brought to you by J CORE

RAPID COMMUNICATIONS

Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe

E Kissling 12, M Rondy 12, I-MOVE/I-MOVE+ study team 3

- 1. EpiConcept, Paris, France
- 2. Both authors have contributed equally to the study and manuscript writing
- 3. The members of I-MOVE/I-MOVE+ study team are listed at the end of the article

Correspondence: Esther Kissling (e.kissling@epiconcept.fr)

Kissling E, Rondy M, I-MOVE/I-MOVE+ study team. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe. Euro Surveill. 2017;22(7):pii=30464. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.7.30464

Article submitted on 09 February 2017 / accepted on 16 February 2017 / published on 16 February 2017

We measured early 2016/17 season influenza vaccine effectiveness (IVE) against influenza A(H3N2) in Europe using multicentre case control studies at primary care and hospital levels. IVE at primary care level was 44.1%, 46.9% and 23.4% among 0-14, 15-64 and≥65 year-olds, and 25.7% in the influenza vaccination target group. At hospital level, IVE was 2.5%, 7.9% and 2.4% among≥65, 65-79 and≥80 year-olds. As in previous seasons, we observed suboptimal IVE against influenza A(H3N2).

The 2016/17 influenza season in Europe is marked by the predominant circulation of influenza A(H3N2) viruses [1], with significant pressure on hospitals, mostly due to patients aged 65 years and older developing severe disease [1]. Many European countries have reported excess all-cause mortality [2]. Initial estimates based on Swedish and Finnish electronic databases suggest low influenza vaccine effectiveness (IVE) among older adults [3,4]. We measured early IVE at primary care and hospital levels against laboratoryconfirmed influenza A(H3N2) in Europe.

Primary care and hospital-based multicentre case control studies in Europe to measure influenza vaccine effectiveness

We conducted separate multicentre primary care and hospital-based case-control studies and analyses using the test-negative design (TND). We have described the methods in detail previously [5-7].

In the primary care study, comprising 893 practitioners (including general practitioners and paediatricians) in 12 countries, we included a systematic sample of all community-dwelling patients presenting to their practitioner with influenza-like illness (ILI), as defined by the European Union ILI case definition (sudden onset of symptoms and at least one of the following systemic

symptoms: fever or feverishness, malaise, headache, myalgia, and at least one of the following respiratory symptoms: cough, sore throat, shortness of breath). In the hospital study, comprising 27 hospitals from 11 countries, we included community-dwelling patients aged 65 years and older admitted to hospital for influenza-related clinical conditions with symptoms compatible with severe acute respiratory infection (SARI). Each study site adapted a generic protocol to their local setting [8,9].

At each study site, the study period commenced more than 14 days after the start of the vaccination campaign and lasted from the week of the first influenza case to the date of sending data for the interim analysis at the end of January 2017.

A case of confirmed influenza was an ILI (primary care) or SARI (hospital) patient who was swabbed and tested positive for influenza A(H3N2) virus using realtime RT-PCR. Controls were ILI (primary care) or SARI (hospital) patients who tested negative for any influenza virus using RT-PCR.

We excluded patients with contraindications for influenza vaccination, SARI patients discharged from a previous hospital stay within 48 hours of symptom onset (hospital), those with a previous laboratory-confirmed influenza in the season, those refusing to participate or unable to consent, those who had received antiviral drugs before swabbing (primary care), those swabbed more than 7 days after symptom onset, patients with missing laboratory results and any patients positive to any influenza virus other than influenza A(H3N2).

Practitioners and hospital teams collected clinical and epidemiological information including date of symptom onset and date of swabbing, 2016/17 seasonal

TABLE 1A

Influenza A(H3N2) cases and controls included in the 2016/17 season influenza vaccine effectiveness analysis, I-MOVE/I-MOVE+ multicentre case control studies (primary care (n = 5,023) and hospital (n = 635) levels) Europe, influenza season 2016/17

