
Pseudo-Deterministic Proofs
Shafi Goldwasser1, Ofer Grossman2, and Dhiraj Holden3

1 MIT, Cambridge MA, USA
shafi@theory.csail.mit.edu

2 MIT, Cambridge MA, USA
ofer.grossman@gmail.com

3 MIT, Cambridge MA, USA
dholden@mit.edu

Abstract
We introduce pseudo-deterministic interactive proofs (psdIP): interactive proof systems for

search problems where the verifier is guaranteed with high probability to output the same out-
put on different executions. As in the case with classical interactive proofs, the verifier is a
probabilistic polynomial time algorithm interacting with an untrusted powerful prover.

We view pseudo-deterministic interactive proofs as an extension of the study of pseudo-
deterministic randomized polynomial time algorithms: the goal of the latter is to find canonical
solutions to search problems whereas the goal of the former is to prove that a solution to a search
problem is canonical to a probabilistic polynomial time verifier. Alternatively, one may think of
the powerful prover as aiding the probabilistic polynomial time verifier to find canonical solutions
to search problems, with high probability over the randomness of the verifier. The challenge is
that pseudo-determinism should hold not only with respect to the randomness, but also with
respect to the prover: a malicious prover should not be able to cause the verifier to output a
solution other than the unique canonical one.

The IP = PSPACE characterization implies that psdIP = IP . The challenge is to find
constant round pseudo-deterministic interactive proofs for hard search problems. We show a
constant round pseudo-deterministic interactive proof for the graph isomorphism problem: on
any input pair of isomorphic graphs (G0, G1), there exist a unique isomorphism φ from G0 to
G1 (although many isomorphism many exist) which will be output by the verifier with high
probability, regardless of any dishonest prover strategy. In contrast, we show that it is unlikely
that psdIP proofs with constant rounds exist for NP-complete problems by showing that if
any NP-complete problem has a constant round psdIP protocol, then the polynomial hierarchy
collapses.

1998 ACM Subject Classification F.1.1. Models of Computation (Probabilistic Algorithms)

Keywords and phrases Pseudo-Determinism, Interactive Proofs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.17

1 Introduction

In [6], Gat and Goldwasser initiated the study of probabilistic (polynomial-time) search
algorithms that, with high probability, output the same solution on different executions.
That is, for all inputs x, the randomized algorithm A satisfies Prr1,r2(A(x, r1) = A(x, r2)) ≥
1− 1/poly(n).

Another way of viewing such algorithms is that for a fixed binary relation R, for every x
the algorithm associates a canonical solution s(x) satisfying (x, s(x)) ∈ R, and on input x the
algorithm outputs s(x) with overwhelmingly high probability. Algorithms that satisfy this

© Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden;
licensed under Creative Commons License CC-BY

9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/154064121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Pseudo-Deterministic Proofs

condition are called pseudo-deterministic, because they essentially offer the same functionality
as deterministic algorithms; that is, they produce a canonical output for each possible input
(except with small error probability)1. In contrast, arbitrary probabilistic algorithms that
solve search problems may output different solutions when presented with the same input
(but using different internal coin tosses); that is, on input x, the output may arbitrarily
distributed among all valid solutions for x (e.g. it may be uniformly distributed).

Several pseudo-deterministic algorithms have been found which improve (sometimes
significantly) on the corresponding best known deterministic algorithm. This is the case for
finding quadratic non-residues modulo primes, generators for certain cyclic groups, non-zeros
of multi-variate polynomials, matchings in bipartite graphs in RNC, and sub-linear algorithms
for several problems [8, 10, 6, 13]. For other problems, such as finding unique primes of a
given length, pseudo-deterministic algorithms remain elusive (for the case of primes, it has
been shown that there exists a subexponential time pseudo-deterministic algorithm which
works on infinitely many input sizes [22]).

In this work we extend the study of pseudo-determinism in the context of probabilistic
algorithms to the context of interactive proofs and non-determinism. We view pseudo-
deterministic interactive proofs as a natural extension of pseudo-deterministic randomized
polynomial time algorithms: the goal of the latter is to find canonical solutions to search
problems whereas the goal of the former is to prove that a solution to a search problem is
canonical to a probabilistic polynomial time verifier. This naturally models the cryptographic
setting when an authority generates system-wide parameters (e.g. an elliptic curve for all
to use or a generator of a finite group) and it must prove that the parameters were chosen
properly.

1.1 Our Contribution

Consider the search problem of finding a large clique in a graph. A nondeterministic efficient
algorithm for this problem exists: simply guess a set of vertices C, confirm in polynomial
time that the set of vertices forms a clique, and either output C or reject if C is not a clique.
Interestingly, in addition to being nondeterministic, there is another feature of this algorithm;
on the same input graph there may be many possible solutions to the search problem and any
one of them may be produced as output. Namely, on different executions of the algorithm,
on the same input graph G, one execution may guess clique C and another execution may
guess clique C ′ 6= C, and both are valid accepting executions.

A natural question is whether for each graph with a large clique, there exists a unique
canonical large clique C which can be verified by a polynomial time verifier: that is, can the
verifier V be convinced that the clique C is the canonical one for the input graph? Natural
candidates which come to mind, such as being the lexicographically smallest large clique,
are not known to be verifiable in polynomial time (but seem to require the power of Σ2
computation).

In this paper, we consider this question in the setting of interactive proofs and ask whether
the interactive proof mechanism enables provers to convince a probabilistic verifier of the
“uniqueness of their answer” with high probability.

1 In fact, by amplifying the success probability, one can ensure that as black boxes, pseudo-deterministic
algorithms are indistinguishable from deterministic algorithms by a polynomial time machine.

S. Goldwasser, O. Grossman, and D. Holden 17:3

Pseudo-deterministic Interactive Proofs: We define pseudo-deterministic interactive proofs
for a search problem R (consisting of pairs (instance, solution)) with associated function s as
a pair of interacting algorithms: a probabilistic polynomial time verifier and a computationally
unbounded prover which on a common input instance x engage in rounds of interaction at
the end of which with high probability the verifier output a canonical solution y = s(x) for x
if any solution exists and otherwise rejects x. Analogously to the case of completeness in
interactive proofs for languages, we require Canonical Completeness: that for every input x,
there exists an honest prover which can send the correct solution s(x) to the verifier when one
exists. Analogously to the case of soundness, we require Canonical Soundness: no dishonest
prover can cause the verifier to output a solution other than s(x) (the canonical one) (except
with very low probability).

One may think of the powerful prover as aiding the probabilistic polynomial time verifier
to find canonical solutions to search problems, with high probability over the randomness of
the verifier. The challenge is that pseudo-determinism should hold not only with respect to
the randomness, but also with respect to the prover: a malicious prover should not be able
to cause the verifier to output a solution other than the canonical unique one. In addition to
the intrinsic complexity theoretic interest in this problem, consistency or predictability of
different executions on the same input are natural requirements from protocols.

