with the aquatic
ycle, although outbreaks of tick-borne tularaemia involv-
ng subspecies holarctica have been reported [2,6,57]. In
his life cycle, F. tularensis circulates in rodents such as
eavers, muskrats and voles, and can be introduced in
ater courses from animal carcasses [6,22,27,54]. There

s also evidence that F. tularensis can persist in water
ourses in association with amoebas [27,49,58]. Contam-
nated water can be the source of infection to humans,
ies and mosquitoes [49]. An unusual waterborne out-
reak of human tularaemia has been described in Spain
ssociated with crayfish (Procambarus clarkii)  caught in

 contaminated freshwater stream. The crayfish acted as

echanical vectors, through mud- or water-contaminated

arapaces, although the presence of F. tularensis in crayfish
tomach and hepatopancreas could indicate their even-
ual role as hosts [51]. A diagrammatic representation of
uatic cycle. The terrestrial cycle is more commonly associated with Type

the terrestrial and aquatic cycles of tularaemia is shown in
Fig. 2.

5. Immunopathogenesis

F. tularensis is a remarkable bacterial pathogen that
can invade and multiply in a wide range of cell types
[4,22,24,25,59]. Antigen-presenting cells (APC) such as
macrophages or dendritic cells, appear to be the primary
cell types targeted by the bacterium at the outset of infec-
tion [59]. The virulence of the bacterium is directly related
to its capacity to replicate within the cytosol of infected
cells [60]. F. tularensis clearly possesses several mecha-
nisms by which it manipulates immunity. The bacterium
evades detection at the point of entry in the host in three
ways: (a) it has modified cell-surface structures that enable
it to avoid interaction with host receptors that are asso-
ciated with the induction of inflammation; (b) it targets
cells that lack co-receptors which facilitate binding to
receptors that might alert the host cell to invasion; (c) it
utilises receptors that fail to initiate the production of pro-
inflammatory cytokines [60].

6. Innate immune response

The entry of F. tularensis in macrophages occurs by

means of a specific mechanism inherent to Francisella spp.
[24]. The bacterium induces the macrophage to produce
asymmetric spacious pseudopod loops in a “looping phago-
cytosis” process [4,61]. Uptake of F. tularensis is markedly
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enhanced by serum opsonisation, which depends on serum
intact complement factor C3 and host cell receptors (CR3),
involving bacterial surface polysaccharides [4,62].

Utilisation of CR3 (and of mannose receptors of den-
dritic cells (MR) under non-opsonising conditions) is
considered to be a fairly innocuous route for entry of
F. tularensis, since it is not associated with the induc-
tion of signalling cascades that result in pro-inflammatory
cytokines production. When opsonised by serum, F.
tularensis binds iC3b and gains entry to host cells via the
CR3 receptor [59].

The lipopolysaccharide (LPS) of subspecies tularensis is
only moderately inflammatory and acts as an extremely
weak toll-like receptor (TLR) 4 agonist stimulating a
reduced production of pro-inflammatory cytokines [59,63].
These is attributed to the presence of only four acyl groups
on the LPS that do not bind to the “LPS-binding proteins”,
subverting TLR4 recognition [4,25,59]. In addition to LPS,
F. tularensis possesses two other TLR agonists [59]: Tul4
and FTT1103 lipoproteins. These interact with TLR2 and
may  alert the host cell for the presence of the bacterium
prior to phagocytosis [4,25,59]. TLR2/myeloid differenti-
ation primary response gene (88) (MyD88) signalling is
essential for the production of pro-inflammatory cytokines
and is critical for host defence against Francisella infection
[24,61,63,64].

F. novicida has been used as a model organism to
study immunity to F. tularensis.  Nevertheless, F. novi-
cida expresses a structurally distinct chemotype of LPS
that is more pro-inflammatory in mice than the domi-
nant LPS chemotype, and is expected to result in different
inflammasome activations [25]. F. novicida escapes the
phagossome and replicate in the cell cytosol where it
is recognised by the inflammasome signalling system
[24,25,60,64]. Inflammasome stimuli activate the pro-
tease cysteine aspartate-specific Caspase-1, promoting the
release of potent pro-inflammatory cytokines responsible
for cell apoptosis [24,60]. This results in F. novicida release
from infected cells and enables the infection of new ones
[24,60].

F. tularensis survival and replication within
macrophages is enabled by a large set of virulence
genes that include the “macrophage growth locus” (mgl)
A and B and the “Francisella Pathogenicity Island”,  FPI [24].
FPI encodes for a putative type VI secretion system [4,8]
and contains 19 genes that have been demonstrated as
essential for intra-cellular growth and virulence [24].
Less virulent F. novicida presents only one copy of FPI
in contrast with F. tularensis subspecies tularensis and
holarctica that present two copies [4,24]. Genes within the
FPI are regulated by mglA [4]. Although current knowledge
of the gene’s functions is far from complete, this is one of
the most active areas of Francisella research [8].

Following phagocytosis of opsonised F. tularensis by
polymorphonuclear cells (PMN), the bacterium actively
inhibits superoxide anion generation (ROS) via NADPH oxi-
dase. This allows F. tularensis to evade the phagosome and

persist in the cell cytosol. The contribution of polymor-
phonuclear cells seems to be related to the secretion of
cytokines and chemokines that recruit effector cells to the
infection site [25]. However, an excessive recruitment of
ology and Infectious Diseases 37 (2014) 85– 96

neutrophils, modulated by an increase in metaloprotease-
9 from the matrix, plays an important role in modulating
leucocyte recruitment and seems to be directly related to
F. tularensis pathogenesis [24,25].

Natural killer (NK) cells from the liver, spleen and lung
also play an important role in the innate immune response,
in particular by producing INF-� following primary infec-
tion by F. tularensis [25].

7. Acquired immune response

As F. tularensis is an intracellular pathogen, cellular
immune response is believed to be the main defence mech-
anism. Memory effector T cells CD4+ and CD8+ are clearly
important for the primary control of infection. These cells
produce Type Th1 cytokines like INF-�, TNF-� and IL-2 that
are critical for the initial response to F. tularensis infection
[25].

Although the role of humoral immunity in F. tularensis
infection is believed to be less important, some stud-
ies have demonstrated the enhanced recovery of infected
humans that have received hyper-immune serum [59].
Also, infection-specific IgM, IgA and IgG antibodies pro-
duced are good exposition indicators and may  interfere
with the ability of bacteria to infect host cells [25,49,59].
The contribution of B cells in defence is thought to be
dependent on strain virulence [8,25]. Research on anti-
Francisella antibodies targets is expected to allow for the
identification of new diagnostic or reactive antigens and
the development of vaccines [8].

Furthermore, F. tularensis is capable of influencing mul-
tiple pathways, and continued research into the specific
mechanisms by which F. tularensis evades, modulates and
suppresses the host immune response will improve our
understanding of tularaemia pathogenesis and the regu-
lation of host immunity [59].

8. Clinical manifestations of tularaemia

8.1. Humans

Relevant clinical disease has been reported with F.
tularensis subsp. tularensis and holarctica.  Clinical manifes-
tations of tularaemia depend on strain virulence, infective
dose and infection route, the extent of systemic involve-
ment and host immune status [2,4,49]. The incubation
period averages 3–5 days but ranges from 1 to 20 days.
The disease has an acute onset, with the occurrence of
fever (38–40 ◦C), chills, fatigue, generalised myalgia and
headaches, resembling a flu-like syndrome [2,22,49]. The
subspecies tularensis (Type A) causes severe disease, poten-
tially fatal if untreated. The subspecies holarctica (Type
B) causes less severe disease and fatalities are rare [49].
Depending on the route of infection, the following forms
of the disease are described: ulceroglandular, glandular,
oculoglandular, oropharyngeal, pneumonic, typhoidal and
septic [22,49].
Ulceroglandular and glandular forms of the disease are
the most common and frequently result from an arthro-
pod bite or animal contact [2,4,49]. In ulceroglandular
tularémia, a soft, painless ulcer develops at the inoculation
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ite and evolves to a scar [6,22]. This presentation is
ssociated with fever, lymphadenopathy and, in Type A
ularaemia, pneumonia and pleural effusion can occur [49].
n glandular tularaemia, the primary ulcer is unrecognis-
ble [2,6,22,49].

Direct contamination of the eye through contaminated
ngers, splashes or aerosols, may  be followed by oculog-

andular tularaemia. Unilateral conjunctivitis, with ulcers
r papules in some patients, photophobia and epiphora are
he main signs of this form of the disease [2,49].

Oropharyngeal tularaemia is acquired by means of con-
aminated food or water intake and aerosol inhalation [22].
t develops with ulcerative and exudative stomatitis and
haryngitis [49].

Pneumonic tularaemia occurs by means of contami-
ated aerosol inhalation but can also arise as a complication
f any of the other disease forms by haematogenous
eneralisation [2,22,49]. Initial disease development is
haracterised by fever, cough, pleuritic chest pain and
yspnoea, along with other unspecific symptoms. Type

 tularaemia is associated with significantly severer and
ore fulminant forms of pneumonia [2,49].
Typhoidal tularaemia refers to a systemic and febrile

orm of the disease in which no route of infection acquisi-
ion can be established [2,49].

Septic tularaemia is a severe and often fatal form of the
isease that can occur as a complication of the ulcerog-

andular form in Type A tularaemia [22,49]. Patients can
resent unspecific and neurologic symptoms, and septic
hock, SIRS (systemic inflammatory response syndrome),
IC (disseminated intravascular coagulation), haemor-

hages, SARS (severe acute respiratory syndrome) and
ultiple organ failure [22,49]. In Type B tularaemia,

omplications of meningitis and septicaemia have only
ccasionally been described [49].

.2. Animals

Clinical manifestations largely depend on the suscepti-
ility of animal species to F. tularensis [49]. In wild animals,
linical signs of tularaemia are not well documented, and
ost-mortem findings are highly unspecific and include
plenomegaly and punctual necrotic lesions in the liver and
pleen [49,54].

In one experimental study in European brown hares
Lepus europaeus),  clinical signs developed 1-day post-
noculation with a F. tularensis subspecies holarctica strain.
hese included fever, lethargy and anorexia. Two of the
ve hares in the study succumbed to the infection on
ays 5 and 9 following inoculation. Pathological find-

ngs included splenomegaly, diffuse spleen necrosis and
ocal liver necrosis with hepatocytes vacuolisation. The
emaining three hares were euthanised and revealed no
athological lesions. Both bacterial culture and mouse

noculation test failed to produce F. tularensis isolation
46]. In a natural outbreak of tularaemia in brown hares

n France, all eight hares involved presented splenomegaly,
ongestion and haemorrhagic lesions of several organs, tra-
heitis and bronchitis [65]. A similar study carried out in
ungary on European brown hares naturally infected with
ology and Infectious Diseases 37 (2014) 85– 96 91

F. tularensis subspecies holarctica also showed very similar
results [47].

In another study, 20 female New Zealand white
rabbits (Oryctolagus cuniculus) were exposed to Type A
tularaemia aerosols, with three different doses. Seven of
them died while the others developed fever, anorexia
and weight loss, with all infecting doses. Haematological
findings in six rabbits included lymphopenia, monocy-
topenia and thrombocytopenia. A bibasilar pneumonia
and gastrointestinal tract gas distension were the only
radiological findings. Necropsy findings demonstrated
hepatosplenomegaly with extensive spleen necrosis and
small white nodules. Some of the rabbits presented nodu-
lar lesions in the lungs while others showed haemorrhagic
lesions [66].

A situation of particular public health significance, given
the risk of pet-to-human transmission, is associated with
infected prairie dogs (Cynomys ludovicianus) sold as pets in
the USA and exported internationally [67,68]. A ban was
put in place in the European Union and other countries
regarding the import of prairie dogs and other rodent
species after the USA monkeypox outbreak in 2003 [68,69].
Wild-caught prairie dogs are particularly susceptible to
environmental stress, such as capture, transit and crowd-
ing, which can enhance disease manifestations. Clinical
signs include lethargy, dehydration and grossly enlarged
cervical lymph nodes. Prairie dogs can produce specific
antibodies against F. tularensis and survive tularaemia
infection, suggesting their potential role as F. tularensis
reservoirs in nature. Moreover, one study found that all
seropositive animals harboured live infectious bacteria,
suggesting persistent infection [67].

Tularaemia has also been described in domestic dogs
and cats [49,55], which may  be infected by means of
arthropod bites, direct contact with infected animals, their
ingestion, or contaminated aerosols [70,71].

Cats usually develop severe illness with unspecific
clinical signs like fever, lethargy, prostration, vomiting
and anorexia, dehydration, regional or generalised lym-
phadenopathy, splenomegaly, tongue and oropharyngeal
ulceration and jaundice [49,72,73]. Pathological findings
include multiple necrotic foci on the lymph nodes, spleen,
liver and lungs. Frequently, panleukopenia with toxic
degeneration of the neutrophils and hyperbilirubinaemia
with bilirubinuria are present [73].

Dogs are less susceptible and rarely manifest signs of the
disease [55,56]. Nevertheless, they can act as carrier hosts
[70] and transmit the bacterium by means their fur after
contact with contaminated dead animals or soil [74]. In
most cases, infection is self-limiting and recovery is spon-
taneous. However, only few cases of natural infection in
dogs have been reported [55,56].

9. Laboratory diagnosis

9.1. Samples
In humans, samples should preferably be collected
before the onset of antibiotherapy and depend on
the clinical form of the disease. Samples may  include
non-heparinised whole blood, serum, respiratory tract
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secretions and washes, swabs from visible lesions, lymph
node aspirates or biopsies, urine, and autopsy materials
[49].

In animals, serum is the preferential sample for all dis-
ease forms, but plasma and dry blood on paper filters can
also be used. Blood samples should be collected at least
14 days after the onset of the symptoms. Lymph nodes
or bone marrow aspirates, organs (lung, liver, spleen) and
cerebrospinal fluid can also be used [49].

In the context of an outbreak or epidemiologic stud-
ies, samples should include arthropod vectors as well as
environmental samples like water, soil and rodent faeces
[49,54].

9.2. Culture

Culture is the gold standard for F. tularensis and must
be carried out in biosecurity level 3 facilities (BSL-3)
[2,22,49]. F. tularensis is a fastidious microorganism. Opti-
mal  growth conditions occur at 37 ◦C and pH 6.9 [5,24].
Cysteine-enriched media, such as enriched chocolate agar
(CA) or 9% cysteine heart agar with blood medium (CHAB)
must be used for this purpose [22,49,54]. Growth in a
CHAB medium enables the presumptive identification of F.
tularensis by characteristic growth at 24–48 h of round and
smooth green opalescent shiny colonies, 2–4 mm in diam-
eter [4,22,27,49,54]. Antibiotic supplementation of CHAB is
possible in order to optimise growth and inhibit contam-
inants [22,49,54]. For cultures made from blood, the use
of the BACTECTM (BD) system or equivalent, BacT/AlertTM

(Biomérieux) is recommended [49,54]. Liquid media is not
suitable for F. tularensis growth, even when supplemented
with cysteine [4,27,54].

10. Microbiologic identification of F. tularensis

Basic biochemical tests provide a presumptive identi-
fication of isolates and may  be further complemented by
immunological and molecular methods. Some additional
biochemical tests, such as the ability to ferment glucose or
glycerol, or the presence of the citrulline ureidase pathway
are useful for subtyping purposes [54].

The commercial Microlog MicrostationTM System
(Biolog Inc., Hayward, CA) based on the ability to fer-
ment glucose has been successfully used for differentiating
between subspecies tularensis and holarctica [54,67]. Also,
the commercially available Microbial Identification Sys-
tem (MIS) and Library Generation System (LGS) (MIDI, Inc,
Newark, NJ) enables cell-wall fatty-acid analysis and can be
used for the identification of Francisella at the genus level.
It has also enabled the identification of atypical F. tularensis
strains lacking cysteine requirements [54,75].

Immune based techniques have also been employed for
identification: immunoblot analysis and immunofluores-
cence microscopy, either from grown cultures or clinical
samples [54].
11. Serology

Antibodies against F. tularensis reach detectable lev-
els 10–20 days post-infection [49]. A fourfold increase in
ology and Infectious Diseases 37 (2014) 85– 96

the titre between acute and convalescent sera or a titre
of 1:160 or greater of agglutinating antibodies is con-
sidered for diagnostic purposes [2,27,54,76]. Titres peak
at a level of 320–1280 and decline slowly [76]. Sero-
logic methods include the whole-cell agglutination test
(Widal’s reaction), the tube agglutination test, microagglu-
tination assays, haemagglutination, ELISA (Enzyme-linked
immunosorbent assay) and immunoblot [2,22]. ELISA
has repeatedly been more sensitive than agglutination
assays, with the additional advantage of determin-
ing separately different antibody classes (IgM, IgG and
IgA) [54].

A combination of a first ELISA screening test comple-
mented by an immunoblot confirmatory test, with higher
specificity, is the current recommended two-step approach
for the serological diagnosis of tularaemia [54].

The same approach can be used for animals. Sero-
logy has a limited use in highly susceptible species since
death usually precedes the development of specific anti-
bodies [47]. However, in endemic areas, antibodies for
F. tularensis are frequently detected in wild animals that
have developed immunity, including foxes and coyotes.
This seroconversion is suspected as being related to
subspecies holarctica infection since infection by the sub-
species tularensis is expected to be fatal [27,49].

12. Molecular methods

Molecular methods are valuable diagnostic tools when-
ever culture is either not possible or is negative [2,22,49].
Moreover, they reduce the high risk of laboratory-acquired
infections over conventional biochemical typing [2,21,77].

During recent years, polymerase chain reaction (PCR)-
based methods have been successfully used for the rapid
identification and classification of Francisella isolates, with
increased sensitivity and specificity [54,78]. However, false
positive results related to non-pathogenic closely related
Francisella subspecies, occurring naturally in the environ-
ment, may  hamper species and subspecies identification
[78].

Conventional PCR targets are tul4 and fopA genes, which
encode for F. tularensis superficial membrane lipoproteins.
Both protocols show a good level of sensitivity and reason-
able specificity in F. tularensis detection and may  be used
in blood, tissue or aerosol samples [4,49,54]. PCR product
specificity is confirmed by sequencing, reverse-line blot-
ting (RLB) or restriction fragment-length polymorphism
(RFLP) [54].

Real time PCR for F. tularensis detection has been devel-
oped, in particular, TaqManTM (Applied Biosystems) real
time PCR multiple assay shows high specificity and sensi-
tivity using four target genes: ISFtu2, 23 kDA, tul4 and fopA
[49,54]. Real-time PCR for the differentiation between the
subspecies tularensis and holarctica is also now available
[79].

Further discrimination has been achieved using high-
resolution genotyping methods including pulse-field gel

electrophoresis (PFGE), amplified fragment-length poly-
morphism (AFLP), ribotyping, 16S rDNA gene sequencing,
canonic insertion deletions and paired-end sequence map-
ping [26,27,34,80]. Still, as F. tularensis exhibits highly
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onserved genomic sequences among strains of diverse
rigin, genetic polymorphisms allowing for individual
train typing have been difficult to find [77]. As for
ther bacteria, more recent PCR-based techniques such as
ariable-number tandem repeats (VNTR), multiple-locus
NTR analysis (MLVA) and short-tandem repeats (STR) typ-

ng have been successfully used for identification at the
ubspecies level and for molecular epidemiology purposes
54,77,80]. One of the most discriminatory methods for
he molecular subtyping of F. tularensis is MLVA, which
onsists of a series of VNTR loci that are PCR amplified
ia flanking primer sites and examined for size varia-
ion [79]. One MLVA system designed for F. tularensis is
ased on polymorphisms of 25 VNTR loci, Ft-M1 to Ft-
25. This MLVA typing system has a greater discriminatory

ower when applied to a worldwide set of F. tularensis
solates and provides accurate classification at the sub-
pecies level [77]. This MLVA system has recently been
mproved by redesigning the subset of the 25 previously
dentified VNTRs to produce a new optimised, multiplexed

LVA system with a similar level of discrimination but
ith fewer time and cost requirements [79]. Ten of the
reviously described VNTR loci were selected based on
heir discrimination ability within the subspecies: Ft-M02,
t-M03, Ft-M04, Ft-M05, Ft-M06, Ft-M010, FT-M20, FT-
22, Ft-M23 and Ft-M24. Locus Ft-M20 was split into

wo loci, Ft-M20A (which contains the originally described
2 bp repeat and is polymorphic across subspecies) and Ft-
20B (which contains the insertion with its 15 bp repeat

nd varies only among type A.II and F. novicida isolates)
79].

While providing discrimination among strains, VNTRs
re unsuited for determining deeper phylogenetic rela-
ionships due to mutational saturation. In this case, more
ccurate and alternative markers should be used, such as
hole-genome sequence single nucleotide polymorphism

SNPs) [79]. Additional studies have shown a remarkable
egree of discrimination of the F. tularensis phyloge-
etic structure, using a combined analysis with canonical
hole-genome SNPs for major clade typing, and MLVA

or high-resolution typing [26,79]. In a different study, the
ombined analysis of insertion-deletion markers, for sub-
pecies and major clade typing, along with MLVA, was used
80].

Microarrays have also allowed for the differentiation of
he four F. tularensis subspecies and have been proven use-
ul for pathogenicity and virulence marker identification
54].

3. Treatment

Tularaemia usually responds to antibiotic therapy. His-
orically, aminoglycosides have been the drugs of choice
or humans. Although clinically effective, they are rarely
sed now due their ototoxicity and nephrotoxicity. Nev-
rtheless, gentamicin has been used for treatment of
neumonic tularaemia and aminoglycosides are now gen-

rally used in the most serious cases. Chloramphenicol is
ffective but seldom the first choice due to its possible
rreversible effects on haematopoiesis. Tetracyclines have
een associated with high relapse rates on withdrawal.
ology and Infectious Diseases 37 (2014) 85– 96 93

Fluoroquinolones, such as ciprofloxacin, have been shown
to be highly effective in per os and are the best choice for
uncomplicated tularaemia. Also, ciprofloxacin has proved
suitable and effective in the treatment of tularaemia
in children and pregnant women [4,49]. In domestic
animals, gentamicin, enrofloxacin, doxycycline and chlo-
ramphenicol are referred to as therapeutic options for
dogs [55,70]. In cats, there are reports of the use of
doxycycline or enrofloxacin and amoxicilin-clavulanic acid
as being beneficial in the early stages of the disease
[81].

14. Vaccination

Currently, there is no available licensed vaccine against
F. tularensis although an attenuated Type B strain, known as
the Live Vaccine Strain (LVS) was  developed in the United
States during the 1950s and used to vaccinate military per-
sonnel and laboratory workers [4,49,82–84]. LVS failed to
uniformly protect against pneumonic tularaemia and when
delivered in high titres caused mild tularaemia as an unde-
sirable side-effect [85].

One focus of current research work in the USA and
in Europe is to develop a vaccine for protection against
F. tularensis intentional release [49]. The restricted effi-
cacy of the LVS has fostered extensive research with a
view to providing alternative vaccine formulations, includ-
ing the exploration of different live and killed attenuated
strains and immunogenic components to produce sub-
unit vaccines [4,82]. In view of its immunogenic antigens,
an effort has been made to develop attenuated strains
of SchuS4, a representative strain of Type A tularaemia,
for vaccine production. In fact, between LVS and SchuS4
strains there are about 35 genes that encode for different
protein sequences, whose functions are not well defined,
and may  represent important immunogenic antigens. Still,
given the increased virulence of the SchuS4 strain, only
a small number of bacteria should be required to gen-
erate effective protection against wild type F. tularensis
[85]. A recently published study demonstrated that inoc-
ulation with low doses of specific attenuated mutants of
the F. tularensis strain SchuS4 provided protection against
parenteral and intranasal challenge with a fully virulent
wild type SchuS4 strain [86]. This favours the role of
T-cell memory response as a critical determinant of F.
tularensis immunity, additionally to the humoral response.
This feature is the basis of the challenges foreseen for
vaccine development, aiming at identifying antigen deter-
minants that elicit an effective cellular-mediated immune
response [4,82,84,85]. Cell-mediated immunity was  found
to persist three decades after tularaemia vaccination.
A recent study sought to identify the T-cell responses
present in immune individuals in order to characterise
F. tularensis-specific immune response [84,86]. The find-
ings showed that the production of INF-�, macrophage
inflammatory protein (MIP)-1� and CD107a (lysosome-
associated membrane protein 1 or LAMP-1) by peripheral

blood mononuclear cells appeared to be a characteristic
of protective immune responses and that a correla-
tion exists between these parameters and immunity
[84].
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15. Conclusions

Several factors such as human demographics and
behaviour, international travel and commerce, including
the animal trade, climactic changes and microorganism
adaptation, have a potential impact on disease ecology and
the emergence of zoonosis. The same factors are thought
to be related to the emergence of tularaemia. Special
concerns regarding this bacterium exist in relation to its
high infectivity, and easy dispersion through aerosols and
contaminated water, which make it a potential bioterror-
ism weapon. Also, tularaemia presents a wide geographic
distribution and has recently emerged in new settings,
particularly in Europe. In Portugal, an on-going research
project on tularaemia aims to increase our knowledge
about the disease, particularly its impact in this country,
which is still poorly understood, in view of the fact that
there is little information available to risk population and
health professionals, with the result that there is a pos-
sible underestimation of prevalence in man  and animals.
To this regard, efforts have been made by the National
Institute of Health to increase awareness of the disease
among risk populations, particularly hunters and health
professionals. In accordance with the preliminary results,
on-going research will further identify and characterise F.
tularensis circulating strains and develop molecular and
typing methods with increased sensitivity, specificity and
discriminatory power. The role of autochthon wild lago-
morphs in the F. tularensis life cycle, their involvement
in animal-to-human transmission and their suitability as
tularaemia sentinels will be accessed. Moreover, consider-
ing the economic and social relevance of hunting-related
activities in this country, with very few studies having
acknowledged its relation to zoonotic disease transmission
risks, research into infection in game species is of major
importance.

F. tularensis is also associated with a considerably
wider range of hosts and vectors than most zoonotic
pathogens, although there is little information on bac-
terium mechanisms for adaptation to such a wide diversity
of arthropod vectors. Despite our increasing knowledge
of tularaemia and its etiological agent, many aspects of
F. tularensis biology and epidemiology need to be further
examined, particularly its pathogenicity and virulence, vac-
cine development, and the specific mechanisms by which
F. tularensis evades, modulates and suppresses the host
immune response. As with any zoonotic emergent dis-
ease, the role of wild and domestic animals in F. tularensis
epidemiology needs to be further evaluated, in particular,
those which may  act as reservoirs. Other epidemiologic
data such as the population dynamics of susceptible ani-
mals, particularly lagomorphs and rodents in Europe,
should be part of surveillance programmes, as they are
thought to be directly associated with disease transmis-
sion patterns. From a public health perspective, disease
surveillance in animals is crucial in order to prevent and
monitor human outbreaks, particularly in endemic areas,

where contact between humans and wildlife reservoirs
or vectors is likely. Although tularaemia is not regarded
as a common disease, and there is little awareness of
the disease among health authorities and practitioners, its
ology and Infectious Diseases 37 (2014) 85– 96

eventual future impact as an emergent zoonosis should not
be neglected.
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1.4.1. Update on Francisella tularensis phylogeography 
A study carried out by Sjödin et al. (2012) suggests that ancestral Francisella strains originated in 

marine habitats. According to these researchers, Francisella can be divided into two main genetic 

clades occupying both terrestrial and marine habitats. The first includes F. tularensis, F. novicida, F. 
hispaniensis and Wolbachia persica, and the second F. philomiragia and F. noatunensis. F. 
philomiragia is an opportunistic pathogen of humans associated to sea water and F. noatunensis is 

an important pathogen of farmed fish. In 2009, F. cantonensis was reported as a new species of the 

genus Francisella (Qu et al., 2009) and other studies have also identified several forms of Francisella 

from soil and water (Barns et al., 2005)(Petersen et al., 2009) and tick Francisella-like 

endosymbionts (FLEs) (Liu et al., 2016). In brief, the Francisella genus is expanding rapidly and its 

members appear to be associated with different ecological niches, ranging from specialised 

pathogens and endosymbionts with different host spectra, to generalists believed capable of a 

free-living existence (Sjödin et al., 2012). 

F. tularensis genome displays very low variability (Kugeler et al., 2009). Nevertheless, F. tularensis 

subsp. tularensis (Type A) has been subdivided into 2 groups, A.I and A.II (Johansson et al., 

2004)(Farlow et al., 2005)(Vogler et al., 2009). While group A.II is found mainly in the western 

United States (Farlow et al., 2005)(Staples et al., 2006) the group A.I is found throughout the central 

and eastern regions of the country and only sporadically in some western states (Farlow et al., 

2005)(Staples et al., 2006)(Keim et al., 2007). Kugeler et al. (2009) identified four Type A strains 

clades, namely AIa, AIb, AIIa, and AIIb, in the United States using pulsed-field gel electrophoresis 

(PFGE). However, a more recent study using whole-genome sequencing (WGS), with higher 

phylogenetic resolution, displayed three major subgroups, A.I.3, A.I.8, and A.I.12, within group A.I, 

which names were assigned in consonance with previous phylogenetic nomenclature within F. 
tularensis by Gyuranecz et al. (2012) (Birdsell et al., 2014). This study revealed that all strains 

previously assigned to PFGE subgroup A1a belonged to the A.I.12 subgroup while the previous 

PFGE subgroup A1b strains were distributed among all three of the new subgroups, A.I.3 A.I.8 and 

A.I.12 (Birdsell et al., 2014). Using 16 canonical single nucleotide polymorphisms (canSNP) assays 

developed for the purpose, it was possible to further characterize each one of the three new 

subgroups. Hence, within the A.I.12 subgroup six subpopulations were identified occurring 

throughout the United States. Within group A.I.8 four subpopulations were found mostly occurring 

in the central and western regions of the United States, with only one strain isolated in the eastern 

region (Figure 15 A and B). Within subgroup A.I.3., four subpopulations were also identified, 
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showing a dramatically different distribution from the other subgroups (Birdsell et al., 2014). For 

the latter group, most strains were found to occur in the eastern region and just one subpopulation 

in the central region but none in the western region Figure 15 A and B) (Birdsell et al., 2014). 

 

 
Figure 15. Phylogeography Francisella tularensis subsp. tularensis A.I strains from the United States, as 

obtained by (Birdsell et al., 2014). (A)- Canonical single nucleotide polymorphism (canSNP) of 

subpopulations. Colours indicate the major subgroups within A.I: A.I.12 is marked in red, A.I.8 in purple and 

A.I.3 in blue. Subpopulations are indicated by symbols and “n” refers to the number of strains. (B)- 
Geographic distribution of strains from the subpopulations shown in panel A, by corresponding symbols; top: 

A.I.12; middle: A.I.8 and bottom: A.I.3. Vertical lines indicate boundaries of the western, central, and eastern 

regions. Subgroups are mapped based on the geographic origin (state). Darker symbols indicate a higher 

number of strains; (adapted from (Birdsell et al., 2014)). 
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The results obtained by the Birdsell et al. (2014) phylogenetic study suggest a recent radiation 

evolutionary process for the A.I group (pattern of several short branches without hierarchical 

structuring), most likely in response to adaptive change, new ecologic opportunities, or a 

combination of these factors. If, in a phylogenetic context, the greatest genetic diversity implies 

ancient origins, Birdsell et al. (2014) results suggest the central United States as the most likely 

geographic origin of a common ancestor to F. tularensis Type A subgroups A.I.12 and A.I.8 and, 

perhaps, of the A.I group as a whole. The wide geographic range of the A.I.12 subgroup and the 

phylogenetic pattern of a long branch leading to a polytomy with genetic homogeneity, suggest a 

possible adaptive advantage for this subgroup, which might be related to differences in virulence 

among A.I strains. 

The wide geographic success of F. tularensis is predominantly due to the spread of F. tularensis 

subsp. holarctica (Type B), but very little genetic diversity has been identified within this subspecies 

(Vogler et al., 2009). This lack of diversity, combined with the subspecies wide geographic 

distribution, may suggest that F. tularensis holarctica experienced recently a genetic bottleneck and 

expanded across the northern hemisphere (Dempsey et al., 2006)(Farlow et al., 2005)(Johansson et 

al., 2004)(Keim et al., 2007). Dwibedi et al. (2016) identified slow, but variable, replication rates for F. 
tularensis subsp. holarctica corresponding to null mutation rates based on the year of isolation and 

only in outbreak hotspots there was a rate of 0.4 mutations/ genome/ year. As a consequence, 

defining the population structure within this subspecies has been especially difficult (Vogler et al., 

2009). All evidences point to a recent global expansion of F. tularensis subsp. holarctica and a 

radiation event (the B radiation) wherein this subspecies spread throughout the northern 

hemisphere (Vogler et al., 2009). Hypothesis on the geographic origin of F. tularensis subsp. 
holarctica suggest that the pathogen may have originated in Asia or, alternatively, in North America 

(Vogler et al., 2009). 

In Europe, it is proposed that the Western regions were colonized by a monophyletic population of 

F. tularensis subsp. holarctica through the rapid clonal expansion of a specific population. As the 

east strains were more diverse, it is suggested that the founder population originated here and the 

other regions have been colonized by clonal descendants (Dwibedi et al., 2016). This is in 

agreement with the epidemiology records of the first tularaemia outbreaks in south-western areas 

of Spain as recently as in the 90’s (Gutiérrez et al., 2003). 

The diversity F. tularensis subsp. holarctica in Europe seems to be influenced by micro-evolution 

with limited dispersal (identical or genetically very closely related strains from small geographic 
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areas) wherein bacteria are accumulating genetic diversity and expanding, and by very long-

distance and rapid movements of recent bacterial ancestors, with a very low degree of dispersal 

limitation (genetic diversity imports and highly similar genotypes at large distances). A weak 

correlation between genetic distance and geographic distance was found (Dwibedi et al., 2016). 

Aside from mutations rates lower than one nucleotide substitution every second year per genome, 

Dwibedi et al. (2016) also found patterns of nucleotide substitution showing marked AT mutational 

bias suggestive of genetic drift. It seems also that F. tularensis subsp. holarctica is able to survive 

long periods inactive and with little replication between epidemics (Johansson et al., 2014), i.e. a 

resting phase for long-term survival (Romanova et al., 2000). 

In brief, recent data indicate a founder population spreading in big jumps from east to west in 

Europe, and that the genetic diversity within this subspecies seems to have been generated by the 

interaction of mutation-driven evolution, a resting survival phase, genetic drift and long-distance 

geographical dispersal events (Dwibedi et al., 2016). 

In Europe, two main genetic groups of F. tularensis subsp. holarctica were differentiated by high 

resolution molecular techniques (WGS with sSNP), the B.12/B.13 and B.FTNF002-00 which showed 

distinct geographic distribution (Vogler et al., 2009). The B.FTNF002-00 group was found to be 

dominant in Western European countries (France, Italy, the Netherlands and Spain) while the 

B.12/B.13 group was isolated mainly in Northern, Central and Eastern Europe (Austria, Czech 

Republic, Finland, Hungary, Norway, Romania, Slovakia, Sweden, Ukraine) and in the European part 

of Russia (Figure 16) (Kreizinger et al., 2016). Both genotypes were detected in Germany and 

Switzerland (Vogler et al., 2009)(Gyuranecz et al., 2012). 
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Figure 16. Geographic distribution of Francisella tularensis subsp. holarctica groups B.13 (red) and 
B.FTNF002–00 (purple) (adapted from (Gyuranecz et al., 2012)). 

 

Whole genome analysis of B.FTNF002-00 and B.12/B.13 genotypes revealed distinct genetic 

differences, namely smaller genome size of genotype B.FTNF002-00, differences in gene sizes or 

orientations and the effects of SNPs in protein coding, which may explain the enhanced virulence 

and replication potential of this genotype (Keizinger et al., 2016). 

Francisella tularensis subsp. holarctica strains are classically differentiated into three biovars 

(Olsufjev et al., 1983): a) Biovar I found in Western Europe and North America; b) Biovar II found in 

Eastern Europe and Asia (Vogler et al., 2009)(Gyuranecz et al., 2012); and c) Biovar japonica mainly 

found in Japan, although recently described in China (Wang et al., 2014) and Turkey (Kiliç et al., 

2013). Both biovar I and II strains coexist in Germany, Switzerland and Scandinavia (Müller et al., 

2013)(Origgi et al., 2014)(Maurin and Gyuranecz, 2016). The four main clades of F. tularensis subsp. 

holarctica include clade B.4 corresponding to North American strains, clade B.6 corresponding to 

biovar I Western European strains, clade B.12 corresponding to biovar II Eastern European strains, 

and clade B16 corresponding to strains belonging to biovar japonica (Fujita et al., 2008)(Vogler et 

al., 2009)(Karlsson et al., 2016)(Caspar and Maurin, 2017). 

 

1.4.1.1 Update on Francisella-like endosymbionts  
This information is given in chapter VIII. 
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1.4.2. Update on Francisella tularensis epidemiology 
This information is given in chapter VII. 

 

1.4.3. Update on Francisella tularensis life cycle 
Regarding the role of free-living amoeba (FLA) in the F. tularensis life cycle, a recent study showed 

that Francisella spp. survival was enhanced by the presence of FLA although bacterial growth and 

protozoa infectivity were not observed. Although short-term incubation with FLA was shown to be 

beneficial, the long-term effects on Francisella survival are yet unknown, (Buse et al., 2017). 

 

1.4.4. Update on Francisella tularensis immunopathogenesis 
The virulence of Francisella tularensis relies on an atypical type VI secretion system (T6SS) encoded 

by the genomic “Francisella Pathogenicity Island” (FPI) (Rigard et al., 2016), highly conserved 

between F.tularensis and F.novicida (>97% identity at the nucleotide level (Rigard et al., 2016). For 

the latter, this genomic island is called the “Francisella novicida Island” (FNI) and must likely encode 

another atypical T6SS (Rigard et al., 2016). 

Alongside with the macrophage receptors involved in Francisella uptake addressed in General 

Introduction, the scavenger receptor A (SR-A) (Geier and Celli, 2011), Fcγ receptors (Balagopal et 

al., 2006), nucleolin (Barel et al., 2008), and the lung surfactant protein A (SP-A) (Balagopal et al. 

2006) are also thought to be implicated in the uptake of serum-opsonized Francisella by 

macrophages (Celli and Zahrt, 2013). Following uptake, the pathogen resides within the 

“Francisella-containing phagosome” (FCP), a primary vacuolar compartment that undergoes 

progressive maturation into a bactericidal phagolysosome (Jones et al., 2011)(Celli and Zhart, 2013). 

The FCP acquires markers of early endosomal antigen 1 (EEA1) and late endosomal markers Lamp1, 

Lamp2, and the Rab7 GTPase within 15–30 min (Clemens et al., 2004)(Santic et al., 2005) (Checroun 

et al., 2006) indicative of a normal maturation process (Jones et al., 2011)(Celli and Zhart, 2013). 

Another feature of phagosomal maturation is the progressive acidification of the phagosomal 

lumen that acts as a signal for F. tularensis to escape from FCP (Celli and Zhart, 2013). The FCP does 

not fuse with lysosomes and bacteria physically disrupt the phagosomal membrane and escape 

into the host-cell cytosol (Jones et al., 2011)(Celli and Zhart, 201). 

The FIP virulence genes, particularly genes comprising the iglABCD operon have been directly 

implicated in the escape of F. tularensis from the phagosome into the host cytosol and in the 
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inhibition of macrophage pro-inflammatory response (Rigard et al., 2016). However, it is unknown 

which FPI genes encode for structural component of the T6SS machinery and if the FPI secreted 

proteins are effector proteins (Rigard et al., 2016). Many of the FPI proteins are secreted into the 

macrophage cytosol (Ozanic et al., 2016) and recently the IglG protein (a metal-binding protein) 

was shown to be required for the pathogen escape into the host cytosol, triggering of the cytosolic 

innate immune responses and replication within macrophages (Rigard et al., 2016). IglG was 

demonstrated to possess two important domains, one conserved in more than 250 bacterial 

species (DUF4280, a PAAR-like domain) and one specific for the Francisella genus (directly involved 

in forming a protein complex with another virulence effector protein, the FPI-encoded IglF protein) 

(Rigard et al., 2016). In addition, also the lipoprotein IglE secreted in a T6SS-dependent manner was 

shown to be important in F. tularensis pathogenicity in the inflammasome activation and escape 

from phagosome (Bröms et al., 2016). Other determinants besides the FPI have also been 

implicated in the Francisella phagosomal escape such as the acid phosphatases of F. novicida 

(AcpA, AcpB, AcpC, and Hap) (Mohapatra et al., 2008), pyrimidine biosynthetic genes (carA, carB, 

and pyrB) (Schulert et al., 2009), as well as several genes of unknown function including FTT1103 

(Qin and Mann, 2006)(Qin et al., 2009) and FTT1676 (Wehrly et al., 2009). 

After F. tularensis escapes the FCP it replicates within the host-cell cytosol. A few genes have been 

identified as being specifically required for cytosolic replication by Francisella including the purine 

biosynthetic genes (purMCD) (Pechous et al., 2006)(Pechous et al., 2008), a g-glutamyl 

transpeptidase (ggt) (Alkhuder et al., 2009), and several genes of unknown function including 

FTT0369c/dipA (Wehrly et al. 2009)(Chong et al., 2012), FTT0989 (Brotcke et al., 2006), and ripA 

(Fuller et al., 2008). Yet, it is most likely that several additional genes may also contribute to this 

process (reviewed in (Chong et al. 2008)). Recent data showed that Francisella have also evolved 

mechanisms to adapt to a cytosolic lifestyle and to the host cytosol nutritional environment (Ziveri 

et al., 2017). This adaptation is associated with evolutionary loss of genes for many metabolic 

pathways (Rohmer et al., 2006)(Larsson et al., 2009), but F. tularensis has retained or evolved 

mechanisms to efficiently acquire essential nutrients from the host cytosol, mainly relying on host 

amino acid as major gluconeogenic substrates (Ziveri et al., 2017). For this purpose, the bacterium 

possesses high affinity uptake systems including amino acid transporters (the amino acid-

polyamine-organocation transporters) the proton-dependent oligopeptide transporters (POT), the 

hydroxy/aromatic amino acid permeases (HAAAP) and the major facilitator superfamily (MFS) 

proteins involved in several transport functions, including amino acid uptake (Ziveri et al., 2017). In 
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addition, Francisella infection was shown to modify several “glyco-genes” involved in glycosylation 

pathways in human macrophages (Barel and Charbit, 2017). Iron, essential for key enzymatic and 

redox reactions, is also among the nutrients required to support The F. tularensis lifestyle and the 

bacterium relies on specialized mechanisms to acquire iron within the host environment 

(Ramakrishnan, 2017). The F. tularensis genome contains 5 homologous genes, FTT0025c, FTT0267, 

FTT0602c, FTT0918, and FTT0919 that share 40–50% sequence identity (Larsson et al., 2005). Of 

these, FTT0025c (FslE) and FTT0918 (FupA) have been shown to be involved in iron acquisition  

(Ramakrishnan et al., 2008)(Lindgren et al., 2009)(Sen et al., 2010)(Ramakrishnan et al., 2012), 

despite the iron acquisition systems of F. tularensis Type A and Type B strains appear to function 

distinctly (Wu et al., 2016). 

Once Francisella is released in the macrophage cytosol is recognized in a type I IFN-dependent 

manner (Henry et al., 2007). F. tularensis lyse in the cytosol releases bacterial DNA that is 

recognized by the absent in melanoma 2 (AIM2) protein which in turn recruits ASC (apoptosis-

associated speck-like protein containing a caspase recruitment domain) and procaspase-1 to form 

an inflammasome complex (Jones et al. 2011). ASC is required to induce auto-proteolysis of pro-

caspase-1, activating caspase-1. Active capsase-1 processes both pro-IL-1β and pro-IL-18 into their 

mature forms and triggers pyroptosis (host cell death) (Henry et al., 2007)(Jones et al., 2011). 

Recent data suggest that, besides caspase-1 and pro-inflammatory cytokines, the host guanylate-

binding proteins (GBPs) also lead to the activation of the AIM2 inflammasome by triggering 

cytosolic bacteriolysis and might be involved in pyroptotic cell death (Meunier et al., 2015)(Wallet 

et al., 2016)Ziveri et al., 2017). In addition, a cell-to-cell transfer mechanism was recently described 

by Steele et al. (2016) for Francisella, suggesting that this pathogen could spread directly from 

infected to uninfected cells by trogocytosis. This is a pathogen driven process by which effector 

proteins nucleate and polymerize host cell actin physically propelling the bacteria into a 

neighbouring cell (Steele et al., 2016). 

 

1.4.5. Clinical manifestations of tularaemia 
Francisella infection outcomes are different depending on the route of infection, the first cells 

infected and on the immune response. For instance, alveolar macrophages are the first cells 

infected by the intranasal (i.n.) route, while neutrophils are the primary cells infected by the 

intradermal (i.d.) (Powell and Frelinger, 2017). 
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1.4.5.1. Humans 
A recent study on the variation of the clinical manifestations of tularaemia carried out in Arkansas 

by Rothfeldt et al. (2017) from 2009 to 2013 (when this state had the highest tularaemia incidence 

on the United States (CDC, https://www.cdc.gov/tularemia/statistics/state), showed that 

lymphadenopathy was not the most common sign observed in that area. Although the majority of 

patients reported arthropod bites, infection eventually spread haematogenously without local signs 

in many cases and patients were more likely to report only generalized typhoidal symptoms. The 

typhoidal form of tularaemia can mimic other diseases in endemic regions, namely spotted fever 

rickettsiosis or ehrlichiosis, and might not be considered by clinicians until classic symptoms appear 

(Ellis et al., 2002)(Kugeler et al., 2009). F. tularensis Type A, prevalent in Arkansas and surrounding 

states (Ellis et al., 2002)(Kugeler et al., 2009), is more commonly associated with typhoidal 

presentation, especially in immunocompromised patients. Rothfeldt et al. (2017) study indicates 

that expecting lymphadenopathy as a primary symptom to screen for tularaemia may be an 

insensitive diagnostic strategy and delay case or outbreaks recognition. In addition it can also delay 

the appropriate case management and the presumptive treatment of patients during earlier 

infection stages, before serious disease. The medical community should be aware of the wide 

tularaemia presentations, particularly in endemic regions and in patients lacking local symptoms 

(Rothfeldt et al., 2017). 

 

1.4.5.2. Animals 
In the European brown hare (Lepus europaeus), the reservoir species of the bacterium in Central 

Europe, the clinical course of tularaemia was shown to have distinct patterns according to the 

geographical area and are directly related to the two predominant genotypes, the B.FTNF002-00 

and B.12/B.13. While an acute course of the disease is observed in hares in Western European 

countries, where the B.FTNF002-00 group is dominant, sub-acute or chronic infections are more 

frequent in the eastern part as well as in North and Central parts of the continent, where B.12/B.13 

is the predominant group (Kreizinger et al., 2016). In fact, the F. tularensis subsp. holarctica 

genotype B.FTNF002-00 higher pathogenicity in relation to B.12/B.13 genotype has been 

suggested (Origgi and Pilo, 2016). In Eastern Europe, including Hungary, necropsy findings in hares 

typically include granulomatous lesions in the lungs, pericardium and kidneys, due to a sub-acute 

or chronic infection (Gyuranecz et al., 2010). In contrast, signs of an acute clinical course of the 

disease, including splenomegaly, congestion and haemorrhagic lesions, have been described in 
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necropsies of hares originating from Western Europe, namely in France and in the Netherlands 

(Decors et al., 2011)(Rijks et al., 2013). Even in geographic regions were both genotypes are 

present, namely in Switzerland, lesions observed in brown hares infected by genotype B.12/B.13 

differ from those of the genotype B.FTNF002-00 (Origgi and Pilo, 2016). 

Recently, the natural history of pneumonic tularaemia in inbred Fischer 344 rat was reported by 

Hutt et al. (2017) and, overall, its pathogenesis appears to replicate the disease in humans. Female 

Fischer 344 rats were exposed to lethal doses of F. tularensis subsp. tularensis strain SCHU S4. Two 

days after exposure bacteraemia with haematogenous dissemination was detected. Shortly 

afterwards, the infected rats exhibited fever, tachypnea, and hypertension that persisted for 24 to 

36 hours and then rapidly decreased as animals succumbed between days 5 and 8 after exposure. 

Tachycardia was observed briefly near death. Initial neutrophilic and histiocytic inflammation in 

affected tissues became progressively more fibrinous and necrotizing over time. At death, as many 

as 10 CFU were found in the lungs, spleen, and liver and death was attributed to sepsis and 

disseminated intravascular coagulation (DIC). 

 

1.4.6. Update on the Francisella tularensis laboratorial diagnosis and genotyping 
methods 
This information is given in chapter VI. 

 

1.4.7. Update on tularaemia treatment 
Although antibiotic susceptibility testing (AST) of F. tularensis strains is important for detection of 

antibiotic resistances to first-line drugs, as well as to test new therapeutic alternatives, it is rarely 

performed on a routine basis (Caspar and Maurin, 2017). This is because bacteriological isolation 

from blood or tissue samples is only obtained in <20% of patients (Maurin et al., 2011). In addition, 

this procedure may have risks for the laboratory personnel as it requires biosafety level 3 (BSL3) 

facilities (Tärnvik, 2007). Furthermore, acquired resistance to antibiotics has not been reported in 

clinical isolates of F. tularensis (Tärnvik, 2007). 

Fluoroquinolones were considered the best choice for the treatment of uncomplicated tularaemia 

and aminoglycosides are generally used in most serious cases (reviewed in (Carvalho et al., 2014)). 

Novel antibiotics that can constitute potential options in the treatment of tularaemia include 

Azithromycin (an azalide) and telithromycin (the first ketolide antibiotic and a semi-synthetic 
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erythromycin derivative). Although confirmation of their efficacy in animal models is still lacking, 

there are evidences that they may be useful alternatives for infection caused by F. tularensis subsp. 

holarctica biovar I strains, when all first line antibiotics are contraindicated (Caspar and Maurin, 

2017). 

Rifampicin may be a good antibiotic choice in association with fluoroquinolones for rare bone and 

joint infections. Although this antibiotic is effective against tularaemia in vitro it should be further 

evaluated in animal models (Caspar and Maurin, 2017). 

Among the antibiotics more recently developed, tigecycline has been evaluated for treatment of 

tularaemia. It is a new glycylcycline, a new class of antibiotics derived from tetracycline, that 

showed efficacy against tularaemia in vitro (Yesilyurt et al., 2011)(Kreizinger et al., 2013b). This new 

antibiotic might be a suitable alternative to doxycycline but its broader antibacterial spectrum can 

cause deleterious effects on the gut commensal flora (Caspar and Maurin, 2017). 

Linezolid, an oxazolidinone compound, showed conflicting results, namely MIC variations between 

strains, when evaluated for treatment of tularaemia caused by Biovar II Type B. Differences were 

also observed between the susceptibility of Type A and Type B strains from the USA (Caspar and 

Maurin, 2017). The relative susceptibility of F. tularensis to linezolid may be related to its small 

genome with a limited number of efflux systems, and MIC variations between strains may reflect 

the variable expression of these efflux systems (Caspar and Maurin, 2017). 

TP-271 is a novel, fully synthetic fluorocycline that is being evaluated for complicated bacterial 

respiratory infections (Grossman et al., 2017). According to Grossman et al. (2017), TP-271 showed 

to be active in vitro against Francisella tularensis. When tested in vivo for aerosolized exposure to F. 
tularensis in mice high survival rates (80% to 100%) were obtained and the surviving mice showed 

little to no relapse during 14-days post-treatment. In a non-human primate model (cynomolgus 

macaques) of inhalational tularaemia, all animals treated with TP-271 survived until the end of the 

study, with no relapse during 14 days post-last treatment. The protection and low relapse afforded 

by TP-271 treatment in supports a continued investigation of TP-271 effort in the event of 

aerosolized exposure. 

 

 1.4.8. Update on tularaemia prophylaxis 
Francisella tularensis is 'Category A' agent and, in a bioterrorism scenario, vaccines and 

therapeutics are immediately required (Gaur et al., 2017). Currently, there is no licensed vaccine for 

tularaemia in the USA since none of the vaccine prototypes for Francisella was approved by the 
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Food and Drug Administration (FDA) (Golovliov et al., 2016). As tularaemia is an unusual disease in 

most countries and, even in endemic areas, it appears irregularly (Sjöstedt, 2007), evaluation of 

vaccine efficacy is hampered (Golovliov et al., 2016). 

A vaccine for tularaemia needs to be evaluated according to the FDA (Snoy, 2010) whose 

regulations stipulate that efficacy testing of vaccines against tularaemia can be performed using 

animal models (mouse, rat, rabbit and non-human primate models) (Golovliov et al., 2016) or, 

alternatively, using the splenocyte-BMDM (bone marrow-derived macrophages) co-culture model 

(Golovliov et al., 2016). Besides allowing for direct comparisons of correlates with those identified 

in human models, this model reduces the number of animals required while refining the protocol 

once the mice that are immunized as a source of splenocytes receive a sublethal dose with minimal 

distress and few or no objective symptoms (Golovliov et al., 2016). 

Safe vaccine prototypes against tularaemia included attenuated mutant Francisella, virus vector, 

and subunit immunogens with carrier system (Gregory et al., 2009). A subunit vaccine using 

immunodominant antigens, including outer membrane proteins (OMPs), has also been considered 

(Huntley et al., 2008)(Ashtekar et al., 2012). OMPs are involved in various virulence processes, 

including protein secretion, host cell attachment, and intracellular survival (Wu et al., 2016). OMPs 

of Francisella strains, namely fopA and tul4, induce immunogenicity by eliciting specific antibodies 

and have been studied as strong vaccine candidates against tularaemia (Hickey et al., 

2011)(Ashtekar et al., 2012). In addition, a combination of fopA and tul4 immunogenic epitopes 

elicited an initial immune response against tularaemia related with dendritic cells in vitro and 

humoral immunity in vivo, and could constitute a safe and effective potential vaccine candidate (Oh 

et al., 2016). 

Roberts et al. (2017) identified an important role for high avidity CD4+ T cells in short-term 

protection and hypothesized that increasing this pool of cells could improve vaccine efficacy. They 

also showed that a prime/boost vaccination strategy increased the pool of high avidity CD4+ T 

cells, correlating with improved survival after challenge with high doses of virulent F. tularensis 
subsp. tularensis or at late time points after vaccination. The Roberts et al. (2017) results suggest 

that both epitope selection and vaccination strategies increasing antigen-specific T cells correlate 

with higher immunity against F. tularensis subsp. tularensis. 

Also recently, an immunoproteomic approach based on the techniques of 2-dimensional gel 

electrophoresis (2DE) and immunoblotting combined with mass spectrometry (MS) was used for 

elucidation of immunogenic components and putative vaccine candidates for tularaemia. Eight new 
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immunogenic proteins were found in this study, which may be used in design and development of 

a protein subunit vaccine for this disease (Gaur et al., 2017). 

Golovliov et al. (2017) analysed if specific mutants of SCHU S4 (Type A) could serve as vaccine 

candidates and, using the splenocyte-BMDM co-culture method, identified the 1clpB mutant which 

conferred superior efficacy (survival rates after infection with SCHU S4) when compared to LVS. 

These findings demonstrate a strong correlation between the ability of the vaccine strains to confer 

protection to virulent strains in vivo and their competence to efficiently prime the protective 

efficacy of the immune cells as measured by the splenocyte BMDM co-culture model. 

Richard et al. (2014) demonstrated that, incorporating lysates from partially attenuated F. tularensis 

LVS or fully virulent F. tularensis SCHU S4 strains into catanionic surfactant vesicle (V) nanoparticles, 

fully protected mice against F. tularensis LVS (by the intraperitoneal route, i.p.) but conferred only 

partial protection against F. tularensis SCHU S4 (by intranasal route, i.n.) even when employing 

heterologous prime-boost immunization strategies. Later, the same researchers showed that both 

LVS-V and SCHU S4-V immunization inoculated via i.p. elicited similarly high titers of anti-F. 
tularensis IgG that could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic 

Toll-like receptor 4 (TLR4) adjuvant that is included in several FDA-approved vaccines in the USA 

(Richard et al., 2017). Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency 

of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of 

splenocytes to control intra-macrophage infection. In addition, LVS-V+MPL immunization via 

heterologous routes (i.p. and i.n.) significantly elevated IgA and IgG levels in bronchoalveolar 

lavage fluid and enhanced protection (∼60%) against intranasal challenge with F. tularensis SCHU 

S4. These data represent a significant step in the development of a subunit vaccine against the 

highly virulent Type A strains (Richard et al., 2017). 

A recent study, carried out by Kumar et al. (2017) directly demonstrated that F. tularensis growth 

conditions strongly impact on vaccines and that the growth medium used to produce whole cell 

vaccines against F. tularensis is important in vaccine development. In fact, inactivated F. tularensis 

grown in Mueller Hinton Broth (MHB) exhibited superior protective activity when used as a vaccine, 

as compared to Brain-Heart Infusion (BHI).
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2. Results obtained: how and in what 
way have these contributed to our 
knowledge of RHD and Tularaemia
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Chapter I:  
The RHD Laboratorial Diagnosis 
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1. A review on the RHD laboratorial diagnosis 
Although the epidemiological features, clinical signs and pathological changes often allow the 

presumptive diagnosis of RHD (Capucci et al., 1991), several methods were developed for the 

RHDV laboratorial diagnosis since it was first detected in 1984 (Liu et al., 1984). Those methods are 

based on the direct observation of viral particles, but also on the detection of viral proteins, 

antigens, specific antibodies or viral nucleic acid (RNA). 

 

1.1. Sample preparation 
Laboratory diagnosis samples may include fresh liver, spleen and blood or formalin-fixed samples 

of liver, spleen, lung, kidney and other organs (OIE Technical Disease Cards, 2015 update). As the 

liver contains the highest viral titre (from 103 LD50 [50% lethal dose] to 106.5 LD50/ml of 10% 

homogenate), is the organ of choice for viral identification in acute or peracute disease. The 

quantity of virus present in other tissues is directly proportional to their vascularisation. Serum and 

spleen may also contain high titres of virus and, in rabbits with chronic or subacute disease, the 

spleen may be preferable over the liver for RHDV detection. Serum may serve as alternative 

diagnostic material (OIE Terrestrial Manual 2016). 

Regardless of the diagnostic method used, and with the exception of immunostaining techniques, 

samples are treated equally (OIE Terrestrial Manual 2016). An organ fragment is mechanically 

homogenised in phosphate-buffered saline solution (PBS, pH 7.2) at 5-20% w/v and clarified by 

centrifugation at 3-8,000 rpm for 5-15 min (Capucci et al., 1991). At this stage, the supernatant can 

be directly submitted to the HA test or enzyme-linked immunosorbent assay (ELISA). A second 

centrifugation at 10-12,000 rpm for 5 to 15 min is advisable for electron microscopy, before the 

final ultracentrifugation (Capucci et al., 1991). For PCR detection, viral RNA may be directly 

extracted from tissues samples (OIE Terrestrial Manual 2016). 

For RNA preservation it is preferable to carry out all preparation steps at 4°C (Capucci et al., 1991). 

 

1.2. Detection Methods 
1.2.1. Direct diagnostic methods 
Direct methods include the observation of viral particles or the detection of viral antigen, protein or 

RNA. 
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1.2.1.1. Electron microscopy 

Electron microscopic (EM) diagnosis is suited for rapid identification of infectious agents (Hazelton 

and Gelderblom, 2003) and is the only technique able to deliver clear images of viruses, due to 

their small size (Roingeard, 2008). 

Negative staining uses heavy metals salts to provide contrast from viruses, which appear 

translucent in EM (Schramlová et al., 2010) and stand out from the background, providing 

morphological information on symmetry and capsomer arrangement (Roingeard, 2008). 

Phosphotungstic acid (PTA) is the most commonly used negative stain (Roingeard, 

2008)(Schramlová et al., 2010). Suspensions of viruses must be supported on thin of plastic, carbon, 

or a combination of the two applied to the surface of an electron microscope grid (Hazelton and 

Gelderblom, 2003)(Schramlová, 2009). 

For RHDV identification, negative-staining EM can be performed using the “drop method”. 

However, due to the lower sensitivity of this method, ultraconcentration of the viral particles is 

advisable (OIE Terrestrial Manual 2016). 

The detection and identification of RHDV can also be accomplished by immune electron 

microscopy (IEM) as the immunological reaction induces the clumping of viral particles in easily 

identified aggregates (Capucci et al., 1991)(OIE Technical Disease Cards, 2015 update). IEM employs 

monoclonal antibodies (MAbs) or rabbit hyperimmune serum anti-RHDV increasing detection 

sensitivity, being considered the best EM method for RHDV diagnosis by OIE (Lavazza et al., 

2015b)(OIE Technical Disease Cards, 2015 update)(OIE Terrestrial Manual 2016). The IEM technique 

proved to be more sensitive and specific than haemagglutination (HA) and nearly equal to enzyme-

linked immunosorbent assay (ELISA) (Capucci et al., 1991). Although time-consuming and costly, it 

is advisable for doubtful cases (Capucci et al., 1991)(OIE Technical Disease Cards, 2015 update). 

Immunogold is an IEM technique that utilizes specific antibodies tagged with small particles of 

colloidal gold as electron dense marker (Schramlová et al., 2010), and is mainly used for research 

purposes (OIE Terrestrial Manual 2016)(Schramlová et al., 2010). 

The first electron microscopy images of this virus in Portugal were obtained by the Instituto 

Nacional de Investigação Veterinária (INIAV) team, in collaboration with the Faculdade de Medicina 

Veterinária (FMV) (Figure 17). 
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Figure 17. RHDV electron microscopy image. This was the first EM photo of RHDV obtained in the Instituto 

Nacional de Investigação Agrária e Veterinária (INIAV), in 1989. Photo kindly relinquished by Doutora 

Margarida Duarte (INIAV). 

 

1.2.1.2. Antigen detection 

1.2.1.2.1. Haemagglutination (HA) test 
The haemagglutination (HA) test was the first method used for the laboratory diagnosis of RHD (Pu 

et al., 1985)(Capucci et al., 1991). This test is performed on 10% (w/v) tissue homogenate of liver or 

spleen (OIE Technical Disease Cards, 2015 update) or alternatively of lungs and kidneys (Capucci et 

al., 1991). 

Liu et al. (1984) referred RHDV haemagglutinating properties towards human erythrocytes type "O" 

when discussing the first outbreaks. The RHDV ability to strongly agglutinate human red blood 

cells (RBC), constitutes an important feature of RHDV that was explored for specific diagnosis and 

viral detection in tissues of victimized rabbits (Ohlinger et al., 1990)(Capucci et al., 1991)(Chasey, 

1997). 

Haemagglutination titres have been detected in liver tissue of infected rabbits as early as 2h post 

infection and observed to rise rapidly, reaching a maximum at death (as high as 10 x 214 to 10 x 216) 

(Ahmad et al., 2011)(Yang et al., 1989a)(Yang et al., 1989b). Agglutination at an end-point dilution 

greater than 1/160 is considered positive (Ahamad et al., 2011). 

The HA is less sensitive and specific than other assays (Capucci et al., 1991) and not satisfactory for 

RHDV diagnosis when used alone (Chasey et al., 1995). Occasionally, false negative results (around 

10% of samples), occur in rabbits showing a subacute/chronic form of the disease (OIE Terrestrial 

Manual 2016) due to non-haemagglutinating isolates of the virus (Chasey et al., 1995). HA has also 

failed to detect infection whenever virus particles have undergone proteolytic degradation (Capucci 

et al., 1991), due to autolytic processes or to physiological alterations of the host. Likewise, false 
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positive results (Capucci et al., 1991) have been reported and positive results must be confirmed by 

other methods such ELISA, EM, or immunostaining (Capucci et al., 1991)(Ahmad et al., 2011). 

Regarding RHDV2, HA assays using human O, A, B, and AB erythrocytes showed that this new virus 

(as well as RHDV G1 and G6 strains), interacts with the different blood types in various ways (Dalton 

et al., 2012)(Leuthold et al., 2015). Some authors have referred that RHDV2 agglutinates human 

type “O” erythrocytes efficiently, making HA suitable for RHDV2 diagnosis (Le Gall-Reculé et al., 

2013), while others mentioned that RHDV2 displays a pattern similar to G4 and G6 groups with no 

agglutination of blood groups “O” or “A”, but agglutinating blood groups B and AB (Dalton et al., 

2012). 

Given the practical difficulty of obtaining and keeping human RBC, the risks associated with these 

cells, and the difficulty of obtaining consistent results (Capucci et al., 1991)(OIE Terrestrial Manual 

2016), the HA assay was replaced by virus detection ELISA due to its simple methodology, inherent 

high sensitivity, and adequateness for testing large numbers of samples (Capucci et al., 1991)(OIE 

Technical Disease Cards, 2015 update). 

 

1.2.1.2.2. Monoclonal antibodies (MAb)-based ELISA 
ELISA methods based on the sandwich technique were developed in Italy for the veterinary 

diagnosis of RHD in domestic rabbits (Capucci et al., 1991)(Capucci et al., 1995). These methods 

consist of coating assay plates, with MAbs (or alternatively with polyclonal antibodies) that 

recognize different epitopes on the RHD viral capsid (Capucci et al., 1991). MAb-based ELISAs 

resourcing to (50) different MAbs were developed by the OIE Reference Laboratory for RHD 

(IZSLER, Brescia, Italy) enabling the subtyping of classical RHDV isolates (OIE Technical Disease 

Cards, 2015 update). 

The various ELISA reactions developed for RHDV antigen detection differed in the enzymatic 

system and in the immunological reagents used as “catcher” and “tracer”. All included the direct 

adsorption of a rabbit hyperimmune anti-RHD serum on the solid phase (a microplate of high 

adsorption capability) but different “tracers” are used (Capucci et al., 1991). As MAbs recognising 

specific RHDVa and RHDV2 epitopes, that can be used instead of rabbit polyclonal sera,  have also 

been produced (OIE Terrestrial Manual 2016)(Le Gall-Reculé et al., 2013), the OIE advises to test 

each sample in at least four replicates, and then use horseradish peroxidase (HRPO) conjugates 

with different specificity. 
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Samples are positive if showing a difference in absorbance >0.3 between the wells coated with 

RHDV-positive serum and wells coated with the negative serum. Usually, at the dilution 1/30, 

positive samples from rabbits with the classical acute form of RHD give an absorbance value >0.8, 

while the absorbance value of the negative sample, at the dilution 1/5, ranges from 0.1 to 0.25 (OIE 

Terrestrial Manual 2016). 

ELISA has proved significantly more sensitive and specific than HA. In addition, the combined use 

of the monoclonal and polyclonal antibodies in ELISA also provides a differential diagnostic 

method capable of distinguishing RHDV from EBHSV (Capucci et al., 1991). 
 

1.2.1.2.3 Antigen sandwich ELISA 
An in house antigen ELISA was developed by José Dias Vigário in the 90’s and used in Instituto 

Nacional de Investigação Agrária e Veterinária (INIAV) (former Laboratório Nacional de 

Investigação Veterinária, LNIV) for RHDV diagnosis, until the implementation of molecular methods 

in 2004 (Duarte M., personal communication). 

Briefly, 96-well immune-plates were covered with anti-RHDV IgGs (prepared from a polyclonal 

serum) and incubated overnight at 4ºC. Positive and negative control sera, at a predetermined 

dilution, are added to the plate, to which serial dilutions of antigen-containing sample (usually 1:5 

to 1:160) were immediately applied in duplicated. After incubation and washing an anti-RHDV 

specific antibody marked with biotin is added, and revealed with a peroxidase Streptavidin 

conjugate, previously titrated. Peroxidase activity for the organic substrate o-phenylenediamine 

(OPD) in the presence of hydrogen peroxide (H2O2) is measured at 492 nm after a final wash to 

remove the unbound antibody-enzyme conjugate to determine the presence of antigen (Duarte 

M., personal communication). 

 

1.2.1.2.4. Commercial kits 
For RHDV antigen detection, commercial test kits based on VLPs were developed (INGEZIM RHDV 

DAS (Ingenasa, Madrid, Spain) (Dalton et al., 2014)(Bárcena et al., 2015). 

In 2015, a recombinant baculovirus expressing the RHDV2 VP60 protein was generated leading to 

the production of VLPs that may constitute an alternative method for antigen production, avoiding 

the manipulation of RHDV2-infected rabbit liver extracts (Bárcena et al., 2015). 
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1.2.1.3. Western blotting 

Western blotting analysis enables the identification of specific proteins (Mahmood and Yang, 

2012). For RHDV detection, it is useful when other tests such as HA or ELISA give doubtful results 

(low positivity) or the samples are suspected of containing s-RHDV particles (OIE Terrestrial Manual 

2016). Homogenates are prepared as described above for ELISA techniques but virus particles are 

further concentrated by ultracentrifugation through a 20% (w/w) sucrose cushion. Both the 

supernatant and the pellet can be used to detect the RHDV subunits (Capucci et al., 1995) and the 

denatured VP60 protein or its proteolytic fragments (OIE Terrestrial Manual). 

Sample proteins are denatured by heat in the presence sodium dodecyl sulphate (SDS), and beta-

mercaptoethanol, separated by polyacrylamide gel electrophoresis (SDS/PAGE), and transferred by 

electroblotting into nitrocellulose or PVDF (polyvinylidene flouride) membranes (Capucci et al., 

1995)(OIE Terrestrial Manual 2016). After transfer, the membranes are saturated and subsequently 

incubated with the appropriate serum dilution (Capucci et al., 1995)(OIE Terrestrial Manual 2016). 

The filters are washed and incubated with anti-species alkaline phosphatase-labelled 

immunoglobulins at a dilution predetermined by titration. Finally, chromogenic substrate (5-

bromo-4-chloro-3-indolylphosphate nitro blue tetrazolium) is added (OIE Terrestrial Manual 2016). 

A positive and negative sample should be used as controls. Positive test samples and the positive 

control will produce a pattern consistent with reaction to proteins of molecular weights of, 

respectively, 60 kDa (the single structural protein of RHDV) or 41–28 kDa (the fragments of the 

VP60 associated with the transition from RHDV to s-RHDV), when examining the pellet, and 6 kDa 

(the subunits) when examining the supernatant. 

RHDV proteins can be detected with polyclonal antibodies or MAbs. The later MAbs should 

recognise continuous epitopes (Capucci et al., 1995). Rabbit anti-RHDV hyperimmune sera are less 

efficient than MAbs at recognising the same band patterns (Capucci et al., 1996). 

 

1.2.1.4 Molecular methods 

1.2.1.4.1 Reverse transcriptase polymerase chain reaction (RT-PCR) 
Because RHDV non-cultivable nature, quick diagnostics tests have relied greatly in serologic assays 

and molecular methods (reviewed by Niedzwiedzka-Rystwej et al., 2013). RT-PCR for RHDV 

detection can be performed on organ samples (optimally liver or spleen), urine, faeces and sera 

(OIE technical disease cards, 2015 update)(OIE Terestrial Manual 2016). 
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1.2.1.4.1.1. Conventional PCR 

The first described RT-PCR method for RHDV detection was a conventional system (Guittré et al., 

1995). This method amplified the N-terminal portion of the RHDV capsid protein encoding region 

and proved to be 104 fold more sensitive than ELISA testing for virus detection, while detecting as 

few as 12 copies of template cDNA (Guittré et al., 1995). The amplified DNA reaction mixture is 

subjected to electrophoresis on agarose gel. Specificity of the PCR product can be further 

confirmed by sequencing analysis. When combined with sequencing, the method demonstrated 

that the amplified portion of the RHDV capsid protein is highly conserved among RHDV isolates, 

even from geographically and temporally separate outbreaks (Guittré et al. 1995)(Guittré et al., 

1996). Since then, other conventional RT-PCR assays were described (Ros Bascunana et al., 1997) 

Tham et al. 1999)(Yang et al., 2008). 

The OIE Reference Laboratory for RHD uses a single-step RT-PCR, with the following vp60 gene 

specific primers: forward primer 5’-CCT-GTT-ACCATC-ACC-ATG-CC-3’ and reverse primer 5’-CAA-

GTT-CCA-RTG-SCT-GTT-GCA-3’ (OIE Terrestrial Manual 2016). The primers are able to amplify all 

RHDV genogroups and RHDV2. For the specific amplification of RHDV2, the primers are: “14U1” 

(5’-GAA-TGT-GCT-TGA-GTT-YTG-GTA-3’) and “RVP60-L1” (5’-CAA-GTCCCA-GTC-CRA-TRA-A-3’), 

amplifying a 794 bp sequence located in the C-terminal of the gene encoding the VP60 of RHDV2 

(Le Gall-Reculé et al., 2013). 

 

1.2.1.4.1.2. Immunocapture-RT-PCR 

An immunocapture-RT-PCR method was developed by Le Gall-Reculé et al. (2001) for the detection 

and genomic characterization of both RHDV and EBHSV. The method was based on viral 

purification by immunocapture and genomic amplification by reverse transcription-polymerase 

chain reaction (IC-RT-PCR). It has the advantage to be applied directly to liver preparations 

obtained after thawing, suppressing the viral nucleic acid preparation step. The assay combines the 

rapidity of an ELISA test as immunocapture and the RT reaction are carried out in the same 

microtitre plate, with the sensitivity of PCR. Furthermore, it allows the processing of large numbers 

of samples and proved suitable for lagomorphs’ caliciviruses phylogenetic studies (Le Gall-Reculé 

et al., 2001). 
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1.2.1.4.1.3. Real-time RT-PCR 

The real-time RT-PCR method proved to be appropriate for assessment of liver samples from 

RHDV-positive rabbits (Niedźwiedzka-Rystwej et al., 2013). In real-time RT-PCR, the detection of 

specific gene sequences involves monitoring of the fluorescence generated by cleavage of a target 

specific oligonucleotide probe during amplification (Fitzner et al., 2011). The technique is highly 

sensitive and specific allowing the significant shortening of the reaction time, due to elimination of 

the post-amplification processing electrophoretic analysis phase. Also, real-time RT-PCR usually 

targets smaller regions. 