	Primary care level							Hospital level							
Variables	Numb	er of A(H	3N2)	Numb	er of con	trols	Nun	nber of A	(H3N2)	Number of controls					
variables	1	n=2,250			1=2,773			n = 267			n=368				
	n	Total	%	n	Total	%	n	Total	%	n	Total	%			
Median age (years)		29			28			79			80				
Age groups (years)	2=(100		2 = ((26.1		NA		1	NA				
0-4	276	2,242	12.3	723	2,766	26.1					NA NA				
5-14	508	2,242	22.7	336	2,766	12.1		NA			NA NA				
15-64	1,177	2,242	52.5	1,438	2,766	52.0	420	NA	F4 7	405		50.0			
65-79 ≥80	234	2,242	10.4	214	2,766	7.7	138	267	51.7	185	368	50.3			
	47	2,242	2.1	55	2,766	2.0	129	267	48.3	183	368	49.7			
Missing	8			7			0			0					
Sex Female	1.126	2 227	50.2	4 (07	2.750	F4 0	4/4	267	50.0	400	269	F4 6			
	1,126	2,237	50.3	1,407	2,758	51.0	141	267	52.8	190	368	51.6			
Missing Chronic conditions	13			15			0			0					
At least one chronic condition	4.54	2 227	20.2	F / 2	2.742	19.8	227	255	02.0	224	266	02.2			
	451	2,237	20.2	542	2,743	19.0	237	255	92.9	321	344	93.3			
Missing At least one hospitalisation in the	13			30			12			24					
previous 12 months for chronic conditions	26	2,196	1.2	57	2,686	2.1	66	247	26.7	146	334	43.7			
Missing	54			87			20			34					
Target group for vaccination										, ,					
Belongs to a target group for vaccination	616	2,241	27.5	706	2,755	25.6	267	267	100.0	368	368	100.0			
Missing	9			18			0			0					
Swab delay															
Swabbed within 3 days of symptom onset	2,024	2,250	90.0	2,291	2,773	82.6	154	267	57.7	212	368	57.6			
Vaccination status															
Seasonal flu vaccination 16–17	231	2,250	10.3	301	2,773	10.9	108	267	40.4	191	368	51.9			
Seasonal flu vaccination 15–16	223	2,196	10.2	316	2,665	11.9	117	252	46.4	199	362	55.0			
Missing	54			108			15			6					
Previous and current season influenza vaco	ination		,												
Not vaccinated in any season	1,929	2,196	87.8	2,284	2,665	85.7	128	252	50.8	147	362	40.6			
Current season vaccination only	44	2,196	2.0	65	2,665	2.4	7	252	2.8	16	362	4.4			
Previous season vaccination only	43	2,196	2.0	95	2,665	3.6	20	252	7.9	28	362	7.7			
Current and previous season vaccination	180	2,196	8.2	221	2,665	8.3	97	252	38.5	171	362	47.2			
Missing	54			108			15			6					
Type of vaccine						I									
Not vaccinated	2019	2,215	91.2	2,472	2,725	90.7	159	261	60.9	177	359	49.3			
Inactivated subunit egg	97	2,215	4.4	108	2,725	4.0	65	261	24.9	101	359	28.1			
Inactivated split virion egg	71	2,215	3.2	118	2,725	4.3	32	261	12.3	74	359	20.6			
Adjuvanted	18	2,215	0.8	21	2,725	0.8	5	261	1.9	7	359	1.9			
Quadrivalent vaccine	10	2,215	0.5	6	2,725	0.2	0	261	0.0	0	359	0.0			
Missing vaccine type	35			48			6			9					
Month of onset						ı									
October 2016	4	2,250	0.2	84	2,773	3.0	0	267	0.0	0	368	0.0			
November 2016	154	2,250	6.8	759	2,773	27.4	3	267	1.1	6	368	1.6			
December 2016	1,199	2,250	53.3	1,194	2,773	43.1	174	267	65.2	236	368	64.1			
January 2017	893	2,250	39.7	736	2,773	26.5	90	267	33.7	126	368	34.2			

NA: Not applicable.

TABLE 1B

Influenza A(H3N2) cases and controls included in the 2016/17 season influenza vaccine effectiveness analysis, I-MOVE/I-MOVE+ multicentre case control studies (primary care (n = 5,023) and hospital (n = 635) levels) Europe, influenza season 2016/17

		Pr	imary c	are level		Hospital level								
Variables		er of A(H ₂ n = 2,250	3N2)		er of con	trols	Nun	nber of A n = 267		Number of controls n=368				
		Total	%		Total	%		Total	%		Total	%		
Study sites														
Croatia	13	2,250	0.6	13	2,773	0.5	NA			NA				
Finland		NA	NA			14	267	5.2	17	368	4.6			
France	584	2,250	26.0	609	2,773	22.0	35	5 267 13.1		116	368	31.5		
Germany	28 2,250 12.8			873	2,773	31.5	NA			NA				
Hungary	39	2,250	1.7	84	2,773	3.0	NA			NA				
Ireland	135	2,250	6.0	113	2,773	4.1	NA			NA				
Italy	411	2,250	18.3	367	2,773	13.2	37	267	13.9	58)	368	15.8		
Lithuania		NA		NA			30	267	11.2	18	368	4.9		
Navarra		NA		NA			20	267	7.5	34	368	9.2		
The Netherlands	47	2,250	2.1	142	2,773	5.1	6	6 267 2.2		19	368	5.2		
Poland	9 2,250 0.4			33	2,773	1.2		NA		NA				
Portugal	156	2,250	6.9	80	2,773	2.9	36 267 13.5		14	368	3.8			
Romania	27	2,250	1.2	9	2,773	0.3	60	267	22.5	37	368	10.1		
Spain	474	2,250	21.1	303	2,773	10.9	29	267	10.9	55	368	14.9		
Sweden	66	2,250	2.9	147	2,773	5.3		NA			NA			