We define pseudo-deterministic IP (psdIP) to be the class of search problems R (relation
on inputs and solutions) for which there exists a pseudo-deterministic polynomial round
interactive proof for R.

Theorem: For any problem L in NP, there is a pseudo-deterministic polynomial round
interactive proof for the search problem R consisting of all pairs (x,w) where x ∈ L and w is
a witness for x.

One can prove the above theorem by noting that finding the lexicographically first witness
w for x is a problem in PSPACE. Then, since IP = PSPACE [24], we know an interactive
proof for finding the lexicographically first witness w exists. More formally we have:

Proof: Let us consider the function f(x) which outputs the lexicographically first witness
that x ∈ L if x ∈ L or ⊥ otherwise. It is easy to see that determining whether f(x) = y is
in PSPACE. As a result, there is an polynomial-round IP protocol to determine whether
f(x) = y. Then, the psdIP protocol is as follows; the prover gives the verifier y and then
they run the protocol, and the verifier accepts and outputs y if the protocol accepts. This
satisfies the conditions for pseudo-determinism because of the completeness and soundness
properties of the IP protocol.

In light of the above, we ask: do constant-round pseudo-deterministic interactive proofs
exist for hard problems in NP for which many witnesses exist? We let psdAM refer to those
pseudo-deterministic interactive proofs in which a constant number of rounds is used. 2.

Graph Isomorphism is in pseudo-deterministic AM: Theorem 7: There exists a pseudo-
deterministic constant-round Arthur-Merlin protocol for finding an isomorphism between two
given graphs.

Recall that the first protocol showing graph non-isomorphism is in constant round IP was
shown by [9] and later shown to be possible using public coins via the general transformation

2 We note that historically, the class AM referred to protocols in which the verifiers’ messages consisted
of his coin tosses, namely public-coin protocols. In this work, we use AM to refer to constant round
interactive proofs

ITCS 2018

17:4 Pseudo-Deterministic Proofs

of private to public coins [11]. Our algorithm finds a unique isomorphism by producing the
lexicographically first isomorphism. In order to prove that a particular isomorphism between
input graph pairs is lexicographically smallest, the prover will prove in a sequence of sub-
protocols to the verifier that a sequence of graphs suitably defined are non-isomorphic. In an
alternative construction, we exhibit an interactive protocol that computes the automorphism
group of a graph in a verifiable fashion.

SAT is not in pseudo-deterministic AM: Theorem 9: if any NP-complete problem has a a
pseudo-deterministic constant round AM protocol, then, NP ⊆ coNP/poly and the polynomial
hierarchy collapses to the third level, showing that it is unlikely that NP complete problems
have pseudo-deterministic constant round AM protocols.

This result extends the work of [16] which shows that if there are polynomial time unique
verifiable proofs for SAT, then the polynomial hierarchy collapses. Essentially, their result
held for deterministic interactive proofs (i.e., NP), and we extend their result to probabilistic
interactive proofs with constant number of rounds (i.e., AM).

Every problem in search-BPP is in subexponential-time pseudo-deterministic MA: The-
orem 13: For every problem in search-BPP, there exists a pseudo-deterministic MA protocol
where the verifier takes subexponential time on infinitely many input lengths.

The idea of the result is to use known circuit lower bounds to get pseudo-deterministic
subexponential time MA protocols for problems in search-BPP for infinitely many input
lengths. We remark that recently Oliveira and Santhanam [22] showed a subexponential time
pseudo-deterministic algorithm for infinitely many input lengths for all properties which have
inverse polynomial density and are testable in probabilistic polynomial time. (An example of
such a property is the property of being prime, as the set of primes has polynomial density.)
In their construction, the condition of high density is required in order for the property to
intersect with their subexponential-size hitting set. (Subsequent work in [17] also drops this
requirement but only results in an average-case pseudo-deterministic algorithm.) In the case
of MA, unconditional circuit lower bounds for MA with a verifier which runs in exponential
time have been shown by Miltersen et al [20], which allows us to no longer require inverse
polynomial density. Hence, we can obtain a pseudo-deterministic MA algorithm from circuit
lower bounds. Thus, compared to [22], our result shows a pseudo-derandomization (for a
subexponential verifier and infinitely many input sizes n) for all problems in search-BPP
(and not just those with high density), but requires a prover.

Pseudo-deterministic NL equals search-NL: Theorem 15: For every search problem in
search-NL, there exists a pseudo-deterministic NL protocol.

We define pseudo-deterministic NL to be the class of search problems R (a relation on
inputs and solutions) for which there exists log-space non-deterministic algorithm M (Turing
machines) such that for every input x, there exists a unique s(x) such that R(x, s(x)) = 1
and M(x) outputs s(x) or rejects x. Namely, there are no two accepting paths for input x
that result in different outputs.

To prove the above theorem, we look at the problem of directed connectivity (that is,
given a directed graph G with two vertices s and t, we find a path from s to t), and we show
that it is possible to find the lexicographically first path of shortest length in NL. To do so,
we first find the length d of the shortest path, which can be done in NL. Then, we find the
lexicographically first outneighbor u of s such that there is a path of length d− 1 from u to t.
This can be done by going in order over all outneighbors of s, and for each of them checking

S. Goldwasser, O. Grossman, and D. Holden 17:5

if there is a path of length d− 1 to t (if there is not such a path, that can be demonstrated
in NL since NL = coNL [18, 25]). By recursively applying this protocol to find a path from u

to t, we end up obtaining the lexicographically first path of shortest length, which is unique.

Structural Results: We show a few structural results regarding pseudo-deterministic in-
teractive proofs In Section 7. Specifically, we show that psdAM equals to the class
search−Ppromise−(AM∩coAM), where for valid inputs x, all queries to the oracle must be
in the promise. We show similar results in the case of pseudo-deterministic MA and pseudo-
deterministic NP.

1.2 Other Related Work
In their seminal paper on NP with unique solutions, Valiant and Vazirani asked the following
question: is the inherent intractability of NP-complete problems caused by the fact that
NP-complete problems have many solutions? They show this is not the case by exhibiting
a problem – SAT with unique solutions – which is NP-hard under randomized reductions.
They then showed how their result enables to show the NP-hardness under randomized
reductions for a few related problems such as parity-SAT. We point out that our question
is different. We are not restricting our study to problems (e.g. satisfiable formulas) with
unique solutions. Rather, we consider hard problems for which there may be exponentially
many solutions, and ask if one can focus on one of them and verify it in polynomial time.
In the language of satisfiability, φ can be any satisfiable formula with exponentially many
satisfying assignments; set s(φ) to be a unique valued function which outputs a satisfying
assignment for φ. We study whether there exists an s which can be efficiently computed, or
which has an efficient interactive proof.