Gall et al. (2007) developed a highly sensitive and specific real time multiplex RT-PCR for RHDV 

detection, appropriate for quantitative investigations of RHDV. This TaqMan Probe system was able 

to identify RHDV infection in convalescent rabbits. The systems’ ability to detect viral RNA was 

measured at 10 copies per well, and linearity over a range from 101 to 1010 copies was 

demonstrated (Gall et al., 2007). 

Fitzner et al. (2011) also developed a highly sensitive single one-step TaqMan real-time RT-PCR 

method for virological diagnosis of RHD. The limit of detection of viral RNA extracted from the liver 

of rabbits infected with known virus strains was established between 10-7 and 10-8 dilution tool 

(Fitzner et al., 2011). 

More recently, loop-mediated isothermal amplification (LAMP) (Yuan et al., 2013) and SYBR green-

based real-time PCR (Niedzwiedzka-Rystwej et al., 2013)(Liu et al., 2015) methods were also 

described. LAMP was developed by Notomi et al. (2000) allowing a rapid and highly specific 

amplification under isothermal conditions. This method employs a DNA polymerase and four 

specially designed primers that recognize six sequences on the target DNA. LAMP produces stem-

loop DNA structures with various lengths that can be detected by a ladder pattern of bands on a 

DNA agarose gel or be visualized as precipitates in a turbid solution, with no specific reagent or 

equipment requirement (Notomi et al., 2000). SYBR green real-time PCR method is based upon the 

binding of the fluorescent dye SYBR-Green I into the PCR product (Ponchel et al., 2003). It is as 

rapid and sensitive as TaqMan, but less expensive (Ponchel et al., 2003). 

Given that the molecular assays previously described are not suitable for RHDV2 detection, the 

rapid spread of the emerging RHDV2, with dramatic impacts on the wild rabbit populations and 

rabbit industry, prompted us to develop a specific and fast laboratorial diagnostic method for 

RHDV2 detection (Duarte el al. 2015). This molecular tool is particularly important to assist the 

veterinarians in charge of the control of the infection in rabbit industries (Duarte et al., 2015). This 
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RHDV2 specific Taqman-probe-based real time PCR (RT-qPCR) provides a clear diagnosis in less 

than 3 hours. To the best of our knowledge, it is still the only available method and figures in the 

World Organization for Animal Health (OIE) Terrestrial Manual from 2016. The method showed 

high sensitivity, detecting as few as 9 copies of RDHV2, allowing the measurement of RHDV2 viral 

loads. The method was tested in parallel with other methods between 2014 and 2015 before being 

published. The development and validation of this specific real-time for RHDV2 diagnosis was 

published in the Journal of Virological Methods, and is addressed in Study 2 of this chapter. In 

addition, the challenges that the molecular diagnosis of RHDV2 may face, namely when applied to 

vaccinated animals, are addressed in Study 3. 

 

1.2.1.5. Immunostaining 

Immunostaining techniques can be used for RHDV detection by means of an Avidin-Biotin-

Complex (ABC)-Peroxidase method on paraffin embedded formalin fixed tissue sections (Stoercklé-

Berger et al., 1992). The sections are first deparaffinised in xylene and alcohol, counter-stained with 

haematoxylin and eosin. The tissue sections are then transferred to a methanol bath containing 3% 

H2O2 and washed in PBS. The samples are incubated with normal rabbit serum prior to the addition 

of biotin, to limit background interference caused by nonspecific antibody binding. Samples are 

then incubated overnight with biotinylated rabbit anti-RHDV serum or MAbs, washed and 

incubated with an ABC peroxidase, after which they are washed again. Amino-ethyl-carbazole is 

used as substrate. Finally, the slides are rinsed in tap water and mounted (Stoercklé-Berger et al., 

1992). The intense nuclear and the diffuse cytoplasmic staining of necrotic hepatocytes, mainly in 

the periportal areas, are characteristic and specific. Positive staining of macrophages, Kupffer cells 

and hepatocellular reactions can also be observed. Likewise, positive reactions can be detected in 

lung, spleen and lymph nodes macrophages, and in the renal mesangial cells (Stoercklé-Berger et 

al., 1992). 

The immunostaining technique can be applied to tissue cryosections fixed in methanol or acetone, 

incubated with fluorescein-conjugated rabbit anti-RHDV serum or MAbs. Specific fluorescence can 

be detected in the liver, spleen, and renal glomeruli (Gregg et al.,1991)(OIE Terrestrial Manual 

2016). 
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1.2.1.5.1. Immunohistochemical techniques 
Although less important in routine diagnosis, immunohistochemical procedures have revealed the 

presence of RHDV2 viral particles in the liver and in the small intestine (Dalton et al., 2012), similarly 

to what was observed for RHDV (Abrantes et al., 2014),. 

Antigen for RHDV was detected in degenerative and necrotic hepatocytes, in areas of the 

histopathological lesions. The antigen (stained deep brown) was expressed in the cytoplasm 

(diffusely or concentrate as fine granules) of the hepatocytes, suggesting that RHDV replicated in 

these cells, and also observed in the spleen (Park and Itakura, 1995). 

This technique detected RHDV viral antigen in macrophages, circulating monocytes and reticulo-

endothelial cells of the liver, lung, spleen and lymph nodes, using antisera from naturally infected 

animals. In addition, at early infection, the RHDV VP60 protein was detected by immunohistological 

localization in tissues from experimentally infected adult and young rabbits, using a guinea pig 

polyclonal antibody raised against the recombinant RHDV VP60 protein (Prieto et al., 2000). 

 

1.2.1.6. “In-situ” hybridisation (ISH) technique 

An “in-situ” hybridisation (ISH) technique for the detection of rabbit haemorrhagic disease virus 

(RHDV) was developed in the late 90’s (Gelmetti et al., 1998). The system described the use two 

RNA probes (sense and antisense) transcribed in vitro and UTP-digoxigenin-labelled (Gelmetti et 

al., 1998). This technique is highly sensitive and can detect RHDV as early as 6–8 hours after 

infection, but is mainly used in research (Gelmetti et al., 1998)(OIE technical disease cards, 2015 

update). Non-isotopic “in-situ” hybridization proved suitable to study the RHDV distribution in 

tissues of infected rabbits (Kimura et al., 2001). 

 

1.2.1.7. Viral isolation 

Viruses can reach high titres when grown within susceptible cells (Leland and Ginocchio, 2007). Not 

all cell types support the replication of a given virus in relation to its host range and tissue tropism. 

The species from which the cell is derived, the lineage of the cell, and the degree of differentiation 

can have determinate whether a particular cell line will support the replication of a particular virus 

(Olivo et al., 1996). 

Viruses’ characteristics, their nucleic acid (DNA or RNA) content, capsid symmetry (icosahedral, 

helical, or complex), and the presence or absence of a lipid envelope (enveloped or naked), result in 

specific replication strategies. Viruses are obligate intracellular pathogens that rely on the cellular 
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machinery for all stages of the life cycle (Taube et al., 2010). The replication cycle of most viruses 

occurs as a result of complex interactions between virion-associated factors, virus-encoded factors, 

and host cell factors (Olivo et al., 1996). In most cases, viruses fail to replicate in a certain cell type 

by its inability to enter the cell, to express its genes or replicate its genome once inside the cell 

(Norkin et al., 1995). The absence of the appropriate virus receptor is probably the most common 

reason that obstructs virus entry into a cell (Norkin et al., 1995). In some cases, the receptor also 

plays an important role in entry per se in addition to its role in virus binding. The expression of the 

receptor on specific host cells or tissues is a major determinant of the route of virus entry, pattern 

of virus spread in the host and in pathogenesis (Norkin et al., 1995). 

Viruses can bind many different molecules, typically glycoconjugates (glycosphingolipids, 

glycoproteins, and proteoglycans) (Taube et al., 2010). Some are attachment factors, concentrating 

virus on the cell surface, while others are receptors or co-receptors facilitating virus entry into cells. 

Viruses can also use alternate receptors depending on the cell type. 

Since 1984, a number of attempts have been made to cultivate RHDV in various cell culture 

systems (reviewed in (Ahmad et al., 2011)). Primary rabbit cells (kidney, liver, lung and testis) as well 

as cell lines (PK-15, BHK-21, MA-104, IBRS-2, HeLa and VERO) have been used for the adaptation of 

RHDV to cell cultures, however, unsuccessfully (Ahmad et al., 2011). 

For RHDV, rabbit inoculation remains the only way of isolating, propagating and titrating the virus 

infectivity. It should be considered only when inconclusive results are obtained by other methods 

as it is not practical for routine diagnosis (OIE technical disease cards, 2015 update). RHD can be 

reproduced using filtered and antibiotic-treated liver suspensions that are inoculated either by the 

intramuscular, intravenous or oronasal route. When the disease is clinically evident, the signs and 

post-mortem lesions are similar to those described after natural infection (OIE Terrestrial Manual 

2016). When testing the in-vivo pathogenicity of RHDV or RHDVa the mortality rates (70–90%) are 

higher than with RHDV2 (20% on average, occurring later and over a longer period) (OIE Terrestrial 

Manual 2016). 

The inability to grow lagoviruses in vitro, as well as most caliciviruses is thought to be associated 

with virus entry (e.g. receptor binding) (Guix et al., 2007)(Vashist et al., 2009). This issue is further 

addressed in Study 1 of this chapter. 
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1.2.2. Indirect diagnostic methods 

1.2.2.1. Serologic tests - antibody detection 

Infection by RHDV can be diagnosed through detection of a specific antibody response. Due to the 

differential antigenic properties exhibited by RHDV and RHDV2 virus capsids, RHD serologic test 

should be based on the use of both antigens (OIE Terrestrial Manual 2016)(Bárcena et al., 2015). In 

the case of little or none anamnestic or epidemiological information, tests for both RHDV and 

RHDV2 should be performed and the results compared (OIE Terrestrial Manual 2016). 

Three basic techniques are used for the serological diagnosis of RHDV, the haemagglutination 

inhibition (HI), indirect ELISA (I-ELISA) and competition ELISA (C-ELISA). HI is the simplest serologic 

method with regard to the availability of reagents and technical complexity. Both ELISAs are 

quicker and more suitable when a large number of samples are tested. 

 

1.2.2.1.1. Haemagglutination inhibition (HI) test 
The Haemagglutination inhibition (HI) test was the first reaction used for the detection of anti-RHD 

antibodies (Liu et al., 1984). 

The antigen is prepared from fresh liver samples collected from infected rabbits. A liver 

homogenate is clarified by two consecutive low speed centrifugations and the supernatant is 

filtered through a 0.22 µm pore size mesh, titrated by HA, and divided into aliquots, which are 

stored at –70°C (OIE Terrestrial Manual 2016). 

The serum samples under study must be pre-treated. First they are inactivated by heat and then 

treated with kaolin (25%) before centrifugation. After a second kaolin treatment the serum samples 

are adsorbed to the type "O" red blood cells to remove nonspecific activity (Capucci et al., 

1991)(OIE Manual 1992). Sera are clarified by centrifugation. Pre-treating the sera improves the 

specificity of HI, but is time-consuming, limiting the number of samples that can be tested (21, 49, 

61)(Capucci et al., 1991). 

The serum titre is the end-point dilution showing inhibition of HA. The positive threshold of serum 

titres, usually in the range 1/20–1/80, is correlated to the titre of the negative control sera (OIE 

Terrestrial Manual 2016). 

Again, the difficulty of obtaining and working with human Group “O” blood cells led to the 

substitution of the HI test by ELISA (OIE Terrestrial Manual 2016). 
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1.2.2.2. Enzyme-linked immunosorbent assay (ELISA) 
1.2.2.2.1. Indirect ELISA (I-ELISA) 

The I-ELISA was developed independently by Frescura et al. (1989), Rodák et al. (1990a) and 

Schirrmeier et al. (1990). It is used when a higher level of sensitivity is needed or to detect 

antibodies induced by cross-reacting non-pathogenic RCVs (Cooke et al., 2000). 

The sera, serially diluted are incubated on a plate pre-coated with the antigen (purified RHDV), 

after which commercial enzyme conjugated immunoglobulin anti-rabbit IgG are added. The IgG 

bound to the antigen is detected using a reagent, preferably a MAb anti-rabbit IgG labelled HRPO. 

The titre of the serum corresponds to the highest dilution giving an absorbance value which is still 

considered positive. It is possible to test a single serum dilution to obtain a semi-quantitative 

estimation or to calculate its titre through a reference standard curve (Capucci et al., 1991). 

The I-ELISA is a simpler technique and has higher sensitivity than C-ELISA, being suitable for 

measurement of highly cross-reactive antibodies and detection of antibodies with low avidity. With 

regards to specificity, The I-ELISA is more susceptible to false positives due to nonspecific 

antibodies (especially IgM, at low serum dilutions) that may bind to the solid phase (Capucci et al., 

1991). Also, the direct adsorption the virus on the solid phase induces changes in the viral 

structure, resulting in the presentation of internal determinants and reducing the ability to 

discriminate between correlated viruses (Capucci et al., 1991). 

 

1.2.2.2.2. Competition ELISA (C-ELISA) 

C-ELISAs for RHDV were developed by Scicluna et al. (1990), and by Dr. Haas and Dr. Ronsholt 

(reviewed in Capucci et al., 1991). The protocols differ in the step at which competition takes place 

(Capucci et al., 1991). With regard to specificity, the C-ELISA has a markedly higher specificity than 

HI and I-ELISA (Capucci et al., 1991). 

In the Scicluna et al. (1990) method, competition for the virus takes place during the first part of 

the reaction. After being directly diluted on the pre-coated plate, the sera are incubated with a 

prefixed concentration of RHDV antigen. The amount of specific antibodies present in the sera is 

then indirectly quantified by binding of HRPO conjugated rabbit IgG anti-RHDV. The serum titre is 

the dilution, reducing by 50% the absorbance value of the negative control. The serum is 

considered negative if the value of the selected dilution doesn’t exceed 20% of the value of the 

negative control. 
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In the second method, the competition reaction starts after the absorption of the virus by the 

antiserum which coats the solid phase. A pre-set dilution of enzyme conjugated IgG anti-RHDV is 

added to the diluted sample sera. After the enzymatic reaction has taken place, the presence of 

specific antibodies in the sera is detected by the drop in absorbance with respect to the value of 

the negative control. 

For C-ELISA, the antigen can be prepared as for HI but should be stored at -20ºC in glycerol (50% 

v/v) after being inactivated with 1.0% binary ethylenimine (BEI). 

A specific polyclonal serum or anti-RHDV MAbs can be used. The specific polyclonal serum with 

high anti-RHDV or anti-RHDV2 titre can be obtained by various ways. Rabbits can be infected to 

obtain convalescent sera containing a high level of anti-RHDV IgG. The animals can be bleed 

between day 21 to 25 post infection or convalescent rabbits can be re-infected at 3–4 months 

post-infection and bled 10–15 days later to obtain RHDV hyperimmune sera. For RHDV2, sera of 

infected convalescent rabbits usually have a titre 20–40 times lower than that induced by RHDV, 

presumably due to the low mortality/high morbility induced. In alternative, the antigen (RHDV or 

RHDV2) can be purified from the livers of experimentally infected rabbits that died from an acute 

form of the disease (between 28 and 40 hours post-Infection), by the methods described by 

Capucci et al., (1991 and 1995) or Ohlinger et al., (1990). This antigen can be used to immunise 

sheep or goats according to classical protocols using oil adjuvants or rabbits, if the purified virus is 

inactivated before inoculation. 

When anti-RHDV MAbs are used, the conjugated antibody (purified rabbit IgG and conjugation to 

HRPO) is titrated in a sandwich ELISA in the presence and absence of RHDV antigen (negative 

sample). The conjugated antibody is then used at the highest dilution showing maximum 

absorbance. The value of the HRPO conjugate should range from 1/1000 to 1/3000. 

The negative control serum is obtained from rabbits fully susceptible to RHDV infection while the 

positive serum is either a convalescent serum diluted 1/100 in a negative serum or a serum 

collected from a vaccinated animal. 

The serum is considered negative when the absorbance value of the first dilution (1/10) decreases 

by 15% of the reference value (dilution 1/10 of the negative control serum), while it is positive 

when the absorbance value decreases by 25% or more. When the absorbance value decreases by 

between 15% and 25% of the reference value, the sera is considered to be doubtful. 

The serum titre corresponds to the dilution with an absorbance value equal to 50% (±10) of the 

average value of the three negative serum dilutions. This value is also suitable for C-ELISA with 
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RHDV2. The origin of the sample determines the range of titres found. In convalescent rabbits the 

positive sera range from 1/640 to 1/10,240, in vaccinated rabbits from 1/80 to 1/640 and “non-

pathogenic‟ infection from 1/10 to 1/160. The origin of the sample determines if one or more 

dilutions should be tested. 

An alternative C-ELISA method was described by Collins et al. (1995) using MAbs that were raised 

to a preparation of RHDV purified from the livers of experimentally infected rabbits. 

 

1.2.2.2.3. Isotype enzyme-linked immunosorbent assays (isoELISAs) 

The isoELISA assays enables the detection and titration of IgA, IgG and IgM isotypes, improving 

serological interpretation and classifying the immunological status of rabbits (Cooke et al., 2002). 

The isotype titres proved critical for the interpretation of field serology regarding the presence of 

cross-reactive antibodies (which can potentially confound serological data), the natural resilience of 

young rabbits, discrimination between temporary maternal antibodies and longer-lasting 

antibodies, and the presence of antibodies in previously infected rabbits (Cooke et al., 2000). 

Indeed, only IgG are detected in the case of passively aquired antibodies, with no IgA being 

detected in vaccinated animals, and first IgM and then IgA and IgG are detected in recently 

infected rabbits, (Cooke et al., 2000). 

 

1.2.2.2.4. Other ELISAs 

In Solid-phase ELISA (SP-ELISA), the purified antigen is directly adsorbed to the solid phase and 

because of virus deformation, internal epitopes are exposed. SP-ELISA detects a wider spectrum of 

RHDV antibodies and has high sensitivity and low specificity, and could be considered lagoviruses 

specific (OIE Terrestrial Manual, 2016). 

The sandwich ELISA to detect IgM and IgG in liver or spleen samples is particularly useful in 

samples collected from animals that died from the chronic form of the disease, for which the 

detection of the virus may be difficult using HA or other ELISA methods. Samples are positive for 

RHD if a high level of RHDV-specific IgM and a low level, if any, of IgG are observed (OIE Terrestrial 

Manual, 2016). 
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1.2.2.2.5. Serological assays based on specific virus-like particles (VLPs) 

Serological assays based on the use of virus specific VLPs enabling the discrimination between 

RHDV and the non-pathogenic rabbit caliciviruses RCV-A1 have also been developed (Liu et al., 

2012)(Bárcena et al., 2015). Recently, the OIE Reference Laboratory also developed a serological 

assay based on specific anti-RHDV2 MAbs, rabbit immune serum and virus capsid antigen obtained 

from RHDV2-infected rabbit liver extracts (Camarda et al., 2014)(Bárcena et al., 2015)(OIE technical 

disease cards, 2015 update). 
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1. Abstract 
Rabbit haemorrhagic disease virus 2 (RHDV2) is a new pathogenic Lagovirus of the Caliciviridae 
family. Although a few caliciviruses such as the San Miguel sea lion virus (SMSV), the vesicular 

exanthema of swine virus (VESV) and the feline calicivirus (FCV) are adaptable to cell cultures, most 

cannot be propagated in vitro. Attempts to cultivate the genetically related, but distinct, classical 

RHDV date back to 1984 and its non-cultivability is largely known. However, to our knowledge, no 

studies have been published on the investigation of the potential ability of RHDV2 propagation on 

tissue culture cells. 

In this study, we attempted to propagate RHDV2 in rabbit and monkey kidney cell lines, namely 

RK13 and VERO cells, by performing 12 consecutive passages, sub-cultured each 4 to 6 days. No 

cytopathogenic effect was observed during these cell passages, which suggests that RHDV2 did not 

infect and replicate in these cells. Corroborating these results, the supernatants from passages 3, 6, 

9 and 12 tested negative for viral RNA by RT-qPCR. Viral RNA was detected in the supernatant of 

the first passage but the rapid decline and disappearance of the viral RNA indicated that it 

corresponded to the inoculum and that no viral replication occurred. 

 

2. Keywords: Rabbit haemorrhagic disease, RHDV2, in vitro propagation, cell lines, RK13, VERO cells 

 

3. Body of manuscript 
Rabbit haemorrhagic disease virus 2 (RHDV2) is a new pathogenic virus of both wild and domestic 

rabbits belonging to genus Lagovirus of the Caliciviridae family. 

The International Committee on Taxonomy of Viruses (ICTV) recognises five genera in the 

Caliciviridae family: Lagovirus, Vesivirus, Norovirus, Sapovirus and Nebovirus (Taube et al., 2010). 

The recently recognised genera Recovirus, which includes the bovine enteric virus Newbury agent-

1 and the rhesus macaques Tulane virus, was also proposed to integrate the Caliciviridae family 

(Taube et al., 2010). 

In general, caliciviruses exhibit a wide range of hosts, including humans, and tissue tropisms, 

causing a variety of diseases such as gastroenteritis (Norovirus and Sapovirus, the only genera 

infecting humans), haemorrhagic disease (Lagovirus) and vesicular lesions, respiratory infections 

and reproductive failure (Vesivirus) (Taube et al., 2010). The Lagovirus genus includes the classical 

RHDV as well as the recently emerged RHDV2 and the genetically related European brown hare 
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syndrome virus (EBHSV) (Capucci et al., 1996)(Le Gall-Reculé et al., 2011a)(Le Gall-Reculé et al., 

2013), all responsible for high mortality rates in lagomorphs (Liu et al.,1984), and the non-

pathogenic lagoviruses (Le Gall-Reculé et al., 2011b). 

Caliciviruses are named after the characteristic cup-shaped depressions observed on the virions by 

negative stain electron microscopy (Calyx, Latin for chalice) (Clarke and Lambden, 1997). Although 

a few caliciviruses, such as the San Miguel sea lion virus (SMSV) and the vesicular exanthema of 

swine virus (VESV) (morphologically indistinguishable from each other) (Smith et al., 1973)(Sawyer, 

1976), and the feline calicivirus (FCV) (Kreutz et al., 1994) are adapted to cell culture most of these 

viruses cannot be propagated in tissue culture cells (Clarke and Lambden, 1997)(Meyers et al., 

2000)(Vashist et al., 2009). Cell cultures can be examined by optical microscope for evidences of 

viral proliferation, and have served as the gold standard for virus detection and the method to 

which all others have been compared (Leland and Ginocchio, 2007). However, attempts to adapt 

lagoviruses such as the EBHSV (Gavier-Widén and Mörner, 1991), RHDV (Parra and Prieto, 1990) 

and RCV (Capucci et al., 1996) to grow in various cell lines have repeatedly failed. The inability to 

grow Lagovirus and most caliciviruses in vitro is suggested to be associated with virus entry and 

receptor binding (Guix et al., 2007)(Vashist et al., 2009). Viruses can bind to many different 

molecules (proteins, lipids, and carbohydrates), some of which are attachment factors that 

concentrate virus on the cell surface while others are receptors or co-receptors that facilitate virus 

entry into cells (Taube et al., 2010). RHDV was the first calicivirus to show binding to histo-blood 

group antigens (HBGAs) of the upper respiratory and/or digestive tract epithelial cells (Ruvoën-

Clouet et al., 2000), followed by noroviruses (Hutson et al., 2002)(Marionneau et al., 2002). HBGAs 

are attachment factors (ligands) that facilitate RHDV infection rather than the main cellular receptor 

(Nyström et al., 2011). They are polymorphic carbohydrate structures synthesised by a stepwise 

addition of monosaccharides to different precursor structures, via specific glycosyltransferases 

(Leuthold et al., 2015). HBGAs represent terminally exposed portions of larger glycans linked to 

proteins or glycolipids, expressed mainly on epithelial surfaces (Nyström et al., 2012) but also on 

red blood cells or in secreted fluids, such as saliva and mucins of the intestinal tract (Nystrom et al., 

2011). They can be subdivided into ABH and Lewis antigens, of which at least four were found to 

interact with RHDV (A type 2, B and H type 2 and Lewis Y)(Leuthold et al., 2015). Classical G1 to G6 

RHDVs were found to bind to HBGAs in a strain-dependent manner and with variable magnitudes 

(Nyström et al., 2011). The liver is considered the major organ of RHDV replication. However, rabbit 

hepatocytes are completely devoided of HBGAs (Gorvel et al., 1985)(Nyström et al., 2011) which 
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renders unlikely that RHDV uses HBGAs as receptors on hepatocytes, suggesting that additional 

mechanisms are implied in the RHDV infection (Nyström et al., 2011). RHDV infection has been 

shown to be rabbit specific despite cross-species recognition of HBGAs in human cells (Nyström et 

al., 2012), which indicates that other molecular elements exclusive to rabbits restrict its host range 

(Leuthold et al., 2015). 

There is still limited information on the RHDV2 interactions with HBGAs. In a recent study on the 

RHDV binding to HBGAs, G6 group (RHDVa) and RHDV2 were found to have variable interactions 

with human blood types as the P domains of both viruses appeared markedly different (Leuthold et 

al., 2015). This data raises the hypothesis that RHDV2 may have different HBGA binding 

mechanisms (Leuthold et al., 2015). 

Regarding RHDV2, HA assays using human O, A, B, and AB erythrocytes showed that this new virus, 

like G1 and G6, has variable interactions with the different blood types (Dalton et al., 2012) 

(Leuthold et al., 2015). While some authors refer that RHDV2 agglutinates human type “O” 

erythrocytes efficiently (Le Gall-Reculé et al., 2013), others state that RHDV2 displays a pattern 

similar to G4 and G6 groups with no agglutination of blood groups O or A, but agglutinating blood 

groups B and AB (Dalton et al., 2012). 

The lack of a culture system for caliciviruses replication poses major obstacles for applied and basic 

research development, limiting the classification of these viruses, since several important features 

used to distinguish between families, such as physicochemical properties, protein synthesis in 

infected cells, antigenic relationships, and cell tropism, cannot be easily analysed in the absence of 

effective cell culture systems (Green et al., 2000). Studies on caliciviruses have therefore relied on 

the experimental infection of rabbits and on in vitro methods, including cDNA synthesis and 

cloning and sequencing analysis, using RNA extracted from viral particles or liver tissue of infected 

rabbits (Meyers et al., 1991)(Maniloff, 1995)(Green et al., 2000)(Meyers et al., 2000). 

RHDV2 genome research has been carried out using RNA extracted from virus particles recovered 

from liver tissue of infected rabbits. RHDV2 is genetically related but distinct from the non-

cultivable RHDV (Le Gall-Reculé et al., 2011a)(Le Gall-Reculé et al., 2013). The possibility that those 

genetic differences could impact on the cultivable nature of RHDV2 was addressed in this study, by 

attempting to propagate RHDV2 during 12 passages in VERO cell line, derived from the kidney 

epithelium of the African green monkey (Cercopithecus aethiops) (Rhim et al., 1969)(Macfarlane 

and Sommerville, 1969) and in RK-13, a rabbit kidney-13 cell line. VERO cells were chosen for their 

ability to support the growth of a wide range of viruses to high titres, showing extensive 
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cytopathogenic effects (CPE) (changes that range from swelling, shrinking, and rounding of cells to 

clustering, syncytium formation, and, in some cases, complete destruction of the monolayer (Leland 

et al., 2007)) and plaque formation which provide suitable source of virus and antigen for other 

studies (Rhim et al., 1969)(Macfarlane and Sommerville, 1969). The RK-13 culture is a stable line of 

rabbit kidney cells that has shown the ability to assemble and produce complete viral particles 

when transfected by an infectious RHDV clone (Liu et al., 2006). 

Liver and spleen samples were obtained from four wild rabbit specimens found dead in the Alto 

Alentejo region that tested RHDV2-positive by RT-qPCR (Duarte et al., 2015) with low Cq values 

(6.88 to 10.30). Homogenates of liver samples (30% w/v) were prepared in phosphate-buffered 

saline solution (PBS). The homogenate was vortexed and large debris removed after centrifugation 

for 5 min at 3000 g. 

VERO and RK13 cells were prepared from a frozen master cell bank. After a quick thaw at 35°C, 1 

mL of cell suspension, containing approximately 106 cells, was seeded in 25 cm2 flasks with 10 mL 

of growth medium (MEM, 10% heat-inactivated (56°C, 30 min) foetal bovine serum (FBS), 2 mML-

glutamine and 100 U of streptomycin and neomycin) and incubated at 37°C with 5% CO2. Upon 

confluence, cells were sub-cultured into 25 cm2 bottles (Nunc). 

For viral passages, the medium of sub-confluent cultures was removed and cells were inoculated 

with 200 µl of the clarified viral suspension prepared from the liver and the spleen of each animal, 

or or with 200 µl of supernatant of the previous passage. After addition of MEM supplemented 

with 10% FBS, glutamine and antibiotics at the concentrations described above, the cultures were 

incubated at 37°C in a 5% of CO2 atmosphere. Control cultures were mock inoculated with the 

same volume of maintenance medium and further treated by the same procedures as virus-

inoculated cultures. Inoculated and mock cell cultures were checked daily under optical microscopy 

for the presence of cytopathic effects (CPE), to monitor virus growth/replication. In the absence of 

CPE a second criteria was considered before rejecting a “negative” culture (Lednicky and Wyatt, 

2012) namely by investigating the presence of infectious virus in the supernatants of passages 

number 3, 6 and 9 and 12 by molecular methods. For that purpose, RNA (10 µl) was extracted from 

a 200 µl sample of the clarified supernatant in a BioSprint 96 nucleic acid extractor (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions, and assessed for RHDV2 by RT-qPCR 

(Duarte et al., 2015) using the One Step RT-PCR kit (Qiagen, Hilden, Germany). Undetectable Cq or 

Cq values >40 were considered negative. 
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After 12 consecutive passages, it was observed that RHDV2 neither grew in VERO nor in RK13 cell 

lines, as no CPE was observed. The supernatant of passages 3, 6, 9 and 12 tested RHDV2-negative 

by RT-qPCR. 

The microscopic examination of degenerative morphologic changes in monolayer cells culture has 

long been the standard approach for detecting viral proliferation, and proved to be a suitable 

method to isolate a wide variety of viruses. Despite since the early 2000s, detection of viruses in 

clinical samples by molecular methods has become widely available, virus isolation continues to be 

a sensitive method for the detection of infectious virus and remains a useful approach in the 

diagnosis of viral diseases, being less costly and generally better suited for detecting a 

comprehensive range of viruses (Leland and Ginocchio, 2007). It also allows the verification of the 

Koch’s postulates. 

Recently, numerous innovations in cell culture formats have been developed, like cell monolayers in 

rapid culture cell tubes and in microwell plates, and new technologies, including cell growth in 

three dimensions, various new or engineered cell lines and primary cells for the propagation of 

viruses considered very difficult to study in vitro, blind Immunofluorescence (IF) or colour change 

reactions that enable viruses’ identification pre-CPE detection (reviewed by Leland and Ginocchio, 

2007)(Lednicky and Wyatt, 2012). Despite these advances, the lack of RHDV2 adaptation to cell 

lines is in accordance to the results obtained for other lagoviruses, as referred previously, namely 

for classical RHDV (Parra and Prieto, 1990), RCV (Capucci et al., 1996) or the EBHSV (Gavier-Widén 

et al., 1991). 

In the future, other cell lines could be screened for attachment factors or receptors that may 

enhance viral replication towards the successfully propagation RHDV2. For instance, sialic acids 

(HBGAs associated) were identified as attachment factors for GII norovirus (Nystrom et al., 2011) 

(Taube at al., 2010). Considering that RHDV2 and genogroup II norovirus interact in a similar 

fashion with HBGAs, it may be possible that a GII norovirus susceptible cell culture could also work 

with RHDV2 (Leuthold et al., 2015). Also, transgenic technology offers the possibility of using 

genetically modified (“engineered”) cell lines to improve virus growth in cell culture, facilitating 

virus-infected cells detection (Lednicky and Wyatt, 2012). When a virus receptor is present on the 

cell surface in a suboptimal number, genetic engineering of susceptible cell lines to over-express 

virus receptors is likely to improve virus attachment and entrance into the cell (Lednicky and Wyatt, 

2012). For instance, VERO E6 cells have been engineered to over-express canine signalling 
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lymphocyte activation molecule (cSLAM), thought to be the major virus receptor of Canine 

Distemper Virus (CDV) (Lednicky and Wyatt, 2012). 

Until the development of biological systems susceptible to increase the knowledge of the 

biological aspects of these viruses, the replication of lagoviruses is still greatly dependent on 

recombinant DNA technology, crucial for the production and characterization of viral proteins, and 

also the basis of molecular studies on the mechanisms of viral replication (Green et a., 

2000)(Morales et al., 2004). 

In the past, production of viral proteins in heterologous systems enabled the study of the three-

dimensional structure of caliciviruses by cryo-electron microscopy and was proven useful for the 

development of viral vaccines and diagnostic strategies (Sibilia et al., 1995)(Nagesha et al., 1995) 

(Laurent et al., 1994). For instance, the RHDV capsid protein was successfully expressed in insect 

cells where it spontaneously assembled to form virus-like particles (VLPs), physically and 

immunologically indistinguishable from the intact wild-type virions (Sibilia et al., 1995)(Nagesha et 

al., 1995)(Laurent et al., 1994). This was particularly useful in the development of recombinant 

RHDV vaccines (Laurent et al., 1994)(Sibilia et al., 1995)(Plana-Duran et al., 1996). 

Reverse genetics using the infectious clone technology was successfully applied to RHDV a decade 

ago (Liu, 2006). After the construction of an infectious full-length cDNA clone of RHDV and 

subsequent synthesis of infectious RNA in the transfected cells, recombinant viruses were 

generated. RNA transcripts showed to be infectious when inoculated to rabbits which died in the 

following 72 hours. Furthermore, the rescued virus presented 99.9% genetic homology to the 

parental virus and quantification by real time PCR showed a positive correlation between time of 

infection and virus titre (Liu et al., 2006). This method offered a more accurate approach to 

elucidate the mechanisms involved in viral pathogenesis in vivo (Liu et al., 2006). Latter, a similar 

investigation was carried out in vitro using RK13 cells (Liu et al., 2008). When RK13 cells were 

transfected with a full-length RHDV cDNA clone, CPE was evident at 12 h post-transfection and 

more prominent at 48 h post-transfection (Liu et al., 2008). 

Reverse genetics proved to be a useful tool for studying viral RNA replication, pathogenesis and in 

vivo function of individual viral proteins, as well as for developing new vaccines against RHDV (Liu 

et al., 2006)(Liu et al., 2008). 

Genome sequence analysis represents a major tool for the study of lagoviruses and other non-

cultivable caliciviruses as well as for the clarification of the relationships among Caliciviridae family 
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members or virus groups containing non-cultivatable members, as recognized by the ICTV (Green 

et al., 2000). 

Regarding RHDV2, further studies are needed to better understand the biological aspects of this 

relevant emergent virus. Recently, a recombinant baculovirus expressing the RHDV2 VP60 protein 

was also generated by Bárcena et al. (2015). VLPs may be useful for the development of 

recombinant subunit vaccines for RHDV2, considering that the provisionally authorised vaccines for 

RHDV2 are prepared from liver extracts of experimentally infected rabbits (Bárcena et al., 2015). 

Also, VLPs enabled the characterization of the monoclonal antibodies (MAbs) 2E7, 1G5 and 1C9, 

regarding their differential reactivity with three lagoviruses capsid proteins (RHDV, RHDV2 and 

EBHSV), providing valuable tools for monitoring virus circulation and for the development of 

control measures, and fundamental research in different aspects of the RHDV2 biology (Bárcena et 

al.. 2015). 
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a  b  s  t  r  a  c  t

A  specific  real  time  RT-PCR  for the  detection  of RHDV2  was  developed  and  validated  using  RHDV
and  RHDV2  RNA  preparations  from  positive  field  samples.  The  system  was  designed  to  amplify  a 127
nucleotide-long  RNA  region  located  within  the vp60 gene,  based  on  the  alignment  of  six sequences
originated in  Portugal,  obtained  in  our  laboratory,  and  11  sequences  from  France  and  Italy.

The  primers  and  probe  target  sequences  are  highly  conserved  in the  vast  majority  of the RHDV2
sequences  presently  known.  In  the  sequences  showing  variability,  only  one  mismatch  is found  per  strain,
usually  outlying  the  3′ end  of the  primer  or probe  hybridization  sequences.

The  specificity  of  the  method  was  demonstrated  in  vitro  with  a panel  of  common  rabbit  pathogens.
Standardization  was  performed  with  RNA transcripts  obtained  from  a recombinant  plasmid  harboring  the

2
aqman RT-PCR
eal time RT-qPCR

target  sequence.  The  method  was  able  to detected  nine  RNA  molecules  with  an efficiency  of  99.4%  and  a  R
value  of 1. Repeatability  and  reproducibility  of  the  method  were  very  high,  with  coefficients  of  variation
lower  than  2.40%.  The  assay  was  proven  a valuable  tool  to  diagnose  most  of RDVH2  circulating  strains,
and  may  be  also  useful  to  monitor  viral  loads,  and  consequently,  disease  progression  and  vaccination
efficacy.

©  2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

Rabbit haemorrhagic disease virus 2 (RHDV2) emerged in France
n 2010 (Le Gall-Recule et al., 2011) and by the end of 2014
ad already spread to Italy (Le Gall-Recule et al., 2013), Spain
Dalton et al., 2012), Germany (information on the FLI, 10|21|2013),
ortugal mainland (Abrantes et al., 2013), England and Wales
Westcott et al., 2014) and Scotland (Baily et al., 2014). In 2015,
HDV2 was reported in several islands of the Azores (Duarte et al.,
015). RHDV2 shares with the highly pathogenic rabbit hemor-
hagic disease virus (RHDV) the same genome structure, organized
n two potential open reading frames (ORFs), and about 85% of the
p60 nucleotide sequences (Dalton et al., 2015; Le Gall-Recule et al.,
013). It belongs to genus Lagovirus of the family Caliciviridae, along

ith the European brown hare syndrome virus (EBHSV), and affects

uropean rabbits (Oryctolagus cuniculus)(Abrantes et al., 2013; Le
all-Recule et al., 2013) hares (Lepus capiensis and Lepus corsicanus)

∗ Corresponding author. Tel.: +351 217115290; fax: +351 217115387.
E-mail address: margarida.duarte@iniav.pt (M.D. Duarte).

ttp://dx.doi.org/10.1016/j.jviromet.2015.03.017
166-0934/© 2015 Elsevier B.V. All rights reserved.
(Camarda et al., 2014; Puggioni et al., 2013). Besides the genetic
and antigenic differences with classical RHDV, RHDV2 can affect
younger rabbits and the mortality rates are usually lower (Dalton
et al., 2014; Le Gall-Recule et al., 2013). Although the clinical charac-
teristics may  differ in the two  infections (Le Gall-Recule et al., 2011)
anatomo-pathological features can be similar in both cases, leading
to difficult differentiation. The molecular epidemiology of RHDV2
has revealed that this virus, also referred as RHDVb, is rapidly
replacing the previously circulating classical strains in France, Spain
and Portugal (Dalton et al., 2014; Le Gall-Recule et al., 2013; Lopes
et al., 2014). For those reasons, a specific and quick laboratorial
diagnosis of RHDV2 is very often required by the veterinarians to
assist the control of the infection in rabbit industries. Since rabbit
lagoviruses are not cultivable in vitro (Capucci et al., 1998; Wirblich
et al., 1994), laboratory confirmation relays greatly on genome
amplification and sequencing methods. Different molecular assays
for the detection of RHDV have been described since the late 90’s,

including conventional RT-PCR assays (Ros Bascunana et al., 1997;
Tham et al., 1999; Yang et al., 2008), immunocapture-RT-PCR (Le
Gall-Reculé, 2001), real time multiplex RT-PCR (Gall et al., 2007),
and more recently, loop-mediated isothermal amplification (Yuan

dx.doi.org/10.1016/j.jviromet.2015.03.017
http://www.sciencedirect.com/science/journal/01660934
http://www.elsevier.com/locate/jviromet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jviromet.2015.03.017&domain=pdf
mailto:margarida.duarte@iniav.pt
dx.doi.org/10.1016/j.jviromet.2015.03.017
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Table  1
Nucleotide sequences and position within the vp60 gene of the RHDV2 primers and probe.

Oligomer Nucleotide sequence (5′-3′) Size of amplicon Position in vp60 gene
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field strains, previously characterized at INIAV, feline calicivirus
RNA and DNA from common rabbit pathogens (Pasteurella multo-
RHDV2-F TGGAACTTGGCTTGAGTGTTGA 

RHDV2-R ACAAGCGTGCTTGTGGACGG 

RHDV2  probe FAM-TGTCAGAACTTGTTGACATCCGCCC-TAM

t al., 2013) and SYBR green-based real-time PCR (Niedzwiedzka-
ystwej et al., 2013). None of these two last methods were however
esigned to specifically detect RHDV2 strains.

Here we describe a Taqman-probe-based real time PCR (RT-
PCR) designed for the specific detection of RHDV2 strains that
rovides a clear diagnosis response in less than 3 h. The method

s in use in our laboratory since early 2014.

. Materials and Methods

.1. RNA isolation

Liver and lung samples were homogenized in phosphate-
uffered saline (PBS) to a final concentration of 30% (w/v). The
omogenate was vortexed and centrifuged for 5 min  at 3000 g.
otal RNA was  extracted from 200 �l of the supernatant using a
ioSprint 96 nucleic acid extractor (Qiagen, Germany), according
o the manufacturer’s protocol and eluted in 100 �l of RNase-free
ater.

.2. Designing of PCR primers and probe

Primers (RHDV2-forward and RHDV2-reverse) and probe
RHDV2-probe) were designed manually based on conserved
egions evidenced on the alignment of vp60 complete RHDV2
equences from Portugal, France and Italy. The nucleotide
equences and positions in the vp60 gene are illustrated in Table 1.

.3. Real time RT-PCR optimization

The RT-qPCR was performed using a CFX-96 real time sys-
em (Bio-Rad) in a 96-well optical plate format. Amplification was
arried out in 25 �l volume reactions using the OneStep RT-PCR
it (Qiagen, Germany) according to the manufacturer’s recom-
endations. Optimal assay performance was obtained using final

oncentrations of 1 �M and 0.2 �M of each primer and probe
NZYTech Ltd, Portugal), respectively. Thermal cycling conditions
ncluded one cycle at 50 ◦C for 45 min  for reverse transcription,
ne cycle at 95 ◦C for 15 min  for Taq polymerase activation and
0 cycles of cDNA amplification (95 ◦C for 15 s, 60 ◦C for 30 s and
2 ◦C for 30 s). Fluorescence was acquired during each extension
tep. Negative controls contained PCR-grade water.

.4. Cloning and sequencing of the 127 bp-long RT-qPCR target
equence

A 127 bp fragment was amplified from a field strain (1017PT13,
ccession number KJ683896) using the designed primer pair
Table 1). The amplicon was cloned into the pCR2.1 TA vector
sing One Shot TOP10, chemically competent Escherichia coli (Invi-
rogen Corporation, San Diego, CA). Plasmid DNA was  extracted
rom overnight Luria Broth supplemented with kanamycin
scherichia coli cultures grown at 37 ◦C, using the standard boil-
ng DNA purification protocol (Holmes and Quigley, 1981). The

resence and correct orientation of the insert was confirmed by
coRI (New England Biolabs, UK) hydrolysis and sequencing anal-
sis in a 3130 Genetic Analyzer (Applied Biosystems, Foster City,
A, USA) using the BigDyeTM Terminator v1.1 Cycle Sequencing Kit
127 1571–1592
1678–1697

– 1664–1640

(Life technologies, Foster City, CA). Sequences were assembled with
Seqscape Software v2.7 (Applied Biosystems, Foster City, CA, USA).
Recombinant DNA was extracted from a 50 ml  overnight LB cul-
ture using the plasmid midi purification kit (Qiagen, Germany).
DNA was  quantified with a NanoDrop 1000 (Thermo Scientific,
USA).

2.5. In vitro transcription and treatment of RNA transcripts with
DNase I

Linearization of p1017PT13-2 with BamHI  (New England Bio-
labs, UK) was confirmed by agarose gel electrophoresis analysis.
The band corresponding to the linearized DNA was  excised, puri-
fied with the NZYTech column kit (NZYTech Ltd, Portugal), and
quantified as described above.

In vitro transcription was performed using the MAXIscript
kit (Ambion, UK) according to the manufacturer’s instructions.
Transcribed RNA was  treated with DNase I recombinant, RNase-
free (Roche, Germany), purified with the QIAamp Viral RNA Mini
kit (Qiagen, Germany) and tested for the presence of DNA using
RHDV2 primers and probe and the High Fidelity PCR Mix  (Qiagen,
Germany), according to the manufacturer’s recommendations.

After confirmation of DNA absence, RNA transcripts were stored
at −80 ◦C until use.

2.6. Standardization of the method

RNA concentration was  determined using a NanoDrop 1000
(Thermo Scientific, USA). Tenfold dilutions series, ranging from
10−2 to 10−13, of in vitro transcribed RNA were prepared in RNase-
free water. Each dilution was  tested by RT-qPCR in triplicate. The
calibration curves were generated by the CFX ManagerTM Software
(Bio-Rad, USA). For each standard, the logarithm of the RNA copy
number was  plotted against the crossing point values (Cq values).
The number of RNA molecule copies in each PCR reaction was cal-
culated using the molecular mass of the RNA transcript and the
amount of RNA (g) present in the amplification reactions, accord-
ingly to the formula:

RNA copy number in the amplification reaction = amount of
RNA (g) in the reaction/[Molecular mass of the transcribed
RNA/6.022 × 1023].

The molecular mass of one RNA molecule (245 nucleotides)
was determined using the software conversor (http://www.
changbioscience.com/genetics/mw.html).

The amplification efficiency was  determined with the equation
E = [10 (−1/k)−1], were (k) is the slope of the linear regression.

2.7. Specificity evaluation

The specificity of the RT-qPCR assay for the detection of RHDV2
was evaluated with RNA preparations from RHDV2 and RHDV
cida, Bordetella bronchiseptica,  myxoma virus and four species of
genus Eimeria). The Eimeria samples were lysed using the Thermo
Electron FastPrep FP120 Cell Disrupter (San Jose, CA, USA) and
protease-treated prior to DNA extraction.

http://www.changbioscience.com/genetics/mw.html
http://www.changbioscience.com/genetics/mw.html
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Table 2
Localization of single mismatches in the hybridization sequences of the primers and probe, regarding the RHDV2 vp60 nucleotide sequences presently available in GenBank.

Country of
origin

No of sequences
known

Year of sample
collection

Year of sequence
discloser

Mismatches Source of data Variable nucleotide (5′-3′)

RHDV2-F Probe RHDV2-R

France 5 2010 2013 0 0 0 FR819781, HE800530-532,
HE819400

–

France 1 2010 2013 1 0 0 HE800529 TGGAACTTGGCTTGAGTGTCGA
Italy  5 2011 2013 0 0 0 JQ929052, KC345611-613,

JX106023
–

Spain  1 2011 2014 0 0 0 JX133161 –
Italy  3 2012 2014 0 0 0 JX106022, KC907712,

KC741409
–

Portugala 11 2013 - 0 0 0 This study –
Portugala 1 2013 2015 0 0 0 KM115680 –
Portugala 1 2013 2015 0 1 0 KM115711 TATCAGAACTTGTTGACATCCGCCC
Portugala 3 2013 2015 0 0 1 KM115677, KM115678,

KM115679
ACAAGCGTGCTTGTGGACGG

Portugala 9 2014 – 0 0 0 This study –
Portugala 38 2014 2015 0 0 0 KM115667-675,

KM115681-697,
KM115699-710

–

Portugala 2 2014 2015 1 0 0 KM115675-676 TGGAACTCGGCTTGAGTGTTGA
Portugala 1 2014 2015 0 1 0 KM115698 TTTCAGAACTTGTTGACATCCGCCC

a 1 
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experiments. The slope values obtained ranged from 3.29 and 3.38,
and the y-intercept values were lower than the cycle threshold [Cq]
of 50, varying between 39.74 and 43.81. Efficiencies were never
lower than 97.8%.

Table 3
Specificity evaluation of the RHDV2 RT-qPCR.

Samples tested

Pathogen Strain/serotype Result of RT-qPCR
(Cq value)

RHDV2 1017PT13 14.03
7285PT13 11.21
16747PT13 14.15

RHDV G1 No Cq
G5 No Cq
G6 No Cq

Myxoma virus – No Cq
Feline calicivirus – No Cq
Bordetella bronchiseptica (pure culture) No Cq
Pasteurella multocida (pure culture) No Cq
Portugal 5 2014 2015 0 

Portugala 3 2015 – 0 

a Mainland.

.8. Repeatability and Reproducibility

To assess intra-assay variability, each dilution was  tested in trip-
icate in the same run. The mean Cq values, standard deviation (SD)
nd percent coefficient of variation (%CV) were calculated indepen-
ently for each RNA dilution.

The inter-assay variability was evaluated in three independent
uns, performed in different days and in different thermocyclers.
he mean, standard deviation and coefficient of variation were cal-
ulated with all the Cq values obtained for each dilution in each run.
he range (minimum and maximum values) for each parameter
as determined.

. Results

.1. Specificity of the real time RT-PCR assay

In silico analysis against the GenBank database showed that
he primers and probe target sequences are conserved in the
reat majority of strains that circulate since 2010 (Table 2). Single
ucleotide variations were, however, detected in 12 strains dis-
losed recently (accessed 30 January, 2015) either in the forward
nd the reverse primer or in the probe hybridization sequence.
xception made for 3 strains where a single mismatch is found more
lose to the 3′ end of the primer reverse, most of these variations
re located at 15 bases from the 3′ end of the primer or 19 or 23
ases from the 3′ end of the probe (Table 2).

In the vp60 sequences from non-RHDV2 lagoviruses, several
ismatches were found either in classical RHDV strains as in

pathogenic or low pathogenic rabbit calicivirus (RCV) strains. The
owest level of discrepancy was observed in a reduced number
f sequences from apathogenic RCV strains and comprehends a
otal of six mismatches, two of each located in the probe target-
ng sequence, abrogating amplification. In the vast majority of the
HDV and apathogenic RCV sequences, the number of mismatches
as significantly higher (up to 7 mismatches in the probe and up
o 7 and 6 mismatches in the forward and reverse primer, respec-
ively).

The analytical specificity of RT-qPCR was evaluated in vitro
ith RHDV2 RNA-positive samples, previously diagnosed in INIAV
0 KM115712-716 TGTCAGGACTTGTTGACATCCGCCC
0 This study –

laboratory by conventional PCR and sequencing. All RHDV2 sam-
ples were detected demonstrating the specificity of the assay.
Consistently, neither fluorescence nor amplification was observed
when the system was  used to test nucleic acids from the com-
mon  rabbit pathogens described above, confirming the absence of
unspecific amplification due to cross-reactivity and/or fluorescence
emission (Table 3). The negative controls, containing PCR-grade
water instead of RNA template, never crossed the threshold line.

3.2. Standard curves

The method was standardized with serial dilutions of RNA tran-
scribed in vitro from recombinant p1017P13-2. The absence of
contaminant DNA after treating of the RNA synthetic transcripts
with DNase I was confirmed by PCR with RHDV2 primers, since no
amplification was obtained.

The robustness of the quantitative RT-qPCR was evidenced by
the consistency of the data from independent regression analysis
Eimeria stiedae No Cq
Eimeria media No Cq
Eimeria perforans No Cq
Eimeria irresidua No Cq
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ig. 1. Amplification and standard curves of RT-qPCR using RHDV2 RNA synthesize
he  Cq values obtained against the log of known copy numbers (dilution series corr

A typical standard curve amplification plot and linear regression
nalysis is shown in Fig. 1. Excellent linearity was  observed over
ight orders of magnitude, from dilution 10−2 (9.00e + 09 copies)
o 10−9 (9.00e + 02 copies). The regression analysis for this interval
ielded a R2 (correlation coefficient) of 1 and a �-intercept value
f 43.54. The slope of 3.34 reveals a high RT-PCR efficiency (99.4%)
losely approximating the amplification efficiency of 100% (3.32
lope).

.3. Detection limit, repeatability and reproducibility of the real
ime RT- PCR assay

All replicates until dilution 10−11 tested positive, indicating that
he method is able to detect nine copies of viral RNA (1.15e-18 g).

Intra-assay variability was calculated by assessing the homo-
−2 −11
eneity among replicates of dilutions 10 to 10 . The mean Cq

alues, SD values and % CV obtained disclosed very low variation (%
V ranging between 0.17 and 2.39) indicating the high repeatability
f the method (Table 4).

able 4
ntra- and inter-assay variability of the RT-qPCR.

Variation Dilutions Crossing point

Mean Cq SD % CV

Intra-assaya 10−2 10.24 0.21 2.01
10−3 13.50 0.04 0.30
10−4 16.62 0.16 0.97
10−5 19.98 0.14 0.70
10−6 23.57 0.12 0.51
10−7 26.93 0.14 0.53
10−8 30.22 0.05 0.17
10−9 33.52 0.15 0.44
10−10 37.32 0.82 2.19
10-11 37.56 0.90 2.39

Inter-assayb 10−2 10.04–10.96 0.01–0.21 0.06–2.01
10−3 13.36–13.86 0.04–0.17 0.30–1.29
10−4 16.62–16.80 0.16–0.23 0.97–1.36
10−5 19.98–20.35 0.13–0.18 0.65–0.90
10−6 21.51–24.14 0.04–0.23 0.15–0.99
10−7 26.93–27.13 0.07–0.14 0.24–0.53
10−8 30.20–30.22 0.05–0.16 0.17–0.54
10−9 33.53–34.19 0.15–0.16 0.44–0.46
10−10 37.32–38.25 0.10–0.82 0.25–2.19
10−11 37.55–37.56 0.90–1.03 2.39–2.73

D – Standard deviation.
 CV – Percent coefficient variation.
a Assays were carried with triplicates.
b Values refer to three independent experiments.

he dilutions shown in the standard curve are highlighted.
itro from a recombinant plasmid p1017PT-13. Standard curve was  generated from
ding to 9.00E + 09 to 9.00E + 02 copies of RHDV2 RNA per reaction).

Also, the elevated reproducibility of the assay was  evidenced by
the SD and the % CV obtained with the set of values from three
independent assays, each using triplicates of the dilutions 10−2

to 10−11 (Table 4). The assay proved to be robust, showing per-
cent coefficients of variation ranging between 0.06% and 2.39%, in
different days or repetitions.

4. Discussion and conclusions

Since its first detection in 2010, RHDV2 has been spreading
rapidly and replacing the classical RHDV genogroups circulating
in wild rabbit populations in the Iberian Peninsula (Dalton et al.,
2014; Delibes-Mateos et al., 2014; Lopes et al., 2014), France (Le
Gall-Recule et al., 2013), Sardinia-Italy (Le Gall-Recule et al., 2013;
Puggioni et al., 2013) and more recently, in Azores (Duarte et al.,
2015).

The impact of RHDV2 infections in the rabbit industry has also
increased in Portugal (Duarte et al., unpublished data) and Spain
(Dalton et al., 2014; Dalton et al., 2012). In response to the epidemi-
ologic dominance of RHDV2 strains over the former classical RHDV
strains, and since the “old” vaccines only confer partial protection
against RHDV2 infection (Dalton et al., 2014; Le Gall-Recule et al.,
2013; Le Gall-Recule et al., 2011), several RHDV2 inactivated vac-
cines were developed in France and Spain and vaccination against
this virus is becoming a common practice in the industry.

To assist the control of the disease, laboratorial confirmation
was frequently requested to our institute, prompting us to develop
a rapid and sensitive technique for detecting RHDV2 with high sen-
sitivity and specificity. Molecular assays based on RT-PCR have been
long used for the detection of RHDV classical genogroups, but to our
knowledge, this report describes for the first time a Taqman-based
RT-PCR for RDHV2 specific detection.

It has been suggested that RHDV2 emerged from a different
species, yet unidentified (Le Gall-Recule et al., 2013) and is still
adapting to its recent host, the European rabbit, and possibly also to
the Cape hare, where disease is also induced (Puggioni et al., 2013).
The immune pressure imposed by the new host/hosts to this naked
virus, should impact mainly on the capsid protein-encoding gene
leading to the accumulation of nucleotide variability. The maxi-
mum  diversity at nucleotide and amino acid levels observed so
far among RHDV2 vp60 complete sequences is 3.91% and 2.94%
respectively and will eventually increase in the future.
The analytic specificity of the method was further demonstrated
since sequencing of the VP60 carboxyl-terminal encoding domain
from all the samples received at INIAV since 2013, confirmed that
the RT-qPCR-positive strains belonged to the RHDV2 group.



9 irologi

t
t
c
g
o
W
d
a
s
a
a

t
b
a
p
t
w
t
o
p
e
n
o
i
n
r

o
t
e
t
n

s
a
P
r
t
d
a
s
o
m
r
e
d
c
t
i
t
i
e
r

v
a
m

A

B
A

4 M.D. Duarte et al. / Journal of V

The analysis of the vp60 sequences characterized in our labora-
ory or currently available in public databases (n = 85) showed that
he regions targeted by the RT-qPCR primers and probe are 100%
onserved in 85.9% of vp60 sequences from RHDV2 strains. Sin-
le mismatches were detected in the forward and reverse primers
r in the probe hybridization sequences of 12 strains (Table 2).
hile single mismatches have been described to cause failure in the

etection of respiratory syncytial virus (Whiley and Sloots, 2006)
nd West Nile virus (Papin et al., 2004), it has also been demon-
trated that single SNP may  not completely prevent amplification,
lthough they may  cause inefficient annealing and amplification
nd underestimation of the copy number (Lefever et al., 2013).

In four strains (HE800529, KM115677, KM115678, KM115679)
he single mismatch can affect extension since it occurs at three
ases from the 3′ end of the reverse primer. Taken into consider-
tion the reduced number of strains with this variation, the Taqman
robe-based assay described here constitutes the best compromise
o detect RHDV2 strains. In fact, none of the other mismatches map
ithin the last 4 or 5 bases of the 3′ end of the primer or probe, as

he nucleotide substitutions are located 15 bases from the 3′ end
f the forward primer or 19 and 23 bases from the 3′ end of the
robe, limiting the impact on DNA polymerase extension (Lefever
t al., 2013; Wu,  Hong, and Liu, 2009), (Table 2). Moreover, a sig-
ificant reduction in Tm and shift in Cq was observed when SNPs
ccur in both primers, or when more than one mismatch is present
n a primer (Lefever et al., 2013), which is neither the case since
o more than one mismatch was detected in a given RHDV2 strain
egarding the primers and probe hybridization sequences.

Since RHDV2 is a RNA virus prone to evolution, continu-
us molecular surveillance is necessary to update the molecular
ools for the detection of new descendant viral strains. This gen-
ral requirement is applicable to all molecular methods designed
o detect variants of any pathogen, since the accumulation of
ucleotide mismatches may  abrogate amplification.

In conclusion, the method developed is a fast, one step, sen-
itive RT-qPCR, useful for the detection of RHDV2 RNA, with the
dvantage over other real time PCR methods such as multiplex-
CR or SYBR-Green-based PCR, of conferring a highly specific and
ead-through signal generated by the Taqman probe. Furthermore,
he highly sensitivity of the assay was verified by its ability to
etect as few as nine molecules of RHDV2 RNA, allowing a rapid
nd conclusive laboratorial diagnosis in less than 3 h. When testing
amples from animals in acute stages of infection, the Cq values
btained were systematically low (mean Cq values of 15.7 ± 1.2,
ostly adults). Interestingly, the mean amount of virus found in

abbit kittens was 15,000 genome copies per mg  liver (Matthaei
t al., 2014). Taking into consideration that the amount of virus
escribed in adult rabbits was found to be 1000-times higher when
ompared to kittens (Strive et al., 2010) the value estimated from
he standard curve for our field samples (mean Cq value of 15.70) is
n full agreement with this expectation (1.5 × 107copies per mg  of
issue). The average viral load, extrapolated for our field samples,
s also concordant with the data obtained by Tunon et al. (Tunon
t al., 2011) who reported 106 to 107 copies per mg  of liver for adult
abbits infected with RHDV (strain AST/89).

The method described here constitutes therefore not only a
aluable tool for rapid, sensitive and specific diagnosis, but also

 mean to assess viral load measurements, which can be used to
onitor disease progression and evaluate vaccination efficiency.
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A B S T R A C T

Molecular methods are fundamental tools for the diagnosis of viral infections. While interpretation of
results is straightforward for unvaccinated animals, where positivity represents ongoing or past
infections, the presence of vaccine virus in the tissues of recently vaccinated animals may mislead
diagnosis.
In this study, we investigated the interference of RHDV2 vaccination in the results of a RT-qPCR for

RHDV2 detection, and possible associations between mean Cq values of five animal groups differing in
age, vaccination status and origin (domestic/wild).
Viral sequences from vaccinated rabbits that died of RHDV2 infection (n = 14) were compared with the

sequences from the commercial vaccines used in those animals. Group Cq means were compared through
Independent t-test and One-way ANOVA.
We proved that RHDV2 vaccine-RNA is not detected by the RT-qPCR as early as 15 days post-

vaccination, an important fact in assisting results interpretation for diagnosis.
Cq values of vaccinated and non-vaccinated infected domestic adults showed a statistically significant

difference (p < 0.05), demonstrating that vaccination-induced immunity reduces viral loads and delays
disease progression. Contrarily, in vaccinated young rabbits higher viral loads were registered compared
to non-vaccinated kittens. No significant variation (p = 0.3824) was observed between viral loads of non-
vaccinated domestic and wild RHDV2-victimised rabbits. Although the reduced number of vaccinated
young animals analysed hampered a robust statistical analysis, this occurrence suggests that passively
acquired maternal antibodies may inhibit the active immune response to vaccination, delaying
protection and favouring disease progression.
Our finding emphasises the importance of adapting kitten RHDV2 vaccination schedules to circumvent

this interference phenomenon.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Six years after its emergence in Europe, rabbit haemorrhagic
disease virus 2 (RHDV2) continues to provoke severe economic
losses in the industry, to cause great concerns on the conservation
of diminished wild rabbit populations and dependent endangered
carnivore species, and to affect deeply the cinegetic activity and
tourism associated income of some countries.

RHDV2, reported for the first time in 2010 (Le Gall-Reculé et al.,
2011a), is classified within the Lagovirus genus (Le Gall-Reculé
et al., 2011a) along with the close genetically related RHDV,
European brown hare syndrome virus (EBHSV) and non-patho-
gentic lagoviruses (Le Gall-Reculé et al., 2011b). Since its
emergence in France (Le Gall-Reculé et al., 2011a), RHDV2 quickly
spread throughout neighbouring European countries (Dalton et al.,
2012; Abrantes et al., 2013; Le Gall-Reculé et al., 2013; Baily et al.,
2014; Westcott et al., 2014)(information on the FLI, 10|21|2013),
replacing the previously circulating classical strains (Lopes et al.,
2015). RHDV2 was registered outside Europe in Australia (Hall
et al., 2015).* Corresponding author.
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Besides the European rabbit, RHDV2 is also able to infect a few
hare species (Puggioni et al., 2013; Camarda et al., 2014). The lack of
cross protection induced by previous contact with RHDV strains
contributed to the rapid spread of RHDV2 in Europe (Le Gall-Reculé
et al., 2013), resulting in high mortality rates among naïve wild
population soon after its emergence (Delibes-Mateos et al., 2014).

In view of the alarming impact of RHDV2 in the rabbit industry
and in wild rabbit populations, and given the urgency in
controlling the disease, RHDV2 inactivated vaccines were devel-
oped (Filavac VHD Variant, Filavie Laboratories; Cunipravac
variant, Hipra; Novarvilap, Ovejero) and provisionally allowed in
the European Union member states under special licenses from the
Veterinarian Local Authorities. No data is however available about
the immunogenicity and success of the inactivated RHDV2
vaccines when applied as a post-exposure tool to infected
populations.

Laboratorial confirmation of RHDV2 is required to assist rabbit
farms in disease control. Detection of RHDV2 by molecular
methods has undeniable advantages due to their unequalled
sensitivity and short execution time, allowing a rapid laboratorial
response. A specific RT-qPCR with high sensitivity for RHDV2
detection was recently developed (Duarte et al., 2015a), detecting
as few as nine molecules of RHDV2 RNA, and has been in use at
INIAV Virology Laboratory since 2014.

The interpretation of RT-qPCR results in non-vaccinated
animals undergoing acute disease, particularly when low Cq
values are obtained, is usually straightforward. Furthermore, RDH
characteristic histopathological lesions are generally present,
complementing the molecular diagnosis and allowing the confir-
mation of RHDV2 as the cause of death. Nonetheless, due to the
variable mortality rates described for RHDV2 infections (Le Gall-
Reculé et al., 2011a, 2013; Dalton et al., 2012), when low viral loads
are obtained differential diagnosis is required since positivity may
not necessarily relate to clinical state or fatal outcome.

In addition, given the high sensitivity of nucleic acid
amplification-based methods, low amounts of vaccine virus in
the tissues of RHDV2 vaccinated animals, may compromise the
interpretation of the results and the final diagnosis. Interference of
inactivated vaccine RNA on real-time RT-PCR results has been
investigated for other viruses to assess the potential associations
between recent vaccination and RNA detection in blood or tissues.
For blue tongue virus (BTV), it was demonstrated that vaccine viral
RNA can reach the blood circulation and the spleen in sufficient
amounts to be detected by real-time RT-PCR (De Leeuw et al.,
2015). Contrarily, previous studies on the RHDV genome persis-
tence in vaccinated rabbits demonstrated that inactivated vaccine
RNA was not detected by RT-qPCR, in samples collected nine weeks
after vaccination (Gall and Schirrmeier, 2006). However, in that
study no evaluation was undertaken for shorter periods after
vaccination. With regards to RHDV field strains, genomic RNA or
RNA fragments are known to persist in adult rabbits that overcome
experimental infection for at least 15 weeks (Gall et al., 2007).
Interestingly, in experimentally infected young rabbits, viral RNA
was detected as early as 18 h post inoculation in the liver and
spleen, but persisted for a shorter period of only 4 weeks (Shien
et al., 2000). Antibodies were developed by these young rabbits
between 5 and 7 days post inoculation, with titters correlating well
with viremia decreased and viral clearance (Shien et al., 2000),
reasserting the important role of immune response in disease
control.

In this study, we aimed to clarify if RHDV2 vaccines were
detected by the RT-qPCR method developed previously (Duarte
et al., 2015a) and if the presence of commercial vaccines in the
tissues interfered with the detection of field strains RNA. We also
investigated the impact of vaccination on the viral loads during
infection, by comparing the Cq values from non-vaccinated and

vaccinated infected rabbits. For the vaccinated animals, the
algorithm routinely followed to achieve a conclusive RHDV2
diagnosis included the differential diagnosis of pathogenic
bacteria, classical RHDV and Myxoma virus, to rule out mixed
infections, and the screening by RHDV2-RT-qPCR. Histopathology
was performed to confirm the presence of characteristic RHD
lesions.

2. Materials and methods

2.1. Samples

Cq (quantification cycle) data from a total of 82 animals that
died from RHDV2 infection was analysed in the present study.
Vaccinated RHDV2-positive domestic rabbits (n = 14) originated in
rabbitries from Portugal mainland, where vaccination had been
implemented after the laboratorial confirmation of disease in the
premises. These samples were obtained during 2015 for the
purpose of this study. For the remaining 68 non-vaccinated rabbits,
Cq values were obtained under the same laboratorial conditions,
while performing diagnosis between 2014 and 2016. Of these,
RHDV2-positive liver samples from non-vaccinated domestic
rabbits (n = 29) were received at INIAV directly from the
veterinarian assistants of industrial rabbitries or through private
laboratories. Wild rabbits (n = 39) were found death in hunting and
national parks in Portugal mainland and Azores and sent to INIAV
for analysis.

Five groups of animals were defined according to age,
vaccination status and domestic/wild origin. Young rabbits
corresponded to animals with less than 70 days of age. Group 1
included the domestic vaccinated adult rabbits (n = 11). Group 2
comprised domestic young, born from RHDV2 vaccinated does,
which were vaccinated before 35 days of age (n = 3), Group 3
encompassed the domestic non-vaccinated adults (n = 23). Group 4
included domestic young, born from RHDV2 vaccinated does, that
had not been vaccinated (n = 6). Group 5 comprised the adult, non-
vaccinated wild rabbits (n = 39).

Most RHDV2 vaccinated rabbits (>92%) originated in one
rabbitry where a mortality of 30%-40% in adults and 80% in the
young was registered in the initial outbreak. For one specimen
originated in a second farm, no specific information could be
obtained apart from the fact that the animals had been vaccinated
after disease onset. After the implementation of vaccination, only a
few vaccinated adults and non-vaccinated young died sporadically
and mortality decreased to 0% in both age groups.

The time that elapsed between the vaccination of animals from
Group 1 and 2 and their casualties, varied between 15 and 121 days.

2.2. Vaccines

The identity of the two RHDV2 commercial vaccines used in the
14 vaccinated rabbits (Groups 1 and 2) is not disclosed for ethical
and legal reasons. Instead, these vaccines are hereafter referred to
as vaccine 1 and vaccine 2. Among the domestic vaccinated adult
rabbits (Group 1), 57.14% of the animals were vaccinated with
vaccine 1, 14.29% with vaccine 2 and 28.57% with both vaccines. All
the vaccinated domestic young rabbits (Group 2) were vaccinated
once with vaccine 2.

2.3. Pathological examination

Necropsies were carried out by the veterinarian assistants at
the rabbitries or by the pathologists at the Pathology Laboratory of
INIAV.

For histopathological examinations, liver and lung samples
were fixed in 10% buffered formalin and embedded in paraffin by
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standard procedures. Five micrometer-thick sections were stained
with haematoxylin and eosin (H&E) and examined using light
microscopy (Cook, 1997).

2.4. Bacteriological examination

Liver and lung samples from the 14 vaccinated animals (Groups
1 and 2) were analysed by standard bacteriological culture,
including Pasteurella sp., which must be considered in the
differential diagnosis of RHD according to the OIE (OIE Technical
disease cards). Lung and liver samples macerates were inoculated
in MacConkey agar (Oxoid) and Colombia agar (Oxoid) supple-
mented with 5% of defibrinated sheep blood (Biomerieux) and
incubated at 37 !C for 24–48 h. Identification of isolates was
performed using the commercial API1 test strips API 20 NE and API
ID32 E (BioMérieux).

None of the non-vaccinated rabbits investigated was submitted
to bacteriologic examination.

2.5. RNA extraction and virological examination

Liver and lungs samples were homogenized with phosphate
buffered saline (PBS) and clarified at 3000 g for 5 min. DNA and
RNA were extracted from 200 ml of the clarified supernatant,
corresponding to approximately 50 mg of tissue, in a BioSprint 96
nucleic acid extractor (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Vaccine RNA was extracted from the
aqueous phase of a centrifuged sample (10,000g for 10 min) of
RHDV2 vaccine 2 and of a classical RHDV vaccine (Cylap, Zoetis),
used as a negative control, with the RNeasy blood and tissue kit
(Qiagen, Hilden, Germany), according to the recommendations.
RNA from RHDV2 vaccine 1 was extracted from 200 ml of a 10"
diluted sample (v/v in bidistilled H20), in a BioSprint 96 nucleic
acid extractor (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Extracted RNA (10 ml) from tissue
samples and the three vaccines were assessed by the RT-qPCR
developed by (Duarte et al., 2015a). Screening for RHDV
(genogroups G1-G6) was performed by sequencing analysis of
the amplicons obtained by conventional PCR with primers RC-9
and RC-10 (Tham et al., 1999). Conventional RT-PCR and RT-qPCR
were performed using the One Step RT-PCR kit (Qiagen, Hilden,
Germany). The presence of myxoma virus was investigated by
qPCR (Duarte et al., 2014), using the FastStart TaqMan Probe Master
Kit (Roche, Roche Diagnostics GmbH, Manheim, Germany). For the
real time PCR systems described, undetectable Cq or Cq values > 40
were considered negative.

2.6. Nucleotide sequencing analysis and alignments

Amplification of the vp60 sequences of RHDV2 strains and of the
two RHDV2 vaccine strains was accomplished with two pairs of
primers, 27F (50-CCATGCCAGACTTGCGTCCC-30) and 986R (50-
AACCATCTGGAGCAATTTGGG-30), 717F (50-CGCAGATCTCCTCA-
CAACCC-30) (Duarte et al., 2015b), and RC10R (Tham et al., 1999)
generating two overlapping fragments. The One Step (Qiagen,
Hilden, Germany) kit was used, following the recommendations of
the manufacturer. Sequencing was carried out using a BigDyeTM

Terminator cycle sequencing kit (Applied Biosystems, Foster City,
CA, USA).

The nucleotide sequences of vaccine and field strains were
determined on an automated 3130 Genetic Analyzer system
(Applied Biosystems, Foster City, CA, USA).

Nucleotide alignments were performed with Clustal omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011).

2.7. Statistical analysis

Descriptive statistics and statistical comparison were per-
formed resourcing to the GraphPad Prism, version 5.00 (GraphPad
Software, San Diego California USA, www.graphpad.com), for the
Cq values and log10 viral loads, obtained for each sample group.

Absolute quantification was calculated from the equation for
the linear regression of the method, assuming that the amount of
tissue analysed was the same for all samples (#50 mg) and that the
efficiency of the method was close to 100%.

Statistical comparison of mean Cq value and mean log10 viral
loads between two specific groups was carried out using the
Independent t-test, Welch corrected. To verify the difference in the
RT-qPCR results between the animal groups, a One-way ANOVA
was performed. A p-value < 0.05 was considered to be statistically
significant.