NA: Not applicable.

vaccination status, date of vaccination and vaccine product administered, 2015/16 seasonal vaccination status, sex, age, presence of chronic conditions, whether the patient belonged to a target group for influenza vaccination (primary care) and number of hospitalisations for chronic conditions in the past 12 months.

We defined individuals as vaccinated if they had received at least one dose of the 2016/17 influenza vaccine at least 15 days before ILI/SARI symptom onset. We excluded individuals vaccinated less than 15 days before symptom onset and individuals with unknown vaccination date.

At primary care level, nine study sites (France, Germany, Hungary, Ireland, the Netherlands, Portugal, Romania, Spain and Sweden) participated in a substudy using an in-depth laboratory protocol, and randomly selected positive influenza A(H₃N₂) specimens for genetic sequencing.

We pooled individual patient data in each study and computed the pooled IVE as ((1–OR of vaccination between cases and controls) \times 100) using logistic regression with study site as a fixed effect. We conducted a complete case analysis excluding patients with missing values for any of the variables in the model. All IVE estimates were adjusted for study site, calendar time of onset and age (where sample size allowed). Further potential confounding factors

included sex, underlying chronic conditions and hospitalisations in the past year.

We stratified IVE by age group. We measured IVE among the target groups for influenza vaccination at primary care level, defined as older adults (aged over 54, 59 or 64 years depending on study site), individuals with chronic conditions and other groups for whom the vaccine was recommended in a given country (e.g. pregnant women, healthcare workers and other professional groups, depending on the study site).

Influenza vaccine effectiveness in primary care

In the primary care analysis, we included 2,250 cases of influenza A(H₃N₂) and 2,773 negative controls.

The 2016/17 seasonal influenza vaccine coverage was 10.3% among influenza A(H3N2) cases and 10.9% among controls. Compared with cases, a greater proportion of controls belonged to the age group of 0–4-year-olds (26.1% vs 12.3%) and a lower proportion belonged to the age group of 5–14-year-olds (12.1% vs 22.7%) (Table 1).

Nine study sites sequenced 204 randomly selected specimens out of 1,817 (11.2%) (Table 2). Of these, 156 (76.5%) belonged to the 3C.2a1 clade A/Bolzano/7/2016, 46 (22.5%) to A/Hong Kong/4801/2014 (3C.2a) and two (1.0%) to A/Switzerland/9715293/2013 (3C.3a).

TABLE 2

Influenza A(H3N2) viruses characterised by clade, amino acid substitutions and study site, at nine participating laboratories, I-MOVE/I-MOVE+ primary care multicentre case control study, Europe, influenza season 2016/17 (n = 1,817)

Characterised viruses (clade)		nany 289	France n = 584		Hungary n = 39		Ireland n = 135		The Netherlands n = 47		Portugal n = 156		Romania n = 27		Spain n = 474		Sweden n = 66		Total n = 1,817	
		%		%		%		%		%		%		%		%		%		%
A/HongKong/4801/2014 (3C.2a)	(3C.2a) 10		6		3		0		8		8		4		3		4		46	
N121K + S144K	3	30	6	100	3	100		0	1	12	8	100	4	100	3	100	3	75	31	67
A/Bolzano/7/2016 (3C.2a1)	3	3	19		3		5		20		23		8		36		9		156	
N171K+N121K+l140M	10	30		0		0		0	7	35	2	9	4	50	8	22	3	33	34	22
N171K + N121K + T135K	2	6		0	2 67		0		3	15	0		0		1	3	3	33	11	7
N171K+N121K+K92R+H311Q	8	24		0	1	33	1	20	4	20	4 17		0		10	28		0	28	18
N171K + R142G	7	21	3	16		0	3	60	3	15	17	74		0	1	3	1	11	35	22
A/Switzerland/9715293/2013 (3C.3a)		0		0		0 2		0		0		0		0		0		2		
Total sequenced/total A(H3N2)	43	15	25	4	6	15	7	5	28	60	31	20	12	44	39	8	13	20	204	11