The question of computing canonical labellings of graphs was considered by Babai and
Luks [3] in the early eighties. Clearly graph isomorphism is polynomial time reducible to
computing canonical labellings of graphs (compute the canonical labeling for your graphs
and compare), however it is unknown whether the two problems are equivalent (although
finding canonical labellings in polynomial time seems to be known for all classes of graphs
for which isomorphism can be computed in polynomial time). The problem of computing
a set of generators (of size O(logn)) of the automorphism group of a graph G was shown
by Mathon [19] (among other results) to be polynomial-time reducible to the problem of
computing the isomorphism of a graph. We use this in our proof that graph isomorphism is
in psdAM.

A line of work on search vs decision and hierarchy collapses, some in the flavor of our
result of Section 4, have appeared in [16, 15, 14, 4].

Finally, we mention that recently another notion of uniqueness has been studied in the
context of interactive proofs by Reingold et al [23], called unambiguous interactive proofs
where the prover has a unique successful strategy. This again differs from pseudo-deterministic
interactive proofs, in that we don’t assume (nor guarantee) a unique strategy by the successful
prover, we only require that the prover proves that the solution (or witness) the verifier
receives is unique (with high probability).

1.3 Subsequent Work
In [17], inspired by this work, Holden shows that for every BPP search problem there exists
an algorithm A which for infinitely many input lengths n and for every polynomial-time
samplable distribution over inputs of length n runs in subexponential time and produces

ITCS 2018

17:6 Pseudo-Deterministic Proofs

a unique answer with high probability on inputs drawn from the distribution and over A’s
random coins.

[17] expands on the work of Oliveira and Santhanam [22] in several ways. Whereas the
latter give a pseudo-deterministic algorithm for estimating the acceptance probability of
a circuit on inputs of a given length, the former applies to general search-BPP problems,
where the input is a string of a given length over some alphabet and algorithm’s A goal is
to output a solution that satisfies a BPP testable relation with the input string. Holden
[17] shows that for infinitely many input lengths, average-case (over the input distribution)
pseudo-deterministic algorithms are possible for problems in search-BPP.

2 Definitions of Pseudo-deterministic Interactive Proofs

In this section, we define pseudo-determinism in the context of nondeterminism and interactive
proofs. We begin by defining a search problem.

I Definition 1 (Search Problem). A search problem is a relation R consisting of pairs (x, y).
We define LR to be the set of x’s such that there exists a y satisfying (x, y) ∈ R. An algorithm
solving the search problem is an algorithm that, when given x ∈ LR, finds a y such that
(x, y) ∈ R. When LR contains all strings, we say that R is a total search problem. Otherwise,
we say R is a promise search problem.

We now define pseudo-determinism in the context of interactive proofs for search problems.
Intuitively speaking, we say that an interactive proof is pseudo-deterministic if an honest
prover causes the verifier to output the same unique solution with high probability (canonical
completeness), and dishonest provers can only cause the verifier to output either the unique
solution or ⊥ with high probability (canonical soundness). In other words, dishonest provers
cannot cause the verifier to output an answer which is not the unique answer. Additionally,
we have the condition that for an input x with no solutions, for all provers the verifier will
output ⊥ with high probability (standard soundness). We note that we use psdIP, psdAM,
psdNP, psdMA, and so on, to refer to a class of promise problems, unless otherwise stated.

I Definition 2 (Pseudo-deterministic IP). A search problem R is in pseudo-deterministic IP
(often denoted psdIP) if there exists a function s mapping inputs to the search problem to
solutions (i.e., all x ∈ LR satisfy (x, s(x)) ∈ R), and there is an interactive protocol between
a probabilistic polynomial time verifier algorithm V and a prover (unbounded algorithm) P
such that for every x ∈ LR:
1. (Canonical Completeness) There exists a P such that Prr[(P, V)(x, r) = s(x)] ≥ 2

3 . (We
use (P, V)(x, r) to denote the output of the verifier V when interacting with prover P on
input x using randomness r).

2. (Canonical Soundness) For all P ′, Prr[(P ′, V)(x, r) = s(x) or ⊥] ≥ 2
3 .

And (Standard Soundness) for every x /∈ LR, for all provers P ′, Prr[(P ′, V)(x, r) 6= ⊥] ≤ 1
3 .

One can similarly define pseudo-deterministic MA, and pseudo-deterministic AM, where
MA is a 1-round protocol, and AM is a 2-round protocol. One can show that any constant-
round interactive protocol can be reduced to a 2-round interactive protocol [2]. Hence, the
definition of pseudo-deterministic AM captures the set of all search problems solvable in a
constant number of rounds of interaction.

Historical Note: Historically, AM referred to public coin protocols, whereas IP referred to
private coin protocols. In this work, we use AM to refer to constant round protocols, and IP

S. Goldwasser, O. Grossman, and D. Holden 17:7

to refer to polynomial round protocols (unless explicitly stated otherwise). By the result of
[11], we know that when the prover is all-powerful, a private coin protocol can be simulated
using private coins, so in this setting the distinction between private and public coins does
not matter.

I Definition 3 (Pseudo-deterministic AM). A search problem R is in pseudo-deterministic
AM (often denoted psdAM) if there exists a function s where all x ∈ LR satisfy (x, s(x)) ∈ R,
a probabilistic polynomial time verifier algorithm V , and polynomials p and q, such that for
every x ∈ LR:
1. (Canonical Completeness) Prr∈{0,1}p(n)(∃z ∈ {0, 1}q(n) V (x, r, z) = s(x)) ≥ 2

3

2. (Canonical Soundness) Prr∈{0,1}p(n)(∀z ∈ {0, 1}q(n) V (x, r, z) ∈ {s(x),⊥}) ≥ 2
3 .

And (Standard Soundness) for every x /∈ LR, we have Prr∈{0,1}p(n)(∀z ∈ {0, 1}q(n) V (x, r, z) =
{⊥}) ≥ 2

3 .

I Definition 4 (Pseudo-deterministic MA). A search problem R is in pseudo-deterministic
MA (often denoted psdMA) if there exists a function s where all x ∈ LR satisfy (x, s(x)) ∈ R
and |s(x)| ≤ poly(x), a probabilistic polynomial time verifier V such that for every x ∈ LR3:
1. (Canonical Completeness) There exists a message M of polynomial size such that

Prr[V (x,M, r) = s(x)] ≥ 2
3 .

2. (Canonical Soundness) For all M ′, Prr[V (x,M ′, r) = s(x) or ⊥] > 2
3 .

And (Standard Soundness) for every x /∈ LR, for all M ′, Prr[V (x,M ′, r) 6= ⊥] ≤ 1
3 .

Pseudo-determinism can similarly be defined in the context of NP (which can be viewed
as a specific case of an interactive proof):

I Definition 5 (Pseudo-deterministic NP). A search problem R is in pseudo-deterministic
NP (often denoted psdNP) if there exists a function s where all x ∈ LR satisfy (x, s(x)) ∈ R
and |s(x)| ≤ poly(x), and there is a deterministic polynomial time verifier V such that for
every x ∈ LR:
1. There exists a message M of polynomial size such that V (x,M) = s(x).
2. For all M ′, V (x,M ′) = s(x) or V (x,M ′) = ⊥.
And for every x /∈ LR, for all M ′, we have V (x,M ′) = ⊥.

