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ABSTRACT

Upstream open reading frames (uORFs) constitute a class of cis-acting 
elements that regulate translation initiation. Mutations or polymorphisms that 
alter, create or disrupt a uORF have been widely associated with several human 
disorders, including rare diseases. In this mini-review, we intend to highlight the 
mechanisms associated with the uORF-mediated translational regulation and 
describe recent examples of their deregulation in the etiology of human rare 
diseases. Additionally, we discuss new insights arising from ribosome profiling 
studies and reporter assays regarding uORF features and their intrinsic role 
in translational regulation. This type of knowledge is of most importance to 
design and implement new or improved diagnostic and/or treatment strategies 
for uORF-related human disorders.

Introduction
Over the past few years, many genome-wide studies [RNA deep 

sequencing, ribosome profiling (RiboSeq), mass spectrometry-
based methodologies] pointed out translation as a major regulator 
of gene expression, being recognized as a key post-transcriptional 
mechanism by which cells rapidly change their expression patterns 
in response to a wide variety of stimuli1–9. RiboSeq is the most 
promising genome-wide approach to monitor in vivo translation, 
providing also new information about mechanisms of protein 
synthesis and its control5,10. 

Translation is a tightly controlled process that comprises four 
different steps:  initiation, elongation, termination and ribosome 
recycling. Translation initiation is the most regulated step of 
translation11. In eukaryotes, translation initiation starts with the 
recruitment of the cap-binding protein complex, namely eukaryotic 
initiation factor 4F (eIF4F), which comprises eIF4E, eIF4A and 
eIF4G, to the mRNA 5’ end. The unwinding of the 5’UTR by the 
helicase eIF4A, enables binding of the 40S ribosomal subunit. The 
association of eIF1, eIF1A and eIF3 to the 40S subunit facilitates the 
binding of the ternary complex eIF2-GTP-Met-tRNAi. The resulting 
43S preinitiation complex can land next to the cap and scans in a 
5’ to 3’direction until it recognizes an initiation codon base-pairing 
with methionine initiator-tRNA (Met-tRNAi). Upon recognition of 
the start codon, eIF5 stimulates GTP hydrolysis, resulting in the 
release of eIF2-GDP and probably of other 40S-bound initiation 
factors. eIF5B catalyzes the joining of 60S subunit to form an 80S 
ribosome, and elongation can start (reviewed in11). 
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There are several cis-acting elements involved in the 
regulation of translation initiation, for instance, internal 
ribosome entry sites (IRESs) and upstream open reading 
frames (uORFs)1,11. IRESs are highly structured RNA 
sequences that allow the recruitment of the 40S ribosomal 
subunit directly to the initiation codon or to its vicinity, 
promoting translation initiation via a cap-independent 
mechanism12,13. On the other hand, a uORF is defined as 
a sequence beginning at an initiation codon, within the 5’ 
untranslated region (5’UTR) of a transcript, in frame with 
a termination codon positioned upstream or downstream 
(overlapped uORF) of the main ORF initiation codon1,14,15. 
uORFs, the most abundant and the best understood class of 
small ORFs (sORFs), are sequences that encode for peptides 
up to 100 amino acids, and play different biological roles 
in the cell16,17. uORFs are typically described as repressors 
of translation initiation at the main ORF18–22. These cis-
regulatory elements are prevalent genome-wide being 
estimated that approximately half of the human transcripts 
contain at least one uORF, and many of them are conserved 
among species, suggesting an evolutionary selection of 
functional uORFs18,23–27. Genes that need a highly controlled 
translational regulation, such as oncogenes and genes 
involved in cell growth, differentiation, development and 
stress response, are the typical classes of genes harboring 
uORFs1,14,23. Thus, it is easy to understand that mutations or 
polymorphisms that disrupt, create or modify uORFs can 
potentially be associated with the development of several 
disorders, including rare diseases1,14. Additionally, uORFs 
and IRESs in the same transcript can cooperate to regulate 
protein synthesis, although with an antagonist effect12. For 
example, translation of fibroblast growth factor 9 (FGF9) 
is repressed by a uORF in physiological conditions, and 
induced by a IRES in hypoxia28.