3. Results

3.1. Pathology and microbiology of vaccinated RHDV2-infected rabbits

No signs of disease were registered prior death in the vaccinated
animals (n = 14, Groups 1 and 2). However, macroscopic lesions
suggestive of haemorrhagic disease were observed in all rabbits,
including icteric liver and hepatomegaly, hepatic discoloration,
lung petechiae and moderate splenomegaly. At the microscopic
level, the lesions matched the typical RHD lesions described before
(Ohlinger et al., 1993). Necrotic microfoci in liver parenchyma,
hepatocyte hyalinization, severe congestion and disseminated
intravascular coagulation (DIC) in the small capillaries were
registered. All vaccinated rabbits (Groups 1 and 2) tested negative
to RHDV, myxoma virus and Pasteurella multocida, and positive to
RHDV2, from which they died. Bacteriologic examination was not
carried out for any of the non-vaccinated rabbits (Groups 3, 4 and
5), where RHDV2 infection was confirmed as cause of death by the
low Cq values obtained and the concomitant presence of RHD
typical lesions, regardless of the involvement of other pathogens.

3.2. RT-qPCR detects RNA extracted from two RHDV2 vaccines

Serial dilutions of RNA from the three vaccines, obtained as
described in subsection 3.4, were tested by the RT-qPCR method
(Duarte et al., 2015a). In consecutive dilutions of the two RHDV2
vaccines, a Cq value increase of about three folds was registered
(results not shown). RNA from Cylap (Zoetis), a classical RHDV
vaccine, was not detected (results not shown).

3.3. The strains characterized from the infected-vaccinated rabbits
(Group 1 and group 2) differed from the vaccine strains used

The vp60 nucleotide sequences of the two RHDV2 vaccines were
obtained during this study and compared with sequences
amplified from RHDV2 vaccinated victimized rabbits (Group 1
and 2), as well as with field strains sequences obtained in our
laboratory and available in public databases.

Vaccine sequences are not disclosed here to ensure that any
data that the vaccine companies wish to remain private are not
made available. Instead, the comparison of the nucleotide
sequences of vaccine and field strains is encoded in Fig. 1. The
variability between the two vaccines encompassed 38 residues
(Fig. 1), of which only three were non-synonymous (residues at
positions 9, 347 and 574).

Among the vaccinated animals’ strains characterized in this
study, residues at positions 405, 450, 912, 1091 (non-synonymous),
1117, 1317, 1491 and 1497 were found conserved differing from the
residues found in the two vaccines (Fig. 1, underlined positions). At
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the polypeptide level, one vaccine also differed from the field
strains in four residues while the other vaccine only diverged in
amino acid 364.

When vaccine strains were compared with the sequences
obtained from non-vaccinated animals presently available in our
laboratory and in the GenBank, one of them showed to be identical
to a field strain collected in 2015 in the South of Portugal (results
not shown) emphasizing the importance of clarifying if vaccine
RNA interferes with the RHDV2 molecular diagnosis. Two single
nucleotide polymorphisms, located at nucleotide positions 903
(synonymous) and 1041 (non-synonymous), were identified in the
other vaccine, allowing its distinction from all field strains
presently known.

3.4. Cq variation among the five groups of animals

To assess the impact of vaccination on disease progression and
viral loads, the mean Cq values of vaccinated infected animals were
compared with those obtained from non-vaccinated rabbits. Cq
values are inversely proportional to the amount of target nucleic
acid in the sample, meaning that, lower Cqs correspond to higher
viral loads (Bustin et al., 2009).

Domestic vaccinated adults showed lower RNA amounts (Group
1, mean Cq 32.01 $6.18) than non-vaccinated domestic adults

(Group 3) for which a mean Cq value of 15.23 $ 3.82 was obtained
(Table 1). This difference was statistically significant (p < 0.05, for a
95% confidence interval (CI), Table 2).

A statistically significant difference was also found between the
mean Cq values obtained for vaccinated adults (Group 1) and wild
rabbits (Group 5) (p < 0,005, for a 95% CI, Table 2), for which a mean
Cq 14.33 $ 3.97 was found, meaning high amounts of RNA were
present (Table 1).

The difference found between the mean Cq values, of non-
vaccinated domestic adults (Group 3) and wild rabbits (Group 5)
was not statistically significant (p = 0.3824, for a 95% CI, Table 2).

In regard to young rabbits, the viral loads obtained for the
vaccinated young (Group 2, mean Cq of 13.80 $ 2.68) were higher
than for the non-vaccinated young rabbits (Group 4, mean Cq of
17.08 $ 4.17) (Table 1). Nevertheless, this difference was also not
statistically significant in t-test (p = 0.2026, for a 95% CI, Table 2)
due to the reduced number of samples.

When vaccinated adult (Group 1) and young rabbits (Group 2)
were compared, statistically significant differences in mean Cq
values were obtained (p < 0.05, for a 95% CI, Table 2). Lower viral
loads were found in Group 1 (mean Cq of 32.01 $6.18) than in
Group 2 (mean Cq of 13.80 $ 2.68) (Table 1).

Basic statistics for the log10 viral loads obtained for the five
groups, interpolated from the linear regression curve of the

Table 1
Descriptive statistics analysis of the Cq values and log10 viral charges obtained for the vaccinated and non-vaccinated animal groups’ considered in this study. The mean and
standard deviation were calculated for both indicators.

Vaccinated Non-vaccinated

Adult domestic (Group
1)

Young domestic (Group
2)

Adult domestic (Group
3)

Young domestic (Group
4)

Adult wild (Group 5)

Cq values Sample size (n) 11 3 23 6 39
Mean 32.01 13.80 15.23 17.08 14.33
Standard
deviation

6.18 2.68 3.82 4.17 3.97

Log10 viral
Loads

Mean 3.41 8.87 8.49 7.88 8.71
Standard
deviation

1.85 0.80 1.08 1.25 1.21

Vaccines 1 and 2 represent the two commercial vaccines analyzed in  this  study.  
Type 1 and 2 field strains represented the two profiles of  genetic  variability found in the vacc inated rabbits
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Fig. 1. Schematic representation of the nucleotide variability found between the two vaccine strains used and two consensus field RHDV2 sequences that represent all the
strains obtained from vaccinated animals (bottom two). Underlined residues identify the positions that differ between the two vaccines and the field strains from the
vaccinated animal group (Group 1 and Group 2). Each nucleotide is represented by a different colour.
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RT-qPCR method (Duarte et al., 2015a), were also determined and
are shown in Table 1. The mean log10 viral loads are represented in
Fig. 2.

When performing One-way ANOVA for the comparison of the
five groups, differences in the mean Cq values and mean log10 viral
loads between groups were statistically significant (p < 0.05,
Table 3).

A concurrent relation between viral load and severity of the
microscopic lesions was observed.

4. Discussion

As expected, the RT-qPCR method (Duarte et al., 2015a)
developed to detect RHDV2 field strains, also detected efficiently

RNA extracted from the two commercial RHDV2 vaccines. Since the
strains used by the vaccine manufacturers’ are not publicised, their
vp60 gene sequences were decoded during this study (results not
shown). The analysis showed that one of the vaccines exhibits a
single internal mismatch in the reverse primer, already identified
in field strains (Duarte et al., 2015b). Given that the method detects
any RHDV2 strain, as long as the target region is conserved,
sequencing analysis of the complete vp60 gene was necessary to
differentiate vaccine strains from field strains.

Due to the high sensitivity of the molecular method, inactivated
vaccine-derived viral RNA could originate weakly positive RT-qPCR
results, if still present in the tissues. Several hypotheses have been
considered to explain the detection of inactivated vaccine RNA in
animal tissues, namely the unintentional intravasal injection of the

Table 2
Comparative analysis of mean Cq values and viral loads by unpaired t-test analysis, Welch corrected. The means of specific groups were compared in order to address the
questions’ list displayed.

Sig. (a 0.05)a

Question addressed Compared
groups

Mean Cq Mean log10 viral loads

What is the impact of vaccination in disease progression in adults? Group 1 Vaccinated domestic adults p < 0.0001* p < 0.0001*

Group 3 Non-vaccinated domestic
adults

Does age of vaccination affects disease progression? Group 1 Vaccinated domestic adults p < 0.0001* p < 0.0001*

Group 2 Vaccinated domestic young

What is the impact of vaccination in disease progression in the young? Group 2 Vaccinated domestic young p = 0.2026 p = 0.2032
Group 4 Non-vaccinated domestic

young

Does age affects the disease progression in non-vaccinated animals? Group 3 Non-vaccinated domestic
adults

p = 0.3110 p = 0.3095

Group 4 Non-vaccinated domestic
young

Is disease progression different in domestic vaccinated and wild rabbits? Group 1 Domestic vaccinated adults p < 0.0001* p < 0.0001*

Group 5 Non-vaccinated wild adults

Is disease progression different in domestic non-vaccinated and wild rabbits? Group 3 Non-vaccinated domestic
adults

p = 0.3824 p = 0.4674

Group 5 Non-vaccinated wild adults

Groups 3 and 4 passed the Kolmogorov-Smirnov normality test. Group 2 was not assessed due to the sample size.
*Statistically significant associations for a 95% CI.

a Sig (a 0.05)-statistical significance for a Confidence Interval (CI) of 95%.

Fig. 2. Log10 viral loads obtained for the five groups of animals considered in this study. Dark grey lines and light grey lines show the mean log10 viral load and standard
deviation calculated for each group.
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vaccine, the enhanced blood permeability at the site of injection,
the systemic distribution of viral RNA via phagocytic cells or the
association of inactivated virus with erythrocytes (Eschbaumer
et al., 2010; Steinrigl et al., 2010; De Leeuw et al., 2015). For
instance, Cq values of above 38.1 obtained from cattle blood
samples were associated with BTV inactivated vaccine-derived
viral RNA (De Leeuw et al., 2015).

For RHDV2, the amount of inactivated vaccine RNA in the
different tissues after vaccination was never investigated. Howev-
er, regarding the closely related RHDV, Gall and collaborators
(2006) observed that, a 100% specific multiplex RT-qPCR assay did
not detected inactivated-vaccine derived-RNA, nine weeks after
vaccination, probably due to the low titres of the virus in each dose
(Gall and Schirrmeier, 2006), whereas RHDV viral RNA could be
detected for at least 15 weeks after experimental infection (Gall
and Schirrmeier, 2006).

In our study, RHDV2 vaccine RNA was never identified in any of
the vaccinated animals not even as earlier as 15 days post-
vaccination. In fact, sequencing analysis showed that all the strains
characterized from vaccinated infected rabbits clearly differed
from the ones from the vaccines (Fig. 1).

Possible associations between mean Cq values (or the
corresponding viral loads) obtained from rabbits differing in
age, vaccination status and origin (domestic/wild) were explored
for significant variability. Results showed that the viral loads in
vaccinated adults (Group 1, mean Cq value of 32.01 $6.18) were
much lower than in both non-vaccinated domestic adults (Group 3,
mean Cq of 15.23 $ 3.82) and wild rabbits (Group 5, mean Cq of
14.33 $ 3.97). In these two groups viral loads 100,000" and
200,000" higher, respectively, were calculated. For the vaccinated
domestic adults a mean viral load of 4.29E + 02 per mg of liver was
obtained, about 80,000" lower than the value previously
estimated for RHDV2 infected wild rabbits with the same method
(1.5 "108copies per mg of tissue) (Duarte et al., 2015b). This
reduction in the amount of virus in the liver of vaccinated animals
may reflect the effect of vaccination on disease progression and
clearly proves its usefulness from clinical and epidemiological
points of view. Vaccination is considered an effective post-
exposure emergency strategy in farms facing RHD outbreaks
(OIE Terrestrial Manual, 2016) since immunity develops rapidly,
within seven to 10 days after vaccine administration. Protection
conferred by vaccination depends on the dose and on the antibody
titre developed. Whenever a protective immune response is
produced, vaccination prevents infection and/or clinical signs of
disease, depending on antibodies titres (Plotkin, 2008). Regarding
RHDV, the inhibitory effects caused by the high level of RHDV
antibodies in animals that survived experimental RHDV infection
were pointed as a possible reason for the failure of experimental
transmission of the virus from a highly immunized rabbit to
healthy animals (Gall et al., 2007). Those survivors (five among 50)
responded with fever and seroconversion showing high antibody
titres, and did not developed further RHD specific symptoms or

pathological lesions. The rabbits with the highest viral loads in
leukocytes (and also in sera) showed the faster normalization of
the body temperature, indicating recovery from disease. The viral
load decreased during the experiment (Gall et al., 2007). In our
study, the 14 infected/vaccinated rabbits originated from a farm
where vaccination was performed when the virus was already
circulating. The time at which infection took place regarding
vaccination is unknown but the time that elapsed from vaccination
and death, ranged between 15 and 121 days. Despite this period
was quite variable (2 to 12 weeks), the death of the 14 vaccinated
adults suggests that an effective immune response could not be
established on time. The exposure to a high infectious dose of field
strain, when the vaccine-derived protective immune response was
not yet fully established, may have accounted for disease
development in these adults, which was confirmed by histopa-
thology.

Higher viral charges were obtained both in non-vaccinated
domestic adults (Group 3, mean Cq of 15.05 $ 3.5) and in wild
adults (Group 5, mean Cq of 16.31 $6.69). The range of viral loads
in both groups are close to the values previously described (Duarte
et al., 2015b) and suggests that disease progression is similar in
domestic and wild rabbits. The highest Cq value in the wild rabbits
group (Group 5, upper Cq value 33.6) was significantly above the
upper value observed in the non-vaccinated domestic adults group
(Group 3, upper Cq value 22.58), probably due to the advanced
state of putrefaction of some specimens (n = 4). When these poor
quality samples were excluded, the mean Cq value for wild adult
rabbits dropped to 14.33 $ 4.0, approaching the homologous value
of the non-vaccinated domestic group (mean Cq 15.05 $ 3.5).

Regarding the young rabbits (Groups 2 and 4), a relation
between vaccination and reduction of viral amounts was not
observed. On the contrary, the viral loads found in vaccinated
young rabbits were higher (Group 2, mean Cq 13.80 $ 2.68) than in
non-vaccinated kittens (Group 4, mean Cq of 17.08 $ 4.17). In view
of the higher mean Cq values observed in non-vaccinated young it
is tempting to speculate that a higher antibody response was
elicited in these animals where maternal antibodies were not
subtracted by vaccine antigens, which suggests that interference
with maternal antibodies may impair vaccination success,
facilitating disease progression.

Humoral immunity is critical to protect rabbits from RHD
(Argüello Villares, 1991; Laurent et al., 1994) and maternal IgG
antibodies, acquired during late pregnancy through the placenta
and, later on, via colostrum (Lorenzo Fraile, personal communica-
tion), may be relevant for young rabbits’ resistance to RHDV
(Cooke, 2002). Rabbit kittens IgGs’ can persist for up to 12 weeks
after birth (Lengahus C, unpublished, cited by (Cooke, 2002)),
showing a progressive decline as age and body weight increase
(Cooke, 2002). However, maternal antibodies’ impact on the
RHDV2 vaccination efficacy was never evaluated, but should be
taken into account to assure immunization success in RHDV2
vaccination programmes.

Table 3
One-way ANOVA comparing the mean Cq values and mean log10 viral loads of the five groups of animals specified in this study.

Sum of squares df Mean square F Sig (a 0.05)

Between groups 2897 4 724.30 F (4. 76) = 40.77 p < 0.0001*

Cq Within groups 1350 76 17.77
Total 4248 80
Between groups 258.20 4 64.56 F (4. 77) = 40.04 p < 0.0001*

Log10 viral loads Within groups 124.20 77 1.61

Total 382.40 81

df – degrees of freedom; F – F test; Sig-statistical significance for a Confidence Interval (CI) of 95%.
*p-value < 0.05 (statistically significant).
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Non-vaccinated young, born from RHDV2 vaccinated mothers,
showed lower viral loads (Group 4, mean Cq of 17.08 $ 4.17) than
non-vaccinated adults (Group 3, mean Cq of 15.05 $ 3.5), in
accordance with previous studies (Strive et al., 2010). Although the
number of animals available from this group was extremely
reduced due to the infrequent fatal outcome in vaccinated animals,
this difference may reflect the partial protection conferred by
RHDV and RHDV2 immunized mothers. In the RHDV2 infected
kittens, a positive association was observed between viral load and
the severity of the characteristic anatomopathological lesions
found in liver and lungs.

5. Conclusions

One important finding of this study was that, although the
RHDV2 RT-qPCR is able to detect vaccine RNA extracted directly
from the vaccine suspensions, in animals that had been
vaccinated as recently as 15 days before, vaccine RNA did not
interfere with the detection of field strains. This piece of
information is extremely useful for the overall interpretation of
laboratorial results in vaccinated animals, and is especially
important as the nucleotide sequences of the vaccines used are
usually unknown.

Information on the viral loads is an important addition to
qualitative diagnostics. Analysing Cq values obtained in different
groups defined according to age, vaccination status, and domestic/
wild, allowed us to observe a concurrent relation between Cq
values and vaccination in the domestic adults group. Also, no
differences in the severity of the disease in domestic and wild
rabbits were reported and, accordingly, no significant difference
was observed between the viral loads of non-vaccinated domestic
and wild rabbits (p = 0.4674).

Although the difference was not statistically significant due to
sample size, in agreement with (Duarte et al., 2015b), and as it
was also described for RHDV (Strive et al., 2010), the present
analysis suggest that higher mean viral charges are usually
obtained in the non-vaccinated domestic adults than in non-
vaccinated young rabbits. Previous studies suggest that proper
immune response induced by vaccination may reduce viral titres
and the amount of RNA detected by molecular means (Gall and
Schirrmeier, 2006). Diagnose based on the detection of low levels
of RHDV or RHDV2- RNA should therefore be complemented by
histopathology to elucidate infection status. Differential diagno-
sis with other relevant pathogens should also be considered.

We believe this preliminary investigation provides for the first
time, laboratorial data on the effect of post-infection vaccination
on molecular diagnosis outcome. The reduced number of samples
available from rabbits that died after vaccination (n = 14),
constituted the major limitation of this investigation. Although
not statistically significant, the trends suggested by the data sets of
vaccinated and non-vaccinated young, are in accordance with the
notion that early vaccination against RHDV2, similarly to many
other viruses such as canine parvovirus (Waner et al., 1996), may
be counter-productive due to the presence of the maternal
antibodies in the offspring. Vaccination programmes should take
into account the inhibitory effect of these antibodies on active
immunization that may compromise the success of vaccination of
young animals.

Further investigations will have to be conducted on the decay of
maternal antibodies and the extent to which they interfere with
the active humoral response induced by RHDV2 vaccination in the
young, in order to establish more efficient vaccination programmes
for the different age groups.
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1. Review on the OIE information on sanitary status and importation 
recommendations on RHD 
 

1.1. Notification of animal diseases 
The successful control of a disease, and a potential epidemic, depends on rapid access to complete 

information on the national disease situation (Vallat et al., 2013). Diseases must be immediately 

notified in a clear and transparent way to ensure a timely response (Vallat et al., 2013). Disease 

notification may have a negative impact on the economic performance of a country by causing loss 

of export markets or discouraging tourism. A countries’ credibility in terms of disease reporting is 

based on timely and accurate notification of diseases (Vallat et al., 2013). 

RHD integrates the OIE list of notifiable terrestrial and aquatic animal diseases, which in 2016 

replaced the former Lists A and B (OIE). The former List A integrated transmissible diseases with 

potential for very serious and rapid spread, irrespective of national borders, serious socio-economic 

or public health consequence and of major importance in the international trade of animals and 

animal products (OIE). The previous List B, included transmissible diseases considered to be of 

socio-economic and/or public health importance within countries and significant in the 

international trade of animals and animal products. RHD integrated List B in the past. 

The OIE defined criteria to examine the inclusion or not of a given disease in the OIE single list were 

approved in May 2004 (OIE). The list is reviewed on a regular basis and when there are 

modifications adopted by the World Assembly of Delegates at its annual General Session, the new 

list comes into force on 1st January of the following year (OIE). The information on RHD sanitary 

status and importation recommendations figuring in the OIE terrestrial animals’ sanitary code is 

presented in Annex III. 
As the OIE official notifications are sporadic and given the urgency and relevance in the release of 

important information to the scientific community but also to various layers of the society, 

including conservationists, veterinaries, hunters, hunting tourism agents as well as the general 

public, disclosure of such important information is often communicated in oral communications or 

posters in congresses, lectures or even in letters to the editor. This was the case of the report made 

by our team in early 2015 informing on the RHDV2 detection in domestic rabbits on the Azorean 

archipelago, only a few months after the disease was first reported in the wild rabbit populations 

(Study 4). 
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Study 4 
What is the importance of early disease report? 

 

Detection of rabbit haemorrhagic disease virus 
2 (RHDV2) in domestic rabbits in Azores 
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May 9, 2015 | Veterinary Record | 499

Letters

RABBIT HEALTH

Detection of RHDV 
variant 2 in domestic 
rabbits in Azores

FOLLOWING on from our letter published 
earlier this year (VR, January 31, 2015, vol 
176, p 130), which reported the detection of 
rabbit haemorrhagic disease virus variant 2 
(RHDV-2) in wild rabbits from four islands of 
the western and central group of the Azorean 
archipelago, we would like to communicate 
the diagnosis of RHDV-2 in domestic rabbits 
from Terceira Island.

Two adult rabbits were diagnosed with 
RHDV-2 (Duarte and others 2015). They 
originated from the localities of Quatro-
Ribeiras and São Bento, located on the north 
and south coasts of Terceira Island. The 
deaths occurred on January 28 and February 
23, 2015, respectively. The animals were kept 
in small backyard rabbitries. There were seven 
rabbits kept at Quatro-Ribeiras (Fig 1) and 
13 were kept at São Bento. None had been 
vaccinated against RHDV or RHDV-2.

Pathological findings showed congestion 

group.bmj.com on May 8, 2015 - Published by http://veterinaryrecord.bmj.com/Downloaded from 
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and haemorrhage in the lungs and tracheal 
mucosa (Fig 2), and discoloration of the liver 
compatible with RHDV.

Sequencing analysis of the vp60 gene 
revealed that both RHDV-2 strains were 
highly similar, differing only in two 
synonymous substitutions. The single 
nucleotide polymorphisms previously 
identified in wild rabbit RHDV-2 strains from 
Flores, Graciosa, São Jorge and Terceira islands 
discussed in our previous letter, were also 
present in these two strains, suggesting the 
wild populations as the source of infection.

A retrospective inquiry revealed that two 
other animals, one from each rabbitry, had 
also possibly contracted RHDV-2, although 
these suspicions were not confirmed by 
laboratory diagnosis. There were no other 
occurrences after the death of the two 
animals reported here. Interestingly, a dead 
wild rabbit had recently been found in close 
proximity to the rabbitry at Quatro-Ribeiras. 
In this case, since the owner fed the animals 
with naturally occurring local vegetation, 
transmission may have occurred through 
direct contact with RHDV-2 contaminated 
plants.

In the São Bento case, the cages were 
not in direct contact with the surrounding 
grassland fields and the animals were 

fed exclusively with 
dry feed. However, the 
owner reported the 
presence of rats in the 
area, raising questions 
about their potential role 
in the transmission of 
RHDV-2 from the wild 
rabbit populations. Also, 
viral contamination of 
fomites may have occurred 
since the owner works 
in agriculture and farms 
extensively. Although 
mechanical vectors such 
as mosquitoes and flies are 
less active during this time 
of year, their hypothetical 
role in RHDV-2 
transmission from wild to 
domestic rabbits needs to 
be considered.

In addition, since our 
previous report, we have 
confirmed the presence of 
RHDV-2 in wild rabbits 
originated from Pico. With 
exception of Corvo Island, 
which is not inhabited by 
wild rabbits, RHDV-2 has 
spread through the entire 
Azorean archipelago.

Margarida Duarte, 
Margarida Henriques, 
Silvia C. Barros,  
Teresa Fagulha,  
Fernanda Ramos,  

Tiago Luís,Miguel Fevereiro, National 
Institute of Agrarian and Veterinarian 
Research, Virology Laboratory, Rua General 
Morais Sarmento, 1500-310 Lisbon, Portugal
e-mail: margarida.duarte@iniav.pt
Carina Varvalho, University of Évora, 
ICAAM/Science and Technology School, 
Apartado 92, 7002-554 Évora, Portugal
Sandra Benevides, Lídia Flor, Sílvia 
Vanessa Barros, Susana Bernardo, 
Veterinary Regional Laboratory of Angra do 
Heroísmo, Vinha Brava 9700- 236, Angra 
do Heroísmo, Azores, Portugal
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FIG 1: Rabbitry in Quatro-Ribeiras on the north coast of 
Terceira Island, Azores

FIG 2: Histopathological examination of the trachea of a 
RHDV-2-positive domestic rabbit from São Bento, showing 
intense congestion in the mucosa
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Chapter III 
RHD pathogenesis and prophylaxis 
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1. Review on RHD pathogenesis 
Rabbit haemorrhagic disease (RHD) is a highly contagious, severe acute viral disease of wild and 

domestic rabbits that has been responsible worldwide for a significant decline in the number of 

wild rabbits (Ferreira et al., 2005)(Abrantes et al., 2013)(Delibes-Mateos et al., 2014) and as caused 

important losses in the rabbit industry (McIntosh et al., 2007)(Le Gall-Reculé et al, 2011a)(Dalton et 

al., 2012). 

1.1 Classical rabbit haemorrhagic disease virus (RHDV) 
The disease caused by the RHDV is characterised by high morbidity and mortality, which ranges 

from 70% to 95% in adult animals (McIntosh et al., 2007). The virus replicates in the liver inducing a 

fulminant hepatitis and disseminated intravascular coagulation (DIC) that leads to death (Marcato 

et al., 1991)(Mikami et al., 1999). 

Rabbits up to 4 weeks of age are usually resistant, do not exhibit clinical signs and survive infection 

(Ohlinger et al., 1993)(Mikami et al., 1999)(Ferreira et al., 2005)(McIntosh et al., 2007). 

Marcato et al. (1991) reviewed the spectrum of clinical responses to RHDV, and referred five forms 

of the disease. The peracute form, affecting highly susceptible rabbits not previously infected that 

die suddenly without any clinical sign, although haematuria and/or vaginal haemorrhage and 

epistaxis are occasionally reported. The acute form affects adult or young rabbits under 2-months 

old and is highly prevalent in epidemic areas. The subacute form, occurring with attenuated 

symptoms in the later stages of an epidemic; most animals survive becoming resistant to 

reinfection. The chronic form is infrequent and symptomless and the subclinical form is only 

assumed in suckling rabbits. 

 

1.1.1. Adult rabbits 
1.1.1.1. Clinical symptoms 

The incubation period of acute disease is usually short ranging from 1 to 2 days and occasionally 3 

days (Argüello-Villares et al., 1988)(Marcato et al., 1991). Typically, diseased animals present fever 

(>40°C), and death may occur rapidly within 12 to 48 hours after exposure (Argüello-Villares et al., 

1988)(Capucci et al., 1991)(Marcato et al., 1991)(McIntosh et al., 2007). Shortly before death the 

animals may show hypothermia (Ohlinger et al., 1993). Anorexia, apathy and tachypnoea have also 

been reported (Ohlinger et al., 1993)(McIntosh et al., 2007) and the animals often develop severe 

dyspnoea and neurologic signs including ataxia and convulsions preceding death (Argüello-Villares 
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et al., 1988)(Marcato et al., 1991)(McIntosh et al., 2007). Epistaxis is observed in dead animals 

(Argüello-Villares et al., 1988). 

Subacute cases (5% to 10% of infected rabbits) may present with malaise, mild anorexia, apathy, 

weight-loss and jaundice (Marcato et al., 1991)(Ohlinger et al., 1993)(McIntosh et al., 2007). Death 

may occur within 1 to 2 weeks after infection (Marcato et al., 1991)(Ohlinger et al., 1993)(McIntosh 

et al., 2007). 

Rabbits under 45-50 days of age are usually resistant and survive infection without the 

presentation of clinical signs (McIntosh et al., 2007) 

 

1.1.1.2. Pathological lesions 

1.1.1.2.1. Macroscopic lesions 
At necropsy, rabbits often present epistaxis (Marcato et al., 1991) and generalized congestion of all 

organs (Argüello-Villares et al., 1988). As a rule, the blood coagulation is significantly inhibited 

(Marcato et al., 1991)(Ohlinger et al., 1993). The most severe lesions are found in the liver, trachea 

and lungs (Marcato et al., 1991) but the kidney and spleen are also affected (Ohlinger et al., 1993). 

Hydrothorax is observed in some cases (Ohlinger et al., 1993). Lungs show varying degrees of 

haemorrhagic lesions, including petechiae (Ohlinger et al., 1993)(Argüello-Villares et al., 1988). 

Bloody foam is usually observed in the bronchia and trachea that is typically severely haemorrhagic 

(Marcato et al., 1991)(Ohlinger et al., 1993)(Argüello-Villares et al., 1988). 

A generalized congestion of the intestines can be observed as well as a sero-haemorrhagic fluid 

and the liver is usually enlarged, friable and congested (Argüello-Villares et al., 1988)(Ohlinger et 

al., 1993). This organ may present pale yellow, greyish or dark reddish discoloured (Marcato et al., 

1991)(Argüello-Villares et al., 1988)(Ohlinger et al., 1993). Accentuation of the lobular markings is 

observed. The spleen is often normal in its appearance but splenomegaly has also been reported. 

The kidneys are congested and enlarged with sub-capsular lesions including ecchymosis and 

haemorrhages (Argüello-Villares et al., 1989). They are soft and the renal capsule is easily detached. 

There are haemorrhages in the cortical and medullar areas of the kidney. In the central nervous 

system, congestion and haemorrhages are perceived (Argüello-Villares et al., 1988). 

Foetus of pregnant does may present multi-focal haemorrhages (Marcato et al., 1991). 

 

 



 

153 

 

1.1.1.2.2. Microscopic lesions 
 

1.1.1.2.2.1. Liver 

Microscopic lesions are very marked in the liver and lungs. The liver is the most severely affected 

organ with an acute necrotic hepatitis, multifocal necrosis and early leukocytic infiltration (Marcato 

et al., 1991)(Mikami et al., 1999). The foci may become confluent forming extensive local areas, 

mainly at the lobules periphery. Intra-sinusoidal micro-thrombi maybe present inside small necrotic 

foci (Marcato et al., 1991). These strong degenerative and necrotic alterations have major 

diagnostic significance. 

Other hepatocytic lesions include hydropic rarefaction and cytoplasmic swelling, microvascular 

steatosis, apoptosis, bile pigment and/or iron pigment deposition, megalocytosis of single 

hepatocytes, binucleation and dystrophic granular calcification. The mild to moderate inflammatory 

infiltrate consists of lymphocytes in portal spaces and sinusoids, and granulocytes in sinusoids (only 

in foci of necrosis). As an infrequent finding, a moderate periportal fibrosis can be observed 

(Marcato et al., 1991). 

In early stages of infection, virus-like electron dense particles were detected intra-nuclearly and 

later on within the cytoplasm and similar particles were also found in endothelial cells (Ohlinger et 

al., 1993). 

 

1.1.1.2.2.2. Lungs and trachea 

Tracheal and pulmonary lesions are mainly of the hyperaemic-oedematous type (Marcato et al., 

1991). Histopathologically, in the lungs alveolar oedema, haemorrhages and infiltrates of 

granulocytes were detected as well as microthrombi in alveolar capillaries. Congestion of the 

tracheal sub-mucosal capillaries, leukocyte infiltration and calcification of the tracheal cartilage 

have also been registered (Marcato et al., 1991)(Ohlinger et al., 1993). 

 

1.1.1.2.2.3. Other organs 

Karyorrhexis of lymphoid tissue can lead to lymphocytopaenia and leukocytopaenia (Huang, 

1991)(Marcato et al., 1991). Marques et al. (2010) showed that RHDV induces an early decrease in B 

and T cells in both spleen and liver before the animals show enzymatic evidence of liver damage. 

This depletion persisted after liver transaminases increment. It was suggested that these alterations 

may precede or attend liver damage. 
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Glomerular hyalinic thrombosis, dilated tubules and lymphocytic infiltrates and epithelial 

calcification are other reported lesions in the kidneys (Marcato et al., 1991)(Ohlinger et al., 1993). 

The spleen may show hyperaemia with singular follicular karyorrhexis (Ohlinger et al., 1993). 

In the central nervous system microthrombosis is rarely found and other lesions may include 

intramyelinic oedema (Marcato et al., 1991). 

Fibrinous thrombi are observed within the capillaries of most organs. Thrombocytopenia and 

prolonged prothrombin- and thrombin-times indicate DIC that can result either from endothelial 

destruction or necrosis of the liver (Xu and Chen, 1989)(Marcato et al, 1991)(Ohlinger et al., 1993). 
 

1.1.1.3. Pathogenesis 

The oral route is the main route of infection of RHD, followed by the conjunctival and respiratory 

routes and skin trauma (Marcato et al., 1991). 

Liver damage plays a key role in the pathogenesis of RHD since the animals die from fulminant 

hepatitis (Mitro and Krauss, 1993)(Marcato et al., 1991)(Marques et al., 2010). Likewise, the directly 

virus-induced endothelial injury may also contribute to the rapid course of the disease by initiating 

DIC and/or haemorrhages (Marcato et al., 1991). In alternative, DIC may also result of massive 

hepatic necrosis leading to activation of extrinsic factors and failure of clearance of activated pro-

coagulant factors (Marcato et al., 1988). 

Fulminant hepatitis and DIC may not be the only mechanism in the pathogenesis of RHD, as 

proposed by Marques et al. (2010) that suggest that leukopenia may contribute to RHDV 

pathogenesis. Humoral immunity is critical to protection from RHD (Argüello-Villares et al., 

1991)(Huang et al., 1991)(McIntosh et al., 2007) and, as the immune system is severely affected and 

animals usually die in 1 to 3 days, infected rabbits are unable to mount a specific and effective 

immune response against the virus (Huang et al., 1991)(Marques et al., 2014). 

Ferreira et al. (2005) suggest that the innate immune response against RHDV may differ in young 

and adult rabbits, as the cellular inflammatory response of the liver to RHDV is different in 

susceptible adult rabbits and in resistant young rabbits. In adult rabbits, liver infiltrates were mostly 

composed of heterophils located near hepatocytes, showing severe cellular damage. In this case, 

leukocyte infiltration is probably directed at the removal of dead hepatocytes. In contrast, liver 

leukocyte infiltrates of RHD-resistant young rabbits included predominantly lymphocytes showing 

membrane contacts with the undamaged hepatocytes cell surface, suggesting molecular changes 

on the hepatocytes cell surface namely the expression of viral antigens. In addition, when 
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investigating the role of immunity in the resistance of young rabbits to RHDV, Marques et al. (2014) 

verified if immunosuppression would change the virus progression. These researchers found that 

young rabbits under immunosuppression induced by a long-term corticosteroid presented 

depletion of both T and B cells and died from RHDV infection within 3 days, similarly to adult 

rabbits. 

In the initial stages of RHDV infection, specific immunity results from coordinated interaction of T 

and B lymphocytes (Huang et al., 1991). According to Li (1990) and Huang et al. (1991) high titres 

of interferon (IFN) can interfere with RHDV pathogenesis and provide non-specific protection, 

suggesting its important role in the immune response to RHDV. Rabbits showing high titres of IFN 

seem to recover from RHD and it is also suggested that IFN contributes to the initial immune 

responses post vaccination (Huang et al., 1991). 

 

1.1.2. Young rabbits 
Despite the absence of clinical signs in young rabbits, Ferreira et al. (2004) documented that the 

infection causes a transient disease in these animals with enhancement of liver transaminases and 

decrease in blood heterophils. In addition, Mikami et al. (1999) described the hepatic lesions in 

young rabbits with 2 weeks and 4 weeks old experimentally infected with RHDV. In that study, 

hepatic lesions were observed at 12 hours post-infection (PI) in 2 week-old rabbits and at 24 hours 

PI in 4 week-old ones. Only a small number of hepatocytes was infected by RHDV. The 

histopathological lesions were more severe in the 4-week old rabbits, suggesting that these 

animals are more susceptible to RHDV. The hepatic lesions found in young rabbits comprised 

isolated hepatic foci of necrosis and scattered cellular aggregates including degenerated 

hepatocytes. Acidophilic or Councilman bodies, recognized as apoptotic of hepatocytes, were also 

observed. Cellular aggregates were considered a reaction to the hepatocyte necrosis. 

The fact that in the Mikami et al. (1999) study, the animals did not developed clinical disease 

supported the epidemiological evidence that rabbits less than 2 months old do not develop clinical 

disease. Although resistant to RHD, infected young rabbits may act as long-term carriers RHDV, 

representing a major source of virus transmission (Ferreira et al., 2004)(Matthaei et al., 2014) and 

may play an important role in RHDV epidemiology, in particular for virus transmission within social 

groups during outbreaks (Matthaei et al., 2014). 
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1.1.2.1. Mechanisms of resistance of young rabbits to RHDV 

Young rabbits up to 4-weeks of age are naturally resistant to classical RHDV (Liu et al., 1984) 

However, when kits older 4-weeks of age are infected, mortality increases to reach the rates of 

adult rabbits at about 9 weeks of age (Morrise et al., 1991)(Ruvoën-Clouet et al., 1995). The tracheal 

and duodenal epithelial cells of young rabbits were shown to be nearly devoid of A and H type 2 

antigens, reducing RHDV binding (Ruvoën-Clouet et al., 1995)(Ruvoën-Clouet et al., 2000). In 

accordance, the age-dependent expression of H type 2 correlates with an increase in susceptibility 

to RHDV infection (Ruvoën-Clouet et al., 2000). 

Since the liver does not express HBGAs, it is hypothesized that alternative RHDV cellular receptors 

must be present, as large numbers of RHDV VLPs are detected in the liver of infected rabbits 

(Ruvoën-Clouet et al., 2000). In accordance, hepatic lesions in young rabbits  suggest that RHDV 

resistance mechanisms go beyond the virus attachment to host cells HBGAs (Mikami et al., 1999). 

An hypothesis is that resistance of young rabbits to RHDV is related to changes in liver function 

(Morrise et al., 1991)(Mikami et al., 1999). Rabbits are mostly resistant to RHDV infection during the 

weaning period (Liu et al., 1984) and feeding change from milk to grass could alter liver function, 

resulting in a higher susceptibility to RHDV (Mikami et al., 1999). The structure and function of the 

liver changes with age; differentiation and cell maturation influences susceptibility to infection and 

ability to support viruses’ replication (Mims, 1989). 

Natural resistance of young rabbits to RHDV infection is associated with a rapid and effective 

inflammatory response of the liver, with few hepatocytes infected, and with a sustained elevation of 

local and systemic B and T cells (Marques et al., 2012). In young rabbits, RHDV infection was 

associated with the rise of pro-inflammatory cytokines including the TNF-α, IL-1, IFN-α, IFN-γ, IL-6 

and IL-8 as early as 6 hours PI (Marques et al., 2012). 

 

1.1.3. Resistance mechanisms to RHDV 
1.1.3.1. HBGA polymorphisms 

HBGA diversity in rabbits duodenum its’ thought to restrict the virus transmission and generate 

genetic resistance to RHDV at the population level (Guillon et al., 2009)(Nyström et al., 2011), 

suggesting a co-evolution between RHDV and its’ rabbit host (Harrington et al. 2002)(Marionneau 

et al. 2002). RHDV have possibly exerted a very strong selective pressure on its host selecting 

positively animals with diminished expression of H type 2 (Guillon et al., 2009), favouring a 
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decrease in the virus transmission and mutant strains with lower virulence (Fouchet et al., 

2009)(Guillon et al., 2009). 

Classical RHDV G1 to G6 proven to bind to HBGAs in a strain-dependent manner and with variable 

magnitudes depending on their HBGA binding characteristics (Nyström et al., 2011). The G6 VLP 

pseudoatomic model determined by Wang et al., (2013) enabled the identification of seven regions 

of sequence variation on the P domain, which could produce different HBGA binding specificities 

and antigenicity. Hence, three putative HBGAs binding cavities were anticipated on the G6 P 

domain outer surface (Wang et al., 2013). 

All classical RHDV strains were shown to bind H and B type 2 HBGAs but A type was not recognized 

by G2 or G3, and Lewis Y was only recognized by G1 and G6 (Leuthold et al., 2015). RHDV strains 

were not A, B or H specific, but rather relatively dependent on the level of expression of each one 

of these antigens (Nyström et al, 2011). However, B antigen appeared to have a greater importance 

over A when both were present, even when A antigen expression was apparently higher in the 

duodenum. Classical RHDV was shown to bind strongly to B antigen than to A antigen. Also, B 

antigen is always present when A antigen is expressed but A antigen can be expressed in absence 

of B (A+B- animals) (Nyström et al, 2011). Although infection with a high viral dose can 

compensate for weak viral binding to HBGAs, as demonstrated by Nyström et al. (2011), untypically 

high survival rates were recorded with lower virus loads in the survivors’ tissues. The same authors 

conducted a series of experiments proving that, at low viral titres, adult rabbits expressing low 

amounts of HGBAs were less susceptible to RHDV that those expressing high amounts, even 

though all animals were infected. 

 

1.1.3.1.1. Genes encoding the α1,2-fucosyltransferase implicated in the synthesis of H type 2 
The Fut1, Fut2, and Sec1 genes, encoding the α1,2-fucosyltransferase implicated in the synthesis of 

H type 2, are thought to be located nearby in the rabbit genome (Guillon et al., 2009). However, the 

Guillon et al. (2009) study showed that while Fut1 presented almost no variation, Fut2 showed a 

high number of mutations and Sec1 even a higher number. In their study aiming to evaluate an 

association between expression of the H histo-blood group antigen, α1,2fucosyltransferases 

polymorphism of wild rabbits, and sensitivity to rabbit haemorrhagic disease virus, Guillon et al. 

(2009) found that Sec1v5 allele was strongly associated with RHD resistance, as its frequency was 

significantly higher among survivors than non-survivors. However, this is not a null allele and it is 

always associated with a functional Fut2, compared to which it has lower activity, hence 
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constituting a marker of survival but not the origin of the nonsecretor-like phenotype related with 

RHDV resistance (Guillon et al., 2009). These authors hypothesized that the Sec1v5 allele was 

probably genetically linked with a mutation located in the Fut2 gene compromising Fut2 enzymes 

and the production of the virus ligand. 

 

1.2. Rabbit haemorrhagic disease virus 2 (RHDV2) 
As demonstrated by Le Gall-Reculé et al. (2013) under experimental conditions, RHDV2 is less 

virulent than RHDV as mortalities occur later and over a longer period. The disease developed also 

differs from that induced by RHDV in its clinical presentation, given that chronic and sub-acute 

forms are more frequent in RHDV2 infections (Le Gall-Reculé et al., 2013). Macroscopic and 

histopathological lesions are typical and similar to RHDV infection (Le Gall-Reculé et al., 

2013)(Lopes et al., 2015a) as previously described.  Nevertheless, a higher frequency of severe liver 

degeneration, splenomegaly and jaundice are seen, characteristic of the subacute/chronic form of 

RHD (Le Gall-Reculé et al., 2013). 

Rabbit kits as young as 11 days old, are susceptible to RHDV2 and develop the disease (Le Gall-

Reculé et al., 2011a)(Dalton et al., 2012)(Le Gall-Reculé et al., 2013). In infected kits, macroscopic 

lesions are consistent with the RHD lesions infection observed in adult rabbits (Dalton et al., 2012). 

Mortality rates of up to 20% and 50% in adult and young rabbits, respectively, were described by 

Dalton et al. (2012). 

There is still limited information on RHDV2 interactions with HBGAs or other receptors that could 

explain differences in RHDV2 pathogenesis. When G6 and RHDV2 unbound H2-tri structures were 

super-positioned, a similar HBGA binding pocket was observed (Leuthold et al., 2015). HBGA 

binding residues were shown to be preserved among RHDV strains, indicating that various strains 

bind HBGA at the same pocket (Leuthold et al., 2015). In addition, the flexibility found in G6 and 

RHDV2 HBGA binding pocket may protect it from the immune system while promoting HBGA 

binding diversity among different RHDV strains (Dalton et al., 2012)(Leuthold et al., 2015). 

When the RHDV2 P domain in complex with Lewis Y and H type 2 HBGA was investigated, these 

attachment factors were shown to bound at the dimeric interface on the side of the RHDV2 P 

dimer, clearly differing from the three G6 P domain predicted sites (Wang et al., 2013)(Leuthold et 

al., 2015). 
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The macro and microscopic lesions induced by RHDV2 have also been described in this work, 

namely in the Studies 4, 5, 7 and 8 corroborating previous data. Macroscopic lesions of the liver, 

lungs and trachea are presented in Figure 18. Microscopic lesions are showed in Figure 19. 

 

 

 

 

 

 

 

 

 
Figure 18. Necropsy of RHDV2-positive wild rabbits from Madeira Island (2017). A) Gross examination of 

longitudinal opened trachea showing a haemorrhagic mucosa; B) Lung congestion and haemorrhage of the 

trachea; C) Lung (Lu) congestion and marbled liver (Li). Photos kindly relinquished by Laboratório Regional 

de Veterinária e Segurança Alimentar (LRVSA), Madeira. 
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Figure 19. Histopathology of a wild rabbit collected during the Madeira Island 2017-RHDV2 outbreak 

(Haematoxylin & Eosin staining). A) Trachea exhibiting congestion of the mucosa (100x). B) Lung: congestion 

of the large vessels (100x). C) Liver, hepatocyte karyorrhexis (black arrow) and vacuolar degeneration (white 

arrow). Greenish brown pigment (hemosiderin) in the cytoplasm of hepatocytes and kupffer cells (200x). D) 
Kidney: picnosis (close-up, white arrows) and karyorrhexis (close- up, black arrow) of tubular cells (400x). 

Photos kindly relinquished by Laboratório Regional de Veterinária e Segurança Alimentar (LRVSA), Madeira. 

 

2. Review on RHD prophylaxis 
When RHDV emerged, vaccination was one of the first procedures recommended towards disease 

control but the implementation of sanitary measures was the most commonly adopted procedure. 

The control measures recommended by the OIE included the emergency slaughter of the complete 

rabbit populations of affected breeding farms, with repopulation after four weeks. “Sentinel 

rabbits" were introduced in small numbers in affected premises before complete repopulation 

(Argüello-Villares, 1991). 

Still, control measures proved insufficient to guarantee protection against RHDV as disease cases 

still occurred in intensive establishments, reinforcing the need for vaccination (Argüello-Villares, 

1991). 
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2.1. Active immunization 
2.1.1. RHDV vaccines 
Vaccination proved to be a valuable tool in disease control, reducing outbreaks and disease spread 

(Argüello-Villares, 1991). However, the lack of a suitable RHDV cell culture system has hindered 

large-scale production of the virus as a source of vaccine antigens (Pérez-Filgueira et al., 2007)(Gao 

et al., 2013). Some vaccines are still produced by the chemical inactivation of virus preparations 

obtained from liver tissues collected from experimentally infected rabbits (Argüello-Villares et al., 

1991)(OIE Terrestrial Manual, 2016). This approach implicates handling large amounts of highly 

infectious material (Bárcena et al., 2000) while raising concerns about biological safety, 

contaminating residues, and animal welfare issues (Pérez- Filgueira et al., 2007)(Gao et al., 2013). 

Hence, research on RHDV vaccines based in biotechnology has been encouraged (OIE Terrestrial 

Manual 2016). 

 

2.1.1.1. Inactivated tissue vaccines 

The first report of RHDV inactivated vaccines date back to China where an inactivated vaccine for 

emergency vaccination was developed and a national vaccination programme was implemented 

(Huang, 1991). These vaccines were produced from infected liver after serial in vivo passages and 

inactivated in formalin were shown to have good immunogenicity with no adverse clinical reactions 

and induced immunity to persist until at least six months (Huang, 1991). 

In alternative to liver, the spleen or kidney can be used to prepare the organ suspensions (Huang, 

1991). Inactivation methods use formaldehyde, beta-propiolactone or other substances and the 

adjuvants such as incomplete mineral oil or aluminium hydroxide vary according to the protocol 

used by the different manufacturers (OIE Terrestrial Manual 2016). 

The first injection should be given at 2–3 months (OIE Terrestrial Manual 2016). In farms with no 

history of disease and with negative serology for RHDV, only the breeding stock is to be 

vaccinated, independently of their age (OIE Terrestrial Manual 2016). Given the short life-cycle of 

fattening rabbits (approximately 80 days) and their natural resistance to the disease caused by 

RHDV/RHDVa up to the age of 6–8 weeks, vaccination of these rabbits is not necessary if no 

outbreaks of the disease in the farm or in the area have been recorded and good biosecurity 

measures are applied. However, this is not the case for RHDV2, which can affect younger animals, 

and this is explained ahead in point “2.1.2. RHDV2 vaccines”. 
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21.1.1.1 Combined RHDV vaccines 
The first report of combined RHDV vaccines occurred in China, referring to bivalent vaccines 

(RHD/pasteurellosis, RHD/clostridiosis, RHD/bordetellosis) and a trivalent vaccine (RHD/ 

pasteurellosis/clostridiosis) (Huang, 1991). In these combined vaccines the other components were 

shown to have no effect on RHDV immunogenicity and that the later did not influence the activity 

of the other components (Lin, 1987). 

 

2.1.1.2. RHDV subunit recombinant vaccines 

Parra and Prieto (1990) demonstrated that seroconversion to VP60 correlated with acquired 

immunity against RHDV and suggested that this viral polypeptide would be a good candidate for a 

subunit vaccine. Both active immunization with VP60 alone (Parra and Prieto, 1990)(Laurent et al., 

1994) and passive immunization with anti-VP60 antibodies were reported to confer protection 

against RHDV challenge (Laurent et al., 1994). The production of recombinant VP60 would obviate 

the handling of infectious material for vaccine preparation (Laurent et al., 1994)(Sibilia et al., 1995). 

Aiming the production of safer vaccines, the vp60 capsid gene have been successfully expressed in 

several heterologous systems, including bacteria (Boga et al., 1994), yeasts (Farnós et al., 2005), 

plants (Castañón et al., 1999)(Fernández-Fernández et al., 2001), poxvirus-based vectors (Bertagnoli 

et al., 1996a)(Bárcena et al., 2000) and insects cells using recombinant baculovirus (Laurent et al., 

1994)(Nagesha et al., 1995). The RHDV VP60 expressed in most of these systems was shown to 

confer full protection against lethal challenge with RHDV in rabbits (Laurent et al., 1994)(Sibilia et 

al., 1995)(Boga et al., 1994)(Bertagnoli et al., 1996a)(Castañón et al., 1999)(Gao et al., 2013). Still, 

these vaccines field application has been restricted due to high production costs or low yield 

(Pérez-Filgueira et al., 2007)(Gao et al., 2013). 

 

2.1.1.2.1 Recombinant RHDV-VP60 expressed in baculovirus/Sf9 cell expression system 
The RHDV capsid protein was expressed in baculovirus/ Sf9 (Spodoptera frugiperda 9) cell 

expression system allowing high-level production of recombinant proteins (Laurent et al., 

1994)(Sibilia et al., 1995). The recombinant proteins self-assembled into virus-like particles (VLPs), 

antigenically identical to RHD native virions that could be used for vaccination purposes (Laurent et 

al., 1994)(Sibilia et al., 1995). Intramuscular (i.m.) vaccination of rabbits with the VLPs (100 µg/ 

animal) conferred complete and effective protection in 15 days and was accompanied by a strong 

humoral response (Laurent et al., 1994). Anti-VP60 antibodies were detected as early as 5 days after 
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post-vaccination and the titres progressively increased over a 15-day period (Laurent et al., 1994). 

Nevertheless, the high amount of antigen (100 µg/ animal) required would render the vaccine very 

expensive from a practical perspective (Plana-Duran et al., 1996). 

Plana-Duran et al. (1996) consider necessary to study the immunogenicity of the VLP particles by 

the oral route, making feasible to use these particles as an alternative to parenteral immunizations 

in field, for the vaccination of wild rabbits. They expressed the VP60 protein under the control of 

the polyhedrin and p10 promoter of baculovirus. As low as 3µg/ animal of RHDV-VLPs were able to 

induce significant titres of serum IgG antibodies conferring protection to the vaccinated rabbits, 

without the use of any adjuvant. For the stabilization of the VLPs, the use of binary ethylenimine 

was decisive by enabling the VLPs to pass the acidic and proteolytic barriers of the gut, without 

affecting the immunogenicity. Plana-Durant et al. (1996) found that the antibody titres obtained 

with oral vaccination, were, in some cases, superior to those obtained with a subcutaneous 

administration of the same dose. Each VP60-VLP contains 180 copies of the same protein, highly 

organized in a regular structure of 40 nm, which makes it an ideal candidate for the stimulation of 

different branches of the immune system (Plana-Duran et al., 1996). 

The VP60 expression in the Sf9 cell expression system was optimized by Gao et al. (2013) according 

to the codon usage frequency of highly expressed genes in insect (Gao et al., 2013). 

 

2.1.1.2.2. Escherichia coli recombinant RHDV subunit vaccine 
Boga et al. (1994) expressed the RHDV capsid protein in Escherichia coli and demonstrated that the 

recombinant VP60 produced in the T7 RNA polymerase-based system was antigenically similar to 

the viral protein and able to protect the rabbits against RHDV (Boga et al., 1994). 

Rabbits inoculated twice (one week interval) with 100 µg of purified VP60 survived challenge with 

lethal dose of RHDV administered intranasally (i.n.) 7 days after the last immunization (Boga et al., 

1994). However, this vaccine was highly insoluble and of low immunogenicity (Plana-Duran et al., 

1996). 

 

2.1.1.2.3. RHDV recombinant vaccines using a myxoma virus vector 
Bertagnoli et al. (1996a) reported the construction of two myxoma-RHDV recombinant viruses 

aiming the protection of rabbits against both diseases (Bertagnoli et al., 1996a). The recombinant 

myxoma viruses (MYXVs) were constructed based on the attenuated SG33 myxoma strain and 

expressed the RHDV capsid protein (VP60). The recombinant protein was antigenic and both 
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recombinant viruses induced high levels of RHDV and myxoma virus-specific antibodies in rabbits 

after immunization by the intradermal route (i.d.). Rabbits were protected against challenge with 

lethal dose of RHDV. 

Bárcena et al. (2000) developed a recombinant vaccine based on a naturally attenuated MYXV field 

strain (6918) which expressed the RHDV VP60, capable of spreading through rabbit populations by 

horizontal transmission. This vaccine was developed aiming large-scale wild rabbit immunization 

against myxomatosis and RHD by the oral route. A linear epitope tag from the transmissible 

gastroenteritis virus (TGEV) nucleoprotein was included to monitor the spread and efficacy of the 

recombinant virus vaccine in the field and differentiate between naturally infected and immunized 

animals. This recombinant vaccine induced specific antibody responses against MYXV, RHDV, and 

the TGEV tag. Immunization of wild rabbits by the subcutaneous (s.c.) and oral routes conferred 

protection against virulent RHDV and MYXV challenges. Still, the recombinant viruses showed 

limited horizontal transmission, either by direct contact or in a flea-mediated process. The safety of 

this vaccine was evaluated by Torres et al. (2000) demonstrating that the recombinant virus 

maintained is attenuated phenotype after 10 passages in vivo. Their results showed that vaccine 

administration was safe even at a 100-fold overdose, with no undesirable effects upon 

administration to immunosuppressed or pregnant female rabbits. 

More recently, Spibey et al. (2011) developed a recombinant MYXV-RHDV vaccine for the 

prevention of myxomatosis and RHD. This vaccine was shown to confer full and effective protection 

against challenged with pathogenic strains of RHDV and MYXV. Safety studies conducted in rabbits 

revealed no adverse clinical signs, even in young animals. MYXV-based vaccines may have safety 

concerns particularly in young rabbits, due to the immunosuppressive characteristic of the MYXV if 

not sufficiently attenuated (Spibey et al., 2012). In addition, the vaccine developed by Spibey et al. 

(2011) is unable to disseminate in the vaccinated rabbits beyond the local draining lymph node and 

the skin around the injection site and accounted for its good safety profile. This commercially 

vaccine is available in several countries for administration by the parenteral route (OIE Terrestrial 

Manual 2016). 

 

2.1.1.2.4. Recombinant vaccinia-RHDV virus 
A recombinant vaccinia-RHDV virus (Copenhagen strain) expressing the RHDV capsid protein VP60 

was developed by Bertagnoli et al. (1996b). The recombinant virus (RecV-VP60) induced high level 

of RHDV specific antibodies in rabbits following immunization by the i.d. (0.1 ml) and oral routes 
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(109 pfu). The vaccine was shown to provide total protection against lethal RHDV, 15 days after 

immunization. 

 

2.1.1.2.5. Canarypox-based RHDV recombinant vaccine 

A canarypox-based recombinant virus expressing a native RHDV capsid protein (ALVAC-RHDV) was 

constructed by Fischer et al. (1997), the vCP309. The inoculation of high (107 pfu) or low (105 pfu) 

doses of vCP309 demonstrated to protect rabbits against a lethal RHDV challenge. 

 

2.1.1.2.6. Insect larvae-derived recombinant RHDV subunit vaccine 
Pérez-Filgueira et al. (2007) described the development of an inexpensive, safe and stable insect 

(Trichoplusia ni) larvae-derived recombinant subunit vaccine for RHDV. A baculovirus expressing a 

recombinant RHDV-VP60 (VP60r) was used to infect T. ni insect larvae. Yields of VP60r in larvae 

corresponded to ≈2 mg of recombinant protein per infected animal. The amount of VP60r 

obtained from 10 infected larvae corresponded to 109 cells of an infected Sf9 culture. According to 

Pérez-Filgueira et al. (2007), based on the production yields and i.m trial results, the amount of 

VP60r accumulated in a single larva would give ≈1000 i.m. vaccine doses. In addition, a simple 

extraction protocol can be used for recovering the VP60r from larvae that are suitable for 

immunization as crude preparations. 

Rabbits immunized once by the i.m. route with an experimental oil vaccine formulated with 

complete Freun adjuvant containing 2 µg of VP60r were protected against challenge with lethal 

RHDV. The animals rapidly developed a systemic anti-RHDV response. 

Oral immunization with encapsulated VP60r extracts was less reliable once, while some rabbits 

developed specific antibodies against RHDV, the humoral responses showed to be insufficient to 

provide protection against challenge with lethal RHDV. 

 

2.1.1.2.7. RHDV recombinant subunit vaccine obtained from Pichia pastoris 
Farnós et al. (2005) cloned the RHDV-VP60 from strains AST/89 and expressed it in in the yeast 

Pichia pastoris. The transformed yeast was grown at high cell density and an expression level of 1.5 

g/ L of culture media was obtained. The protein, associated with the cell debris fraction, was 

purified and an N-glycosylated version was recovered with a purity of ≈70%. The recombinant 

RHDV-VP60 was antigenically similar to the native one. Immunization of rabbits s.c., generated a 
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virus-specific antibody response. In addition, the protein was able to protect rabbits immunized by 

the oral route against challenge with lethal RHDV injected i.m. 

RHDV-VP60 associated with the disrupted pellet of P. pastoris was obtained insoluble under the 

SUC2 (Saccharomyces. cerevisiae) secretion signal and a laborious solubilisation process was 

needed. Farnós et al. (2009) proposed that the expression of a soluble variant of VP60, easier to 

purify, could represent a more appealing approach for vaccine production. They cloned the RHDV-

VP60 under the transcriptional control of the AOX1 yeast promoter and the antigen obtained was 

intracellular and soluble at approximately 480 mg/L-1. The antigenic profile was similar to that of 

native virions. Rabbits immunized twice 21 days apart with 50 µg of VP60 by the s.c. or three times 

with 0.5 mg of VP60 per dose by the oral route produced high titres of specific antibodies. 

 

2.1.1.2.8. Adenovirus vectored vaccine against RHDV 
Fernández et al. (2011) constructed two human type 5 derived replication-defective adenoviruses 

(Ad) encoding the RHDV-VP60, the AdVP60 vector. The recombinant protein was expressed as a 

multimer in mouse and rabbit cell lines at levels that ranged from 120 to 160 mg/L of culture. 

Immunization with human Ad5 derived replication-defective vectors elicited a potent and long-

lasting immune response after parenteral or mucosal administration. Rabbits immunized by s.c. or 

mucosal (i.n.) routes with a single 109 GTU dose of the AdVP60 developed a strong IgG response, 

sufficient for providing complete protection against a lethal challenge with RHDV, and specific IgA 

antibodies in saliva. 

 

2.1.1.2.9. Expression of the RHDV-VP60 antigen in transgenic plants 
The VP60 structural protein have also been expressed in transgenic plants such as potato 

(Castañón et al., 1999)(Martín-Alonso et al., 2003)(Mikschofsky et al., 2011) or tobacco (Arabidopsis 

thaliana)  (Gil et al., 2006). Edible plants for oral immunization may be a new mean for oral 

immunization of wild rabbits against RHDV (Martín-Alonso et al., 2003). 

Castañón et al. (1999) produced the RHDV-VP60 in transgenic potato plants under the control of a 

cauliflower mosaic virus 35S promoter or a modified 35S promoter. Both types of promoters 

allowed the production of specific mRNAs and detectable levels of recombinant VP60, higher for 

the constructs carrying the modified 35S promoter. Adult rabbits immunized by the parenteral (s.c. 

or i.m.) route with 1 ml of leaf extracts from plants containing 12µg of recombinant VP60 were fully 

protected against challenge with RHDV. However, the resulting expression levels were inadequate 
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for the efficient use of tubers as vaccines, especially for oral administration requiring high antigen 

doses. 

Martín-Alonso et al. (2003) also reported the production or recombinant RHDV-VP60 in transgenic 

tubers of potato plants and its use as an oral immunogen in rabbits. Animals were orally 

immunized with lyophilized transgenic tuber containing 100 µg or 500 µg of VP60 and three 

boosters were given 21 days apart. The antibody titters obtained in rabbits orally immunized with 

100 µg of VP60 were undetectable and, overall, this vaccine was not protective against challenge. 

Fernández-Fernández et al., (2001) constructed a new plum pox potyvirus (PPV)-based vector (PPV-

NK) used for cloning different genes, engendering stable chimeras. The VP60 structural protein of 

RHDV was also successfully expressed by making use of the PPV–NK vector. The construct was able 

to infect Nicotiana clevelandii plants efficiently. Inoculation of rabbits with extracts from N. 
clevelandii expressing the VP60 induced a remarkable immune response against RHDV and the 

animals were protected against a lethal challenge. 

 

2.1.2 RHDV2 vaccines 
RHDV2 has distinct antigenic features in comparison to classical RHDV (Le Gall-Reculé et al., 

2013)(Dalton et al., 2012)(Bárcena et al., 2015). Classical RHDV vaccines conferred only partial 

protection against this new virus not preventing infection (OIE Terrestrial Manual 2016). New 

specific RHDV2 inactivated vaccines have been developed and their use provisionally allowed in the 

European Union member states (Bárcena et al., 2015). 

The first RHDV2 vaccine was developed in France (Filavac VHD variant, Laboratoire Filavie) in 2013 

(Le Minoir et al., 2013) and reported to induce full and rapid protective immunity against RHDV2, 

showing no cross protection against RHDV (Le Minor et al., 2013). Spain also developed two 

specific vaccines against RHDV2, the Novarvilap vaccine (Ovejero Laboratories) intended for the 

vaccination of female breeders and passive immunization of kits, and Cunipravac RHD variant 

(Laboratorios Hipra, S.A). To our knowledge, there is no information publically available regarding 

the trials of both vaccines. 

On 14 July 2016, the Committee for Medicinal Products for Veterinary Use (CVMP) recommended 

the granting of a marketing authorisation regarding the ERAVAC vaccine (Laboratorios Hipra, S.A.), 

intended for active immunisation of fattening rabbits against RHDV2 (http://www.ema.europa.eu). 

The efficacy of the ERAVAC vaccine was investigated in fattening rabbits under laboratory 

conditions using an adequate challenge model, with a challenge strain different form the one 
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included in the vaccine. The vaccine was shown to provide protection only against RHDV2, with no 

cross protection against classical RHDV. Onset of immunity was established 7 days after vaccination 

although the duration of immunity has not been fully established. The main reported adverse 

reaction was a slight transient increase in rectal temperature, which resolved spontaneously 

(http://www.ema.europa.eu). 

The protocols recommended for the administration of the RHDV2 specific inactivated vaccines are 

similar to those for classical RHDV. However, as RHDV2 can induce disease in younger animals 

(Dalton et al., 2012), following an outbreak it is strongly recommended to vaccinate meat animals 

at the age of 30–40 days, even if strict hygiene and sanitary measures are adopted, including 

cleaning and disinfection, safe disposal of carcasses and an interval before restocking, for incidence 

of re-infection is very high . Vaccination should only be interrupted after several production cycles. 

In addition, to verify the persistence of infective RHD inside the farm, sentinel rabbits should not be 

vaccinated (OIE Terrestrial Manual 2016). 

In 2015, a recombinant baculovirus expressing the RHDV2 VP60 was also assembled providing 

insights regarding the marked RHDV2 antigenic differences and opening the way to the 

development of new recombinant RHDV2 subunit vaccines (Bárcena et al., 2015). Similar to what 

was observed for RHDV, these recombinant baculovirus could also be useful tools for RHDV2 

circulation monitoring, development of control measures and research (Bárcena et al., 2000). 

 

2.1.3. Vaccine as post-exposure treatment at the population level 
Rabbits with light or none clinical signs could recover after emergency inoculation with inactivated 

tissue vaccine (Huang, 1991). Huang et al. (1986) demonstrated that the majority of experimentally 

RHDV-infected rabbits were able to resist RHD after three to fourfold doses of RHDV vaccine, 

although their recovery was slower. 

Given that immunity starts earlier (7–10 days after immunization), vaccination can be considered a 

quite effective post-exposure treatment at the population level. In particular situations, it may be 

included in the emergency strategies applied when RHD occurs on farms with separate sheds and 

good biosecurity measures (OIE Terrestrial Manual, 2016). We were given the opportunity to 

evaluate the effectiveness of vaccination for RHDV2 as a therapeutic tool in Study 5. 
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2.2. Passive immunization 
In China, hyperimmune antiserum was used for emergency inoculation aiming the quick 

establishment of short-term immunity and treatment of infected animals by neutralising the virus 

(Huang, 1991). However, it was only effective in infected rabbits with light or no clinical signs 

(Huang, 1991). Hyperimmune sera produce a rapid but short-lived protection against RHDV 

infection, limiting the spread of the disease and reducing economic losses. Similarly to what 

happens for vaccines, it is necessary to use sera homologous to the causative RHDV strain (OIE 

Terrestrial Manual 2016). 
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Abstract: Rabbit haemorrhagic disease virus 2 (RHDV2) emerged recently in several European countries, 
leading to extensive economic losses in the industry. In response to this new infection, specific inactivated 
vaccines were developed in Europe and full and rapid setup of protective immunity induced by vaccination 
was reported. However, data on the efficacy of these vaccines in an ongoing-infection scenario is unavailable. 
In this study we investigated an infected RHDV2 indoor industrial meat rabbitry, where fatalities continued to 
occur after the implementation of the RHDV2 vaccination, introduced to control the disease. The aim of this 
study was to understand if these mortalities were RHDV2-related, to discover if the dead animals showed any 
common features such as age or time distance from vaccination, and to identify the source of the outbreak. 
Anatomo-pathological analysis of vaccinated animals with the virus showed lesions compatible with systemic 
haemorrhagic disease and RHDV2-RNA was detected in 85.7% of the animals tested. Sequencing of the 
vp60 gene amplified from liver samples led to the recognition of RHDV2 field strains demonstrating that after 
the implementation of vaccination, RHDV2 continued to circulate in the premises and to cause sporadic 
deaths. A nearby, semi-intensive, RHDV2 infected farm belonging to the same owner was identified as the 
most probable source of the virus. The main risk factors for virus introduction in these two industries were 
identified. Despite the virus being able to infect a few of the vaccinated rabbits, the significant decrease in 
mortality rate observed in vaccinated adult rabbits clearly reflects the efficacy of the vaccination. Nonetheless, 
the time taken to control the infection also highlights the importance of RHDV2 vaccination prior to the first 
contact with the virus, highly recommendable in endemic areas, to mitigate the infection’s impact on the 
industry.

Key Words: rabbit, RHDV2, rabbit haemorrhagic disease, vaccines.

INTRODUCTION

Both rabbit haemorrhagic disease virus 2 (RHDV2) and rabbit haemorrhagic disease virus (RHDV) are classified within 
the Lagovirus genus along with the genetically related European brown hare syndrome virus (EBHSV)(Capucci et al., 
1991; Le Gall-Reculé et al., 2013). RHDV2 was first reported in 2010 (Le Gall-Reculé et al., 2011), whereas classic 
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RHDV strains have circulated worldwide since 1984 (Nowotny et al., 1997; Capucci et al., 1998; Le Gall et al., 1998; 
Le Gall-Reculé et al., 2003).

Although rabbit haemorrhagic disease (RHD) was first described in China during the 1980s in Angora rabbits that 
had been imported from Germany, the virus is thought to have originated in Europe (Liu et al., 1984). It causes a 
lethal and contagious disease which presents with liver necrosis, splenomegaly and haemorrhagic lesions in the 
liver and in the lungs (Capucci et al., 1991; Marcato et al., 1991). Typically, diseased animals present with fever 
(>40°C), and death occurs rapidly within 12 to 36 h after exposure (Capucci et al., 1991; Marcato et al., 1991; 
McIntosh et al., 2007). Common clinical signs include a blood-tinged foamy nasal discharge, severe respiratory 
distress and/or convulsions, usually preceding death (Marcato et al., 1991; McIntosh et al., 2007). Mortality rates 
are high, ranging from 80% to 100% (Marcato et al., 1991; Ohlinger et al., 1993).

RHDV2, also known as RHDVb, is closely related to RHDV but also highly genetically distinctive and therefore 
represents a new genotype (Le Gall-Reculé et al., 2011, 2013). After its emergence in France (Le Gall-Reculé et al., 
2011), it quickly spread to other European countries (revised in Duarte et al., 2015a), replacing the classic strains 
previously circulating in France (Le Gall-Reculé et al., 2013), the Iberian Peninsula (Bárcena et al., 2015; Calvete 
et al., 2014; Dalton et al., 2014; Lopes et al., 2015) and the Azores (Duarte et al., 2015a). RHDV2 was also reported 
in an isolated case in Australia (Hall et al., 2015). In addition to the European rabbit, RHDV2 is able to infect a few 
hare species (Puggioni et al., 2013; Camarda et al., 2014).

RHDV2 is less virulent than RHDV, and therefore associated with lower mortality rates (Le Gall-Reculé et al., 2013). 
The disease developed also differs from that induced by RHDV in its clinical presentation, given that chronic and 
sub-acute forms are more frequent in RHDV2 infections (Le Gall-Reculé et al., 2013) whereas in RHDV infections 
only a small percentage of animals (5 to 10%) develop a sub-acute or chronic illness presenting with jaundice, 
malaise, weight-loss and death within 1 to 2 wk after the onset of symptoms (McIntosh et al., 2007).

Nestlings as young as 11 d old are susceptible to RHDV2 and develop the disease (Dalton et al., 2012), unlike 
in the case of RHDV, to which kits up to 4 wk of age are naturally resistant (Liu et al., 1984). Regardless of age-
independent susceptibility, the lack of cross protection induced by previous contact with RHDV strains contributed 
to the rapid spread of RHDV2 in Europe (Le Gall-Reculé et al., 2013), resulting in high mortality rates among wild 
populations soon after its emergence.

In the industry, RHDV2 was reported for the first time in France (Le Gall-Reculé et al., 2011), and soon after in 
Great Britain (Baily et al., 2014; Westcott et al., 2014) and the Iberian Peninsula (Dalton et al., 2012; Duarte et al., 
unpublished results), resulting in severe losses in this sector. RHDV-vaccinated rabbits are totally protected against 
RHDV infection but only partially to RHDV2. Hence, in farms with no RHDV vaccination in place the mortality rates 
induced by RHDV2 rose to 80%, while in vaccinated animals the rate observed was considerably lower (25%) (Le 
Gall-Reculé et al., 2013). Still, the limited cross protection against RHDV2 conferred by inactivated or recombinant 
RHDV vaccines (Torres et al., 2000; Le Gall-Reculé et al., 2011, 2013; Dalton et al., 2014) led to the development 
of specific RHDV2 inactivated vaccines in Europe (Filavac VHD Variant, Filavie Laboratories, Cunipravac RHD variant, 
Hipra; Novarvilap, Ovejero). These vaccines were provisionally allowed in the European Union member states, as 
their use requires special licenses from the Local Veterinarian Authorities, and vaccination against RHDV2 has 
become common practice in the industry.

The full and rapid setup of RHDV2 protective immunity induced by Filavac VHD Variant vaccine, established within 
one week, was reported in four- and 10-wk old rabbits (Minor et al., 2013). No cross protection against the classic 
virus was observed (Le Minor et al., 2013). However, there is no data available on the use of vaccination in an 
ongoing-RHDV2 infection scenario.

In this study, we investigated a series of fatalities that occurred in an indoor industrial meat rabbitry after the 
implementation of the RHDV2 vaccination. To clarify the cause of the fatalities, we gathered and integrated clinical, 
epidemiologic, anatomo-histopathologic, virologic and bacteriologic data. After the identification and molecular 
characterisation of RHDV2 as the etiological agent, the research focused on detection of the probable infection 
source, transmission routes and the identification of possible reasons for infection recurrence after vaccination. Our 
data allow preliminary conclusions on the efficacy of vaccination as a therapeutic measure.
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MATERIALS AND METHODS

Sample origin and epidemiological inquiry

A total of twenty-one dead rabbits were analysed. Nine rabbits had not been vaccinated and 12 were vaccinated 
once or twice against RHDV2.  Fourteen of these 21 animals originated from the indoor, semi-intensive, meat 
rabbitry investigated in this study, located in the north of Portugal, hereby referred to as cv-Farm due to its controlled 
ventilation system. The other 7 samples originated from a second industrial farm, located 300 m away, referred to 
as nv-Farm, given its natural ventilation. The casualties occurred between January 2015 and August 2015 (Table 1). 
The cadavers or organs were received at a private laboratory, Segalab, S.A., and then sent to the Instituto Nacional 
de Investigação Agrária e Veterinária (INIAV).