A similar definition for pseudo-deterministic NL follows naturally:

I Definition 6 (Pseudo-deterministic NL). A search problem R is in pseudo-deterministic
NL (often denoted psdNL) if there exists a function s where all x ∈ LR satisfy (x, s(x)) ∈ R
and |s(x)| ≤ poly(x), there is a nondeterministic log-space machine V such that for every
x ∈ LR:
1. There exist nondeterministic choices N for the machine such that such that V (x,N) =

s(x).
2. For all possible nondeterministic choices N ′, V (x,N ′) = s(x) or V (x,N ′) = ⊥.
And for every x /∈ LR, for all nondeterministic choices N ′, V (x,N ′) = ⊥.

3 We remark that we use M to denote the proof sent by the prover Merlin, and not the algorithm
implemented by the prover.

ITCS 2018

17:8 Pseudo-Deterministic Proofs

3 Pseudo-deterministic-AM algorithm for graph isomorphism

In this section we give an algorithm for finding an isomorphism between two graphs in
AM that outputs the same answer with high probability. The way this algorithm works is
that the prover will send the lexicographically first isomorphism to the verifier and then
prove that it is the lexicographically first isomorphism. To prove that the isomorphism is
the lexicographically first isomorphism, we label the graph and run a sequence of graph
non-isomorphism protocols to show no lexicographically smaller isomorphism exists. We
present an alternate proof of the same result in the appendix (the proof in the appendix is
more group theoretic, whereas the proof below is more combinatorial).

I Theorem 7. Finding an isomorphism between graphs can be done in psdAM.

Proof. Let the vertices of G1 be v1, v2, . . . , vn, and the vertices of G2 be u1, u2, . . . , un. We
will show an AM algorithm which outputs a unique isomorphism φ. Our algorithm will
proceed in n stages (which we will later show can be parallelized). After the kth stage, the
values φ(v1), φ(v2), . . . , φ(vk) will be determined.

Suppose that the values φ(v1), φ(v2), . . . , φ(vk) have been determined. Then we will
determine the smallest r such that there exists an isomorphism φ∗ such that for 1 ≤ i ≤ k,
we have φ∗(vi) = φ(vi), and in addition, φ∗(vk+1) = ur. If we find r, we can set φ(vk+1) =
φ∗(vk+1) and continue to the k + 1th stage.

To find the correct value of r, the (honest) prover will tell the verifier the value of r
and φ. Then, to show that the prover is not lying, for each r′ < r, the prover will prove
that there exists no isomorphism φ′ such that for 1 ≤ i ≤ k, we have φ′(vi) = φ(vi), and in
addition, φ′(vk+1) = ur′ . To prove this, the verifier will pick G1 or G2, each with probability
1/2. If the verifier picked G1, he will randomly shuffle the vertices vk+2, . . . , vn, and send the
shuffled graph to the prover. If the verifier picked G2, he will set u′i = φ(vi) for 1 ≤ i ≤ k,
and u′k+1 = ur′ , and shuffle the rest of the vertices. If the prover can distinguish between
whether the verifier initially picked G1 or G2, then that implies there is no isomorphism
sending vi to φ(vi) for 1 ≤ i ≤ k, and sending vk+1 to ur′ . The prover now can show this
for all r′ ≤ r (in parallel), as well as exhibit the isomorphism φ, thus proving that r is the
minimum value such that there is an isomorphism sending vi to φ(vi) for 1 ≤ i ≤ k, and
sending vk+1 to ur.

The above n stages can be done in parallel in order to achieve a constant round protocol. To
do so, in the first stage, the prover sends the isomorphism φ to the verifier. Then, the verifier
can test (in parallel) for each k whether under the assumption that φ(v1), φ(v2), . . . , φ(vk)
are correct, φ(vk+1) is the lexicographically minimal vertex which vk+1 can be sent to. The
correctness of this protocol follows from the fact that multiple AM interactive proofs can be
performed in parallel while maintaining soundness and completeness for all of the interactive
proofs performed (as shown in appendix C.1 of [7]).

We note that in the above protocol, the prover only needs to have the power to solve
graph isomorphism (and graph non-isomorphism). Also, we note that the above protocol
uses private coins. While the protocol can be simulated with a public coin protocol [11], the
simulation requires the prover to be very powerful. J

4 Lower bound on pseudo-deterministic AM algorithms

In this section, we establish that if any NP-complete problem has an AM protocol that
outputs a unique witness with high probability, then the polynomial hierarchy collapses. To
do this we show the analog of AM ⊆ NP/poly for the pseudo-deterministic setting, and then

S. Goldwasser, O. Grossman, and D. Holden 17:9

use this fact to get a NP/poly algorithm with a unique witness. We can then use [16] to
show that NP ⊆ coNP/poly, which obtains the hierarchy collapse.

We begin by proving that psdAM ⊆ psdNP/poly:

I Lemma 8. Suppose that there is a psdAM protocol for a search problem R, which on input
x ∈ LR, outputs s(x). Then, the search problem R has a psdNP/poly algorithm which, on
input x, outputs s(x).

Proof. Consider a psdAM protocol, and suppose that on input x ∈ LR, it outputs s(x).
Since we are guaranteed that when the verifier of the the psdAM accepts, it will output

s(x) with high probability, we can use standard amplification techniques to show that the
verifier will output s(x) with probability 1− o(exp(−n)), assuming an honest prover, and
will output anything other than s(x) with probability o(exp(−n)), even with a malicious
prover. Then, by a union bound, there exists a choice of random string r that makes the
verifier output s(x) for all inputs x ∈ {0, 1}n of size n with an honest prover, and that for
malicious provers, the verifier will either reject or output s(x). We encode this string r as
the advice string for the NP/poly machine.

The NP/poly machine computing s can read r off the advice tape and then guess the
prover’s message, and whenever the verifier accepts, s(x) will be output by that nondetermin-
istic branch. Thus s(x) can be computed by an NP/poly machine. J

Next, we show that if an NP-complete problem has a pseudo-deterministic-NP/poly
algorithm, then the polynomial hierarchy collapses.

I Theorem 9. Let L ∈ NP be an NP-complete problem. Let R be a polynomial time algorithm
such that there exists a polynomial p so that x ∈ L if and only if ∃y ∈ {0, 1}p(|x|)R(x, y).
Suppose that there is a psdAM protocol that when given some x ∈ L, outputs a unique
s(x) ∈ {0, 1}p(|x|) such that R(x, s(x)) = 1. Then, NP ⊆ coNP/poly and the polynomial
hierarchy collapses to the third level.

Proof. Assume that there is a psdAM protocol that when given some φ ∈ L, outputs a
unique s(φ) ∈ {0, 1}p(|φ|) such that R(φ, s(φ)) = 1. From Lemma 8, we have that there exists
psdNP/poly algorithm A that given φ ∈ L, outputs a unique witness s(φ) for φ. Given such
an algorithm A, we can construct a function g computable in psdNP/poly that on two inputs
φ1 and φ2, g(φ1, φ2) is one of either φ1 or φ2 with the condition that if either φ1 or φ2 is in
L, then g(φ1, φ2) is satisfiable. If neither φ1 nor φ2 are in L, then g(φ1, φ2) = ⊥.