TABLE 3

Pooled adjusted seasonal vaccine effectiveness against laboratory-confirmed influenza A(H3N2) by age group and target group for vaccination, I-MOVE/I-MOVE+ multicentre case control studies (primary care (n = 4,937) and hospital (n = 635)), influenza season 2016/17

Amaluana	Adjustment / stratification		Cases			Controls		Adjusted	95% CI	
Analyses	Adjustment / stratification	All	Vaccinated	%	All	Vaccinated		VE	95% CI	
Primary care										
	Adjusted by study site only	2,216	229	10	2,721	297	11	10.9	-8.3 to 26.6	
	Adjusted by calendar time and study site	2,216	229	10	2,721	297	11	27.9	11.9 to 41.1	
All ages	Adjusted by calendar time, age and study site	2,216	229	10	2,721	297	11	38.4	22.2 to 51.3	
	Fully adjusted: calendar time, age, study site, presence of chronic conditions, sex	2,216	229	10	2,721	297	11	38.0	21.3 to 51.2	
By age group (vears) ^a	0-14	773	20	3	1,043	27	3	44.1	-12.3 to 72.2	
	15-64	1,164	69	6	1,410	126	9	46.9	25.2 to 62.3	
(years)	≥ 65	278	140	50	268	144	54	23.4	-15.4 to 49.1	
Target group for vaccination ^a	All ages	606	201	33	698	235	34	25.7	1.5 to 43.9	
Hospital										
	Adjusted by study site only	267	108	40	368	191	52	-0.7	-46.8 to 30.9	
	Adjusted by calendar time and study site	267	108	40	368	191	52	3	-42.2 to 33.8	
≥ 65 years	Adjusted by calendar time, age and study site	267	108	40	368	191	52	2.5	-43.6 to 33.8	
	Fully adjusted: time, age, study site, sex, chronic condition (lung, heart, renal disease, diabetes, cancer, obesity) and hospitalisation in the past year	240	95	40	316	162	51	2.0	-51.7 to 36.8	
By age group	65-79	130	38	29	165	70	42	7.9	-67.3 to 49.3	
(years) ^b	≥80	115	59	51	167	102	61	2.4	-81.3 to 47.5	

CI: confidence interval; VE: vaccine effectiveness at hospital level.

^a Adjusted by study site, age, calendar time, presence of chronic conditions and sex.

^b Adjusted by calendar time, age and study site.

Among the 156 viruses of the 3C.2a1 clade, further genetic groups have emerged in 108 (69.2%) (Table 2). These include 34 viruses in group 1 (22%), harbouring the I140M substitution located in the antigenic site A of the haemagglutinin, in addition to changes in amino acid positions 171 and 121, both located in the antigenic site D. Eleven viruses belonged to group 2 (7%), carrying the T135K mutation located in the antigenic site A and resulting in the loss of a glycosylation site, in addition to the already mentioned changes in positions 171 and 121. Twenty-eight viruses belonged to genetic group 3 (18%), carrying the K92R and H311Q substitutions located in the antigenic sites E and C, respectively, in addition to changes in positions 171 and 121. Finally, 35 viruses belonged to group 4 (22%), carrying the R142G mutation located in the antigenic site A and the N₁₇₁K substitution. Thirty-one viruses (67%) belonging to the 3C.2a clade (A/HongKong/4801/2014) carried the substitutions N121K and S144K, the latter located in the antigenic site position A.

Adjusted IVE against influenza A(H₃N₂) across all age groups was 38.0% (95% CI: 21.3 to 51.2). It was 44.1% (95% CI: -12.3 to 72.2), 46.9% (95% CI: 25.2 to 62.3) and 23.4% (95% CI: -15.4 to 49.1) in 0–14, 15–64 and \geq 65 year-olds, respectively. The IVE in the target group for vaccination was 25.7% (95% CI: 1.5 to 43.9) (Table 3).

Influenza vaccine effectiveness at hospital level

In the hospital study, we included 267 cases of influenza A(H₃N₂) and 368 negative controls.

The 2016/17 seasonal influenza vaccine coverage was 40.4% among influenza A(H3N2) cases and 51.9% among controls. A higher proportion of controls were vaccinated with inactivated split-virion vaccine group (20.6% vs 12.3%). A higher proportion of controls had been hospitalised for chronic conditions in the past twelve months (43.7% vs 26.7%) (Table 1).

Adjusted IVE against influenza A(H₃N₂) among those aged 65 years and older was 2.5% (95% CI: -43.6 to 33.8), it was 7.9% (95% CI: -67.3 to 49.3) among those aged 65 to 79 years and 2.4% (95% CI: -81.3 to 47.5) among those aged 80 years and older (Table 3).