An inquiry was carried out to gather information at the cv-Farm facilities, its operating system, production rates, 
reproductive strategies, prophylactic measures, and, regarding the 21 specimens’ age, immunisation profile and 
vaccination date, time of death, and necropsy data (if performed at the rabbitry). Information on the overall mortality 
among adults and kits was also collected. Cases were numbered according to their chronological occurrence.

Anatomo-histopathological examination

Necropsies were performed by the veterinarian assistant at the rabbitry or by the pathologists at the Pathology 
Laboratory, INIAV.

For anatomo-pathological examinations, liver and lung samples were fixed in 10% buffered formalin and embedded in 
paraffin using standard procedures. Five micrometre-thick sections were stained with haematoxylin and eosin (H&E) 
and examined using light microscopy (Cook, 1997).

Bacteriological analysis

Liver and lung samples from the 21 animals were analysed using standard bacteriological methods, and the presence 
of Pasteurella sp., which is to be considered in the differential diagnosis of RHD according to the OIE (World Organisation 
for Animal Health (OIE) Technical disease cards, 2015), was investigated. Lung and liver sample macerates were 
inoculated in MacConkey agar (Oxoid) and Colombia agar (Oxoid), supplemented with 5% of defibrinated sheep blood 
(Biomerieux) and incubated at 37°C for 24-48 h. Identification of isolates was performed using the commercial API® 
test strips API 20 NE and API ID32 E (BioMérieux). To infer the sanitary status of the animals, which is a public health 
concern as they are used for human consumption, the presence of verocytoxin (VT) producing Escherichia coli strains 
(VTEC) was investigated by multiplex PCR (Paton and Paton, 1998). E. coli strains ED647 (E. coli 0157, vt1, vt2, eae) 
and ED378 (018ab, vt2f ), provided by the European Reference Laboratory for VTEC, Instituto Superiore di Sanitá Italy, 
were used as positive controls and E. coli strain JM109 as a negative control.

Virological examination

Tissue samples comprising liver and lungs were homogenised with phosphate buffered saline (PBS) and clarified 
at 3000  g for 5  min. DNA and RNA were extracted from 200  µL of the clarified supernatant, corresponding to 
approximately 50 mg of tissue, in a BioSprint 96 nucleic acid extractor (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions.

With regard to vaccines, RNA from vaccine Cunipravac RHD variant (Hipra, Spain) was extracted from the aqueous 
phase of a centrifuged sample (10000 g for 10 min), using the RNeasy blood and tissue kit (Qiagen, Hilden, Germany) 
according to the recommendations. RNA from vaccine Novarvilap (Ovejero, Spain) was extracted from 200 μL of 
a 10×  diluted sample (v/v in bidistilled H20), in a BioSprint 96  nucleic acid extractor (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions.

Samples were tested for RHDV2  by RT-qPCR (Duarte et  al., 2015b). Screening for RHDV was performed by 
sequencing analysis of the amplicons obtained by conventional PCR with primers RC-9 and RC-10  (Tham et al., 
1999). Conventional RT-PCR and RT-qPCR were performed using the One Step RT-PCR kit (Qiagen, Hilden, Germany).
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The presence of myxoma virus was examined by qPCR (Duarte et al., 2014), using the FastStart TaqMan Probe Master 
Kit (Roche, Roche Diagnostics GmbH, Manheim, Germany).

Cq (quantification cycle) values are inversely related to the concentration of nucleic acid in the sample (revised 
by (Gullett and Nolte, 2015)). For the real time PCR systems described, undetectable Cq or Cq values >40 were 
considered negative.

Nucleotide sequencing analysis

Amplification of the vp60 sequences of RHDV2 strains was accomplished with 2  pairs of primers, 
27F (5’-CCATGCCAGACTTGCGTCCC-3’) and 986R (5’-AACCATCTGGAGCAATTTGGG-3’), 717F 
(5’-CGCAGATCTCCTCACAACCC-3’) (Duarte et  al., 2015a), and RC10R (Tham et  al., 1999) enabling us to obtain 
2  overlapping fragments. The One Step (Qiagen, Hilden, Germany) kit was used, following the manufacturers’ 
recommendations. Sequencing was accomplished using the BigDyeTM Terminator cycle sequencing kit (Applied 
Biosystems, Foster City, CA, USA).

The vp60 nucleotide sequences of 7 complete and 1 partial RHDV2 strains (GenBank accession numbers KU665594 
to KU665601) were determined in an automated 3130 Genetic Analyzer system (Applied Biosystems, Foster City, 
CA, USA).

Nucleotide diversity (π), and its corresponding variances (Nei, 1987) were estimated independently for each sub-
population (nv-Farm and cv-Farm strains) as well as for both sub-populations combined, resorting to DNASP software 
(Version 5.10.01) (Rozas et al., 2003). Standard errors (SE) of each measure were based on 1000 bootstrap replicates. 
DnaSP was also used to calculate the minimum number of recombination events (Rm) in the sample (Hudson and 
Kaplan, 1985).

RESULTS

Insights from the epidemiologic inquiry 

The inquiry revealed that the animals originated from a high-standard rabbitry (cv-Farm) holding 800 does which 
produce around 6000 animals per productive cycle. Does, weighing between 3.5 and 4.5 kg, give birth every 42 d as 
artificial insemination is practiced 11 d postpartum, producing an average of 22 kg of meat per inseminated doe. The 
cv-Farm comprises separate areas for artificial breeding and fattening, and works in a closed, all-in-all-out system, 
with controlled temperature (22 to 26°C), humidity, artificial light and ventilation. Kits are weaned at 32 d of age, at 
which point the mothers are moved to a contiguous area where the next productive cycle begins. Fattened rabbits 
are collected for slaughtering at 70 d of age. Facilities are disinfected by a specialised company and kept empty for a 
week before the following breeding cycle. We also found out that a second semi-intensive farm (nv-Farm), belonging 
to the same owner, is located 300 metres away from the cv-Farm. Both farms are sited on agricultural land. No 
movement of animals was carried out between farms, but sharing of workers was identified.

Epidemiological data linking the farms is schematised in Figure 1.

Regarding the prophylactic measures in practice prior to RHDV2 introduction, it was disclosed that disease control 
was carried out by the veterinary assistant according to an established programme. RHDV vaccination (Arvilap) was 
carried out twice a year (spring and autumn), and Myxoma virus vaccination (MYXV) (Mixohipra H, Hipra) every 4.5 mo. 
Control of internal parasites is achieved by administering albendazole, levamisole, or fenbendazole, alternately, every 
other productive cycle. Insecticides are regularly used for mosquito control. Other preventive sanitary prophylactic 
measures include rodent and plague control by a certified company, which periodically monitors the installed devices 
(such as bait boxes with raticide). Ventilators are sited far from the communication doors and thus from any contact 
with the slaughter and food vehicles as well as the entries through which the animals enter and exit. In addition, 
cadavers are collected 2 km away from the farm by a specialist company, so that this vehicle does not approach 
the farm’s surrounding area. There are no specific nets to avoid contacts with wild rabbits. All the farm workers use 
specific equipment and visitors are not allowed.
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The events started in late October 2014, when a series of deaths were registered in the cv-Farm, with mortalities of 
80% in juveniles and 30-40% in does (Case 1, adult female), respectively. The enquiry revealed that a week earlier, 
several animals of all ages had begun to die in the nv-Farm (Case 0, adult female). RHDV2 presence was confirmed 
in both farms by laboratory diagnosis and, RHDV2 vaccination of the adult females was implemented with Novarvilap 
(Ovejero Laboratories).

Two months later, in January 2015, 2 pregnant females from the cv-Farm, which had been vaccinated 68 d earlier, 
died suddenly without any clinical signs of disease (cases 2 and 3, Table 1). Macroscopic examination of these rabbits 
revealed good body condition, but haemorrhages in the lungs, icteric liver and splenomegaly, raising the suspicion 
of RHD. RHDV2 was confirmed by laboratorial diagnosis. A second RHDV2 outbreak was observed in the cv-farm in 
late February to early March. Newly weaned 27 d-old kits and 35 and 60 d-old rabbits were affected, most of which 
were offspring of primiparous females vaccinated once, 121 d prior. Adults also fell victim and lesions compatible with 
haemorrhagic disease were observed in a few females vaccinated 121 d earlier (cases 5 and 6, Table 1).

Figure 1: Top, schematic representation of the epidemiological context of the farm. Bottom, information on the 
RHDV2-positive sampling with regards to farm of origin, date of collection and vaccination. Black arrows represent 
geographical distances (not in scale). White arrows represent the possible origin and dissemination paths. Risk factors 
are shown within grey boxes. Numbers in brackets refer to case numbers, which position in relation to the calendar 
(on the left) refers to time of death. The case numbers corresponding to vaccinated rabbits are underscored. AF, 
adult females; FR, fattening rabbits; nv-Farm, natural ventilated farm; cv-Farm, controlled ventilated farm. Vaccines 
are represented by triangles (black, Novarvilap; grey, Cunipravac RHD variant). *Strains with vp60 gene sequenced.
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Limitations from the supplier led to the introduction of a second RHDV2 vaccine (Cunipravac RHD variant, Hipra, 
Spain) in both farms at the beginning of March and the enquiry revealed that a few weaned kits were also vaccinated 
once with this vaccine.

The last mortalities in the cv-Farm occurred in mid-late March, affecting vaccinated females (cases 7, 8, 13, 
Table 1), including one multiparous that had given birth recently (case 7) and another pregnant multiparous (case 8). 
Females 7 and 8 had been vaccinated twice, with the Norvavilap and Cunipravac RHD variant, 138 and 15 d before, 
respectively. Female 13 was vaccinated once with the Cunipravac RHD variant, 27 d before. Thirty-five-day old kits, 
vaccinated once with the Cunipravac RHD variant (cases 9, 10, 11, Table 1), also fell victim.

In the nv-Farm, mortalities due to RHDV2 continued to occur until late July 2015, affecting non-vaccinated fattening 
kits aged 35 to 70 d (cases 15-19, Table 1). No more casualties were observed thereafter. 

Microbiology

RHDV2 was detected in 18 of the 21 rabbits analysed (Cases 0-3, 5-13, 15-19, Table 1, and Figure 2), by RT-qPCR 
(Duarte et al., 2015b). Viral loads were variable, as Cq values ranged from 9.53 to 36.14, with high viral charges 
(Cq<25) found in the majority of the samples tested (n=13/18, 72.22%). Despite the limited sampling, a positive 
association was observed between viral loads and lesion severity in kits (Figure 2).

Only 3 out of the 21  animals analysed were negative for RHDV2  (cases 4, 14  and 20, Table 1). Data of 
the 18  RHDV2-positive cases, regarding sample origin, collection and vaccination date, are represented in 
Figure 1 (bottom).

Figure 2: Viral charges found in RHDV2-positive samples. Circles represent adults and triangles the young. Colour 
corresponds to samples where microscopic lesions were observed (black), not determined (grey) or absent (white). 
Viral charges were inferred from the respective Cq values according to the regression equation published by Duarte 
et al., 2015b. Cq values are shown above the symbols. Cases 4, 14 and 20 (RHDV2-negative) are not represented.
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Pasteurella multocida was isolated from the lungs of one RHDV2-negative multiparous doe (case 4). Neither 
Salmonella, Yersinia, Staphylococcus nor Listeria were detected. E. coli was isolated from the tissues of 3  adult 
females (cases 5, 6 and 7) and 3 kits (cases 9, 10 and 11), all RHDV2-positive rabbits, but no associated virulence 
genes (vtx1, vtx2, eae and vtx2f) were found.

Anatomo-histopathology

No signs of disease were registered prior to death in any of the 21 rabbits. Bloody discharges from the nose, observed 
in 5 animals (23.81%, case 4 [RHDV2-negative], and cases 7, 9, 10 and 11, all RHDV2-positive), were the only 
outward manifestation of an ongoing pathology.

Macroscopically, in the RHDV2 positive animals, an icteric liver and hepatomegaly were the most common lesions 
(90 to 100%) followed by lung petechiae (45 to 50%) and moderate splenomegaly (30%). Hepatic discoloration was 
also observed (cases 9, 10 and 11, all referring to RHDV2 positive kits).

At microscopic level, the great majority of the lesions in the RHDV2-positive rabbits matched the typical RHD 
lesions described above (Ohlinger et al., 1993). Those included microfoci of hepatic necrosis, detected in the liver 
parenchyma of 6 animals (cases 9-12, 16 and 17, all RHDV2-positive; cases 9-11 and 17 vaccinated, and cases 
12 and 16 not vaccinated). Hepatocyte hyalinisation was found in 5 of these samples (cases 9-11, 16 and 17). Lung 
histopathology was performed in 2 specimens showing severe congestion and disseminated intravascular coagulation 
in the small capillaries (cases 9 and 10).

In the adult female case 4, lesions consisted of purulent pneumonia with extensive parenchymal infiltration by 
inflammatory cells, mainly neutrophils, and occasional bacteria clumps associated with necrotic foci.

Despite some degree of autolysis, no lesions were recognised in the liver or lungs of the adult rabbit case 13, where 
a RHDV2 high Cq value (36.14) was obtained.

Insights from the molecular analysis

Similarity among field strains was above 99.43%, with 2 of the complete sequences being identical (KU665597 and 
KU665598, Table 2) and 2 differing only in 1 nucleotide (KU665595 and KU665596, Table 2). The average number 
of nucleotide differences (k) and the nucleotide diversity (π) found among all vp60 sequences showed intermediate 

Table 2: Nucleotide similarity percentage among the vp60 nucleotide sequences of two vaccines and eight field 
RHDV2 strains.

Strains Case 0 Case 1 Case 3 Case 7 Case 10* Case 15 Case 16 Case 17 Vaccine A Vaccine B
Case 0# - 100 99.60 99.83 99.90* 99.89 99.83 99.83 98.74 97.82
Case 1† - 99.60 99.83 99.90* 99.89 99.83 99.83 98.74 97.82
Case 3† - 99.43 99.18* 99.48 99.54 99.54 98.91 97.76
Case 7† - 99.90* 99.83 99.77 99.77 98.56 97.64
Case 10†* - -* 99.80* 99.80* 98.17* 97.66*
Case 15# - 99.83 99.83 98.62 97.70
Case 16# - 99.94 98.68 97.64
Case 17# - 98.68 97.64
Vaccine A - 97.82
Vaccine B -

Strains are referred by the case number.
*Similarities based on a partial vp60 sequence (981bp long). Vaccines’ identification is restrained for privacy. 
#Lines highlight samples from the semi-intensive farm. 
†Lines correspond to samples originated in the industrial farm. 
GenBank accession numbers: Case 0 (KU665601), Case 1 (KU665600), Case 3 (KU665598), Case 7 (KU665597), 
Case 10 (KU665599), Case 15 (KU665594), Case 16 (KU665596), Case 17 (KU665595).
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values (k:3.333, π:0.00340) when compared with the homologous figures obtained independently from the strains of 
the nv-Farm (k:2.66667, π:0.00153) and the cv-Farm (k:4.667, π:0.00476).

Interestingly, one recombination event (Rm) was detected between nucleotide sites 1272  and 1416, based on 
45 pair-wised comparisons of the 7 complete sequences. When analysed independently, no recombination events 
were detected in any of the 2 sub-populations of sequences.

As expected, at the polypeptide level the variability was lower. All strains originating from the 2 farms exhibited a 
common polymorphism involving Ile347, not shared by the 2 vaccines.

DISCUSSION

RHDV2  RNA was detected in most of the rabbits analysed as 18  (87.5%) of the 21  animals investigated were 
RHDV2-positive. Vaccine RNA was not identified in any of the tissue samples from which viral RNA was amplified and 
sequenced. Field strains showed clear nucleotide discrepancies with regard to the sequences of the 2 inactivated 
vaccines (Carvalho et al., 2017) used. None of the 21 rabbits was positive to classic RHDV, in consonance with the 
notion that RHDV2 has been replacing the classic RHDV strains in wild and domestic rabbit populations of the Iberian 
Peninsula (Lopes et al., 2015).

The majority of the dead animals did not show any clinical sign of illness and were in good body condition at the 
necropsy, which is consistent with an acute disease and sudden death. This finding contrasts with other reports 
stating that RHDV2 induces a more prolonged disease when compared to RHDV (Le Gall-Reculé et al., 2013; Puggioni 
et al., 2013), resulting in progressive but extensive liver damage that precedes death. The high level of pathogenicity 
of the circulating strains is also supported by the elevated mortality rates observed in adults (30-40%) and kits (80%), 
clearly above the values reported previously in RHDV vaccinated/RHDV2 non-vaccinated farms (up to 20% for adult 
and 50% for kits (Dalton et al., 2012)).

The macroscopic lesions showed that the lungs and liver were the most affected organs, also in agreement with 
earlier descriptions (Dalton et al., 2012; Duarte et al., 2015a; Lopes et al., 2015).

Pasteurella multocida, a gram-negative, non-motile Coccobacillus, was isolated from the lungs of a RHDV2-negative 
multiparous doe (case 4). Pasteurellosis, a highly contagious disease transmitted either by direct contact or by 
aerosols, was not detected in any of the other victims, indicating that this disease was neither related to the serial 
deaths, nor spread through the rabbitry. The source of this single case was not identified.

No possible cause of death was recognised for the other 2 RHDV2-negative rabbits (cases 14 and 20, Table 1), as 
none of the tested pathogens was detected.

Given that the disease was detected 1 wk earlier in the nv-Farm, it is likely that the virus spread from there into the 
neighbouring cv-Farm. The proximity and the sharing of some employees most likely contributed to the dissemination 
of the virus from the nv-Farm into the cv-Farm. The 100% similarity between the 2 strains obtained in October 2014, 
when the first cases occurred (case 0  from the nv-Farm, case 1  from the cv-Farm, Table 2), provides molecular 
evidence of an epidemiological link between the 2 events. This is also corroborated by the lack of diversity between 
these 2 strains and the strains that circulated in both farms between January and April 2015  (99.69 to 99.90% 
nucleotide similarity), as well as by the reduced variability observed amongst the strains that circulated later in the 
farm in 2015 (similarities ranging from 99.43 to 99.94%). The nucleotide variability observed (<0.57%) is below 
the average value (1.3%) previously described among strains originating from different farms (Le Gall-Reculé et al., 
2013). The genetic diversity (π) found among nv-Farm strains (0.00153±0.00044) was significantly lower than in 
the industrial cv-Farm strains (0.00476±0.00192). This may be related to the higher livestock density in the latter, 
which favours a higher transmission rate, resulting in a faster accumulation of mutations. The 8 strains did not exhibit 
any unique or exclusive amino acidic variation that could be clearly linked with its putative higher virulence. However, 
all of them share an Ile at position 347, located in the hyper variable region V2 defined by (Wang et al., 2013). Both 
vaccines present a different residue at this position. In the large majority of the RHDV2 strains characterised so far, 
a Thr was mapped at position 347, though a Val or an Ala have also been identified. It is interesting to notice that 
Ile347 is also present in other Portuguese strains previously characterised as originating in the north, centre and south 
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of mainland Portugal, as well as in the Azores (Duarte et al., 2015a). Most of these strains originated on rabbit farms 
(KJ683896 and Carvalho et al., unpublished results), but no data was available on the mortality rates induced.

A surprising finding of this study was the death of RHDV2-positive animals that had been vaccinated twice (case 7, 
Cq 15.27 and 8, Cq 29.08, Table 1), indicating that those animals developed the disease despite vaccination. On 
the farm, the cold chain for the vaccines is carefully maintained in order to guarantee its preservation. Moreover, all 
vaccination procedures are carried out systematically by the veterinary assistant according to the protocol, ensuring 
that all adult animals are vaccinated and that the correct vaccine dose is administrated. This greatly reduces the 
possibility that lack of vaccination or reduced vaccine dose may have been at the origin of the mortality of the 
vaccinated does. Individual variability to vaccination may have been at the source of those unexpected outcomes. 
In view of the lower mortality rate induced by RHDV2 when compared to RHDV, detection of viral RNA in apparently 
healthy animals that recovered from the infection is expected, as genomic RNA or RNA fragments are known to persist 
for at least 15 wk after experimental infection (Gall et al., 2006, 2007). However, the Cq values of these 2 animals 
are substantially reduced and too low to represent leftovers from previous infections when compared to the range 
previously described for RNA and DNA viruses, namely for the blue tongue virus (BTV) (De Leeuw et al., 2015; Barros 
et al., 2007) and parvoviruses (Duarte et al., 2013). As no animals were sacrificed nor in vivo experiments carried 
out to determine the infectious (viable viral particles) or non-infectious (RNA segments) nature of the RHDV2-RNA, 
this aspect was not clarified in this study. However, interestingly, they showed no lesions in the liver and lungs and 
generated a high Cq value (36.14).

The large majority of the RHDV2  RNA-positive rabbits (17/18, 94.4%), including those with Cq values above 
30.0  (cases 2, 5, 6), showed typical RHDV2 macroscopic lesions. This fact, along with negative results to other 
common viral and bacterial pathogens, strongly suggests that all these fatalities, with the exception of case 4, were 
RHDV2-related.

The death of vaccinated adults indicates that the infection of these animals occurred before an effective immune 
response could be established, or alternatively, that an ongoing infection hampered the development of an effective 
immune protection. Exposure to a highly infectious dose, before the vaccine derived protective immune response was 
fully established, may explain disease development in the adult cases 3 and 7. Despite the virus being able to infect 
a few vaccinated rabbits from the farm, it did not induce clinical disease in most of the adults that died. Macroscopic 
lesions were observed in most of the animals but, as the majority of the organs were received frozen, it was neither 
possible to investigate if typical RHDV2-microscopic lesions were also present in these animals nor to establish a 
relationship between histo-pathological lesions, viral charge and death for all the animals. This would have been 
particularly relevant to evaluate the cause of death of the does with lower viral charges.

The significant decrease in the mortality rate observed in the adults after RHDV2 vaccination, which was null after 
August 2015, compared with the mortality rates observed prior to vaccination (30-40%), exemplified the success of 
vaccination in controlling the disease.

In the RHDV2 infected kits, a positive association was observed between viral load and the severity of the characteristic 
anatomo-pathological lesions found in the liver and lungs. Lower Cq values were observed in vaccinated kits (Table 1), 
suggesting the interference of maternal antibodies with vaccination success, which may have facilitated disease 
progression (Carvalho et al., 2017).

The time gap between vaccination and casualty varied between 15 d (cases 7, 8, 9, 10 and 11, Table 1) and 121 d 
(cases 5 and 6, Table 1). Curiously, no trend could be observed between the time gap between vaccination and the 
Cq value. While no obvious explanation was identified for the lower value of case 3 (Cq 9.53), physiological stress 
due to recent partum and lactation may have accounted for the progression of the infection in female 7 (Cq 15.27).

The molecular investigation revealed that RHDV2  continued to circulate in the premises for a few months after 
vaccination. This could be related to the fact that, at any specific time interval, there was always a subset of 
unvaccinated kits more susceptible to the infection. Infected kits were mostly the offspring of primiparous females, 
which showed an energy deficit due to simultaneous pregnancy, milk production, and growth, and so were expected 
to pass lower limited immunity to their litters.
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Also interesting was the detection of RHDV2-RNA in an early stage foetus from a RHDV2 positive-doe that had been 
vaccinated twice, the last shot administered 15 d before death (results not shown). A Cq value of 34.08 was obtained 
from the foetus (result not shown), higher than the Cq value (29.08) of the mother, which may suggest the RHDV2 is 
able to cross the placenta. However, further investigation is required as well as confirmation to rule out foetus 
contamination with the maternal blood during the uterus opening. To our knowledge, there are no previous reports 
supporting the congenital infection by RHDV (Xu, 1991).

Neither Salmonella, VTEC, Yersinia, Staphylococcus nor Listeria were detected, attesting good sanitary conditions in 
the rabbitry.

Several risk factors for the introduction of RHDV2 in the rabbitry were identified. The rural surroundings of both farms 
may have favoured RHDV2 introduction through indirect contact with infected wild species, namely wild rabbits, as 
no specific protection nets are used. Between 2013 and 2015, a particularly high mortality rate was observed in 
wild rabbits from legal hunting parks (Dr Fidélia Aboim-Municipal Veterinarian, personal communication), the nearest 
located only 5.3 km away from the farms. According to what has been described in many other regions of the country 
since 2012  (Abrantes et al., 2013; Lopes et al., 2015; Duarte et al., 2015b), RHDV2 was most probably at the 
origin of casualties in the wild rabbit population. Therefore, it is possible that RHDV2 transmission occurred from the 
infected hunting populations into the nv-Farm, via fomites, by human means or arthropods. It has been demonstrated 
that mosquitoes from the Culex genus, active in Portugal from spring to autumn (Alves et al., 2014), play a role in 
disease dissemination (McColl et al., 2002). Furthermore, the climatic conditions of the area, which has high levels 
of humidity, create a suitable mosquito habitat.

Likewise, the role of rodents as viral carriers has been supported by the detection of RHDV2 in mammals other than 
rabbits (Merchán et al., 2011). As the farm is located on agricultural land where rodents are abundant, it is also 
important to consider their potential role in the transmission of RHDV2 into the rabbitry, although rodent prophylactic 
measures are carried out.

Another critical point relates to the high resistance of the virus to environmental conditions (Henning et al., 2005). 
The use of transport vehicles often shared by different rabbit farms may have also accounted for the spreading of the 
disease locally and across confluent districts.

CONCLUSIONS

The low nucleotide diversity per site (π:0.00340±0.00132) amongst the vp60 sequences from strains obtained over 
a 6 mo-period was consistent with a common viral source for the 2 farms. The absolute identity between the strains 
obtained in both farms during the initial focuses (KU665601 and KU665600) led to recognition of the nv-Farm as the 
probable source of the virus for the cv-Farm.

Whereas a molecular epidemiological link was established between the 2 farms, no path could be identified as the 
most probable means for the introduction of the virus in the nv-Farm. However, several risk factors were recognised, 
relating to the agricultural land where the farms are located, the high mortality of wild rabbits in hunting parks in the 
same geographic area and the sharing of slaughterhouse vehicles by the rabbitries in the region.

Several months passed before mortality decline was observed following the initiation of vaccination. The time taken 
before herd immunity could be established undoubtedly highlights the importance of vaccination prior to infection. 
Several factors may have accounted for the difficulty in reducing and eliminating the virus circulation from the 
premises, such as the continuous and rapid turnover of the population on intensive farms, which ensures the constant 
availability of susceptible kits from each new productive cycle, facilitating viral persistence. The putative higher 
virulence of the strains, supported by the mortality rates observed prior to vaccination, might have required higher 
antibody titres in the population to impede transmission between animals. No data is known about the immunogenicity 
of inactivated RHDV2 vaccines when applied as a therapeutic tool to infected populations. However, we believe this 
dynamic investigation provides preliminary data on the usefulness of vaccination post-infection. While several of 
these aspects need to be further elucidated, vaccination was proven as an important preventive measure against 
RHDV2 infection, before rabbitries at risk face this infection.
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Chapter IV 
RHD eco-epidemiology 
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1. Review on RHD eco-epidemiology 
1.1 Susceptible host species 
The European rabbit has been known as the only species susceptible to RHDV, considered to be 

highly species specific (Capucci et al., 1996). Both subspecies of the European rabbit, Oryctolagus 
cuniculus cuniculus and O. c. algirus, are equally susceptible to RHDV (Abrantes et al., 2013). 

The same host specificity was assumed for the European Brown Hare Syndrome Virus (EBHSV) first 

detected in the early 1980s, prior to the first RHDV outbreak, affecting wild and farmed hares 

(Capucci et al., 1991)(Wirblich et al., 1994). 

However, the many similarities found between RHD and EBHS regarding their clinical presentation 

and symptomatology, epidemiology, as well as gross pathology and histopathology induced, led 

many researchers to question the relatedness between both viruses (Capucci et al., 1991). Marcato 

et al. (1991) even suggested the unifying definition of "infectious necrotic hepatitis of leporids" for 

the two diseases. In fact, both are characterized by a hyperacute evolution with mild nervous 

symptoms, degeneration of hepatocytes, necrotic lesions and congestion of the liver, epistaxis, 

congestion of the spleen and kidneys, presence of uncoagulated blood in body cavities, diffuse or 

petechial serosal and mucosal haemorrhages and the occasional presence of jaundice (Capucci et 

al., 1991). Other similarities include the extremely high morbidity and mortality rates, reaching 90% 

to 100% in adult animals (Wirblich et al., 1994), and enhanced susceptibility of adults, especially 

breeders, while animals under 40 days of age remain unaffected (Capucci et al., 1991). In addition, 

the virions of RHDV and EBHSV (both naked virus) are morphologically indistinguishable (Wirblich 

et al., 1994) and the viral proteins are likewise similar. The two viruses share the same genomic 

organization in which the genes coding for the non-structural proteins and for the capsid protein 

(VP60) are part of the same uninterrupted open reading frame (ORF1) (Capucci et al., 1996). Both 

RHDV and EBHSV are also antigenic related, as demonstrated by Western blot (immunoblot) using 

hyperimmune serum against RHDV (Chasey et al., 1992)(Wirblich et al., 1994), and neither virus has 

been adapted to continuous growth in cell culture (Capucci et al., 1991)(Wirblich et al., 1994). 

However, discrimination between RHDV and EBHSV was possible by immunoelectron microscopy 

(Chasey et al., 1992), hemagglutination (Nowotny 1990)(Nowotny, 1991), and enzyme-linked 

immunosorbent assay (ELISA) (Capucci et al., 1991), showing that the two viruses represent two 

clearly distinct entities (Capucci et al., 1996) for which both epidemiological features and 

geographic distribution of outbreaks did not always overlap (Wirblich et al., 1994). For instance, 
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EBHSV was observed in Scandinavia several years before the first RHD outbreaks (Gavier-Widén 

and Morner, 1993). 

Nevertheless, the remarkable similarities between RHDV and EBHSV prompted several researchers 

to perform cross-species infections which produced contrasting results (Capucci et al. 

1991)(Wirblich et al., 1994). Transmission was reported to be successful in some instances but most 

cross-species infections have failed to induce disease (Capucci et al., 1991)(Chasey et al., 

1992)(Wirblich et al., 1994). Morrise et al. (1991) reported the successfully transmission of EBHSV to 

rabbits after inoculating them with organ suspensions prepared from EBHSV-positive hares. Also, 

Di Modugno and Nasti (1990) seem to have transmitted RHDV to two of nine hares which had 

been inoculated with RHDV-positive rabbit organ suspensions and again reproduced the disease in 

rabbits, after inoculation with organ homogenates from the two dead hares. In marked contrast, 

Capucci et al. (1991) were only able to reproduced EBHS in hares and RHD in rabbits. 

Recently, Lopes et al. (2014) presented evidences of rabbit lagoviruses cross-species infection 

through the detection of two classical G1 RHDV strains in two Iberian hares (Lepus granatensis) 

collected dead in Portugal in the 1990s, presenting macroscopic lesions compatible with a 

lagovirus infection, namely congestion of the liver and lungs, and the presence of non-coagulated 

blood in the thoracic and abdominal cavities, trachea, lungs and blood vessels. Also, (Lavazza et al., 

2015a) demonstrated experimentally that the eastern cottontail rabbit (Sylvilagus floridanus) is 

susceptible to infection with EBHSV. 

Cross-species infection was recently described for RHDV2. This new virus is able to infect cape 

hares (Lepus capensis) (Puggioni et al., 2014) as well as Italian hares (L. corsicanus), confirming the 

virus capacity to infect hosts other than rabbits. In Italian hares the virus caused a RHD-like 

syndrome (Camarda et al., 2014). Recently, this virus was also shown to cause disease in L. 
europaeus (Lavazza A, personal communication). 

 

1.2. RHDV survival in the environment 
According to Henning et al. (2005), RHDV survival is affected by the duration of exposure and the 

vehicle used. While virus kept dried on cotton tape (to mimic dried excreted virus in the field) was 

viable for between 10 and 44 days, virus injected into bovine liver (to mimic RHDV in rabbit 

carcasses) was still viable after 91 days. These results suggest the virus can survive and remain 

infectious for at least 3 months in rabbit carcasses in the field, as the surrounding tissue probably 

protects the virus from desiccation and UV light. RHDV transmission to wild rabbits from 
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environmental reservoirs is probably influenced by virus source and survival in dead animals’ 

tissues. This could provide a persistent virus reservoir potentially triggering new outbreaks of 

disease (Henning et al., 2005). 

In the laboratory-based studies on RHDV survival carried out by Smid et al. (1991), RHDV in tissue 

suspensions was shown to survive at 60°C for 2 days (in dried material or in organic suspension) 

and at 4°C for 225 days (in an organic suspension). Infective particles could be demonstrated in 

dried material for 105 days at room temperature. Xu (1991) indicated that the virus was viable at 

least 413 days at -5ºC and 4.5 years at -70ºC lyophilized. Henning et al. (2005) laboratorial 

experiments on RHDV survival, showed that virus from tissue suspensions dried on cotton tape was 

able to survive at 60 °C for 2 days and at room temperature for 1–20 days, as confirmed by 100% 

mortality in inoculated rabbits. However, after 50 and 150 days at room temperature, only one of 

two rabbits inoculated with the same virus from dried cotton tape succumbed to the disease. These 

observations were obtained under laboratory conditions, and conclusions for field epidemiology of 

RHD are limited (Henning et al., 2005). Under laboratory conditions, McColl et al., (2002b) kept 

rabbit carcasses at 22 °C and collected liver samples up to 30 days post mortem. Samples taken up 

to 20 days post mortem were able to infect and kill susceptible rabbits, while those collected after 

26 and 30 days did not result in mortality and only some rabbits seroconverted (McColl et al., 

2002b). These results suggest that RHDV infectivity decreases over time and are in agreement with 

Henning et al. (2005) field observations (McColl et al., 2002b)(Henning et al., 2005). However, 

sample processing in McColl et al. (2002b) experiments might have affected the concentration of 

infectious RHDV used and resulted in failure to kill susceptible animals after 20 days. RHDV was 

shown to be resistant to pH=3.0 during 60 minutes (Xu and Chen, 1989) as well as 1h at 37°C or 

12h at 4ºC in 0.4% formaldehyde (Smid et al., 1989). However, the virus was shown to be 

inactivated when submerged 3 hours at 37ºC or 3 days at room temperature in 0.4% formaldehyde 

(Smid et al., 1989). 

 

1.3. Impact of climate and environmental factors on RHD outbreaks 
Seasonal patterns of RHD epidemics are observed, suggesting that some environmental or climatic 

conditions could trigger an RHD outbreak (Cooke et al., 2002)(Henning et al., 2005). These seasonal 

patterns may reflect differences in virus behaviour or survival (Cooke et al., 2000)(Cooke et al., 

2002). 
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In Europe, the initial RHD impact on wild rabbit populations appeared to have been strongly 

influenced by geography and climate, with the greatest declines in rabbit abundance occurring in 

Spain, Portugal and France (Cooke et al., 2002). In Spain most outbreaks were found to occur in 

winter or spring (Cooke et al., 2002). A similar pattern was observed in Australia (Cooke et al., 

2002). In the most favourable areas for rabbits, generally warmer with annual precipitation of 450 

mm – 500 mm, rabbit numbers had a small tendency to recover from RHD outbreaks (Cooke et al., 

2002). In marked contrast, in unfavourable areas, populations hardly recovered (Villafuerte et al., 

1995)(Cooke et al., 2002). 

In addition to virus survival, weather conditions also influence rabbit breeding, rabbit behaviour 

and the abundance of flying insects which are all interfering factors in RHD outbreaks (Henning et 

al., 2005). 

 

1.4. RHD Transmission 
The natural spread of RHD virus can occur either direct or indirectly (Ohlinger et al., 1993). RHD can 

be transmitted by direct rabbit-to-rabbit contact (with diseased rabbits or rabbit carcasses). The 

virus is present in all secretions and excretions of infected rabbits (Ohlinger et al., 1993) such as 

urine, saliva, nasal, eye secretions and sexual fluids during matting (Cooke et al., 2002). Also, the 

virus can be transmitted indirectly by mechanical vectors such as insects (Asgari et al., 1998)(McColl 

et al., 2002a), seabirds (Cooke et al., 2002)(MCcoll et al., 2002a) and rodents (Merchán et al., 2011) 

or by fomites including hay, food, bedding or contaminated burrows, water, clothing, shoes, cages, 

equipment and persons (Erber et al., 1991). The latter are especially important in small extensive, 

non-commercial holdings (Cooke et al., 2002). 

Chronically diseased individuals shed infective virus for several weeks after infection (Shien et al., 

2000). 

Although Argüello-Villares et al. (1988) suggested the RHD airborne transmission, reporting the 

development of RHD symptoms in rabbits sharing the same area but not the same cage with 

infected rabbits, no evidences of RHD airborne transmission were shown in either Henning et al. 

(2005) or Gehrmann and Kretzschmar (1991) work, which were not able to develop RHD symptoms 

nor RHDV antibodies in control rabbits kept in fly-free room at 50-cm distance from RHDV 

inoculated animals. 

In nature, the faecal-oral route of transmission is probably the most important (Morisse et al., 

1991)(Ohlinger et al., 1993), although disease can also be originated by the oral, nasal or parenteral 
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(i.m. or i.d.) routes (Argüello-Villares et al., 1988)(Henning et al., 2005). Faeces from surviving 

rabbits can be infectious for susceptible animals up to four weeks after infection (Gregg et al., 

1991)(Ohlinger et al., 1991). In Europe, the initial RHDV spread to wild rabbit populations was 

closely related with the transmission among commercial rabbitries (Cooke et al., 2002). Waste 

disposal from rabbitries and fresh cut herbage (green feed) used to feed domestic rabbits provided 

routes for RHDV spread in both directions between wild and captive rabbits (Ohlinger et al., 

1993)(Cooke et al., 2002). This contrasted with the situation observed in Australia, where the 

domestic rabbit industry is small and was not associated with the RHDV initial spread (Cooke et al., 

2002). 

 

1.4.1 The role of insects 
Insects are known to act as mechanical vectors in the RHD transmission (Barratt et al., 1998)(Crosby 

and McLennan, 1996). Flies and mosquitoes have been suggested to be involved in RHD long-

distance spread (Asgari et al., 1998)(Cooke et al., 2002)(McColl et al., 2002a). RHDV was detected by 

molecular methods in both flies and mosquitoes (Asgari et al., 1998)(McColl et al., 2002a) and its’ 

persistence in flies that feed on rabbit carcasses could provide an alternative mechanism for viral 

maintenance in an ecosystem between consecutive epidemics (Henning et al., 2005). 

Laboratory work indicated that the larger blowflies (Caliphora dubia, Phormia sp.) could be 

potential mechanical vectors implicated in the virus dispersal in Australia (Gehrmann and 

Kretzschmar, 1991)(Cooke et al., 2002)(McColl et al., 2002a), with contact transmission being the 

most probably route of infection (Asgari et al., 1998)(Cooke et al., 2002). Blowflies can retain RHDV 

in the gut for up to nine days after feeding on RHD-infected rabbits (Cooke et al., 2002). Oral 

and/or anal excretions of flies (flyspots) were found to contain viable virus and constituting a major 

potential source of the virus for oral or conjunctival transmission to rabbits (Asgari et al., 1998). 

Also bushflies, in particular Musca vetustissima, were shown to be involved in transmission, 

potentially transmitting RHDV between rabbits directly or indirectly through contaminated flyspots 

(Asgari et al., 1998)(McColl et al., 2002a). Bushflies feed naturally on both live and dead animals and 

are able to penetrate 3–4 layers of cells with their mouthparts, regurgitate during or after biting 

(McColl et al., 2002a). Given that bushflies can move 7–15 km per day, some authors suggested 

their role in RHDV spreading in Australia, from the Wardang Island to mainland but also to more 

distant places within mainland (McColl et al., 2002a). 
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Lucilia sericata and Calliphora vicina were among the species for which RHDV was regularly 

detected by RT-PCR (Cooke et al., 2002). 

Apart from flies, RHDV was also detected in mosquitoes (McColl et al., 2002a). Culex annulirostris 

was shown to transmit RHDV under laboratory conditions (Lenghaus et al., 1994)(Cooke et al., 

2002), supporting a role for mosquitoes in the epidemiology of RHD (McColl et al., 2002a). Also, 

under laboratorial conditions some fleas species, such as Spilopsyllus cuniculi and Xenopsylla 
cunicularis, were able to transmit the RHDV, and may also act as mechanical vectors in disease 

propagation (Lenghaus et al., 1994)(McColl et al., 2002a)(Cooke et al., 2002). 

 

1.4.2 The role of rabbit-sympatric mammalian species  
Some micromammals’ species are reservoirs and potential sources of RHDV (Merchán et al., 2011). 

Indeed, RHDV was detected in the liver of rabbit-sympatric micromammals, such as Mus spretus 

and Apodemus sylvaticus, demonstrating the capacity of RHDV to infect other species (Merchán et 

al., 2011). The infected specimens were apparently healthy suggesting that the infection did not 

lead to disease, but the presence of microscopic lesions was not confirmed (Merchán et al., 2011). 

Other evidences of the capability of RHDV to infect a wider broad of hosts came from serological 

surveys reporting the detection of RHDV antibodies in red foxes and scavengers living in sympathy 

with RHDV infected rabbit populations (Leighton et al., 1995)(Frölich et al., 1998)(Parkes et al., 

2004). This data may imply other species in the epidemiology and persistence of the disease 

(Merchán et al., 2011). 

 

1.4.3. The putative role of vehicles and human movements in the long distance spread of RHDV 
It is known that, in the swine industry, the contamination of transport vehicles and equipment used 

to move pigs from farms to harvest facilities most likely plays a role in the rapid dissemination of 

Porcine Epidemic Diarrhea Virus (PEDV) between farms and across vast geographic regions (Lowe 

et al., 2014). Also, a potential route of porcine reproductive and respiratory syndrome virus (PRRSV) 

transmission is the contaminated transport vehicle (Dee et al., 2004). Although, to our knowledge, 

there is no study on the risk of RHDV spread by transport vehicles, there is the same kind of 

concerns regarding transport by the veterinarians of the rabbit industry (Dr. José Monteiro, 

personal communication). In addition, as for swine (Lowe et al., 2014), transport vehicles are often 

shared by different rabbitries, favouring the spread of diseases (Dr. José Monteiro (Coren), personal 
communication). However, it is noteworthy that the “all in–all out” system used in the swine 
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industry (Lowe et al., 2014), as well in modern rabbitries (Dr. José Monteiro (Coren), personal 
communication), may limit the spread of disease due to contaminated transport vehicles (Lowe et 

al., 2014). 

It is also a fact that human movements have played an important role in infectious diseases 

dissemination and that it will continue to shape the emergence, frequency, and spread of infections 

in new geographic areas and populations (Wilson, 1995). The global movement of humans and 

materials and the concomitant changes in the environment, climate, technology, land use, human 

behaviour, and demographics converge to favour the emergence of infectious diseases caused by a 

broad range of organisms in humans, plants and animals (Wilson, 1995). Recent phylogenetic 

studies within the frame of this thesis (Chapter V, Studies 8 and 9) clearly showed the importance 

of human movements in the emergence of RHDV2 in the Azores and Madeira archipelagos. 

 

1.5. The effect of rabbit population dynamics on RHD impact 
The initial impact of RHD was greater in high-density rabbit populations of Spain, Portugal and 

Australia (Cooke et al., 2002)(Calvete, 2006), probably because high densities of susceptible rabbits 

favoured the transmission of the virus (Calvete, 2006). 

As the disease became enzootic, many populations continued to decrease and even became extinct 

(Calvete, 2006). However, despite the rapid transmission of RHDV in the Iberian Peninsula, five 

years were required for RHDV to reach most wild rabbit populations in Spain and a similar scenario 

was observed in France (reviewed in (Cooke et al., 2002)). Also, not all rabbit populations were 

affected when the disease emerged and some hunting reserves remained untouched (Cooke et al., 

2002). In addition, some rabbit populations made better recoveries than others (Calvete et al., 

2006). In Europe, the effect of RHDV on rabbit abundance showed a north-south gradient with the 

greatest declines recorded in Portugal and Spain (Calvete, 2006). 

To respond to the paradox of how RHDV caused huge mortality in some populations apparently 

persisting in others at high prevalence in the absence of disease, a few models have been created 

by a few research groups (White et al., 2002)(Calvete et al., 2006)(Fouchet et al., 2009). 

Some modelling studies on RHD, have explained the reduced impact of the disease in some 

populations as well as the differential impact of RHD along the north-south gradient in Europe with 

the existence of non-pathogenic protective RHDV-like viruses or pathogenic RHDV (White et al., 

2002). According to White et al. (2001) avirulent strains of RHDV could induce long lasting disease 

to balance their poor level of transmission. The White et al. (2002) model introduced the concept 
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that RHDV has two modes of transmission, that compete simultaneously for susceptible hosts, and 

seem to clarify the paradox of how RHDV can be highly prevalent in some populations, but with 

low or no mortality. According with White et al. (2002), a highly contagious and virulent pathogen 

may also utilize this avirulent alternative transmission mode. They showed that the basic 

reproductive number of avirulent strains depended on the life expectancy of rabbits, which varies 

between populations (White et al., 2001). In accordance, each strain could be locally selected in 

some areas but not in others and the diffusion of the virus between populations may explain their 

coexistence (White et al., 2001). The differences in host demography in the model determine 

whether avirulent transmission prevents large-scale mortality (as in most United Kingdom 

populations) or not (White et al., 2002). 

The Fouchet et al. (2009) model allows testing demographic (birth rate, host subpopulation size, 

level of connectivity between subpopulations), epidemiologic (transmission rate) and genetic (of 

both hosts and parasites) characteristics of the host-parasite interaction. According to Fouchet et 

al. (2009) despite their strong competitive advantage, highly virulent strains are unadapted to small 

subpopulations that go extinct rapidly, limiting the virus chances of colonizing other 

subpopulations. These strains seem to be better local competitors and are favoured when 

pathogen exchanges between subpopulations are more frequent. The trade-off between the 

persistence of the virus within subpopulations and its capacity to colonize other subpopulations 

leads to the selection of intermediate virulent strains, depending on several factors. When a factor 

favours the persistence of all strains, selection seems to favour more transmissible but also more 

virulent strains. In particular, a high birth rate, a low virus induced mortality, a high connectivity 

between subpopulations, a low local transmission rate and very large and very small host 

subpopulations favour highly virulent strains. On the contrary, genetic diversity, by decreasing the 

size of the host population available for each strain, generally selects for less virulent strains. The 

Fouchet et al. (2009) model also allows determining how strains features interplay with the 

subpopulation characteristics. In particular, a feedback exists between pathogen evolution and host 

demography and strains that invest in persistence (i.e. transmission over long periods by infected 

individuals) have no advantage in very small subpopulations. The differential success between 

virulent and avirulent strains depends on rabbit population characteristics (e.g., size, connectivity). 

The fact that no RHDV strain of intermediate virulence has been isolated in the field which is in 

contradiction with the Fouchet et al. (2009) model prediction of selection of intermediate virulent 
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strains, and can be justified by the physiological reason that makes RHDV either benign or highly 

lethal. 

Calvete et al. (2006) evaluated the impact of RHD on rabbit populations with a simple, age-

structured deterministic model that considered the existence of a unique pathogenic RHDV with a 

unique mode of transmission. These authors based their model in the observation that in most 

favourable areas for rabbits before RHD spread, there was a clear tendency for rabbit numbers to 

recover in geographically limited populations. Also, in Iberian wild rabbit populations, recovery 

from RHD was improved in the most suitable habitats (Villafuerte et al. 1995). According to the 

model, RHD could be substantially decreased by managing rabbit populations and RHD dynamics, 

principally by increasing the carrying capacity of the habitat and the productivity of rabbit 

populations in those areas where environmental conditions are favourable for the species. The 

long-term stable recovery of rabbit populations should hence be mainly based on improving 

habitat suitability (Calvete et al., 2006). Also, according to this model, when low density populations 

show an increased density, the impact of RHD raises substantially before the populations can reach 

densities at which disease impact starts decreasing. During this transitional process, other events 

affecting rabbits, such as flooding, hunting pressure, predation impact or other infectious diseases 

(e.g. myxomatosis), may slow rabbits recovery or even cause the extinction of rabbit populations. 

In brief, according to Calvete et al. (2006) the long-term impact of RHD is conditioned by 

population dynamics, in turn determined by habitat suitability and partially by climatic conditions. 

In accordance, the RHDV impact should be lower in populations located in the most suitable 

habitats. 

 

1.6. Management strategies to enhance wild rabbits’ populations 
Most Iberian rabbit populations are still declining and several management techniques have been 

employed to reverse this scenario and enhance wild rabbit populations’ growth for conservational 

purposes. Management actions for the wild rabbit aim at minimizing the impact of adult and 

juvenile high mortality, caused by viral diseases or predation, and incrementing the productivity of 

the population (e.g. warren building, food) (Ferreira and Delibes-Mateos, 2010). Population 

monitoring, adjusting hunting pressure, predator control, habitat management, restocking and 

rabbit vaccination are the most frequently employed management tools (Calvete and Estrada, 

2004)(Ferreira and Delibes-Mateos, 2010). 
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Evaluating the impact of these management techniques includes assessing basic biological 

parameters from natural populations, the use of standardised rabbit monitoring protocols 

producing systematic and periodic comparable results, assessing the impact of predator control, 

the costs/benefits of wild rabbit vaccination and the effectiveness of habitat management (Ferreira 

and Delibes-Mateos, 2010). 

In Portugal and Spain, conservation strategies of wild rabbit populations have usually been based 

on restocking operations and habitat management (Ferreira and Alves, 2009). These efforts have 

not been followed by an increase in rabbit population numbers, possibly as a consequence of lack 

of funds to maintain habitat management, high mortality associated to new disease outbreaks and 

poor knowledge of the most suitable places to introduce farmed raised animals (Ward, 

2005)(Ferreira, 2012)(Guerrero-Casado et al., 2013)(Ferreira and Ferreira, 2014). 

1.6.1 Population monitoring programs 
The establishment of a long-term programme using a standardized methodology for large-scale 

monitoring of rabbit abundance and trends in the Iberian Peninsula is imperative to understand the 

extent and causes of rabbit population declines at the Iberian level (Ferreira and Delibes-Mateos, 

2010). 

Under the frame of the Wild Rabbit Recovery Programme (PRECOB – programa de recuperação do 

coelho-bravo; Official Portuguese Governmental Journal 296/2007, 8-01), a national wild rabbit 

monitoring methodology and network named “INCOB” was created and implemented in the field. 

As reviewed by Ferreira and Delibes-Mateos (2010), this network used a standardised data 

gathering system on population parameters in areas where rabbits are keystone species. The 

system consists of a stratified sampling of four 250 m fixed linear transects along which rabbit signs 

are counted (latrines mainly), ideally twice a year (late spring and late autumn) and distributed over 

2x2 Km UTM square units. 

 

1.6.2 Hunting pressure 
Game management is one of the most readily available tools for rabbit recovery in hunting reserves 

and it may involve adjusting hunting pressure (e.g. hunting days, number of hunters) and hunting 

bags (number of rabbits harvested) (Ferreira and Delibes-Mateos, 2010). These adjustments are 

frequently made by hunters on their own initiative (Ferreira and Delibes-Mateos, 2010). In northern 

Spain, recovering rabbit trends were positively correlated with low hunting pressure (Williams et al., 
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2007). Nevertheless, these adjustments on hunting pressure per se are insufficient to assure rabbit 

recovery (Ferreira and Delibes-Mateos, 2010). 

 

1.6.3. Predator control 
Legal predator control is commonly used throughout the Iberian Peninsula to control 

overabundant game predator species that can potentially inflict damage in preys (Ferreira and 

Delibes-Mateos, 2010). However, predator control poses a serious threat to biodiversity, as 

frequently there is no true knowledge of the real predator population size or on the extent of the 

damages inflicted in prey populations, but also because it may affect target and non-target species 

(Ferreira and Delibes-Mateos, 2010). 

Currently, predator control is often associated with rabbit translocations, as it is believed that 

preventing predator activity can substantially increase rabbit survival during restocking efforts 

(Calvete et al., 1997). 

Overall, there is little information on the impact of this technique on target and non-target species 

in the Iberian Peninsula or even whether it accomplishes its final goal (Ferreira and Delibes-Mateos, 

2010). 

 

1.6.4. Habitat management 
As reviewed by Ferreira and Alves (2009), habitat management has become one of the most 

commonly used measures to restore wild rabbit populations by improving basic ecological 

resources availability, habitat quality and the carrying capacity of a given area. These measures are 

considered to be effective in Mediterranean ecosystems. The technique is generally low cost and of 

simple application while not inducing short- or long-lasting negative biological effects in native 

populations. Habitat management has a global positive impact on biodiversity by beneficiating 

both target and several other species. 

In areas with low rabbit densities, habitat management artificially mimics the species’ ability to 

impose structural alterations in the environment when abundant (Ferreira and Alves, 2009). These 

measures aim at improving global habitat quality, strongly influencing population survival and the 

success of other management techniques, such as restocking (Ferreira and Alves, 2009). Habitat 

management may include the improvement of shelter conditions to promote a quantitative and 

qualitative increase of breeding sites and refuge cover from predators (Ferreira and Delibes-

Mateos, 2010). These measures also comprise providing additional high quality food sources closer 
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to shelter patches through the establishment of pastures/crops or alternatively clearing scrubland 

(Ferreira and Delibes-Mateos, 2010). 

Habitat management techniques are widely used by game managers in hunting reserves in the 

south of Portugal as one of the first approaches to recover wild rabbit populations (Ferreira and 

Alves, 2009). 

 

1.6.5. Translocations/Restocking and captive breeding in semi-extensive enclosures 
Although common measures to increase rabbits’ populations, rabbit translocations and restocking 

are usually expensive and with generally low success (Calvete et al., 1997)(Ferreira and Delibes-

Mateos, 2010). The most important factors responsible for the failure include handling, capture 

stress and the impact of a new environment, greatly related to a high mortality rate both from 

predation and deterioration of the rabbits’ physical condition as a consequence of disease (Calvete 

et al., 1997). The critical adaptation period for restocked rabbits is of approximately 10 days, after 

which survival rates are greater (Calvete et al., 1997). Longer adaptation periods after rabbit 

translocation can minimize mortality (Ferreira and Delibes-Mateos, 2010). 

Rabbits used for restocking operations are usually wild specimens captured from large natural 

populations (Calvete et al., 1997). As these animals need to be protected from viral diseases to 

increase their chances of long term survival in the new environment, the usual transfer protocol 

includes vaccination and rabbits’ immediate release (Calvete et al., 1997). 

In recent years, the establishment of semi-extensive rabbit captive breeding enclosures has become 

widely used within the scope of conservation projects to obtain healthy and genetically pure 

rabbits for soft release of individuals into the wild (Ferreira and Delibes-Mateos, 2010). In the 

process, rabbits are allowed to adapt to their release site for a variable time period prior to release. 

This is an alternative to plain restocking (immediate release of previously captured rabbits from 

other sites) or translocations (transference of rabbits from one site to the other with or without an 

adaptation period) (Ferreira and Delibes-Mateos, 2010). 

1.6.6. Disease control and vaccination 
Vaccination campaigns of wild rabbit populations against RHD and myxomatosis in specific areas 

are some of the mitigation strategies proposed. Assuming they are effective in increasing antibody 

titres and, thus, preventing both diseases, they are management tools frequently used in the 

recovery of wild populations (Cabezas et al., 2006). Usually, rabbits with unknown immunological 
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status are captured by trapping or ferreting and vaccinated with commercial vaccines against both 

diseases to be released again ate the capture site. Trapping and handling of young rabbits may 

increase their mortality rates (Cypher, 1997)(Calvete and Estrada, 2000) and the efficacy of 

immunisation depends on the vaccine used and the physiological status of the animal (Calvete et 

al., 2004b). In addition, the proportion of the population that can be captured and vaccinated and 

the population dynamics are important in determining the efficacy of a vaccination campaign 

(Calvete et al., 2004b). To be effective, a large fraction of the population needs to be vaccinated 

every year (Calvete et al., 2004b). The long-term effects of vaccination on wild rabbits’ survival have 

not been examined and information on the efficacy of previous vaccination campaigns is scarce 

(Calvete et al., 2004b). In Calvete et al. (2004b) study, unvaccinated young rabbits between 180 and 

600 g were 13.6 times more likely to die than vaccinated young rabbits. In adults, vaccination was 

associated with a slight, but statistically non-significant, reduction in the mortality, suggesting that 

a high level of natural antibodies resulting from exposure to the field viruses overlapped the effects 

of vaccination. 

Another limitation of vaccination of wild rabbits’ relates to the fact that inactivated commercial 

vaccines, designed for domestic rabbits, have been used (Calvete et al., 2004b). A new generation 

of recombinant vaccines has been developed that are expected to be more effective (Bertagnoli et 

al., 1996)(Castañón et al., 1999)(Fernández-Fernández et al., 2001)(Bárcena et al., 2000)(Torres et al., 

2000), some of which were designed to be naturally transmissible (Torres et al., 2000), and 

specifically intended to be used in wild populations (see Chapter III, point “2. Review on RHD 

prophylaxis”). Since its emergence, several vaccines were released into the market for RHDV2 

control all to be administrated by parenteral route, therefore with restrict application to wild 

populations. 

 

Given the alarming impact of RHDV2 in the wild rabbit populations, the Portuguese Government 

has recently activated a plan aiming the control of the disease (Despatch 4757/2017 of May 31st) 

that includes several of the management strategies described above. 

 

In this chapter, two studies were included, namely Study 6, essentially epidemiological, where we 

investigated a RHDV2 outbreak in a wild rabbit breeding unit located in Barrancos and Study 7 that 

traced the passage of RHDV2 through the Berlengas archipelago from where the rabbit is currently 

being eradicated. 
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Study 6 
Six years after its emergence, what challenges still 
poses RHDV2 to the establishment of natural wild 

rabbit populations? 
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Introduction
Rabbit haemorrhagic disease virus 2 (RHDV2) is a small, fast-

evolving RNA virus belonging to the Caliciviridae family [1].

It is known that RNA viruses’ adaptability is the result of their 
extreme mutation frequency, as many genomic variants are created at 
a high generation rate [2]. Among them, non-synonymous mutations 
at one or more sites may alter the RNA virus phenotypes and virulence 
[3,4]. Indeed in RHDV infections, like for other viruses, antigenic drift 
(minor changes in surface generated through point mutations) render 
hosts susceptible if at least a portion of the population has not been 
previously exposed to the new antigen(s) [5].

The mean evolution rate for RHDV based on the analysis of 
complete capsid gene sequences was estimated in 5.48 to 7.7 × 10-4 
substitutions/site/year [6,7]. It has been suggested that the emergence of 
virulence occurred in the first quarter of the 20th century in a different 
host until it jumped to Oryctolagus spp. in China, where the disease was 
first reported in 1984 [7-9]. A similar process of lagovirus species jump 

was proposed for the emergence of RHDV2, although its putative host 
was not yet identified [8].

Although genetically related with RHDV, RHDV2 emergence in 2012 
in Portugal had a tremendous impact in wild rabbit populations and was 
a major drawback for the re-introduction of the captive-bred Iberian lynx 
(Lynx pardinus), the most endangered wild felid in the world.
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Abstract
As key prey, the wild rabbit downsize constitutes a major drawback on the endangered Iberian lynx (Lynx 

pardinus) re-introduction in the Iberia. Several captive breeding units mostly located in Alentejo, endeavour the wild 
rabbit repopulation of depleted areas assigned for the lynx re-introduction.

Here we report an RHDV2 outbreak that occurred in early 2016 in a wild rabbit captive breeding unit located 
in Barrancos municipality. The estimated mortality rate between March and April 2016 was approximately 8.67%. 
Anatomopathologic examination was carried out for 13 victimized rabbits. Molecular characterization was based on 
the complete vp60 capsid gene.

The 13 rabbit carcasses investigated showed typical macroscopic RHD lesions testing positive to RHDV2-
RNA. Comparison of the vp60 nucleotide sequences obtained from two specimens with others publically available 
disclosed similarities below 98.22% with RHDV2 strains originated in the Iberia and Azores and revealed that the two 
identical strains from Barrancos-2016 contain six unique single synonymous nucleotide polymorphisms.

In the phylogenetic analysis performed, the Barrancos-2016 strains clustered apart from other known strains, 
meaning they may represent new evolutionary RHDV2 lineages. No clear epidemiological link could be traced for 
this outbreak where the mortalities were lower compared with previous years. Yet, network analysis suggested a 
possible connection between the missing intermediates from which the strains from Barrancos 2013, 2014 and 2016 
have derived. It is therefore possible that RHDV2 has circulated endemically in the region since 2012, with periodic 
epizootic occurrences.

Still, six years after its emergence in wild rabbits, RHDV2 continues to pose difficulties to the establishment of 
natural wild rabbit populations that are crucial for the self-sustainability of the local ecosystems.
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Wild rabbits are the main component of Iberian lynx diet and a 
keystone species on the equilibrium of the Iberian ecosystem [10]. 
Endemic to the Iberian Peninsula [11], the Iberian lynx population 
size dramatically decreased during the 20th century [12]. In 2002 was 
declared ‘critically endangered’ (CR) by the International Union for 
the Conservation of Nature (IUCN) [13,14]. Major efforts (Action 
Plan for the Conservation of the Iberian Lynx in Portugal; Iberian 
Lynx exsitu Conservation Programme; projects under the European 
LIFE Programme [Lince Moura/Barrancos - LIFE06 NAT/P/000191; 
Habitat Lince Abutre - LIFE08 NAT/P/000227; Iberlince - LIFE10 
NAT/ES/000570], among others) have been made in the last decade to 
reverse the decline of this species. As a result, in 2015, the Iberian lynx 
species status was shifted to “Endangered” (EN), due to the increase 
of the populations in Spain. However, the RHDV2 emergence in 
Portugal in 2012 almost decimated the entire wild rabbit population in 
particular niches of mainland [15,16] and Azores [17]. A comparable 
scenario was also observed in Spain [18]. Although both Oryctolagus 
cuniculus subspecies are equally affected by RHDV2 [15,18], the 
susceptibility of the subspecies O. cuniculus algirus acquires special 
importance considering its restricted distribution to southwest 
[15] and the dramatic implications of RHDV2 outbreaks on its frail 
conservation status [16,18]. O. cuniculus algirus is a key prey species for 
several carnivores, including the Iberian Lynx and the Iberian imperial 
eagle (Aquila adalberti), both emblematic and endangered species in 
Portugal, and a population downsize may lead to a series of major 
ecological and economic problems [19].

To counteract the effects of RHDV2 on the decrease of wild rabbit 
populations in Portugal, several measures were implemented among 
which restrictive hunting regulations and captive breeding of wild 
rabbits for subsequent return to wildlife. Rabbits restocking efforts have 
been recently reinforced to repopulate depleted areas in the sequence 
of RHDV2 outbreaks as a measure to fasten self-sustainable population 
establishment. Wild rabbits are breed in captivity units and set free in 
areas assigned either for cinegetic activity or for the Iberian lynx re-
introduction. For the latter purpose, most units are located in Moura 
and Barrancos municipalities.

Since its first detection in Portugal in 2012 [15], RHD has been 
observed in some of those wild rabbit breeding units. However, to 
date, none of these past outbreaks were characterized and publically 
reported. 

Here, we describe an RHDV2 outbreak in a wild rabbit captive 
breeding unit, built in 2004 for the wild rabbit repopulation of the 
Noudar Nature Park, one of the possible sites for future conservation 
translocations of the Iberian lynx. Phylogenetic analyses were carried 
out to assess the variability and putative relation of two RHDV2 
Barrancos-2016 strains with other strains obtained previously in 
the unit, the first time in late December 2012, as well as with strains 
from the South, envisaging to unravel possible links between different 
outbreaks. 

Materials and Methods
Samples and inquiry

A total of 13 victimized rabbits collected between March and 
April 2016, were investigated at Instituto Nacional de Investigacao 
Agraria e Veterinaria (INIAV). An inquiry was carried out to gather 
epidemiologic information on the wild rabbit captive breeding unit 
regarding its exact location and surroundings, extension of the parks, 
road accesses and animal imports (dates and animal number).

Estimation of density and mortality in 2016

Direct counts are difficult since these animals spend most of the day 
hidden in their warrens, making indirect counting methods preferable. 
Rabbits’ abundance was therefore estimated based on the intake of 
commercial dry rabbit food, supplied weekly to each park, assuming it 
was the main food source and that the average consume per rabbit per 
week is about 1 kg.

Mortality rates were estimated comparing the animal density 
inferences, calculated as described above, before and after disease 
outbreaks. In the unit, enumeration methods [20] (collection of 
cadavers) are used quite rarely for mortality estimations since they can 
contribute to bias results and underestimate mortality numbers as a 
consequence of pre-emergence death (before litters’ emerge from the 
nest) and predation [21].

Anatomopathological examination

Necropsies were carried out at the University of Evora. Liver and 
lung samples were collected and sent to INIAV for histopathological 
examination. Samples were fixed in 10% buffered formalin and 
embedded in paraffin by standard procedures. Five micrometer-thick 
sections were stained with haematoxylin and eosin (H & E) prior light 
microscopy examination.

Virological examination

Liver and lungs samples were homogenized with phosphate 
buffered saline (PBS) and clarified at 3,000 g for 5 min. DNA and RNA 
were extracted from 200 µl of the clarified supernatant in a BioSprint 
96 nucleic acid extractor (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. RHDV2-RNA was assessed by RT-qPCR 
[22] using the One Step RT-PCR kit (Qiagen, Hilden, Germany). 
Screening for classical RHDV strains was performed by conventional 
RT-PCR followed by sequencing analysis of the amplicons obtained 
with primers RC-9 and RC-10 [23], also using the One Step RT-PCR kit 
(Qiagen, Hilden, Germany). Myxoma virus was investigated by qPCR 
as described by Duarte et al. [24] with the FastStart TaqMan Probe 
Master Kit (Roche, Roche Diagnostics GmbH, Manheim, Germany). 
Cq values above 40 were considered negative.

Sequencing analysis, multiple alignments and genetic 
distances

Amplification of the full vp60 sequences was accomplished 
by two overlapping fragments obtained with primers 
27F (5’-CCATGCCAGACTTGCGTCCC-3’) and 986R 
(5’-AACCATCTGGAGCAATTTGGG-3’) and with primers 717F 
(5’-CGCAGATCTCCTCACAACCC-3’) and RC10R [23].

Sequencing was carried out using a BigDyeTM Terminator cycle 
sequencing kit (Applied Biosystems, Foster City, CA, USA) and the 
nucleotide sequences  determined on an automated 3130 Genetic 
Analyzer system (Applied Biosystems, Foster City, CA, USA). 
The complete vp60 sequences obtained from two animals (strains 
Barrancos1/PT16 and Barrancos2/PT16) were submitted to GenBank 
and attributed the accession numbers KX132812 and KX132813. 
Nucleotide alignments were performed with Clustal Omega [25].

The percent nucleotide variability among strains based on the 
vp60 gene (Table 2) and the genetic divergence between populations, 
inferred by the nucleotide differences and substitutions between viral 
populations, was calculated using the DnaSP software (Version 5.10.01) 
[26],  in order to further explore the genetic relationships among 



Citation: Carvalho CL, Rodeia J, Branco S, Monteiro M, Duarte EL, et al. (2016) Tracking the Origin of a Rabbit Haemorrhagic Virus 2 Outbreak 
in a Wild Rabbit Breeding Centre in Portugal; Epidemiological and Genetic Investigation. J Emerg Infect Dis 1: 114. doi:10.4172/2472-
4998.1000114

Page 3 of 8

Volume 1 • Issue 4 • 1000114J Emerg Infect Dis, an open access journal 
ISSN: 2472-4998

strains. Strains from the same geographic origin and year of collection 
were included in the same population.

Phylogenetic analysis

The appropriated substitution model was determined resourcing to 
R software (R Development Core Team, 2009). The GTR model [27] 
with gamma-distributed rate variation across sites showed the lowest 
BIC and AICc values and was subsequently used to infer phylogenetic 
relationships using ML analysis. Robustness of the tree nodes was 
assessed by bootstrapping 1000 times.

For the Bayesian analysis the CLUSTAL Omega results were 
converted to the NEXUS format using Mesquite software [28]. The 
phylogenetic tree was obtained with a Bayesian inference of phylogeny 
throughout the MrBayes version 3.1.2 software that uses the Markov 
chain Monte Carlo simulation technique to approximate the posterior 
probabilities (PP) of trees [29,30]. MrBayes analysis was performed 
using the GTR model (nst=6) with gamma-shaped rate variation with 
a proportion of invariable sites (rates=invgamma). The analysis was 
run for 106 generations (ngen=106) with four chains of temperature 
(nchains=4), and each chain was sampled every 10th generations 
(samplefreq=10).

The graphical representation and edition of the phylogenetic trees 
were performed with FigTree v1.3.1.

The Network software (version 5.0) was used to reconstruct a 
network using haplotypes (vp60 gene) by median joining [31].

Results
Data collected from the inquiry revealed that the unit affected by 

RHDV2, located in Barrancos municipality near the Spanish border, 
encompasses one quarantine and four reproduction parks. The five parks 
are sited in holm oak woodlands, only accessible by sand-clay roads, 
and lay on a 999 hectare extension area delimited by two riversides: 
Southeast and within the national territory by the Múrtega River, and 
Northwest by the Ardila River, in the Spanish border (Figure 1). Parks 
1 (P1) and 3 (P3) are located closer to a busy road and therefore more 
exposed to human activity. In contrast, parks 2 (P2) and 4 (P4) lay on a 
more protected area, given their proximity to the riverside and, in the 
P4 case, also to a closed ore mine more distant from the roads.

The first animals (100 adults, 80 females and 20 males from 
subspecies O. cuniculus algirus) were introduced in 2004 (by the time 
of P1 construction) and originated from captive-bred wild populations 
from Montemor-o-Novo, located 136 Km northwest. Introduction of 
additional O. cuniculus algirus rabbits from other breeding parks was 
performed regularly (Table 1). From the second half of 2013 afterwards, 
following the first RHDV2 outbreak a higher number of foreign bred 
rabbits, mostly originated from the Spanish Granada Province, were 
introduced into the parks (Table 1). The last introduction took place 
in 2015. The actual animal density is estimated in approximately 120 
animals per hectare (≈1500 rabbits over a 12.5 hectare area). Rabbits are 
vaccinated against myxoma virus and classical RHDV and identified 
with a tattoo or ear tag before release. No other prophylactic measures 
besides a coccidiostatic administration through the feed are carried out.

Mortality by RHDV2 had been observed in the parks since 2012 
(Table 1).

In 2016, the first RHDV2 fatalities occurred in March, affecting 
rabbits of all ages from P1, P2 and P3. No casualties were registered in 
P4. Until April 2016, the mortality rate was estimated at approximately 

8.67% (130/1500). No more casualties were registered from April 
onwards.

A total of 13 animals, corresponding to approximately 10% of the 
estimated casualties, were necropsied and epistaxis was observed in all 
animals. Haemorrhagic tracheitis, hepatic congestion and friable liver 
were also observed. In two animals, histopathology revealed congestion 
of the lungs and necrotic lesions in the liver.

All liver samples (n=13) were positive to RHDV2 by RT-qPCR [22] and 
negative to myxoma virus by qPCR [24]. Sequencing analysis of vp60 386 
bp long fragments ruled out the concomitant presence of classical RHDV 
strains.

The complete vp60 nucleotide sequences (1740 bp long) obtained 
from two animals (KX132812 and KX132813) showed to be identical 
(100% similarity). Comparison with complete vp60 sequences publically 
available revelead the presence of six unique single synonymous 
nucleotide polymorphisms (SNPs) at positions 618, 940, 1020, 1077, 
1440 and 1584. Blast analysis (14th June 2016) disclosed a similarity of 
about 98% with strain RHDV-N11 from Spain (KM878681) as well as 
with several strains from across Portugal mainland and Azores.

Year

No of 
Parks 
in the 
unit

Translocated animals
No. of 

animals

Causalities

No. Origin
No. of 

estimated 
casualties

Estimated 
mortality 

rate
2009 2 55 PT mainland unknownc unknownc unknownc

2010 2 173 PT mainland unknownc unknownc unknownc

2011 2 121 PT mainland unknownc unknownc unknownc

2012 (Dec)/ 
2013 (Jan)a 2 0 - 501 201 40.50%

2013  
(second half) 3 428 Spain and 

PTmainland unknownc - -

2014 4 664 Spain unknownc 60 10.70%
2015 5 500b Spain unknownc 208 41.60%
2016 
(Jan-April) 5 0 - 1500 130 8.67%

a-first outbreak of RHDV2 in the unit. b-approximated number. c-no records available

Table 1: Information on the number and origin of animals introduced into the unit 
between 2009 and 2015, estimated densities and registered casualties.

Figure 1: Aerial photo of the unit. The five parks and both rivers that delimit 
the unit are indicated by white arrows. The border between Spain and Portugal 
is highlighted by the yellow dashed.
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The 2016 strains were compared with four strains from Barrancos 
obtained in previous years from dead wild rabbits collected in the same 
unit, two in January 2013 (KF442963 and KF442964) and other two in 
February 2014 (KM115675 and KM115676), as well as with two strains 
from Mértola (KM115712 and KM115713), a municipality located 
81.22 km southwest from the unit, obtained in January 2014. The 
percent of nucleotide similarity among strains based on the vp60 gene 
(Table 2) and the nucleotide differences and substitutions between viral 
populations showed concordant values (Table 3). Besides the six SNPs 
already mentioned above, the Barrancos-2016 strains differed from 
the Barrancos-2013 and from the Barrancos-2014 strains in 26 and 
37 additional residues, accounting for a total of 32 and 43 mutations, 
respectively (Table 3). Interestingly, the Barrancos-2016 strains showed 
a slightly higher nucleotide similarity and lower nucleotide differences 
with the Barrancos-2013 strains than with Barrancos-2014 (Tables 2 
and 3). The nucleotide variability found between the Barrancos-2013 
and Barrancos-2014 strains (Table 3), involved 27 nucleotide variations. 
Regarding strains obtained in the same year in the Barrancos 
municipality, a similarity of 99.94% and 100% was observed. Among 
the oldest (2013 and 2014) and the 2016 strains, respectively (Table 
2). No elations could be taken regarding the cumulative nucleotide 
variation of RHDV2 since the collection of the biological materials in 
each year occurred always within a short period of one month. 