By including the new contributions from RiboSeq analyses 
and reporter assays, here, we review the mechanisms about 
uORF-mediated translational regulation, and show how 
their deregulation can cause human rare disorders.

uORFs and translational regulation
For a uORF to function as a translational regulator 

its initiation codon needs to be recognized. This process 
requires the recruitment of the 43S pre-initiation complex 
(PIC) to the mRNA 5’-cap that, as mentioned above, allows 
the scanning of the 5’UTR and the recognition of the 
upstream AUG (uAUG) codon to start translation (reviewed 
in11). When the ribosome reaches the uORF stop codon, it 
can either: (i) dissociate and be recycled, which induces 
translational repression of the downstream ORF(s), or (ii) 
the 40S subunit does not dissociate from the mRNA and 
is able to reinitiate translation at a downstream initiation 
codon1,14,22,25,29. Translation of a uORF may also trigger 
nonsense-mediated mRNA decay, if the uORF stop codon is 
recognized as a premature translation termination codon1. 

In these circumstances, translation reinitiation at the main 
ORF cannot occur1,30. An efficient translation repression 
mediated by translatable uORF(s) is positively correlated 
with: (i) a strong uAUG context, (ii) a large distance from 
the 5’ cap to the uAUG, (iii) a great number of uORFs, (iv) 
a long uORF, and (v) a short distance between the uORF 
and the main coding sequence (CDS)23,31–33. Additionally, 
the uORF-encoded peptide can exert an inhibitory effect 
in translation through a potential interaction with the 
translational machinery by stalling the translating 
ribosomes in a sequence-dependent manner or/and in 
an indirect way through interactions with other small 
molecules34–36. Moreover, the uORF-encoded peptides can 
have additional biological functions in the cell, working as 
trans-regulatory factors37. 

The cell microenvironment influences the recognition 
of the AUG initiation codon by the 43S PIC11. During 
stress conditions, such as hypoxia, endoplasmic reticulum 
(ER) stress or nutrient depletion, eIF2α subunit is 
phosphorylated at serine 51 (eIF2α-P) by specific 
kinases38–40. This phosphorylation prevents eIF2 recycling 
by the guanine nucleotide exchange factor eIF2B, thus 
impairing the formation of the ternary complex and 
reducing the global rate of translation as part of the cell 
response to stress11,31,41.  However, facing this global 
translational repression a group of transcripts escape 
and increase their translational rates via uORF-mediated 
mechanisms, specifically the ones that are involved in 
cell stress-response3,32,38–41. In the context of high levels 
of eIF2α-P, uORFs are usually bypassed by the scanning 
ribosome that will then access the main AUG initiation 
codon31. This phenomenon is called leaky scanning and 
is responsible for allowing expression of, for instance, 
proteins involved in the ER stress response, like the growth 
arrest and DNA damage-inducible protein (GADD34) and 
the C/EBP homologous protein (CHOP), which are encoded 
by mRNAs with two and one uORFs, respectively3,20,21. The 
leaky scanning process in these two transcripts is mainly 
potentiated by a weak uAUG sequence context3,20,21,32,42. 

In other cases, translation reinitiation at the main 
ORF occurs after translation of at least one uORF. The 
yeast general control protein (GCN4) and the activating 
transcription factor 4 (ATF4), with four and two uORFs in 
their 5’UTRs, respectively, are good examples of transcripts 
encoding stress related-proteins whose expression 
depends on translation reinitiation22,43. In amino acid 
starvation conditions, the first uORF of GCN4 is efficiently 
translated, but low levels of available ternary complex force 
the ribosome to bypass the other uORFs, granting the time 
to acquire a newly formed ternary complex and reinitiate 
translation at the main initiation codon43. In the case of 
ATF4, only the first uORF is translated in stress conditions 
and, again, the ternary complex will eventually be formed 
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Changes in the expression profiles in response to 
stress conditions can be a consequence of a transition of 
the translational machinery to different subsets of mRNAs 
harboring uORFs or other cis-regulatory elements. This 
phenomenon was also hypothesized to be due to an intrinsic 
regulation of the ribosome49. In fact, an increasing number 
of evidence point out the heterogeneity in ribosomal protein 
composition (riboproteome), ribosomal RNA (rRNA) and 
ribosomal-associated co-factors depending on localization, 
cell type and environmental conditions, as a new layer of 
complexity in gene expression regulation50–52. Furthermore, 
even little variation in the core of ribosomal proteins 
seems to regulate translation of specific mRNAs by direct 
interaction with specific cis-regulatory elements within the 
5’ and 3’UTRs49,53. An example of this regulatory mechanism 
was described in Arabidopsis thaliana, where a ribosomal 
protein plays a critical role in translation reinitiation of 
polycistronic mRNAs and of mRNAs harboring uORFs54. 
This raises the possibility that, similarly to what happens 
in plants, ribosomal proteins can modulate uORF-mediated 
translation in human mRNAs and once more, alterations 
on those mechanisms may be disease-associated, being a 
promising field of study in the future.

uORFs and human rare diseases
When modified, disrupted or created due to 

mutations or polymorphisms, uORFs can deregulate 
the downstream main ORF expression and hence be the 
cause of several pathologies that can include metabolic, 
hematologic, endocrine and neurodegenerative disorders, 
and susceptibility to cancer1. Among them, numerous 
rare diseases can be found. According to the European 
legislation, a disease is considered rare when it affects up 
to five people per 1000055. Several examples of deregulated 
uORFs associated with the onset or development of rare 
diseases were well reviewed by Barbosa and co-workers1. 
Meanwhile, other cases have been described (Table 
1), highlighting and reinforcing the impact of uORFs in 
mediating translational regulation in human health and 
disease56–61.