Discussion

In primary care, early estimates suggest moderate IVE against influenza A(H₃N₂) among o-64-year-olds and low IVE in the target group for influenza vaccination. Among those aged 65 years and older, IVE was low at both primary care and hospital level, however precision was low.

Viruses of the 3C.2a1 clade (A/Bolzano/7/2o16) predominated in the study sites participating in the laboratory protocol. Compared to the vaccine virus A/HongKong/4801/2014, they had the N171K substitution and in addition, most of them had the N121K

substitution. This clade appears to be antigenically similar to the A(H₃N₂) vaccine component. However, our sequencing results suggest that this cluster is continuing to evolve: 70% of sequenced viruses had further mutations, forming clusters defined by new HA1 amino acid substitutions in antigenic sites, including antigenic site A. We did not measure IVE against A/Bolzano/7/2016 viruses, as estimates were not robust because of the small sample size.

The 2016/17 early primary care IVE estimate among all ages was 38% (95% CI: 21.3 to 51.2), similar to the early estimates from the Canadian Sentinel Practitioner Surveillance [10] and comparable to early estimates against influenza A(H₃N₂) in previous seasons: 43% (95% CI: -0.4 to 67.7) in 2011/12 and 41.9% (95% CI: -67.1 to 79.8) in 2012/13 [11,12]. This season, we reached better precision thanks to a larger sample size. The IVE estimates among those aged 65 years and older and target groups for vaccination were low and, despite low precision, reinforce the risk assessment from the European Centre for Disease Prevention and Control (ECDC), which suggests to consider administering antiviral drugs to populations vulnerable to severe influenza irrespective of vaccination status, in line with national and international recommendations [1].

These early results are included in the Global Influenza Vaccine Effectiveness (GIVE) report to contribute to the World Health Organization consultation and information meeting on the composition of influenza virus vaccines for use in the 2017/18 northern hemisphere influenza season [13].

Conclusion

The early season estimates presented here corroborate the suboptimal performance of inactivated influenza vaccine against influenza A(H₃N₂) that the I-MOVE team and others have reported in the previous post-2009 pandemic seasons [14,15].

I-MOVE/I-MOVE + study team

Authors contributing to the primary care and hospital study

EpiConcept, France

Esther Kissling, EpiConcept

Alain Moren, EpiConcept

Marc Rondy, EpiConcept

Marta Valenciano, EpiConcept

Croatia

Bernard Kaić, Croatian Institute of Public Health Sanja Kurečić Filipović, Croatian Institute of Public Health Iva Pem-Novosel, Croatian Institute of Public Health Zvjezdana Lovrić, Croatian Institute of Public Health

Hungary

Judit Kriszttina Horváth, National Center for Epidemiology, Department of Disease Prevention and Surveillance

Annmária Ferenczi, National Center for Epidemiology, Department of Disease Prevention and Surveillance

Beatrix Oroszi, National Center for Epidemiology

Zita Vizler, Office of the Chief Medical Officer

Éva Hercegh, National Center for Epidemiology, Influenza Virus Laboratory

Bálin Szala, National Center for Epidemiology, Influenza Virus Laboratory

Italy

Valeria Alfonsi, Istituto Superiore di Sanità

Antonino Bella, Istituto Superiore di Sanità Caterina Rizzo, Istituto Superiore di Sanità

Poland

Iwona Paradowska-Stankiewicz, National Institute of Public Health-National Institute of Hygiene, Warsaw Monika Korczyńska, National Institute of Public Health-National Institute of Hygiene, Warsaw

Lidia Brydak, National Institute of Public Health-National Institute of Hygiene, Warsaw

Portugal

Baltazar Nunes, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Ausenda Machado, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Ana Paula Rodrigues, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Verónica Gomez, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Irina Kislaya, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Mafalda Sousa Uva, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge

Raquel Guiomar, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge

Pedro Pechirra, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge

Paula Cristóvão, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge

Patrícia Conde, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge

Inês Costa, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge

Romania

Daniela Pitigoi, University of Medicine and Pharmacy Carol Davila, National Institute for Research Cantacuzino, Bucharest, Romania Emilia Lupulescu, National Institute for Research Cantacuzino

Alina Elena Ivanciuc, National Institute for Research Cantacuzino

Mihaela Lazar, National Institute for Research Cantacuzino

Carmen Maria Cherciu, National Institute for Research

Spain

Amparo Larrauri, National Centre of Epidemiology, CIBER Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III

Alin Gherasim, National Centre of Epidemiology, Institute of Health Carlos III

Francisco Pozo, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III

Luis García Comas. Dirección General de Salud Pública. Comunidad de Madrid

Fernando Gonzalez Carril, Departamento de Salud, Gobierno del País Vasco

Jesus Castilla, Instituto de Salud Pública de Navarra, IdiSNA, Pamplona, CIBER Epidemiología y Salud Pública (CIBERESP)