When comparing strains from the two municipalities, the 
Barrancos-2016 sequences (KX132812 and KX132813) showed 97.93% 
of similarity with the Mértola-2014 strains (Table 2), from which they 
differed in 31 nucleotides (Table 3).

The Bayesian tree constructed with the RHDV2 sequences 
presently available in public databases (May 2016) revealed that the 
Barrancos-2016 strains are more related with the Azorean strains 
(Figure 2) than with any other strain. The common branch for these two 
groups is supported by a high posterior probability of 0.94. While the 

position of the strains from Barrancos-2013 and Barrancos-2014 clearly 
differs from Barrancos-2016, their exact relationships with other strains 
from mainland South remains unresolved in the cladogram (Figure 2).

The ML tree (results not shown) presented the same topology of the 
Bayesian tree (Figure 2).

When all the strains obtained in the two neighbouring municipalities 
(Barrancos and Mértola) are compared, the Barrancos-2016 strains 
appear to be more closely related to the Mértola-2014 strains 
(KM115712 and KM115713) (Figure 2).

The phylogenetic network analysis (Figure 3) displayed a common 
putative intermediate ancestor for the RHDV2 Barrancos-2016 strains 
(KX132812 and KX132813) and those from Azores (KT000295, 
KT000303, KT000308, KT000311, KT000316-319, KT000322-25, 
KT000327, KT000329-330, KT000332-333, KT000336, KT000339, 
KT000341-343). 

Also, the Barrancos-2013 strain KF442964 seems to represent a 
putative ancestor of KF442963 as well as for a number of strains that 
circulated in the South from 2013 to 2015 and Centre at least in 2014.

The analysis suggests a lineage for putative missing intermediates 
from which the Barrancos and Mértola strains may have arisen 
independently, with Mértola-2014 strains (KM115712 and KM115713) 
exhibiting an additional missing intermediate.  Likewise, the network 
depicted an ancestral relation between the Barrancos-2014 strains 
(KM115675 and KM115676). Moreover, the two strains from Spain are 
more closely related with a strain from the North of Portugal mainland 
(KM979445), obtained from a wild rabbit in 2012 when the virus was 
first reported in the country [15]. 

Discussion and Conclusions
Immediately before release, the wild rabbits raised in the unit 

 
Barrancos Mértola

2016 2014 2013 2014

Geographic 
origin

Year of 
collection

Strain 
name Barrancos1PT16 Barrancos2PT16 CBBarrancos14-1 CBBarrancos14-2 7-13_

Barrancos
10A-13_

Barrancos
CBMert 

14-1
CBMert 

14-2

AC number KX132812 KX132813 KM115675 KM115676 KF442963 KF442964 KM115712 KM115713

Barrancos

2016
KX132812 - 100 97.53 97.59 98.16 98.22 97.93 97.93
KX132813  - 97.53 97.59 98.16 98.22 97.93 97.93

2014
KM115675   - 99.94 98.45 98.51 97.99 97.99
KM115676    - 98.51 98.57 98.05 98.05

2013
KF442963     - 99.94 98.74 98.74
KF442964      - 98.79 98.79

Mértola 2014
KM115712       - 100
KM115713        -

Grey indicates the range of similarities (from lighter to darker: 97.53-97.99%; 98.45-98.79%; 99.94%;100%)

Table 2: Percent similarity between nucleotide sequences of vp60 gene from RHDV2 strains originated in Barrancos and Mértola municipalities.

 Total No. of 
mutations

No. of fixed 
differences k Average no. of nt differences 

between populations
 

Populationsa compared Dxy Da Da(JC)±SD
Barrancos 2016 Vs. Barrancos 2014 43 42 28,500 42,500 0,02443 0,02414 0,02454 ± 0,01521
Barrancos 2016 Vs. Barrancos 2013 32 31 21,167 31,500 0,01810 0,01782 0,01804 ± 0,01123
Barrancos 2016 Vs. Mértola 2014 37 35 24,333 36,000 0,02069 0,02011 0,02041 ± 0,01285
Barrancos 2014 Vs. Barrancos 2013 27 25 17,667 26,000 0,01494 0,01437 0,01452 ± 0,00756
Barrancos 2014 Vs. Mértola 2014 36 33 23,500 34,500 0,01983 0,01897 0,01923 ± 0,01006
Barrancos 2013 Vs. Mértola 2014 23 20 14,833 21,500 0,01236 0,01149 0,01160 ± 0,00624

Table 3: Nucleotide differences and substitutions between the populations (defined as strains originated from the same municipality) considered in this study.



Citation: Carvalho CL, Rodeia J, Branco S, Monteiro M, Duarte EL, et al. (2016) Tracking the Origin of a Rabbit Haemorrhagic Virus 2 Outbreak 
in a Wild Rabbit Breeding Centre in Portugal; Epidemiological and Genetic Investigation. J Emerg Infect Dis 1: 114. doi:10.4172/2472-
4998.1000114

Page 5 of 8

Volume 1 • Issue 4 • 1000114J Emerg Infect Dis, an open access journal 
ISSN: 2472-4998

Figure 2: Bayesian analysis of the vp60 complete nucleotide sequences from the Barrancos-2016 strains obtained during this study and other RHDV2 strains 
available in Genbank. A phylogenetic tree was obtained with a Bayesian inference of phylogeny throughout the MrBayes v3.1.2 software, using the GTR model 
(nst = 6) with gamma-shaped rate variation with a proportion of invariable sites (rates = invgamma). The analysis was performed with ngen =  10^6, nchains = 4 and 
samplefreq = 10. The numbers included on each bootstrap represent the Bayesian posterior probability (PP). Only support PP values equal or greater than 0.70 
are shown in the tree. Sequence KC345614R (classic RHDV, not displayed) was chosen as outgroup to root the tree.
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are vaccinated against myxoma virus and classical RHDV. However, 
RHDV2 vaccination, a growing practice in the domestic rabbit industry, 
is not practiced in this unit. Vaccination of captive wild rabbits against 
RHDV2 may provide temporary protection against infection and 
acquired immunity may increase survival of vaccinated rabbits if 
contact with the field strains occurs seven to 10 days after vaccination 
up to one year [32]. Vaccination is crucial for the establishment of herd 
immunity, although it can also be used as an effective post-exposure 
tool, in particular situations, for disease control according to the OIE 
[32]. The difficult feasibility of vaccine administration prior return to 
the wild, and the limited immunity induced by a single boost raises 
doubts about its contribution to a faster reestablishment of natural wild 
rabbit populations. Since RHDV2 vaccines are not freely available on 
the market, their use requires special licenses from the Veterinarian 
Authorities. Vaccination of wild captive rabbits against RHDV2 was 
exceptionally authorised by Portuguese National Authority for Animal 
Health (DGAV) in a few other wild rabbit breeding units.

For the revival of wild populations, the development of natural 
immunity against RHDV2 is crucial. Many factors will affect infection 
outcome at the population level, such as strain virulence [9,33], herd 
immunity due to previous infections [4,34] population density, season 

of the year [7,35], anthropogenic changes in the environment [4], 
landscape [9] and viral transmission between populations [4,9,36].

The geographic features of the unit, circumscribed by rivers, may 
offer a natural barrier to animal movement which is expected to slow 
down virus dissemination within the parks, similarly to what was 
described for RHDV [7,37], giving the virus more time to evolve [9]. 
This might explain the genetic diversity found between the strains 
from this unit obtained across this 4-years period. Also, the rapid 
transmission of a pathogen will affect the local spread of the disease 
reducing the number of susceptible individuals [4]. Hence, RHDV2 
moderate virulence compared to RHDV, constitutes a selective 
advantage of this virus [9], as it was demonstrated that moderately 
virulent RHDV-related strains can invade wild rabbit populations with 
greater efficiency than highly virulent or non-pathogenic strains [9,33].

Interestingly, despite all the other parks in the unit were affected 
by RHDV2, there were no casualties recorded in P4. Since the virus 
first detection in the unit in 2012, animals from P4 seem to be 
passing unharmed. Although the factors behind the lower incidence 
of infection in P4 are not fully clarified, it is likely that its geographic 
isolation may have protected rabbits more efficiently from infection. 
However, the higher levels of humidity near the riverside probably also 

Figure 3: Median-joining phylogenetic network of RHDV2 viruses, constructed from the vp60 sequence data. Each unique sequence genotype is represented by a circle 
sized relative to its frequency in the dataset. Sequences are coloured according to their geography origin: black circles denote strains from mainland South including 
Alentejo (strains from Barrancos and Mértola are indicated vertically); dark grey circles, strains from Azores; white circles from mainland Centre; vertical divided circles 
from mainland North; light grey circles from Spain. Missing intermediates are represented by red losangles.
This network includes the sequences highlighted by grey background in the phylogenetic tree. Accession numbers where edited to include only numbers, eg “KF442961” 
is shown as “442961”: South (KF442961, KF442962, KM115680, KM115689, KM115692, KM115711, KM115695, KM115691, KM115682, KM115679, KM115667, 
KM115681, KM115690, KM115673, KM115671, KM115670, KM115668, KM115672, KM115694, KM115677, KM115712, KM115715), (KX132812, KX132813, 
KF442964, KF442965, KM115676, KM115675, KM115713, KM115714), Centre (KM115683, KM115701, KM115697, KM115684, KM115685), North (KM979445), 
Azores (KT000333, KT000324, KT000336, KT000332, KT000343, KT000342, KT000341, KT000330, KT000323, KT000319, KT000327, KT000325, KT000318, 
KT000295, KT000339, KT000329, KT000322, KT000317, KT000308, KT000316, KT000311, KT000303), Spain (KP129395, KP129396).
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favour mosquitoes, which are often implicated in disease transmission 
as mechanic vectors for RHDV [38], therefore puzzling this uneven 
occurrence of disease.

Also, an artificial boundary by electric fencing delimits each park 
adding up to the protection from predators given by several natural 
shelters located within the parks. Yet, the involving forestland provides 
suitable habitats for many free-ranging species including wild rabbits 
and small predators and scavengers such as badgers (Meles meles), 
mongooses (Herpestes ichcneumon), weasels (Mustela nivalis), foxes 
(Vulpes vulpes), stone martens (Martes foina), as well as birds of prey, 
often seen in the area, whose proximity with the parks may favour the 
direct or indirect contact with captive wild rabbits. Some predators 
and scavengers species can remove small animal carcasses from the 
site of death to other locations [39] and, concurring with that, a few 
specimens collected during this outbreak were damaged, probably 
due to scavenging. In fact, consumption of RHDV-victimized rabbits 
may be at the origin of the RHDV antibodies detected in red foxes 
and other predators and scavengers living in sympatry with affected 
rabbit populations [40-42]. These serological evidences pointed to the 
possibility of other species, apart from rabbits, being involved in the 
epidemiology and persistence of the disease [43].

Given the complex eco-epidemiology of RHDV2 depicted above, 
while efficient herd immunity is not achieved, serious difficulties may be 
posed to the establishment of self-sustainable wild rabbits populations 
in Baixo-Alentejo.

The phylogenetic analysis did not allow clarifying the origin of 
the infection since the Barrancos-2016 strains did not group with any 
other strain presently known, showing however to be more closely 
related with strains from Azores (supported by a PP of 0.85) (Figure 2). 
When looking to viruses originated in the same district, the Bayesian 
tree showed that Barrancos-2016 strains are more closely related with 
the Mértola-2014 strains than with other strains from Barrancos (pp of 
0.99). The Barrancos-2013 strains clustered with strains from the South 
and Centre of Portugal mainland, while the two Barrancos-2014 strains 
grouped independently in a more ancestral branch, contradicting the 
temporal structure with regards to the position in the tree. However, 
these results were further clarified by the phylogenetic network analysis 
performed (Figure 3) where missing intermediates from which the 
Barrancos 2013, 2014 and 2016 strains may have evolved, present a 
chronological relative correct position. Based on the phylogenetic 
analyses, the Barrancos-2016 could represent an independent 
introduction of RHDV2 from unknown origin. However, it is worthy 
of mention that the unit is located in a preserved area were hunting 
activity is not allowed, therefore movement of hunters, which could 
be implicated in the virus dissemination from other locations, did not 
account for the occurrence of the outbreak.

Despite disease reports in the last five years suggest that RHDV2 
may have circulated endemically in the region with epizootic 
occurrences, mortality was not observed in the immediate surrounding 
areas of the parks. Nonetheless, the possible involvement of the local 
wild rabbit population in the outbreak couldn’t be proven or excluded, 
since the outside area was not systematically investigated prior the 
outbreak, a limitation of this study. The new virulent Barrancos-2016 
strains could have evolved from previous circulating strains through 
cumulative mutations. The phylogenetic similarity with other strains 
isolated from Portugal, even though with no apparent geographical or 
epidemiological link, is more in favour of a common infection source 
rather than a less probable convergent evolution.

 Finally, regarding rabbit translocations, the last introduction 
of animals in the park took place in January 2015, 14 months before 
the 2016 fatalities. It is unlikely that the virus was introduced from 
the Spain park supplier, where no records of RHDV2 infection were 
reported. Furthermore, during the at least 15 day quarantine carried 
out before translocation, no clinical signs of disease were observed.

The mortality rate estimations can contain some bias, a limitation 
inherent to the used methodology and related to the fact that in P2 
and P3, in contrast with P1, rabbits have access to some seasonal 
natural food source, like acorn and grass, being also more vulnerable to 
predation, particularly by birds of prey. Nevertheless, the mortality rate 
estimated in 2016 was comparably lower than that observed in former 
years, namely in the outbreak between December 2012 and January 
2013 (≈200 victimized animals) when the virus was first detected 
in the unit. At the time, the centre encompassed two parks with 200 
and 300 animals, were a mortality rate of 42% and 39% (average 
40.5%) was registered. This lower mortality rate compared with other 
reported outbreaks may be the reflex of a gradual RHDV2 immunity 
development in wild rabbit populations and its passive transmission to 
the offspring, a promising sign towards the establishment of host-virus 
equilibrium.
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1. Abstract 
In the regular wildlife monitoring action carried out in the summer of the past few years, dead 

rabbits (Oryctolagus cuniculus) have been repeatedly found at the Berlenga Island. However, the 

origin of those deaths was never investigated. 

The rabbits’ population of the Berlenga Island, presently being eradicated, is a mixture of wild 

rabbits introduced in the island several centuries ago, with domestic rabbits brought into the island 

more recently. 

In this study, 11 rabbit cadavers collected between April and May 2016 were investigated for the 

cause of death.  

Tissue samples were screened for highly pathogenic agents, namely the haemorrhagic disease virus 

2 (RHDV2), the closely related RHDV, and myxoma virus (MYXV). Five animals tested positive to 

RHDV2 and all were negative for the other viruses. For six RHDV2-negative specimens, emaciation 

and parasitism were considered the most probable cause of death. Lesions identified in the 

RHDV2-positive rabbits included non-suppurative diffuse hepatic necrosis and pulmonary lesions 

varying from congestion and oedema of the lungs to interstitial pneumonia. Sequencing analysis of 

the vp60 gene obtained from two specimens showed identical vp60 sequences. Comparison with 

other known RHDV2 strains from public databases through BLAST analysis revealed a closer 

similarity with strains from Alentejo collected during 2013. Maximum Likelihood and Bayesian 

phylogenetic analysis showed that the 2016 strains from the archipelago have a higher 

resemblance with a group of strains mostly collected in the South of Portugal between 2013 and 

2014. These data suggest that RHDV2 may have been introduced on the Berlenga island a few 

years ago, having evolved separately from other strains due to insularity. 

 

2. Keywords: Rabbit haemorrhagic disease virus, RHDV2, wild rabbit, Oryctolagus cuniculus, 

Berlengas, Berlenga Island, UNESCO 

3. Introduction 
The Berlengas (Figure 1) is a small archipelago located 5.5 nautical miles (about 10 km) west off 

Peniche, a fishing town in the Portuguese Atlantic coast. It encompasses the Berlenga Island (1,500 

by 800 metres long with a surface area of 80 hectares), a group of small surrounding islets as well 

as two other more distant groups of islets (Estelas and Farilhões), being designated as Natural 

Reserve since 1981. 
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Berlenga is the only island that receives tourists, holding only a small group of houses used 

seasonally by local fishermen. During the 15th century, this island was a popular hunting royal 

province, probably due to the high population of European rabbits (Oryctolagus cunniculus), which 

exceptional abundance was reported already in 1465 (Amado et al, 2007). 

Presently, Berlenga is the only Island from this archipelago where wild rabbits are present, with a 

population size estimated at 38 to 133 individuals, calculated through several transects performed 

over 2015 and 2016 (Figure 2) (Oliveira N, unpublished data). It is assumed that rabbits of unknown 

origin were brought onto this island for the first time during the 15th century (Amado et al., 2007). 

Lighthouse keepers are known to have taken domestic rabbits into the island for backyard farming, 

on different occasions during the last two centuries. Those animals eventually escaped and mixed 

together with the remaining population (Amado et al., 2007). Recent molecular data analysis has 

proved the presence of domestic genome on Berlenga Island’s rabbits (Oliveira N, unpublished 

data). Over the last six centuries, rabbits have deeply changed the soil dynamics thereby speeding 

up erosion due to their digging behaviour (Amado et al., 2007). Also, the detrimental impact of 

Rattus rattus (Linneaus 1758) on the Berlengas ecosystem was recognized (Amado et al., 2007).  

Those reasons are leading a current process to eradicate rabbit and black rat populations from the 

Berlenga Island.  

In the last couple of years, an abnormal mortality of rabbits has been observed on the island by 

marine biologists that are regular visitors (Oliveira N, personal communication). However, neither 

infectious pathogens nor toxicological agents were ever investigated to determine the origin of 

those deaths. Furthermore, to the best of our knowledge, no serological or pathogen surveys have 

been conducted in the past on the rabbit population of the island. The only available data 

originates from a study on the ecology of rabbits and black rats (Rattus rattus) ectoparasites (Pinto, 

1995). 

Among the pathogens that most severely affect rabbit, myxoma virus (MYXV) (Aragão, 

1927)(Fenner and Ratcliffe, 1965)(Sanarelli, 1898) and rabbit haemorrhagic disease virus (RHDV) 

(Liu et al., 1984) assume a major relevance and their rate of transmission in the wild is affected by 

fluctuations in the wild rabbits’ population density (Gonçalves et al., 2002)(Henning et al., 2005).  

Myxoma virus (MYXV), a large dsDNA virus, is a member of the Leporipoxvirus genus of the family 

Poxviridae, subfamily Chordopoxvirinae, (Kerr et al., 2015). It appears to be passively transmitted to 

European and American rabbits (Sylvilagus brasiliensis and S. bachmani) as well as to hares (Lepus 
europaeus) through the biting of insects that act as mechanical vectors, once the virus adheres to 
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their mouthparts (Kerr et al., 2015) (Kerr, 2012) (Brugman et al., 2015). In its natural host (S. 
brasiliensis) and in hares, MYXV rarely causes disease (Kerr et al., 2015), but European domestic and 

wild rabbits may develop a rapid systemic infection causing death in few days (Kerr et al., 2015). 

Rabbit haemorrhagic disease (RHD) is a highly contagious infectious disease of the European wild 

and domestic rabbits, caused by a virus of the Lagovirus genus, family Caliciviridae. RHD is 

characterised by high morbidity and mortality: 70–90% for RHDV/RHDVa and 5–70% for RHDV2 

(OIE Terrestrial Manual, 2016). The disease was first identified in 1984 in China (Liu et al., 1984). In 

Europe, RHD was first diagnosed in Italy in 1986 (Cancellotti and Renzi, 1991), soon becoming 

endemic in several countries (Abrantes et al., 2012). In the Iberian Peninsula, from where European 

rabbits originated and where they are key species of the ecosystem (Delibes-Mateos et al., 2008), 

the first outbreaks occurred in 1988 in Spain (Argüello Villares et al., 1988) and in the following year 

in Portugal (Anonymous, 1989)(Abrantes et al., 2012), causing severe reduction of the wild rabbit 

populations (Villafuerte et al, 1995)(Abrantes et al., 2012) and considerable economic losses in the 

rabbit industry (Argüello Villares et al., 1988). Despite the low level of genetic variation found, the 

molecular characterization of RHDV strains allowed the distinction of six well-defined phylogenetic 

genogroups (G1 to G6) (Nowotny et al., 1997)(Le Gall et al., 1998). 

In 2010, a new virus designated RHDV2 emerged with a distinct genetic and antigenic profile (Le 

Gall-Reculé et al., 2011). It was first identified in France in 2010 (Le Gall-Reculé et al., 2011), and 

rapidly spread to several European countries including Italy (Le Gall-Reculé et al., 2013), Spain 

(Dalton et al., 2012), Portugal (Abrantes et al., 2013), the United Kingdom (Westcott et al., 2014) 

and Scotland (Baily et al., 2014). Outside the European continent, RHDV2 was first detected 

between late 2014 and early 2015, in the Azores archipelago (Duarte et al., 2015a). More recently, 

RHDV2 was also reported in Australia (Hall et al., 2015), Finland 

(http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports) and North of 

Africa (Martin-Alonso et al., 2016). 

RHDV2 differs from RHDV in the clinical characteristics of the induced disease in terms of duration, 

mortality rates and the more frequent occurrence of subacute/ chronic forms (Le Gall-Reculé et al., 

2013). Furthermore, RHDV2 also affects young rabbits with less than two months old, often before 

they leave the burrows, as well as RHDV vaccinated rabbits that, although protected against 

classical strains, are susceptible to RHDV2 infection (Le Gall-Reculé et al., 2011)(Dalton et al., 

2012)(Le Gall-Reculé et al., 2013). In addition, RHDV2 is also able to infect hosts other than rabbits 
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as the virus was detected in cape hares (Lepus capensis) (Puggioni et al., 2013) as well as Italian 

hares (Lepus corsicanus) (Camarda et al., 2014). 

In Portugal, since RHDV2 cases were found (Abrantes et al., 2013), the former circulating classical 

RHDV genogroups, mostly G1-related strains in mainland (Muller et al., 2009)(Alda et al., 2010) and 

G5 in Azores (Duarte et al., 2014a), were no longer identified, suggesting that RHDV2 replaced the 

classical RHDV strains probably due to a selective advantage of this new virus by overcoming the 

existing immunity to older strains (Lopes et al., 2015). 

In this study, we aimed to investigate the cause of death of wild rabbits on the Berlenga Island, 

occurring in the spring of 2016. 

4. Material and Methods 

4.1 Sample collection 

The rabbits used in this study were collected on the Berlenga Island, Portugal, between April and 

May 2016, within the scope of the LIFE Berlengas project ("Conserving threatened habitats and 

species in Berlengas SPA through sustainable management", LIFE13 NAT/PT/000458). 

Eleven cadavers, consisting of seven females (64%) and four males (26%), were selected from a 

larger group, based upon their good preservation status. All collected specimens were weighed. 

Age was estimated upon tarsus and skull length (occipitonasal length), measured with a 

micrometre. Skull length was defined as the highest distance from the cranial extremity of the 

premaxillae (excluding the incisors) to the rear of the occipital crest. This age estimation was 

determined according to the equation first used by Southern (1940) (Southern, 1940) and revised 

by Dunnet (1956) (Dunnet and Dunnet, 1956). Prior to freezing, liver samples were collected. All 

cadavers were then frozen at -20°C until necropsy.  

4.2 Virological examination 

At the National Reference Laboratory (INIAV), rabbit pathogens associated with high mortality 

rates, namely RHDV, RHDV2 and MYXV, were investigated. Liver samples from the 11 specimens 

were homogenised with phosphate buffered saline (PBS) and clarified at 3,000 g for 5 min. DNA 

and RNA were extracted from 200 µl of the clarified supernatant, corresponding to approximately 

50 mg of tissue, in a BioSprint 96 nucleic acid extractor (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. Samples were tested for RHDV2 by a specific RT-qPCR (Duarte et al., 

2015b). Screening for RHDV (Tham et al., 1999) was performed by sequencing of the amplicons 
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obtained with primers RC9F and RC10R (Tham et al., 1999). Conventional RT-PCR and RT-qPCR 

were performed with the One Step RT-PCR kit (Qiagen, Hilden, Germany). 

The presence of myxoma virus was investigated by qPCR (Duarte et al., 2014b), using the FastStart 

TaqMan Probe Master Kit (Roche, Roche Diagnostics GmbH, Manheim, Germany).  

For the real-time PCR systems described, undetectable Cq or Cq values >40 were considered 

negative. 

4.3 Nucleotide sequencing analysis 

Amplification of the complete vp60 sequences of RHDV2 strains was accomplished with two pairs 

of primers, 27F (5’-CCATGCCAGACTTGCGTCCC-3’) and 986R (5’-AACCATCTGGAGCAATTTGGG-3’), 

717F (5’-CGCAGATCTCCTCACAACCC-3’) (Duarte et al., 2015c), and RC10R (Tham et al., 1999) 

enabling the obtainment of two overlapping fragments. Both 717F and 986R are specific for 

RHDV2. The One Step (Qiagen, Hilden, Germany) kit was used, under the manufacturers’ 

recommendations. Sequencing was accomplished using the BigDyeTM Terminator cycle sequencing 

kit (Applied Biosystems, Foster City, CA, USA). 

The complete vp60 nucleotide sequences of two RHDV2 strains (GenBank accession numbers 

KY247124 and KY247125) were determined on an automated 3130 Genetic Analyzer system 

(Applied Biosystems, Foster City, CA, USA). 

4.4 Phylogenetic analysis 

The phylogenetic relationships between two RHDV2 vp60 sequences from the Berlenga Island with 

other RHDV2 sequences originated in Portugal mainland, Azores and worldwide, were investigated. 

Sequence KC345614 (from a classical RHDV strain belonging to genogroup G5) was chosen as 

outgroup to root the trees. 

 Multiple alignments of the nucleotide sequences were generated by CLUSTAL Omega (Sievers et 

al., 2011). 

Phylogenetic inference was performed by Maximum Likelihood (ML) and Bayesian methods. For ML 

analysis, the appropriated substitution model was determined resourcing to R software (R 

Development Core Team, 2011). The GTR model (Tavaré et al., 1986) with gamma-distributed rate 

variation across sites (GTR+G) showed the lowest BIC and AICc values and was subsequently used 

to infer phylogenetic relationships. Robustness of the tree nodes was assessed by bootstrapping 

1000 times. 



 

220 

 

For the Bayesian analysis, the CLUSTAL Omega results were converted to the NEXUS format using 

Mesquite software (Madison and Madison, 2009). The phylogenetic tree was obtained with a 

Bayesian inference of phylogeny throughout the MrBayes version 3.1.2 software that uses the 

Markov chain Monte Carlo simulation technique to approximate the posterior probabilities (pp) of 

trees (Huelsenbeck et al., 2001)(Ronquist and Huelsenbeck, 2003). MrBayes analysis was performed 

using the GTR model (nst=6) with gamma-shaped rate variation with a proportion of invariable 

sites (rates=invgamma). The analysis was run for 106 generations (ngen=106) with four chains of 

temperature (nchains=4), and each chain was sampled every 10th generations (samplefreq=10). 

The graphical representation and edition of the phylogenetic trees were performed with FigTree 

v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 

4.5 Necropsy and histopathological examination 

Necropsy and histopathological examination was carried out the Pathology Laboratory of the 

Faculty of Veterinary Medicine of the University of Lisbon. 

Organs collected from necropsy (liver and lungs) were submitted to fixation in 10% buffered 

formalin and processed for routine histopathological analysis. Sections were stained with H&E and 

Pearls Blue and microphotographs were obtained with a DP23 Olympus digital camera. 

5. Results 

5.1. Morphometric data 

Weight of the 11 selected rabbits varied between 330 and 600 g (10g sensitive scale). Mean tarsus 

and skull length was 44mm and 75mm, respectively corresponding to an estimated age of 43 to 83 

days. All RHDV2-positive rabbits were less than six months old. 

5.2 Virological examination 

Six liver samples were negative to RHDV2 and RHDV. The other five tested positively to RHDV2 by 

RT-qPCR (Duarte et al., 2015b). None of the eleven rabbits showed cutaneous myxomas or were 

positive to myxoma virus by qPCR.  

Sequencing of the complete vp60 gene obtained from two specimens confirmed the presence of 

RHDV2 circulating in the island. These vp60 sequences (KY247124 and KY247125) are identical 

(100% similarity). 
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5.3 Phylogenetic analysis 

Blast analysis of the Berlengas’ vp60 sequence showed higher similarity (99%) with strains from the 

South of Portugal mainland, in particularly with strains from Barrancos obtained in 2013. 

ML (Figure 3) and Bayesian (not shown) trees were consistent, showing that the strains from the 

Berlenga Island are most closely related (Bootstrap value of 75) with a major group of strains 

originated mostly in the South between 2013 and 2014. No clear resemblance was noticed with any 

strain collected more recently. 

5.4 Necropsy and histopathological examination 

The six RHDV2-negative rabbits, all aged less than six months, showed severe emaciation with 

reduced fat stores and muscle mass. The hair coat was in poor condition (rude and dull) and faecal 

material was adherent to the perineum. At necropsy, macroscopic lesions were neither observed in 

the liver nor in any of the other organs except for the small intestines that were distended, with 

inflammation and oedema of the jejunum and ileum. No bleedings or mucosal ulcerations were 

however found. In the fecal smear of the jejunum and ileum contents Eimeria spp. oocysts were 

observed (results not shown).  

Four of the five RHDV2-positive rabbits showed low body condition (score 1 in the 1 to 5 in body 

condition scoring for rabbits, according to PFMA, 2012). In all these specimens the noses were 

soiled by bloody discharge, and in three rabbits fluid faecal material in the perianal region was 

present. Organ preservation was considered good enough to assure lesions identification. Changes 

were mostly restricted to the respiratory apparatus and liver. Respiratory lesions, present in all 

rabbits, included congestion of the trachea, which contained serohaemorrhagic fluid, and 

congestion of the lungs. No signs of overt haemorrhage were detected. In all cases, there was 

discoloration and diminished consistency of the liver. Three rabbits, the same with soiled perianal 

region, showed distended caeca and had unsolidified faecal material in the colon. The fresh faecal 

smear analysis of the jejunum and ileum revealed the presence of Eimeria spp. oocysts. 

Histology analysis of the liver showed diffuse hepatocyte coagulation necrosis with no pattern 

distribution, supporting a diagnosis of diffuse non-suppurative acute hepatic necrosis. Most 

hepatocytes were karyolytic and only very few displayed karyorrhexis or pyknosis (Figure 4 A and 

B). In one case, the necrotic hepatic cells revealed vacuolated profile. Iron pigment deposition in 

Kuppfer cells was regularly seen. Lung lesions varied from congestion and alveolar oedema (n=2) 

to inflammatory infiltrates in the alveolar septa by mononuclear cells with atelectasis and 
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inflammatory cells in the alveolar lumen, consistent with interstitial pneumonia (n=3) (Figure 5A 

and 5B). 

6. Discussion and Conclusions 
Notwithstanding rabbit mortality at the Berlenga Island had not been investigated in previous 

years, our study clearly shows that RHDV2 was circulating in the island, at least since May 2016, and 

caused the death of five of the eleven rabbits investigated that died during the last spring. It is 

known that limited food availability and predation by dogs are also a cause for rabbit mortality in 

the island. Also, given the scarcity of fresh water in the island, the rabbit population of the island is 

highly dependent on the rainfall regime, with the mortality rate increasing during the dry months 

(Vicente, 1989).  Despite no detailed parasitological examination was carried out during this study, 

the five RHDV2-negative young found in April, presented signs of intestinal coccidiosis along with 

emaciation that could have contributed to their deaths. Also, apart from those findings, no lesions 

were found in the liver and lungs that could suggest haemorrhagic disease. The impact of 

coccidiosis, caused by Eimeria spp., in the European rabbit populations of the Iberian Peninsula was 

recently evaluated in two ecological regions of Spain, estimating the coccidian prevalence by the 

mean oocyst excretion levels detected in faeces. Although in both areas the oocyst per gram of 

faeces was generally low, six Eimeria species were identified (Silva et al., 2015). Among those (E. 
coecicola, E. perforans, E media, E. magna, E. irresidua and E. flavescens), E. flavescens is considered 

highly pathogenic for rabbits (Licois, 2004).  Curiously, the abundance and loads of Coccidia and 

nematodes in reintroduced rabbit populations in Spain showed no clear pattern with rabbit 

haemorrhagic disease prevalence (Bertó-Moran et al., 2013).Nonetheless, the impact of coccidea 

infection on morbidity and mortality of wild rabbit populations of the Berlenga Island was never 

investigated. 

Myxoma virus-DNA was not detected in any of the 11 rabbits tested. Furthermore, none of these 

animals exhibited skin lesions, oedema or signs of conjunctivitis suggestive of nodular 

myxomatosis disease. Also, the qPCR developed by Duarte et al. (Duarte et al., 2014b) has allowed 

to detect MYXV-DNA in several organs of wild rabbits (results not published, Duarbete et al.), which 

increases the confidence on the MYXV-PCR negative results obtained in the liver samples during 

this study. 
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RHDV2 infection was the cause of death of five rabbits from Berlenga Island collected in May 2016. 

However, given the reduced size of our sample, the positivity percentage of 45.5% (5/11 animals) is, 

most likely, merely indicative of the true mortality induced during the outbreak.  

The characterization of RHDV2 induced lesions is still limited compared with that regarding RHDV. 

Post-mortem examination of RHDV2-infected rabbits revealed macroscopic lesions consistent with 

haemorrhages in several organs including heart, trachea, thymus, lungs, liver, kidneys, and gut, as 

well as jaundice (Dalton et al., 2012)(Duarte et al., 2015c). The liver appearance was described as 

soft and pale (Duarte et al., 2015c). Histopathologic descriptions refer to haemorrhagic pneumonia 

and tracheitis, congestion of the liver and diffuse necrotizing hepatitis. Areas of focal necrosis were 

also described in the intestinal villi in the small intestine (Dalton et al., 2012). 

In the present report, lung lesions varied from simple congestion and alveolar oedema, indicating 

an acute evolution, to interstitial pneumonia suggesting a longer disease process. Haemorrhagic 

lesions were neither identified in the lungs nor in other organs, although rabbits consistently 

showed soiled noses, probably by blood tinged oedematous lung fluid. Interstitial pneumonia 

observed in three out of five rabbits have not been reported before in the post-mortem 

examination of RHDV or RHDV2 infected rabbits (Marcato et al., 1991)(McIntosh et al., 

2007)(Duarte et al., 2015c)(Lopes et al., 2015) It is possible that pneumonia could have eventually 

be due to a longer disease evolution or to bacterial infections occurring prior to the contact with 

the RHDV2. Inflammatory infiltrates by mononuclear cells are quite compatible with viral infection 

(figure 5B). 

In fact, the diffuse coagulation necrosis registered in the liver of all rabbits is only compatible with 

an acute or hyperacute course the disease possibly favoured by the low body condition of the 

rabbits. The type of necrosis with most of the cells karyolitic and without a defined pattern 

distribution is more in agreement with the lesions described in European Brown Hare Syndrome 

(EBHS) (Marcato et al., 1991), although the reports of RHDV and RDHV2 infected rabbits 

consistently refer to severe necrotic liver lesions (Marcato et al., 1991)(McIntosh et al., 2007)(Duarte 

et al., 2015c)(Lopes et al., 2015). 

In summary, death of the infected rabbits analysed in this study must have been due to acute 

hepatic failure with lung congestion and oedema occurring closer to death. The relevance of the 

interstitial pneumonia remains unclarified as no other infectious agents were investigated apart 

from the aforementioned leporid-specific viruses. The fact that the cadavers were not fresh limited 

the confidence and significance in any bacterial identification. 
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The phylogenetic results revealed that the 2016 strains from the Berlenga Island formed an 

independent cluster in closer proximity with a group of sequences obtained between 2013 and 

2014, mainly in the South of Portugal mainland. The higher resemblance with a group of older 

strains may suggest that RHDV2 was not introduced recently in the Island. Instead, and with 

accordance with the mortalities observed in the last years, RHDV2 introduction may have taken 

place a few years ago, circulating since then in the island. Because no intermediate strains between 

the Barrancos 2013 and Berlengas 2016 strains were found until the moment (results not shown), 

this possibility remains only hypothetical. Yet, the island geographic location may well have 

provided the necessary isolation for the Berlenga Island strains to evolve apart from other 

haplotypes that have been characterized in the latest years in Portugal mainland (Abrantes et al., 

2013) (Carvalho et al., 2016) and in Azores (Duarte et al., 2015c)(Almeida et al., 2015). Due to the 

advanced stage of rabbit eradication at the time samples were collected, no serologic study could 

be carried out which may have allowed to clarify if RHDV2 was introduced on the island prior the 

2016 outbreak. 

Given the island eco-geographic particularities, RHDV2 introduction may have occurred by several 

routes. Beside human means and mechanical action of arthropod vectors (Asgari et al., 

1998)(Cooke, 2002)(McColl et al., 2002), black rat may also have accounted for the viral 

introduction. Native from the Indian peninsula (Musser and Carleton 2005), the black rat is 

worldwide distributed (Brouat et al., 2014) and is the only rodent species found on the island 

(Amado et al., 2007). Although never demonstrated, similarly to Apodemus silvaticus and Mus 
spretus (Merchán et al., 2011), black rats from RHDV2 infected areas may have carried the virus to 

the rabbit population of Berlengas after being inadvertently transported by the boats that arrive at 

the island. Other possibilities concern resident birds of prey such as the Common Kestrel (Falco 
tinnunculus) and the Peregrine Falcon (Falco peregrinus) or vagrant birds as the Common Buzzard 

(Buteo buteo), that may also have carried contaminated leftovers from RHDV2 infected rabbits 

from Portugal mainland. Furthermore, Berlenga Island holds a large population of Yellow-legged 

Gulls (Larus michahellis), estimated near 13,150 individuals (Meirinho et al, 2014), which daily feed 

on waste treatment plants, farms and aviaries on the surrounding grounds of the Peniche 

municipality (located in mainland and which also includes the Berlengas archipelago) (Ceia et al., 

2014). No reliable data could be gathered regarding the occurrence of haemorrhagic disease in 

domestic rabbits in Peniche. However, abnormal mortality rates have been observed in wild rabbits 

from local game reserves, Atouguia da Baleia, Ferrel and Serra d'el-Rei, during the last years. 
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RHDV2 infections have been demonstrated in most of the national territory since its introduction in 

2012, drastically reducing the wild rabbit population in particular areas (Abrantes et al., 

2013)(Almeida et al., 2015)(Duarte et al., 2015c)(Lopes et al., 2015). Therefore, it is highly likely that 

the three Peniche neighbouring parishes were the game reserves are sited may have also been 

affected. The Berlenga Island location near the coast, support the hypothesis that the virus strains 

found in the island may have been introduced from the nearby RHDV2 affected geographical area. 

Direct contact with rabbit contaminated materials is therefore likely to have occurred since Yellow-

legged Gulls are commonly seen transporting dead corpses of several animals into the island 

including parts of rabbits (Oliveira N., personal communication). 

The exceptional terrestrial insular ecosystem of Berlengas encompasses unique characteristics 

(Catry et al., 2010). The archipelago provides nesting conditions for seabird species from the 

families Procellariidae, Hydrobatidae, Phalacrocoracidae, and Laridae, such as the Cory's Shearwater 

(Calonectris borealis), the Band-rumped storm-petrel (Hydrobates castro) only present in Farilhões, 

the European Shag (Phalacrocorax aristotelis), the Yellow-legged Gull and the Lesser Black-backed 

Gull (Larus fuscus) (Catry et al., 2010). Cory’s Shearwater, Band-rumped Storm-petrel and European 

Shag are classified as vulnerable by the Portuguese RedList Book (Cabral et al., 2005). The role of 

rabbits on deviation of the original ecology of the Berlenga Island is controversial. Besides the 

effect of rabbits, it is known that the decline of the unique endemic vegetation such as the Armeria 
berlengensi, Herniaria berlengiana, Pulicaria microcephala as well as the Lobularia maritime, and 

Frankenia laevis, is also a consequence of the acid excrements of the overpopulated Yellow-legged 

Gull and  competition by Ice plant (Carpobrotus edulis), an invasive plant native to South Africa 

brought into the island in the 1980’s and which threatens its natural vegetation biodiversity (Gomes 

et al., 2004). 

The current conservation policy of the Berlengas archipelago biological heritage, classified as of 

high interest, is due to its protected habitats and vulnerable surrounding marine ecosystem, one of 

the richest Portuguese seawaters for which it was considered Nature Reserve by UNESCO since 

2010. Aiming to guarantee the survival of several endangered species, a national plan to eradicate 

the rabbit and black rat population from Berlenga is in course. If successful, this study may have 

been the last opportunity to trace the RHDV2 passage through the Berlengas archipelago. 



 

226 

 

 
Figure 1. Berlengas Island, the major island of the Berlengas’ archipelago, located in the Portuguese 

maritime coast, and Peniche municipality (Portugal mainland) are marked on the map. 

 

 
Figure 2. Density of the wild rabbit population in the Berlengas Natural Reserve calculated through 

several transects performed over 2015 and 2016.
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Figure 3. Maximum Likelihood (ML) phylogenetic tree of the RHDV2 vp60 complete nucleotide 

sequences from the Berlenga island (2016) and others originated in Portugal mainland, Azores, 

Spain, France, Italy and Malta, available in Genbank. Bootstrap values (BS) are shown next to the 

nodes if equal or greater than 70. Sequence KC345614 (not displayed) was chosen as outgroup to 

root the tree. 

In the left side tree, the major groups are collapsed to facilitate visualization. a-HE800531, 

HE819400; b-JX106023, KC345611-12; c-HE800529, HE800530, HE800532 and FR819781; d-

JQ929052, KC907712 and JX106022; e-KM87868; f-KP129395; g-KM979445; h-KM115675-76; i-

KM115712-13; j-KT000295, KT000303, KT000308, KT000311, KT000316-319, KT000322-325 

KT000327, KT000329-330, KT000332-333, KT000336, KT000339 and KT000341-343; k-KX132812 

and KX132813; l-KM115684-5; m-KP129396; n-KJ957809 and KJ957810; o-KC741409; p-KP129397 

and KP129399. “M-o-Novo” refers to the municipality of Montemor-o-Novo. 

A close-up of the RHDV2 strains more closely related with the strains from the Berlenga Island is 

shown in the right side of the figure. 
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Figure 4.  Liver of rabbit positive to RHDV2. A - Diffuse hepatocyte coagulation necrosis with no 

pattern distribution. Most hepatocytes are karyolytic and only very few display karyorrhexis or 

pyknosis. B – Detail of A showing necrotic hepatic cells displaying karyorrhexis and pyknosis (H&E). 

 

 

                        
Figure 5.  Lung of rabbits positive to RHDV2. A – Alveolar congestion and oedema. B-Interstitial 

pneumonia with inflammatory infiltrates in the alveolar septa by mononuclear cells, which are also 

present in the alveolar lumen (H&E). 
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1. Summary on the phylogenetic and evolutionary methods used  
To better conduct the reader in the comprehension of this chapter and of the studies included 

within it, a summary on the methods used for phylogenetic analysis will be present next. 
 

1.1 Phylogenetic analysis 
The widespread use of phylogenies is a consequence of their importance to answer questions in 

biology, of the immense quantity of sequence data that have been produced and of the fact that 

sophisticated analysis can be currently performed by fast computers (Huelsenbeck et al., 2001). The 

reconstruction of phylogenetic trees is an utmost tool to study evolution and the most commonly 

used methodology to depict the historical associations of life (Saitou and Imanishi, 1989). A 

phylogenetic tree is a branch-like structure that illustrates ancestor–descendent relationships 

among organisms (Kong, 2015). 

A wide variety of inference methods that are actively propounded by different experts can be used 

for constructing phylogenetic trees from molecular data (Saitou and Imanishi, 1989)(Huelsenbeck 

et al., 2001). 

Estimating phylogenetic trees by, at least, two methods, adds confidence to the resulting analysis if 

the same results are obtained (Mount, 2008). The performance of phylogenetic methods is usually 

evaluated regarding their consistency (the ability to estimate the correct phylogeny with sufficient 

data), efficiency (the ability to quickly converge on the correct phylogeny), and robustness (the 

ability to estimate the correct phylogeny even when the assumptions of the phylogenetic method 

are violated). The latter, robustness, may be the most important criteria because the assumptions 

underlying phylogenetic methods are most likely violated with real data, and the ability to estimate 

a phylogeny correctly regardless of model violation is very important (Huelsenbeck, 1995). 

Molecular phylogenetics infers phylogenetic relationships from molecular sequence data to deduce 

the history that is more consistent with a set of observed data (Swofford et al., 1996). Sequences for 

phylogenetic analysis can be nucleotide or protein sequences which should align with each other 

along their entire lengths or, at least, have a common set of domains that indicate evolutionary 

relatedness (Mount, 2008). A phylogenetic analysis should be performed when the sequences 

produce a multiple sequence alignment (msa) in which their similarity is apparent by the presence 

of conserved positions (Mount, 2008). 
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Various evolutionary forces act on DNA sequences resulting in sequences change over time 

(Strimmer and von Haeseler, 2009). Any two sequences derived from a common ancestor evolving 

independently of each other eventually diverge and a measure of this divergence is called genetic 

distance, which plays an important role in many aspects of sequence analysis (Strimmer and von 

Haeseler, 2009). The computation of a matrix of genetic or evolutionary distances is one of the first 

steps of sequences analysis and calculates for every pair of sequences an estimate of the branch 

length separating them, where branch length is the product of time and rate of evolution 

(Strimmer and von Haeseler, 2009). 

The results of any phylogenetic analysis are conditional on the assumptions made in the analysis 

and the specification of the most appropriate model that fits the data, providing a statistical 

description of the DNA substitution rates (Huelsenbeck et al., 2001). Modelling assumptions that 

poorly fit the observations can lead to erroneous inferences (Huelsenbeck et al., 2001). If an 

evolutionary model accurately explains the observed DNA sequences, then data simulated under 

that model should be similar to the observations (Huelsenbeck et al., 2001). 

 

1.1.1. Models of sequence evolution (DNA substitution) 
Models of nucleotide or amino acid evolution are essential in the analysis of molecular sequence 

data (Swofford et al., 1996). They are tools that reduce the enormous complexity of the biological 

mutation process to a comparatively simple pattern that can be described by a small number of 

parameters (Strimmer, 1997). They specify a modus of substitution for nucleotides or amino acids 

at a given site and determine how the rate of substitutions is distributed over different positions in 

a sequence (model of rate heterogeneity) (Strimmer, 1997). 

The mathematical expression of a substitution model is a table of rates (substitution per site per 

unit evolutionary distance) in which each nucleotide is replaced by each alternative nucleotide 

(Swofford et al., 1996). A DNA sequence is composed by four nucleotides adenine (A), cytosine (C), 

guanine (G), and thymine (T), existing n = 4 different states for a sequence position (Swofford et al., 

1996). For DNA sequences, the nucleotide substitution process can be expressed or generalized by 

the Markov process that uses a 4 x 4 instantaneous rate matrix, the  instantaneous rate matrix Q,  in 

which each element represents the rate of change from nucleotide i to j during a time period 

(Strimmer and Haesler, 2009). The models summarized by the Q matrix fit in the class of models 

known as time-homogeneous time continuous stationary Markov models, all sharing three 

assumptions. The first is the Markov property meaning that, at any given site in a sequence, the 
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rate of change from base i to base j is independent from the base that occupied that site prior i. 
The second is homogeneity, meaning that substitution rates do not change over time and the third 

is stationarity, the relative frequencies of A, C, G and T are at equilibrium (Strimmer and Haesler, 

2009). 

Almost all of the DNA substitution models proposed are special cases of the Q matrix (Swofford et 

al., 1996). Within this general framework, several sub-models can be developed as the so-called 

time-reversible models, such as the most general time-reversible model (GTR) (Tavaré et al., 1986), 

which assume that for any two nucleotides the rate of change from i to j is always the same than 

from j to i (a = g, b = h, c = i, d = j, e = k, f = g in the Q matrix) (Swofford et al., 1996)(Strimmer and 

von Haesler, 2009). Once the Q matrix and the evolutionary model are specified, it is possible to 

calculate the probabilities of change from any base to any other during the evolutionary time by 

computing the matrix exponential (Strimmer and von Haesler, 2009). As reviewed by Swofford et al. 

(1996), most of the remaining models commonly used for maximum likelihood (ML) tree inference 

or estimation of pairwise evolutionary distances, can be obtained by restricting the parameters of 

the GTR matrix. The model of Tamura and Nei 1993 (TN93) is obtained by requiring that a = c = d 

= f, if the substitution types are divided into transversions, transitions between purines, and 

transitions between pyrimidines. Further restrictions on the GTR matrix parameters lead to other 

familiar models. Assuming that the equilibrium frequencies of all bases are the same and that all 

substitutions occur at the same rate, the model reduces to that of Jukes and Cantor 1969 (JC). The 

Kimura two-parameter model (K2P, 1980) considers that transitions and transversions occur at 

different rates, but still assumes equal base frequencies. This model (K2P) can be easily generalized 

to allow unequal equilibrium base frequencies giving rise to the Hasegawa (1985) model (HKY85), 

corresponding to the GTR model with the certain mathematical constraints. Likewise, the JC model 

can be generalised to allow for unequal base frequencies giving rise to the Felsenstein (1981) 

model (F81), also described as the “equal output” model by Tajima and Nei (1982). Felsenstein 

(1984) used a different model to accommodate unequal base frequencies in a two parameter 

model (the F84 model, formally described in Kishino and Hasegawa, 1989). The F84 model divides 

the substitution process into two components, a general substitution rate capable of producing all 

types of substitutions, and a within-group substitution rate that produces only transitions. 
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1.1.2. Methods for investigating the temporal signal and molecular clock of phylogenies 
Genetic sequences are designated ‘heterochronous’, or measurably evolving, if obtained at 

evolutionarily distinct points in time (Rambaut et al., 2016). Two sampling times are considered 

‘evolutionarily distinct’ if the corresponding genetic sequences differ by a measurable amount of 

nucleotide or amino acid substitution (Drummond et al., 2003). 

The sampling dates of heterochronous sequences contain information on the rate of sequence 

evolution and can be used to directly infer molecular phylogenies whose branch lengths represent 

time, the ‘time trees’ or ‘clock trees’ (Rambaut et al., 2016). Time-scaled trees can be estimated 

using several statistical approaches, such as Bayesian inference (Drummond et al., 2012), maximum 

likelihood (Rambaut, 2000)(Sanderson, 2003)(Yang, 2007), or heuristic methods (Drummond and 

Rodrigo, 2000). However, a molecular clock model, consisting of a statistical description of the 

relationship between observed genetic distances and time is required (Rambaut et al., 2016). Such 

models that allow the rate of evolution to vary among the branches of a phylogenetic tree have 

been developed and are generally referred to as relaxed or local molecular clocks (Huelsenbeck et 

al., 2000)(Kishino et al., 2001)(Drummond et al., 2006)(Drummond and Suchard, 2010). According to 

Rambaut et al. (2016), for the reliable estimation of a time-scaled tree it is important to confirm 

that the sequences contain a satisfactory ‘temporal signal’ meaning that there must be sufficient 

genetic change between sampling times to reconstruct a statistical relationship between genetic 

divergence and time. Exploring the degree of temporal signal in heterochronous sequences can be 

achieved using a simple regression-based approach. Regression of root-to-tip genetic distance 

against sampling time can be used as a simple diagnostic tool for molecular clock models. A linear 

trend with small residuals indicates that evolution will be adequately represented by a strict 

molecular clock. The same trend with greater scatter from the regression line suggests that a 

relaxed molecular clock model may be more appropriate. A strong non-linear trend suggests that 

evolutionary rate has systematically changed through time, and no trend indicates that the data 

contain little temporal signal and are unsuitable for inference using phylogenetic molecular clock 

models. The regression should be used as a data exploration tool rather than for formal hypothesis 

testing. 
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1.1.2.1. The TempEst software 

The program TempEst (Temporal Exploration of Sequences and Trees) is a tool for investigating the 

temporal signal and 'clocklikeness' of molecular phylogenies proposed by Rambaut et al. (2016). 

The software is a cross-platform, open source, graphical program for exploring heterochronous 

data, freely available from http://tree. bio.ed.ac.uk/. During its development, it was formerly known 

as “Path-O-Gen”. As input, TempEst takes a ‘non-clock’ phylogenetic tree (whose branch lengths 

are genetic distances), estimated using neighbor-joining (NJ), maximum likelihood (ML), or 

Bayesian approaches. Once loaded, the user provides sampling dates or ages for each sequence. 

In brief, the TempEst software can read and analyse contemporaneous trees for which all 

sequences were collected at the same time, and dated-tip trees for which sequences were collected 

at different dates, and that have not been inferred under a molecular-clock assumption to see how 

valid this assumption may be. It can also root the tree at the position that is likely to be the most 

compatible with the assumption of the molecular clock. 

 

1.1.3. Methods estimating phylogenetic trees 
Statistical methods to estimate evolutionary trees and test hypotheses on the evolutionary process 

are fundamental (Felsenstein, 1981) and there is a wide variety of inference methods proposed by 

different experts (Huelsenbeck et al., 2001). 

Maximum parsimony (MP) is a popular technique for phylogeny reconstruction (Steel and Penny, 

2000) and assumes that change is improbable a priori (Felsenstein, 1973). If, over the evolutionary 

time considered, the amount of change is small, parsimony methods are adequate statistical 

methods (Felsenstein, 1981). However, most data involve moderate to large amounts of change, 

and parsimony methods can be a statistically unsound producing an inconsistent estimate of the 

evolutionary tree (Felsenstein, 1981). 

Reconstruction methods based on more realistic models of molecular evolution became available 

(Douady et al., 2003) and model-based approaches have come to rival MP, and even dominate 

phylogenetic methodology (Steel and Penny, 2000). Even when parsimony is consistent, other 

methods incorporating models of evolutionary change make more effective use of the data 

(Swofford et al., 1996). Maximum likelihood (ML) is one of the most used alternatives (Steel and 

Penny, 2000). While MP seeks solutions that minimize the amount of evolutionary change required 

to explain the data, ML attempt to estimate the actual amount of change according to an 

evolutionary model (Swofford et al., 1996). 
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Other approaches may include distance-based methods that use transformed or inferred distances 

(Steel and Penny, 2000), reflecting the mean number of changes per site that have occurred 

between a pair of sequences since their divergence from a common ancestor (Swofford et al., 

1996). There are several distance matrix methods one of the most common is neighbor-joining 

(Saitou and Nei, 1987). Overall, under the same conditions, likelihood methods outperform distance 

methods in choosing the correct tree (Hueselnbeck, 1995). 

More recently, phylogeny Bayesian inference brought a new perspective to a number of issues in 

evolutionary biology, including the analysis of large phylogenetic trees, complex evolutionary 

models and the detection of the effects of natural selection in DNA sequences (Hueselnbeck, 2001). 

According to the strategy used for finding the best tree, methods for estimating phylogenetic trees 

can be classified into two categories. The “exhaustive-search” method, that consists in examining all 

or a large number of possible trees, often using the principle of minimum evolution or maximum 

parsimony (Saitou and Nei, 1987)(Saitou and Imanishi, 1989). The maximum-parsimony (MP) 

method and the maximum-likelihood (ML) method fit in this category. The “stepwise clustering” 

method consists in examining local topological relationships of a tree and construct the best tree 

step-by-step. The neighbor-joining (NJ) method and many other distance methods belong to this 

category) (Saitou and Imanishi, 1989). 

 

1.1.3.1. The neighbor-joining (NJ) method 

The neighbor-joining (NJ) method was proposed by Saitou and Nei (1987) and estimates 

phylogenetic trees from evolutionary distance data (Saitou and Nei, 1987). The principle of the NJ 

method is to find pairs of operational taxonomic units (OTUs or neighbours) that minimize the total 

branch length at each stage of OTUs clustering, starting with a starlike tree (Saitou and Nei, 1987). 

A pair of neighbours is a pair of OTUs connected through a single interior node in an unrooted, 

bifurcating tree (Saitou and Nei, 1987). 

According to Saitou and Nei (1987), the NJ method produces a unique final tree under the principle 

of minimum evolution and is applicable to any type of evolutionary distance data. The algorithm of 

the NJ method provides the topology and the branch lengths of the final tree. Unlike the standard 

algorithm for minimum-evolution trees, the NJ method minimizes the sum of branch lengths at 

each stage of OTUs clustering. Hence, the final tree produced may not be the minimum-evolution 

tree among all possible trees. The method is particularly useful when the number of sequences 

under analysis is in the order of hundreds or thousands. The NJ method constructs trees by 
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clustering neighbouring sequences in a stepwise manner. In each step of sequence clustering, it 

minimizes the sum of branch lengths and thus examines multiple topologies. However, for large 

data sets, NJ examines only a small fraction of the total number of possible topologies. Despite the 

NJ method is considered statistically consistent, if correct pairwise distances with no statistical 

errors are used, reconstructing the true tree, in practice, estimates of all distances are subject to 

statistical errors, producing eventually erroneous trees. Pairwise distances used for constructing NJ 

trees are estimated by the IE (independent estimation) method for a variety of mathematical 

models to incorporate varying degrees of complexity of nucleotide or amino acid substitution. The 

estimates obtained by the IE method are expected to have larger standard errors than those 

obtained by the SE (simultaneous estimation) method (Tamura et al., 2004)(Saitou and Nei, 1987). 

The evolutionary distance based on the TN93 model (Tamura and Nei, 1993) is one of the most 

sophisticated models of nucleotide substitution. 

 

1.1.3.2. Maximum Likelihood 

Felsenstein (1981) proposed a maximum likelihood (ML) method for inferring evolutionary trees 

using discrete characters such as nucleotide sequences (Felsenstein, 1981). 

As reviewed by Swofford et al. (1996), ML methods are conceptually simple and evaluate a 

hypothesis in terms of the probability that a proposed model of the evolutionary process and the 

hypothesized history would give rise to the observed data. 

To apply a ML approach, a concrete model of the evolutionary process responsible for the 

conversion of one sequence into another must be specified. Phylogenies are then inferred by 

finding the trees that yield the highest likelihoods (Sowfford et al., 1996). A Markov model is used 

to describe the evolutionary changes between character states (Rannala and Yang, 1996). Assuming 

that nucleotide sites evolve independently, the likelihood for each site can be calculated separately 

and the likelihood combined into a total value at the end. Having calculated likelihoods at each 

site, the joint probability that the tree and model confer upon all sites is computed as the product 

of the individual sites likelihoods (Swofford et al., 1996). The tree topology and branch lengths are 

treated as parameters (Rannala and Yang, 1996). Branch lengths and parameters in the substitution 

model are estimated by ML for each tree topology, generating the maximum likelihood value for 

that topology. The tree with the highest (maximum) likelihood is chosen as the best estimate of 

phylogeny (Rannala and Yang, 1996). Because the probability of any single observation is an 

extremely small number, the log of the likelihood is evaluated instead, so the probabilities are the 
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sum of the logs of the single-site likelihoods (Sowfford et al., 1996). A nonparametric 

bootstrapping method is used for evaluating the estimated tree significance (Felsenstein, 1985). 

In brief, a maximum-likelihood analysis consists of three parts. First, a model of evolutionary 

change for nucleotides or amino acids is specified. Then, based on this model, different hypotheses 

about the evolutionary history are evaluated in terms of the probability that the hypothesized 

history would give rise to the observed data. Finally, the hypothesis is selected that shows the 

highest probability (Swofford et al., 1996). 

When implemented with the same models of DNA substitution, ML outperformed NJ methods, 

confirming its general superiority under comparable conditions (Huelsenbeck, 1995). 

Due to its consistency, the ML method yields estimates that frequently have lower variance than 

other methods, and is often the estimation method least affected by sampling error (Petersen and 

Deddens, 2008). It also tends to be more robust in face of the models assumptions violations 

(Huelsenbeck, 1995). In fact, part of the ML method strength is that many models of sequence 

evolution, assuming identical distributions across sites, can safely assume that the substitution 

process at different sites have much in common, even if they are not exactly identical. Therefore, 

the major components influencing the evolution of sequences can be determined by just a few 

parameters (Swofford et al., 1996). 

 

1.1.3.3. Bayesian inference of phylogeny 

A Bayesian method for estimating phylogenetic trees was proposed by Rannala and Yang (1996) 

based on a quantity called the posterior probability of a tree, which is the probability that the tree 

is correct (Huelsenbeck et al., 2001). The Bayes’s theorem is used to combine the prior probability 

of a phylogeny with the likelihood to produce a posterior probability distribution on trees 

(Huelsenbeck et al, 2001). 

Rannala and Yang (1996) used a birth-death process (a continuous-time process that calculates the 

probability of a speciation event) to specify the prior distribution of tree topologies and divergence 

times (branch lengths) of the species under analysis and a continuous-time Markov process to 

model nucleotide substitution. For both processes, the parameters were estimated by maximum 

likelihood, i.e. the probability of observing the data. The posterior probability of each tree 

topology, conditional on the nucleotide sequence data and the estimated parameters, is then 

calculated. The best estimate of the phylogeny can be selected as the tree with the highest 
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posterior probability, the maximum posterior probability (MAP) tree, representing the best estimate 

of the evolutionary relationships among species (Rannala and Yang, 1996). 

In the Bayesian inference proposed by Rannala and Yang (1996) topologies and branch lengths are 

treated as random variables rather than parameters. 

The posterior probabilities are a measure of the reliability of the estimated phylogeny but involve a 

summation over all trees and, for each tree, integration over all possible combinations of branch 

length and substitution model parameter values and cannot be obtained analytically (Huelsenbeck 

et al, 2001). Hence, they must be approximated by numerical methods, of which the Markov chain 

Monte Carlo (MCMC) was proven the most useful (Yang and Rannala, 1997)(Huelsenbeck et al, 

2001). The MCMC method has revolutionized Bayesian inference (Huelsenbeck et al., 2001) and 

refers to the construction of a Markov chain designed to explore the posterior probability surface 

by integration over the space of model parameters. Trees are sampled at fixed intervals and the 

posterior probability of a given tree is approximated by the proportion of time that the chain 

visited it (Yang and Rannala, 1997)(Huelsenbeck et al., 2001). This means that the current tree is 

stochastically perturbed and a new tree is proposed, which is then accepted or rejected with a 

probability described by Metropolis et al. (1953) and Hastings (1970). If the new tree is accepted, 

then it is subject to further perturbation (Huelsenbeck et al., 2001). By evaluating the posterior 

probabilities of trees, a MCMC method visits only a small portion of all possible trees, avoiding the 

need to sum over all topologies (Yang and Rannala, 1997). A consensus tree is obtained from these 

sampled trees, and Bayesian posterior probabilities (PP) of individual clades, as expressed by the 

consensus indices, represent the clade credibility values (Douady et al., 2003). 

Bayesian analysis of the initial matrix of taxa and characters generates a MAP tree and estimates of 

uncertainty of its nodes, directly assessing the substitution model, branch length, and topological 

variables, as well as clade reliability values, all in a reasonable computation time (Douady et al., 

2003). 

1.1.3.3.1. Posterior probabilities (PP) and nonparametric bootstrapping (BS) 
Both posterior probabilities (PP) and bootstrap (BS) supports are of great interest to phylogeny as 

potential upper and lower bound of node support, but they are not interchangeable and cannot be 

directly compared (Douady et al., 2003). 

With Bayesian methods, reliability of the MAP tree nodes derives directly from corresponding PP 

(Yang and Rannala, 1997). Statistically, posterior probabilities have the advantage to be of 
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straightforward interpretation as they represent the probability that the corresponding clade is 

true, given the model, the priors, and the data (Huelsenbeck et al., 2002). They are not tightly 

correlated with ML bootstrap percentages as verified by Douady et al. (2003) and seem to be less 

conservative than BS, in turn an overconservative estimator of node reliability (Douady et al., 2003). 

Being more conservative, the bootstrap approach might be less prone to strongly support a false 

phylogenetic hypothesis and apparent conflicts in topology recovered by the Bayesian approach 

are reduced after bootstrapping (Douady et al., 2003). 

 

1.1.4. Other methods used in phylogenetic analysis 

1.1.4.1. Networks 

Huson and Bryant (2006) proposed defining a phylogenetic network as any network in which taxa 

are represented by nodes and their evolutionary relationships by edges, including phylogenetic 

trees. Modern systematics adopted phylogenetic trees as the integral component of the 

evolutionary model (Huson and Bryant, 2006). However, phylogenetic trees are branch-like patterns 

and oversimplification of more complex evolutionary processes have been considered as 

limitations of the approach (Huson and Bryant, 2006)(Huson et al., 2010)(Huson and Scornavacca, 

2010)(Moret et al., 2004)(Posada and Crandall, 2001). Some researchers argue that the multitude of 

plausible trees is best expressed by a network displaying alternative potential evolutionary paths in 

the form of cycles (Bandelt et al., 1999) and there has been an increase in the development and use 

of other phylogenetic networks to represent and analyse evolutionary relationships among 

organisms (Huson et al., 2010)(Kong, 2015). These phylogenetic networks are a generalization of 

evolutionary trees (Huber et al., 2015) and consist of connected graphs with cycles representing 

potentially complex patterns of evolutionary relationship (Huson et al., 2010)(Huson and 

Scornavacca, 2010) 

Several network construction techniques have been proposed, including rooted and un-rooted 

networks. Although the term ‘phylogenetic network’ is widely used referring to both rooted and 

un-rooted networks, the adjective ‘phylogenetic’ is unsuitable for un-rooted networks since they do 

not show direction, i.e. ancestor–descendant relationships. On the contrary, rooted networks depict 

hypotheses of evolutionary change in time, making the term ‘phylogenetic network’ appropriate 

(Kong, 2015). Furthermore, networks can represent explicit or abstract relationships between taxa 

(Huson and Scornavacca, 2010)(Huson et al., 2010). Explicit networks describe evolutionary 
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scenarios once the edges represent the evolutionary history of the nodes. In opposition, abstract 

networks, in which edges act as linkages, are evolutionarily and biologically uninformative and used 

as a tool for visualizing incompatible datasets (Kong, 2015). Rooted networks can be abstract or 

explicit, depending on the algorithm and interpretation, but most, if not all, un-rooted networks are 

merely abstract networks, that picture conflicts between trees and cannot narrate evolutionary 

history (Kong, 2015), since evolution is inherently rooted (Huson and Scornavacca, 2010)(Huson et 

al., 2010). 

There are two major types of un-rooted networks, the split networks and the quasi-median 

networks. The split network attempts to represent only bipartitions or splits in data, emphasizing 

their distinctive features (such as nucleotide differences), and the evidence that these splits provide 

for contradictory relationships (Dress and Huson, 2004)(Morrison, 2010). In these networks, internal 

nodes usually have no explicit meaning (Huber et al., 2015), only providing an implicit picture of 

evolutionary relationships (Huson and Bryant, 2005). The internal nodes in a split network do not 

necessarily correspond to hypothetical ancestors (Huson and Bryant, 2006). Quasi-median networks 

were developed to represent multi-state characters, often creating a network too large and 

complicated to be practical. To overcome this constraint, Bandelt et al. (1999) developed the 

median-joining algorithm to construct an informative sub-network of the full quasi-median 

network, guided by the minimum-spanning network (Kong, 2015). This network is addressed next 

in point “1.1.4.1.1. Median-joining networks”. 

Rooted phylogenetic networks include reticulate networks, constructed to model evolutionary 

history, wherein the evolution is suspected of being reticulate in nature. They provide an explicit 

picture of evolution once the edges have a direction with an evolutionary meaning (Huson and 

Bryant, 2006). In fact, the edges represent lineages of descent or reticulate events such as 

hybridization, horizontal gene transfer, or recombination, and all nodes correspond to hypothetical 

ancestors (Huber et al., 2015). 

1.1.4.1.1. Median-Joining networks 
One of the most popular un-rooted networks is the median joining network (MJN) proposed by 

Bandelt et al. (1999) for phylogeographic inference, increasing in popularity (Kong, 2015). 

The MJN algorithm combines the minimum spanning network (MSN) and quasi-median network, 

creating an intermediate-sized network in the process of overcoming the limitations of both 

methods (Barthelemy, 1989)(Bandelt, 1992)(Bandelt, 1995)(Kong, 2015). The method produces a 
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network containing multiple plausible trees in a single reticulating figure giving a more concise 

picture of the data (Bandelt, 1995) and requires msa with infrequent ambiguous states and the 

absence of recombination that would produce high-dimensional networks impossible to interpret 

(Kong, 2015). The MJ method begins with the minimum spanning trees, all combined within a 

single (reticulate) network (Bandelt, 1995). 

The shortcomings of the method are that it relies on distance-based phenetics (overall similarity 

instead of character transformations) and the lack of rooting (no direction or history). The approach 

cannot offer defensible evolutionary interpretations considering that evolution involves both 

change and time, and the lack of rooting removes time from the equation, meaning ancestor–

descendant relationships (Kong, 2015). 

 

1.1.4.1.1.1. The Network software 

MJN has several applications in evolutionary biology mostly because of the freely available 

software NETWORK (Bandelt et al., 1999)(Fluxus Technology, 1999; www.fluxus engineering.com). In 

NETWORK, MJN can be computed with multi-state data (including infrequent ambiguities such as 

N) in DNA, RNA, amino acid nucleotide sequences, microsatellites (STRs) and endonuclease data 

(Kong, 2015). Sequences must be aligned correctly and it is stipulated that ambiguous states are 

infrequent and recombination is absent (Bandelt, 1999). In the displayed graph, each circle 

represents a unique haplotype whose diameter is proportional to the number of sequences 

represented. Small solid circles indicate median vectors representing existing un-sampled 

genotypes or extinct ancestral sequences (Kong, 2015). 

The network can predict haplotypes, indicate where homoplasy is located, which sites mutated 

frequently, where a consensus sequence is, whether recombination is likely to have occurred, where 

to look for sequence errors, which haplogroups may be discerned, and so on. 

 

1.1.5. The R project for statistical computing 
The R software was developed by John Chambers and colleagues at Bell Laboratories (Lucent 

Technologies). It is a free software environment for wide variety of statistical (e.g. linear and 

nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering) and 

graphical techniques, and is highly extensible (r-project.org/about.html; accessed in 17-06-2017). 

As the software was designed around a true computer language, it allows users to add additional 

functionality by defining new functions and it can be extended easily via packages, most are 
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available through the CRAN family of internet sites covering a very wide range of modern statistics. 

(r-project.org/about.html; accessed in 17-06-2017). 

With more than 20 packages devoted to phylogenetics, the R software (R Development Core Team, 

2009) has become a standard in phylogenetic analysis (see http://cran.r-project.org/web/views/ 

Phylogenetics.html for an overview)(Schliep et al., 2011). 
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2. RHDV and RHDV2 genetic relations 
 

2.1 Pathogenic lagoviruses 
Pathogenic strains of RHDV can be divided into three groups, i) the classical RHDV genogroups 1 

to 5 (G1–G5) (Nowotny et al., 1997)(Le Gall-Reculé et al., 2003), ii) genogroup G6 (also designated 

RHDVa due to its distinct antigenic profile (Capucci et al., 1998), and iii) the recently emerged 

RHDV2, also referred as RHDVb (Le Gall-Reculé et al., 2011a). RHDV and RHDVa are 

phylogenetically related sharing more than 85% nucleotide similarity with RHDV2 (Le Gall-Reculé et 

al., 2011a)(Abrantes et al., 2013)(Dalton et al., 2012)(Le Gall-Reculé et al., 2013)(Esteves et al., 2015). 

RHDV emerged more than three decades ago (Liu et al., 1984), while RHDV2 was reported for the 

first time in 2010 (Le Gall-Réculé et al., 2011a). 

 

2.1.1. RHDV 
2.1.1.1 RHDV origin and evolution 

For RHDV, a wide number of phylogenetic studies have been published showing significant 

discrepancies among substitution rates and a substantial variation of the time span to the most 

recent common ancestor (TMRCA), placing the RHDV emergence in the past and making the 

evolutionary history of this virus as well as its geographic origins controversial among researchers 

(Hicks and Duffy, 2012). 

Two major hypotheses have been proposed to explain the origin of RHDV and the emergence of 

RHDV2: the evolution from pre-existing non-pathogenic virus (NP-LV) circulating in European 

leporids, and a virus jump to a new host species, the European rabbit (Esteves et al., 2015). 

 

2.1.1.1.1. RHDV evolution from pre-existing non-pathogenic viruses (NP-LV) 
Several authors share the hypothesis that RHDV originated from pre-existing NP-LV that circulated 

previously in Europe. This hypothesis was put forward after the detection of anti-RHDV antibodies 

in rabbit blood samples collected long before the first RHDV documented outbreak in 1984 (Moss 

et al., 2002), and after the discovery and characterization of different NP-LV strains from European 

rabbits (Capucci et al., 1996)(Moss et al., 2002)(Forrester et al., 2007)(Le Gall-Reculé et al., 2011b). 

Yet, while some suggested that highly virulent RHDV strains evolved a number of times 

independently close to 1984 (Moss et al., 2002)(Forrester et al., 2006a)(Forrester et al., 2006b), 
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others proposed that RHDV originated in a single event in China, from where it spreaded, causing 

severe epidemics worldwide (Kerr et al., 2009). 