Belonging to the set of rare diseases associated with 

by the time the ribosome reaches the initiation codon of 
the main ORF22. 

The advent of RiboSeq brought new insights about 
translational regulation, allowing the large-scale 
identification of mRNAs harboring uORFs as observed 
by the higher ribosome occupancy at the 5’UTR of many 
transcripts5,10,44,45. Interestingly, a great number of non-
AUG initiation codon-carrying uORFs has been identified, 
a feature that was not possible to be computationally 
predicted before RiboSeq has emerged. Ribosome 
occupancy patterns revealed that CUG is the most prevalent 
non-AUG initiation codon in uORFs5,45,46. These analyses also 
revealed a positive correlation between mRNAs carrying 
non-AUG uORFs and their main ORF translation47. This 
new information raises the question about the initiation 
factors that regulate the recognition of a non-AUG initiation 
codon in conditions of an overall repression of translation 
by eIF2α phosphorylation. eIF2A seems to act as an 
alternative to eIF2α-P since it allows the recruitment of a 
leucine-tRNA (Leu-tRNA) to the vicinity of a CUG (and UUG) 
initiation codon of a uORF to start its translation. eIF2A is 
functionally different from eIF2α: its knockdown does not 
repress global translation but markedly impairs expression 
of uORFs containing leucine-initiation codons37,45,48. Thus, 
the depletion of eIF2A compromises uORF translation 
and consequently the main coding sequence expression of 
transcripts encoding stress-responsive proteins. Binding 
immunoglobulin protein (BiP) mRNA, which encodes a 
chaperone involved in the ER stress recovery response, was 
recently described to be regulated by this mechanism of 
uORF-mediated translation. BiP has two leucine initiation 
codons at position -190 (UUG) and -61 (CUG) nucleotides 
upstream the main AUG. Upon ER stress (and hence eIF2α 
phosphorylation), eIF2A-dependent translation of the -190 
UUG uORF is essential for the BiP main ORF expression48. 
The same mechanism operates in mRNAs encoding proteins 
implicated in the tumorigenic process. In fact, eIF2A was 
directly associated with tumor formation in mice with 
squamous cell-carcinoma (SCC) xenografts, a phenomenon 
that was accompanied by the eIF2A-dependent translation 
of a cohort of cancer-associated transcripts45.

Rare disease Gene Pathogenesis Reference

Familial DOPA responsive 
dystonia (DRD) GCH1

The c.-22C>T polymorphism in the 5’UTR creates an out-of-frame uORF that reduces the 
main ORF translation efficiency; additionally, the 73-amino acid uORF-encoded peptide 
has cytotoxic effects.

56,57

Complete androgen insensi-
tivity syndrome (CAIS) AR The c.-547C>T mutation in the 5’UTR creates an out-of-frame uORF that reduces the main 

ORF translation efficiency. 58

Acampomelic campomelic 
dysplasia (ACD) SOX9 The c.-185G>A mutation in the 5’UTR creates an out-of-frame and overlapped uORF that 

reduces the main ORF translation efficiency. 59

Multiple endocrine neopla-
sia syndrome type 4 (MEN4) CDKN1B A 4bp deletion in the uORF shifts its termination codon and impairs translation reinitia-

tion at the main ORF. 60

Shwachman-Diamond syn-
drome (SDS)

C/EBPα
C/EBPβ

uORFs in the 5’UTR of C/EBPα and C/EBPβ regulate translation reinitiation of C/EBPα-p30 
and C/EBPβ-LIP, respectively; low levels of SBDS impairs this translation reinitiation. 61