To construct such a g, define a function g′ where g′(φ1, φ2) = {φ1, φ2} ∩L (i.e., g′(φ1, φ2)
is the subset of {φ1, φ2} consisting of satisfiable formulas). We construct g by reducing the
language L′ = {(φ1, φ2)|g′(φ1, φ2) 6= ∅} (which is in NP, and hence reducible to L, since L is
NP-complete) to L and running A to find a unique witness for g, which we can then turn
into a witness for L′. Note that a witness for L′ is either a witness for φ1 or for φ2. We
can then check whether this unique witness is a witness for φ1 or φ2, and output the φi for
which it is a witness (in the case that the witness works for both of the φi, we output the
lexicographically first φi).

We note that we view g as a function on the set {φ1, φ2}. That is, we set g(φ1, φ2) =
g(φ2, φ1) (if a function g does not satisfy this property, we can create a g∗ satisfying this
property by setting g∗(φ1, φ2) = g(min(φ1, φ2),max(φ2, φ1))).

Now, our goal is to use g, which we know is computable in psdNP/poly to construct an
NP/poly algorithm for L̄ (the complement of L).

We construct the advice string for L for length n as follows. Our advice string will be a set
S consisting of strings φi. Start out with S = ∅. We know that there exists a φ1 ∈ {0, 1}n∩L

ITCS 2018

17:10 Pseudo-Deterministic Proofs

such that g(φ, φ1) = x for at least half of the set {φ ∈ {0, 1}n∩L|g(φ, s) = s∀s ∈ S}. Such an
s exists since in expectation, when picking a random s, half of the φ’s will satisfy g(φ, s) = x.
If we keep doing this, we get a set S with |S| ≤ poly(n) such that for every φ ∈ L of length
n, there exists an s ∈ S such that g(φ, s) = x.

Now, to check that φ ∈ L̄ in NP/poly (where S as defined above is the advice), we
compute g(φ, s) for every s ∈ S, and check that g(φ, s) = s for every s ∈ S which is possible
because |S| is polynomial in n. It is clear that this algorithm accepts if φ /∈ L and rejects
if φ ∈ L, so therefore L ∈ coNP/poly, which implies that NP ⊆ coNP/poly. Furthermore,
NP ⊆ coNP/poly implies that the polynomial hierarchy collapses to the third level. J

5 Pseudo-deterministic derandomization for BPP in subexponential
time MA

In this section, we prove the existence of pseudo-deterministic subexponential time (time
O(2nε) for every ε) MA protocols for problems in search-BPP for infinitely many input
lengths.

In this section, we prove that every problem R in search-BPP has an MA proof where
the verifier takes subexponential time (and the prover is unbounded). For completeness, we
define search-BPP below:

I Definition 10 (Search-BPP). A binary relation R is in search-BPP if there exist probab-
ilistic polynomial-time algorithms A,B such that
1. Given x ∈ RL, A outputs a y such that with probability at least 2/3, (x, y) ∈ R.
2. If y is output by A when run on x, and (x, y) /∈ R, then B rejects on (x, y) with probability

at least 2/3. Furthermore, for all x ∈ LR, with probability at least 1/2 B accepts on
(x, y) with probability at least 1/2.

When x /∈ RL, A outputs ⊥ with probability at least 2/3.

The intuition of the above definition is that A is used to find an output y, and then B
can be used to verify y, and amplify the success probability.

A main component of our proof will be the Nisan-Wigderson pseudo-random generator,
which shows a way to construct pseudorandom strings given access to an oracle solving a
problem of high circuit complexity.

To obtain the best running time for our pseudo-deterministic algorithm, we will need the
iterated exponential functions first used in complexity theory by [20]. We will be considering
functions with half-exponential growth, i.e. functions f such that f(f(n)) ∈ O(2nk) for some
k.

I Definition 11 (Fractional exponentials [20]). The fractional exponential function eα(x) will
be defined as A−1(A(x) + α), where A is the solution to the functional equation A(ex − 1) =
A(x) + 1. In addition, we can construct such functions so that eα(eβ(x)) = eα+β(x). It is
clear from this definition that e1(n) = O(2n), and that e1/2(e1/2(x)) = O(2n). We call a
function f satisfying f(x) = Θ(e1/2(x)) a half-exponential function.

I Definition 12 (Half-Exponential Time MA). We define a half-exponential time MA proof
to be an interactive MA proof in which the verifier runs in half-exponential time.

I Theorem 13. Given a problem R in search-BPP, it is possible to obtain a pseudo-
deterministic MA algorithm for R where the verifier takes subexponential time for infinitely
many input lengths.

S. Goldwasser, O. Grossman, and D. Holden 17:11

Proof. From [20], we see that MA ∩ coMA where the verifier runs in half-exponential time
cannot be approximated by polynomial-sized circuits. By Nisan-Wigderson [21], it follows
that in half-exponential time MA, one can construct a pseudorandom generator with half-
exponential stretch which is secure against any given polynomial-size circuit for infinitely
many input lengths. We provide more details below.

Let T be the truth-table of a hard function in MA ∩ coMA. Then, let R be a relation in
search-BPP. Recall from Definition 10 that there is an algorithm A that given x, produces y
such that (x, y) ∈ R with high probability if x ∈ RL.

We will now describe the MA protocol. First, the prover sends T to the verifier and
proves that it is indeed the truth table of the hard function in half-exponential time MA
(which can be done in half-exponential time). With T in hand, the verifier can then compute
the output of the Nisan-Wigderson pseudorandom generator. The verifier loops through the
seeds in lexicographic order and uses the pseudorandom generator on each seed to create
pseudo-random strings, which the verifier then uses as the randomness for A. Each time, the
verifier tests whether (x,A(x, r)) ∈ R (which can be done in BPP, and hence also in MA)
and returns the first such valid output.

This will output the same solution whenever the verifier both gets the correct truth-
table for the PRG, and succeeds in testing for each PRG output whether the output it
provides is valid. Both of these happen with high probability, and thus this is a pseudo-
deterministic subexponential-time MA algorithm for any problem in search-BPP which
succeeds on infinitely many input lengths. J

6 Uniqueness in NL

In this section, we prove that every problem in search-NL can be made pseudo-deterministic.
For completeness we include a definition of search-NL:

IDefinition 14 (search-NL). A search problem R is in search-NL if there is a nondeterministic
log-space machine V such that for every x ∈ LR,
1. There exist nondeterministic choices N for the machine such that such that V (x,N) = y,

and (x, y) ∈ R.
2. For all possible nondeterministic choices N ′, (x, V (x,N ′)) ∈ R, or V (x,N ′) = ⊥.
And for every x /∈ LR, for all nondeterministic choices N ′, V (x,N ′) = ⊥.