 

2.1.1.1.1.1. Multiple and independent virulent RHDV evolution and emergence 

Moss et al., (2002) disclosed the existence of RHDV strains dating back to 1955 in the United 

Kingdom (UK). Their nucleotide sequences, which clearly predate the first RHD description, were 

obtained by nested RT–PCR from archived blood samples provided by healthy commercially 

supplied rabbits (Moss et al., 2002). The phylogenetic studies carried out by Moss et al., (2002) and 

Forrester et al. (2006a), which included these early 1950s sequences, showed that this sequences 

diverged from the strains detected in China. In addition, the pathogenic RHDV viruses that 

emerged in the UK in the early 1990s were also distinct from and pre-dating those emerging in 

China (Forrester et al., 2006a) (Figure 20). In this temporal contradictory scenario, Moss et al. (2002) 

and Forrester et al. (2006a) hypothesized that RHDV emerged in Europe from mutation of a 

previously circulating avirulent/non-pathogenic virus, to cause epidemic outbreaks in this 

geographic area independently of the Chinese epidemic virus (Moss et al., 2002)(Forrester et al., 

2006a). According to this hypothesis, virulence probably emerged multiple times independently 

around 1984, but at least twice, one in Europe and another in China (Forrester et al., 

2006a)(Forrester et al., 2006b). 
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Figure 20. Fraction of a maximum likelihood (ML) phylogenetic analysis performed by Forrester et al. (2006a) 

using partial RHDV capsid sequences. Viruses isolated from healthy rabbits are underlined and those isolated 

from rabbits presumed to have died from RHDV are in normal text. The “China 84” strain is marked in blue 

and two of the pathogenic strains from the UK are marked in green (“Ascot” and “Thetford 0199”). 

2.1.1.1.1.2. Unique emergence of virulence and virulent RHDV evolution 

Kerr et al. (2009) suggested that RHDV originated in China from where it spread to cause severe 

epidemics. According to the same study, the 1950s strains from UK taken as evidence for the long-

standing circulation of RHDV prior to the Chinese outbreak of 1984 (Moss et al., 2002)(Forrester et 

al., 2006a), corresponded most probably to modern contaminants (Figure 21) and, apart from them, 

no other evidences of the existence of RHDV-like viruses, distinct from RCV-like viruses, prior the 

first RHDV outbreak in 1986 were ever elicited in Europe. 
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Figure 21. Fraction of a maximum likelihood (ML) ML tree of the RHDV capsid gene performed by Kerr et al. 

(2009), showing the positions of three of the UK isolates sampled before 1984 (written in red) and their close 

relationship to more contemporaneous isolates. 

 

Based on the analysis of the complete vp60 gene, Kerr et al. (2009) estimated a mean evolution 

rate for RHDV of 7.7x10-4 nucleotide substitutions/site/year (ns/s/y) (with 95% highest probability 

density (HPD) values of 3.9x10-4 to 11.9x10-4 ns/s/y). These results indicated approximately one 

substitution per year in the 1740-nt complete capsid sequence (equivalent to two lineages 

diverging for 0.5 years). Also, NP-LV showed to be clearly divergent from each other and from 

RHDV with a common ancestor for all viruses dating back to more than 200 years, meaning RHDV 

did not originate form NP-LV recently. In this context, Kerr et al. (2009) suggested that virulent 

RHDV strains most probably emerged once, in the early XXth century, but were not detected until 

1984, when rabbits’ trade provided the opportunity for RHDV to spread from an established, but 

apparently cryptic, transmission cycle. 

For the lack of RHD detection prior to 1984, these authors pointed out two hypotheses. The first, 

considered that evolution of virulent RHDV took place in Asia in farmed European rabbits as the 

RHDV emergence in China matched a period of rabbit industrial production expansion. In the 

complex socio-political context involving China and its neighboring countries in the first half of the 

XXth century, avirulent/moderatly virulent viruses causing subclinical disease in rabbits could have 

evolved in this region without leaving records. Moreover, contact with non-pathogenic strains 

might have provided rabbits some degree of cross-protection against RHDV so that large-scale 

disease outbreaks may have been uncommon until production intensification. Interestingly, RHD 

was first described in imported rabbits that may have been immunologically naïve (Liu et al., 1984). 

Alternatively, Kerr et al. (2009) raised the less plausible hypothesis where a viral lineage could have 
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circulated undetected in Europe until 1986 despite spreading to China in 1984. From China, RHDV 

would have expanded around the world and back in Europe, where it may also have emerged from 

cryptic foci. 

 

2.1.1.1.2. The species jump hypothesis 
Other researchers, such as Esteves et al., 2015, argue that the former theory does not explain the 

abrupt emergence of highly pathogenic strains on several occasions in such a short period of time. 

These authors also pointed out that pathogenic and non-pathogenic viruses are phylogenetically 

distinct, suggesting that the pathogenic viruses did not directly originated from the non-

pathogenic ones. 

Moreover, several other arguments are in favour of the species jump hypothesis suggesting that 

RHDV was maintained in a yet unidentified host before it acquired the ability to infect European 

rabbits. The oldest TMRCA published for RHDV, implies that the coalescent of virulent RHDV 

antedates the emergence of RHD by almost seven decades. In the absence of an intermediate 

reservoir host, it is uncommon for the emergence of an acute, virulent virus to be so extensively 

decoupled from the appearance of its associated disease (Hicks and Duffy, 2012). Furthermore, the 

previously estimated mean substitution rates for the RHDV vp60 gene, suggested to range from 

5.48x10-4 ns/s/y (Alda et al., 2010) to 2.65x10-3 ns/s/y (Kinnear and Linde, 2010) with non-

overlapping 95% HPD intervals, were recently shown to be higher (Hicks and Duffy, 2012). In fact, 

after removing from the databases one misdated artefact RHDV taxon, namely a passaged lab 

strain used for vaccine production, responsible for depressing the RHDV capsid gene’s rate of 

evolution by 65%, the RHDV mean evolution rates based on the polymerase and capsid protein 

genes were estimated in 1.90x10-3 ns/s/y (95% HPD 1.25x10-3 to 2.55x10-3) and 1.91x10-3 ns/s/y 

(95% HPD 1.50x10-3 to 2.34x10-3), respectively (Hicks and Duffy 2012). This refinement placed the 

RHDV emergence relatively more recent, in 1918 (95% CI: 1893–1941), obviating the need for 

previously hypothesized decades of unobserved diversification of the virus (Hicks et al., 2012)(Le 

Gall-Reculé et al., 2013). 

In this new scenario, the species jump hypothesis has gained force in explaining RHDV emergence, 

with the evolution towards virulence having occurred in a species other than the Oryctolagus sp. 

rabbit (Le Gall-Reculé et al., 2013)(Esteves et al., 2015). The discovery of such reservoir host species 

would be crucial to support this hypothesis while facilitating the understanding of pathogenic 

lagoviruses emergence in rabbits and perhaps also in hares (Le Gall-Reculé et al., 2013). In the past, 
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some authors rejected the species jump based on the fact that RCV-like and RHDV isolates were 

closely related (and any virus that had recently jumped species boundaries was likely to have much 

deeper roots) and that there was no evidence for such a reservoir host (Kerr et al., 2009). 

According to Esteves et al. (2015), a likely candidate species from which the species jump might 

have occurred is the eastern cottontail rabbit (Sylvilagus floridanus), native to North America (Gibb, 

1990) (Esteves et al., 2015). Massive eastern cottontails from the United States were translocated 

into Europe by hunters in the 1960s, namely into France (1953 and 1972), Italy (1966), Spain (1980) 

and Switzerland (1982) (Lavazza et al., 2015a), although these introductions are poorly documented 

mostly because they were illegal (Esteves et al., 2015). Interestingly, RHDV and EBHSV emerged at 

around the same time, overlapping the introduction of the eastern cottontail in Europe (Esteves et 

al., 2015)(Lavazza et al., 2015a). 

The phylogenetic study carried out by Kinnear and Linde (2010) had already suggested the possible 

origin of RHDV and NP-LV among the diverse leporid fauna of North America. These authors 

estimated the most recent common ancestor (MRCA) of rabbit caliciviruses, including RCV (Capucci 

et al., 1996), to have existed around 1931 (95% HPD 1897–1961). This falls within the timescale of 

the development of breeds and husbandry methods for intensive rabbit production, which 

originated in North America and were introduced into Europe in the 1950s and 1960s (Lebas et al., 

1997)(Kinnear and Linde, 2010). 

A recent serological study by Lavazza et al., (2015a) on the role of eastern cottontails as a host, 

vehicle or reservoir of lagoviruses in Italy, showed seroprevalences of 18% and 33% for EBHSV and 

RHDV antibodies, respectively (these percentages were reduced to 11.9% and 14.3%, respectively, 

when considering titres equal to or higher than 1/20). However, with regard to RHDV serology, the 

titres detected were consistently too low to be considered directly induced by RHDV or by a cross-

reaction with EBHSV-induced antibodies. 

Esteves et al. (2015) hypothesized the original virus would have caused only a benign symptomatic 

infection in its natural host but lethal in the European rabbit following a species jump. A recent 

experimental work confirmed that cottontails are not susceptible to RHDV infection (Lavazza et al., 

2015a), as previously observed (Gregg et al., 1991), although susceptible to EBHSV with only 

sporadic cases of clinical disease (Lavazza et al., 2015a). Nevertheless, the prevalence of low titre 

RHDV-positive sera was higher than that for EBHSV, strongly suggesting the putative presence of a 

non-pathogenic lagovirus in cottontails genetically related to those found in European rabbits 

(Capucci et al., 1996)(Lavazza et al., 2015a). 
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Also supporting the species jump hypothesis is the recent report of cross-species transmission of 

classical RHDV to Iberian hares (L. granatensis) (Lopes et al., 2014). Two different classical RHDV 

strains were identified in Iberian hares collected dead in 1996 and 1998, respectively, representing 

two independent infections (Lopes et al., 2014) (Figure 22). Until then, RHDV was considered 

species-specific (Capucci et al., 1996)(Lopes et al., 2014). These evidences, along with RHDV2 

capacity to infect the Sardinian Cape hares (Lepus capiensis mediterraneus) (Camarda et al., 2014) 

(Figure 23) the Italian hares (L. corsicanus) (Puggioni et al., 2014) and the European brown hare (L. 
europaeus) (Lavazza A, personal communication) causing RHDV-like disease, are in favour of 

species jumps of lagoviruses between leporid species (Lopes et al., 2014)(Esteves et al., 2015). 

 

 

 
Figure 22. Fraction of the maximum likelihood (ML) tree of the vp60 capsid gene of lagoviruses performed by 

Lopes et al. (2014). The RHDV sequences obtained from Iberian hares are marked in red (accession numbers 

KJ943791 (1996) and KJ943792 (1998)) and group with other RHDV strains from genogroup G1. 
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Figure 23. Neighbor-Joining (NJ) tree performed by Camarda et al. (2014), evidencing that the strain Sr12 

RHDV2, the RHDV2 strain infecting the Italian hare (accession number KC741409), clustered together with 

previous identified RHDV2 strains, forming a distinct clade separated from RHDV and RCV. 

 

Esteves et al. (2015) considered that European leporids carry lagoviruses of two distinct origins, the 

NP-LV, which have evolved with leporids for a long time, and a second group including pathogenic 

strains that possibly emerged subsequently to species jumps from the S. floridanus and evolved in 

European leporids since. Moreover, according to these authors, pathogenic strains may correspond 

to pure cottontail viruses or recombinants of cottontail viruses and non-pathogenic viruses of 

European leporid species. 

 

2.1.1.1.3 Recombination in the basis of virulent RHDV emergence 
Besides the high mutation rates of RNA viruses, genetic variation may also arise by other 

mechanisms such as homologous recombination amongst closely related RNA molecules (Forrester 

et al., 2008). The rate of recombination seems to be variable and unique to each virus species and 

while some recombine very frequently, others appear to be constrained, showing little evidence of 

recombination (Forrester et al., 2008). 

McIntosh et al. (2007) suggested that genetic recombination between new and old RHDV could 

explain the emergence of highly pathogenic RHDV in Europe, with similarities with vp60 sequences 

of NP-LV predating 1984. Persistent RHDV infection in immunised laboratory-reared rabbits after 

virulent RHDV challenge (Gall and Schirrmeier, 2006), along with the discovery of RHDV antibodies 

in rabbits with no signs of disease implies RHDV circulation amongst healthy rabbits (Forrester et 

al., 2007), and the cognizance that different but related strains of RHDV circulate and overlap 
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geographically throughout Europe (Forrester et al., 2006a)(Forrester et al., 2006b) potentiating 

interactions between genomes and eventual recombination, constitute several arguments that 

support this hypothesis (Forrester et al., 2008). 

In fact, when studying the capsid gene of several RHDV strains, Abrantes et al. (2008) found 

evidences of recombination among the RHDV Hartmannsdorf strain, which showed different 

phylogenetic profiles depending on the region of the capsid examined. Forrester et al. (2008) 

identified frequent recombination events amongst RHDV strains, hence suggesting their key role in 

this virus the evolution. 

According to Forrester et al. (2008), most caliciviruses present three ORFs, with the non-structural 

region and the structural region as two separate ORFs. It is more likely for recombination to occur 

between the non-structural and structural encoding genes. This is not the case for RHDV, which 

does not show this ORFs division (Meyers et al., 1991b)(Parra et al., 1993). However, these 

researchers identified two single crossovers in two RHDV genomes at the homologous point where 

the ORF1 and ORF2 occur in other caliciviruses. This point corresponds to the cleavage site of the 

capsid gene during post-translational processing. 

Other recombinant RHDV strains showed evidence of a small insertion, involving a small region of 

≈500 bp from one virus genome into another (Abrantes et al., 2008)(Forrester et al., 2008). This 

insertion, located in the region of the p37/29 cleavage point lengths the cleavage point itself, 

possibly requiring high conservation in this region to facilitate the protease activity. Hence, 

recombination may be more prevalent here as sequences are conserved. These small genetic 

insertions currently represent a difference between RHDV and other caliciviruses (Forrester et al., 

2008). 

The phylogenetic study carried out by Kerr et al. (2009) argued against large-scale recombination, 

by showing generally congruent groups with a clear geographic structure. Recombination was 

considered a rare phenomenon, with little effect on estimating of time spans to common ancestry 

as determined by Kerr et al. (2009), who excluded it as a viable explanation for RHDV origin. 

 

2.1.1.2 RHDV genetic diversity 

RHDV strains are classified based on their complete capsid amino acid sequences (Kinnear and 

Linde, 2010). Although RHDV is a RNA virus, prone to mutations, the RNA and protein sequences of 

different RHDV isolates is highly conserved (Nowotny et al., 1997)(Le Gall et al., 1998)(Asgari et al., 

1999)(Le Gall-Reculé et al., 2003). Nevertheless, despite this low level of genetic variation, molecular 
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characterization of RHDV strains allowed the distinction of six well-defined phylogenetic 

genogroups (G1 to G6) (Figure 24) (Nowotny et al., 1997)(Le Gall et al., 1998). There is a single 

RHDV serotype divided in two subtypes: the classic RHDV genogroups (G1 to G5) and the antigenic 

variant RHDVa (or G6) (Le Gall-Reculé et al., 2003). Nevertheless, cross-protection with G1-G6 is 

almost complete (Le Gall-Reculé et al., 2013). 

VP60 capsid protein sequences from RHDV strains, representing the six genogroups, revealed 

seven domains (V1 to V7) in which the highest amino acid variability is observed (Wang et al., 

2013). The maximum nucleotide divergence was found between isolates from genogroups G5 and 

G6 (up to 9.9%), despite the fact that they were isolated during the same period (Le Gall-Reculé et 

al., 2003). In NP-LVs the variability exceeds these seven domains, encompassing the complete 

capsid protein (Le Gall-Recule et al., 2013). 

Although some studies suggested that RHDV genogroups link to variables such as the years of 

sampling (Nowotny et al., 1997)(Le Gall-Reculé et al., 1998)(Kerr et al., 2009) (Le Gall-Reculé et al., 

2003), geographic origin (Alda et al., 2010), or virulence of strains, these relations were not always 

observed and therefore cannot be generalized (Müller et al., 2009). 

The emergence of the antigenic variant or subtype G6 was of particular interest, and it will be 

addressed with more detail before the RHDV phylogeography description. 

 

2.1.1.2.1 The antigenic variant G6/RHDVa 
The G6 genogroup forms a distinct genetic group (Le Gall-Reculé et al., 2003) and was identified 

for the first time in 1996, both in Italy (Capucci et al., 1998) and Germany (Schirrmeier et al., 1999), 

before spreading throughout the world causing epidemics (Grazioli et al., 2000)(Farnós et al., 2007) 

Le Gall-Reculé et al., 2003)(McIntosh et al., 2007)(Tian et al., 2007)(Kerr et al., 2009). 

However, some researchers suggested that related viruses were already present in China as early as 

1985 (Kerr et al., 2009). In fact, G6 was shown to have diverged prior to 1984, having relatively deep 

roots and a MRCA around 1966 (Kerr et al., 2009)(Kinnear and Linde, 2010). This suggests that G6 

did not evolved recently, as previously proposed by McIntosh et al. (2007). 

Kinnear and Linde (2010) proposed the role of a rapid antigenic selection in the evolution of RHDV, 

promoting variation in evolutionary rates between nucleotide sites and between lineages. Hence, a 

selective advantage was suggested for G6 infectivity or replication over the original RHDV serotype 

(McIntosh et al., 2007). Supporting this hypothesis is fact the G6 formed a distinct phylogenetic 

clade, showing the highest relative genetic diversity within RHDV and hence the highest effective 
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population size (Kerr et al., 2009). 

G6 replaced the classical strains in some countries, namely in Italy (Grazioli et al., 2000), France (Le 

Gall-Reculé et al., 2003), and Hungary (Matiz et al., 2006) and in wild rabbits from the Netherlands, 

where it was related with the decline of O. cuniculus (van de Bildt et al., 2006) 
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Figure 24. Phylogenetic tree derived by the neighbor-joining 
(NJ) method (Le Gall-Reculé et al., 2003) showing that RHDV 
sequences are clustered into six major genogroups (G1 to G6). 
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2.1.1.2.2 RHDV phylogeography 

2.1.1.2.2.1. RHDV genetic diversity in France 

In France, RHDV isolates were assigned into 5 genetic groups (G1 to G5) showing a temporal 

distribution (Nowotny et al., 1997)(Le Gall et al., 1998)(Le Gall-Reculé et al., 2003). Most 

genogroups were, however, successively replaced (Le Gall-Reculé et al., 2003). Genogroups G1 and 

G2 congregated isolates collected between 1987 and 1990, and were both present simoultaneously 

(Le Gall-Reculé et al., 2003). They were subsequently replaced by G3 viruses (Le Gall et al., 1998). 

Genogroup G4 is thought to have emerged from genogroup G3, which then disappeared, as these 

genogroups were not supported by high bootstap values and most G4 mutation hot spots were 

identical to those found in genogroups G1 and G3. On the other hand, genogroup G5 was 

considered an independent group with distinct mutational hot spots (Le Gall-Reculé et al., 2003). 

This could explain why genogroups G4 and G5 co-existed between 1994 and 1999 (Le Gall-Reculé 

et al., 2003). From 1999 onwards, genogroup G4 disappeared with all strains clustering into 

genogoup G5, which included the most recent isolates from mainland France (Le Gall-Reculé et al., 

2003) and corresponded to the main genetic group circulating in France until the emergence of 

RHDV2 (Le Gall-Reculé et al., 2013). 

 

2.1.1.2.2.2. RHDV genetic diversity in Australia 

The RHDV evolution over a 16 year period (1995–2011) was evaluated by Kovaliski et al. (2014) by 

VP60 sequences phylogenetic analysis. The Australian viruses form a monophyletic group with the 

inoculum strains, the Czech CAPM V-351 and RHDV351INOC, falling near the root of this cluster 

(Figure 25). The CAPM V-351 strain was used (via passage) to manufacture the suspension 

RHDV351INOC for laboratory trials and inoculation of field rabbits. This phylogenetic pattern 

indicates a single introduction of RHDV in Australia from these two inoculum strains and that, 

despite several reintroductions of RHDV351INOC strain to maximise the impact of the disease, only 

a single viral lineage (i.e. that derived from the initial release) became established and sustained its 

long-term transmission, suggesting its major competitive advantage. The close evolutionary 

relationship between the Australian and New Zealand viruses indicates a common virus source in 

both countries. 

It is possible that the fitness of the founding lineage may have been enhanced due to a largely 

susceptible rabbit population. However, this main lineage has also experienced a major ‘turnover’ 
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throughout time, as viral lineages replaced each other in specific geographical localities, particularly 

in New South Wales and South Australia. Evidences of widespread viral gene flow were obtained, in 

which multiple lineages entered individual geographic locations, resulting in a marked turnover of 

viral lineages with time and a continual increase of genetic diversity. Despite the RHDV 

geographical clustering by state of sampling was observed, the structure of RHDV genetic diversity 

changed with time as multiple lineages entered certain regions, namely Australian Capital Territory, 

New South Wales and South Australia. As an example, RHDV strains from Australian Capital 

Territory from 2009 onwards fell into two lineages, both of which were distinct from a more basal 

lineage from 1998, indicating a lineage replacement. This lineage turnover suggests that viruses do 

not persist at individual geographic localities between disease outbreaks but are possibly imported 

each year by insect vectors such as blowflies into rabbit populations (Asgari et al., 1998). 

The mean rate of RHDV evolution recorded in Australia ranged from from 4.0 – 4.7 × 10−3 ns/s/y 

(Kovalinski et al., 2014), substantially higher than all previous rate estimates for this virus (Kerr et al., 

2009)(Kinnear and Linde, 2010) and one of the highest observed in RNA viruses (Kovalinski et al., 

2014). 

The TMRCA for the Australian epidemic estimated (1994.4 – 1995.4) was in accordance with the 

date of the initial release of the virus in the country and there was a clear association between 

genetic distance and date of sampling (correlation coefficient = 0.85) indicating that there is strong 

temporal (i.e. molecular clock) structure in the data. An exponential increase in RHDV genetic 

diversity across time can be interpreted as a concomitant increase in viral population size under a 

neutral evolutionary model. Such population growth suggests that ecological, genetic, and 

immunological constraints, including the co-circulation of the benign RCV-A1 or rabbit resistance, 

did not impose a major selective challenge to RHDV (Kovalinski et al., 2014). 

In brief, the RHDV phylogenetic pattern observed in Australia is consistent with a single 

introduction of RHDV into the country from the inoculum strains, followed by in situ evolution over 

the next 16 years (Kovalinski et al., 2014). 



 

266 

 

 

Figure 25. Phylogenetic tree derived by the maximum clade credibility (MCC) method performed 
by Kovaliski et al. (2014) depicting the evolutionary relationships among the Australian RHDV 
sequences, forming a monophyletic group with the inoculum strains Czech CAPM V-351. 
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2.1.1.2.2.3. RHDV genetic diversity in the Iberian Peninsula 

In the Iberian Peninsula, RHDV was first detected in 1988 in Spain (Argüello-Villares et al., 1988) 

and in 1989 in Portugal (reviewed by (Duarte et al., 2014)). However, its origins remain to be 

clarified regarding whether RHDV was already circulating in an avirulent form, or of if it originated 

from a single or multiple introductions (Alda et al., 2010). The phylogenetic study carried out by 

Alda et al. (2010) suggested that all the Iberian RHDV field strains have a common ancestor and are 

closely related to strains isolated during the first RHD outbreaks in Spain (AST/89 and MC-89). The 

age of the MRCA of the Iberian strains was the youngest (~1936, 95% HPD: 1955.7-1869.2) of all 

the regions analysed by the authors, yet predating the first RHD outbreak in 1984, in China. 

The phylogenetic study carried out by Müller et al. (2009) using samples originating from Spain, 

Portugal and South of France collected between 1994 and 2006 showed that these sequences 

clustered into three groups designated the “Iberian” (IB) groups IB1, IB2 and IB3. Together with G1 

sequences, these three IB groups formed a distinct cluster separated from all RHDV genogroups 

previously described. Groups IB2 and IB3 shared a common ancestor with genogroup G1 viruses 

but group IB1 (containing five sequences from central Portugal) separated before genogroup G1. 

Three additional Iberian clades were later described by Alda et al. (2010): IB4, IB5, IB6. No clear 

geographic structure was observed among the Iberian samples analysed by these researchers, 

although most of the clades were restricted in time, with the exception of IB3, the most widespread 

clade both in time and space. 

None of the RHDV sequences from Spain and Portugal clustered within genogroup G2 suggesting 

that only G1-related strains predominated initially and were subsequently replaced by IB2 and IB3 

strains, indicating that RHDV could have evolved separately in the Iberian Peninsula since then 

(Müller et al., 2009). Müller et al. (2009) found that the nucleotide substitutions observed in groups 

IB2 and IB3 seem to have become fixed around 1994 and were still present in the RHDV strains 

circulating in wild rabbits in the Iberia to the date of the study (2009), but not elsewhere. These 

findings suggested evidences of genetic isolation of the Iberian Peninsula starins, with the Pyrenees 

acting as a major natural barrier, constraining wild rabbit and hence viral dispersal and evolution 

(Müller et al., 2009)(Alda et al., 2010). In fact, genogroup G1 was able to persist only in the Iberia 

(Lopes et al., 2014). 

The presence of G6 on the Iberian Peninsula, where this variant was thought not to contribute to 

viral diversity, was also reported but in sporadic cases in farms and never in wild populations 
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(Müller et al., 2009)(Abrantes et al., 2014)(Duarte et al., 2014)(Lopes et al., 2014). 

2.1.1.2.2.3.1 RHDV genetic diversity in Portugal mainland 

All RHDV strains circulating in Portugal mainland identified by the phylogenetic study carried out 

by Müller et al. (2009) were G1-related. These strains, collected between 1994 and 2006 fell into 

two distinct groups, namely IB1 and IB2 (Figure 26). Within temporal groups, a link to its place of 

origin was also observed suggesting that two RHDVs were circulating concomitantly in the 

presence of disease and mortality. Supporting this hypothesis, the same authors found that IB1 

strains differed in eight positions from IB2 strains (although only in three when compared to G1). 

The antigenic variant G6 was also identified in a commercial rabbitry in the North of Portugal 

(Müller et al., 2009). The retrospective phylogenetic study carried out by Duarte et al. (2014) 

corroborate these results by disclosing that RHDV strains circulating in Portugal mainland fell 

within genogroups G1 and G6. G1-related strains belonging to the IB3, and G6 were identified 

among samples collected in Portugal mainland between 2006 and 2008 (Figure 26), demonstrating 

the circulation of these strains until at least 2008 (Duarte et al., 2014). Recently, RHDV G1-related 

strains were also detected in two Iberian hares found dead in the field in Portugal in 1996 and 1998 

(Lopes et al., 2014). 
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Figure 26. Fraction of the phylogenetic tree derived by the neighbor-joining (NJ) method based on the 

analysis of the partial vp60 gene from RHDV performed by Müller et al. (2009) depicting that the RHDV 

strains from Portugal clustered separately from known genogroups and showing the Iberian groups (IB) 1, 2 

and 3. 

 

2.1.1.2.2.3.2. RHDV genetic diversity in the Azorean archipelago 

In the Azores, the first RHDV outbreaks were recorded from 1988 to 1993 (Carvalho and Almeida, 

1991)(Martins,1993)(Carvalho et al., 1993)(Carvalho et al., 1994) but only in 2014 the circulating 

strains were characterized (Esteves et al., 2014)(Duarte et al., 2014). 

The retrospective phylogenetic study carried out by Duarte et al. (2014) disclosed that G5 strains 

were the dominant group in the Azorean islands. This genogroup was never identified in Portugal 

mainland (Duarte et al., 2014). 

RHDV collected in 2013 from Azores revealed unique characteristics and formed a highly 
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supported group that, although more closely related with the RHDV strains G1–G5, they were 

distinct differing from each RHDV groups (G1, G2 and G3–G5) by approximately 8% (between 

group means distances) (Esteves et al., 2014). Evidences for recombination were not found (Esteves 

et al., 2014). In this scenario, all three main groups (G1, G2 and G3–G5) could have been at the 

origin of the RHDV strains detected in Pico Island. These evidences suggested an independent 

RHDV evolution in Azores after an initial introduction more than 17 years ago (Esteves et al., 2014). 

 

2.1.2. RHDV2 
2.1.2.1 RHDV2 origin and evolution 

RHDV2 is a new virus highly distinct from the pathogenic and non-pathogenic lagoviruses 

described before its emergence (Le Gall-Reculé et al., 2013). RHDV2 has unique features and 

quickly dispersed from France, where it was first reported in 2010 (Le Gall-Reculé et al., 2011a). 

Presently the virus circulates in several European countries, namely in France (Le Gall-Reculé et al., 

2011a)(Le Gall-Reculé et al., 2013), Italy (Le Gall-Recule et al., 2013), Spain (Dalton et al., 2012), 

Germany (information on the FLI, 10|21|2013), Portugal mainland (Abrantes et al., 2013) and 

archipelago of Azores (Duarte et al., 2015b), England and Wales (Westcott et al., 2014), Scotland 

(Baily et al., 2014) and Finland 

(http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports). RHDV2 was 

also detected in Tenerife (Canary Islands) (Martín-Alonso et al., 2015) and in Australia (Hall et al., 

2015). Tunisia, the Scandinavian countries of Norway (OIE Technical disease cards. 2016) and 

Sweden (Neimanis et al., 2017), the Ivory Coast (http://outbreakwatch.blogspot.pt/2016/09/proah-

rabbit-hemorrhagicdisease-cote.html)  and Canada 

(http://outbreakwatch.blogspot.pt/2016/08/proahedr-rabbit-hemorrhagic-disease_26.html) 

reported the disease in 2016. 

Despite the virus presence was only reported by Sweden in 2016, the Neimanis et al., (2016) study 

suggests that the virus was already present in the country as early as May of 2013 and is currently 

the dominant cause of RHD in the country. 

Recently, by the end of 2016, the virus was also detected by our team in the Madeira archipelago 

(Carvalho et al., 2017c). 

Similarly to what happened for classical RHDV emergence, two possible hypothesis have been put 

forward to explain RHDV2 emergence, the evolution from a pre-existing non-pathogenic virus or a 

species jump from a reservoir host species (Le Gall-Reculé et al., 2013)(Esteves et al., 2015). 
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However, molecular data seem to suggest that RHDV2 did not emerge following the genetic 

evolution of previously known lagoviruses, despite this hypothesis cannot be definitively excluded 

as knowledge of NP-LVs is yet scarce (Le Gall-Reculé et al., 2013). 

 

2.1.2.1.1. RHDV2 genetic diversity 
Phylogenetic studies on RHDV2 have shown that all sequences cluster together and separatly from 

RHDV strains (Figure 27). This new virus showed to be more closely related to RHDV and RCV-like 

viruses than to the independent RCV-A1 genetic group (Le Gall-Reculé et al., 2011a)(Le Gall-Réculé 

et al., 2013). The average nucleotide identity between RHDV2 and G1 to G5, and G6 obtained by Le 

Gall-Reculé et al. (2013) ranged from 82.4% to 85.7%, respectively. These values are in agreement 

with the data later obtained by Lopes et al. (2014), which showed that RHDV2 presented an overall 

identity of 82% with G1 strains, 81.6% (± 0.8%) with G2, 82.2% (± 0.8%) with G3-G5, and 82.1% (± 

0.8%) with G6. Regarding the identity with NP-LVs, on average RHDV2 shared 81% (± 1.0%) 

identity with RCV, 06–11 and MRCV strains, and 79.2% identity with RCV-A1 isolates (Le Gall-Reculé 

et al., 2013)(Lopes et al., 2015a). 

Most of the substitutions were located in the most variable part of the capsid protein, namely in 

the C-terminal region of VP60 (Le Gall-Reculé et al., 2013). When the P domain, displaying the 

highest degree of genetic variation (Wang et al., 2013), of RHDV2 and NP-LV VP1 were compared, 

similarities consistently decreased (RCV-A1 (65.3%), RCV (63.2%), RHDV (60%) MRCV (59.2%) 06–11 

(53%)), emphasising significant differences between the viruses (Le Gall-Reculé et al., 2013). 

When RHDV2 and G6 sequences were compared within the same variable regions defined by Wang 

et al. (2013), similarities between both viruses also decreased to 60% (Bárcena et al., 2015). 

RHDV2 showed to be more closely related to rabbit lagoviruses than to EBHSV, with which it 

presented only 70.0% (± 0.9%) nucleotide identity (Le Gall-Reculé et al., 2013)(Lopes et al., 2015a). 
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Figure 27. Phylogenetic tree by Le Gall-Reculé (2011) using the minimum evolution method derived from 

partial partial vp60 sequences of lagoviruses showing that RHDV2 (French RHDV variant) forms a new genetic 

group, distant from the pathogenic and NP-LV lagoviruses. 
 

2.1.2.1.1.1. RHDV2 genetic diversity in the Iberian Peninsula 

In the Iberian peninsula RHDV2 was first detected in Spain in 2011 (Dalton et al., 2012). In Portugal 

the virus was identified in the following year (Abrantes et al., 2013). All Iberian strains appear to 

have derived from a common ancestor shared also by a unique non-Iberian strain collected from a 

Lepus corsicanus specimen in Italy mainland (Duarte et al., 2015). Strains from Portugal share a 

common ancestor (Duarte et al., 2015). The current circulating strains in mainland Portugal seem to 

have resulted from multiple recombination events between RHDV2 and non-pathogenic or 

pathogenic G1 strains, with a single breakpoint located in the 5’ region of VP60 (Lopes et al., 

2015b). This breakpoint divides the genome in two regions, namely one encoding the non-

structural proteins, and another encoding the major (VP60) and minor (VP10) structural proteins 

(Lopes et al., 2015b). Furthermore, two types of recombinants with distinct genomic background 

were found, including the RHDV2 structural proteins with non-structural proteins from non-

pathogenic lagoviruses (NP-LV) or from G1 (Lopes et al., 2015b). 

The phylogenetic analysis based on vp60 and vp10 genes showed that all Iberian RHDV2 viruses 
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clustered together and apart from the other strains (Figure 28), but for non-structural protein 

encoding genes these strains clustered in three different groups (Lopes et al., 2015). 

 

 

 
 

Figure 28. Fraction of the maximum likelihood (ML) phylogenetic tree of the  vp60 gene of lagoviruses 

performed by Lopes et al., (2015) showing that the RHDV2 sequences collected in Portugal mainland 

clustered together with high bootstraps and apart from other lagoviruses, namely RHDV. 
 

2.1.2.1.1.2. RHDV2 genetic diversity in the Azorean archipelago 

In the Azorean archipelagos, RHDV2 was first detected in 2015 in wild rabbits from Graciosa, Flores 

São Jorge and Terceira islands (Duarte et al., 2015b) and later in Faial, Santa Maria and S. Miguel 

islands (Duarte et al., 2015a). 

Nucleotide analysis showed that the Azorean strains are closely related to each other, sharing a 

high genetic identity (>99.15%). Despite the high nucleotide identities between the Azorean strains 

and the ones from Portugal mainland and Spain, no absolute similarity was found between any 
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strain from Azores and RHDV2 sequences from other geographic origins (Duarte et al., 2015a). A 

phylogenetic analysis carried ou during this work (Study 8 of this chapter) showed that the 

Azorean-RHDV2 formed a strongly supported monophyletic group which clustered separately 

within the European-RHDV2 group apart from the remaining strains from continental Portugal 

(Duarte et al., 2015a). 

The independent clustering and the low genetic distances found between the Azorean strains, is in 

favour of a unique RHDV2 introduction in these islands, during late 2014 and suggests an 

epidemiological link (Duarte et al., 2015a). The initial introduction seems to have occurred in 

Graciosa, where the first dead rabbits were detected, followed by a rapid expansion to other islands 

(Almeida et al., 2015). Indeed, the Almeida et al., (2015) study showed that the highest haplotype 

diversity was found in Graciosa and a star-like topology was associated with the most ‘‘central’’ 

Graciosa haplotype, consistent with a rapid viral expansion. Also, viral sequences from Faial and São 

Jorge showed to be identical to sequences from Graciosa, suggesting the virus introduction from 

Graciosa or with an identical strain. However, the RHDV2 sequences from S. Jorge appeared in 

different clusters, although closely related to sequences from Graciosa, suggesting multiple 

introductions to S. Jorge from Graciosa might have occurred. Dispersion to S. Miguel seems to 

have occurred from Terceira. 

As the dispersal route did not always related with geographic proximity of the islands, some 

hypothesis were put forward to explain virus dissemination in the archipelagos, such as the 

involvement of insects (flies and mosquitoes) considered important vectors for RHDV (McColl et al., 

2002a), birds or rodents (Almeida et al., 2015)(Duarte et al., 2015a). However, considering the 

chronology of the outbreaks, the distance and the frequent maritime traffic between the islands, 

and the most probable man-mediated RHDV2 arrival to Azores, it seems plausible that RHDV2 

spread between islands was also related with anthropogenic movements (Almeida et al., 2015) 

(Duarte et al., 2015a). 

The RHDV2 strains circulating in Azores were shown to be recombinants between G1 and RHDV2, 

as while the highest homology in VP60 sequences was found with Iberian RHDV2 strains, the 

upstream fragment revealed high similarity (≈95%) with Iberian G1 strains (Almeida et al., 2015). 

Considering that G1 was shown to persist only in the Iberian rabbit populations and was 

successfully replaced by RHDV2 strains currently circulating in the Iberian Peninsula (Lopes et al., 

2015a), this data suggested that the RHDV2 strains circulating in Azores most probably originated 

in Iberian strains (Almeida et al., 2015). 
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2.1.2.1.1.3. RHDV2 genetic diversity in the Madeira archipelago 

Recently we carried out a phylogenetic investigation (Study 9 of this chapter) showing that the 

vp60 sequences from the Madeira archipelago, including The Porto Santo and Madeira islands, 

grouped together with high bootstraps. Five haplotypes were identified and an overall similarity of 

99.54% to 99.89% was observed between the two viral populations. 

Seven single nucleotide polymorphisms (SNPs) were identified in the Madeira archipelago 2016-

2017 strains, of which two were non-synonymous encoding an Asn480 or a Ser480 and a Glu570. None 

of these amino acids have been detected before in this position, given that a Thr480, and less 

frequently an Ala480, are usually found. Similarly, in position 570 only a Gly570 had been identified to 

date. Additionally, six synonymous and two non-synonymous (encoding residues 347 and 369) 

SNPs were also found in the viruses from the Madeira archipelago, only shared by few other strains. 

Altogether, the seven specific and eight rare SNPs defined a DNA fingerprint for the RHDV2 2016-

2017 strains from the archipelago (Carvalho et al., 2017c). 

 

2.1.2.1.2 RHDV2 phylogeography 
From 2011 onwards, RHDV2 almost completely replaced the circulating classical RHDV strains in 

France (Le Gall-Reculé et al., 2013), in the Iberian Peninsula (Lopes et al., 2015a) and Azores islands 

(Duarte et al., 2015a) as well as in Sweden (Neimanis et al., 2016). The factors contributing to this 

rapid takeover are yet to be clarified but RHDV2 high transmission rate may suggest a selective 

advantage of this virus over classical RHDV, probably by overcoming the existing immunity induced 

by the classic strains (Lopes et al., 2015a). 

However, despite in Sardinia Island several RHDV2 cases were registered in a very short period 

indicating the rapid RHDV2 dissemination, in Italy RHDV2 did not spread within continental land 

and the replacement of circulating RHDV or G6 isolates, responsible for most outbreaks in small 

rural units, has not been observed (Le Gall-Reculé et al., 2013). This is thought to be related to the 

widespread presence of wild rabbits in Sardinia, whereas in continental Italy they are sparse and 

patchily distributed (Fouchet et al., 2009)(Le Gall-Reculé et al., 2013). RHDV2 selective advantage 

migth be only expressed where wild populations of rabbits are present, similarly to what was 

observed for RHDV, highly dependent on wild rabbits’ densities, indicating that wild populations 

may exert strong selection pressure on the virus (Le Gall-Reculé et al., 2013). 

 



 

276 

 

2.2. Non- and moderately pathogenic lagoviruses (NP-LV) 
The intensified surveillance on RHDV resulted in the identification of NP-LVs (Hicks and Duffy 

2012). Retrospective serologic studies evidenced the presence of RHDV antibodies in rabbit 

populations from Europe (Rodák et al., 1990)(Moss et al., 2002), Australia and New Zealand (Strive 

et al., 2009) 12 years before the first RHDV outbreak was recognised and reported (Rodák et al., 

1990)(Moss et al. 2002). These RHDV antibodies were putatively attributed to the contact with non-

pathogenic caliciviruses antigenically related to RHDV (Rodák et al., 1990)(Moss et al., 2002). 

The existence of non-pathogenic RHDV strains was first documented in 1996 in Italy, after the 

characterization of a non-lethal RHDV-like strain designated rabbit calicivirus (RCV) (Cappucci et al., 

1996). In the subsequent years, other non-pathogenic and moderately pathogenic viruses were also 

identified in Europe (Moss et al., 2002)(Forrester et al., 2007)(Le Gall-Reculé et al., 2011b), Australia 

(Strive et al., 2009) and North America/USA (Bergin et al., 2009) in domestic or/and wild rabbits, 

highlighting the extent of diversity within the Lagovirus genus (Le Gall-Reculé et al., 2011b). These 

included the Ashington strain from the United Kingdom (Moss et al., 2002), the Lambay strain from 

Ireland (Forrester et al., 2007), the rabbit caliciviruses Australia 1 (RCV-A1) (Strive et al., 2009), the 

Michigan rabbit calicivirus (MRCV) from North America (Bergin et al., 2009) and the 06-11 strain 

detected in France more recently (Le Gall-Reculé et al., 2011b). 

For these viruses, Kerr et al. (2009) proposed the designation “rabbit calicivirus-like”, to distinguish 

them from RHDV, and later Jahnke et al. (2010) suggested the same term, “RCV-like”, due to their 

closer phylogenetic proximity with RCV. However, RCV and similar strains did not form a 

monophyletic group with the RCV-A1 strains from Australia (Jahnke, et al., 2010). Le Gall-Reculé et 

al. (2011b) proposed the name “non-pathogenic lagovirus (NP-LV)” to designate them. 

The non-lethality of RCV, RCV-A1, MRCV and 06-11 strain was experimentally confirmed (Capucci 

et al., 1996)(Strive et al., 2010)(Le Gall Reculé et al., 2011b) but only assumed for all the other 

strains, since they were isolated from healthy non-vaccinated rabbits (Le Gall-Réculé et al., 2011). 

Experimental studies have proven the existence of a gradient of cross-protection between these 

non-pathogenic strains and RHDV (Le Gall-Reculé et al., 2011b) from non-protective, irrespective of 

the titre (strain 06–11) (Le Gall-Reculé et al., 2011b), and partially protective (RCV-A1) (Strive et al., 

2010) to fully protective (RCV) (Capucci et al., 1996). These differences, as well as competition 

between non-pathogenic and pathogenic strains, may explain the variable impact of RHD on rabbit 

populations (Le Gall-Reculé et al., 2011b). 

In the Iberian Peninsula, the drastic reduction in wild rabbit numbers caused by RHDV was 
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historically unprecedented, suggesting that NP-LV were either not present or at a very low 

prevalence and, if so, highly host-adapted but not cross-protective (Müller et al., 2009). 

The NP-LVs form distinctive genetic groups rather than a monophyletic group (Strive et al., 

2009)(Jahnke et al., 2010). The RCV, the Lambay strain and the Ashington strain were shown to 

form a phylogenetic cluster distinct from the RCV-A1 strains and both these groups separate from 

the RHDV branch (Strive et al., 2009)(Le Gall-Reculé et al., 2011b). The non-pathogenic European 

caliciviruses were shown to be more closely related to RHDV than to RCV-A1. RCV-A1 are also 

more distantly related to RHDV (Jahnke et al., 2010). In NP-LVs the variability exceeds the 

mentioned seven domains, encompassing the complete capsid protein (Le Gall-Recule et al., 2013). 

The mean estimated TMRCAs for most NP-LV was placed between the XIXth or early XXth centuries, 

coincident with the history of the European rabbit (Kerr et al., 2009). Some authors’ suggest that 

NP-LV spread to Australia and New Zealand in wild and/or domestic rabbits introduced from the 

United Kingdom. Presumably, similar viruses were introduced with European rabbits to other 

countries, but these have not been identified due to lack of surveillance (Kerr et al., 2009). 

The existence of NP-LV and the evidence of recombination between strains (Abrantes et al., 2008) 

(Forrester et al., 2008) emphasize that the interaction between pathogenic and non-pathogenic 

strains are probably more complex than previously assumed (Le Gall-Reculé et al., 2011b). 

 

2.2.1. RCV, Italy 

RCV, detected in Italy, showed to be genetically distinct from RHDV, presenting distinct capsid 

protein encoding sequences, also differing from RHDV in viral load and tissue tropism (Cappucci et 

al., 1996). The primary sequence of the capsid protein was shown to be more closely related to 

RHDV than to EBHSV (Capucci et al., 1996). It was hypothesized by Capucci et al. (1996), Lavazza 

and Capucci (2008) and later by Le Gall-Reculé et al., (2011), when referring to a different NP-LV, 

that the differences found between RCV and RHDV capsid proteins could explain their different 

tropism and pathogenicity. 

RCV infected rabbits appeared healthy and presented no histopathological lesions, but the virus 

was shown to confer complete cross-protection to RHDV infection (Capucci et al., 1996). Although 

RCV widespread in nature is yet to be understood, the results obtained by Capucci et al. (1996) 

suggest that infeccion by RCV may confer a selective advantage to rabbits exposed to RHDV. 
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2.2.2 Ashigton strain, UK 

In the United Kingdom, a putatively pathogenic virus was identified by Moss et al. (2002) in a rabbit 

that died with typical RHDV symptoms, assuming death to be related to an infection that also 

victimized 90% of the local rabbits. However the pathogenicity of the Ashington virus was never 

experimentally demonstrated. The Ashington strain was found to be genetically distinct from all 

other viruses including RCV, differing by up to 19% nucleotide and 18% amino acid identity. The 

highly divergent RCV and Ashington strain must have diverged from the remaining groups more 

than 40 years ago and probably hundreds or even thousands of years ago. 

 

2.2.3. Lambay Island strain, Ireland 

Another apparently non-pathogenic virus was detected by Forrester et al. (2007) in healthy wild 

rabbits on the Lambay Island, where disease due to RHDV had never been observed. ELISA 

antibody tests showed detectable RHDV antibodies confirming that a RHDV-like virus circulated 

amongst the Lambay Island rabbits without causing disease but this strain pathogenicity was not 

tested experimentally. 

Forrester et al. (2007) raised the hypothesis that this virus could be as RCV infectious and 

contagious but without little or no virulence, and that under appropriate circumstances (as stress), 

epidemic RHD outbreaks could arise. 

In their phylogenetic study, Forrester et al. (2007) showed that the Lambay strain diverged from the 

Ashington strain (84.9% nucleotide identity) and RCV (81.0% nucleotide identity). The Ashington 

and Lambay Island lineages emerged after divergence from RCV, possibly separating when the 

viruses were introduced in England and Ireland, respectively. 

The virulent strains from Ireland, identified in 1995 (Collery et al., 1995), were closely related to 

other European strains, having emerged more recently than the Lambay lineage. According to 

Forrester et al. (2007), the Lambay strain might have circulated within the Irish rabbit population 

being however outcompeted by the more recently introduced strain(s) and only enduring in 

isolated pockets. 

 

2.2.4. Rabbit calicivirus Australia 1 (RCV-A1), Australia 

Antibodies that cross-reacted in RHDV specific ELISAs were detected in Australian wild rabbits prior 

to RHDV emergence in Australia (Strive et al., 2009). A new non-pathogenic lagovirus, named 

rabbit calicivirus Australia 1 (RCV-A1), was identified by molecular methods by Strive et al. (2009), in 
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the gut of apparently healthy young wild rabbits. The virus is responsible for a predominantly 

enteric infection (Jahnke et al., 2010). The RCV-A1 strains’ non-lethality was experimentally 

confirmed (Strive et al., 2010). 

Complete viral genome sequencing and phylogenetic analysis revealed that RCV-A1 formed a 

separate lineage among the rabbit caliciviruses, constituting a new member of the genus Lagovirus 

(Strive et al., 2009)(Jahnke et al., 2010). RCV-A1 viruses are more distantly related to RHDV than the 

European non-pathogenic lagovirus and were shown to confer only partial protection against 

RHDV (Jahnke et al. 2010). 

RCV-A1 emergence coincided with the introduction of the wild rabbits in Australia in 1850 (Jahnke 

et al., 2010). RCV-A1 strains diversified then into several geographically distinct lineages, forming a 

monophyletic group subdivided into six clades, clustering mostly according to their place of 

sampling (Jahnke et al., 2010). RCV-A1 was effectively disseminated via the initial rabbits’ dispersal, 

but once a rabbit population was established, virus migration rate decreased (Jahnke et al., 2010). 

 

2.2.5. Michigan rabbit calicivirus (MRCV), US 

Bergin et al. (2009) reported a novel rabbit calicivirus in Michigan State. The case dated back to 

2001 and occurred in New Zealand White rabbits (O. cuniculi) in a private rabbitry. Infected rabbits 

showed clinical signs and pathologic findings suggestive of RHD and the virus was designated 

MRCV. MRCV was shown to be more closely related to the non-pathogenic rabbit calicivirus than 

to pathogenic strains. This virus was classified as a novel lagovirus distinct from RHDV, RCV and 

EBHSV, and the first lagovirus other than RHDV detected in US rabbits. (Abrantes and Esteves, 

2010) carried out a phylogenetic analysis including the Ashigton strain and RCV-A1 viruses, not 

included in the analysis performed by Bergin et al. (2010). The authors concluded that MRCV was a 

new variant of the NP-LVs. 

Considering the percentage of affected animals in this outbreak and that the authors were not able 

to reproduce clinical disease in specific pathogen-free (SPF) rabbits, MRCV was considered to be of 

low pathogenicity, and the onset of clinical disease would depend on health status, age, or 

individual susceptibility of the host. In marked contrast to other low pathogenicity caliciviruses such 

as RCV, that only replicate in the intestine, MRCV was detected in the liver. Whether MRCV could 

induce some protection against RHDV infection was not investigated. The low MRCV pathogenicity 

and the presence of viral RNA in the liver constituted new features among the nonpathogenic RCV-

like group (Abrantes and Esteves, 2010). 
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2.2.6. The 06-11 strain from France 

Le Gall-Reculé et al. (2011b) identified a new infectious rabbit lagovirus which differed from RHDV 

in tissue tropism (small intestine only), pathogenicity and on the VP60 capsid protein. This new 

virus was detected in healthy domestic rabbits, older than 2 months, and designated as the 06-11 

strain. 

The 06-11 virus was shown to be highly infectious but non-lethal for rabbits, as experimentally 

demonstrated in specific pathogen free (SPF) rabbits. However, in the absence of histological data 

the entire lack of pathogenicity of this virus was not demonstrated. 

Regarding RHDV cross-protection, 06-11 induced antibodies that did not to protect against RHDV 

irrespective of their titre. In fact, previous studies confirmed the presence of non-protective 

antibodies in wild rabbits that died from RHDV, probably induced by NP-LV infection 

(Marchandeau et al., 2005)(Le Gall-Reculé et al., 2011b). 

Phylogenetic analysis including the 06-11 virus and other NP-LV as well as RHDV, showed that the 

06-2011 strain grouped with RCV and the Ashignton strain. Notwithstanding, the three viruses 

showed significant genetic variation from each other and from the RHDV sequences. When the 

vp60 gene sequences were compared, 06-11 exhibited a closer relation to RCV than to RHDV or 

RCV-A1 showing however the highest nucleotide and amino acid identity with the Ashington strain. 

The phylogenetic tree topology obtained by Le Gall-Reculé et al. (2011) suggested that RCV and 

the 06-11/Ashington lineage emerged long before pathogenic RHDV lineage divergence, with RCV 

emerging prior to the 06-11/Ashington lineage. The mean time to the most recent common 

ancestor (TMRCA) of RHDV and NP-LV strains was estimated to be over 80 (Kinnear and Linde, 

2010) or 200 years ago (Kerr et al., 2009)(Le Gall-Reculé et al., 2011b), in accordance with Moss et 

al., (2002) and Kerr et al., (2009). Nonetheless, the significant genetic variation found between 06-

11 and the Ashington strain suggests a putative independent evolution for both viruses (Le Gall-

Reculé et al., 2011). 

Taken together, the date obtained by Le Gall-Reculé et al. (2011) indicated a considerable 

divergence between these different NP-LV strains. 
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a b s t r a c t

Rabbit haemorrhagic disease virus 2 (RHDV2) is widespread in several countries of Western Europe, but it
has not been introduced to other continents. However, between late 2014 and early 2015, the presence of
RHDV2 was confirmed outside of the European continent, in the Azores, initially in the islands of
Graciosa, Flores, S. Jorge and Terceira. In this study we report the subsequent detection of RHDV2 in wild
rabbits from the islands of Faial, St. Maria and S. Miguel, and display the necropsy and microscopic exam-
ination data obtained, which showed lesions similar to those induced by classical strains of RHDV, with
severe affection of lungs and liver. We also disclose the result of a genetic investigation carried out with
RHDV2 positive samples from wild rabbits found dead in the seven islands. Partial vp60 sequences were
amplified from 27 tissue samples. Nucleotide analysis showed that the Azorean strains are closely related
to each other, sharing a high genetic identity (>99.15%). None of the obtained sequences were identical to
any RHDV2 sequence publically known, hampering a clue for the source of the outbreaks. However,
Bayesian and maximum likelihood phylogenetic analyses disclosed that Azorean strains are more closely
related to a few strains from Southern Portugal than with any others presently known. In the analysed
region comprising the terminal 942 nucleotides of the vp60 gene, four new single nucleotide polymor-
phisms (SNP) were identified. Based on the present data, these four SNPs, which are unique in the strains
from Azores, may constitute putative molecular geographic markers for Azorean RHDV2 strains, if they
persist in the future. One of these variations is a non-synonymous substitution that involves the replace-
ment of one amino acid in a hypervariable region of the capsid protein.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rabbit haemorrhagic disease (RHD) is a highly contagious and
often lethal systemic infection in wild and domestic rabbits caused
by the pathogenic rabbit haemorrhagic disease viruses RHDV and
RHDV2, which were identified for the first time in 1984 (Lui
et al., 1984) and 2010 (Le Gall-Recule et al., 2011a), respectively.
These naked and single stranded RNA viruses are closely related,
sharing 82.4% of genetic identity (Le Gall-Recule et al., 2013).
RHDV and RHDV2 belong to the Lagovirus genus of the
Caliciviridae family (Le Gall-Recule et al., 2011a) along with the
European brown hare syndrome virus (EBHSV), and non- or
moderately-pathogenic lagoviruses (NP-LV, in accordance with
the nomenclature suggested by (Le Gall-Recule et al., 2011b). The
NP-LV group includes the RCV-A1 strains from Australia that are
more distantly related to RHDV (Jahnke et al., 2010), the RCV strain
from Italy, which was the first non-pathogenic strain being
described (Capucci et al., 1996) and other lagoviruses, often desig-
nated RCV-like due to their closer phylogenetic proximity with the
RCV strain. These encompass the Lambay strain from Ireland
(Forrester et al., 2007), the MRCV strain from the USA (Bergin

http://crossmark.crossref.org/dialog/?doi=10.1016/j.meegid.2015.08.005&domain=pdf
http://dx.doi.org/10.1016/j.meegid.2015.08.005
mailto:margarida.duarte@iniav.pt
http://dx.doi.org/10.1016/j.meegid.2015.08.005
http://www.sciencedirect.com/science/journal/15671348
http://www.elsevier.com/locate/meegid
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et al., 2009), and the strain 06–11 from France (Le Gall-Recule
et al., 2011b). The pathogenicity of the Ashington strain from UK
(Moss et al., 2002), also a RCV-like virus, was never demonstrated
experimentally (Le Gall-Recule et al., 2011b).

The clinical characteristics induced by RHDV and RHDV2 infec-
tions may differ in terms of disease duration, mortality rates and in
the occurrence of sub acute or chronic forms, which are more fre-
quent in RHDV2 infected rabbits (Le Gall-Recule et al., 2013).
Regarding the pathological aspects of the disease, the lesions
induced by RHDV have been detailed by several authors (Lavazza
et al., 1996; McIntosh et al., 2007) but the characterisation on
the lesions developed after RHDV2 infection is still limited. Post-
mortem examination of RHDV2 infected rabbits revealed macro-
scopic lesions consistent with haemorrhages in several organs
including heart, trachea, thymus, lungs, liver, kidneys, and gut, as
well as jaundice (Dalton et al., 2012). The liver appearance was
described as pale and congested (Lopes et al., 2015).
Histopathologic descriptions refer haemorrhagic pneumonia and
tracheitis, congestion of the liver and diffuse necrotizing hepatitis.
Areas of focal necrosis were also described in the intestinal villi in
the small intestine (Dalton et al., 2012).

Based on their phylogenetic relationships, RHDV strains were
classified in distinct genetic groups (designated G1 to G6, the latter
also referred as RHDVa) (Le Gall-Recule et al., 2003). The alignment
of the VP60 sequences from RHDV strains, representing these six
genogroups, revealed seven domains (V1 to V7) (Wang et al.,
2013) in which the highest amino acid variability is observed. In
NP-LVs the variability exceeds these seven domains, encompassing
the complete capsid protein (Le Gall-Recule et al., 2013).

Molecular studies also revealed that most of the strains that cir-
culated in Portugal mainland prior to 2012 belonged, or were more
related to, genogroup G1 (Abrantes et al., 2012; Duarte et al.,
2014b; Muller et al., 2009), although strains from genogroup G6
were also identified (Muller et al., 2009; Duarte et al., 2014b).
However, Bayesian phylogenetic analysis clustered together six
strains from the Azores, obtained between 2006 and 2013, into
genogroup G5 (Duarte et al., 2014b), which was never reported
in the mainland.

RHDV2 recently emerged in France 2010 in European rabbits
and the lack of immunological cross protection induced by the pre-
vious contact with classical strains facilitated the spread of the dis-
ease among domestic and wild rabbits (Le Gall-Recule et al., 2013,
2011a). In the following years the disease spread to Italy (Le Gall-
Recule et al., 2013; Puggioni et al., 2013), Spain (Dalton et al.,
2012), Portugal (Abrantes et al., 2013), England and Wales
(Westcott et al., 2014), Scotland (Baily et al., 2014), and Germany
(information on the FLI, 10|21|2013).

Outside the European continent, RHDV2 was first detected
between late 2014 and early 2015 in the Azores (Duarte et al.,
2015a). This archipelago, located in the middle of the North
Atlantic Ocean comprises nine islands, namely Flores and Corvo
(Western group), Faial, S. Jorge, Pico, Terceira and Graciosa
(Central group) and St. Maria and S. Miguel (Eastern group).

Here we report the presence of RHDV2 in the islands of Faial,
St. Maria and S. Miguel for the first time and the result of an
investigation involving the partial molecular characterisation of
the vp60 gene of RHDV2 representative strains from seven
islands (Flores (n = 3), Graciosa (n = 6), Terceira (n = 5), S. Jorge
(n = 4), Faial (n = 4), St. Maria (n = 1) and S. Miguel (n = 4). The
molecular study aimed to determine the level of genetic rela-
tionship between the RHDV2 strains from the seven outbreaks
in Azores and to investigate their possible source of infection.
In this study, we also unveil the results of the necropsy of 32
RHDV2-positive wild rabbits and the histopathological data from
10 specimens.
2. Materials and methods

2.1. Samples

Information on the geographic origin and the date of collection
of the samples used in this study is described in Table 1. Liver and
lung samples were collected during necropsy.

2.2. Necropsy and histopathological examination

Necropsy and anatomopathological examinations were per-
formed at the Regional Veterinary Laboratory of Azores.

Liver and lung samples were fixed in 10% buffered formalin and
embedded in paraffin by standard procedures. Five micrometre-
thick sections were stained with haematoxylin and eosin (H&E)
and examined using light microscopy (Cook, 1997).

2.3. Virological examination

For virological examination, liver samples collected from all
rabbits and lung samples from nine animals were homogenised
with phosphate buffer saline (PBS) and clarified at 3000g for 5 min.

DNA and RNA were extracted from 200 ll of clarified super-
natant, corresponding to 50–60 mg of tissue, in a BioSprint 96
nucleic acid extractor (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions.

Samples were tested for RHDV2 RNA using the RT-qPCR previ-
ously described by (Duarte et al., 2015b). Screening for RHDV
was performed by sequencing analysis of the amplicons obtained
with primers RC-9 and RC-10, published by (Tham et al., 1999).
The presence of myxoma virus DNA was ruled out with the method
published by (Duarte et al., 2014a).

2.4. Sequencing analysis and multiple alignments

Amplification of the 30 end of the vp60 gene of RHDV2 strainswas
accomplished using two forwardprimers (717-F andRC-9F) and one
reverse primer (RC-10R) described in Table 2. The reactions were
performed with 10 ll of RNA and 25 pmol of each primer, using
the OneStep RT-PCR kit (Qiagen), according to the manufacturer’s
protocol. Amplification conditions included a reverse transcription
step at 50 �C for 30 min, an initial denaturation at 95 �C for 5 min,
followed by 50 cycles of denaturation at 95 �C for 15 s, annealing
at 60 �C for 30 s and extension at 72 �C for 30 s.

The fragments were excised from agarose gels after elec-
trophoresis and purified with the NZYGelpure (Nzytech genes
and enzymes, Lisbon, Portugal).

Sequencing was performed with the amplifying primers as well
as with primers 1190-F and 1404-R (Table 2), using a BigDyeTM

Terminator cycle sequencing kit (Applied Biosystems, Foster City,
CA, USA) according to the manufacturer’s instructions. Partial
vp60 nucleotide sequences of 27 RHDV2 strains were determined
on an automated 3130 Genetic Analyzer system (Applied
Biosystems, Foster City, CA, USA) (Table 1). Thirteen sequences
were submitted to GenBank (Table 1). Multiple alignments were
generated by CLUSTALW (Thompson et al., 1994) and edited in
GeneDoc (version 2.7, Nicholas et al., 1997) for the calculation of
the percentage similarity.

2.5. Phylogenetic analysis

Except for the Azorean strains, all the vp60 sequences analysed
were retrieved from GenBank. Multiple sequence alignments were
generated by CLUSTAL W (Thompson et al., 1994) and two sets of



Table 1
Information on the geographic origin and date of collection of the samples used for this study and accession numbers of the vp60 sequences submitted to GenBank.

Strain Island of origin Locality Collection date Accession numbers Region sequenced (vp60 gene) SNPs*

13647PT15 Faial Praia Almoxarife 15–20.01.2015 KP862922 753-1740 1, 2, 3, 4
13648PT15 Faial Praia Almoxarife 15–20.01.2015 KP862921 798-1740 1, 2, 3, 4
13649PT15 Faial Flamengos 15–20.01.2015 KP862923 798-1740 1, 2, 3, 4
13650PT15 Faial Norte 15–20.01.2015 KP862924 798-1740 1, 2, 3, 4
6628PT15 Terceira Serra do Cume 11.01.2015 KP862925 771-1740 1, 2, 3, 4
6629PT15 Terceira Serra do Cume 11.01.2015 KP862926 763-1740 1, 2, 3, 4
5145PT15 Terceira Serra do Cume 08.01.2015 KP862927 1444-1740 3, 4
2844PT15 S. Jorge S. Amaro 05.01.2015 Not submitted 750-1740 1, 2, 3, 4
2845PT15 S. Jorge S. Amaro 05.01.2015 Not submitted 750-1740 1, 2, 3, 4
2846PT15 S. Jorge Rosais 05.01.2015 Not submitted 750-1740 1, 2, 3, 4
2847PT15 S. Jorge Norte Grande 05.01.2015 KP862928 1380-1740 3, 4
2133PT15 Flores St. Cruz Flores 06.01.2015 Not submitted 1444-1740 3, 4
2134PT15 Flores Fazenda, Lajes 02.01.2015 Not submitted 1444-1740 3, 4
2135PT15 Flores Fazenda, Lajes 02.01.2015 Not submitted 1444-1740 3, 4
630PT15 Terceira Golfo 02.01.2015 Not submitted 750-1740 1, 2, 3, 4
631PT15 Terceira Golfo 02.01.2015 Not submitted 750-1740 1, 2, 3, 4
227251PT14 Graciosa Serra Branca 18.12.2014 KP862929 76-1740 1, 2, 3, 4
227252PT14 Graciosa Serra Branca 18.12.2014 KP862930 108-1740 1, 2, 3, 4
227253PT14 Graciosa Serra Branca 18.12.2014 KP862931 784-1740 1, 2, 3, 4
227254PT14 Graciosa Serra Branca 18.12.2014 KP862932 746-1740 1, 2, 3, 4
227255PT14 Graciosa Serra Branca 18.12.2014 KP862933 745-1740 1, 2, 3, 4
227256PT14 Graciosa Serra Branca 18.12.2014 Not submitted 750-1740 1, 2, 3, 4
28695PT15 St. Maria Espirito Santo 09.01.2015 Not submitted 1444-1740 3,4
29149PT15 S. Miguel Ponta da Graça 08.02.2015 Not submitted 1444-1740 3,4
29150PT15 S. Miguel Nordeste 08.02.2015 Not submitted 1444-1740 3,4
29151PT15 S. Miguel Nordeste 08.02.2015 Not submitted 1444-1740 3,4
29152PT15 S. Miguel Nordeste 08.02.2015 Not submitted 1444-1740 3,4

* Azorean specific markers observed in the nucleotide sequences obtained.

Table 2
Information regarding the primers used in this study.

Primer Sequence (50–30) Location* in the vp60 gene (KJ683896) Use Size of the
amplicon (bp)

Region of the
amplicon sequenced

Reference

717-F CGCAGATCTCCTCACAACCC 717 Amplif/Seq 1048 798 to 1740 (942nt) This study
RC-9F ATCATGTTCGCGTCTGTCGTCAGG 1381 Amplif/Seq 384 1407 to 1740 (333nt) Tham et al. (1999)
RC-10R GCGCCTGCAAGTCCCAATCC 27nt downstream the stop codon Amplif/Seq Tham et al. (1999)

1190-F CTCAGATTGTTGCCAAGTCC 1190 Seq – This study
1404-R CCTGACGACAGACGCGAA 1404 Seq – This study

* Location refers to the 50 end of the primers; Amplif (Amplification); Seq (Sequencing).
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alignments were considered for the phylogenetic analyses. The
first was composed by 122 942-nucleotide long sequences, repre-
senting 54.1% of the vp60 complete gene. In the second alignment,
six additional vp60 sequences of strains from Flores, St. Maria and
S. Miguel islands were added. The region included in this last align-
ment was restricted to the terminal 333 VP60 encoding nucleo-
tides. The multiple sequence alignments were manually
corrected with Jalview, Version 2.0.1 (Waterhouse et al., 2009)
removing internal gaps and unmatched ends, to maximise genetic
similarities. Phylogenetic trees were inferred by Maximum
Likelihood (ML) and Bayesian methods, PhyML 3.0 (Guindon
et al., 2010) and MrBayes v.3.2.1 (Huelsenbeck et al., 2001;
Ronquist and Huelsenbeck, 2003) programs, respectively. For the
ML criterion the substitution model HKY85 was selected
(Hasegawa et al., 1985) assuming an estimated proportion of
invariant sites and 4 gamma-distributed rate categories to account
for rate heterogeneity across sites. Initial trees were constructed
using BIONJ, and nearest neighbour interchange (NNI) with 1000
bootstrap replicates. CONSENSE program from the PHYLIP package
(Felsenstein, 2004) was used for the consensus tree. For the
Bayesian analysis a Markov chain Monte Carlo (mcmc) simulation
technique was carried out to approximate the posterior probabili-
ties of trees (Huelsenbeck et al., 2001; Ronquist and Huelsenbeck,
2003). The evolutionary GTR model (Tavaré, 1986) (nst = 6) was
selected with gamma-distributed rate variation across sites and a
proportion of invariable sites (rates = invgamma). The analysis
was initiated using a random tree from the dataset with four
chains running simultaneously for 10 � 106 generations, sampling
every 100 generations. The first 25% trees were discarded (burn-in)
and a majority rule consensus tree was generated from the remain-
ing trees.

The graphical representation and edition of the phylogenetic
trees were performed with FigTree v1.3.1 (http://tree.bio.ed.ac.
uk/software/figtree/). Only support values equal or greater than
70% of bootstrap (BS) and 0.70 of posterior probability (PP) are
shown in the trees. Sequence Z69620, from a European brown hare
syndrome virus, was chosen as outgroup to root the trees.
3. Results

3.1. Gross and histopathologic examination of wild rabbits positive to
RHDV2 revealed lesions identical to those induced by classical strains
of RHDV

Thirty-two wild rabbits were necropsied. No external parasites
were found. Nostrils with severe congestion and hemorrhages
were observed in 25 of the animals (83.3%) and hematochezia in
three (10.0%). Lungs were the most commonly affected organ
showing moderate to severe congestion, petechial or larger

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/


Fig. 1. Macroscopic examination of a wild rabbit from Faial positive to RHDV2
showing pale liver and congested lungs.
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haemorrhages irregularly distributed and affecting partial or com-
plete lobes (Fig. 1). In all necropsied animals the tracheal mucosa,
thymus, kidneys and spleen also showed congestion. Livers were
slightly enlarged, soft and pale (Fig. 1).
Fig. 2. Histopathological lesions in the liver of a wild rabbit from Graciosa positive to
(B) Degenerated hepatocytes with acidophilus intracytoplasmic bodies (arrow) (H&E, 10

Fig. 3. Histopathology of the lung and liver of a wild rabbit from St. Maria positive to RHD
100�), (B) Liver (H&E, 1000�).
Most of the specimens were received frozen and/or under sig-
nificant decomposition, limiting the anatomopathological exami-
nation to ten animals. In those, histopathology of the liver
revealed hydropic degeneration (n = 10, 100%). Most of the ani-
mals (n = 8, 80%), exhibited acute and widespread necrosis with
dissociation of the hepatic cords (Fig. 2). Hepatocytes showed
hypereosinophilic cytoplasm and pyknosis, karyorrhexis and
karyolysis (Fig. 2A and B). In two rabbits, hydropic degeneration
was the only lesion observed in the liver. Acidophilus intracyto-
plasmic bodies were present in degenerated hepatocytes of two
rabbits (20%) (Fig. 2B). Histopathology of the lungs revealed
diffused congestion (Fig. 3A), alveolar oedema and moderate to
severe intralveolar haemorrhage in all animals (100%).
Disseminated intravascular coagulation (DIC) was present in the
capillaries and small arterioles of the lung in five rabbits (50%)
or in both the lungs (Fig. 3A) and liver (Fig. 3B) in one animal
(10%).

3.2. Molecular characterisation and comparison of partial vp60
sequences from Azorean strains shows high level of nucleotide
similarity among strains regardless the island of origin

All the samples from wild rabbits originated in the seven
Azorean islands tested positive to RHDV2 (32/32, 100%) with the
standardised RT-qPCR used in this investigation (Duarte et al.,
2015b). The Cq values obtained for the liver samples ranged
between 9.20 and 26.15, which corresponds approximately to
9 � 104 to 9 � 109 viral particles in the PCR test.
RHDV2. (A) Necrotic hepathocytes with karyorrhexis and karyolysis (H&E, 400�).
00�).

V2 showing thrombus in the capillaries and small arterioles (arrows). (A) Lung (H&E,



Table 3
Single nucleotide polymorphisms (SNPs) found in the vp60 gene (942-1740 nt) of RHDV2 strains.

SNPS UNIQUE IN THE AZOREAN STRAINS SNPS PREDOMINANT IN THE AZOREAN STRAINS

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9
Nucleotide position in vp60 gene 930 1294 1689 1704 919 1045 1464 1491 1635
Polymorphism A>G A>G C>T C>T A>G G>A A>G A>G T>C

Country Position of the SNP within the codon 3th 1st 3th 3th 1st 1st 3th 3th 3th
(Collection date) Position of the amino acid encoded 310 432 563 568 307 349 488 497 545

Type of substitution syn non-syn syn syn non-syn non-syn syn syn syn

France (2010) SNP/codon TCA AGT AGC AAC AGC GTC GGA GGA ATT
Amino acid encoded Ser Ser Ser Asn Ser Val Gly Gly Ile
Number of sequences analysed 6 6 6 6 6 6 6 6 6
Prevalence of polymorphism (%) 100 100 100 100 100 100 100 100 100

Italy (2011) SNP/codon TCA AGT AGC AAC AGC GTC/ATC GGA GGA/GGG ATT
Amino acid encoded Ser Ser Ser Asn Ser Val/Ile Gly Gly Ile
Number of sequences analysed 8 8 8 8 8 6/2a 8 6/2b 8
Prevalence of polymorphism (%) 100 100 100 100 100 75/25 100 75/25 100

Spain (2011–2012) SNP/codon TCA AGT AGC AAC AGC/GGC GTC/ATC GGA/GGG GGA ATT/ATC
Amino acid encoded Ser Ser Ser Asn Ser Ile Ser Gly Ile
Number of sequences analysed 7 7 7 7 6/1c 6/1d 6/1e 7 6/1d

Prevalence of polymorphism (%) 100 100 100 100 85.7/14.3 85.7/14.3 85.7/14.3 100 85.7/14.3

Mainland, Portugal (2013–2014) SNP/codon TCA AGT AGC AAC AGC GTC/ATC GGA/GGG GGA/GGG ATT
Amino acid encoded Ser Ser Ser Asn Ser Val/Ile Gly Gly Ile
Number of sequences analysed 56 56 56 56 56 56 47/9f 55/1g 56
Prevalence of polymorphism (%) 100 100 100 100 100 100 83.9/16.1 98.2/1.8 100

Azores, Portugal (2014–2015) SNP/codon TCG GGT AGT AAT GGC ATC GGG GGG ATC
Amino acid encoded Ser Gly Ser Asn Gly Ile Gly Gly Ile
Number of sequences analysed 20 12 27 27 20 20 27 27 27
Prevalence of polymorphism (%) 100 100 100 100 100 100 100 100 100

a – KC907712, JX106022; b – KC907712, JX106022; c – KP090976; d – KP129398; e – KP090976; f – KM115667-75; g – KM115693.
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All the samples tested negative to myxoma virus (0/32, 0%) by
the method described by (Duarte et al., 2014a). None of the ani-
mals were positive to RHDV.

The BLAST analysis of the partial vp60 sequences obtained from
27 samples from wild rabbits originated in the seven islands,
showed high similarity with RHDV2 strains from the European
continent. A genetic identity of 99.36% to 100% was inferred by
the nucleotide variability found in the alignment of the 30end-
942 bases of 11 Azorean sequences. In the alignment of a shorter
region, limited to the terminal 333 bases of 17 vp60 sequences,
an identity of 99.4% to 100% was observed.