Table 1. Recently described cases of human rare diseases associated with deregulated uORF-mediated translation.
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the creation of a uORF is complete androgen insensitivity 
syndrome (CAIS), part of the group of sex developmental 
disorders.  CAIS is characterized by low levels of androgen 
receptor (AR) that impairs the response to the androgen 
dihydrotestosterone, compromising the male phenotype62,63. 
In 1994, when studying the regulation of AR expression, a 
group of investigators showed that the 5’UTR is involved 
in its translational regulation and hypothesized that 
mutations in this 5’UTR could explain, in part, the etiology 
of androgen insensitivity syndrome, since the AR mRNA 
levels are maintained despite the reduced protein levels64. 
Only in 2016, identification by next generation sequencing 
of a germline mutation in the 5’UTR of AR gene (c.-
547C>T) proven to create a translatable uORF responsible 
for the low AR protein levels in CAIS was possible. In 
the mutant AR transcript, the 43S preinitiation complex 
recognizes and initiates translation at the uAUG, leading 
to the formation of a small peptide. Then, the ribosome 
dissociates, promoting low rate of translation reinitiation 
at the main ORF58. Other examples of rare diseases that can 
be related to the creation of uORFs include familial DOPA 
responsive dystonia (DRD) and acampomelic campomelic 
dysplasia (ACD)56,59. In the first case the polymorphism c.-
22C>T in the 5’UTR of the human guanosine triphosphate 
cyclohydrolase 1 (GCH1) gene creates an out-of-frame 
uORF that encodes a 73-amino acid peptide, impairing the 
main ORF translation56,57. The subsequent low expression 
of GCH1 impairs the dopamine biosynthesis pathway 
that, ultimately, results in reduced levels of dopamine and 
dopaminergic dysfunction in the brain, typical of DRD. In 
addition, the synthesized 73-amino acid peptide is localized 
in the nucleus where it promotes cytotoxic effects that are 
accentuated by proteasome impairment57. Regarding ACD, 
a de novo mutation, c.-185G>A, in the transcription factor 
SRY-box 9 (SOX-9) gene creates an overlapped uORF that 
reduces SOX-9 translation that is responsible for the ACD, 
the milder phenotype of CD59.

A new example of a disease which phenotype is related 
to mutations that disrupt uORFs is multiple endocrine 
neoplasia syndrome type 4 (MEN4). A 4 base pair (4bp) 
deletion in the sequence of the highly conserved uORF of the 
cyclin dependent kinase inhibitor 1B (CDKN1B) gene was 
reported to lengthen the uORF by shifting the uORF stop 
codon and to reduce the intercistronic space. This event 
seems to prevent translation reinitiation at the main ORF 
and therefore the expression of p27KIP1, a tumor suppressor 
with a crucial role in cell cycle and proliferation regulation 
that when downregulated increases susceptibility to tumor 
development60.

In addition to alterations that create or disrupt uORFs 
in a disease context, there are genetic alterations that 
can indirectly impair the uORF-mediated translational 
regulation. As an example there is Shwachman-Diamond 
syndrome (SDS), a rare congenital disease caused by 

mutations in the Shwachman-Bodian-Diamond syndrome 
(SBDS) gene65. This disorder is a ribosomopathy since 
defective SBDS protein impairs large ribosome subunit 
maturation61,66. Due to its function, SBDS can regulate 
translation of other transcripts, such as CCAAT/enhancer-
binding protein-α (C/EBPα) and -β (C/EBPβ), involved 
in granulocyte differentiation61,67. Both transcripts have 
alternative initiation codons that result in three different 
N-terminal protein isoforms: extended, p42 and p30 for C/
EBPα, and LAP*, LAP and LIP for C/EBPβ14,61,67. Low levels 
of SBDS expression impair the translation of C/EBPα-p30 
and C/EBPβ-LIP truncated proteins, which can explain the 
hematological phenotype of SDS consisting of bone marrow 
failure with neutropenia61,67,68. C/EBPα and C/EBPβ mRNA 
have a uORF within their 5’UTR and Kyungmin and co-
workers showed that SBDS is crucial for uORF-mediated 
translation reinitiation of C/EBPα-p30 and C/EBPβ-
LIP.  Thus, although the origin of SDS does not depend 
on alterations in the uORF sequence, the hematological 
picture is determined by disruption of a uORF-dependent 
translational mechanism61. This prompts us to look not 
only for the uORF sequence context but also to understand 
the processes, factors and/or networks that drive uORF-
mediated translational regulation.

Conclusions
Growing evidence from RiboSeq analyses and reporter 

assays have brought new insights about the existence 
of uORFs and their translational regulatory functions, 
reinforcing the importance of these cis-acting regulatory 
elements in the pathophysiology of several human 
disorders, including rare diseases. In addition, recent 
studies have revealed many uORFs harboring non-AUG 
initiation codons and alternative mechanisms of translation 
initiation associated with pathological conditions. These 
new data emphasize the importance of understanding the 
detailed molecular mechanisms through which a disease 
relies on in order to develop and implement new strategies 
for disease diagnosis and treatment.
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