Carmen Quiñones, Dirección General de Salud Pública y Consumo de La Rioja

Jaume Giménez, Servicio de Epidemiología, Dirección General de Salut Pública, Mallorca, Baleares

Daniel Castrillejo, Servicio de Epidemiología. DGSC, Ciudad Autónoma de Melilla

Madalen Oribe Amores, Subdirección de Salud Pública de Gipuzkoa, País Vasco m-

Miriam García, Dirección General de Salud Pública, Aragón

The Netherlands

Adam Meijer, National Institute for Public Health and the Environment (RIVM)

Authors contributing to the primary care study

France

Alessandra Falchi, EA7310, Laboratoire de Virologie, Université de Corse-Inserm, F-20250, Corse

Ana-Maria Vilcu, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136)

Cécile Souty, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136)

Thierry Blanchon, Sorbonne Universités, UPMC Univ Paris o6, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique

Sylvie Behillil, Coordinating Center of the National Reference Center for influenza viruses, Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sornonne Paris Cité, Institut Pasteur Vincent Enouf, Coordinating Center of the National Reference Center for influenza viruses, Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sornonne Paris Cité, Institut Pasteur

Sylvie van der Werf, Coordinating Center of the National Reference Center for influenza viruses, Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sornonne Paris Cité, Institut Pasteur

Bruno Lina, Laboratoire de Virologie, CNR des virus influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord des HCL, Lyon, France; Laboratoire Virpath, CIRI Inserm U1111, CNRS 5308, ENS, UCBL, Faculté de Médecine LYON Est, Université de Lyon, Lyon, France

Martine Valette, Laboratoire de Virologie, CNR des virus influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord des HCL, Lyon, France

Germany

Anicka Reuss, Department for Infectious Disease Epidemiology, Robert Koch Institute

Ute Preuss, Department for Infectious Disease Epidemiology, Robert Koch Institute

Silke Buda, Department for Infectious Disease Epidemiology, Robert Koch Institute

Kerstin Prahm, Department for Infectious Disease Epidemiology, Robert Koch Institute

Brunhilde Schweiger, National Reference Center for Influenza, Robert Koch Institute

Marianne Wedde, National Reference Center for Influenza, Robert Koch Institute

Maria Martin, National Reference Center for Influenza, Robert Koch Institute

Barbara Biere, National Reference Center for Influenza, Robert Koch Institute

Ireland

Joan O'Donnell, HSE-Health Protection Surveillance Centre

Lisa Domegan, HSE-Health Protection Surveillance Centre

Anita Kelly, HSE-Health Protection Surveillance Centre

Michael Joyce, Irish College of General Practitioners

Claire Collins, Irish College of General Practitioners

Cillian de Gascun, National Virus Reference Laboratory, University College Dublin

Jeff Connell, National Virus Reference Laboratory, University College Dublin

Grainne Tuite, National Virus Reference Laboratory, University College Dublin

Margaret Duffy, National Virus Reference Laboratory, University College Dublin

Joanne Moran, National Virus Reference Laboratory, University College Dublin

Bridget Hogg, National Virus Reference Laboratory, University College Dublin

Linda Dunford, National Virus Reference Laboratory, University College Dublin

Sweden

Mia Brytting, the Public Health Agency of Sweden

Katherina Zakikhany, the Public Health Agency of Sweden

The Netherlands

Marit de Lange, National Institute for Public Health and the Environment (RIVM)

Gé Donker, Netherlands Institute for Health Services Research (NIVEL)

European Centre for Disease Prevention and Control (ECDC)

Kari Johansen, European Centre for Disease Prevention and Control

Pasi Penttinen, European Centre for Disease Prevention and Control

Authors contributing to the hospital study

Finland

Ritva Syrjänen, National Institute for Health and Welfare (THL), Impact Assessment Niina Ikonen, National Institute for Health and Welfare (THL), Viral Infections

Hanna Nohynek, National Institute for Health and Welfare (THL), Vaccination Programme

Anu Haveri, National Institute for Health and Welfare (THL), Viral Infections

France

Odile Launay, Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC); CIC De Vaccinologie, Cochin-Pasteur, APHP, Université Paris Descartes, Sorbonne

Florence Galtier. Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC); CIC 1411, hôpital St Eloi, CHU de Montpellier

Philippe Vanems, Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC); Infection Control and Epidemiology Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon; Emerging Pathogens Laboratory - Fondation Mérieux, Centre International de Recherce en Infectiologie, INSERM U1111, Centre National de la Recherche Scientifiqe (CNRS), UMR5308; Ecole Nationale Supérieure (ENS) de Lyon, Université Claude Bernard Lyon