3.3. New single nucleotide polymorphisms (SNPs) in the vp60 gene at
positions 930, 1294, 1689 and 1704 found in the strains from Azores
(2014-February 2015)

The nucleotide alignment of the partial vp60 sequences of
Azorean strains with all the RHDV2 sequences presently known
revealed four new SNPs in the insular strains at nucleotide posi-
tions 930, 1294, 1689 and 1704. Other SNPs, at positions 919,
1045, 1464, 1491 and 1635, were found to be predominant in
the strains from the Azores although also present in strains from
Spain, Portugal mainland or Italy (Table 3). Apart from the
Azorean strains, the A/G SNP at position 919 is only found in a
strain from Spain (KP090976). Moreover, the combined presence
of these 9 SNPs was only detected in the Azorean strains.

3.4. Comparison of Azorean strains with strains originated worldwide,
revealed no obvious similarity with any European strain

Despite the high nucleotide identities observed between the
Azorean strains and strains from Portugal mainland (96.7–98.3%)
and Spain (95.75–98.2%), no absolute similarity was found
between any strain from Azores and a RHDV2 sequence from other
geographic origin.

3.5. Phylogenetic analysis discloses segregation from European RHDV2
strains

The Bayesian and maximum likelihood trees generated with the
vp60 terminal 942 nucleotides of 11 Azorean strains, RHDV2
strains from Europe, representatives from the classical genogroups
(G1–G6) and the non-pathogenic strains RCV (X96868), NP-LV 06–
11 (AM268419) and RCV-A1 (GU368890, GU368894, GU368919),
showed very similar topologies. A few exceptions included
sequence HE800529 that in the ML analysis grouped with other
strains from France, while in the Bayesian analysis has a more close
relation with the Iberian strains.

RHDV2 strains separated clearly from classical RHDV and the
non-pathogenic lagoviruses RCV and NP-LV 06–11 (BS = 82%, node
A, Fig. 4A), forming a vast monophyletic group strongly supported
by the two phylogenetic analyses (BS = 100%, PP = 1, node B).
Within the RHDV2 cluster, most of the strains from France and
Italy collected until 2012 show to be more closely related with
each other than with the strains with other European geographic
origins. All Iberian strains appear to have derived from a common
ancestor shared also by a unique non-Iberian strain (KC741409)
collected from a Lepus corsicanus specimen in mainland Italy
(BS = 71%, PP = 1, node C, Fig. 4A). Along with two strains from
Spain (KP129395, KP129396), all strains from Portugal appear to
share a common ancestor (BS = 70%, node D). The Azorean strains
formed a strongly supported monophyletic group (BS = 100%,
PP = 1, node F), and segregated from the remaining strains origi-
nated in continental Portugal. Also, the Bayesian and ML analysis
revealed that the Azorean strains appear to be more closely related
with a subgroup of strains fromMértola (subregion Baixo Alentejo)
and the Algarve. Those five strains originated in the South of the
country grouped together consistently in the two trees with strong
bootstrap and posterior probability values of 100% and 1, respec-
tively (Fig. 4A, node G). However, the genetic proximity between
the Azorean strains and these five Southern RHDV2 strains was
supported only weakly by a bootstrap value of 48.1% and a low
posterior probability of 0.67 (node E, values not shown in Fig. 4).

The phylogenetic analyses based on a smaller region (333
nucleotide-long) allowed us to extend the analysis to a total of
17 sequences from Azores. The overall topology of trees repro-
duced the relative position of the subgroups defined in the former.
A close up of the Azorean cluster, obtained with the ML shorter
alignment (333 nucleotides), is presented in Fig. 4B. Regarding
the relative phylogenetic relations between the Azorean isolates,
the ML analysis further resolved the distribution of the sequences
within this branch (Fig. 4B), overcoming the Bayesian approach
(result not shown). However, only a few nodes were supported
by BS values higher than 70% (Fig. 4B) and no obvious relation
could be established between the island of origin and the distribu-
tion of these sequences in the Azorean cluster. Also in this 333 nt
based analysis, high bootstrap and posterior probability values
supported the clustering of the Azorean sequences (BS = 94.4,
PP = 1, node F) as well as of the sequences from Southern
Portugal (BS = 94, PP = 1, node G). The relative topology of these
branches agreed with the branching obtained in the 942 nt based
analysis.

The consistency of the inferences performed with the longer
(942 nt) and shorter (333 nt) alignments revealed that the nucleo-
tide variability within the 333-nucleotide long region harbours
enough discriminatory power to allow phylogenetic analysis. In
this alignment six additional sequences from Flores, St. Maria
and S. Miguel were included. The genetic distances calculated by
the Kimura 2-parameters (K80) and F84 models ranged from
0.00000 and 0.006407 and 0.006409, respectively (results not
shown). However, the highest distance was found between
sequence KP862930 and KP862924 from the Graciosa and Faial
islands, respectively.
4. Discussion and conclusions

The anatomopathological examination of specimens victimised
by RHDV2 in the Azorean islands allowed us to confirm the infec-
tion induced lesions previously described by other authors (Dalton
et al., 2012; Lopes et al., 2015) and to further extend their detailed
description. In fact, our analysis showed that the macroscopic
lesions observed in RHDV2-positive wild rabbits from Azores
match typical RHDV lesions. For instance, they were similar to
those described in rabbits infected with RHDV classical strains
(McIntosh et al., 2007), reporting pale liver and multiple infarcts
and haemorrhages throughout the lungs. Moreover, our observa-
tions were in accordance with the histopathological exam of clas-
sical RHDV victimised rabbits, where severe hepatic necrosis
characterised by disassociation of the hepatic cords, cellular swel-
ling, hyper eosinophilia and hepatocellular vacuolar changes
(pyknosis, karyorrhexis and karyolysis) were described (McIntosh
et al., 2007). Degenerative hepatocytes containing intracytoplas-
mic acidophilic bodies were also observed in both infections
(Fig. 3). As for the fatally RHDV infected rabbits (McIntosh et al.,
2007), lungs from RHDV2 positive rabbits from Azores, showed
pulmonary congestion and haemorrhage.

Despite the distinct clinical characteristics of the disease
induced by RHDV2 and RHDV regarding the age of the affected rab-
bits, disease duration, mortality rates and the occurrence of suba-
cute/chronic forms (Le Gall-Recule et al., 2013), the similarities
between the lesions induced by both viruses, hamper the
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Fig. 4. (A) Phylogenetic tree derived from maximum molecular likelihood based on partial vp60 sequences (30 terminal 942 nucleotides). (B) Close up of the Azorean branch
obtained in the phylogenetic tree derived from maximum molecular likelihood based on partial vp60 sequences (50 terminal 333 nucleotides). Bootstrap (BS) values from
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differential diagnosis through anatomopathological examination.
Therefore, the differentiation between classical and new variant
strains must be accomplished through the molecular characterisa-
tion of a viral gene, usually the capsid encoding gene.

Interestingly, although macroscopic examination often indi-
cated that lungs are more affected than liver ((Duarte et al.,
2015a) and this study), the comparison of the Cq values obtained
for these two organs in 9 wild rabbits showed differences ranging
from 0.66 to 6.87, revealing consistently higher viral charges in the
liver. Due to the lower Cq values found in a few samples, a mean Cq
value of 12.88 ± 3.88, corresponding to 1.5x108 RNA molecules,
was calculated per mg of liver. This estimation is about 10� higher
than the value previously estimated for RHDV2 infected rabbits
with the same method (Duarte et al., 2015b). Although this devia-
tion may suggest that higher viral loads can be obtained in adult
rabbits during RHDV2 infection, it may also have resulted from
dehydration of the cadavers before being collected by the hunters.
Sampling bias regarding the age of the animals may have also
influenced these results since only wild adult rabbits were used
in the present study.

No co-infections with G5 strains, or any other RHDV genetic
groups, and RHDV2 were detected. Although the number of strains
analysed in this study is limited to 27, the fact that since July 2014
no other type but RHDV2 was detected at the National reference
laboratory (INIAV) suggests that RHDV2 is rapidly replacing the
G5 strains previously circulating in Azores. This rapid takeover of
the RHDV strains by RHDV2 is similar to what has been reported
in several European Countries where wild populations of rabbits
are present (Le Gall-Recule et al., 2013).

The recurrent appearance of two novel A/G SNPs (930th and
1294th positions) and two C/T SNPs (1689th and 1704th positions)
in the vp60 sequence of all Azorean strains along with the phyloge-
netic analysis further confirmed that the Azorean-RHDV2 cluster
separately within the European-RHDV2 group (Fig. 4).

Interestingly, all non-synonynous substitutions found in 942-
nucleotide region analysed of the Azorean strains are located
within the hypervariable domains of the capsid protein (Wang
et al., 2013) The Gly432, until now only detected in the Azorean
strains, is located within the hypervariable domain V6, whereas
Gly307 and Ile349, shared also by a few other non-Azorean strains,
are localised in the V1 and V2 domains, respectively.

Despite the high similarity to European RHDV2 strains, no abso-
lute identity was found between the partial vp60 sequences from
Azores and any sequence available publically at the moment.
However, the Bayesian and ML phylogenetic analyses revealed a
closer genetic relationship with two strains from Mértola
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(subregion Baixo Alentejo) (KM115712-13) and three strains from
the Algarve (KM115714-16), albeit none of these strains exhibit
the Azorean-characteristic molecular markers. Therefore, a direct
epidemiological link between the incursion of RHDV2 in Azores
and other non-Azorean strains could not be established, raising
questions regarding its origin. Furthermore, other strains from
Barrancos (subregion Baixo Alentejo), Mora and Estremoz (subre-
gion Alentejo Central) and Estoi (Algarve), also included in the
analysis, did not show the same level of genetic proximity with
the Azorean strains, as the five sequences from Mértola and the
Algarve (Fig. 4A).

It is yet to be determined if the specific genetic characteristics of
the Azorean strains were already present in the source of the first
incursion. The time gap described in the past for the incursion of
RHDV in Faial (1988) (Carvalho et al., 1994), S. Jorge (1989)
(Carvalho et al., 1993) and St. Maria Island (1990) (Carvalho and
Almeida, 1991) contrasts with the short interval between the first
report of RHDV2 in the different islands.

The transmission of RDHV can take place by direct contact
between infected and non-infected rabbits, but it can also be con-
veyed between rabbits by means of inanimate objects (fomites).
Insects are known to act as mechanical vectors in the transmission
of the virus (Barratt et al., 1998; Crosby and McLennan, 1996).
Spilopsyllus cuniculi species were reported in Terceira, S. Miguel
and Faial in 1994 (Carvalho et al., 1994) and later in Pico and S.
Jorge (Libois et al., 1997). These fleas were able to transmit the dis-
ease in laboratorial conditions (Lenghaus et al., 1994) (McColl
et al., 2002), and along with flies and mosquitoes, may act as
mechanical vector in the propagation of the virus in the Azorean
islands. However, since the outbreaks of RHDV2 in Azores took
place in the cooler seasons when mosquitoes are less active, its role
in the dissemination of RHDV2 may be questionable. On the other
hand, increasing attention has been given to the role of rodents in
the spreading of RHDV. It is known that micromammals such as
Mus spretus and Apodemus sylvaticus are environmental preservers
and potential transmitters of RHDV (Merchan et al., 2011). Several
non-native rodent species are found in Azores namely the Rattus
norvegicus, Rattus rattus and the Mus musculus (Collares-Pereira
et al., 2000; Medeiros et al., 2008), which may play a role in the dis-
persal of the disease.

The outbreak in Faial succeeded the incursion of RHDV2 in
other islands from the Central group, namely Graciosa, Terceira
and S. Jorge. Faial is 39 km away from S. Jorge, being the closest
neighbouring islands of the archipelago. The frequent maritime
traffic between the islands may be related with the quick spread
of the virus to Faial and more recently to both islands of the
Eastern group (St. Maria and S. Miguel).

The independent clustering of the Azorean strains disclosed by
our phylogenetic analyses, and the low genetic distances found,
reinforces the idea that a unique introduction of RHDV2 may have
taken place in the archipelago, during late 2014 (Duarte et al.,
2015a) and suggests an epidemiological link between these strains.

Taking into account the wide range of possibilities for the incur-
sion and dissemination of RHDV2 in Azores, the full understanding
of the recent outbreaks in the archipelago will require the com-
bined analysis of further molecular information and epidemiologi-
cal data.
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Are the Madeira archipelago RHDV2 viruses distinct 

from those characterised so far? 
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Abstract We report the detection of rabbit haemorrhagic

disease virus 2 (RHDV2) in the Madeira archipelago,

Portugal. Viral circulation was confirmed by RT-qPCR and

vp60 sequencing. Epidemiological data revealed the out-

break initiated in October 2016 in Porto Santo affecting

wild and domestic rabbits. It was then detected three

months later on the island of Madeira. Five haplotypes

were identified and a genetic overall similarity of 99.54 to

99.89% was observed between the two viral populations.

Unique single nucleotide polymorphisms were recognised

in the Madeira archipelago strains, two of which resulting

in amino acid substitutions at positions 480 and 570 in the

VP60 protein. Phylogenetic investigation by Maximum

Likelihood showed all the vp60 sequences from the

Madeira archipelago group together with high bootstraps.

The analysis also showed that the Madeira archipelago

strains are closely related to the strains detected in the

south of mainland Portugal in 2016, suggesting a possible

introduction from the mainland. The epidemiological data

and high genetic similarity indicate a common source for

the Porto Santo and Madeira RHDV2 outbreaks. Human

activity related to hunting was most probably at the origin

of the Madeira outbreak.

Keywords Rabbit haemorrhagic disease (RHDV) � Wild

rabbits � Domestic rabbits � Madeira archipelago �
Macaronesian region

Text body

Rabbit haemorrhagic disease virus 2 (RHDV2), a small

fast-evolving RNA virus (mean 5.48 to 7.7 9 10-4 sub-

stitutions/site/year [1, 2]) belonging to the Caliciviridae

family [3], was first detected in Europe in 2010 [4]. Like

the genetically related RHDV that emerged in 1984 [5], it

causes an often fatal haemorrhagic disease (RHD) in

European rabbits (Oryctolagus cuniculus) [4, 6].

Madeira Island was the first region of the Portuguese

territory to register RHD following the importation of

contaminated rabbit meat from China in 1987 (reviewed by

[7]). The Madeira archipelago is situated in the North

Atlantic Ocean, 1040 km southwest of mainland Portugal,

490 km from the Canary Islands and about 935 km from
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the Moroccan coast. This archipelago includes the

Madeira, Porto Santo and Desertas islands.

The wild rabbit (Oryctolagus cuniculus algirus) was

introduced into the archipelago probably from South-

western Portugal during the 15th century by Portuguese

navigators, [8]. According to the official veterinary ser-

vices the size of the wild populations in Porto Santo and

Madeira was never estimated, and no census is currently

available for the domestic populations. There is no indus-

trial farming in the archipelago, and local backyard rab-

bitries (for private consumption) contained no more than

10 and 25 rabbits in Porto Santo and Madeira, respectively.

RHDV circulated in Madeira and Porto Santo until at

least 2011 and late 2012, respectively (Duarte MD and

Costa M, unpublished data). It was subsequently controlled

through vaccination.

At the end of 2016, an increase in mortality was regis-

tered in the wild rabbits on Porto Santo, and three months

later on Madeira. Field investigation revealed that the first

casualties occurred in October amongst the wild rabbit

population from the central region of Porto Santo (Campo

de Cima and Pico do Castelo, 3.5 km apart). In the fol-

lowing weeks, mortality was also seen in other areas,

(Dragoal) but this time also affecting domestic rabbits.

Three months later, in January 2017, four wild rabbits were

found dead in Paul da Serra, the biggest and highest

mountainous plateau in Madeira (municipality of Ponta do

Sol). At the time, both a farm and pet rabbit (the latter

vaccinated twice against myxomatosis and classical

RHDV) from the municipalities of Santa Cruz and Funchal,

respectively, were also received at the Regional Laboratory

of Madeira (Funchal) and sent to the Reference Laboratory

for Animal Diseases (INIAV) in Oeiras for diagnosis.

In this study, we analysed ten rabbits (seven wild and

three domestic) originating from both islands. Necropsies

were carried out at the Regional Laboratory of Madeira.

All specimens presented with congestion and haemorrhage

of the tracheal mucosa and lungs, confirmed by

histopathology performed by standard procedures [9]. In

half of the animals (n = 5), the liver was marbled and

presented mild discoloration. Renal congestion was

observed in most of the animals (n = 8). The microscopic

alterations were compatible with systemic coagulopathy

and multi-organ failure. Several degenerative and necrotic

signs, namely vacuolar degeneration, karyorrhexis and

pyknotic nuclei, were observed in the liver and kidneys of

most specimens. Virological examination was carried out

at INIAV. The presence of RHDV2 was confirmed in the

liver samples of all rabbits by molecular methods [10].

RHDV2 had not previously been reported in the archipe-

lago, despite known circulation on the mainland since 2012

[11], and on the Azores [12] and Tenerife [13] since 2015.

All samples tested negative for the myxoma virus (MYXV-

DNA) by the method described by Duarte et al. [14].

Sequencing of the PCR product was obtained with primers

RHD-9F and RHD-10R [15], which amplify both RHDV

and RHDV2, revealed that RHDV2, and not classical

RHDV strains, caused the death of the ten rabbits.

The complete vp60 sequences from seven liver samples,

three from Porto Santo and four from Madeira, were

obtained using the pairs of primers 27F [16] and 986R [17]

and 717F [17] and 10R [15] and submitted to GenBank

(accession numbers KY310747-KY310749 and

KY783700-KY783703). Two strains from Porto Santo

were identical (KY310748, KY310749), differing only in

one residue from the third (KY310747) (similarity of

99.94–100%). Two strains from Madeira were also found

to be identical (KY783702, KY783703), but diverged from

the other two by five (KY783700) and eight residues

(KY783701), respectively, corresponding to a genetic

similarity of 99.43–100%.

Seven single nucleotide polymorphisms (SNPs) were

identified in the Madeira archipelago 2016–2017 strains

(supplementary material, Table 1). Of these, two were non-

synonymous encoding Asn480 (n = 6, 85.7%) or Ser480
(n = 1, 14.3%) and Glu570, (n = 7, 100%). None of these

amino acids have been detected before in this position,

given that a Thr480, and less frequently an Ala480, are

usually found. Similarly, in position 570 only a Gly570 had

been identified to date.

Additionally, six synonymous and two non-synonymous

(encoding residues 347 and 369) SNPs were also found in

the viruses from the Madeira archipelago, only shared by a

few other strains (supplementary material, Table 1). Alto-

gether, the seven specific and eight rare SNPs defined a

DNA fingerprint for the RHDV2 2016–2017 strains from

the archipelago.

Residues Ala347, Tyr369 and Asn480/Ser480, are located

in the P2 sub-domain of the VP60 protein, responsible for

virus–host receptor interactions and antigenic diversity

[18–21]. Residue 480 falls within the V7 hypervariable

region, one of the regions of the P2 sub-domain where

variation among rabbit caliciviruses is higher [22]. Residue

Glu570 is located in the P1 sub-domain of VP60 [22].

Residues 570 and 480 lay in loops not spatially con-

strained within the P1 and P2 sub-domains. However,

given the different chemical properties and sizes of the

replacing aa, their potential impact on the 2D-structure

(SS) was explored. The SS of sequences KY310747-48 and

KY783700-02 was compared with that of strain FR81978,

using the molecule c3zueB as a model (Phyre2 software)

[23]. The a-helix predicted at position 492–499 in

sequence FR819781 (Ala480) was extended upstream by

two residues in sequence KY783701 (Ser480). In the

remaining strains, the Asn480 appears to have abrogated the

a-helix, instead folding a b-strand (residues 484–498),
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which, if present, did not compromise the virulence or

pathogenicity.

Maximum Likelihood (ML) phylogeny based on the

complete vp60 sequences revealed that the Porto Santo and

Madeira viruses cluster together with a bootstrap value of

100 (Fig. 1a), confirming their higher genetic similarities

(99.54–99.89%), low genetic distances, low average num-

ber of nucleotide differences and substitutions (3.667,

supplementary material Table 2), and the null number of

fixed differences between these populations (supplemen-

tary material Table 2). Since 2012, there are no records of

legal live rabbit trading into Porto Santo or Madeira and

rabbit meat is received mainly from the mainland, although

it is sometimes imported from a few European Union (EU)

Member States (France and Spain). Entrance of the virus

through contaminated meat or rabbit by-products is there-

fore highly unlikely due to sanitary control. However, the

intense human movement between the Madeira archipelago

and the Portuguese mainland constitute a risk factor for

virus introduction. The short time gap between the two

outbreaks suggests that the virus entered the archipelago

through Porto Santo from where it disseminated to
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Fig. 1 a, b Maximum Likelihood (ML) phylogenetic trees based on

(a) complete vp60 sequences (1740 nt) and (b) 641-nt long

concatenate sequences from RHDV2 strains from the Madeira and

Azores archipelagos, other mainland regions and other countries,

available in GenBank. The appropriated substitution models were

determined resourcing to R software (R Development Core Team,

2009). The general time reversible (GTR) model [26] with a

(a) discrete gamma distribution (?G) and/or an allowance for the

incorporation of invariant sites (?I) (GTR ? G?I) and (b) a gamma-

distributed rate variation across sites (GTR ? G) showed the lowest

BIC and AICc values and were used to infer the phylogenetic

relationships. Robustness of the tree nodes was assessed by

bootstrapping 1000 times. The graphical representations and edition

of the phylogenetic trees were performed with FigTree v1.3.1 (http://

tree.bio.ed.ac.uk/software/figtree/). Only bootstrap (BS) values equal

or greater than 70 are shown. Sequence KC345614 (not displayed)

was chosen as outgroup to root the trees. In both trees each let-

ter represents a particular sequence or a group of sequences whose

detailed information is shown in supplementary Table 3. With

exception of groups l, m, n, o and p, which are pointed in both trees,

the country/region of origin and year of collection is highlighted only

in the concatenated sequences-based tree (b). c Geographic map with

the relative location of the Madeira (red), Azores (green) and

Tenerife (purple) archipelagos with relation to mainland Portugal

(Western Iberia) and Africa. The location of Barrancos is shown by a

black circle in the mainland territory. To allow comparison, the same

colour code for strains is used in both trees. d Close-up of the Madeira

archipelago strains with the accession numbers of the sequences
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Madeira. On Madeira and Porto Santo, wild rabbits are

small game species and hunting represents a significant

local recreational activity. Porto Santo is a popular desti-

nation for this activity and hunters from Madeira generally

take their hunting trophies back home, a high-risk practice

that may have led to the island’s outbreak three months

after RHDV2 emerged in Porto Santo.

Our study suggests that the Madeira archipelago viruses

may have originated from mainland Portugal, or share a

recent common ancestor with the strains identified in the

southern Alentejo region (NUT II PT 18) in 2016 (Fig. 1a,

b). This relationship is also evidenced by the genetic data

(supplementary material, Tables 1 and 2). However, the

lack of detailed classical epidemiologic information and

the relatively high average number of nucleotide differ-

ences (34.333 and 37.000, supplementary material Table 2)

found between the Barrancos 2016 and Madeira archipe-

lago virus populations hampers the establishment of a

confident direct link between the two outbreaks.

Since RHDV2 was registered in Tenerife in 2015 [13],

and given its relative proximity with the Madeira archi-

pelago, introduction from the Canaries was also consid-

ered. This possibility was discarded after assessment

through a ML-tree based on concatenated vp60 sequences,

constructed as described by Martin-Alonzo et al. [13] as

only partial vp60 gene sequences from Tenerife were

available. The Tenerife sequences grouped together in a

different cluster, distant from the Madeira archipelago

group. They appear to be more closely related to RHDV2

strains found in Spain (KP129395) and in the north of

Portugal (KM979445) in 2012, or even with strains from

south and central mainland Portugal (found between 2013

and 2015) (Fig. 1b), than with the Madeira or Barrancos

2016 strains. Furthermore, none of the amino acids Asn480/

Ser480 and Glu570, the genetic markers of the Madeira

strains, were present in the Tenerife strains.

The identification of two identical strains (KY310748

and KY310749) in both wild and domestic rabbits from

Porto Santo, found dead within a short timeframe, provides

evidence on the rapid transmission between these

populations.

New RHDV2 outbreaks continue to be reported in

Europe (e.g. Norway, Sweden, Finland) [24], and in Africa

(Tunisia) [24] and Australia [25]. Seven years after its first

detection, RHDV2 deeply affected the three archipelagos

of the Macaronesia, demonstrating the rapid dissemination

of the virus beyond continental Europe and raising con-

cerns regarding the spread of the virus to nearby African

countries.
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S. Marchandeau, Vet. Rec. 168, 137 (2011)

5. J. Liu, H.P. Xue, B.Q. Pu, N.H. Qian, Anim. Husb. Vet. Med. 16,
253–255 (1984)
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1. Update on the laboratory diagnosis of tularaemia and genotyping 
methods 
 

1.1. Culture 

F. tularensis is a fastidious organism and the most suitable medium for the cultivation of this 

pathogen are reviewed in General Introduction. 

The rapid cultivation of F. tularensis is important for detection and monitoring during natural 

outbreak events or intentional bioterrorism attacks (Morris et al., 2017). 

Recently, regarding liquid growth media for detection of F. tularensis, the Pavlovich's medium T (a 

transparent nutrient medium T (tularemic) for cultivation of F. tularensis based on heart-brain 

infusion, yeast extract, bactotryptone, technical casamino acids, bactoagar, salts, L-cysteine and 

glucose plus polymyxin B (100 units/ml) developed by (Pavlovich and Mishan’kin, 1987)), was 

successfully re-evaluated as an optimal liquid medium suitable for enrichment of fastidious and/or 

highly pathogenic bacteria (Becker et al., 2016). The medium provides the use of wider temperature 

ranges for F. tularensis culture and, due to its transparency, can be used for the identification of 

strains using certain biochemical features as well as in studies with field materials (dead rodents, 

water)(Pavlovich and Mishánkin, 1987). Even more recently, Morris et al., (2017) developed a liquid 

growth medium formulation, using readily available supplements, capable of producing enhanced 

early growth of F. tularensis. This growth medium consisted in brain heart infusion (BHI) broth 

supplemented with 2% Vitox, 10% Fildes and 1% Histidine (BVFH) and promoted enhanced growth 

F. tularensis Type A.I, A.II and Type B strains, compared to BHI alone (Morris et al., 2017). 

 

1.2 Serology 

Recently, Eremkin et al. (2016) developed an immune enzyme and immunochromatographic test-

systems for detecting F. tularensis based on a selected set of monoclonal antibodies with 

immunochemical activity to F. tularensis antigens. The method demonstrated good sensitivity and 

specificity. 

In addition, Spehar-Délèze et al. (2016) described an electrochemiluminescence (ECL) 

immunosensor for the rapid detection of F. tularensis using whole antibodies or antibody 

fragments as capture biomolecule. A sandwich immunoassay was used. Lipopolysaccharide (LPS) or 

the whole inactivated bacterial cell were used as targets, and the Ru(bpy)3
(2+)-encapsulated silicate 
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nanoparticles were linked to the secondary antibody and used as ECL labels. The assay was 

performed in a fluidic chip housed in a custom-built black box incorporating electronics, optics and 

fluidics. The limit of detection for LPS was 0.4 ng/mL and for the whole inactivated bacterial cell 

was 70 and 45 bacteria/mL when the capturing molecule was the whole antibody and the antibody 

F(ab) fragment, respectively (Spehar-Délèze et al., 2016). 

1.3. Molecular methods for diagnosis and genotyping 

Although culture is the gold-standard, this procedure is not routinely performed once it requires 

special equipment and containment as well as experience (Lai et al., 2016). Hence, substantial 

research in the development of new diagnostic techniques for this pathogen has been carried out 

including a variety of molecular methods, most of which were already addressed in General 

Introduction. New developments in sequencing technologies, specifically next-generation 

sequencing (NGS) approaches now allow for rapid and less expensive sequencing of the genome of 

a wide range of pathogenic bacteria (Antwerpen et al., 2015). NGS allows deep sequencing and the 

generation of abundant DNA sequences and is a powerful technique for the reliable identification 

of pathogens in clinical specimens (Kuroda et al., 2012). Multi-locus sequence typing (MLST) 

(Maiden et al., 2013), MLST+ based on whole genome sequencing (WGS) (Antwerpen et al., 2015) 

and Genome-wide DNA microarray analysis (regional difference (RD) analysis) have been proposed 

to characterise F. tularensis. WGS has recently emerged as a rapid and cost-effective approach 

(Didelot et al., 2012) and is revolutionizing taxonomy, phylogeny, genomic diversity and population 

dynamics of several clinically relevant microorganisms (Antwerpen et al., 2015). It has provided an 

outstanding resource for comparative genome studies, allowing high-resolution snapshots of the 

genetic diversity found within a given species (Dempsey et al., 2006). 

 

1.3.1. Multi-locus sequence typing (MLST) and the gene-by-gene approach 
MLST uses alleles as the unit of comparison, rather than nucleotide sequences. Each allelic change 

is counted as a single genetic event, regardless of the number of nucleotide polymorphisms 

involved (Maiden et al., 2013). The MLST approach retains information at all loci and avoids the 

need to categorize which changes are recent point mutations and which are due to recombination. 

MLST records the sequences of allelic variants, and the data can be used for sequence-based 

analyses (Maiden et al., 2013). Traditional MLST has been successful in evaluating the epidemiology 

of some bacteria (Mellmann et al., 2011)(Cody et al., 2013) but fails to provide sufficient 
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discrimination power for resolving differences among single strains of monomorphic, low diversity, 

asexual pathogens such as F. tularensis (Antwerpen et al., 2015). A gene-by-gene (MLST+) approach 

revealed to be superior to the current standard method, canSNP or MLVA (Antwerpen et al., 2015). 

 

1.3.2. MLST+ based on Whole Genome Sequencing (WGS) 
MLST+ based on whole genome was recently introduced by Antwerpen et al. (2015) as a high 

resolution genotyping approach for the characterisation of F. tularensis strains from outbreaks. The 

method uses MLST+ and gene-by-gene comparison combined with WGS. Antwerpen et al. (2015) 

used the IonTorrent PGMand Illumina MiSeq (Illumina, San Diego, US) to sequence the reference 

strain F. tularensis subsp. holarctica LVS to exclude technology-bias of MLST+ before samples were 

compared in a gene-by-gene approach (MLST+). For clonal species, like F. tularensis, extending the 

genetic analysis beyond the core genome may be necessary and resolution of the WGS analysis 

might be increased by incorporating specific elements (including accessory genes, repetitive 

elements such as RNA coding sequences, insertion elements, VNTR and pseudo-genes or genes of 

the FIP), mandatory for following micro-evolutionary events. 

 

1.3.3. Genome-wide DNA microarray analysis 
(Broekhuijsen et al., 2003) developed a DNA microarray, based on 1.832 clones from a shotgun 

library used for sequencing of the highly virulent F. tularensis subsp. tularensis strain SCHU S4 that 

allowed a genome-wide analysis of other strains representing all four subspecies. The microarray 

analysis confirmed limited genetic variation within F. tularensis. However, eight regions of 

difference (RD) were identified that allow distinguishing moderately from highly virulent 

subspecies. One of these regions, RD1, allowed for the first time the development of an F. 
tularensis-specific PCR assay that discriminates each one of the four subspecies. 

 

1.3.4. Other molecular methods 
Recently, Banada et al. (2017) described a new cartridge-based assay with high sensitivity and 

specificity of 100%, for the rapid detection of F. tularensis in whole blood at the early stages of 

infection. The assay incorporates sample processing and detection into a single cartridge, making it 

suitable for rapid point-of-care detection. The assay limit of detection (LOD) and dynamic range 

were determined in a filter-based cartridge run on the GeneXpert system. The assay LOD was 0.1 
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genome equivalents (GE) per reaction and 10 CFU/ mL of F. tularensis in both human and macaque 

blood. 

 

The use of real-time PCR for the detection of F. tularensis and discrimination between Type A and 

Type B is detailed next in the book chapter “Carvalho C.L., Duarte E.L., Zé-Zé L., Lopes de Carvalho I. 

2014. Detecção de Francisella tularensis pela reacção de polimerse em cadeia em tempo real com 

sondas de hidrólise TaqMan. In Abordagens moleculares em veterinária – como desvendar a 
etiologia e a epidemiologia da infecção. Edições LIDEL 2014. ISBN: 978-989-752-034-1. pp. 271-

276”. 

In addition, the Standard Method Performance Requirements (SMPRs) for Detection of F. tularensis 

in Aerosol Collection Devices (AOAC SMPR 2016.007) is given in Annex IV. 
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1. Abstract 
The zoonotic bacterium Francisella tularensis has been detected in Portugal in several tick species 

and recently also in wild lagomorphs. Sequencing analysis allowed identifying F. tularensis subsp. 

holarctica circulating in the country, although further characterization is still needed. Since the first 

detection of this bacterium in Portugal, several F. tularensis isolation attempts have been made by 

the authors, resorting to standard protocols referred in the literature. However, all isolation 

attempts failed. In this work, we used an alternative protocol to propagate F. tularensis “in vitro” in 

suitable cysteine enriched medium, which includes a previous “in vivo” passage in mice (CD1). This 

method was developed by Gyuranecz (2011) and have been applied with success for the F. 
tularensis isolation at the Institute for Veterinary Medical Research (Center for Agricultural 

Research, Hungarian Academy of Sciences), a OIE F. tularensis reference laboratory. 

 

2. Keywords: Francisella tularensis, F. tularensis subsp. holarctica, in vitro propagation, in vivo 

passage, isolation attempt, cultivation 

 

3. Body of manuscript 
In Portugal the zoonotic bacterium Francisella tularensis was first detected in 2007 by molecular 

methods in the blood of an asymptomatic man and in a Dermacentor reticulatus tick (Lopes de 

Carvalho et al., 2007). Since then, the Centre for Vectors and Infectious Diseases Research (CEVDI), 

National Health Institute Doutor Ricardo Jorge (INSARJ), the Portuguese reference laboratory on F. 
tularensis, has reinforced surveillance on this pathogen. Recently, alongside with ticks from genera 

Dermacentor and Ixodes, the bacterium was also identified in the country in Hyalomma lusitanicum 

and Rhipicephalus sanguineus tick species as well as in wild lagomorphs (Lopes de Carvalho et al., 

2016). Sequencing analysis disclosed the circulation of F. tularensis subsp. holarctica in Portugal. 

F. tularensis is a zoonotic bacterium responsible for tularaemia (Petersen et al., 2009). Although it 

was isolated in 1912 in California, a growing research interest on this pathogen was registered last 

years due to its increasing emergence in new hosts and geographic locations, but also for its 

potential use in bioterrorism (reviewed in (Carvalho et al., 2014)). F. tularensis is considered one of 

the most virulent microorganisms presently known, being classified as a Category A biowarfare 

agent (Dennis et al., 2001). In this context a rapid and unequivocal laboratorial diagnosis is often 

required, especially when Francisella-like endosymbionts with significant homology to F. tularensis 

have been described (Scoles, 2004)(Escudero et al., 2008)(Baldridge et al., 2009)(de Carvalho et al., 
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2011)(Ivanov et al., 2011)(Dergousoff and Chilton, 2012)(Kreizinger et al., 2013). Also, F. tularensis is 

formally divided into three subspecies with different pathogenicity and geographic distribution, 

namely F. tularensis subsp. tularensis, F. tularensis subsp. holarctica and F. tularensis subsp. 

mediasiatica. Considering the subspecies with pathogenicity to humans, although F. tularensis 

subsp. tularensis is considered the most virulent (Type A), the less virulent F. tularensis subsp. 

holarctica, (Type B) has a wider distribution (reviewed in (Carvalho et al., 2014)) making important 

to discriminate between them (Versage et al., 2003)(Escudero et al., 2008). Hence, a Taqman probe 

real time multiplex assay, with high specificity and sensitivity for F. tularensis identification was 

developed (Versage et al., 2003) as well as a real-time assay for subspecies discrimination (Kugeler 

et al., 2006). Still, culture is the gold standard for F. tularensis laboratorial identification (Tärnvik, 

2007). Furthermore, although molecular techniques such as metagenomic sequencing using Next 

Generation Sequencing can provide important information on a certain microrganism in the 

absence of culture (Stewart et al., 2012)(Albanese et al., 2015)(Antwerpen et al., 2015), only its 

isolation in pure culture allows a comprehensive characterization of the physiological properties 

and a full assessment of the virulence potential (Vartoukian et al., 2010). F. tularensis is, however, a 

fastidious microorganism having specific growth requirements including a cysteine supplemented 

growth medium. Optimal growth conditions occur at 37°C and pH 6.9 (Splettstoesser et al., 

2005)(Foley and Nieto, 2010) and cysteine-enriched media, such as enriched chocolate agar (CA) or 

9% cysteine heart agar with blood medium (CHAB) must be used (Splettstoesser et al., 2005) 

(Tärnvik, 2007). CHAB medium enables the presumptive identification of F. tularensis by 

characteristic growth at 24-48h of round and smooth green opalescent shiny colonies, 2-4 mm in 

diameter (Splettstoesser et al., 2005)(Tärnvik, 2007). Antibiotic supplementation can optimise 

growth and inhibit contaminants (Splettstoesser et al., 2005). F. tularensis isolation must be carried 

out in biosecurity level 3 facilities (BSL-3) (Tärnvik, 2007). 

Since F. tularensis was first detected in Portugal, several isolation attempts by the authors using 

field samples, mostly ticks but recently also organs tissues from wild lagomorphs, have failed 

hampering the full characterization of circulating strains. Although several protocols referred in the 

literature have been tried, no isolation attempt was successful, probably due to the low bacteria 

present in the samples. 

In this work, we aimed to propagate F. tularensis “in vitro” in cysteine enriched medium 

(PolyViteXTM, Biomérieux®), after an in vivo passage in mice following the protocol developed by 

Gyuranecz (2011) and applied with success in the F. tularensis isolation in the Institute for 
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Veterinary Medical Research (Center for Agricultural Research, Hungarian Academy of Sciences), 

recently accredited by the OIE as F. tularensis reference laboratory. 

Liver samples from three wild lagomorphs specimens collected in a hunting station in the Alto 

Alentejo region were selected for this study. Two of the liver samples originated from Lepus 
granatensis and one from Oryctolagus cuniculus species. All samples tested positive for F. 
tularensis in the real-time multitarget PCR described by Versage et al. (2003) and were identified as 

F. tularensis subsp. holarctica by the real time assay developed Kugeler et al. (2006). Samples Cq 

values were all above 34.11, hence close to the cut-off. The protocol described below was carried 

out in BSL3 facilities, under supervision of an animal experimentation certified expert to assure 

animal welfare. 

Homogenates of liver samples (0.25 grams (gr)) were prepared in physiological saline solution 

(NaCl, 9% w/v) (0.5 mL). The homogenate was vortexed and transferred to a 2 mL syringe with a 20 

gauge needle. Three CD1 mice weighting approximately 20 gr each were identified in accordance 

with the sample. The totality of each inoculum was administrated subcutaneously to the respective 

animal. Mice were observed three times per day during 10 consecutive days for the presence of any 

abnormal clinical sign. In the absence of any symptomatology, mice were sacrificed at day 10 post-

inoculation in a CO2 chamber, and organs (heart, lungs, liver, spleen and kidney) and blood samples 

were collected. Each organ was then macerated and used to inoculate chocolate agar PolyViteXTM 

(BioMerieux®,) comercial plates. Plates were observed at 24, 48 and 72 hours post-inoculation. 

Developing colonies were identified by morphological characteristics; none however presented the 

characteristic growth of F. tularensis referred above. Nevertheless, each colony was transferred to 

an eppendof containing 180 µL of ATL and 20 µL of proteinase K (Qiagen, Germany). Spin column 

protocols were used for genomic DNA extraction (Qiagen, Germany), following the manufactures’ 

recommendations. DNA samples were screened for F. tularensis using the TaqMan real-time PCR 

targeting tul4 gene and the insertion element ISFTu2 described by Versage et al. (2003). All 

samples tested negative for the presence of F. tularensis. 

Later, another set of four samples, including spleen (n=2) lung (n=1) and liver (n=1), all from O. 
cuniculus, that tested positive for F. tularensis in the real time multitarget PCR described by above, 

were also investigated using the same protocol. Again, no isolation of F. tularensis was obtained. 

Several factors were identified as possible causes of the unsuccessful isolation of F. tularensis. 

Firstly, although all samples used in this work tested positive for F. tularensis by a specific and 

sensitive real-time PCR, all the Cqs obtained were above 34.11, implying that the amount of DNA 
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present in the tissues was very low and not necessarily representing viable F. tularensis cells. The 

absence of viable bacteria would totally compromise the isolation. Also, in the protocol followed by 

Gyuranecz and collaborators, F. tularensis samples present in macroscopic lesions in parenchymal 

organs are collected for homogenates preparation. According to the experience of Gyuranecz and 

collaborators (personal communication) the probability of F. tularensis successful isolation by this 

methodology is greatly compromised in the absence of macroscopic lesions in target organs, 

despite positiveness in molecular tests. This was the case of this work, as no macroscopic lesions 

could be observed in the organs. Furthermore, Gyuranecz (2011) recommend the used of 1 gr of 

sample tissue, containing visible lesions, macerated in 2 mL of physiological saline solution (NaCl 

9%) and the subcutaneously administration of 1 mL of inoculum per mouse. In this work, 

homogenates preparation used on average quarter of the amount recommended by Gyuranecz 

(2011) due to sample limitation, which certainly reduced the number of viable bacteria in the 

inoculum, their replication in the hosts’ tissues and subsequent isolation. 

No serial in vivo passages were carried out in any of the experiments described in this work. Hence 

wheter this approach would have increased bacteria replication in the hosts’ tissues leading to 

successful of isolation is yet to be clarified. 

While F. tularensis isolation remains to be achieved, the full characterization of the strains 

circulating in Portugal greatly relies in new generation sequencing techniques. 
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1. Update on the epidemiology of Francisella tularensis 
In addition to the information gathered on the F. tularensis epidemiology that is presented in 

General Introduction, some important pieces of information will be added in this introduction. 

Despite all ages are equally susceptible to tularaemia, young children and young adults are more 

likely to participate in activities that make them more susceptible to exposure. Risk factors 

associated with tularaemia involve certain hobbies and/or occupations including hunting, 

gardening, landscaping and wildlife work (Anand et al., 2017). 

 

1.1. Mammalian reservoir hosts 
The results of the surveillance of tularaemia in wildlife in France (between the 2002-2003 and 2012-

2013 hunting seasons) investigating the spatial and temporal pattern of the disease were recently 

published (Moinet et al., 2016). These results revealed that the main species affected by tularaemia 

in France in the period considered was the European Brown Hare (Lepus europaeus). However, wild 

rabbits (Oryctolagus cuniculus, n=4), roe deers (Capreolus capreolus, n=2) and wild boars (Sus 
scrofa, n=1)) were also found positive (Moinet et al., 2016). The detection of F. tularensis subsp. 

holarctica in wild rabbits is in accordance with the results recently published by our team reporting 

for the first time the detection of this pathogen in Oryctolagus cuniculus (Lopes de Carvalho et al., 

2016). The results of this surveillance study also confirmed the usefulness of the brown hare as a 

sentinel of environmental risk regarding tularaemia (Moinet et al., 2016). 

In their recent phylogeographic study, Dwibedi et al. (2016) suggested simultaneously the long-

term persistence of F. tularensis in some regions as well as long range dispersal of this pathogen as 

an important feature of tularaemia ecology. Their results supported a model of F. tularensis biology 

involving outbreaks restricted to specific stationary ecosystems and landscapes, indicating that the 

pathogen is dependent on particular local ecological conditions where it has the ability to persist 

and cause repeated outbreaks (Pavlovsky, 1966)(Goethert and Telford, 2009)(Svensson et al., 2009). 

In addition, the Dwibedi et al. (2016) results also suggested very long-distance and rapid 

movements of F. tularensis, although the mechanisms underlying this long-range dispersal are 

unknown. It is proposed that bacteria may move rapidly through different settings by infected 

domestic or wild animals, or windborne (Burrows et al., 2009). Even if geographical migration of the 

European hare (L. europaeus) is restricted, conservation actions and translocations of animals  may 

transfer infected hares from tularaemia-endemic areas to previously tularaemia-free areas (Ferretti 
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et al., 2010)(Petersen and Schriefer, 2005). This has been suggested for the emergence of the 

disease in Spain in the 1990s (Petersen and Schriefer, 2005). Migratory birds have also been 

proposed to be involved in the long distance spread of F. tularensis was also (Lopes de Carvalho et 

al., 2012). Another possible mechanism for the long-distance transmission of this pathogen is 

windborne dispersal (Dennis et al., 2001). Considering F. tularensis propensity to be part of aerosols 

and its environmental resistance, long-distance dispersal of this pathogen may occur (Nguyen et 

al., 2006)(Smith et al., 2013). 

 

1.2. Arthropod vectors 
The transmission of tularaemia to humans by arthropod vectors is especially evident in endemic 

areas, such as Turkey, Sweden, and certain regions of the United States (Mörner, 1992)(Feldman et 

al., 2001)(Sjöstedt, 2007). 

Ticks are the most extensively studied known vectors of tularaemia (Kenney et al., 2017) and 

monitoring them regarding F. tularensis cell numbers of per tick may be a valuable tool in the 

surveillance of the disease, as pointed out recently by Hubálek and Rudolf (2017), that surveyed D. 
reticulatus ticks and quantified F. tularensis cells per tick. Even in countries were F. tularensis has 

not been detected for more than two decades in ticks, the need for this surveillance is evidenced 

by a recent study carried out in Japan. Despite F. tularensis had not been detected in ticks in Japan 

since 1991, the pathogen (F. tularensis Type B) was recently detected by molecular methods in 

Ixodes ovatus, I. persulcatus, I. monospinosus and Haemaphysalis flava specimens, suggesting that 

these act as vectors for F. tularensis infection in that country (Suzuki et al., 2016). 

In addition to ticks, mosquitoes are vectors of F. tularensis, particularly in the Scandinavian 

countries, where they are considered the main source of tularaemia (Christenson, 1984)(Desvars et 

al., 2015)(Payne et al., 2005)(Tärnvik et al., 1996). Prior research demonstrated the presence of 

Francisella sp. DNA in infected mosquitoes, but has failed to prove definitive transmission of 

tularaemia from mosquito to mammalian hosts. According to Kaushal et al. (2016), mosquito 

antimicrobial peptides act against Francisella sp. by disrupting the bacterial cellular membrane and 

may play a role in mosquitos’ inability in establishing an effective natural transmission. Besides 

being mechanical vectors, mosquitoes are important vectors of F. tularensis and have been related 

to significant tularaemia outbreaks (Christenson, 1984) and more than 10 different mosquito 

species have been identified to harbour and potentially transmit F. tularensis (Thelaus et al., 2014). 

Recently, Kenney et al. (2017) aiming at evaluating the factors contributing to the capacity of 
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mosquitoes to maintain and spread tularaemia in nature, proposed that the flower nectar could act 

as a temporary source of F. tularensis increasing the ability of mosquitoes to spread this bacterium. 

According to these researchers, the flower nectar (including the one from Lappula deflexa and 

Dianthus arenarius, among others) may serve as a temporary source of F. tularensis, as the 

bacterium was proven to survive in flower nectar over a period of time consistent with that of a 

typical flower bloom. This would increase the ability of mosquitoes to spread this bacterium in 

nature and contribute to the amplification of outbreaks. Kenney et al. (2017) hypothesized that 

flower nectar may allow vector-vector transmission of F. tularensis, as female mosquitoes feeding 

on infected mammalian hosts and subsequently on flower nectar could deposit the pathogen and 

mosquitoes subsequently feeding on nectar could potentially become colonized by F. tularensis. 
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rancisella tularensis subsp. holarctica

a  b  s  t  r  a  c  t

The  presence  of Francisella  species  in 2134  ticks,  93 lagomorphs  and 280  small  mammals  from  the  Iberian
Peninsula  was  studied.  Overall,  19 ticks  and  6 lagomorphs  were  positive  for Francisella  tularensis  subsp.
holarctica,  suggesting,  as  described  for other  regions,  that  lagomorphs  may  have  an  important  role in
the  maintenance  of  F.  tularensis  in  nature.  Of the 6  positive  lagomorphs,  4 were  identified  as  the  Euro-
pean  rabbit,  Oryctogalus  cuniculus.  Additionally,  353  ticks and 3 small  mammals  were  PCR  positive  for
Francisella-like  endosymbionts  (FLEs)  and  one  small  mammal  was  also  positive  for  Francisella  hispaniensis-
like  DNA  sequences.  Among  FLE  positive  specimens,  a variety  of  sequence  types  were  detected:  ticks
rancisella-like endosymbionts
rancisella hispaniensis
icks
agomorphs
ammals

pain

were  associated  with  5 lpnA  sequence  types,  with  only one  type  identified  per tick,  in  contrast  to  2 lpnA
sequence  types  detected  in a single  wood  mouse  (Apodemus  sylvaticus).  To  our  knowledge,  this is  the first
report  of FLEs  in  free-living  small  mammals  as well  as  the  first  detection  of  F.  hispaniensis-like  sequences
in  a  natural  setting.

© 2015  Elsevier  GmbH.  All  rights  reserved.
ortugal

. Introduction

Francisellaceae comprise a bacterial family widespread in
ature with several new species identified in recent years. The
ost widely recognized species within the Francisella genus is

rancisella tularensis,  the causative agent of tularemia, a disease
hat can be lethal to humans and to a wide variety of animal species
Dennis et al., 2001; Sjöstedt, 2005). Tularemia can be transmitted
y the inhalation of contaminated aerosols, direct contact with
nfected sources, ingestion of contaminated food or water, and
y the bite of infected arthropods such as ticks and mosquitoes
hat can act as vectors of the microorganism (Ellis et al., 2002).

∗ Corresponding author at: Instituto Nacional de Saúde Doutor Ricardo Jorge
.P., Departamento de Doenç as Infecciosas, Unidade de Resposta a Emergências e
iopreparaç ão, Av. Padre Cruz, 1649-016 Lisboa, Portugal.

E-mail address: isabel.carvalho@insa.min-saude.pt (I. Lopes de Carvalho).
1 These authors contributed equally to this article.
2 Current address: Stony Brook University, Stony Brook, New York, USA.

ttp://dx.doi.org/10.1016/j.ttbdis.2015.10.009
877-959X/© 2015 Elsevier GmbH. All rights reserved.
Francisella hispaniensis is a more recently described member of the
genus, initially described after isolation from a patient in Spain
with severe illness (Huber et al., 2010). Currently, its distribution
in nature is unknown.

Recent whole genome sequencing of the tick endosymbiont,
Wolbachia persica verified the taxonomic position of Francisella-
like endosymbionts (FLEs) within the Francisella genus (Niebylski
et al., 1997; Sjödin et al., 2012). FLEs have been described to
date in different tick species including Dermacentor, Amblyomma,
Ornithodoros, Ixodes and Hyalomma and are thought to be restricted
to this host (Niebylski et al., 1997; Sun et al., 2000; Scoles, 2004;
de Carvalho et al., 2011; Machado-Ferreira et al., 2009; Kreizinger
et al., 2013; Szigeti et al., 2014; Wójcik-Fatla et al., 2015). In
1997, Niebylski et al. demonstrated that wood ticks harbored a
Francisella-like organism in ovarial tissues, termed the Derma-
centor andersoni symbiont (DAS), which failed to be horizontally

transmitted when infected ticks were fed on guinea pigs. It was
stably maintained both transovarially and transtadially in these
ticks suggesting that the DAS is a tick endosymbiont whose biology
contrasts with F. tularensis (Niebylski et al., 1997). Consistent with

dx.doi.org/10.1016/j.ttbdis.2015.10.009
http://www.sciencedirect.com/science/journal/1877959X
http://www.elsevier.com/locate/ttbdis
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ttbdis.2015.10.009&domain=pdf
mailto:isabel.carvalho@insa.min-saude.pt
dx.doi.org/10.1016/j.ttbdis.2015.10.009
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he designation of FLEs as tick symbionts, the genome size of W.
ersica was shown to be significantly reduced (about 80–85%) as
ompared to other Francisella genomes.

Arguably, ticks are the most important arthropods in the ecology
f tularemia. In Europe, Dermacentor marginatus, Dermacentor retic-
latus,  Ixodes ricinus and Haemaphysalis concinna ticks have been
eported to harbor F. tularensis (Toledo et al., 2009; Franke et al.,
010; Gyuranecz et al., 2011). In Portugal, F. tularensis subsp. hol-
rctica was first reported in D. reticulatus and in humans in 2007 (de
arvalho et al., 2007) whereas FLEs were first detected in D. retic-
latus in 2010 (de Carvalho et al., 2011). In Spain, sporadic human
ases of tularemia associated with tick bite have been reported
Teijo-Núñez et al., 2006), since the first reported outbreak due to
. tularensis subsp. holarctica in 1997 (Eiros Bouza and Rodríguez-
orres, 1998; Anda et al., 2001). FLEs have been regularly identified
n a variety of tick species in Spain since their first detection in 2008
Escudero et al., 2008).

Here we report the presence of F. tularensis subsp. holarctica in
agomorphs, small mammals and different tick species from the
berian Peninsula. We  also report for the first time DNA detection
f F. hispaniensis-like organisms and Francisella-like endosymbionts
n small mammals.

. Material and methods

.1. Tick and animal collection and identification

Ticks were collected from vegetation in different areas in
ortugal (two northern districts, Braganç a and Vila Real, and one
outhern, Évora) and Spain (northern Basque Country and the
entrally located Madrid region). Sampling sites were selected to
ccount for geographic, climatic, botanic and land-use differences.
ampling sites in both areas have been fully described previously
Barandika et al., 2011). Domestic herbivores and wildlife species
ere present in all the zones. According to the Köppen-Geiger cli-
ate classification, central Spain and Portugal have Mediterranean

limates (Csa/Csb) whereas northern Spain has an oceanic climate
Cfb) (Peel et al., 2007). Central Spain and Portugal areis comprised
f forests, woodlands, and scrub, with the predominant animals
eing free-living wildlife species.

Briefly, a 2 × 1.6-m white blanket was dragged for 30 min, and
icks attached to the blanket were collected every 5 min. Also, ticks
eeding on wild and domestic animals were manually removed and
laced into an empty tube and stored at −80 ◦C until further use. All
pecimens were identified to the species level by using appropri-
te taxonomic keys (Manilla, 1998). Rodents from the same areas
ere trapped using Sherman (H.B. Sherman Traps, Tallahasee, FL)

nd INRA traps (BTS Mechanique, Besanç on, France). Also, during
he annual hunting season in 2011 and 2012 in Evora (South of
ortugal), tissues (liver and spleen) were collected from European
rown hares (Lepus europaeus)  and European rabbits (Oryctolagus
uniculus) at a hunter check station. The animals were identi-
ed (MacDonald and Barrett, 1993), necropsied and tissues were

ndividually stored at −20 ◦C. All tick and animal samples were col-
ected in different regions and at different times, and share no direct
orrelation.

.2. DNA extraction, polymerase chain reactions and sequencing

Adult ticks were classified by species and processed individually.
icks were washed sequentially with distilled water, 10% hydrogen

eroxide and 70% ethanol, for 5 min  each, and DNA was extracted
rom 200 �L of PBS cell suspension by using the DNeasy tissue Kit
Qiagen, Hilden, Germany) according to the manufacturer’s recom-

endations. The same DNA extraction procedure was also used for
-borne Diseases 7 (2016) 159–165

animal tissues. Extracted DNA was stored at −20 ◦C until analyzed
by PCR.

Samples from Portugal were tested using a real-time multitarget
TaqMan PCR, using tul4 and ISFtu2 assays (Versage et al., 2003) with
positives further tested using real-time TaqMan PCR assays which
differentiate between F. tularensis subsp. tularensis (type A) and F.
tularensis subsp. holarctica (type B) (Kugeler et al., 2006). For test-
ing of samples from Spain, a phylogenetically informative region
of lpnA (231 bp) was amplified by conventional PCR as previous
described (Escudero et al., 2008). For additional characterization,
a portion of the succinate dehydrogenase A (sdhA) gene and VNTR
Ft-M19 were also amplified (Byström et al., 2005; Barns et al., 2005;
Berrada and Telford, 2010). A negative PCR control as well as a
negative control for DNA extraction was  included in each group of
samples processed. For real-time PCR using tul4, ISFtu2, type A and
type B assays, a type A positive control was  used, as type A strains
are restricted to North America All negative controls demonstrated
no PCR amplification.

Amplicons obtained by lpnA, sdhA and Ft-M19 PCR were puri-
fied using the Jetquick Purification PCR Product Spin kit (Genomed
Inc., Lohne, Germany) and sequenced with the ABI BigDye Termi-
nator Cycle Sequencing Ready Reaction Kit (Applied Biosystems,
Inc., Foster City, CA, USA). Samples that showed mixed signals in
the sequence chromatograms were cloned in pGEM-T-easy vectors
(Promega Biotech Ibérica, SL, Madrid, Spain), following the manu-
facturer’s instructions, and eight clones of each were sequenced.

The lpnA and sdhA sequences for F. tularensis subsp. holarc-
tica (PoTiF2, PoTiF3, PoAnF2), F. hispaniensis-like (AR1MM2),
Francisella-like endosymbiont (PoTiEF2, PoTiEF3, PoAnEF1,
AR1MM1, AR1MM2, GU1MM1, ST1, ST2, ST4) were assigned the
following GenBank accessions numbers respectively: KJ477079,
KJ477084, KJ477081, KJ734992, KJ477082, KJ77083, EU315914,
EU315916, EU315913, EU315915, EU315911, EU315912, KJ689454.

2.3. Phylogenetic analysis

DNA sequencing was  repeated at least two times to verify the
nucleotide position. Sequences were assembled by combining the
sequences generated by each primer using the BioEdit software
(Ibis Biosciences, Inc., Carlsbad, CA, USA). All alignments were made
using ClustalW program (Thompson et al., 1994) and manually
inspected for misalignments. FLE sequence types were determined
after sequence alignment via identification of polymorphic posi-
tions. A neighbor-joining tree of DNA sequence alignment was built
in MEGA version 6 (Tamura et al., 2013). Distance matrices were
calculated using the Kimura two-parameter model to correct for
multiple substitutions. Bootstrap analysis was  obtained with 1000
replicates.

3. Results

3.1. Detection of Francisella in ticks and animals

Overall, from both Spain and Portugal, 2134 ticks were tested,
with 19 (0.9%) positive for F. tularensis subsp. holarctica and 353
(16.5%) positive for FLEs. From Spain, 13 different tick species from
5 genera were collected (1897 specimens: 1454 from vegetation
and 443 from animals) (Tables 1 and 2). Of these, 1 questing tick
(1 Hyalomma lusitanicum; 0.06%) and 3 ticks collected from ani-
mals (2 D. marginatus and 1 Rhipicephalus sanguineus; 0.6%) were
positive for F. tularensis subsp. holarctica (Tables 1 and 2). In con-

trast, a total of 348 ticks representing 6 species were positive for
FLEs, with an overall positivity rate of 18.3% (Tables 1 and 2). The
two tick species, H. lusitanicum and D. reticulatus accounted for the
vast majority (93%) of FLE positives. From Portugal, a total of 237
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ticks encompassing 7 tick species of four different genera were
collected (237 ticks: 210 from vegetation, and 27 from animals)
(Tables 1 and 2). Of these, 15 questing ticks (2 D. marginatus, 1 D.
reticulatus, 3 I. ricinus and 9 R. sanguineus; 6.3%) tested positive for
F. tularensis subsp. holarctica. Additionally, 5 questing ticks repre-
senting 2 species (4 D. reticulatus and 1 I. hexagonus)  were positive
for FLEs, with a positivity rate of 2.4%.

Of the 373 animals (10 different species) tested, 6 tested PCR
positive for F. tularensis subsp. holarctica.  All six positives were
among the 93 lagomorphs (no small mammals; 14 L. europaeus
and 79 O. cuniculus) tested from Portugal (Table 3). Of the 6 pos-
itive lagomorphs, 4 were O. cuniculus and 2 were L. europaeus.
One additional lagomorph tested positive for Francisella sp., but
it was  not possible to identify to the species level via sequencing
of the sdhA and lpnA genes. From Spain, a total of 280 small mam-
mals were tested with none positive for F. tularensis. Interestingly,
three A. sylvaticus (1.1%) tested positive for FLEs in liver, kidney and
spleen, respectively. Moreover, in one of these animals, a lpnA DNA
sequence most similar (98.5% identity) to F. hispaniensis was  also
detected (Table 3, Fig. 1). Attempts to sequence an additional gene
were unsuccessful.

3.2. Sequencing and phylogenetic analysis

Among the FLE positive samples, sequence analysis of the lpnA
gene identified five different lpnA sequence types (ST1 to ST5;
Fig. 1). Among the five sequence types there were14 polymorphic
positions. Hereby, ST1 and ST2, were most similar, with only one
nucleotide difference. The largest differences were between ST5
andST1 (12 nucleotide differences) and ST5 andST4 (10 nucleotide
differences).

Three lpnA sequence types ST1, ST2 and ST4 were identified only
in ticks, whereas ST3 was detected in ticks as well as in 3 A. sylvati-
cus (AR1MM1, AR1MM2  and GU1MM1). ST5 was detected only in
one A. sylvaticus (AR1MM2). This was  the same animal in which the
F. hispaniensis-like sequence was also detected. ST4 was  found only
in questing D. reticulatus and I. hexagonus from the Basque Country
and Portugal, respectively, and was  identical to an lpnA sequence
previously detected in Portuguese ticks (PoTiEF1; GenBank acces-
sion GU113085). The lpnA sequence types detected in A. sylvaticus
(ST3 and ST5) grouped together and separated from the sequence
types detected in a wide variety of ticks (Fig. 1).

Among the F. tularensis subsp. holarctica positive ticks
and animals from Spain and Portugal, the lpnA sequences
(EU315911; EU315912; EU315916; EU315913; EU315915; EU
315914; KJ477083; KJ477082; KJ689454; KJ734992; KJ477079;
KJ477081; KJ477084; FJ51540) showed 100% identity to each other
and grouped with the previously reported sequences from the area
(GenBank accessions AY219238; 13, 14) (Fig. 1).

4. Discussion

In this study, we demonstrated that FLEs are present in a wide
range of tick species across the Iberian Peninsula and found evi-
dence that FLEs also appear to be present in free-living wild animals
in the same region. These data suggest that small mammals may be
potential hosts for FLEs. In addition, we detected the presence of
an F. hispaniensis-like sequence in small mammals and we confirm
the presence of F. tularensis subsp. holarctica,  in both ticks and small
mammals, in the Iberian Peninsula.

In previous studies, the percentage of patients in Europe who

developed clinical tularemia after a tick bite varied between
12.8% (Slovakia) and 26% (France) (http://www.invs.sante.fr/pmb/
invs/(id)/PMB 11678). A few sporadic tick-borne cases have been
described in Spain (Teijo-Núñez et al., 2006), consistent with the

http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
http://www.invs.sante.fr/pmb/invs/(id)/PMB_11678
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Table 2
Ticks collected from animals and positives to Francisella sp.

Madrid Basque Country Portugal

N Animal species Positive
FLE (%)

FLE (lpnA
sequence
type)

Positive F.
tularensis
subsp.
holarctica
(%)a

N Animal
species

Positive
FLE (%)

FLE (lpnA
sequence
type)

Positive F.
tularensis
subsp.
holarctica
(%)a

N Animal
species

Positive
FLE (%)

FLE (lpnA
sequence
type)

Positive F.
tularensis
subsp.
holarctica
(%)

Hyalomma
lusitanicum

94 Cattle, deer,
dog, hedgehog,
pig, sheep, wild
boar

65 (67.0) ST1 0 0 3 Rabbit 0 0

Ixodes
hexagonus

0  0 13 Dog 0 0

Rhipicephalus
pusillus

61  Cat, cattle,
common
buzzard, dog,
fox, hare,
hedgehog,
rabbit

14 (22.9) ST1, ST2,
ST3

0 0

Dermacentor
marginatus

83 Cattle, deer,
horse, wild
boar

7 (8.4) ST1, ST3 2 (2.4) 0

Rhipicephalus
sanguineus

146 Beech marten,
cat, hare,
hedgehog,
sheep

7 (4.5) ST1, ST3 1 (0.6) 0 10 Rabbit, dog 0 0

Rhipicephalus
bursa

40  Cattle 2 (5.0) ST1 0 0

Haemaphysalis
hispanica

5 Rabbit 0 0 0

Hyalomma
marginatum

13 Cattle, horse 0 0 0 1 Rabbit 0 0

Amblyomma
latum

1  Snake 0 0 0

Total 443 95 (21.4) 3 (0.6) 0 27 0 0

a Ticks were considered F. tularensis subsp. holarctica PCR positive by testing lpnA.
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ig. 1. Phylogenetic analysis of partial lpnA sequences (215 bp) of F. tularensis hola
enBank. The phylogeny was  inferred by neighbor-joining using Mega software ve
odes.  Sequences detected in Portugal are identified with PT and in Spain with ES

dentification of F. tularensis in tick species that bite humans.
lthough tularemia is on the list of notifiable diseases, no tick-
orne cases have been declared in Portugal thus far, possibly due
o a low clinical awareness. However, a seroepidemiological study
erformed in the Évora region in1999 detected 2.5% seropositivity

n blood samples collected from hunters (Núncio, 2002). The pos-
tive lagomorph identified in this study were all collected in same
rea, implying that the agent has been circulating in this region
ince at least 1999.

FLEs were previously detected in D. reticulatus in the Iberian
eninsula (Escudero et al., 2008; de Carvalho et al., 2011,) as well
s in different countries throughout Europe including Hungary
Sréter-Lancz et al., 2009; Ivanov et al., 2011; Kreizinger et al., 2013;
ójcik-Fatla et al., 2015) and Serbia (Tomanović  et al., 2013). In this
tudy we detected FLEs in D. reticulatus as well as additional species
f questing (H. lusitanicum, D. reticulatus,  and I. hexagonus)  and feed-
ng ticks (D. marginatus, H. lusitanicum, R. bursa, R. pusillus and R.
 and FLEs detected in Portugal and Spain as compared with other sequences from
 6. Bootstrap values over 60% obtained from 1000 replicate trees are shown at the

sanguineus), indicating that FLEs are widely distributed in a number
of different tick species throughout the Iberian Peninsula. Three of
the tick species harboring FLEs, D. reticulatus,  H. lusitanicum, R. san-
guineus, bite humans. Dermacentor species are anthropophilic and
associated with transmission of F. tularensis to both humans and
animals. H. lusitanicum is the predominant tick species in the south
and central areas of the Iberian Peninsula and several tick-borne
pathogens, including F. tularensis,  have been detected in this tick
species (Toledo et al., 2009). It is frequently associated with cat-
tle and occasionally parasitizes humans. R. sanguineus, is present in
peridomestic areas; it ismostly associated with domestic dogs and-
plays an important role in the transmission of infectious diseases in
the Iberian Peninsula, particularly boutonneuse fever (Santos-Silva

et al., 2011).

The variability observed among FLE lpnA sequence types indi-
cates that FLEs, present in both ticks and animals, are a heterogenic
group of organisms. The taxonomy of this group seems to be rather
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complex, and our preliminary evidence suggests a possible associ-
ation with distinct hosts. The ST1 sequence type was detected only
in ticks (D. marginatus, H. lusitanicum, R. pusillus, R. sanguineus and
R. bursa) and is most closely related to the previously described FLEs
in Dermacentor (DAS and DAV) and Ornithodoros species (Niebylski
et al., 1997) (Fig. 1). ST2 and ST4 were also only detected in ticks, and
in the case of ST4, within the same tick species (D. reticulatus) from
geographically distant areas (Portugal and the Basque Country). The
ST3was detected in both ticks and A. sylvaticus,  whereas ST5 was
detected only in A. sylvaticus. Interestingly, only one ST type per tick
species was identified whereas multiple ST types were identified
in A. sylvaticus.  Collectively, these results suggest that there may  be
ST type host specificity. We  note that tick infections may also be a
result of feeding on an infected animal.

Interestingly, ST3 sequence types, with 100% sequence iden-
tity, were identified in both small mammals and ticks, suggesting
that transmission of FLEs, from ticks to mammals, may  occur in
nature. Direct transmission by ticks may  be possible if the FLE is
present in salivary glands or alternatively if ticks are ingested dur-
ing animal grooming. Moreover, larvae of D. marginatus usually
feed on rodents as primary hosts. Previous reports demonstrated
pathogenicity of FLEs from D. andersoni and soft ticks when inocu-
lated intraperitoneally into guinea pigs and hamsters (Burgdorfer
et al., 1973; Niebylski et al., 1997). Given the identification of FLEs
in animals in this study, it will be important to address whether
transmission (either direct or indirect) occurs in laboratory studies
in order to assess the potential public health risk.

Ticks are not only vectors for the transmission of F. tularensis,
but also can potentially maintain the organism in nature between
epizootics (Ellis et al., 2002). In this study, the causative agent of
tularemia was  identified in D. marginatus, D. reticulatus,  H.  lusitan-
icum, I. ricinus and R. sanguineus,  tick species previously shown to
be positive for F. tularensis (de Carvalho et al., 2007; Toledo et al.,
2009). The prevalence of F. tularensis subsp. holarctica was higher in
both I. ricinus (25%) and R. sanguineus (25.7%) in this study as com-
pared with previous data (de Carvalho et al., 2007). This could be
the result of bias due to the selection of collection sites with a high
probability of circulating vector borne agents and requires further
analysis.

Our data indicates that F. tularensis is present in ticks and lago-
morphs in Portugal and that tularemia should be considered after
tick bite or hunting and skinning lagomorphs. The identification of
F. tularensis positive lagomorphs suggests they may  play a role in
maintenance of F. tularensis in Portugal, as occurs in other endemic
countries. The prevalence of F. tularensis subsp. holarctica in L.
europaeus in this study (14.3%) is higher than previously reported
for seroprevalence in European brown hares (4.9–6.9%). The iden-
tification of F. tularensis subsp. holarctica in the European rabbit,
O. cuniculus, is of interest, particularly given the absence of read-
ily identifiable macroscopic tissue lesions in tissue specimens from
these animals (Gyuranecz et al., 2010). Further pathological inves-
tigations will be necessary to clarify the importance of O. cuniculus
as pertains to maintenance of tularemia.

In this study we  demonstrated by DNA detection the presence
of an F. hispaniensis-like organism in a free-living small mammal.
It is interesting to note that this positive animal was detected in
Spain, where F. hispaniensis was first described in a severely ill
patient (Escudero et al., 2008). These results provide new insights
for further studies, including a better understanding of the geo-
graphical distribution and public health relevance of this Francisella
species.
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1. Introduction 
The first tick endosymbiont was isolated in 1961, the bacterium “Wolbachia persica” (Suitor and 

Weiss, 1961). Since then, a wide range of symbionts, such as Coxiella-like, Francisella-like or 

Rickettsia-like, have been detected in several tick species (Liu et al., 2013). 

Symbionts affect development, nutrition, reproduction, speciation, defence against natural enemies 

and environmental stress, and immunity of their hosts (reviewed in (Dale and Moran, 2006). 

It is proposed that ticks endosymbionts provide their host essential nutrients that they are unable 

to obtain from the vertebrate blood (Gerhart et al., 2016). For instance, Coxiella-like organisms have 

a possible role in nutrition, especially in the nitrogen metabolism, by potentially provisioning their 

hosts with essential nutriments (Lalzar et al., 2014). Similarly, it seems that some FLEs may 

synthesize important amino acids such as cysteine, threonine, tyrosine, tryptophan, phenylalanine, 

and serine from pyruvate, and can metabolize glutamate, glutamine, and asparagine into ATP 

(Gehart et al., 2016). The synthesis of glutamine from glutamic acid and ammonia, allows for the 

recycling of cellular ammonia waste to useful products (Gehart et al., 2016). 

 

1.1. Summary on symbionts classification and transmission patterns 
Symbionts are traditionally classified as obligate (primary) or facultative (secondary) regarding the 

degree of dependence between the host and the symbiont (Dale and Moran, 2006)(Chaves et al., 

2009). In addition, arthropod symbionts present tissue tropism in relation to the nature of the 

association and the mode of transmission between host generations (Lalzar et al., 2014). Obligate 

symbionts have been shown to descend from ancient and specializes associations (Dale and Moran, 

2006). They are often restricted to specialized tissues or cells (Chaves et al., 2009) and beneficial or 

even essential for the survival of the host to which they provide nutrients (Dale and Moran, 

2006)(Moran et al., 2008). Usually obligate symbionts are vertically transmitted from mother to 

offspring via infection of eggs or embryos (Dale and Moran, 2006)(Chaves et al., 2009). Facultative 

symbionts are usually not restricted to specific tissues (Liu et al., 2013), seem to have established 

more recent associations with their hosts (Dale and Moran, 2006)(Chaves et al., 2009), to which they 

are often unessential (Liu et al., 2013). These associations can be deleterious or beneficial (e.g. 

protection against aggressors or stress (Moran et al., 2008)) (Dale and Moran, 2006). Facultative 

symbionts can be transmitted either vertically or horizontally between the same or different species 

(Liu et al., 2013). Commonly, multiple symbionts can coexist in the same host individual, most often 
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one or two primary symbionts and one or two secondary endosymbionts (Dale and Moran, 2006), 

which interact with each other, and co-regulate the biological processes of the host (Liu et al., 

2013). 

Co-infection of ticks with multiple endosymbionts have been reported (Liu et al., 2013) that may 

have evolved under complex multi-specific interactions (Clay et al., 2008), suggesting that 

endosymbiotic systems can be dynamic across tick lineages (Duron et al., 2015). 