I Theorem 15 (Pseudo-determinism NL). Every search problem in search-NL is in psdNL.

One can think of the complete search problem for NL as: given a directed graph G, and
two vertices s and t such that there is a path from s to t, find a path from s to t. Note that
the standard nondeterministic algorithm of simply guessing a path will result in different
paths for different nondeterministic guesses. Our goal will be to find a unique path, so that
on different nondeterministic choices, we will not end up with a path which is not the unique
one.

The idea will be to find the lexicographically first shortest path (i.e, if the min-length
path from s to t is of length d, we will output the lexicographically first path of length d
from s to t). To do so, first we will determine the length d of the min-length path from s to
t. Then, for each neighbor of s, we will check if it has a path of length d− 1 to t, and move
to the first such neighbor. Now, we have reduced the problem to finding a unique path of
length d− 1, which we can do recursively.

The full proof is given below:

ITCS 2018

17:12 Pseudo-Deterministic Proofs

Proof. Given a problem in search-NL, consider the set of all min-length computation histories.
We will find the lexicographically first successful computation history in this set.

To do so, we first (nondeterministically) compute the length of the min-length computation
history. This can be done because coNL = NL (so if the shortest computation history is of
size T , one can show a history of size T . Also, because it is coNL to show that there is no
history of size up to T − 1, we can show that there is no history of size less than T in NL).

In general, using the same technique, given a state S of the NL machine, we can tell what
is the shortest possible length for a successful computation history starting at S.

Our algorithm will proceed as follows. Given a state S (which we initially set to be
the initial configuration of the NL machine), we will compute T , the length of the shortest
successful computation path starting at S. Then, for each possible nondeterministic choice,
we will check (in NL) whether there exists a computation history of length T − 1 given that
nondeterministic choice. Then, we will choose the lexicographically first such nondeterministic
choice, and recurse.

This algorithm finds the lexicographically first computation path of minimal length which
is unique. Hence, the algorithm will always output the same solution (or reject), so the
algorithm is pseudo-deterministic. J

7 Structural Results

In [8], Goldreich et al showed that the set of total search problems solved by pseudo-
deterministic polynomial time randomized algorithms equals the set of total search problems
solved by deterministic polynomial time algorithms, with access to an oracle to decision
problems in BPP. In [10], this result was extended to the context of RNC. We show
analogous theorems here. In the context of MA, we show that for total search problems,
psdMA = search−PMA∩coMA.4 In other words, any pseudo-deterministic MA algorithm can
be simulated by a polynomial time search algorithm with an oracle solving decision problems
in MA ∩ coMA, and vice versa.

In the case of search problems that are not total, we show that psdMA equals to the class
search−Ppromise−(MA∩coMA), where when the input x is in LR, all queries to the oracle must
be in the promise. We note that generally, when having an oracle to a promise problem, one
is allowed to query the oracle on inputs not in the promise, as long as the output of the
algorithm as a whole is correct for all possible answers the oracle gives to such queries. In
our case, we simply do not allow queries to the oracle to be in the promise. Such reductions
have been called smart reductions [12].

We show similar theorems for AM, and NP. Specifically, we show
psdAM = search−Ppromise−(AM∩coAM) and psdNP = search−Ppromise−(NP∩coNP), where the
reductions to the oracles are smart reductions.

In the case of total problems, one can use a similar technique to show psdAM =
search−PAM∩coAM and psdNP = search−PNP∩coNP, where the oracles can only return
answers to total decision problems.

I Theorem 16. The class psdMA equals the class search−Ppromise−(MA∩coMA), where on
any input x ∈ LR, the all queries to the oracle are in the promise.

Proof. The proof is similar to the proofs in [8] and [10] which show similar reductions to
decision problems in the context of pseudo-deterministic polynomial time algorithms and

4 What we call search−P is often denoted as FP.

S. Goldwasser, O. Grossman, and D. Holden 17:13

pseudo-deterministic NC algorithms.
First, we show that a polynomial time algorithm with an oracle for promise−(MA∩coMA)

decision problems which only asks queries in the promise has a corresponding pseudo-
deterministic MA algorithm. Consider a polynomial time algorithm A which uses an oracle
for promise−(MA ∩ coMA). We can simulate A by an MA protocol where the prover sends
the verifier the proof for every question which A asks the oracle. Then, the verifier can
simply run the algorithm from A, and whenever he accesses the oracle, he instead verifies
the proof sent to him by the prover.

We note that the condition of a smart reduction is required in order for the prover to
be able to send to the verifier the list of all queries A will make to the oracle. If A can ask
the oracle queries not in the promise, it may be that on different executions of A, different
queries will be made to the oracle (since A is a adaptive, and the queries A makes may
depend on the answers returned by the oracle for queries not in the promise), so the prover
is unable to predict what queries A will need answered.

We now show that a pseudo-deterministic MA algorithm B has a corresponding polynomial
time algorithm A that uses a promise−(MA∩ coMA) oracle while only querying on inputs in
the promise. On input x ∈ LR, the polynomial time algorithm can ask the promise−(MA ∩
coMA) oracle for the first bit of the unique answer given by B. This is a decision problem in
promise−(MA ∩ coMA) since it has a constant round interactive proof (namely, run B and
then output the first bit). Similarly, the algorithm A can figure out every other bit of the
unique answer, and then concatenate those bits to obtain the full output.

Note that it is required that the oracle is for promise−(MA ∩ coMA), and not just for
promise−MA, since if one of the bits of the output is 0, the verifier must be able to convince
the prover of that (and this would require a promise−coMA protocol). J

A very similar proof shows the following:

I Theorem 17. The class psdNP equals the class search−Ppromise−(NP∩coNP), where on any
input x ∈ LR, all queries to the oracle are in the promise.

We now prove a similar theorem for the case of AM protocols. We note that this is slightly
more subtle, since it’s not clear how to simulate a search−Ppromise−(AM∩coAM) protocol using
only a constant number of rounds of interaction, since the search-P algorithm may ask
polynomial many queries in an adaptive fashion.

I Theorem 18. The class psdAM equals the class search−Ppromise−(AM∩coAM), where on
any input x ∈ LR, the all queries to the oracle are in the promise.

Proof. First, we show that a polynomial time algorithm with an oracle for promise−(AM ∩
coAM) decision problems where the queries are all in the promise has a corresponding
pseudo-deterministic AM algorithm. We proceed similarly to the proof of Theorem 16.
Consider a polynomial time algorithm A which uses an oracle for promise−(AM ∩ coAM).
The prover will internally simulate that algorithm A, and then send to the verifier a list of
all queries that A makes to the promise−(AM ∩ coAM) oracle. Then, the prover can prove
the answer (in parallel), to all of those queries.

To prove correctness, suppose that the prover lies about at least one of the oracle queries.
Then, consider the first oracle query to which the prover lied. Then, by a standard simulation
argument, one can show that it can be made overwhelmingly likely that the verifier will
discover that the prover lied on that query.