Fabrice Lainé, Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC); CIC 1414- Pôle Santé Publique, CHU de Rennes - Hôpital Pontchaillou, Rennes

Nezha Lenzi, Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC)

Hungary

Katalin Antmann, Hospital Hygiene Department Semmelweis University

Kamilla Nagy, Hospital Hygiene Department, Univeristy of Szeged

Lithuania

Giedre Gefenaite, Department of Infectious diseases, Lithuanian University of Health Sciences

Monika Kuliešė, Department of Infectious diseases, Lithuanian University of Health Sciences

Aukse Mickiene, Department of Infectious diseases, Lithuanian University of Health Sciences

Ligita Jancoriene, Clinic of Infectious, Chest Diseases, Dermatovenerology and Allergology, Vilnius University Faculty of Medicine; University Hospital of Infectious Diseases and Tuberculosis, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Centre of Infectious Diseases

Birute Zablockiene, Clinic of Infectious, Chest Diseases, Dermatovenerology and Allergology, Vilnius University Faculty of Medicine; University Hospital of Infectious Diseases and Tuberculosis, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Centre of Infectious Diseases

Gyte Damuleviciene, Department of Geriatrics, Lithuanian University of Health Sciences

Rita Grimalauskaite, Department of Geriatrics, Lithuanian University of Health Sciences

Alfredas Bagdonas, Department of Internal Diseases, Lithuanian University of Health Sciences

Navarre, Spain

Itziar Casado, Instituto de Salud Pública de Navarra, IdiSNA, Pamplona; CIBER Epidemiología y Salud Pública

Jorge Díaz-González, Instituto de Salud Pública de Navarra, IdiSNA, Pamplona; CIBER Epidemiología y Salud Pública

Jesús Castilla, Instituto de Salud Pública de Navarra, IdiSNA, Pamplona; CIBER Epidemiología y Salud Pública

Romania

Maria Nitescu: Matei Bals Hospital

Emanoil Ceausu: Victor Babes Hospital

Codrina Bejan: Sfanta Parascheva Hospital

The Netherlands

Sierk Marbus, National Institute for Public Health and the Environment (RIVM)

Acknowledgements

Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634446 to conduct the study in individuals aged 65 years or more.

ECDC has contributed to fund the coordination and some study sites under the Framework contract No ECDC/2014/026 for the individuals aged less than 65 years.

The Lithuanian study sites were supported by a grant from Research Council of Lithuania (SEN-03/2015).

The I-MOVE/I-MOVE+ study team is very grateful to all patients, general practitioners, paediatricians, hospital teams, laboratory teams, regional epidemiologists who have contributed to the study.

We acknowledge the authors, originating and submitting laboratories of the sequences from GISAID's EpiFlu Database used for this study. All submitters of data may be contacted directly via the GISAID website www.gisaid.org

Conflict of interest

None declared.

Authors' contributions

Esther Kissling: coordination I-MOVE/I-MOVE+ primary care network, study design, analysis of primary care data, interpretation of results, manuscript writing

Marc Rondy: coordination I-MOVE+ hospital network, study design, analysis of hospital data, interpretation of results, manuscript writing

Both authors contributed equally to the study and manuscript.

I-MOVE/I-MOVE+ study team:

Primary care and hospital sites at national/regional level: data collection, data validation, results interpretation, review of manuscript. Laboratories: virological analysis, genetic characterisation, interpretation of results.

Francisco Pozo: coordinated the I-MOVE/I-MOVE+ virological analysis of the primary care study.

Alain Moren, Marta Valenciano: study design, coordination of I-MOVE/I-MOVE+ network, interpretation of results, contribution to manuscript writing.

Kari Johansen, Pasi Penttinen: study design, interpretation of results, review of manuscript.