 

1.2. FLEs transmission patterns 
The Francisella-like endosymbionts (FLEs) are amongst the most common ticks symbionts (Liu et 

al., 2016). Although the phylogenies of FLEs and their tick hosts are parallel at the genus level, they 

are unresolved at the species level, as observed for the Dermacentor FLE (Scoles, 2004). In addition, 

mixed infections with two FLEs with divergent 17-kDa lipoprotein gene sequences were reported. It 

is therefore unlikely that FLEs have co-speciated closely with their tick hosts as symbiont sequences 

do not always parallel the tick phylogeny (Page, 2003)(Scoles, 2004). The fact that there is little sign 

of co-speciation, could indicate that the association between FLEs and their host ticks is of a 

relatively recent origin (Scoles, 2004). In their tick hosts, FLEs are vertically transmitted (Baldridge et 

al., 2009)(Liu et al., 2016). The observation of perfect vertical transmission of some FLEs suggest 

that they are important symbionts and may contribute to the fitness of their tick hosts (Baldridge et 

al., 2009)(Liu et al., 2016). While some FLEs were found to be confined to ovarian tissues and 

Malpighian tubules, others have also been detected in the salivary glands aside (Goethert and 

Telford, 2005) and even in the midgut of ticks (Liu et al., 2016), suggesting that, despite crucial 

symbionts, FLEs probably do not have specific tissue tropism (Liu et al., 2016). 

 

1.3 Heritable symbiosis 
As reviewed by Bennett and Moran (2015), bacteria with high metabolic proficiency are known to 

replace ancient endosymbionts with reduced metabolic competence. Obligate symbiosis can limit 

the ecological range of hosts, reduce population sizes, or even cause extinction of some symbiont-

dependent host lineages along with their symbiont. The fitness interests of obligate heritable 

symbionts are distinct from those of their hosts, leading to selfish tendencies. When a symbiont is 

required for development, hosts may become locked in, even when the original symbiotic benefit is 

reduced or eliminated due to changing ecological conditions or deterioration of symbiont 

functionality. Once a host lineage has progressed down the irreversible path into obligate “rabbit 
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hole” symbiosis, there is little opportunity to exit. Usually, escaping from degenerate partners 

involves supplement or replace the ancient symbiont with a new one. A likely driver for addition of 

a new symbiont is the degradation of functions in an ancient one, so that the new symbiont can 

replace or supplement functions that are lost or inefficient in the older partner. A recent study 

involving sequencing of the genome of a FLE (FLE-Am) present in the Gulf Coast tick (Amblyomma 
maculatum) indicate that FLE-Am transformed recently into an endosymbiont and likely replaced 

an ancestral endosymbiont with degraded functionality, allowing A. maculatum to escape the 

“symbiosis rabbit hole” (Gehart et al., 2016). 

As FLE-Am was shown to enclose pseudogenized versions of several virulence genes, including 

genes for a Type VI Secretion System present on a pathogenicity island in F. tularensis and for Type 

4 pili that are critical to vertebrate infection, it was proposed that the ancestor of FLE-Am was most 

likely a vertebrate pathogen containing functional versions of virulence genes, despite no clear 

examples of this process have been documented (Gehart et al., 2016). By contrast, the evolutionary 

transformation of a maternally inherited endosymbiont of ticks into a specialized and virulent 

pathogen of vertebrates was shown for the Rickettsia genus (Weller et al., 1998) and recently also 

for Coxiella burnetii (Duron et al., 2015). This rare evolutionary transition observed within the 

Coxiella genus required evolving metabolic adaptations that led to the emergence of a vertebrate 

infectious disease (Duron et al., 2015). Although identifying the evolutionary processes that 

transform symbiotic bacteria into emerging pathogens requires further exploration, these may 

include spontaneous genetic mutations and the transfer and integration of virulence genes from a 

co-infecting pathogen (Duron, 2014)(Nikoh et al., 2014)(Bennet et al., 2015)(Duron et al., 2015). 

The genome reduction in FLE-Am resulting in the absence of intact secretion and effector gene 

systems suggests that it may be avirulent to humans despite its presence in the salivary glands and 

saliva of A. maculatum (Gehart et al., 2016). 

Futher research is now needed to assess the potential of different endosymbionts, such as Coxiella-

like or Francisella-like organisms, to infect vertebrates. 

 

1.4. Methods for discriminating between Francisella tularensis and FLEs 
FLEs and F. tularensis species belong to different phylogenetic clades (Scoles, 2004) but their high 

similarity as well as the presence of FLEs in tick species associated with the transmission of 

tularaemia makes absolutely imperative the accurate identification of F. tularensis (Kugeler et al., 

2005)(Escudero et al., 2008). FLEs cross-react with most of the techniques used for the detection of 
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F. tularensis potentially leading to misidentification and misinterpretation (Kugeler et al., 2005) and 

methods with specific targets must be used. As referred in General Introduction in the review article 

on tularaemia and in the specific introduction of chapter VI “Laboratorial diagnosis of F. tularensis”, 

a multi-target PCR assay has been described for the detection of F. tularensis in a wide variety of 

field and environmental samples and is based on the amplification of four sequences that have 

proven to discriminate Francisella spp., namely the ISFtu2 element, and the 23 kDa, tul4 and fopA 

genes (Versage et al., 2003). In addition, a highly sensitive and specific molecular method for the 

differentiation of F. tularensis and FLEs was developed based on the narrow nucleotide variability 

found between the lipoprotein-coding lpnA gene of Francisella pathogens and that of FLEs 

(Escudero et al., 2008). The method included the amplification of a 233-bp fragment on a variable 

region of lpnA that and further hybridization with specific probes by reverse line blotting (RLB) 

(Escudero et al., 2008). Also, the real time multitarget TaqMan PCR assay (ISFtu2, tul4, and iglC) can 

discriminate F. tularensis from Francisella-like tick endosymbionts of D. variabilis and D. occidentalis 

and may be useful in laboratories that screen these species for F. tularensis (Kugeler et al., 2005). 
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1. Abstract 
Francisella-like endosymbionts (FLEs) are worldwide distributed and have been detected in several 
species of hard and soft ticks. Recently, they were also reported in small free-living mammals in 
Europe. FLEs’ pathogenicity to humans is unknown and their potential effect on vector competency 
in the transmission of Francisella tularensis, or other tick-borne agents, to humans remains 
undetermined. 
A total of 341 ticks belonging to seven species previously tested for Rickettsia and Borrelia 
burgdorferi s.l., were analyzed by conventional PCR targeting tul4 gene for F. tularensis Ticks were 
collected from the vegetation (n=108) and from different mammalian hosts (n=233). 
All ticks tested negative for F. tularensis but nucleotide sequences identical to FLEs were obtained 
in 2.34% of the questing ticks, including Dermacentor reticulatus (1.76%), Hyalomma marginatum 
(0.29%) and H. lusitanicum (0.29%). Furthermore, one H. marginatum tick was detected with FLEs 
(0.29%) co-infected with Rickettsia aeschlimannii, a spotted fever group pathogen.  
 
2. Body of the manuscript 
Francisella tularensis is a facultative intracellular pathogen, belonging to gamma ( γ)-
Proteobacteria, responsible for a highly infectious zoonotic disease known as tularaemia. F. 
tularensis is formally divided into three subspecies, namely F. tularensis subsp. tularensis, F. 
tularensis subsp. holarctica and F. tularensis subsp. mediasiatica (Vogler et al., 2009). 
In nature, F. tularensis has been detected in a broad host range comprising several mammalian 
species including lagomorphs and rodents which are considered the main reservoirs for this 
pathogen, but also in birds, amphibians, fish and even invertebrates (Mörner, 1992)(Gyuranecz et 
al., 2010). Humans commonly acquire the infection either by direct contact with infected animals or 
through the bite of arthropod vectors such as ticks and mosquitoes (Mörner, 1992)(Petersen et al., 
2009)(Telford and Goethert, 2010). 
Francisella-like endosymbionts (FLEs) are among the most common tick symbionts (Liu et al., 2016) 
and have been identified in several hard and soft tick species (Niebylski et al., 1997)(Scoles, 
2004)(Escudero et al., 2008)(de Carvalho et al., 2011) (Ivanov et al., 2011)(Dergousoff and Chilton, 
2012)(Kreizinger et al., 2013). FLEs have a worldwide distribution having been reported in North 
America (Scoles, 2004) (Barns et al., 2005)(Kugeler et al., 2005)(Baldridge et al., 2009), Canada 
(Scoles, 2004)(Baldridge et al., 2009), as well as in European countries such as Spain (Escudero et al., 
2008), Portugal (de Carvalho et al., 2011), Hungary (Sréter-Lancz et al., 2009), Serbia (Tomanović et 
al., 2013) and Bulgaria (Ivanov et al., 2011). They do not grow on cell-free media, limiting their 
accurate classification (Ivanov et al., 2011), and obscuring the evolutionary relationships among 
FLEs obtained from different hosts and with the arthropod-borne pathogen F. tularensis (Scoles, 
2004). The recent comparison of the complete genome of a FLE (FLE-Am) detected in the Gulf 
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Coast tick (Amblyomma maculatum) agrees with the genome evolution from a pathogenic ancestor 
(Gerhart et al., 2016). This hypothesis is supported by the observations that FLE-Am has undergone 
minimal genome reduction, but several of its protein-coding genes, including virulence genes, 
contain inactivating mutations (Gerhart et al., 2016). This may suggest that tick endosymbionts 
could evolve from mammalian pathogens (Gerhart et al., 2016). The opposite mechanism involving 
the evolutionary transition from a tick-symbiont to a vertebrate pathogen, is suggested for 
Rickettsia (Weller et al., 1998) and Coxiella burnetti (Duron et al., 2015). 
The pathogenicity of FLEs to humans as well as their putative effect on vector competency and in 
the transmission of F. tularensis or other tick-borne pathogens is unknown. They have significant 
nucleotide similarity with F. tularensis in the 16S rRNA sequence although they do not belong to 
the pathogenic F. tularensis phylogenetic clade (Scoles, 2004). Differentiation must therefore be 
accomplished due to the distinct medical implications of the two organisms (Versage et al., 
2003)(Escudero et al., 2008). 
A total of 341 ticks previously screened for the presence of important tick borne-pathogens 
causing human disease in Portugal, namely Rickettsia and Borrelia burgdorferi s.l, were investigated 
for the presence of F. tularensis. Ticks originated from four main geographic regions of Portugal 
mainland (NUTs II), namely Alentejo, Lisboa e Vale do Tejo (LVT), Norte and Algarve, and were 
gathered by the Portuguese network for surveillance of arthropod vectors (REVIVE). The specimens 
were collected between 2011 and 2015 from the vegetation (n=108) using the flagging method, 
and from mammalian hosts including humans (n=127), dogs (n=8) and deer (n=98). Ticks were 
morphologically identified as Dermacentor marginatus (n=10), D. reticulatus (n=19), Hyalomma 
marginatum (n=8), H. lusitanicum (n=8), Ixodes ricinus (n=266), Rhipichephalus pusillus (n=1) and 
R. sanguineus s.l (n=29) (Table 1). 
The MagCore Genomic DNA Tissue Kit, cartridge Code 401, RBC (Bioscience Corp.) was used for 
DNA extraction in ticks collected from humans hosts. For DNA extraction in ticks collected from 
vegetation and other mammalian hosts, ticks were washed in 70% ethanol and sterile distilled 
water, dried on sterile paper and subsequently boiled in 25% ammonium hydroxide solution, as 
described previously by Schouls et al. (1999). Ticks were screened for F. tularensis by conventional 
PCR using primers FT393 and FT642 (Karhukorpi and Karhukorpi, 2001), which amplify a 250nt–long 
fragment within the coding sequence of gene tul4 encoding for the superficial membrane 
lipoproteins. Nucleotide sequences were assembled using the BioEdit software (Ibis Biosciences, 
Carlsbad, CA) and submitted to GenBank (MF497787-94). 
The previous screening for the presence of Rickettsia was performed by targeting the citrate 
synthase (gltA) and outer membrane protein A (ompA) and B (ompB) as described previously (De 
Sousa et al. 2006) and for B. burgdorferi s.l. by PCR amplification of the 5S (rrf)-23S (rrl) intergenic 
spacer (Rijpkema et al., 1995). 
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Overall, 10.3% of the ticks were infected with Rickettsia, namely with R. aeschlimannii (1.2%), R.  
helvetica, (1.5%), R. monacensis (5.3%), R. slovaca (0.9%), R. conorii (0.3%), R. massiliae (0.9%) and R. 
raoulti (0.3%),  and 1.76% with B. burgdorferi s.l., namely with B. garinii (n=1), B. afzelii (n=1) and B. 
lusitaniae (n=4). One I. ricinus tick (0.3%) was co-infected with B. lusitaniae and R. helvetica. 
However, they were all negative for F. tularensis by the method described by (Karhukorpi and 
Karhukorpi, 2001). Although this PCR targets a Francisella structural gene (tul4), the primers also 
amplify the homologous region in FLEs’ strains. Sequencing analyses of the positive amplicons 
revealed that the positive samples (8/341, 2.34%) were FLE-positive, none exhibiting similarity with 
Francisella (Table 1). 
Six partial tul4 gene sequences 200 bp-long (MF497789-94) were obtained from D. reticulatus ticks 
collected from humans (n=2) and dogs (n=4), all showing 100% similarity with the FLE strain 
EU126640, also obtained from a D. reticulatus specimen (FDrH). Despite the reduced sampling size, 
these results reveal a higher percentage of positivity in ticks collected from dogs (4/8, 50% 
positives) than from humans (2/11, 18.2% positives), which is expectable due to the higher contact 
of dogs with environments favorable for ticks. 
Among the eight H. lusitanicum ticks collected from human hosts that were analysed, only a weak 
amplicon was generated in one sample. Sequencing was limited to a 100 bp region (accession 
number MF497788), but blast analysis of this short regions showed 97.2% similarity (difference in 
one nucleotide) with the FLE strain FLE031 of H. aegyptum (HQ705175) and 96.3% (difference in 
two nucleotides) similarity with FLE strain FLE011 of H. marginatum (HQ705174). 
Moreover, a 150 bp sequence was also obtained from a H. marginatum specimen collected from a 
human host (accession number MF497787), showing 98.7% of similarity with the FLE strain FLE011 
(HQ705174). This detection represents 12.5% (1/8) FLE positivity in the H. marginatum ticks 
investigated. Interestingly, this H. marginatum tick was also positive to R. aeschlimannii, a 
pathogenic SFG rickettsia. The human host from which this double-infected H. marginatum tick was 
removed did not present any symptoms at the sampling time neither developed any clinical signs 
shortly after his medical appointment, as confirmed by the health authorities. 
Ticks symbionts are capable of providing some fitness advantages for ticks by co-regulating the 
biological processes of the host, affecting its development, nutrition, reproduction and speciation, 
defense and immunity (Dale and Moran, 2006)(Liu et al., 2013)(Liu et al., 2016). As an example 
Wolbachia is a widespread symbiont in arthropods that can protect Drosophila and mosquito 
species against viral infections (Martinez et al., 2014). Recent work on arthropod vectors showed 
the importance of symbionts on the epidemiology of pathogens (Ryder et al., 2014). A thin line 
seems to exist between tick symbionts and tick-borne pathogens, as many of the adaptations that 
might potentiate tick-borne transmission of a pathogen may also favor the establishment of a 
symbiotic relation (Scoles, 2004). In addition, mixtures of symbionts (Noda et al., 1997)(Ahantarig et 
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al., 2013) and co-infections with multiple symbionts (Liu et al., 2013) or pathogens (Moutailler et al., 
2016)(Raileanu et al., 2017) or with symbionts and pathogenic bacteria have been reported in ticks 
(Moutailler et al., 2016). 
H. lusitanicum is one of most abundant tick species found in the south and central regions of the 
Iberian Peninsula. Several tick-borne pathogens, including F. tularensis, have been detected in this 
species (Toledo et al., 2009), frequently associated with cattle and that occasionally parasitizes 
humans (Santos-Silva., et al., 2011). Although the infection of Hyalomma ticks with FLEs has been 
described before, namely in H. marginatum, H. aegyptum (Ivanov et al., 2011) and H. lusitanicum 
(Lopes de Carvalho et al., 2016), to our knowledge, the mixed infection with FLEs and R. 
aeschlimannii is a novelty, at least in this tick genus. The co-infection of this H. marginatum tick 
may have occurred during the immature stage feeding on a host infected with both bacteria. 
The co-infection of ticks with FLEs and a Rickettsia species was previously described in ticks of the 
Dermacentor genus (Niebylski et al., 1997)(Scoles, 2004) (Dergousoff and Chilton, 2012). 
Dermacentor species are known to be anthropophilic and are associated with transmission of F. 
tularensis to humans and animals, even in Portugal (de Carvalho et al., 2007). The most relevant 
finding of this study was the detection of a co-infection with a FLE strain and R. aeschlimannii in H. 
marginatum ticks collected from a human host. R. aeschlimanni was isolated for the first time in H. 
marginatum in 1997 (Beati et al., 1997) and was recognized as a pathogenic agent and included in 
the SFG in 2002 (Raoult et al., 2002). 
The role of FLEs and most tick endosymbionts remains poorly understood as only a few bacteria 
and tick species have been studied. Whether FLEs modulate tick vector competence in the 
transmission of F. tularensis (Goethert and Telford, 2005) or other pathogens such as Rickettsia to 
humans or other animals remains unknown (Scoles, 2004)(Dergousoff and Chilton, 2012). For 
instance, Rickettsia-like symbionts are suggested to affect tick physiology, population dynamics 
and transmission of pathogenic rickettsia. FLEs are intracellular and have been mainly found in 
reproductive tissues of female ticks, being transmitted transovarially. Apparently, the presence of 
FLEs do not inhibit the vertical transmission of distantly related organisms such as Rickettsia spp. 
(there is a report of ovary cells containing both FLE and Rickettsia (Niebylski et al., 1997) or 
Anaplasma phagocytophilum (Baldridge et al., 2009). Also, the presence of one FLE strain does not 
impede infection with either a second closely related symbiont or with a second symbiont less 
closely related (Scoles, 2004), nor inhibit the vertical transmission of other FLE strains (Goethert and 
Telford, 2005) (Dergousoff and Chilton, 2012). 
Overall, endosymbionts appear to be harmless to mammals and there is no evidence of FLEs’ 
pathogenicity to humans (Scoles, 2004). For instance, the absence of intact secretion and effector 
gene systems in FLE-Am suggests that it is avirulent to humans despite its presence in the salivary 
glands and saliva of the tick A. maculatum (Gerhart et al., 2016). In addition, some FLEs seem to 
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lack or at least have a significantly different RD1 (region of difference) sequence, an important 
molecular marker for the discrimination of pathogenic F. tularensis subspecies (Ivanov et al., 2011). 
Nevertheless, these bacteria have been detected in small free-living mammals in Europe, 
highlighting the need to clarify the potential transmission of some FLE strains from ticks to 
mammalian host, if present in the salivary glands or alternatively ingested along with ticks via 
grooming (Lopes de Carvalho et al., 2016). 
As novel FLEs are revealed (such as the Francisella-like endosymbiont (FLEs-Hd) detected in 
Haemaphysalis doenitzi (Liu et al., 2016)), understanding the role of these microbial associations in 
the transmission of tick-borne agents is necessary. 
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Table 1: Information on the ticks origin, species and collection date. The results obtained during this study are also summarized. 

Tick origin Tick species 
Sample size  

(% of total sample) 
Year of 

collection 
Sample size per year 
(% per tick species) 

Testing 
F. tularensis  

Testing 
FLEs 

Percentage of FLEs infected ticks  
% pos (no samples/ tick specie) 

Percentage of co-
infected ticks 

Human 

D. marginatus 10 (2.9) 
2011 6 (60) N N - - 
2012 2 (20) N N - - 
2013 2 (20) N N - - 

D. reticulatus 11 (3.2) 2014 11 (100) N Pa 0.59% (2/341) - 
H. marginatum 8 (2.3) 2012 8 (100) N Pb 0.29% (1/341) 0.29% (1*/341) 
H. lusitanicum 8 (2.3) 2012 8 (100) N Pc 0.29% (1/341) - 

I. ricinus 60 (17.6) 
2011 3 (5) N N - - 
2012 15 (25) N N - - 
2013 42 (70) N N - - 

R. pusillus 1 (0.3) 2013 1 (100) N N - - 

R. sanguineus 29 (8.5) 
2012 23 (79.3) N N - - 
2013 6 (20.7) N N - - 

Dog  D. reticulatus 8 (2.3) 2014 8 (100) N Pa 1.17% (4/341) - 
Deer I. ricinus 98 (28.7) 2015 98 (100) N N - - 

Vegetation I. ricinus 108 (31.7) 2013 108 (100) N N - - 
Total  341 (100)  341   2.3% (8/341) 0.29% (1*/341) 

a Accession numbers MF497789-94: 100% similarity in tul4 gene partial sequence (200 bp) with Francisella-like endosymbiont of Dermacentor reticulatus (FDrH) strain 
(EU126640); 
b Accession number MF497787: 98,7% similarity in tul4 gene partial sequence (150 bp) with Francisella-like endosymbiont of Hyalomma marginatum FLE011 (HQ705174) strain;  
c Accession number MF497787: 97.2% similarity in a 100-bp long fragment of tul4 gene with Francisella-like endosymbiont of Hyalomma aegyptum (FLE031) strain (HQ705175) 
and 96.3% similarity in tul4 gene partial sequence ( with Francisella-like endosymbiont of Hyalomma marginatum FLE011 (HQ705174) strain;  
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This thesis aimed the study of host-pathogen interaction systems involving the European wild 

rabbit (Oryctolagus cuniculus) and the Iberian hare (Lepus granatensis) with a lagovirus and a 

zoonotic bacterium. Although the two systems chosen have very different characteristics, their 

importance is equally recognized, the first by its devastating effects on the affected wild rabbit 

populations, predatory species and collateral food webs, and the second by its zoonotic potential 

and consequent Public Health risk. 

Amongst the objectives of this study was the investigation of the rabbit haemorrhagic disease virus 

2 (RHDV2), a recently emerged and transboundary virus, widely disseminated on the continent and 

islands which causes a highly contagious haemorrhagic fever in rabbits, usually of fatal outcome. 

Aspects related to pathology, diagnosis, genetics and epidemiology were addressed. 

In more detail, at the beginning of this project we attempted the isolation of RHDV2 in VERO and 

RK-13 cell lines to ascertain whether this virus differed from classical RHDV, non-cultivable in cell 

lines (Study 1). The motivation for this assessment was based on the premise that this lagovirus, 

although related to RHDV, constitutes a genetically different virus (Le Gall-Reculé et al., 2013). 

Rabbit lagoviruses’ non-cultivable nature is largely known as attempts to adapt EBHSV (Gavier-

Widén et al., 1991), RHDV (Parra and Prieto, 1990)(Huang et al., 1991) and RCV (Capucci et al., 

1996) to grow in various cell lines have repeatedly failed. The inability to grow Lagovirus and most 

caliciviruses in vitro is suggested to be associated with virus entry and receptor binding (Guix et al., 

2007)(Vashist et al., 2009). This was further demonstrated by transfection studies in which a full-

length cDNA clone of RHDV led to the synthesis of infectious virus (Liu, 2006). RHDV was the first 

calicivirus shown to bind to histo-blood group antigens (HBGAs) of the upper respiratory and/or 

digestive tract epithelial cells (Ruvoën-Clouet et al., 2000). However, HBGAs are attachment factors 

(ligands) that facilitate RHDV infection rather than the main cellular receptor (Nyström et al., 2011). 

The liver is considered the major organ of RHDV replication, but rabbit hepatocytes are completely 

devoid of HBGAs (Gorvel et al., 1985)(Nyström et al., 2011) which further renders unlikely the use of 

HBGAs as receptors on hepatocytes and suggests additional mechanisms in the RHDV infection 

(Nyström et al., 2011). 

There is still limited information on the RHDV2 interactions with HBGAs. Nevertheless, our results 

demonstrated that, after 12 passages, RHDV2 was not adaptable to grow in vitro in the two tested 

cell lines (RK13 and VERO cells). 

Also, at the beginning of our work, we developed and validated of a sensitive and specific 

molecular method for the detection of RHDV2 (Study 2), until then non-existent. Different 
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molecular assays for the detection of classical RHDV have been described since the late 90s, 

including conventional RT-PCR assays (Guittré et al., 1995)(Ros Bascunana et al., 1997)(Tham et al., 

1999)(Yang et al., 2008), immunocapture-RT-PCR (Le Gall-Reculé, 2001), real time multiplex RT-PCR 

(Gall et al., 2007), TaqMan real-time RT-PCR (Fitzner et al., 2011) and more recently, loop-mediated 

isothermal amplification (LAMP) (Yuan et al., 2013) and SYBR green-based real-time PCR 

(Niedzwiedzka-Rystwej et al., 2013). 

Until year 2015, the OIE Reference Laboratory recommended a single step conventional generalist 

RT-PCR (which primers are able to amplify all RHDV genogroups and RHDV2) followed by 

sequencing analysis for RHDV2 detection. The method designed by us is currently listed in the OIE 

Terrestrial Manual, Chapter 2.6.2 Rabbit haemorrhagic disease, where it figures as the 

recommended real-time RT-qPCR method for the molecular diagnosis of RHDV2. 

The interpretation of RT-qPCR results obtained with the method developed during this study, when 

applied to non-vaccinated animals undergoing acute disease, particularly when low Cq values are 

obtained, is usually straightforward. In addition, in these clinical forms, histopathological lesions are 

usually present supporting RHDV2 as the cause of death. Due to the variable mortality rates 

described for RHDV2 infections (Le Gall-Reculé et al., 2011a)(Dalton et al., 2012)(Le Gall-Reculé et 

al., 2013), when low viral loads are obtained, differential diagnosis is required since RHDV2 

positivity may not necessarily relate to clinical state or fatal outcome. In addition, nucleic acid 

amplification-based methods have a high sensitivity and low amounts of RHDV2 vaccine virus in 

tissues of vaccinated animals can influence, or even compromise, the interpretation of results and 

the final diagnosis. For blue tongue virus (BTV), for example, it was demonstrated that vaccine viral 

RNA can reach the blood circulation and the spleen in sufficient amounts to be detected by real-

time RT-PCR (De Leeuw et al., 2015). Despite previous studies on the RHDV genome persistence in 

vaccinated and experimentally infected rabbits demonstrated that inactivated vaccine RNA was not 

detected by RT-qPCR (Gall and Schirrmeier, 2006), the same researchers also showed that genomic 

RNA or RNA fragments from the closely related RHDV are known to persist for at least 15 weeks 

after experimental infection (Gall and Schirrmeier, 2006)(Gall et al., 2007). With regards to the 

challenges that this RHDV2 molecular diagnosis faces in vaccinated animals, we have explored the 

significance of viral loads in different groups of animals varying in age, immunization status and 

period between immunization and death, in an opportunist study in a rabbit industry (Study 3). We 

showed that commercial RHDV2 vaccines, even if applied at least 15 days before sampling, do not 

interfere with the results of the molecular diagnosis by the method that we developed. This study 
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also demonstrated the interference of maternal antibodies in the efficacy of vaccination in juvenile 

rabbits, a phenomenon that should be considered when defining vaccination protocols. Humoral 

immunity is critical to protect rabbits from RHD (Argüello-Villares, 1991)(Huang et al., 

1991)(McIntosh et al., 2007) and maternal IgG antibodies, acquired during late pregnancy through 

the placenta and, later on, via colostrum (Lorenzo Fraile, personal communication), may be relevant 

for young rabbits’ resistance to RHDV (Cooke, 2002). 

The rapid transmission of RHDV2 from wild to domestic rabbit populations, particularly to 

traditional rabbitries, often located near rural plots and whose rabbits are often fed with grass 

harvested in the surrounding fields, was evident in a small study (Study 4) reporting the presence 

of RHDV2 in domestic rabbits from the Azores, a few months after its detection in wild rabbits. The 

molecular characterization of these viruses revealed that they were identical to the viruses that 

circulated at the same time in wild rabbits, suggesting transmission to the domestic populations. In 

nature, the faecal-oral is probably the most important route of infection (Morisse et al., 

1991)(Ohlinger et al., 1993), although disease can be originated by oral, nasal or parenteral 

(intramuscular, intradermal) routes (Argüello-Villares et al., 1988)(Ohlinger et al., 1993). Faeces from 

surviving rabbits can be infectious for susceptible animals up to 4 weeks after infection (Gregg et 

al., 1991)(Ohlinger et al., 1991). In Europe, the initial RHDV spread to wild rabbit populations was 

closely related with the transmission among commercial rabbitries (Cooke et al., 2002). Waste 

disposal from rabbitries and fresh cut herbage (green feed) used to feed domestic rabbits provided 

routes for RHDV spread in both directions between wild and captive rabbits (Ohlinger et al., 

1994)(Cooke et al., 2002). In this case, the molecular, epidemiological, geographical and ecological 

data pointed to the dissemination of the virus from the wild to this small backyard premises 

namely through green feed that rabbit owners collected in the nearby fields. 

Given the resistance and easiness of virus transmission, the successful control the disease, and of 

potential epidemics depends on rapid access to information at the national level on the disease 

situation (Vallat et al., 2013). Diseases in general, must be immediately notified in a clear and 

transparent way to ensure a timely response (Vallat et al., 2013). As the OIE official notifications are 

sporadic, given the urgency in release information to the scientific community as well as to various 

layers of the society, including conservationists, veterinaries, hunters and hunting tourism agents, 

reports are often communicated in oral communications and in the format of letters to the editor. 

This was the case of this short report where we informed on the RHDV2 detection in domestic 
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rabbits on the Azorean archipelago, only a few months after the disease was first reported in the 

wild rabbit populations. 

In Study 5 we evaluated the effectiveness of vaccination for RHDV2 as a therapeutic tool at the 

population level. Given that immunoglobulins are detected as early as 7 to 10 days after 

immunization, vaccination can be used as an effective post-exposure treatment on farms with 

separate sheds and good biosecurity measures (OIE Terrestrial Manual, 2016). 

Although vaccination proved effective in controlling the disease in a post-infection scenario, the 

long-time span between the introduction of vaccination and the drop of mortality rates clearly 

reinforces the importance of implementing vaccination as a preventive measure whenever possible. 

In Study 6, essentially epidemiological, we investigated a wild rabbit breeding unit located in 

Barrancos, Portugal, where mortality due to the haemorrhagic viral disease had recently occurred. 

The animals were intended to be released in areas designated for the reintroduction of the 

endangered Iberian lynx (Lynx pardinus), also reproduced in captivity. The results of this 

investigation showed a close genetic relationship between the strains identified in this 2016’ 

outbreak and strains that had circulated previously in that geographical region, the first being 

detected in the same unit in 2012. These results suggest the existence of mechanisms that allow 

the maintenance of the virus in nature, and the possible role of other species as virus reservoirs.  

For RHDV, besides direct transmission through rabbit contact with diseased rabbits or rabbit 

carcasses, indirect transmission by mechanical vectors such as insects (Asgari et al., 1998)(McColl et 

al., 2002a) and seabirds (Cooke et al., 2002) was recognised. In addition, some micromammals 

species are reservoirs and potential sources of RHDV (Merchán et al., 2011) and there are 

serological evidences of the capability of RHDV to infect a wider broad of hosts, in red foxes and 

scavengers living in sympathy with RHDV infected rabbit populations (Frolich et al., 1998)(Leigthon 

et al., 1995)(Parkes et al., 2004). This data may imply a relevant role of other species in the 

epidemiology and persistence of the disease (Merchán et al., 2011). Despite sympatric species were 

not sampled and tested in this study, the results reinforced the notion that RHDV2 will continue to 

pose major challenges to the recovery of leporids populations in the country, with the consequent 

deleterious impact on the species that depend on it, as well as, on collateral food webs where the 

rabbit predators find alternatives for survival. 

Despite the dramatic reduction of the populations in certain areas of the national territory, the wild 

rabbits accumulate paradoxical labels in the Iberia, being considered a pest in a few locations 

where its presence is detrimental (Ferreira, 2012)(Ferreira and Delibes-Mateos, 2010). The Berlengas 
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archipelago is a rich and unique terrestrial ecosystem (Catry et al., 2010), where the wild rabbit has 

had a disturbing role in its original ecology (Amado et al., 2007). The success of alien species 

eradication from islands was considered a major achievement in conservation biology (Courchamp 

et al., 2003). While management of this invasive species in the insular ecosystem of Berlengas is 

currently being carried out, we made a last effort to identify the causes of mortality on the rabbits 

in the Berlenga Island. We detected and characterized RHDV2 strain putatively representative of 

the last passage of the virus through this small archipelago (Study 7). In view of the currently 

known strains, the results obtained in this study suggested that the virus may have been 

introduced into the island some years ago and, due to insularity, may have evolved separately from 

the strains circulating in the continent. 

The genetic variability and evolution of RHDV2 in Portugal were investigated in two phylogenetic 

studies also included in this thesis, based on the vp60 gene characterization of RHDV2 strains 

obtained in Portugal between 2012 and 2017. 

The first study (Study 8) aimed to characterize the RHDV2 strains circulating in the Azorean 

archipelago where the virus was first detected by the end of 2014. Nucleotide analysis showed that 

the strains from Azores are closely related to each other, sharing a high genetic identity (>99.15%) 

and forming a cluster, separately from the strains originating in Europe. Bayesian and maximum 

likelihood (ML) phylogenetic analyses disclosed that strains from Azores were more closely to a few 

strains from South of mainland Portugal than with any other known at that time. In the genomic 

region analysed, comprehending the terminal 942 nucleotides of the vp60 gene, four new single 

nucleotide polymorphisms (SNP) were identified. This genetic signature may constitute putative 

geographic molecular markers for the RHDV2 Azorean strains if persisting in the future. 

In Study 9, we characterized seven RHDV2 strains obtained during the first outbreak of the disease 

in the Madeira archipelago. The results evidenced that these viruses also have unique genetic 

markers in the vp60 gene. Two are expressed at the protein level involving positions 480 and 570 

of the 579 amino acid-long protein. Though the Asn480 or Ser480 and Glu570 residues identified in the 

strains from Madeira are located in loops of the VP60 protein, Asn480 potentially impacts on the 

secondary structure of the capsid protein, resulting in the replacement of an α-helix by a longer β-

strand. Along with these, we identified eight additional SNPs that were frequently found in the 

strains from Madeira but were rarely detected in strains from other geographic regions. Altogether, 

the SNPs defined a “DNA fingerprint” for the viruses that circulate in this archipelago. Through this 

investigation, we could trace back the origin of the Madeira archipelago outbreak to mainland 



 

362 

 

Portugal (604 miles away) and exclude the hypothesis of spreading from the nearer Canary Islands 

(324 miles away), where RHDV2 had been detected before. The conclusions emphasize the fact that 

RHDV2 dissemination depends on other factors rather than geographical proximity, also suggested 

for the RHDV2 introduction in the Azorean archipelago (Study 8). 

As a common trace for these eight studies, we extend the knowledge on the genetic and 

epidemiology of RHDV2 after developing, validating and testing a RHDV2 method in non-

vaccinated and vaccinated animals. During these years, we had the opportunity of investigating 

outbreaks in the industry and in the wild and exploring the phylogenetic relationships among 

strains originated in Europe and traced probable dissemination pathways between geographic 

distinct areas. By publishing our results we stimulated, at the international level, several areas of 

research concerning the pathogen itself and dissemination factors of the disease. We raised 

awareness for the veterinarians and other animal health professionals and we provided 

considerations at the ecosystem level and species conservation. Seven years after its first detection, 

the recovering of the wild populations is far from satisfactory, affecting a gross share of the 

touristic market associated directly and indirectly with cinegetic activities in the Iberia and leading 

to illegal movement of animals without genetic and sanitary evaluations. Moreover, recent data has 

showed that RHDV2 is already affecting consistently the European hare in Europe (Lavazza A., 

personal communication, June 2017). 

 

Within the frame of this thesis, we also aimed to evaluate the interaction between the wild leporids, 

Iberian hare and wild rabbit, and the bacterium Francisella tularensis. Although this bacterial 

infection can occur asymptomatically in leporids, the Public Health risk is unequivocal considering 

that F. tularensis is a zoonotic bacterium (reviewed in Carvalho et al. (2014)) and the importance of 

leporids in hunting activity in Portugal (Ferreira and Ferreira, 2014)(Calvete et al., 2004)(Beja et al., 

2007), which potentiates animal-human contact. 

The Iberian hare (Lepus granatensis) is the most abundant of the two hare species endemic in the 

Iberian Peninsula (Duarte, 2000)(Smith and Boyer, 2008)(Alves et al., 2003), being an alternative 

prey for the carnivores that depend on the wild rabbit (Acevedo et al., 2012). In addition, it could 

represent a sentinel species for the infection by Francisella tularensis (Duarte, 2000). Although F. 
tularensis subsp. holarctica was detected for the first time in Portugal in 2007 (de Carvalho et al., 

2007), the systematic screening of this bacterium in wild leporid tissues, considered the main 

reservoirs of this pathogen (reviewed in Carvalho et al. (2014)), was never performed. Hence, a 
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systematic approach by molecular methods was conducted to investigate the presence of this 

agent in samples of wild leporids (Study 12) collected from geographical locations where positive 

human serology had been registered in 1999 (Núncio, 2002). The results confirmed that F. 
tularensis circulates in wild leporids in Portugal, at least in that geographic area, and probably even 

before 1999. The bacterium was detected in tissue samples of Iberian hares, but also in wild rabbits 

(O. cuniculus) where F. tularensis had never been detected previously. Indeed, both the European 

wild rabbit (O. cuniculus) and the domestic rabbit are both relatively resistant to tularaemia 

(Gyuranecz et al., 2010). Interestingly, in a recently published study on the results of the 

surveillance of tularaemia in wildlife in France (2002-2003 and 2012-2013 hunting seasons), F. 
tularensis subsp. holarctica was also detected in four wild rabbits (O. cuniculus) (Moinet et al., 

2016). 

We also carried out studies on known arthropod vectors of F. tularensis that showed ticks as the 

main vector of this bacterium in our country. Approximately 5000 mosquitoes from five different 

genus (namely Culex spp., Ochlerotatus spp., Anopheles spp., Culiseta spp., and a small number of 

Aedes aegypti females from the Madeira Island) were investigated for the presence of F. tularensis 

all testing negative (Annex V). Contrarily, the pathogen was identified in several tick species in 

Portugal (Study 12). Ticks are not only the vector for the transmission of F. tularensis but can 

potentially maintain the organism in nature between epizootics (Ellis et al., 2002). Moreover, the 

screening of ticks collected from human hosts for the presence of F. tularensis allowed the 

detection of a Hyalomma marginatum tick co-infected with both Francisella-like endosymbiont 

(FLE) and Rickettsia aeschlimannii, a pathogenic rickettsia belonging to the Spotted-Fever Group 

(SFG) (Study 13). Although the infection of Hyalomma ticks with FLEs has been described before, 

namely in H. marginatum, H. aegyptum (Ivanov et al., 2011) and H. lusitanicum (Lopes de Carvalho 

et al., 2016), to our knowledge, the co-infection with FLEs and R. aeschlimannii is a novelty. R. 
aeschlimannii was isolated for the first time in H. marginatum in 1997 (Beati et al., 1997) and was 

recognized as a pathogenic agent and included in the SFG in 2002 (Raoult et al., 2002). The 

pathogenicity of FLEs to humans and animals requires further investigation. Overall, endosymbionts 

appear to be harmless to mammals and there is no evidence of FLEs’ pathogenicity to humans 

(Gerhart et al., 2016). Some FLEs seem to lack or at least have a significantly different RD1 (region 

of difference) sequence, an important molecular marker for the discrimination of pathogenic F. 
tularensis subspecies (Ivanov et al., 2011). Nevertheless, these bacteria have been detected in small 

free-living mammals in Europe, highlighting the need to clarify the potential transmission of some 
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FLE strains from ticks to mammals, if present in the salivary glands or, alternatively, ingested along 

with ticks via grooming (Lopes de Carvalho et al., 2016) 

Finally, the isolation of this fastidious bacterium has been attempted by the classical standard 

methods described in the literature but also by using an innovative technique including an in vivo 

passage (Study 11). This technique is carried out in the Institute for Veterinary Medical Research 

(Centre for Agricultural Research, Hungarian Academy of Sciences), an OIE reference laboratory for 

F. tularensis. Despite metagenomic approches to identify non-cultivable microrganisms, using NGS 

(Stewart et al., 2012)(Albanese et al., 2015), F. tularensis isolation would have allowed its 

comprehensive characterization and full assessment of its virulence potential (Vartoukian et al., 

2010). Despite all efforts, the attempts to isolate F. tularensis were unsuccessful. 

As a common denominator for these studies, we extend the knowledge on the genetic of F. 
tularensis and ascertain the tularaemia epidemiologic situation in Portugal by confirming leporids 

as reservoirs and ticks as the main vectors for the pathogen, while reinforcing the need to further 

understand the role of FLE in the transmission of this or other vector-borne organisms. 

 

Finally, during the progression of this work we produced and deposited several nucleotide 

sequences of RHDV2 (n=80), F. tularensis subsp. holarctica (n=1) and Francisella-like 

endosymbionts (FLEs) (n=8), in public databases (GenBank). Sharing genomic data among the 

scientific community is essential for a better perception of the evolution of these microorganisms 

and especially valuable when associated with epidemiological data. The accession numbers of all 

sequences produced during this work are disclosed in Annex VI. 
 

As a common denominator for these studies, we produced data that will support future studies 

regarding the two leporid pathogens, in the veterinarian, public health and species conservation 

perspectives. 

 

To carry out the investigations presented in this thesis, we used classical methodologies of 

pathology, virology and bacteriology, such as methods of tissues inclusion, cuts and staining, 

preparation of macerates, bacterial and tissue cultures. The molecular methodologies used 

included cloning, different PCR formats, sequencing and in vitro transcription. With regards to 

bioinformatics for sequence analysis, we used several methods of phylogenetic analysis (NJ, ML, 
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Bayesian, Network), for screening of recombination (MaxChi, Phylogenetic profiling, Slidingwindow 

phylogeny), and temporal evolution (Tempest), among others. 

 

  



 

366 

 

 

  



 

367 

 

 

 

 

 

 

 

 

 

 

 

4. Future prespectives 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

368 

 

 

  



 

369 

 

Molecular epidemiology is a powerful tool to trace the routes of viral dissemination and to 

understand viral evolution. However, the inference depicted by these analyses is dependent on the 

representativeness of sequences publically available at the time. Retrospective studies help to 

reframe these analyses, providing more realistic epidemiological snapshots and refining the 

evolution history of the viruses.  

Within the time frame of this work, we gathered an extensive database of complete RHDV2 vp60 

sequences (n=80) of which a fraction (n=33) had already been made publically available. Forty-

seven new RHDV2 sequences obtained from samples collected between 2012 and 2016 are 

currently under study. Preliminary results show that these sequences will bring new insights on the 

phylogenetic relationships among RHDV2 strains that have been circulating in Portugal since 2012. 

This is particularly true for the 15 sequences originated from the North of Portugal, since only two 

sequences from this geographic region are currently publically available. Despite ongoing, the 

preliminary but promising analysis provides a glimpse on the population dynamics of RHDV2 on 

the mainland and refines the evolution history of RHDV2 in Europe. The results not only will allow 

to reinforce the notion of effective geographic segregation of insular strains (Azores and Madeira 

archipelagos), but will also show that the pattern of virus dispersion at continental level is still 

relatively preserved in the North (where most of the sequences are monophyletic), in contrast with 

a more evident mixture between strains in the Centre and South. In addition, our data seems to 

confirme that, regarding the evolution history of RHDV2 in Europe, the southern European strains 

(Spain, Portugal, Malta) have a closer genetic proximity of with sequences from Sweden, rather 

than with those from France and Italy. This is a line of investigation that is currently being followed 

and will proceed in the future. 

Recently information on the wild rabbit populations from two Azorean islands described a high 

RHDV2 seroprevalence (40% and 70%, respectively) on wild rabbits. Despite these findings may 

reflect a favourable evolution of the host-virus equilibrium in these areas, additional and continued 

investigation on the immunological resistance of these populations is necessary to understand the 

impact of herd immunity in the population’s recovery. The high evolution-rate of RHDV2 and the 

possibility of new introductions with different strains, pose a continuous threat to the susceptible 

populations. Furthermore, RHDV2 was shown to affect Iberian hares (Lavazza A, personal 
communication), showing that this virus is no longer considered a sole host specific virus and has 

now widen its host range to better survive and persist. It is yet unpredictable whether virus-host 
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equilibrium will be ever attained and it is still unknown what impact will RHDV2 have in the Iberian 

hare populations, currently considered stable. This line of investigation is particular interesting for 

the future. 

Currently, the wild rabbit fragile situation in our country is still alarming, leading the Portuguese 

Government to activate a plan aiming the control of the disease (Despatch 4757/2017 of May 31st). 

In this critical scenario, the development of a disease control tool, namely a safe RHDV2 

recombinant vaccine will be essential towards the control of the virus in the field and constitutes 

another line of investigation that we would like to follow in a nearby future. 

Finally, our phylogenetic analyses, based on the vp60 capsid gene, have not evidenced 

recombination events. However, other researchers have identified potential points of 

recombination between the non-structural and structural encoding genes and more recently near 

the 5’ end of the genome. In the future, we would like to explore the role of the recombination 

events on the evolution and pathogenesis of RHDV2. 

Regarding Francisella tularensis, despite the bacterium was detected during this study in wild 

leporids, the full characterization of the strains is still missing and would provide important 

information on the Francisella tularensis subsp. holarctica strains that circulate in Portugal. In a 

nearby future, we intend to complete the molecular characterization namely resourcing to 

metagenomic by next-generation sequencing methods. 

The true animal reservoirs of F. tularensis in different geographical areas of Portugal must be better 

defined. Further characterisation of wild animal species that can carry F. tularensis for extended 

periods in their natural habitat is needed. 

From the public health point of view, the potential impact of tularaemia as an emerging zoonosis 

should not be neglected. Moreover, surveillance of this disease in sentinel animals is essential for 

the monitoring and prevention of eventual epidemic outbreaks, especially in regions where contact 

with potential reservoirs and vectors are more frequent. 

The reservoir competence of arthropods, especially ticks, for F. tularensis subsp. holarctica must be 

further assessed, once different tick species were detected infected. 
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C H A P T E R  8 . 1 7 .

T U L A R E M I A

Article 8.17.1.

General provisions

For the purposes of the Terrestrial Code, the incubation period for tularemia (in hares, genus Lepus) shall be 15 days.

Standards for diagnostic tests are described in the Terrestrial Manual.

Article 8.17.2.

Tularemia free country

A country may be considered free from tularemia when it has been shown that tularemia has not been present for at
least the past two years and when bacteriological or serological surveys in previously infected zones have given negative
results.

Article 8.17.3.

Tularemia infected zone

A zone should be considered as infected with tularemia until:

1) at least one year has elapsed after the last case has been confirmed;

AND

2) a bacteriological survey on ticks within the infected zone has given negative results; or

3) regular serological testing of hares and rabbits from that zone have given negative results.

Article 8.17.4.

Trade in commodities

Veterinary Authorities of tularemia free countries may prohibit importation or transit through their territory, from countries
considered infected with tularemia, of live hares.

Article 8.17.5.

Recommendations for importation from countries considered infected with tularemia

For live hares

Veterinary Authorities should require the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of tularemia on the day of shipment;

2) were not kept in a tularemia infected zone;

3) have been treated against ectoparasites; and

4) were kept in a quarantine station for the 15 days prior to shipment.
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C H A P T E R  1 3 . 2 .

R A B B I T  H A E M O R R H A G I C  D I S E A S E

Article 13.2.1.

General provisions

For the purposes of the Terrestrial Code, the infective period for rabbit haemorrhagic disease (RHD) shall be 60 days.

Standards for diagnostic tests and vaccines are described in the Terrestrial Manual.

Article 13.2.2.

RHD free country

A country may be considered free from RHD when it has been shown that the disease has not been present for at least
one year, that no vaccination has been carried out in the previous 12 months, and that virological or serological surveys
in both domestic and wild rabbits have confirmed the absence of the disease.

This period may be reduced to six months after the last case has been eliminated and disinfection procedures completed
in countries adopting a stamping-out policy, and where the serological survey confirmed that the disease had not
occurred in the wild rabbits.

Article 13.2.3.

RHD free establishment

An establishment may be considered free from RHD when it has been shown, by serological testing, that the disease
has not been present for at least one year, and that no vaccination has been carried out in the previous 12 months. Such
establishments should be regularly inspected by the Veterinary Authority.

A previously infected establishment may be considered free when six months have elapsed after the last case has been
eliminated, and after:

1) a stamping-out policy has been adopted and carcasses have been disposed of by burning;

2) the rabbitry has been thoroughly disinfected and kept empty for at least six weeks;

3) the rabbitry is properly fenced to prevent the straying of wild lagomorphs into the rabbitry.

Article 13.2.4.

Trade in commodities

Veterinary Authorities of RHD free countries may prohibit importation or transit through their territory, from countries
considered infected with RHD, of live rabbits, semen, meat and non-treated pelts.

Article 13.2.5.

Recommendations for importation from RHD free countries

For domestic rabbits destined for breeding

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the animals:

1) showed no clinical sign of RHD on the day of shipment;
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2) were kept in a RHD free country since birth or for at least the past 60 days.

Article 13.2.6.

Recommendations for importation from RHD free countries

For day-old rabbits destined for breeding

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the animals:

1) showed no clinical sign of RHD on the day of shipment;

2) were born from female rabbits which had been kept in a country free from RHD for at least the past 60 days.

Article 13.2.7.

Recommendations for importation from countries considered infected with RHD

For domestic rabbits destined for breeding or pharmaceutical or surgical or agricultural or industrial use

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the animals:

1) showed no clinical sign of RHD on the day of shipment;

AND

2) were kept in a RHD free establishment where no clinical case of RHD was found when inspected by an Official
Veterinarian immediately prior to shipment;

OR

3) were kept in an establishment where no case of RHD was reported during the 60 days prior to shipment and no
clinical case of RHD was found when inspected by an Official Veterinarian immediately prior to shipment; and

4) were kept in an establishment where no animal has been vaccinated against RHD; and

5) were kept in an establishment where breeding rabbits (at least 10% of the animals) were subjected to the
serological test for RHD with negative results during the 60 days prior to shipment; and

6) have not been vaccinated against RHD; or

7) were vaccinated against RHD immediately before shipment (the nature of the vaccine used and the date of
vaccination shall also be stated in the certificate).

Article 13.2.8.

Recommendations for importation from countries considered infected with RHD

For day-old rabbits destined for breeding

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the animals:

1) were kept in a RHD free establishment where no clinical case of RHD was found when inspected by an Official
Veterinarian immediately prior to shipment;

OR

2) were kept in an establishment where no case of RHD was reported during the 30 days prior to shipment and no
clinical case of RHD was found when inspected by an Official Veterinarian immediately before shipment; and

3) have not been vaccinated against RHD; and

4) were born from female rabbits which were subjected to the serological test for RHD with negative results during the
60 days prior to shipment.
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Article 13.2.9.

Recommendations for importation from countries considered infected with RHD

For domestic rabbits destined for immediate slaughter

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the animals:

1) showed no clinical sign of RHD on the day of shipment;

2) were kept in an establishment where no case of RHD was reported during the 60 days prior to shipment.

Article 13.2.10.

Recommendations for importation from countries considered infected with RHD

For semen

Veterinary Authorities of  importing countries should require the presentation of an international veterinary certificate
attesting that the donor animals:

1) showed no clinical sign of RHD on the day of collection of the semen;

2) were subjected to the serological test for RHD with negative results during the 30 days prior to collection.

Article 13.2.11.

Recommendations for importation from countries considered infected with RHD

For domestic rabbit meat

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the meat comes from animals which:

1) were kept in an establishment where no case of RHD was reported during the 60 days prior to transport to the
approved abattoir;

2) were subjected to ante-mortem inspections for RHD with favourable results;

3) showed no lesions of RHD at post-mortem inspections.

Article 13.2.12.

Recommendations for importation from RHD free countries

For non-treated pelts

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the pelts come from rabbits which had been kept in a country free from RHD for at least 60 days before
slaughter.

Article 13.2.13.

Recommendations for importation from countries considered infected with RHD

For pelts

Veterinary Authorities of importing countries should require the presentation of an international veterinary certificate
attesting that the pelts were subjected to a drying treatment for at least one month and a formalin-based treatment by
spraying at a 3% concentration, or by fumigation carried out, not more than seven days prior to shipment.
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AOAC SMPR® 2016.007

Standard Method Performance Requirements 
(SMPRs) for Detection of Francisella tularensis in 
Aerosol Collection Devices

Intended Use: Laboratory or field use by Department of 
Defense trained operators

1 Applicability 

Detection of Francisella tularensis in collection buffers from 
aerosol collection devices. Field-deployable assays are preferred.
2 Analytical Technique

Molecular detection of nucleic acid.
3  Definitions

Acceptable minimum detection level (AMDL).—The 
predetermined minimum level of an analyte, as specified by an 
expert committee which must be detected by the candidate method 
at a specified probability of detection (POD).

Environmental factors.—For the purposes of this SMPR: 
Any factor in the operating environment of an analytical method, 
whether abiotic or biotic, that might influence the results of the 
method.

Exclusivity.—Study involving pure non-target strains, which are 
potentially cross-reactive, that shall not be detected or enumerated 
by the candidate method.

Inclusivity.—Study involving pure target strains that shall be 
detected or enumerated by the candidate method.

Interferents.—A . . . substance in analytical procedures . . . that, 
at a (the) given concentration, causes a systematic error in the 
analytical result (International Union of Pure and Applied Chemistry 
Analytical Chemistry Division Commission on Analytical Reactions 
and Reagents Definition and Classification of Interferences in 
Analytical Procedures Prepared for Publication by W.E. Van Der 
Linden, Pure & Appl. Chem. 61(1), 91–95(1989). Printed in Great 
Britain, 1989, IUPAC). Sometimes also known as interferants.

Maximum time-to-result.—Maximum time to complete an 
analysis starting from the collection buffer to assay result.

Probability of detection (POD).—The proportion of positive 
analytical outcomes for a qualitative method for a given matrix at 
a specified analyte level or concentration with a ≥0.95 confidence 
interval.

System false-negative rate.—Proportion of test results that are 
negative contained within a population of known positives.

System false-positive rate.—Proportion of test results that are 
positive contained within a population of known negatives.
4 Method Performance Requirements

See Table 1.

Table 1. Method performance requirements

Parameter Minimum performance requirement

AMDL  2000 standardized cells per mL liquid in the candidate method 
sample collection buffer

Probability of detection at AMDL within sample collection buffer ≥0.95

Probability of detection at  AMDL  in environmental matrix materials ≥0.95  

System false-negative rate using spiked environmental matrix 
materials

≤5%

System false-positive rate using environmental matrix materials ≤5%

Inclusivity All inclusivity strains (Table 3) must test positive at 2x the AMDLa

Exclusivity All exclusivity strains (Table 4 and Annex 1—Part 2) must test 
negative at 10x the AMDLa

a 100% correct analyses are expected. All discrepancies are to be retested following the AOAC Guidelines for Validation of Biological Threat Agent Methods 
and/or Procedures [Official Methods of Analysis of AOAC INTERNATIONAL (2016) 20th Ed., AOAC INTERNATIONAL, Rockville, MD, USA, Appendix I; 
http://www.eoma.aoac.org/app_i.pdf].

Table 2. Controls

Control Description Implementation

Positive Designed to demonstrate an appropriate test response. The positive control should 
be included at a low but easily detectable concentration, and should monitor the 

performance of the entire assay. The purpose of using a low concentration of positive 
control is to demonstrate that the assay sensitivity is performing at a previously 

determined level of sensitivity.

Single use per sample 
(or sample set) run

Negative Designed to demonstrate that the assay itself does not produce a detection in the 
absence of the target organism. The purpose of this control is to rule out causes of 

false positives, such as contamination in the assay or test.

Single use per sample 
(or sample set) run

Inhibition Designed to specifically address the impact of a sample or sample matrix on the 
assay’s ability to detect the target organism.

Single use per sample 
(or sample set)  run
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5 System Suitability Tests and/or Analytical Quality Control

The controls listed in Table 2 shall be embedded in assays as 
appropriate. Manufacturer must provide written justification if 
controls are not embedded in the assay.
6 Validation Guidance

AOAC INTERNATIONAL Methods Committee Guidelines for 
Validation of Biological Threat Agent Methods and/or Procedures 
[Official Methods of Analysis AOAC INTERNATIONAL (2016) 
Appendix I].

Inclusivity and exclusivity panel organisms used for evaluation 
must be characterized and documented to truly be the species and 
strains they are purported to be.

In silico analysis.—In silico screening shall be performed 
on signature sequences (e.g., oligo primers/probes/amplicons) 
to predict specificity and inclusivity across available sequenced 
Francisella strains. In silico results are suggestive of potential 
performance issues. Basic Local Alignment Search Tool (BLAST) 
(or a comparable tool) should be used to examine potential 
hybridization events between signature components and available 
Francisella genomic sequence data in GenBank®. Results of in 

silico analyses shall be included in method/assay performance 

evaluation reports. 

7 Maximum Time-to-Results

Within 4 h.

8 Guidance on Combining DNA for Exclusivity Evaluation

Organisms may be tested as isolated DNA, or combined to 

form a pool of isolated DNA. Isolated DNA may be combined 

into pools of up to 10 exclusivity panel organisms, with each panel 

organism represented at 10 times the AMDL, where possible. If an 

unexpected result occurs, each of the exclusivity organisms from 

a failed pool must be individually retested at 10 times the AMDL.

Approved by the AOAC Stakeholder Panel on Agent Detection 

Assays (SPADA). Final Version Date: March 22, 2016.

Table 3. Inclusivity panel

No. UCCa ID Genus and species Strain Characteristics

1 FRAN001 Francisella tularensis subsp. tularensis Type A2 (Type strain)

2 FRAN004 Francisella tularensis subsp. holarctica (LVS) Type B (Russian)

3 FRAN012 Francisella tularensis subsp. holarctica Type B (United States)

4 FRAN016 Francisella tularensis subsp. tularensis (SCHU S4) Type A1 (United States)

5 FRAN024 Francisella tularemia subsp. holarctica JAP (Cincinnati) Type B (Japanese)

6 FRAN025 Francisella tularensis subsp. tularensis (VT68) Type A1 (United States)

7 FRAN029 Francisella tularensis subsp. holarctica (425) Type B (United States)

8 FRAN031 Francisella tularensis subsp. tularensis (Scherm) Type A1 (United States)

9 FRAN072 Francisella tularensis subsp. tularensis (WY96) Type A2 (United States)

10 N/A Francisella tularensis subsp. mediasiatica
a  UCC = Department of Defense Unified Culture Collection; components available through Biodefense and Emerging Infections Research Resources 

Repository.

Table 4. Exclusivity panel (near-neighbor)

No. Species Strain

1 Francisella philomiragia Jensen O#319L ATCC 25015

2 Francisella philomiragia Jensen O#319-029 ATCC 25016

3 Francisella philomiragia Jensen O#319-036 ATCC 25017

4 Francisella philomiragia Jensen O#319-067 ATCC 25018

5 Francisella philomiragia D7533, GA012794

6 Francisella philomiragia E9923, GA012801

7 Francisella novicida D9876, GA993548

8 Francisella novicida F6168, GA993549

9 Francisella novicida U112, GA993550

10 Francisella hispaniensis DSM 22475
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Annex 1. Environmental Factors for Validating Biological 
Threat Agent Detection Assays

[Adapted from the Environmental Factors Panel approved by 
SPADA on June 10, 2010.]

The Environmental Factors Studies supplement the biological 
threat agent near-neighbor exclusivity testing panel. There are three 
parts to Environmental Factors Studies: Part 1—Environmental 
matrix samples; Part 2—Environmental organisms study; and 
Part 3—Potential interferents applicable to Department of Defense 
applications (added in June 2015 for the Department of Defense 
project).

Part 1: Environmental Matrix Samples— 
Aerosol Environmental Matrices 

Method developers shall obtain environmental matrix samples 
that are representative and consistent with the collection method 
that is anticipated to ultimately be used in the field. This includes 
considerations that may be encountered when the collection system 
is deployed operationally such as collection medium, duration of 
collection, diversity of geographical areas that will be sampled, 
climatic/environmental conditions that may be encountered and 
seasonal changes in the regions of deployment.

Justifications for the selected conditions that were used to 
generate the environmental matrix and limitations of the validation 
based on those criteria must be documented.

• Method developers shall test the environmental matrix 
samples for interference using samples inoculated with a target 
biological threat agent sufficient to achieve 95% probability of 
detection.

• Cross-reactivity testing will include sufficient samples and 
replicates to ensure each environmental condition is adequately 
represented. 

Part 2: Environmental Panel Organisms

This list is comprised of identified organisms from the 
environment.

Inclusion of all environmental panel organisms is not a 
requirement if a method developer provides appropriate justification 
that the intended use of the assay permits the exclusion of specific 
panel organisms. Justification for exclusion of any environmental 
panel organism(s) must be documented and submitted.

Organisms and cell lines may be tested as isolated DNA, or as 
pools of isolated DNA. Isolated DNA may be combined into pools 
of up to 10 panel organisms, with each panel organism represented 
at 10 times the AMDL, where possible. The combined DNA pools 
are tested in the presence (at 2 times the AMDL) and absence of the 
target gene or gene fragment. If an unexpected result occurs, each 
of the individual environmental organisms from a failed pool must 
be individually retested at 10 times the AMDL with and without the 
target gene or gene fragment at 2 times the AMDL in the candidate 
method DNA elution buffer.

DNA in this list that already appear in the inclusivity or 
exclusivity panel do not need to be tested again as part of the 
environmental factors panel.

• Potential bacterial biothreat agents
Bacillus anthracis Ames 
Yersinia pestis Colorado-92
Francisella tularensis subsp. tularensis Schu-S4
Burkholderia pseudomallei

Burkholderia mallei
Brucella melitensis 

•  Cultivatable bacteria identified as being present in air, 
soil, or water
Acinetobacter lwoffii
Agrobacterium tumefaciens
Bacillus amyloliquefaciens
Bacillus cohnii
Bacillus psychrosaccharolyticus
Bacillus benzoevorans
Bacillus megaterium
Bacillus horikoshii
Bacillus macroides
Bacteroides fragilis
Burkholderia cepacia
Burkholderia gladoli
Burkholderia stabilis
Burkholderia plantarii
Chryseobacterium indologenes
Clostridium sardiniense
Clostridium perfringens
Deinococcus radiodurans
Delftia acidovorans
Escherichia coli K12
Fusobacterium nucleatum
Lactobacillus plantarum
Legionella pneumophilas
Listeria monocytogenes
Moraxella nonliquefaciens
Mycobacterium smegmatis
Neisseria lactamica
Pseudomonas aeruginosa
Rhodobacter sphaeroides
Riemerella anatipestifer
Shewanella oneidensis
Staphylococcus aureus
Stenotophomonas maltophilia
Streptococcus pneumoniae
Streptomyces coelicolor
Synechocystis
Vibrio cholerae

• Microbial eukaryotes
Freshwater amoebae:

Acanthamoeba castellanii
Naegleria fowleri

Fungi:
Alternaria alternata
Aspergillus fumagatis
Aureobasidium pullulans
Cladosporium cladosporioides
Cladosporium sphaerospermum
Epicoccum nigrum
Eurotium amstelodami
Mucor racemosus
Paecilomyces variotii
Penicillum chrysogenum
Wallemia sebi
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• DNA from higher eukaryotes
 Plant pollen (if pollen is unavailable, vegetative DNA is 
acceptable):

Zea mays (corn)
Pinus spp. (pine)
Gossypium spp. (cotton)

Arthropods:
Aedes aegypti (ATCC/CCL-125(tm) mosquito cell line)
Aedes albopictus (Mosquito C6/36 cell line)
 Dermatophagoides pteronyssinus 
 (Dust mite-commercial source)
Xenopsylla cheopis Flea (Rocky Mountain Labs)
Drosophilia cell line
Musca domestica 

  (housefly; ARS, USDA, Fargo, ND, USA)
 Gypsy moth cell lines 
 [LED652Y cell line (baculovirus); Invitrogen]
Cockroach (commercial source)
 Tick (Amblyomma and Dermacentor tick species for 
 F. tularensis detection assays) (added by SPADA on 
 March 22, 2016)

Vertebrates:
Mus musculus (ATCC/HB-123) mouse
Rattus norvegicus (ATCC/CRL-1896) rat
Canis familiaris(ATCC/CCL-183) dog
Felis catus (ATCC/CRL-8727) cat
Homo sapiens (HeLa cell line ATCC/CCL-2) human
Gallus gallus domesticus (chicken)
 Capri hirca (goat) (added by SPADA on 
 September 1, 2015)

•  Biological insecticides
Strains of B. thuringiensis present in commercially available 

insecticides have been extensively used in hoaxes and are likely to 

be harvested in air collectors. For these reasons, it should be used 
to assess the specificity of these threat assays.

B. thuringiensis subsp. israelensis
B. thuringiensis subsp. kurstaki
B. thuringiensis subsp. morrisoni
Serenade (Fungicide) B. subtilis (QST713)

Viral agents have also been used for insect control. Two 
representative products are:

 Gypcheck for gypsy moths (Lymanteria dispar nuclear 
 polyhedrosis virus)
 Cyd-X for coddling moths (Coddling moth granulosis 
 virus)

Part 3: Potential Interferents Study

The Potential Interferents Study supplements the Environmental 
Factors Study, and is applicable to all biological threat agent 
detection assays for Department of Defense applications. Table 5 
provides a list of potential interferents that are likely to be 
encountered in various Department of Defense applications.

Method developers and evaluators shall determine the most 
appropriate potential interferents for their application. Interferents 
shall be spiked at a final test concentration of 1 µg/mL directly into 
the sample collection buffer. Sample collection buffers spiked with 
potential interferents shall by inoculated at 2 times the AMDL (or 
acceptable minimum identification level; AMIL) with one of the 
target biological threat agents.

Spiked/inoculated sample collection buffers shall be tested 
using the procedure specified by the candidate method. A candidate 
method that fails at the 1 µg/mL level may be reevaluated at lower 
concentrations until the inhibition level is determined.

It is expected that all samples are correctly identified as positive. 
Table 5 is offered for guidance and there are no mandatory 

minimum requirements for the number of potential interferents to 
be tested.
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Table 5. Potential interferents

Compound Potential theaters of operation

Group 1: Petroleum-based JP-8a Airfield

JP-5b Naval

Diesel/gasoline mixture Ground

Fog oil (standard grade fuel number 2) Naval, ground

Burning rubberc Ground, airfield

Group 2: Exhaust Gasoline exhaust Ground

Jet exhaust Naval, airfield

Diesel exhaust Ground

Group 3: Obscurants Terephthalic acidd Ground

Zinc chloride smokee Ground

Solvent yellow 33f Ground

Group 4: Environmental Burning vegetation Ground, airfield

Road dust Ground

Sea water (sea spray) Naval

Group 5: Chemicals Brake fluidg All

Brake dusth Ground

Cleaning solvent, MIL-L-63460i All

Explosive residues: 
High explosivesj 

Artillery propellantk
All

a �JP-8: Air Force formulation jet fuel.
b �JP-5: A yellow kerosene-based jet fuel with a lower flash point developed for use in aircraft stationed aboard aircraft carriers, where the risk from fire is 

particularly great. JP-5 is a complex mixture of hydrocarbons, containing alkanes, naphthenes, and aromatic hydrocarbons. 
c �Burning rubber (tire smoke): Gaseous C1-C5 hydrocarbons: methane; ethane; isopropene; butadiene; propane. Polycyclic aromatic 

hydrocarbons (58–6800 ng/m3): parabenzo(a)pyrene; polychlorinated dibenzo-p-dioxins (PCDD); polychlorinated dibenzofurans (PCDF). Metals 
(0.7–8 mg/m3): zinc; lead; cadmium.

d �Terephthalic acid: Used in the AN/M83 hand grenade currently used by US military.

 
e �Zinc chloride smoke: Also known as “zinc chloride smoke” and “HC smoke.” Was used in the M8 grenade and still used in 155 mm artillery shells. HC smoke 

is composed of 45% hexachloroethane, 45% zinc oxide, and 10% aluminum.
f �Solvent yellow 33 [IUPAC name: 2-(2-quinolyl)-1,3-indandione] is a new formulation being develop for the M18 grenade.
 

g �Brake fluid: DOT 4 is the most common brake fluid, primarily composed of glycol and borate esters. DOT 5 is silicone-based brake fluid. The main difference 
is that DOT 4 is hydroscopic whereas DOT 5 is hydrophobic. DOT 5 is often used in military vehicles because it is more stable over time requires less 
maintenance.

h �Brake dust: Fe particles caused by abrasion of the cast iron brake rotor by the pad and secondly fibers from the semi metallic elements of the brake pad. The 
remainder of the dust residue is carbon content within the brake pad.

i �MIL-L-63460, “Military Specification, Lubricant, Cleaner and Preservative for Weapons and Weapons Systems;” trade name “Break-Free CLP” (http://www.
midwayusa.com/product/1106170293/break-free-clp-bore-cleaning-solvent-lubricant-rust-preventative-liquid).

j �High explosives: The M795 155 mm projectile is the U.S. Army/Marine Corp’s current standard projectile containing 10.8 kg TNT. The M795 projectile 
replaced the M107 projectile that contained Composition B, which is a 60/40 mixture of RDX/TNT. RDX is cyclotrimethylene trinitramine. Suggestion: Test 
RDX/TNT together.

k  Artillery propellant: Modern gun propellants are divided into three classes: single-base propellants, which are mainly or entirely nitrocellulose based; double-
base propellants composed of a combination of nitrocellulose and nitroglycerin; and triple base composed of a combination of nitrocellulose and nitroglycerin 
and nitroguanidine. Suggestion: Test total nitrocellulose/nitroglycerin nitroguanidine together.
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Screening of mosquitoes as vectors of 
Francisella tularensis in Portugal 
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T������� is a zoonosis caused by Francisella tularensis that has recently emerged 
in new locations, populations and settings (1). This contagious septicemic disease 
affects mainly hares, sylvatic rabbits, rats, mice and other rodents. In some 
circumstances, the disease can also affect humans, domestic animals (herbivores 
and small carnivores), birds, fish and amphibians. The major route of infection is 
the skin by direct contact with dead or infected animals. Other routes of infection 
are the eye conjunctiva, mouth and nose mucous membrane (drinking 
contaminated water, ingestion of meat from sick animals or inhalation) or 
arthropod bites (2). The most important pathogenic subspecies are F. tularensis 

subsp. holarctica that occurs  throughout the Northern hemisphere and F. 

tularensis subsp. tularensis that occurs usually in North America. Mosquitoes from 
genera Culex and Aedes are considered important vectors for F. tularensis, 

especially in Sweden (3). In Portugal, there are 40 species of mosquitoes reported, 
being Ochlerotatus caspius, Culex pipiens  (Figure 1) and Cx. theileri the most 
frequent (4). F. tularensis subsp. holarctica was already detected in Dermacentor 

reticulatus ticks (1), however the role of mosquitoes remains  unknown.  

O���
����� 

�� this work, the role of mosquitoes in the transmission of F. tularensis in 
Portugal was investigated. We aimed to clarify if the species of mosquitoes  
reported in Portugal  could act as competent vectors for F. tularensis, as  
reported in some European countries. 
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A� ongoing epidemiologic surveillance program on arthropod vectors (REVIVE) 
provided the samples that were analyzed in this study. A total of 4949 mosquitoes 
were investigated for the presence of F. tularensis; of which 1373 (68 pools) were 
captured during the year of 2011, 143 specimens were captured between 2007 
and 2010, all over the national territory and 3433 mosquitoes (80 pools) were 
captured during the year of 2007 in the region of Algarve. The mosquitoes of this 
last group were collected in same year of the last outbreak in Spain. Pool 
mosquito samples were extracted using phenol:chloroform. Individual specimens 
DNA was extracted using DNeasy Blood and Tissue kit (Qiagen). A nested PCR for 
specific partial amplification of tul4 gene was used for F. tularensis nucleic acid 
detection, as described by Karhukorpi and Karhukorpi (2001) (5). 
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F&'()* 1. Culex pipiens (A) and Ochlerotatus caspius (B), courtesy of Hugo 
Osório, Center for Vectores and Infectious Diseases Research.  

+,-./01, Genera Mosquito Species 
N/2345 ,6 +,-./01,4-
a7a89:4; Genera percentage (%)

<=>?@ 

<@B DEDE?GH 2352 

63.97 

Cx. theileri 645 

Cx. perexiguus 78 

Cx. hortensis 5 

Cx. univitattus 86 

JKL>?PQSUS=H 
JKB KUHDE=H 1692 

35.34 
Oc. detritus  57 

VGQDL?>?H 
VG maculipennis 8 

0.42 
An atroparvus 13 

<=>EH?SU 
<HB >QGWEUP?Q>USU 5 

0.14 
Cs. annulata 2 

V?X?H (*) VB U?WYDSE   6 0.12 

Table 1:  Mosquitoes studied for the presence of F. tularensis. (*) A small number of Aedes 

aegypti females from Madeira island were also analyzed. 

All samples investigated were negative for the presence of F. tularensis (Table 1). 
These results suggest that in Portugal mosquitoes do not play a crucial role as vectors 
for F. tularensis. Ticks are probably the most important vectors for this pathogen as it 
happens in the majority of countries were tularemia is endemic.  
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Annex VI 

Accession numbers (GenBank) of the 
sequences produced during this work 
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1. Rabbit haemorrhagic disease virus 2 (RHDV2) 

Region of Portugal Year of collection Accession numbers 

Mainland 

 Released Unreleased 
2014 KU665600-601 KY454641-654 
2015 - KY454655-662 
2016 Kx132812-813 KY454663-668 

Azores archipelago 2015 KP862922-33 KY454669-687 

Madeira archipelago 
2016 Ky310747-749  
2017 Ky783700-703  

Berlengas archipelgo 2016 Ky247124-125  
 

2. Francisella tularensis and Francisella-like endosymbionts 

Organism 
Host Year of 

collection 
Accession numbers 

   Released Unreleased 
Francisella tularensis Lagomorphs 2011 KJ477081 - 

Francisella-like endosymbionts 
Dermacentor reticulatus 2014  MF497789-794 
Hyalomma marginatum 2012  MF497787 
Hyalomma lusitanicum 2012  MF497788 
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