ITCS 2018

17:14 Pseudo-Deterministic Proofs

Once all queries have been answered by the verifier the algorithm B can run like A, but
instead of querying the oracle, it already knows the answer since the prover has proved it to
him.

The proof that a pseudo-deterministic MA algorithm B has a corresponding polynomial
time algorithm A that uses an promise−(AM ∩ coAM) oracle is identical to the proof of
Theorem 16 J

As a corollary of the above, we learn that private coins are no more powerful than public
coins in the pseudo-deterministic setting:

I Corollary 19. A pseudo-deterministic constant round interactive proof using private coins
can be simulated by a pseudo-deterministic constant round interactive proof using public
coins.

Proof. By Theorem 18, we can view the algorithm as an algorithm in search−PAM∩coAM.
By a similar argument to that in Theorem 18, one can show that psdIP = search−PIP∩coIP,

where in this context IP refers to constant round interactive proofs using private coins, and AM
refers to constant round interactive proofs using public coins. Since promise−(AM∩coAM) =
promise−(IP ∩ coIP), since every constant round private coin interactive proof for decision
problems can be simulated by a constant round interactive proof using public coins [11], we
have:

psdAM = search−Ppromise−(AM∩coAM) = search−Ppromise−(IP∩coIP) = psdIP. J

8 Discussion and Open Problems

Pseudo-determinism and TFNP: The class of total search problems solvable by pseudo-
deterministic NP algorithms is a very natural subset of TFNP, the set of all total NP search
problems. It is interesting to understand how the set of total psdNP problems fits in TFNP.
For example, it is not known whether TFNP = psdNP. It would be interesting either to show
that every problem in TFNP has a pseudo-deterministic NP algorithm, or to show that under
plausible assumptions there is a problem in TFNP which does not have a pseudo-deterministic
NP algorithm.

Similarly, it is interesting to understand the relationship of psdNP to other subclasses of
TFNP. For example, one can ask whether every problem in PPAD has a pseudo-deterministic
NP algorithm (i.e., given a game, does there exists a pseudo-deterministic NP or AM
algorithm which outputs a Nash Equilibrium), or whether under plausible assumptions this
is not the case. Similar questions can be asked for CLS, PPP, and so on.

Pseudo-determinism in Lattice problems: There are several problems in the context of
lattices which have NP (and often also NP∩ coNP) algorithms [1]. Notable examples include
gap-SVP and gap-CVP, for certain gap sizes. It would be interesting to show pseudo-
deterministic interactive proofs for those problems. In other words, one could ask: does
there exists an AM protocol for gap-SVP so that when a short vector exists, the same short
vector is output every time. Perhaps more interesting would be to show, under plausible
cryptographic assumptions, that certain such problems do not have psdAM protocols.

Pseudo-determinism and Number Theoretic Problems: The problem of generating primes
(given a number n, output a prime greater than n), and the problem of finding primitive
roots (given a prime p, find a primitive root mod p) have efficient randomized algorithms, and

S. Goldwasser, O. Grossman, and D. Holden 17:15

have been studied in the context of pseudo-determinism [13, 6, 22], though no polynomial
time pseudo-deterministic algorithms have been found. It is interesting to ask whether these
problems have polynomial time psdAM protocols.

The Relationship between psdAM and search−BPP: One of the main open problems
in pseudo-determinism is to determine whether every problem in search−BPP also has a
polynomial time pseudo-deterministic algorithm. This remains unsolved. As a step in that
direction (and as an interesting problem on its own), it is interesting to determine whether
search−BPP ⊆ psdAM. In this paper, we proved a partial result in this direction, namely
that search−BPP ⊆ i.o.psdMASUBEXP.

Zero Knowledge Proofs of Uniqueness: The definition of pseudo-deterministic interactive
proofs can be extended to the context of Zero Knowledge. In other words, the verifier gets
no information other than the answer, and knowing that it is the unique/canonical answer.
It is interesting to examine this notion and understand its relationship to psdAM.

The Power of the Prover in pseudo-deterministic interactive proofs: Consider a search
problem which can be solved in IP where the prover, instead of being all-powerful, is
computationally limited. We know that such a problem can be solved in psdIP if the prover
has unlimited computational power (in fact, one can show it is enough for the prover to be
in PSPACE). In general, if the prover can be computationally limited for some IP protocol,
can it also be computationally limited for a psdIP protocol for the same problem? It is also
interesting in general to compare the power needed for the psdIP protocol compared to the
power needed to solve the search problem non-pseudo-deterministically. Similar questions
can be asked in the context of AM.

The Power of the Prover in pseudo-deterministic private vs public coins proofs: In our
psdAM protocol for Graph Isomorphism, the verifier uses private coins, and the prover is weak
(it can be simulated by a polynomial time machine with an oracle for graph isomorphism).
If using public coins, what power would the prover need? In general, it is interesting to
compare the power needed by the prover when using private coins vs public coins in psdAM
and psdIP protocols.

Pseudo-deterministic interactive proofs for setting cryptographic global system paramet-
ers: Suppose an authority must come up with global parameters for a cryptographic protocol
(for instance, a prime p and a primitive root g of p, which would be needed for a Diffie-
Hellman key exchange). It may be important that other parties in the protocol know that the
authority did not come up with these parameters because he happens to have a trapdoor to
them. If the authority proves to the other parties that the parameters chosen are canonical,
the other parties now know that the authority did not just pick these parameters because of
a trapdoor (instead, the authority had to pick those parameters, since those are the canonical
ones). It would be interesting to come up with a specific example of a protocol along with
global parameters for which there is a pseudo-deterministic interactive proof showing the
parameters are unique.

References
1 Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the ACM

(JACM), 52(5):749–765, 2005.

ITCS 2018

17:16 Pseudo-Deterministic Proofs

2 László Babai. Trading group theory for randomness. In Proceedings of the seventeenth
annual ACM symposium on Theory of computing, pages 421–429. ACM, 1985.

3 László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 171–183. ACM, 1983.

4 J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield
improved Karp–Lipton collapse results. Information and Computation, 198(1):1–23, 2005.

5 John J Cannon. Construction of defining relators for finite groups. Discrete Mathematics,
5(2):105–129, 1973.

6 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. In Electronic Colloquium on Computational Complexity
(ECCC), volume 18, page 136, 2011.

7 Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness,
volume 17. Springer Science & Business Media, 1998.

8 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, pages 127–138. ACM, 2013.

9 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM
(JACM), 38(3):690–728, 1991.

10 Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-deterministic
RNC. In Electronic Colloquium on Computational Complexity (ECCC), volume 22, page
208, 2015.

11 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pages 59–68. ACM, 1986.

12 Joachim Grollmann and Alan L Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309–335, 1988.

13 Ofer Grossman. Finding primitive roots pseudo-deterministically. In Electronic Colloquium
on Computational Complexity (ECCC), volume 22, page 207, 2015.