References

- European Centre for Disease Prevention and Control (ECDC). Risk assessment of seasonal influenza, EU/EEA, 2016-2017 -Update 25 January 2017 Stockholm: ECDC; 2017. Available from: http://ecdc.europa.eu/en/publications/Publications/Riskassessment-seasonal-influenza-2016-2017-update.pdf
- 2. European monitoring of excess mortality for public health action (EuroMOMO). Mortality monitoring in Europe mortality bulletin, week 1-2017. Copenhagen: EuroMOMO. [Accessed 20 Jan 2017]. Available from: http://www.euromomo.eu/
- Säsongstatistik för influensa 2016/2017 [Season statistics for influenza 2016/2017]. Stockholm: Smittskydd Stockholm. [Accessed: 4 Feb 2017]. Swedish. Available from: http://www.vardgivarguiden.se/behandlingsstod/smittskydd/dokument/statistik/influensa/sasongen-2016-2017/
- 4. Ajantasainen influenssakatsaus. [Real-time influenza report]. Helsinki: National Institute for Health and Welfare (THL). [Accessed: 14 Feb 2017]. Finnish. Available from: https://www.thl.fi/fi/web/infektiotaudit/taudit-ja-mikrobit/virustaudit/influenssa/ajantasainen-influenssakatsaus
- 5. Rondy M, Launay O, Puig-Barberà J, Gefenaite G, Castilla J, de Gaetano Donati K, et al., European hospital IVE network. 2012/13 influenza vaccine effectiveness against hospitalised influenza A(H1N1)pdmo9, A(H3N2) and B: estimates from a European network of hospitals. Euro Surveill. 2015;20(2):21011. DOI: 10.2807/1560-7917. ES2015. 20. 2. 21011 PMID: 25613779
- Kissling E, Valenciano M, Buchholz U, Larrauri A, Cohen JM, Nunes B, et al. Influenza vaccine effectiveness estimates in Europe in a season with three influenza type/subtypes circulating: the I-MOVE multicentre case-control study,

- influenza season 2012/13. Euro Surveill. 2014;19(6):20701. DOI: 10.2807/1560-7917.ES2014.19.6.20701 PMID: 24556348
- Valenciano M, Kissling E, Reuss A, Rizzo C, Gherasim A, Horváth JK, et al., Joan O´Donell, I-MOVE multicentre casecontrol team. Vaccine effectiveness in preventing laboratoryconfirmed influenza in primary care patients in a season of co-circulation of influenza A(H1N1)pdmo9, B and drifted A(H3N2), I-MOVE Multicentre Case-Control Study, Europe 2014/15. Euro Surveill. 2016;21(7):30139. DOI: 10.2807/1560-7917.ES.2016.21.7.30139 PMID: 26924024
- European Centre for Disease Prevention and Control (ECDC).
 Protocol for case control studies to measure pandemic
 and seasonal vaccine effectiveness in the European Union
 and European Economic Area. Stockholm: ECDC; 2009.
 Available from: http://ecdc.europa.eu/en/publications/
 Publications/0907_TED_Influenza_AH1N1_Measuring_
 Influenza_Vaccine_Effectiveness_Protocol_Case_Control_
 Studies.pdf
- EpiConcept. Protocol for hospital-based test negative case control studies to measure seasonal influenza vaccine effectiveness against influenza laboratory confirmed SARI hospitalisation among the elderly across the European Union and European Economic Area Member States. Paris: I-MOVE+. [Accessed: 5 Feb 2017]. Available from: https://drive.google.com/a/epiconcept.fr/ file/d/oB54XpZN4SY65QXFqQThQNEQ5cmM/view
- Skowronski DM, Chambers C, Sabaiduc S, Dickinson JA, Winter A, De Serres G, et al. Interim estimates of 2016/17 vaccine effectiveness against influenza A(H3N2), Canada, January 2017. Euro Surveill. 2017;22(6):30460. DOI: 10.2807/1560-7917. ES.2017.22.6.30460
- 11. Kissling E, Valenciano M, I-MOVE Case-Control Studies Team. Early estimates of seasonal influenza vaccine effectiveness in Europe among target groups for vaccination: results from the I-MOVE multicentre case-control study, 2011/12.Euro Surveill. 2012;17(15):20146.PMID: 22516046
- 12. Valenciano M, Kissling E, I-MOVE Case-Control Study Team. Early estimates of seasonal influenza vaccine effectiveness in Europe: results from the I-MOVE multicentre case-control study, 2012/13.Euro Surveill. 2013;18(7):3.PMID: 23449183
- 13. World Health Organization (WHO). WHO consultation and information meeting on the composition of influenza virus vaccines for use in the 2017-2018 northern hemisphere influenza season. Geneva: WHO. [Accessed: 5 Feb 2017]. Available from: http://www.who.int/influenza/vaccines/virus/ recommendations/consultation201702/en/
- 14. Kissling E, Nunes B, Robertson C, Valenciano M, Reuss A, Larrauri A, et al., I-MOVE case—control study team. I-MOVE multicentre case-control study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination?Euro Surveill. 2016;21(16):30201. DOI: 10.2807/1560-7917. ES.2016.21.16.30201 PMID: 27124420
- 15. Belongia EA, Simpson MD, King JP, Sundaram ME, Kelley NS, Osterholm MT, et al. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies. Lancet Infect Dis. 2016;16(8):942-51. DOI: 10.1016/S1473-3099(16)00129-8 PMID: 27061888

License and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2017.