14 E. Hemaspaandra, L. Hemaspaandra, and C. Menton. Search versus decision for election
manipulation problems. In Proceedings of the 30th Annual Symposium on Theoretical As-
pects of Computer Science, pages 377–388. Leibniz International Proceedings in Informatics
(LIPIcs), 2013.

15 L. Hemaspaandra and D. Narváez. The opacity of backbones. In AAAI-2017, pages 3900–
3906. AAAI Press, 2017.

16 Lane A Hemaspaandra, Ashish V Naik, Mitsunori Ogihara, and Alan L Selman. Comput-
ing solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing,
25(4):697–708, 1996.

17 Dhiraj Holden. A note on unconditional subexponential-time pseudo-deterministic al-
gorithms for BPP search problems. arXiv preprint arXiv:1707.05808, 2017.

18 Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on computing, 17(5):935–938, 1988.

19 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Pro-
cessing Letters, 8(3):131–136, 1979.

20 Peter Bro Miltersen, N Variyam Vinodchandran, and Osamu Watanabe. Super-polynomial
versus half-exponential circuit size in the exponential hierarchy. In International Computing
and Combinatorics Conference, pages 210–220. Springer, 1999.

21 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

S. Goldwasser, O. Grossman, and D. Holden 17:17

22 Igor C Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. arXiv preprint arXiv:1612.01817, 2016.

23 Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, pages 49–62. ACM, 2016.

24 Adi Shamir. IP=PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.
25 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.

Acta Informatica, 26(3):279–284, 1988.

A Alternate Algorithm for Graph Isomorphism in
pseudo-deterministic AM

In this section, we present another psdAM algorithm for Graph Isomorphism, this one more
group theoretic (as opposed to the more combinatorial approach of the algorithm in Section
3). The method we use to do this involves finding the lexicographically first isomorphism
using group theory. In particular, the verifier will obtain the automorphism group of one of
the graphs from the prover and verify that it is indeed the automorphism group, and then
the verifier will convert an isomorphism obtained from the prover into the lexicographically
first isomorphism between the two graphs. We will define the group-theoretic terms used
below.

I Definition 20 (Automorphism Group). The automorphism group Aut(G) of a graph is
the set of permutations φ : G → G such that for every u, v ∈ V (G), (u, v) ∈ E(G) ⇐⇒
(φ(u), φ(v)) ∈ E(G) (i.e., φ is an automorphism of G).

I Definition 21 (Stabilize). Given a set S and elements α1, α2, ..., αi ∈ S, we say that a
permutation φ : S → S stabilizes {α1, α2, ..., αk} iff φ(αi) = αi for i ∈ {1, ..., k}. We also say
that a group G stabilizes {α1, α2, ..., αk} when every φ ∈ G stabilizes {α1, α2, ..., αk}.

I Definition 22 (Stabilizer). The stabilizer of an element s in S for a group G acting on S
is the set of elements of G that stabilize s.

I Lemma 23. Suppose that we are given a tuple (G1, G2, H, φ) where G1 and G2 are graphs,
H = Aut(G1) is represented as a set of generators, and φ an isomorphism between G1 and
G2. Then, in polynomial time, we can compute a unique isomorphism φ∗ from G1 to G2
independent of the choice of φ and the representation of H.

Proof. We use the algorithm given in [5] to compute a canonical coset representative,
observing that the set of isomorphisms between G1 and G2 is a coset of the automorphism
group of G1. Let α1, ..., αt be a basis of H, i.e., a set such that any h ∈ H fixing α1, ..., αt is
the identity. Let Hi be the subgroup of H that stabilizes α1, ..., αi−1. Now, let Ui be a set
of coset representatives of Hi+1 in Hi. Given the generators of Hi, we can calculate Ui, and
by Schreier’s theorem we can calculate the generators for Hi+1. In this fashion, we can get
generators and coset representatives for all the Hi. To produce φ∗, we do the following.

Find-First-Isomorphism
1 φ∗ = φ

2 For i = 1, ..., t
3 Let Pi = {φ∗u|u ∈ Ui}.
4 Set φ∗ = arg minφ∈Pi(φ(αi)).

ITCS 2018

17:18 Pseudo-Deterministic Proofs

To see that this produces a unique isomorphism that does not depend on φ, observe that
φ∗(α1) is the minimum possible value of φ(α1) over all isomorphisms of G1 to G2 as U1
is a set of coset representatives for the stabilizer of α1 over H. Also, if φ∗(αi) is fixed for
i ∈ {1, ..., k}, then φ∗(αk+1) is the minimum possible value of φ(αk+1) over all isomorphisms
which take α1 to φ∗(α1), α2 to φ∗(α2),..., and αk to φ∗(αk), as Ui+1 stabilizes α1, ..., αk, so
everything in Pi+1 takes α1 to φ∗(α1), α2 to φ∗(α2),..., and αk to φ∗(αk). This implies that
φ∗ does not depend on φ and is unique. J

Given this result, this means that it suffices to show a protocol that lets the verifier
obtain a set of generators for the automorphism group of G1 and an isomorphism that are
correct with high probability, as by the above lemma this can be used to obtain a unique
isomorphism between G1 and G2 independent of the isomorphism or the generators.

I Theorem 24. There exists an interactive protocol for graph isomorphism such that with
high probability, the isomorphism that is output by the verifier is unique, where in the case of
a cheating prover the verifier fails instead of outputting a non-unique isomorphism. In other
words, finding an isomorphism between graphs can be done in psdAM.

Proof. From Lemma 23, it suffices to show an interactive protocol that computes the
automorphism group of a graph in a verifiable fashion. [19] reduces the problem of computing
the generators of the automorphism group to the problem of finding isomorphisms. Using this
reduction, we can make a constant-round interactive protocol to determine the automorphism
group by finding the isomorphisms in parallel. The reason we can do this in parallel is
that [19] implies that there are O(n4) different pairs of graphs to check and for each pair
of graphs we either run the graph isomorphism protocol or the graph non-isomorphism
protocol. In the case of the graph isomorphism protocol, the verifier need only accept with
an isomorphism in hand; for graph non-isomorphism, the messages sent to the prover are
indistinguishable between the two graphs when they are isomorphic, so since the graphs
and permutations are chosen independently, there is no way for the prover to correlate their
answers to gain a higher acceptance probability for isomorphic graphs. Thus this means that
the verifier can determine the automorphism group of a graph and verify that it is indeed
the entire automorphism group. Using Lemma 23 we then see that the prover just has to
give the verifier an isomorphism, and verifier can compute a unique isomorphism using the
automorphism group. J

	Introduction
	Our Contribution
	Other Related Work
	Subsequent Work

	Definitions of Pseudo-deterministic Interactive Proofs
	Pseudo-deterministic-AM algorithm for graph isomorphism
	Lower bound on pseudo-deterministic AM algorithms
	Pseudo-deterministic derandomization for BPP in subexponential time MA
	Uniqueness in NL
	Structural Results
	Discussion and Open Problems
	Alternate Algorithm for Graph Isomorphism in pseudo-deterministic AM

